Flash storage is a solid-state storage technology that uses flash memory chips for writing and storing data, known as input/output operations per second (IOPS).
Not to be confused with random access memory (RAM) or short-term memory, flash storage solutions range from USB drives to enterprise-level arrays. Flash storage devices can achieve high-speed response times (microsecond latency), compared to hard drives with moving components or memory sticks. It uses non-volatile memory, which means that data is not lost when the power is turned off. It uses highly available solid-state drives, and less energy and physical space than mechanical disk storage.
A storage array combines multiple disk drives to enable block-based data storage. It separates storage from network communication and connection functions to provide more capacity than a group of file servers. With a storage array, multiple servers across the organization can efficiently access the same stored data. Also known as a disk array or disk storage array.
With a solid-state disk (SSD) flash drive you store data using flash memory. An SSD has advantages over a hard disk drive (HDD). Hard disks have an inherent latency, caused by mechanical components. A solid-state system has no moving parts and therefore less latency, so fewer SSDs are needed. Since most modern SSDs are flash-based, flash storage is synonymous with a solid-state system.
All-flash arrays use only flash memory for storage. These modern architectures are designed to maximize performance and storage capacity, without the constraints of SSD storage area network (SAN) legacy functions. They have ultra-low latency and are highly available. Ideally suited for multicloud environments and storage protocols such as NVMe.
Non-volatile Memory Express (NVMe) is an interface used to access flash storage over a peripheral component interconnect express (PCIe) bus. NVMe enables thousands of parallel requests on a single connection. It eliminates overhead between applications and storage and significantly improves performance.
Hybrid flash storage uses a mix of SSDs and HDDs, providing a balanced infrastructure for a range of workloads. Hard drives are an inexpensive technology, well suited for large files and data backups. Where high throughput and low latency are needed, data can be moved to SSDs and flash arrays.
Hard drives use electro-mechanical hardware to store digital information. They are cost-effective and ideal for long-term storage and large files. Hard drives are vulnerable to physical damage over time and have latency issues due to moving components. Flash media can be used to augment this type of storage, enabling applications to work faster and scale further.
Flash technology and storage plays a significant role in infrastructure modernization, and it has helped transform the economics of storing data. When applied to new or existing storage, it increases usable capacity while significantly improving application performance. The following are examples of how flash systems can meet a range of requirements.
To support high-performance applications, enterprises need to deliver data quickly and efficiently. All-flash storage systems provide secure, ultra-low latency and mission-critical reliability to meet modern business demands.
IBM Building on a global reputation for excellence with powerful, centralized IT infrastructure.
Leading smart meter manufacturer in India, modernizes its storage infrastructure with IBM Storage FlashSystem technology, to improve response times for enterprise workloads.
Organizations are looking for storage solutions to get more from their data assets, while also managing costs. Highly available hybrid systems can revitalize data centers and make the best use of both legacy and modern technology.
Deploying IBM FlashSystem 5200 to support business continuity and accelerate development of its OSEM software.
Flash is a type of floating-gate memory, which was invented in 1984 by Fujio Masuoka at Toshiba. In 1986, Toshiba introduced the first NAND flash chip, and Intel released the NOR chip. Flash memory offered breakthrough performance and quickly disrupted the data storage world, improving on spinning disks and memory cards. As data usage grew and devices became lighter and smaller, flash systems proved the fastest way to store, write, reprogram and transfer digital information.
In 2000, the USB flash drive (also known as a thumb drive) was developed to store and transfer files. The portable device was compact, with far more capacity than earlier systems. In 2005, Apple released its first flash-based iPods. Today, flash memory is in everything from smartphones, mobile devices and digital cameras to vehicles. For large enterprises, the speed and density of flash has made it the storage technology of choice, and it has largely displaced hard disks as the primary storage medium in data centers.
Trends and advancements are occurring in these areas:
SSDs and flash offer higher throughput than HDDs, but they can be more expensive. Many organizations are adopting a hybrid approach, mixing the speed of flash with the capacity of hard drives. A balanced infrastructure enables companies to apply the right technology for different storage needs, and it offers an economical way to transition from legacy HDDs without going entirely to flash.
Serial attached SCSI (SAS) and serial advanced technology attachment (SATA) are flash storage interfaces used for data transfer to and from HDDs. They can extend the lifespan of legacy systems and are also used in SSDs to support applications requiring fast input/output (I/O). SAS and SATA are designed around the mechanics of HDD, and have some legacy constraints. Many organizations have transitioned from these interfaces to NVME.
NVME is an extremely fast protocol that is well suited for artificial intelligence (AI) and real-time applications. It reduces I/O overhead between CPUs and storage, resulting in significant throughput improvements. With the move toward cloud, NVME is also well placed to support hybrid multicloud and mainframe storage environments with its built-in performance, data protection, resiliency and high availability features.
NVME over fabric enables data transfer between a host computer and an SSD over a network such as Ethernet, Fibre Channel or the internet. The benefits of fabric connectivity include shared access, greater capacity and enhanced data protection. Using a fabric also eliminates single points of failure and simplifies management.
Explore the essentials of data security and understand how to protect your organization's most valuable asset—data. Learn about the different types, tools and strategies that will help safeguard sensitive information from emerging cyberthreats.
This on-demand webinar will guide you through best practices for increasing security, improving efficiency and ensuring data recovery with an integrated solution designed to minimize risk and downtime. Don’t miss insights from industry experts.
Learn how to overcome your data challenges with high-performance file and object storage, designed to enhance AI, machine learning and analytics processes while ensuring data security and scalability.
Learn about the types of flash memory and storage and explore how businesses are using flash technology to enhance efficiency, reduce latency and future-proof their data storage infrastructure.
Learn how IBM FlashSystem boosts data security and resilience, protecting against ransomware and cyberattacks with optimized performance and recovery strategies.
Unlock the power of cyber resilience and sustainability with IBM FlashSystem. Explore how autonomous data storage can help you secure your data, reduce costs, and elevate operational efficiency.
Virtualize your storage environment and manage it efficiently across multiple platforms. IBM Storage Virtualization helps reduce complexity while optimizing resources.
Accelerate AI and data-intensive workloads with IBM Storage for AI solutions.