OLAP, or online analytical processing, is technology for performing high-speed complex queries or multidimensional analysis on large volumes of data in a data warehouse, data lake or other data repository. OLAP is used in business intelligence (BI), decision support, and a variety of business forecasting and reporting applications.
Most business data have multiple dimensions—multiple categories into which the data are broken down for presentation, tracking, or analysis. For example, sales figures might have several dimensions related to location (region, country, state/province, store), time (year, month, week, day), product (clothing, men/women/children, brand, type), and more.
But in a data warehouse or data lake, data sets are stored in tables, each of which can organize data into just two of these dimensions at a time. OLAP extracts data from multiple relational data sets and reorganizes it into a multidimensional format that enables very fast processing and very insightful analysis.
The core of most OLAP systems, the OLAP cube is an array-based multidimensional database that makes it possible to process and analyze multiple data dimensions much more quickly and efficiently than a traditional relational database.
A relational database table is structured like a spreadsheet, storing individual records in a two-dimensional, row-by-column format. Each data “fact” in the database sits at the intersection of two dimensions–a row and a column—such as region and total sales.
SQL and relational database reporting tools can certainly query, report on, and analyze multidimensional data stored in tables, but performance slows down as the data volumes increase. And it requires a lot of work to reorganize the results to focus on different dimensions.
This is where the OLAP cube comes in. The OLAP cube extends the single table with additional layers, each adding additional dimensions—usually the next level in the “concept hierarchy” of the dimension. For example, the top layer of the cube might organize sales by region; additional layers could be country, state/province, city and even specific store.
In theory, a cube can contain an infinite number of layers. (An OLAP cube representing more than three dimensions is sometimes called a hypercube.) And smaller cubes can exist within layers—for example, each store layer could contain cubes arranging sales by salesperson and product. In practice, data analysts will create OLAP cubes containing just the layers they need, for optimal analysis and performance.
The drill-down operation converts less-detailed data into more-detailed data through one of two methods—moving down in the concept hierarchy or adding a new dimension to the cube. For example, if you view sales data for an organization’s calendar or fiscal quarter, you can drill-down to see sales for each month, moving down in the concept hierarchy of the “time” dimension.
Roll up is the opposite of the drill-down function—it aggregates data on an OLAP cube by moving up in the concept hierarchy or by reducing the number of dimensions. For example, you could move up in the concept hierarchy of the “location” dimension by viewing each country's data, rather than each city.
The slice operation creates a sub-cube by selecting a single dimension from the main OLAP cube. For example, you can perform a slice by highlighting all data for the organization's first fiscal or calendar quarter (time dimension).
The dice operation isolates a sub-cube by selecting several dimensions within the main OLAP cube. For example, you could perform a dice operation by highlighting all data by an organization’s calendar or fiscal quarters (time dimension) and within the U.S. and Canada (location dimension).
The pivot function rotates the current cube view to display a new representation of the data—enabling dynamic multidimensional views of data. The OLAP pivot function is comparable to the pivot table feature in spreadsheet software, such as Microsoft Excel, but while pivot tables in Excel can be challenging, OLAP pivots are relatively easier to use (less expertise is required) and have a faster response time and query performance.
OLAP that works directly with a multidimensional OLAP cube is known as multidimensional OLAP, or MOLAP. Again, for most uses, MOLAP is the fastest and most practical type of multidimensional data analysis.
However, there are two other types of OLAP which may be preferable in certain cases:
ROLAP, or relational OLAP, is multidimensional data analysis that operates directly on data on relational tables, without first reorganizing the data into a cube.
As noted previously, SQL is a perfectly capable tool for multidimensional queries, reporting, and analysis. But the SQL queries required are complex, performance can drag, and the resulting view of the data is static—it can't be pivoted to represent a different view of the data. ROLAP is best when the ability to work directly with large amounts of data is more important than performance and flexibility.
HOLAP, or hybrid OLAP, attempts to create the optimal division of labor between relational and multidimensional databases within a single OLAP architecture. The relational tables contain larger quantities of data, and OLAP cubes are used for aggregations and speculative processing. HOLAP requires an OLAP server that supports both MOLAP and ROLAP.
A HOLAP tool can "drill through" the data cube to the relational tables, which paves the way for quick data processing and flexible access. This hybrid system can offer better scalability but can't escape the inevitable slow-down when accessing relational data sources. Also, its complex architecture typically requires more frequent updates and maintenance, as it must store and process all the data from relational databases and multidimensional databases. For this reason, HOLAP can end up being more expensive.
Online transaction processing, or OLTP, refers to data-processing methods and software focused on transaction-oriented data and applications.
The main difference between OLAP and OLTP is in the name: OLAP is analytical in nature, and OLTP is transactional.
OLAP tools are designed for multidimensional analysis of data in a data warehouse, which contains both transactional and historical data. In fact, an OLAP server is typically the middle, analytical tier of a data warehousing solution. Common uses of OLAP include data mining and other business intelligence applications, complex analytical calculations, and predictive scenarios, as well as business reporting functions like financial analysis, budgeting, and forecast planning.
OLTP is designed to support transaction-oriented applications by processing recent transactions as quickly and accurately as possible. Common uses of OLTP include ATMs, e-commerce software, credit card payment processing, online bookings, reservation systems, and record-keeping tools.
For a deep dive into the differences between these approaches, check out "OLAP vs. OLTP: What's the Difference?"
OLAP enables companies to maximize the potential of their corporate data by transforming it into the most practical format for multidimensional analysis. This, in turn, makes it easier to discern valuable business insights. However, if these systems are kept in-house, it limits the potential for scaling.
Cloud-based OLAP services are less expensive and easier to set up, making them more attractive for small businesses or startups on a budget. Enterprises can tap into the vast potential of cloud-based data warehouses that perform sophisticated analytics at unrivaled speeds because they use massively parallel processing (MPP). Therefore, companies can use OLAP at cloud speed and scale, analyzing vast amounts of data without moving it from their cloud data warehouse.
Constance Hotels, Resorts & Golf is a luxury hotel group with nine properties on islands in the Indian Ocean. However, a lack of island-to-island communications gave way to organizational silos, with business data isolated in each resort. The organization built a cloud data warehouse and analytics architecture to link all on-premises systems and tools with a central cloud-based data repository. In doing this, the company gained the group-wide insight they needed to leverage advanced, predictive analytics and implement an OLAP system.
OLAP in cloud architecture is a fast and cost-effective solution built for the future. Once the cubes are made, teams can use existing business intelligence tools to instantly connect with the OLAP model and draw interactive real-time insights from their cloud data.
Learn how an open data lakehouse approach can provide trustworthy data and faster analytics and AI projects execution.
Explore the data leader's guide to building a data-driven organization and driving business advantage.
Discover why AI-powered data intelligence and data integration are critical to drive structured and unstructured data preparedness and accelerate AI outcomes.
Gain unique insights into the evolving landscape of ABI solutions, highlighting key findings, assumptions and recommendations for data and analytics leaders.
Simplify data access and automate data governance. Discover the power of integrating a data lakehouse strategy into your data architecture, including cost-optimizing your workloads and scaling AI and analytics, with all your data, anywhere.
Explore how IBM Research is regularly integrated into new features for IBM Cloud Pak for Data.
Design a data strategy that eliminates data silos, reduces complexity and improves data quality for exceptional customer and employee experiences.
Watsonx.data enables you to scale analytics and AI with all your data, wherever it resides, through an open, hybrid and governed data store.
Unlock the value of enterprise data with IBM Consulting, building an insight-driven organization that delivers business advantage.