
XL

C/C++

Enterprise

Edition

for

AIX

Getting

Started

with

XL

C/C++

Version

7.0

SC09-7889-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

information

in

“Notices”

on

page

75.

First

Edition

(September,

2004)

This

edition

applies

to

Version

7.0.0

of

XL

C/C++

Enterprise

Edition

for

AIX®

(product

number

5724-I11)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

You

can

send

them

by

the

Internet

to

the

following

address:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. v

Highlighting

conventions

.

.

.

.

.

.

.

.

.

. v

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

. v

XL

C/C++

overview

.

.

.

.

.

.

.

.

.

. 1

Command-line

C

and

C++

compiler

.

.

.

.

.

. 1

Libraries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Standard

C++

library

.

.

.

.

.

.

.

.

.

. 2

IBM

Mathematics

Acceleration

Subsystem

libraries

2

IBM

Distributed

Debugger

.

.

.

.

.

.

.

.

.

. 2

Other

tools

and

utilities

.

.

.

.

.

.

.

.

.

.

. 3

National

language

support

.

.

.

.

.

.

.

.

. 4

Documentation

and

online

help

.

.

.

.

.

.

.

. 4

What’s

new

in

version

7

.

.

.

.

.

.

.

. 7

Performance

and

optimization

.

.

.

.

.

.

.

. 7

Machine

architecture

and

hardware

.

.

.

.

.

. 7

New

built-in

functions

for

POWER5

processors

.

. 7

New

XL

C/C++

pragmas

.

.

.

.

.

.

.

.

. 9

New

optimization

utilities

.

.

.

.

.

.

.

.

. 9

IBM

Mathematics

Accelerated

Subsystem

(MASS)

libraries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

SMP

thread

binding

.

.

.

.

.

.

.

.

.

. 10

Conformance

to

industry

standards

.

.

.

.

.

. 11

Ease

of

use

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

New

XL

C/C++

options

.

.

.

.

.

.

.

.

. 13

Customizing

the

compilation

environment

.

.

.

.

.

.

.

.

.

.

.

. 17

Environment

variables

.

.

.

.

.

.

.

.

.

.

. 17

Create

symbolic

links

for

the

path

.

.

.

.

.

. 18

Configuration

files

.

.

.

.

.

.

.

.

.

.

.

. 18

Controlling

the

compilation

process

.

. 19

Invoking

the

compiler

.

.

.

.

.

.

.

.

.

.

. 19

Object

model

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Types

of

input

and

output

files

.

.

.

.

.

.

.

. 20

Default

behavior

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Getting

started

with

compiler

options

23

Compiler

messages

.

.

.

.

.

.

.

.

.

.

.

. 23

Return

codes

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Compiler

message

format

.

.

.

.

.

.

.

. 24

Reusing

GNU

C

and

C++

compiler

options

with

gxlc

and

gxlc++

.

.

.

.

.

.

.

.

.

.

.

.

. 25

gxlc

and

gxlc++

syntax

.

.

.

.

.

.

.

.

. 25

GNU

C

and

C++

to

XL

C/C++

option

mapping

26

Configuring

the

option

mapping

.

.

.

.

.

. 29

Options

summary:

C

compiler

.

.

.

.

.

.

.

. 31

Basic

translation

.

.

.

.

.

.

.

.

.

.

.

. 32

Special

handling

and

control

.

.

.

.

.

.

. 33

Linking

and

library-related

options

.

.

.

.

. 33

Options

summary:

C++

compiler

.

.

.

.

.

.

. 34

Getting

started

with

optimization

.

.

. 35

Selected

compiler

options

for

optimization

.

.

.

. 36

Getting

started

with

optimization

pragmas

.

.

.

. 38

Porting

considerations

.

.

.

.

.

.

.

. 39

Portability

issues

intrinsic

to

the

language

.

.

.

. 39

Diagnostics

for

compile-time

errors

.

.

.

.

.

. 41

32-

and

64-bit

application

development

.

.

.

.

. 41

32-

and

64-bit

development

environments

on

AIX

43

Objects

and

libraries

on

AIX

.

.

.

.

.

.

.

.

. 44

Difference

between

a

shared

object

and

library

on

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Difference

between

shared

and

static

objects

on

AIX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Link

time

and

load

time

.

.

.

.

.

.

.

.

. 46

Diagnostics

for

link-time

errors

.

.

.

.

.

.

.

. 47

Diagnostics

for

run-time

errors

.

.

.

.

.

.

.

. 48

Shared

memory

parallelization

.

.

.

.

.

.

.

. 49

OpenMP

directives

.

.

.

.

.

.

.

.

.

.

. 50

Threads

on

AIX

.

.

.

.

.

.

.

.

.

.

.

. 50

Features

related

to

GNU

C

and

C++

portability

.

. 58

Function

attributes

.

.

.

.

.

.

.

.

.

.

. 58

Variable

attributes

.

.

.

.

.

.

.

.

.

.

. 59

Type

attributes

.

.

.

.

.

.

.

.

.

.

.

. 60

GNU

C

and

C++

assertions

.

.

.

.

.

.

.

. 60

Other

extensions

related

to

GNU

C

and

C++

.

. 60

Appendix

A.

Language

support

.

.

.

. 63

Compatibility

with

ISO/IEC

International

Standards

63

ISO/IEC

14882:2003(E)

International

Standard

compatibility

.

.

.

.

.

.

.

.

.

.

.

.

. 63

ISO/IEC

9899:1990

International

Standard

compatibility

.

.

.

.

.

.

.

.

.

.

.

.

. 63

ISO/IEC

9899:1999

International

Standard

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Enhanced

language

level

support

.

.

.

.

.

.

. 66

Appendix

B.

OpenMP

compliance

and

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

OpenMP

directives

.

.

.

.

.

.

.

.

.

.

.

. 67

OpenMP

data

scope

attribute

clauses

.

.

.

.

.

. 69

OpenMP

library

functions

.

.

.

.

.

.

.

.

. 69

OpenMP

environment

variables

.

.

.

.

.

.

. 71

OpenMP

implementation-defined

behavior

.

.

.

. 72

Tuning

an

OpenMP

program

.

.

.

.

.

.

.

. 73

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Programming

interface

information

.

.

.

.

.

. 77

Trademarks

and

service

marks

.

.

.

.

.

.

.

. 77

Industry

standards

.

.

.

.

.

.

.

.

.

.

.

. 77

©

Copyright

IBM

Corp.

2004

iii

iv

An

Introductory

Guide

About

this

book

XL

C/C++

Enterprise

Edition

for

AIX

is

an

optimizing,

standards-based,

command-line

compiler

for

the

AIX

operating

system

running

on

the

PowerPC

architecture.

The

compiler

is

a

professional

programming

tool

for

creating

and

maintaining

32-

and

64-bit

applications

in

the

extended

C

and

C++

programming

languages.

This

book

introduces

you

to

the

XL

C/C++

compiler.

It

describes

the

various

compiler

invocations

and

ways

to

customize

the

compilation

environment

and

control

the

compilation

process.

This

book

contains

descriptions

of

the

types

of

transformations

the

compiler

can

perform,

the

accepted

file

types

for

input

and

output,

categorized

summaries

of

compiler

options,

and

considerations

for

porting

an

existing

application.

This

book

also

provides

a

brief

introduction

to

optimizing

the

performance

of

your

applications.

The

optimizing

capabilities

of

the

compiler

enable

you

to

exploit

the

multilayered

architecture

of

the

PowerPC

processor.

AIX

and

Linux®

are

complementary

operating

systems.

Makefiles

created

for

applications

developed

with

XL

C/C++

can

be

readily

adapted

to

be

reused

for

porting

to

the

Linux

platform.

This

book

is

intended

to

help

you

to

develop

and

maintain

your

programs

with

XL

C/C++

and

to

achieve

improved

performance

at

compile,

link,

and

run

time.

This

document

assumes

that

you

are

familiar

with

the

C

and

C++

programming

languages,

the

AIX

operating

system,

and

the

ksh

shell.

Highlighting

conventions

Bold

Identifies

commands,

keywords,

and

other

items

whose

names

are

predefined

by

the

system.

Italics

Identify

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

programmer.

Italics

are

also

used

for

the

first

mention

of

new

terms.

Example

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code,

messages

from

the

system,

or

information

that

you

should

actually

type.

Examples

are

intended

to

be

instructional

and

do

not

attempt

to

minimize

run

time,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

the

language

constructs.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

How

to

read

the

syntax

diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

©

Copyright

IBM

Corp.

2004

v

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

or

C++

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Reading

the

Syntax

Diagrams

vi

An

Introductory

Guide

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

See

XL

C/C++

Language

Reference

for

information

on

the

#pragma

directive.

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

name

of

the

pragma

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�10�

This

is

the

end

of

the

syntax

diagram.

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

Reading

the

Syntax

Diagrams

About

this

book

vii

Reading

the

Syntax

Diagrams

viii

An

Introductory

Guide

XL

C/C++

overview

IBM

XL

C/C++

Enterprise

Edition

V7.0

is

an

optimizing,

standards-based,

command-line

compiler

for

the

AIX

operating

system

and

the

PowerPC

architecture.

The

compiler

is

a

professional

programming

tool

for

creating

and

maintaining

32-bit

and

64-bit

applications

in

the

extended

C

and

C++

programming

languages.

