Geospatial data is time-based data that is related to a specific location on the Earth’s surface. It can provide insights into relationships between variables and reveal patterns and trends.
Geospatial data is information that describes objects, events or other features with a location on or near the surface of the earth. Geospatial data typically combines location information (usually coordinates on the earth) and attribute information (the characteristics of the object, event or phenomena concerned) with temporal information (the time or life span at which the location and attributes exist).
The location provided may be static in the short term (for example, the location of a piece of equipment, an earthquake event, children living in poverty) or dynamic (for example, a moving vehicle or pedestrian, the spread of an infectious disease).
Geospatial data typically involves large sets of spatial data gleaned from many diverse sources in varying formats and can include information such as census data, satellite imagery, weather data, cell phone data, drawn images and social media data. Geospatial data is most useful when it can be discovered, shared, analyzed and used in combination with traditional business data.
Geospatial analytics is used to add timing and location to traditional types of data and to build data visualizations. These visualizations can include maps, graphs, statistics and cartograms that show historical changes and current shifts. This additional context allows for a more complete picture of events. Insights that might be overlooked in a massive spreadsheet are revealed in easy-to-recognize visual patterns and images. This can make predictions faster, easier and more accurate.
Geospatial information systems (GIS) relate specifically to the physical mapping of data within a visual representation. For example, when a hurricane map (which shows location and time) is overlaid with another layer showing potential areas for lightning strikes, you’re seeing GIS in action.
Geospatial data is information recorded with a geographic indicator of some type. There are two primary forms of geospatial data: vector data and raster data.
Vector data is data in which points, lines and polygons represent features such as properties, cities, roads, mountains and bodies of water. For example, a visual representation that uses vector data might include houses represented by points, roads represented by lines and entire towns represented by polygons.
Raster data is pixelated or gridded cells identified according to row and column. Raster data creates imagery that’s substantially more complex, such as photographs and satellite images.
Examples of geospatial data include:
Geospatial technology refers to all the technology required for the collecting, storing and organizing of geographic information. It includes the satellite technology that allowed for the geographic mapping and analysis of Earth. Geospatial technology can be found in several related technologies, such as Geographic Information Systems (GIS), Global Positioning Systems (GPS), geofencing and remote sensing.
The popular programming language Python is well suited to working with geospatial data and can accommodate both vector data and raster data, the two ways in which geospatial data are typically represented. Vector data can be worked with by using programs such as Fiona and GeoPandas. Raster data can be worked with by using a program such as xarray.
Dealing with large geospatial data sets presents many challenges. For this reason, many organizations struggle to take full advantage of geospatial data.
First, there is the sheer volume of geospatial data. For example, it is estimated that 100 TB of weather-related data are generated daily. This alone presents considerable storage and access problems for most organizations. Geospatial data is also stored across many different files, which makes it difficult to find the files that contain the data needed to solve your specific problem.
In addition, geospatial data is stored in many different formats and calibrated by different standards. Any effort to compare, combine or map data first requires a significant amount of data scrubbing and reformatting.
Finally, working with raw geospatial data requires specialized knowledge and the application of advanced mathematics to conduct necessary tasks, such as geospatial alignment of data layers. Unless analysts are proficient and experienced at this work, they will not get value from the data or make progress toward their organization’s business goals.
Because the sheer volume of geospatial data routinely required by enterprises is prohibitively large, many organizations look to using a service to obtain curated geospatial data.
Regardless of where you source your geospatial data, data quality must always be maintained. Poor data results in models of little or limited use. (The cautionary phrase “Bad data in—bad insights out” proves brutally true.) It seems self-evident that organizations can benefit significantly from having a solution in place that curates and checks data, so any “garbage” data gets properly accounted for.
With so much data now in abundance, managing it takes on considerable importance. Many organizations are finding themselves overrun with data and are turning to their in-house data scientists to help them manage it.
It has been estimated that as much as 90% of data scientists’ time is spent on data-curation activities, including organizing, “cleaning” and reformatting data. That leaves those data scientists with only 10% of their workday to devote to analyzing data trends and using those insights to help shape business policy.
When a company turns over data collection and management to a solution such as IBM Environmental Intelligence, both data collection and data management activities can be executed more efficiently. The solution is scalable, cloud-based and able to accommodate different file formats.