The

compiler

represents

a

mature

technology,

which

has

evolved

with

an

emphasis

on

performance

and

cross-platform

portability

and

which

contains

flexibility,

features,

and

refinements

acquired

from

releases

on

other

platforms.

This

product

is

the

follow-on

release

to

IBM

VisualAge

C++

Professional

for

AIX

Version

7.0.

IBM

has

rebranded

VisualAge

C++

as

XL

C/C++.

In

addition

to

the

compiler

itself,

XL

C/C++

ships

with

libraries,

utilities,

and

tools

that

can

help

you

create

programs

efficiently.

The

compiler

documentation

includes

a

searchable

help

system,

PDF

books,

and

man

pages

for

the

compiler

invocations,

as

well

as

for

all

command-line

utilities.

Command-line

C

and

C++

compiler

XL

C/C++

provides

a

selection

of

base

compiler

invocation

commands,

which

support

various

version

levels

of

the

C

and

C++

languages.

Each

invocation

command

automatically

sets

a

compiler

suboption

for

language

level,

options

for

other

related

language

features,

and

any

related

predefined

macros.

In

most

cases,

you

should

use

the

xlc

command

to

compile

C

source

files

and

the

xlC

command

to

compile

C++

source

files,

or

when

you

have

both

C

and

C++

source

files.

Variations

of

the

base

command

are

provided

to

support

the

requirements

of

special

environments

and

file

systems.

The

variations

are

formed

by

attaching

suffixes

to

the

base

command.

For

example,

using

the

commands

that

have

the

suffix

_r

ensures

that

the

compiler

uses

the

reentrant

and

thread-safe

versions

of

functions

and

libraries.

In

addition,

the

gxlc

and

gxlc++

utilities

are

specialized

compiler

invocations.

Libraries

XL

C/C++

ships

with

the

following

libraries.

v

SMP

Runtime

Library

supports

both

explicit

and

automated

parallel

processing.

v

IBM

Mathematics

Acceleration

Subsystem

(MASS)

library

of

tuned

mathematical

intrinsic

functions,

for

32-

and

64-bit

modes.

v

Memory

Debug

Runtime

is

used

for

diagnosing

memory

leaks.

v

2000C++

Standard

C++

Library

(including

Standard

C

Library

and

Standard

Template

Library)

can

be

used

to

create

code

compliant

with

Standard

C++.

v

2000C++

C++

Runtime

Library

contains

support

routines

needed

by

the

compiler.

v

2000C++

USL

Complex

Mathematics

Class

Library

contains

classes

for

manipulating

complex

numbers.

This

library

is

provided

for

use

by

old

applications.

For

new

applications,

you

should

use

the

Standard

C++

Library.

©

Copyright

IBM

Corp.

2004

1

v

2000C++

UNIX

System

Laboratories

(USL)

I/O

Stream

Class

Library

contains

stream

classes

for

input

and

output

capabilities

for

C++.

This

library

is

provided

for

use

by

old

applications.

For

new

applications,

you

should

use

the

Standard

C++

Library.

v

2000C++

The

demangler

library

provides

routines

and

classes

for

demangling

linkage

names

created

by

the

C++

compiler.

Standard

C++

library

XL

C/C++

Enterprise

Edition

for

AIX

ships

a

modified

version

of

the

Dinkum

C++

Library,

a

conforming

implementation

of

the

Standard

C++

Library.

The

Standard

C++

Library

consists

of

51

headers,

including

13

headers

which

constitute

the

Standard

Template

Library

(STL).

In

addition,

the

Standard

C++

Library

works

in

conjunction

with

the

18

headers

from

the

Standard

C

Library.

The

functions

in

these

headers

perform

essential

services

such

as

input

and

output.

They

also

provide

efficient

implementations

of

frequently

used

operations.

Related

References

v

C++

Library

Overview

in

Standard

C++

Library

Reference

IBM

Mathematics

Acceleration

Subsystem

libraries

Starting

in

Version

7,

XL

C/C++

ships

the

IBM

Mathematics

Acceleration

Subsystem

(MASS)

libraries

of

tuned

mathematical

intrinsic

functions,

for

32-

and

64-bit

modes.

MASS

libraries

are

thread-safe

and

offer

improved

performance

over

the

corresponding

libm

routines.

Moreover,

the

MASS

libraries

can

be

used

without

requiring

code

changes.

IBM

Distributed

Debugger

XL

C/C++

ships

with

IBM

Distributed

Debugger,

a

client/server

application

that

enables

you

to

detect

and

diagnose

errors

in

your

programs.

The

client/server

design

makes

it

possible

to

debug

both

programs

running

on

systems

that

are

accessible

through

a

network

connection

and

programs

that

are

on

your

workstation.

The

debugger

server,

also

known

as

a

debug

engine,

runs

on

the

same

system

where

the

program

you

want

to

debug

runs.

This

system

can

be

your

workstation

or

a

system

accessible

through

a

network.

If

you

debug

a

program

running

on

your

workstation,

you

are

performing

local

debugging.

If

you

debug

a

program

running

on

a

system

accessible

through

a

network

connection,

you

are

performing

remote

debugging.

The

Distributed

Debugger

client

is

a

graphical

user

interface

where

you

can

issue

commands

used

by

the

debug

engine

to

control

the

execution

of

your

program.

For

example,

you

can

set

breakpoints,

step

through

your

code,

and

examine

the

contents

of

variables.

The

Distributed

Debugger

user

interface

lets

you

debug

multiple

applications,

which

might

be

written

in

different

languages,

from

a

single

debugger

session.

Each

program

you

debug

is

shown

on

a

separate

program

page.

The

type

of

information

that

is

displayed

depends

on

the

debug

engine

that

you

are

connected

to.

By

default,

the

Distributed

Debugger

is

installed

to

the

/usr/idebug

directory.

To

start

the

Distributed

Debugger,

type

idebug

on

the

command

line.

2

An

Introductory

Guide

Other

tools

and

utilities

CreateExportList

Command

Creates

a

file

containing

a

list

of

all

the

global

symbols

found

in

a

given

set

of

object

files.

2000C++

c++filt

Name

Demangling

Utility

When

XL

C/C++

compiles

a

C++

program,

it

encodes

all

function

names

and

certain

other

identifiers

to

include

type

and

scoping

information.

This

encoding

process

is

called

mangling.

This

utility

converts

the

mangled

names

to

their

original

source

code

names.

2000C++

linkxlC

Command

Links

C++

.o

and

.a

files.

This

command

is

used

for

linking

on

systems

without

XL

C/C++

compiler

installed.

2000C++

makeC++SharedLib

Command

Permits

the

creation

of

C++

shared

libraries

on

systems

on

which

the

XL

C/C++

compiler

is

not

installed.

cleanpdf

Command

A

command

related

to

profile-directed

feedback,

used

for

managing

the

PDFDIR

directory.

Removes

all

profiling

information

from

the

specified

directory,

the

PDFDIR

directory,

or

the

current

directory.

mergepdf

Command

A

command

related

to

profile-directed

feedback

(PDF)

that

provides

the

ability

to

weight

the

importance

of

two

or

more

PDF

records

when

combining

them

into

a

single

record.

The

PDF

records

must

be

derived

from

the

same

executable.

resetpdf

Command

The

current

behavior

of

the

resetpdf

command

is

the

same

as

the

cleanpdf

command

and

is

retained

for

compatibility

with

earlier

releases

on

other

platforms.

showpdf

Command

A

command

to

display

the

call

and

block

counts

for

all

procedures

executed

in

a

profile-directed

feedback

training

run

(compilation

under

the

options

-qpdf1

and

-qshowpdf).

gxlc

and

gxlc++

Utilities

Invocation

methods

that

translate

a

GNU

C

or

GNU

C++

invocation

command

into

a

corresponding

xlc

or

xlC

command

and

invokes

the

XL

C/C++

compiler.

The

purpose

of

these

utilities

is

to

minimize

the

number

of

changes

to

makefiles

used

for

existing

applications

built

with

the

GNU

compilers

and

to

facilitate

the

transition

to

XL

C/C++.

Related

References

v

″CreateExportList

Command″

in

XL

C/C++

Programming

Guide

v

″c++filt

Name

Demangling

Utility″

in

XL

C/C++

Programming

Guide

v

″linkxlC

Command″

in

XL

C/C++

Programming

Guide

v

″makeC++SharedLib

Command″

in

XL

C/C++

Programming

Guide

XL

C/C++

overview

3

National

language

support

XL

C/C++

provides

support

for

the

Unicode

standard,

multibyte

characters,

UTF-16

and

UTF-32

string

literals,

multiple

loaded

locales,

and

bidirectionality.

These

features

make

possible

or

facilitate

the

creation

of

international

applications.

Related

References

v

″The

Unicode

Standard″

in

XL

C/C++

Language

Reference

v

″National

Languages

Support″

in

XL

C/C++

Compiler

Reference

Documentation

and

online

help

XL

C/C++

Enterprise

Edition

for

AIX

provides

product

documentation

in

the

following

formats:

v

Readme

files.

v

Installable

man

pages.

v

A

searchable

HTML-based

help

system.

v

PDF

documents.

These

items

are

located

or

accessed

as

follows:

Readme

files

The

readme

files

are

located

in

/usr/vacpp/

directory

and

in

the

root

directory

of

the

installation

CD.

Man

pages

Man

pages

are

provided

for

the

compiler

invocations

and

all

command-line

utilities

provided

with

the

product.

HTML-based

help

system

A

searchable

help

system

called

an

Information

Center,

composed

of

HTML

files.

The

help

system

is

installable

on

a

private

intranet

or

viewable

online

on

the

product

web

site.

PDF

documents

The

PDF

files

are

located

in

the

/usr/vacpp/doc/$LANG/pdf

directory.

They

are

viewable

and

printable

from

the

Adobe

Acrobat

Reader.

If

you

do

not

have

the

Adobe

Acrobat

Reader

installed,

you

can

download

it

from

http://www.adobe.com.

The

complete

library

of

XL

C/C++

PDF

documents

consists

of

the

following

files:

install.pdf

XL

C/C++

Installation

Guide

contains

instructions

for

installing

the

compiler,

enabling

the

man

pages,

and

setting

up

the

searchable

HTML

help

system.

getstart.pdf

Getting

Started

with

XL

C/C++

contains

an

overview

of

XL

C/C++

components,

explanation

of

new

features,

how-to

information

on

customizing

the

compilation

environment

and

process,

summary

tables

of

the

compiler

options

arranged

by

category,

an

introduction

to

performance

optimization

and

tuning,

and

general

advice

for

porting

an

application

to

the

AIX

platform.

language.pdf

XL

C/C++

Language

Reference

contains

information

about

the

IBM

implementations

of

the

C

and

C++

programming

languages,

including

the

implementation-defined

extensions

for

porting

an

application

originally

developed

with

GNU

C

and

g++.

compiler.pdf

XL

C/C++

Compiler

Reference

contains

information

about

the

various

compiler

options,

pragmas,

macros,

and

built-in

functions,

including

those

used

for

parallel

processing.

4

An

Introductory

Guide

http://www.adobe.com

standlib.pdf

Standard

C++

Library

Reference

contains

detailed

information

about

the

Standard

C++

Library,

including

the

Standard

Template

Library,

which

ship

with

XL

C/C++.

proguide.pdf

XL

C/C++

Programming

Guide

contains

information

about

programming

using

XL

C/C++

not

covered

in

other

publications.

legacy.pdf

C/C++

Legacy

Class

Libraries

Reference

contains

information

about

the

USL

Complex

Mathematics

Class

Library

and

the

USL

I/O

Stream

Library,

which

ship

with

XL

C/C++

Enterprise

Edition

for

compatibility

with

previous

releases

of

the

compiler.

debug.pdf

IBM

Distributed

Debugger

contains

the

documentation

for

the

Distributed

Debugger

tool.

Accessing

additional

information

For

the

latest

information

about

XL

C/C++,

visit

the

product

documentation

and

support

pages

at

the

following

URLs.

In

addition,

IBM

Redbooks,

developed

by

the

IBM

Technical

Support

Organization,

contain

technical

information

based

on

realistic

scenarios

from

practical

experience.

v

The

Information

Center

at

http://www.ibm.com/software/awdtools/vacpp/library.

v

The

product

support

site

at

http://www.ibm.com/software/awdtools/ccompilers.

v

IBM

Redbooks

at

http://www.redbooks.ibm.com.

You

might

find

the

following

Redbooks

useful

for

application

development

with

XL

C/C++:

__

AIX

5L

Porting

Guide,

SG24-6034-00.

__

Developing

and

Porting

C

and

C++

Applications

on

AIX,

SG24-5674-01.

__

POWER4

Processor

Introduction

and

Tuning

Guide,

SG24-7041-00.

__

Scientific

Applications

in

RS/6000

SP

Environments,

SG24-5611-00.

__

Understanding

IBM

eServer

pSeries

Performance

and

Sizing,

SG24-4810-01.

XL

C/C++

overview

5

http://www.ibm.com/software/awdtools/vacpp/library
http://www.ibm.com/software/awdtools/ccompilers
http://www.redbooks.ibm.com

6

An

Introductory

Guide

What’s

new

in

version

7

The

new

features

and

enhancements

in

XL

C/C++

Enterprise

Edition

for

AIX

fall

into

three

categories:

performance

and

optimization,

conformance

to

industry

standards,

and

ease

of

use.

Performance

and

optimization

Many

new

features

and

enhancements

fall

into

the

category

of

optimization

and

performance

tuning.

Machine

architecture

and

hardware

Refinements

to

options

-qarch

and

-qtune

The

compiler

option

-qarch

controls

the

particular

instructions

that

are

generated

for

the

specified

machine

architecture.

Option

-qtune

adjusts

the

instructions,

scheduling,

and

other

optimizations

to

enhance

performance

on

the

specified

hardware.

These

options

work

together

to

generate

application

code

that

gives

the

best

performance

for

the

specified

architecture.

Skillful

use

of

these

options

in

combination

is

key

to

achieving

maximal

exploitation

of

IBM

processors

and

hardware.

The

coordination

of

these

options

has

been

enhanced

in

this

release

to

add

support

for

the

POWER5

and

PowerPC

970

hardware

platforms

and

for

greater

ease

of

use.

For

a

particular

architecture

specified

by

-qarch,

compiling

with

the

default

-qtune

suboption

generates

code

that

gives

the

best

performance

for

that

architecture.

Option

-qarch

can

now

specify

a

group

of

architectures;

compiling

with

-qtune=auto

generates

code

that

runs

on

all

of

the

architectures

in

the

specified

group,

but

the

instruction

sequences

will

be

those

with

the

best

performance

on

the

architecture

of

the

compiling

machine.

New

built-in

functions

for

POWER5

processors

The

following

built-in

functions

are

available

on

all

PowerPC

systems.

On

POWER5

systems,

these

functions

use

POWER5

instructions

to

take

advantage

of

the

POWER5

hardware.

All

supported

built-in

functions

are

described

in

XL

C/C++

Compiler

Reference.

New

built-in

functions

for

all

PowerPC

systems

Function

Description

int

__popcnt4(unsigned

int);

Returns

the

number

of

bits

set

(=1)

for

a

32-bit

integer.

int

__popcnt8(unsigned

long

long);

Returns

the

number

of

bits

set

(=1)

for

a

64-bit

integer.

int

__poppar4(unsigned

int);

Returns

1

if

an

odd

number

of

bits

is

set

for

a

32-bit

integer.

Otherwise,

returns

0.

int

__poppar8

(unsigned

long

long);

Returns

1

if

an

odd

number

of

bits

is

set

for

a

64-bit

integer.

Otherwise,

returns

0.

unsigned

long

__mfspr(const

int);

Return

a

value

in

the

specified

special

purpose

register.

void

__mtspr(const

int,

unsigned

long);

Set

the

special

purpose

register

specified

by

const

int.

unsigned

long

__mfmsr();

Return

the

machine

state

register.

void

__mtmsr(unsigned

long);

Set

the

machine

state

register.

©

Copyright

IBM

Corp.

2004

7

The

following

built-in

functions

are

available

only

on

POWER5

processors.

Function

Description

double

__fre(double);

Returns

the

result

of

a

floating-point

reciprocal

operation.

The

result

is

a

double

precision

estimate

of

1/x.

float

__frsqrtes(float);

Returns

the

result

of

a

reciprocal

square

root

operation.

The

result

is

a

single

precision

estimate

of

the

reciprocal

of

the

square

root

of

x.

unsigned

long

__popcntb

(unsigned

long);

Counts

the

1

bits

in

each

byte

of

the

source

operand

and

places

that

count

into

the

corresponding

byte

of

the

result.

void

__protected_unlimited_stream_set_go(unsigned

int

direction,

const

void*

addr,

unsigned

int

ID);

Establish

a

protected

stream

of

unlimited

length

that

uses

the

identifier

ID.

The

stream

identifier

should

be

within

the

range

of

0

to

15.

The

stream

begins

with

the

cache

line

at

addr.

The

stream

fetches

from

either

incremental

memory

addresses

or

decremental

memory

addresses,

as

specified

by

direction.

For

incremental

memory

addresses

(that

is,

a

forward

direction),

the

value

of

direction

is

1;

for

decremental

memory

addresses,

the

value

of

direction

is

3.

The

stream

is

protected

from

being

replaced

by

any

hardware-detected

streams.

(Available

on

PowerPC

970

and

POWER5.)

void

__protected_stream_set(unsigned

int

direction,

const

void*

addr,

unsigned

int

ID);

Establish

a

protected

stream

of

limited

length

that

uses

the

identifier

ID.

The

stream

begins

with

the

cache

line

at

addr

and

subsequently

fetches

from

either

incremental

memory

addresses

or

decremental

memory

addresses,

as

specified

by

direction.

The

stream

is

protected

from

being

replaced

by

any

hardware-detected

streams.

void

__protected_stream_count(unsigned

int

unit_cnt,

unsigned

int

ID);

Set

the

number

of

cache

lines

for

the

limited-length

protected

stream

identified

by

ID.

The

number

of

cache

lines

is

specified

by

the

parameter

unit_cnt

and

should

be

within

the

range

of

0

to

1023.

void

__protected_stream_go();

Start

to

prefetch

all

limited-length

protected

streams.

void

__protected_stream_stop(unsigned

int

ID);

Stop

prefetching

the

protected

steam

identified

by

ID.

void

__protected_stream_stop_all();

Stop

prefetching

all

protected

steams.