By using a curated database of optimized information, data scientists can have more time to concentrate on how to use analytic insights and convert them into organizational progress and business impact.
Through data anomalies, geospatial data can give organizations a heads-up regarding incoming changes set to affect their enterprise.
Using geospatial data can provide organizations with evidence of why and how some analytics solutions work well while others don’t.
Organizations can use the numerical precision provided by geospatial data to improve the overall efficiency of company operations.
Although geospatial analysis, as empowered by GIS, was originally used in connection with life sciences such as geology, ecology and epidemiology, its use has since become manifest throughout most industries. Its applications now touch industries as diverse as defense and social sciences. And the insights that geospatial analysis generates affect matters as critically important as natural resource management and national intelligence.
Geospatial analysis lends itself to the study of many things at once, monitoring hundreds or even thousands of events and collecting pertinent data from them. This provides enterprises of all sizes the chance to use data to make more informed business decisions:
Efforts to analyze massive amounts of data have become more challenging in recent years due to a relative explosion within the Internet of Things (IoT). Objects and devices of all types and purposes are now being engineered to be able to transmit data relevant to that device’s performance or protocols. That’s good news for geospatial analysis, which involves a profusion of data in order to glean valuable insights. IBM Environmental Intelligence is a cloud-based platform that uses exclusive and third-party geospatial, weather and climate data as a strategic resource for analysis.
Geospatial analytics is when the collection of data achieved through geospatial analysis is combined with a heightened visual approach that maximizes the data’s impact by organizing it according to time and space.
This type of visual data makes it easier for those studying it to derive indications about trends that might be at work. Geospatial analytics can effectively convey the shape and energy of a changing situation. As increasing amounts of data are gathered about that scenario, it becomes easier to spot even more subtle nuances within that situation.
The geospatial analytics market is presently experiencing considerable and steady growth. In fact, the market is expected to grow in value to USD 96.3 billion by 2025, achieving a 12.9% annual sales growth during the 5-year period under review.¹
Here’s how different industries are using geospatial analytics:
Through user-defined functions (UDFs), geospatial analytics enables those involved in vegetation management to assess water and moisture levels.
User-defined functions are also useful at helping meteorologists work with incoming data to chart the path of tornadoes that might be moving through an area.
Having relevant data—such as satellite imagery, census data and wind forecasts—in one platform lets incident commanders chart wildfire growth and movement.
Most experts expect geospatial technology to become increasingly sophisticated, especially as that technology comes into closer contact with machine learning and AI.
In fact, it is expected that geospatial AI will also come into its own, bringing a geographic element to machine learning. Experts also forecast the arrival of mapping as a service, in which custom maps of remarkably high resolution can be produced for hire, based on consumer or industrial need.
There are aslo new types of vehicles in development that rely expressly on geospatial technology. They will be used in greater frequency—whether they traverse the sky carrying packages (drones) or drive themselves down streets (autonomous vehicles). New applications for these technologies will also be found, such as using drones for aerial-mapping purposes.
Sources
¹ Geospatial Analytics Market, Markets and Markets, August 2020.
IBM named a Leader for the 19th year in a row in the 2024 Gartner® Magic Quadrant™ for Data Integration Tools.
Discover why AI-powered data intelligence and data integration are critical to drive structured and unstructured data preparedness and accelerate AI outcomes.
Discover the power of integrating a data lakehouse strategy into your data architecture, including cost-optimizing your workloads and scaling AI and analytics, with all your data, anywhere.
Unlock AI strategy with data integration, by using analytics, DataOps and AI cloud-first applications.
Explore the data leader's guide to building a data-driven organization and driving business advantage.
Dig into the top 5 reasons you should modernize your data integration on IBM Cloud Pak for Data.
Gain unique insights into the evolving landscape of ABI solutions, highlighting key findings, assumptions and recommendations for data and analytics leaders.
Create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments.
Discover IBM Databand, the observability software for data pipelines. It automatically collects metadata to build historical baselines, detect anomalies and create workflows to remediate data quality issues.
Create resilient, high performing and cost optimized data pipelines for your generative AI initiatives, real-time analytics, warehouse modernization and operational needs with IBM data integration solutions.