New

built-in

functions

for

floating-point

division

Four

new

built-in

functions

for

floating-point

division

are

included

in

this

release.

These

software

implementations

of

floating-point

division

algorithms

take

advantage

of

the

PowerPC

architecture

and

can

be

significantly

faster

than

corresponding

hardware

instructions

when

used

in

a

vector

context.

The

new

built-ins

are

supported

for

all

PowerPC

processors,

including

POWER5.

Hardware

division

instructions

are

obtained

by

default

if

floating-point

division

is

coded

in

the

source

program,

but

the

compiler

makes

the

choice

between

the

hardware

or

software

division

code,

depending

on

which

it

deems

faster.

The

new

built-in

functions

allow

the

user

to

explicitly

invoke

the

software

algorithms.

The

default

rounding

mode

(round-to-nearest)

must

be

in

effect

when

the

routines

are

called.

8

An

Introductory

Guide

Built-in

functions

for

floating-point

division

Function

Description

double

__swdiv_nochk(double,

double);

Floating-point

division

of

double

types;

no

range

checking.

Argument

restrictions:

numerators

equal

to

infinity,

or

denominators

equal

to

infinity,

zero,

or

denormalized

are

not

allowed.

double

__swdiv(double,

double);

Floating-point

division

of

double

types.

No

argument

restrictions.

float

__swdivs_nochk(float,

float);

Floating-point

division

of

float

types;

no

range

checking.

Argument

restrictions:

numerators

equal

to

infinity,

or

denominators

equal

to

infinity,

zero,

or

denormalized

are

not

allowed.

float

__swdivs(float,

float);

Floating-point

division

of

double

types.

No

argument

restrictions.

New

XL

C/C++

pragmas

Pragma

directives

are

described

in

detail

in

XL

C/C++

Compiler

Reference.

Pragma

Description

#pragma

unrollandfuse

A

pragma

for

optimizing

nested

for

loops.

Instructs

the

compiler

to

replicate

the

body

of

the

outer

loop,

which

is

itself

a

loop

nest,

and

to

fuse

the

replicas

into

a

single

unrolled

loop

nest.

#pragma

stream_unroll

Breaks

a

stream

contained

in

a

for

loop

into

multiple

streams.

Intended

for

loops

that

have

a

large

iteration

count

and

a

small

number

of

streams.

#pragma

block_loop

Instructs

the

compiler

to

create

a

blocking

loop

for

a

specific

for

loop

in

a

loop

nest.

Blocking

a

loop

involves

dividing

the

iteration

space

of

a

loop

into

parts

or

blocks.

An

additional

outer

loop

is

created,

known

as

the

blocking

loop,

which

drives

the

original

loop

for

each

block.

#pragma

loopid

Marks

a

for

loop

with

a

scope-unique

identifier.

The

identifier

can

be

used

by

#pragma

block_loop

and

other

pragmas

to

control

the

transformations

on

that

loop

and

to

provide

information

on

the

loop

transformations

through

the

use

of

option

-qreport.

The

identifier

can

also

be

used

to

identify

blocking

loops.

#pragma

disjoint

C++

implementation

added.

extensions

to

#pragma

unroll

Loop

unrolling

consists

of

replicating

the

body

of

a

loop

in

order

to

reduce

the

number

of

iterations

required

to

complete

the

loop.

The

#pragma

unroll

directive

indicates

to

the

compiler

that

the

for

loop

that

immediately

follows

the

directive

can

be

unrolled.

The

functionality

of

this

pragma

has

been

extended

to

allow

it

to

be

applied

to

both

the

innermost

and

outermost

for

loops.

The

extended

#pragma

functionality

still

excludes

application

to

for

loops

that

have

alternate

entry

points.

New

optimization

utilities

This

release

contains

two

new

utilities

related

to

the

profile-directed

feedback

(PDF)

compilation

process.

Through

the

use

of

profile-directed

feedback,

the

compiler

can

provide

an

optimized

executable

that

reflects

how

that

executable

ran

What’s

new

in

version

7

9

in

a

number

of

different

scenarios.

A

PDF

record

is

produced

as

a

side

effect

of

running

the

instrumented

executable

in

one

of

these

scenarios.

These

records

constitute

the

data

that

are

collated

to

define

typical

program

behavior.

The

showpdf

command

provides

the

ability

to

display

the

call

and

block

counts

for

all

procedures

executed

in

a

profile-directed

feedback

training

run.

The

utility

requires

compilation

under

the

options

-qpdf1

and

-qshowpdf.

The

mergepdf

command

allows

the

user

to

specify

the

relative

importance

of

two

or

more

PDF

records

and

to

combine

them

into

a

single

record.

This

allows

the

user

to

compensate

for

training

runs

with

higher

execution

counts

(that

is,

longer

run

time),

which

would

otherwise

dominate

the

profile

data.

IBM

Mathematics

Accelerated

Subsystem

(MASS)

libraries

Starting

with

Version

7.0,

XL

C/C++

ships

the

IBM

Mathematical

Accelerated

Subsystem

(MASS)

libraries

of

tuned

mathematical

intrnisic

functions.

The

MASS

scalar

library,

libmass.a,

contains

an

accelerated

set

of

frequently

used

math

intrinsic

functions

in

the

AIX

system

library

libm.a.

The

MASS

vector

libraries

libmassv.a,

libmassvp3.a,

and

libmassvp4.a

contain

tuned

and

thread-safe

intrinsic

functions

that

can

be

used

with

either

Fortran

or

C

applications.

The

general

vector

library,

libmassv.a,

contains

vector

functions

that

will

run

on

all

computers

in

the

IBM

pSeries

and

RS/6000

families,

while

libmassvp3.a

and

libmassvp4.a

each

contain

a

subset

of

libmassv.a

functions

that

have

been

specifically

tuned

for

the

POWER3

and

POWER4

processors,

respectively.

SMP

thread

binding

Shared

memory

parallelization

(SMP)

is

implemented

by

creating

user

threads

that

are

scheduled

to

run

on

kernel

threads

by

the

operating

system.

For

some

workloads,

binding

threads

to

processors

can

improve

performance

by

avoiding

the

costs

of

thread

migration.

Currently,

threads

created

by

the

SMP

run

time

are

not

bound

to

any

particular

processor,

and

the

AIX

operating

system

takes

care

of

the

scheduling

of

a

thread.

With

the

SMP

thread

binding

feature,

programs

that

are

dynamically

linked

to

the

SMP

run

time

can

have

their

threads

bound

to

processors

as

specified

by

the

user.

SMP

thread

binding

employs

a

two-part

option,

set

on

the

XLSMPOPT

environment

variable.

The

user

specifies

the

CPU

ID

of

the

first

thread

to

be

bound

and

the

number

of

processors

to

advance

(stride)

from

the

current

processor

to

bind

the

next

thread.

The

ability

to

specify

the

starting

CPU

ID

is

advantageous

when

multiple

OpenMP

programs

are

running

on

the

same

machine.

If

every

OMP

program

binds

its

threads

starting

from

CPU

0,

an

imbalance

occurs,

in

which

the

first

few

CPUs

in

the

system

are

loaded,

while

the

remaining

CPUs

are

not

used

at

all.

Allowing

the

user

to

specify

a

stride

of

2

allows

a

non-HPC

system

to

have

its

threads

bound

to

even-numbered

CPU

ids,

assuming

a

start

at

CPU

0.

Binding

to

even-numbered

CPUs

provides

threads

to

the

full

L2

cache

and

bandwidth.

Programs

that

use

processor

bindings

should

become

Dynamic

Logical

Partitioning

(DLPAR)-aware.

For

more

information

on

DLPAR

awareness,

see

General

Programming

Concepts:

Writing

and

Debugging

Programs,

part

of

the

AIX

system

documentation.

10

An

Introductory

Guide

Conformance

to

industry

standards

This

section

describes

new

features

implemented

by

XL

C/C++

to

conform

to

various

industry

standards.

ISO/IEC

14882:2003(E)

Programming

languages

--

C++

XL

C/C++

conforms

to

the

revised

international

C++

standard

ISO/IEC

14882:2003(E),

Programming

languages

--

C++.

Starting

in

Version

7,

XL

C++

adds

support

for

unordered

associative

containers,

in

conformance

with

Draft

Technical

Report

on

Standard

Library

Extensions

(TR1).

The

hash

functions

and

new

hash-based

containers

added

as

extensions

to

the

C++

Standard

Library

are

as

follows:

Header

file

Addition

standard

header

<functional>

functional

template

std::tr1::hash

new

header

<unordered_set>

container

std::tr1::unordered_set

container

std::tr1::unordered_multiset

new

header

<unordered_map>

container

std::tr1::unordered_map

container

std::tr1::unordered_multimap

TR1

libraries

are

declared

in

nested

namespace

std::tr1.

The

new

XL

C++

TR1

library

components

are

enabled

by

defining

the

macro

__IBMCPP_TR1__.

OpenMP

API

V2.0

support

for

C,

C++,

and

Fortran

The

OpenMP

Application

Program

Interface

(API)

is

a

portable,

scalable

programming

model

that

provides

a

standard

interface

for

developing

multiplatform,

shared-memory

parallel

applications

in

C,

C++,

and

Fortran.

The

specification

is

defined

by

the

OpenMP

organization,

a

group

of

major

computer

hardware

and

software

vendors,

which

includes

IBM.

XL

C/C++

Enterprise

Edition

for

AIX

is

compliant

with

OpenMP

Specification

2.0:

the

compiler

recognizes

and

preserves

the

semantics

of

the

following

OpenMP

V2.0

elements:

v

Comma

delimiter

for

multiple

clauses

in

the

#pragma

omp

directive.

v

The

num_threads

clause.

v

The

copyprivate

clause.

v

threadprivate

static

block

scope

variables.

v

Support

for

C99

variable

length

arrays.

v

Redundant

declaration

of

private

variables.

v

Timing

routines

omp_get_wtime

and

omp_get_wtick.

Enhanced

Unicode

and

NLS

support

As

recommended

in

a

recent

report

from

the

C

Standard

committee,

the

C

compiler

extends

C99

to

add

new

data

types

to

support

UTF-16

and

UTF-32

literals.

The

C++

compiler

also

supports

these

new

data

types

for

compatibility

with

C.

Also

new

in

this

release,

the

C++

runtime

is

able

to

use

the

ability

of

the

AIX

V5.2

operating

system

to

load

multiple

locales

if

the

application

runs

on

such

a

system.

Support

for

Boost

libraries

What’s

new

in

version

7

11

The

XL

C++

compiler

delivers

a

high

level

of

compatibility

with

the

1.30.2

Boost

libraries.

These

libraries

were

created

to

provide

a

set

of

reusable,

Open

Source

C++

libraries

that

are

suitable

for

standardization.

For

more

information,

see

the

Boost

web

site

at

http://www.boost.org.

Language

extensions

related

to

GNU

C

and

C++

The

GNU

C

extensions

to

C99

and

the

GNU

C++

extensions

to

Standard

C++

are

not

industry

standards.

Nevertheless,

these

non-proprietary

language

features

from

the

Open

Source

community

have

attained

a

certain

currency.

XL

C/C++

implements

a

subset

of

the

GNU

C

and

C++

extensions.

Support

for

the

following

GNU

C

features

has

been

added

in

this

release.

Feature

Remarks

Labels

as

Values

Including

computed

goto

statements.

This

feature

is

now

fully

compatible

with

the

GNU

C

implementation.

Type

Attributes

Attribute

aligned

and

attribute

packed.

2000C

Function

Attributes

Attributes

format,

format_arg,

always_inline,

noinline.

Alternate

Keywords

Internal

changes

to

implementation

of

__extension__.

Nested

Functions

2000C

C

support

only.

Cast

to

a

Union

Type

2000C

C

support

only.

Macros

with

a

Variable

Number

of

Arguments

Using

an

identifier

in

place

of

__VA_ARGS__

and

removing

trailing

comma

when

no

__VA_ARGS__

arguments

are

specified.

gcc

Inline

Assembler

Instructions

with

C

Expression

Operands

Partial

support

only.

GNU

C

Complex

Types

C++

support

added.

GNU

C

Hexadecimal

Float

Constants

C++

support

added.

C99

Compound

Literals

C++

support

added.

Arrays

of

Length

Zero

C++

support

added.

Variable

Length

Arrays

C++

support

added.

Accommodation

of

third-party

C++

run-time

libraries

The

C++

compiler

can

compile

C++

applications

so

that

the

application

supports

only

the

core

language,

thus

enabling

it

to

link

with

C++

run-time

libraries

from

third-party

vendors.

The

following

archive

files

enable

this

functionality.

lib*C*core.a

Contains

exception

handling,

RTTI,

static

inititialization,

new

and

delete

operators.

Does

not

contain

any

of

the

following

libraries:

Input/Output,

Localization,

STL

Containers,

Iterators,

Algorithms,

Numerics,

Strings.

libCcore.a

The

core

language

version

of

the

C++

run-time

library,

libC.a.

12

An

Introductory

Guide

http://www.boost.org

libC128core.a

The

core

language

version

of

libC128.a.

libhCcore.a

The

language

core

version

of

libhC.a.

The

following

invocation

commands

have

been

added

to

facilitate

using

these

archives:

xlCcore

xlC128core

xlCcore_r

xlC128core_r

xlCcore_r7

xlC128core_r7

Ease

of

use

New

C++

compiler

invocation

The

compiler

invocation

xlc++

has

been

added

for

portability

among

all

supported

platforms.

The

invocation

is

equivalent

to

the

invocation

xlC

on

all

platforms

and

is

recommended.

However,

xlC

is

still

fully

supported.

Documentation

XL

C/C++

ships

with

an

Information

Center

of

searchable

HTML

files.

The

search

engine

of

the

new

help

system

is

believed

to

produce

hits

with

greater

relevance

per

search

than

that

of

previous

releases.

The

Information

Center

can

be

installed

on

an

intranet

and

accessed

by

pointing

the

browser

to

http://server_name:5312/help/index.jsp.

The

product

help

system

is

also

viewable

online

at

http://www.ibm.com/software/awdtools/vacpp/library.

Starting

in

Version

7,

a

man

page

is

provided

for

the

compiler

invocation

commands

and

for

each

command-line

utility.

The

man

page

for

the

compiler

invocations

replaces

the

text

help

file

provided

in

earlier

releases.

Template

registry

enhancement

The

C++

compiler

uses

a

batch

template

instantiation

scheme

that

involves

a

registry

of

template

instantiations.

In

this

release,

the

compiler

adds

versioning

information

to

the

template

registry

file

that

is

created.

This

information

is

used

by

the

compiler

internally

to

track

which

version

of

the

template

registry

file

format

should

be

used.

New

XL

C/C++

options

New

and

changed

compiler

options

are

described

in

detail

in

the

XL

C/C++

Compiler

Reference.

Option

Description

and

remarks

-qasm=gcc

Enables

partial

support

for

assembler

instructions

with

C

expression

operands.

Instructs

the

compiler

to

recognize

the

asm

keyword

and

its

alternate

spellings

and

to

use

the

gcc

syntax

and

semantics

for

the

keyword.

The

default

is

-qnoasm.

-qasm_as

Specifies

the

path

and

flags

used

to

invoke

an

alternate

assembler

program

in

order

to

handle

the

code

in

an

asm

directive.

This

option

overrides

the

default

setting

of

the

as

command

defined

in

the

compiler

configuration

file.

What’s

new

in

version

7

13

http://www.ibm.com/software/awdtools/vacpp/library

Option

Description

and

remarks

-qdirectstorage

Asserts

that

write-through

enabled

or

cache-inhibited

storage

may

be

referenced

in

a

given

compilation

unit.

The

intention

of

this

option

is

to

avoid

unexpected

behavior

due

to

different

storage

control

attributes

that

are

allowed

by

the

PowerPC

architecture.

The

default

is

-qnodirectstorage.

-qkeepparm

Ensures

that

the

parameters

of

a

function

passed

in

registers

are

saved

onto

the

stack,

instead

of

possibly

being

moved

to

different

memory

locations

to

improve

performance.

The

default

is

-qnokeepparm.

-qnoprefetch

Instructs

the

compiler

not

to

automatically

insert

software

prefetch

instructions,

thus

allowing

the

user

to

turn

off

this

aspect

of

optimization.

The

default

is

-qprefetch.

-qnotrigraph

Instructs

the

compiler

not

to

interpret

trigraph

sequences,

regardless

of

the

specified

language

level.

On

AIX,

the

default

is

-qtrigraph.

-qroptr

Instructs

the

compiler

to

allow

read-only

pointers

to

be

moved

from

the

.data

section

to

the

.text

section.

The

.text

section

is

always

read-only

and

is

never

modified

by

either

the

loader

or

by

an

application.

A

reduction

in

memory

usage

is

possible

if

the

constant

pointers

of

an

application

are

allowed

to

be

moved

from

the

.data

section

into

the

.text

section,

which

is

shared

among

multiple

processes.

Code

produced

with

-qroptr

in

effect

is

not

valid

for

shared

libraries.

The

default

is

-qnoroptr,

which

leaves

the

read-only

pointers

in

the

.data

section.

-qsaveopt

Instructs

the

compiler

to

save

the

command-line

options

against

which

a

source

file

is

compiled

into

the

corresponding

object

file.

The

option

has

no

effect

if

compilation

does

not

result

in

a

.o

file.

The

default

is

-qnosaveopt.

-qshowpdf

When

specified

with

-qpdf1,

the

compiler

inserts

additional

profiling

information

into

the

compiled

application

to

collect

call

and

block

counts

for

all

procedures

in

the

application.

Running

the

compiled

application

records

the

call

and

block

counts

to

the

file

._pdf.

The

contents

of

._pdf

can

then

be

retrieved

with

the

showpdf

utility.

The

default

is

-qnoshowpdf.

-qsourcetype

Controls

the

interpretation

of

input

file

names.

The

default

behavior

is

that

the

programming

language

of

a

source

file

is

implied

by

the

suffix

of

its

file

name.

The

default

is

-qsourcetype.

-qweaksymbol

Instructs

the

compiler

to

generate

weak

symbols

for

inline

functions

with

external

linkage,

identifiers

specified

as

weak

with

#pragma

weak,

or

functions

specified

as

weak

with

__attribute__((weak)).

The

option

can

also

be

used

to

suppress

linker

messages

warning

of

duplicate

symbols

when

compiling

C++

programs

containing

extern

inline

functions.

The

default

is

-qnoweaksymbol.

-qutf

Enables

the

recognition

of

UTF

literal

syntax

which

provides

16-

and

32-based

string

literals

for

Unicode

encoding

forms.

-qflttrap=nanq

Instructs

the

compiler

to

generate

extra

instructions

in

the

code

to

trap

NaNQs

(Not

a

Number

Quiet).

The

intent

is

to

detect

all

NaNQs

handled

by

or

generated

by

floating

point

instructions,

including

those

created

by

valid

operations.

14

An

Introductory

Guide

Option

Description

and

remarks

-qipa=infrequentlabel

Specifies

a

list

of

labels

that

are

likely

to

be

called

infrequently

during

the

course

of

a

typical

program

run.

The

compiler

can

make

other

parts

of

the

program

faster

by

doing

less

optimization

for

calls

to

these

labels.

This

option

is

only

applicable

to

user-defined

labels.

-qlanglvl=newexcp

The

-qlanglvl=newexcp

suboption

determines

the

data

type

of

the

exception

thrown

by

an

allocation

function

that

fails

to

allocate

storage.

When

the

suboption

is

in

effect,

an

allocation

function

declared

with

a

non-empty

throw

expression

throws

an

exception

of

class

std::bad_alloc

or

a

class

derived

from

std::bad_alloc

if

it

fails

to

allocate

storage.

This

behavior

conforms

to

the

C++

standard.

When

this

suboption

is

not

explicitly

specified,

any

allocation

function

that

fails

to

allocate

storage

returns

a

null

pointer,

regardless

of

whether

it

has

an

exception

specification.

-qshowinc

suboptions

Used

with

-qsource

to

selectively

show

user

header

files

or

system

header

files

in

the

program

source

listing.

The

default

is

-qnoshowinc.

New

suboptions

allow

more

specific

control

over

which

header

files

are

included.

The

individual

suboptions

are

all,

usr

(include

user

header

files),

nousr

(exclude

user

header

files),

sys

(include

system

header

files),

and

nosys

(exclude

system

header

files).

Multiple

suboptions

can

be

specified

using

a

colon

delimiter.

What’s

new

in

version

7

15

16

An

Introductory

Guide

Customizing

the

compilation

environment

This

section

discusses

the

mechanisms

used

by

XL

C/C++

to

specify

the

search

paths

for

directories

containing

include

files

and

libraries.

The

mechanisms

are

environment

variables,

symbolic

links,

and

configuration

files.

Environment

variables

Part

of

the

compilation

environment

are

the

search

paths

for

special

files

such

as

libraries

and

include

files.

The

following

system

variables

are

used

by

the

compiler.

LIBPATH

Specifies

the

directory

path

for

dynamically

loaded

libraries.

Correlates

to

the

LD_LIBRARY_PATH

variable

on

other

systems.

Affects

the

link-editor

and

system

loader.

If

LIBPATH

is

set

in

the

environment,

the

value

is

read

and

used

by

the

ld

command.

If

a

linking

operation

occurs,

either

directly

or

as

part

of

one

of

the

compiler

invocations,

the

value

of

LIBPATH

is

used

to

search

for

dependent

libraries,

and

the

contents

of

the

variable

are

stored

in

the

resulting

module.

In

the

absence

of

-L

command-line

options,

the

contents

of

LIBPATH

are

prepended

to

the

default

library

search

path.

LIBPATH

is

ignored

at

link

time

if

the

command

line

contains

any

use

of

the

-L

option.

The

paths

specified

on

the

command

line

by

one

or

more

-L

options

are

concatenated

in

the

order

in

which

they

appear.

The

composite

path

specification

is

prepended

to

the

default

library

search

and

stored

in

the

loader

section

of

the

constructed

module.

At

run

time,

LIBPATH

is

used

in

different

ways

by

the

system

loader,

depending

on

whether

dynamic

loading

is

involved.

The

LIBPATH

environment

variable

is

checked

at

exec

time

and

is

cleared

when

the

privilege

of

the

program

is

different

from

that

of

the

user

invoking

the

program.

A

process

designed

to

run

with

an

alternate

effective

user

or

group

ID

should

find

dependent

modules

only

from

trusted

locations

that

are

embedded

within

the

application.

MANPATH

Specifies

the

directory

path

for

the

product

man

pages.

NLSPATH

Specifies

the

directory

path

of

National

Language

Support

libraries.

PATH

Specifies

the

directory

path

for

the

executable

files

of

the

compiler.

PDFDIR

Specifies

the

directory

in

which

the

profile

data

file

is

created.

The

default

value

is

unset,

and

the

compiler

places

the

profile

data

file

in

the

current

working

directory.

Setting

this

variable

to

an

absolute

path

is

recommended

for

profile-directed

feedback.

TMPDIR

Specifies

the

directory

in

which

temporary

files

are

created.

The

default

location

may

be

inadequate

at

high

levels

of

optimization,

where

temporary

files

can

require

significant

amounts

of

disk

space.

©

Copyright

IBM

Corp.

2004

17

Create

symbolic

links

for

the

path

The

command-line

interfaces

for

XL

C/C++

are

not

automatically

installed

in

/usr/bin.

To

invoke

the

compiler

without

having

to

specify

the

full

path,

do

one

of

the

following

steps:

v

Create

symbolic

links

for

the

specific

driver

contained

in

/usr/vacpp/bin

and

/usr/vac/bin

to

/usr/bin.

v

Add

/usr/vac/bin

and

/usr/vacpp/bin

to

the

PATH

environment

variable.

Configuration

files

A

configuration

file

is

a

plain

text

file

that

specifies

options

that

are

read

every

time

you

run

the

compiler.

The

name

of

a

configuration

file

ends

with

a

.cfg

file

name

extension.

You

can

instruct

the

compiler

to

use

a

particular

configuration

file

by

invoking

the

compiler

with

the

-F

option

and

specifying

the

fully

qualified

file

name.

The

compiler

option

-I

directory_name

allows

you

to

add

directories

to

the

search

paths

in

the

configuration

file.

The

configuration

file

itself

uses

the

-I

option

internally

to

set

the

directory

paths

that

it

controls.

The

compiler

searches

the

directories

specified

by

-I

within

the

configuration

file

before

searching

those

specified

by

-I

options

on

the

command

line.

See

XL

C/C++

Compiler

Reference

for

more

information.

18

An

Introductory

Guide

Controlling

the

compilation

process

The

overall

compilation

process

consists

of

three

phases:

preprocessing,

translation

to

object

code,

and

linking.

By

default,

a

compiler

invocation

command

invokes

all

phases

of

the

compilation

process

to

translate

a

program

from

source

code

to

executable

output.

If

file

names

for

input

and

output

files

are

specified

when

the

compiler

is

invoked,

it

determines

the

starting

and

ending

phases

from

the

file

name

suffix

(extension)

of

the

input

and

output

files.

You

can

also

create

a

particular

type

of

output

file

at

any

compilation

phase

by

using

appropriate

compiler

options.

For

example,

invoking

the

xlc

or

xlC

command

with

the

-E

or

-P

option

performs

only

the

preprocessing

phase

on

the

input

files.

The

compiler

invocation

determines

from

the

extension

of

the

input

file

name

whether

to

call

the

compiler,

the

assembler,

or

the

linker.

Related

References

v

-qphsinfo

compiler

option

in

XL

C/C++

Compiler

Reference

Invoking

the

compiler

XL

C/C++

provides

a

selection

of

base

compiler

invocation

commands,

which

support

various

version

levels

of

the

C

and

C++

languages.

Each

invocation

command

automatically

sets

a

compiler

suboption

for

language

level,

options

for

other

related

language

features,

and

any

related

predefined

macros.

In

most

cases,

you

should

use

the

xlc

command

to

compile

C

source

files

and

the

xlC

command

to

compile

C++

source

files,

or

when

you

have

both

C

and

C++

source

files.

Base

invocation

commands

xlc

xlc++

xlC

cc

c89

c99

xlc++core

xlCcore

The

invocation

xlc++

is

equivalent

to

xlC.

Variations

of

a

base

command

are

provided

to

support

the

requirements

of

special

environments

and

file

systems.

A

variation

is

formed

by

attaching

a

suffix

to

the

base

command.

Suffix

Description

_r

_r4

_r7

Used

for

compiling

thread-safe

applications.

Also

referred

to

as

reentrant

compiler

invocations.

128

128_r

128_r4

128_r7

Increases

the

length

of

long

double

types

from

64

to

128

bits

and

links

with

the

128-bit

versions

of

the

C

and

C++

runtimes.

When

attached

to

the

base

invocations

c89

or

c99,

the

suffix

is

preceded

by

an

underscore

(for

example,

c99_128).

In

addition,

the

gxlc

and

gxlc++

utilities

are

specialized

compiler

invocations.

©

Copyright

IBM

Corp.

2004

19

Object

model

An

object

model

describes

how

C++

object

and

helper

data

structures

are

laid

out

in

memory.

It

may

also

affect

name

mangling.

Two

object

models

are

supported

on

the

AIX

platform:

compat

and

ibm.

These

differ

in

the

way

the

compiler

lays

out

the

virtual

function

table,

the

type

of

support

provided

for

virtual

base

classes,

and

the

name

mangling

scheme

used.

The

compat

object

model

creates

a

run-time

module

that

will

be

compatible

with

other

compiled

with

the

same

model

or

with

previous

versions

of

the

compiler.

The

ibm

object

model

can

provide

improved

performance,

especially

if

the

source

contains

class

hierarchies

with

many

virtual

base

classes.

This

object

model

tends

to

create

a

smaller

derived

class

and

faster

access

to

the

virtual

function

table.

Types

of

input

and

output

files

The

compiler

uses

the

file

name

extension

to

determine

the

appropriate

compilation

phase

and

invoke

the

associated

tool.

The

compiler

accepts

the

following

types

of

files

as

input:

Accepted

input

file

types

File

type

description

File

name

extension

Example

C

and

C++

source

file

.c

(lowercase

c)

for

C

language

source

files;

.C

(uppercase

c),

.cc,

.cp,

.cpp,

.cxx,

.c++

for

C++

source

files

file_name.c

file_name.C,

file_name.cc,

file_name.cpp,

file_name.cxx,

file_name.c++

Preprocessed

source

file

.i

file_name.i

Object

file

.o

hello.o

Assembler

file

.s

check.s

Archive

file

.a

v1r5.a

Loadable

module

or

shared

library

file

.so

my_shrlib.so

IPA

control

files

(-qipa=file_name)

No

naming

convention

for

file_name

is

enforced.

ipa.ctl

You

can

specify

the

following

types

of

output

files

when

invoking

the

compiler:

Types

of

output

files

File

type

description

Example

Executable

file

By

default,

a.out

Object

files

file_name.o

Loadable

module

or

shared

object

file

file_name.so

Assembler

files

file_name.s

Preprocessed

files

file_name.i

Listing

files

file_name.lst

Target

file

file_name.u

Related

References

20

An

Introductory

Guide

v

-qsourcetype

compiler

option

in

XL

C/C++

Compiler

Reference

Default

behavior

If

you

invoke

the

compiler

without

specifying

any

options,

the

behavior

of

the

compiler

is

governed

by

the

following

default

settings:

v

Attempts

to

read

and

invoke

the

options

specified

in

a

configuration

file.

v

Aligns

structures

using

the

default

alignment,

-qalign=power.

v

Produces

an

unoptimized

executable

named

a.out

in

the

current

directory.

See

XL

C/C++

Compiler

Reference

for

more

information.

Controlling

the

compilation

process

21

22

An

Introductory

Guide

Getting

started

with

compiler

options

Compiler

options

perform

a

variety

of

functions,

such

as

setting

compiler

characteristics,

describing

the

object

code

to

be

produced,

controlling

the

diagnostic

messages

emitted,

and

performing

some

preprocessor

functions.

You

can

specify

compiler

options

on

the

command

line,

in

a

configuration

file,

in

your

source

code,

or

any

combination

of

these

techniques.

Most

options

that

are

not

explicitly

set

take

the

default

settings.

When

multiple

compiler

options

have

been

specified,

it

is

possible

for

option

conflicts

and

incompatibilities

to

occur.

To

resolve

these

conflicts

in

a

consistent

fashion,

the

compiler

applies

the

following

priority

sequence

unless

otherwise

specified:

1.

Source

file

overrides

2.

Command

line

overrides

3.

Configuration

file

overrides

4.

Default

settings

Generally,

among

multiple

command-line

options,

the

last

specified

prevails.

Note:

The

-I

compiler

option

is

a

special

case.

The

compiler

searches

any

directories

specified

with

-I

in

the

vac.cfg

file

before

it

searches

the

directories

specified

with

-I

on

the

command

line.

The

option

is

cumulative

rather

than

preemptive.

Related

References

v

See

XL

C/C++

Compiler

Reference

for

more

information.

Compiler

messages

XL

C/C++

uses

a

five-level

classification

scheme

for

diagnostic

messages.

Each

level

of

severity

is

associated

with

a

compiler

response.

Not

every

error

halts

compilation.

The

following

table

provides

a

key

to

the

abbreviations

for

the

severity

levels

and

the

associated

compiler

response.

Severity

levels

and

compiler

response

Letter

Severity

Compiler

Response

I

Informational

Compilation

continues.

The

message

reports

conditions

found

during

compilation.

W

Warning

Compilation

continues.

The

message

reports

valid,

possibly

unintended

conditions.

2000C

E

Error

Compilation

continues

and

object

code

is

generated.

Error

conditions

exist

that

the

compiler

can

correct,

but

the

program

might

not

produce

the

expected

results.

S

Severe

error

Compilation

continues,

but

object

code

is

not

generated.

Error

conditions

exist

that

the

compiler

cannot

correct.

©

Copyright

IBM

Corp.

2004

23

Severity

levels

and

compiler

response

Letter

Severity

Compiler

Response

U

Unrecoverable

error

The

compiler

halts.

An

unrecoverable

error

has

been

encountered.

If

the

message

indicates

a

resource

limit

(for

example,

file

system

full

or

paging

space

full),

provide

additional

resources

and

recompile.

If

it

indicates

that

different

compiler

options

are

needed,

recompile

using

them.

If

the

message

indicates

an

internal

compiler

error,

the

message

should

be

reported

to

your

IBM

service

representative.

The

default

behavior

of

the

compiler

is

to

compile

with

the

option

-qnoinfo

or

-qinfo=noall.

The

suboptions

for

-qinfo

provide

the

ability

to

specify

a

particular

category

of

informational

diagnostics.

For

example,

-qinfo=por

limits

the

output

to

those

messages

related

to

portability

issues.

Note:

In

C,

the

option

-qinfo

specified

without

suboption

is

equivalent

to

-qinfo=all;

in

C++,

-qinfo

specified

without

suboption

is

equivalent

to

-qinfo=all:noppt.

Return

codes

At

the

end

of

compilation,

the

compiler

sets

the

return

code

to

zero

under

any

of

the

following

conditions:

v

No

messages

are

issued.

v

The

highest

severity

level

of

all

errors

diagnosed

is

less

than

the

setting

of

the

-qhalt

compiler

option,

and

the

number

of

errors

did

not

reach

the

limit

set

by

the

-qmaxerr

compiler

option.

v

No

message

specified

by

the

-qhaltonmsg

compiler

option

is

issued.

Otherwise,

the

compiler

sets

one

of

the

return

codes

documented

in

XL

C/C++

Compiler

Reference.

Compiler

message

format

By

default,

diagnostic

messages

have

the

following

format:

"file",

line

line_number.column_number:

15cc-nnn

(severity)

message_text.

where

15

is

the

compiler

product

identifier,

cc

is

a

two-digit

code

indicating

the

compiler

component

that

issued

the

message,

nnn

is

the

message

number,

and

severity

is

the

letter

of

the

severity

level.

The

possible

values

for

cc

are:

00

Code

generating

or

optimizing

message

01

Compiler

services

message

05

Message

specific

to

the

C

compiler

06

Message

specific

to

the

C

compiler

40

Message

specific

to

the

C++

compiler

86

Message

specific

to

interprocedural

analysis

(IPA)

This

format

is

the

same

as

compiling

with

the

-qnosrcmsg

option

enabled.

To

get

an

alternate

message

format

in

which

the

source

line

displays

with

the

diagnostic

message,

try

compiling

with

-qsrcmsg

option.

Enabling

this

option

instructs

the

compiler

to

print

to

standard

error

the

source

line

where

the

compiler

thinks

the

error

lies;

a

second

line

below

it,

whenever

possible,

that

points

to

a

specific

point

in

that

source

line;

and

the

diagnostic

message.

24

An

Introductory

Guide

Note:

Messages

are

not

intended

to

be

used

as

input

to

other

programs.

The

message

format

and

content

are

not

intended

to

be

a

programming

interface

and

may

change

from

release

to

release.

Reusing

GNU

C

and

C++

compiler

options

with

gxlc

and

gxlc++

Each

of

the

gxlc

and

gxlc++

utilities

accepts

GNU

C

or

C++

compiler

options

and

translates

them

into

comparable

XL

C/C++

options.

Both

utilities

use

the

XL

C/C++

options

to

create

an

xlc

or

xlC

invocation

command,

which

they

then

use

to

invoke

XL

C/C++.

These

utilities

are

provided

to

facilitate

the

reuse

of

make

files

created

for

applications

previously

developed

with

GNU

C

and

C++.

However,

to

fully

exploit

the

capabilities

of

XL

C/C++,

it

is

recommended

that

you

use

the

XL

C/C++

invocation

commands

and

their

associated

options.

The

actions

of

gxlc

and

gxlc++

are

controlled

by

the

configuration

file

gxlc.cfg.

The

GNU

C

and

C++

options

that

have

an

XL

C

or

XL

C++

counterpart

are

shown

in

this

file.

Not

every

GNU

option

has

a

corresponding

XL

C/C++

option.

gxlc

and

gxlc++

return

warnings

for

input

options

that

were

not

translated.

The

gxlc

and

gxlc++

option

mappings

are

modifiable.

For

information

on

adding

to

or

editing

the

gxlc

and

gxlc++

configuration

file,

see

“Configuring

the

option

mapping”

on

page

29.

Example

To

use

the

gcc

-ansi

option

to

compile

the

C

version

of

the

Hello

World

program,

you

can

use:

gxlc

-ansi

hello.c

which

translates

into:

xlc

-F:c89

hello.c

This

command

is

then

used

to

invoke

the

XL

C

compiler.

gxlc

and

gxlc++

return

codes

Like

other

invocation

commands,

gxlc

and

gxlc++

return

output,

such

as

listings,

diagnostic

messages

related

to

the

compilation,

warnings

related

to

unsuccessful

translation

of

GNU

options,

and

return

codes.

If

gxlc

or

gxlc++

cannot

successfully

call

the

compiler,

it

sets

the

return

code

to

one

of

the

following

values:

40

A

gcc

or

g++

option

error

or

unrecoverable

error

has

been

detected.

255

An

error

has

been

detected

while

the

process

was

running.

gxlc

and

gxlc++

syntax

The

following

diagram

shows

the

gxlc

and

gxlc++

syntax:

��

gxlc

filename

gxlc++

-v

-Wx,

xlc_or_xlc++_options

gcc_or_g++_options

-vv

��

where:

filename

Is

the

name

of

the

file

to

be

compiled.

-v

Allows

you

to

verify

the

command

that

will

be

used

to

invoke

XL

C/C++.

Getting

started

with

compiler

options

25

gxlc

or

gxlc++

displays

the

XL

C/C++

invocation

command

that

it

has

created,

before

using

it

to

invoke

the

compiler.

-vv

Allows

you

to

run

a

simulation.

gxlc

or

gxlc++

displays

the

XL

C/C++

invocation

command

that

it

has

created,

but

does

not

invoke

the

compiler.

-Wx,xlc_or_xlc++_options

Sends

the

given

XL

C/C++

options

directly

to

the

xlc

or

xlc++

invocation

command.

gxlc

or

gxlc++

adds

the

given

options

to

the

XL

C/C++

invocation

it

is

creating,

without

attempting

to

translate

them.

Use

this

option

with

known

XL

C/C++

options

to

improve

the

performance

of

the

utility.

Multiple

xlc_or_xlc++_options

use

a

comma

delimiter.

gcc_or_g++_options

Are

the

gcc

or

g++

options

that

are

to

be

translated

to

xlc

or

xlc++

options.

The

utility

emits

a

warning

for

any

option

it

cannot

translate.

The

gcc

and

g++

options

that

are

currently

recognized

by

gxlc

and

gxlc++

are

listed

in

the

configuration

file

gxlc.cfg.

Multiple

gcc_or_g++_options

are

delimited

by

the

space

character.

GNU

C

and

C++

to

XL

C/C++

option

mapping

The

following

table

lists

the

GNU

C

and

C++

options

that

are

accepted

and

translated

by

gxlc

and

gxlc++.

All

other

GNU

options

that

are

specified

as

input

to

one

of

these

utilities

are

ignored

or

generate

an

error.

If

the

negative

form

of

a

GNU

option

exists,

then

the

negative

form

is

also

recognized

and

translated

by

gxlc

and

gxlc++.

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

GNU

C

and

C++

option

XL

C/C++

option

-###

-#

-ansi

-F:c89

-B

-B

-C

-C

-c

-c

-Dmacro[=defn]

-Dmacro[=defn]

-E

-E

-e

-e

-fdollars-in-identifiers

-qdollar

2000C++

-fdump-class-hierarchy

-qdump_class_hierarchy

2000C++

-fexceptions

-qeh

2000C++

-ffor-scope

-qlanglvl=ansifor

2000C++

-fno-for-scope

-qlanglvl=noansifor

-ffunction-sections

-qfuncsect

-finline

-qinline

-finline-functions

-qinline

2000C++

-fkeep-inline-functions

-qkeepinlines

2000C++

-fno-gnu-keywords

-qnokeyword=typeof

26

An

Introductory

Guide

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

GNU

C

and

C++

option

XL

C/C++

option

2000C++

-fno-operator-names

-qnokeyword=and

-qnokeyword=bitand

-qnokeyword=bitor

-qnokeyword=compl

-qnokeyword=not

-qnokeyword=or

-qnokeyword=xor

-fpascal-strings

-qmacpstr

-fPIC

-qpic=large

-fpic

-qpic=small

2000C++

-frtti

-qrtti

-fshort-enums

-qenum=small

-fsigned-bitfields

-qbitfields=signed

-fsigned-char

-qchars=signed

-fstrict-aliasing

-qalias=ansi

-fsyntax-only

-qsyntaxonly

-funroll-all-loops

-qunroll=yes

-funroll-loops

-qunroll=yes

-funsigned-bitfields

-qbitfields=unsigned

-funsigned-char

-qchars=unsigned

-fwritable-strings

-qnoro

-g

-g

-g3

-g

-ggdb

-g

-gxcoff

-g

-Idir

-Idir

-Ldir

-Ldir

-llibrary

-llibrary

-M

-M

-MD

-M

-maix32

-q32

-maix64

-q64

-mcpu=403

-qarch=403

-mcpu=601

-qarch=601

-mcpu=602

-qarch=602

-mcpu=603

-qarch=603

-mcpu=604

-qarch=604

-mcpu=common

-qarch=com

-mcpu=power

-qarch=pwr

-mcpu=power2

-qarch=pwr2

-mcpu=powerpc

-qarch=ppc

-mcpu=powerpc64

-qarch=ppc64

-mcpu=rs64a

-qarch=rs64a

Getting

started

with

compiler

options

27

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

GNU

C

and

C++

option

XL

C/C++

option

-mno-fused-madd

-qfloat=nomaf

-mfused-madd

-qfloat=maf

-mlong-double-64

-qnolonglong

-mlong-double-128

-qlonglong

-mpower

-qarch=pwr

-mpower2

-qarch=pwr2

-mpowerpc

-qarch=ppc

-mpowerpc-gfxopt

-qarch=pwrgr

-mpowerpc64

-qarch=ppc64

-mtune=403

-qtune=403

-mtune=601

-qtune=601

-mtune=602

-qtune=602

-mtune=603

-qtune=603

-mtune=604

-qtune=604

-mtune=common

-qtune=com

-mtune=power

-qtune=pwr

-mtune=power2

-qtune=pwr2

-mtune=powerpc

-qtune=ppc

-mtune=powerpc64

-qtune=ppc64

-mtune=rs64a

-qtune=rs64a

-nodefaultlibs

-qnolib

-nostartfiles

-qnocrt

-nostdinc

-qnostdinc

-nostdlib

-qnolib

-qnocrt

-O

-O

-O0

-qnoopt

-O1

-O

-O2

-O2

-O3

-O3

-Os

-O2

-qcompact

-o

-o

-p

-p

-pg

-pg

-r

-r

-S

-S

-s

-s

2000C

-std=c89

-F:c89

2000C

-std=iso9899:1990

-F:c89

2000C

-std=iso9899:199409

-F:c89

28

An

Introductory

Guide

Mapped

options:

GNU

C

and

C++

to

XL

C/C++

GNU

C

and

C++

option

XL

C/C++

option

2000C

-std=c99

-F:c99

2000C

-std=c9x

-F:c99

2000C

-std=iso9899:1999

-F:c99

2000C

-std=iso9899:199x

-F:c99

2000C

-std=gnu89

-qlanglvl=extc89

2000C

-std=gnu99

-qlanglvl=extc99

2000C

-std=gnu9x

-qlanglvl=extc99

2000C++

-std=c++98

-qlanglvl=strict98

2000C++

-std=gnu++98

-qlanglvl=extended

-time

-qphsinfo

-trigraphs

-qtrigraph

-Umacro

-Umacro

-u

-u

-Wformat

-qformat

-Wuninitialized

-qinfo=ini

-Wunreachable-code

-qinfo=eff

-Wa,option

-Wa,option

-Wl,option

-Wl,option

-Wp,option

-Wp,option

-w

-w

-x

assembler

-qsourcetype=assembler

-x

c

-qsourcetype=c

-x

c++

-qsourcetype=c++

-x

none

-qsourcetype=default

-Z

-Z

All

other

GNU

options

are

ignored

and

issue

an

informational

message.

Configuring

the

option

mapping

The

gxlc

and

gxlc++

utilities

use

the

configuration

file

gxlc.cfg

to

translate

GNU

C

and

C++

options

to

XL

C/C++

options.

Each

entry

in

gxlc.cfg

describes

how

the

utility

should

map

a

GNU

C

or

C++

option

to

an

XL

C/C++

option

and

how

to

process

it.

An

entry

consists

of

a

string

of

flags

for

the

processing

instructions,

a

string

for

the

GNU

C

option,

and

a

string

for

the

XL

C/C++

option.

The

three

fields

must

be

separated

by

whitespace.

If

an

entry

contains

only

the

first

two

fields

and

the

XL

C/C++

option

string

is

omitted,

the

GNU

C

option

in

the

second

field

will

be

recognized

by

gxlc

and

silently

ignored.

Getting

started

with

compiler

options

29

The

#

character

is

used

to

insert

comments

in

the

configuration

file.

A

comment

can

be

placed

on

its

own

line,

or

at

the

end

of

an

entry.

The

following

syntax

is

used

for

an

entry

in

gxlc.cfg:

abcd

"gcc_or_g++_option"

"xlc_or_xlc++_option"

where:

a

Lets

you

disable

the

option

by

adding

no-

as

a

prefix.

The

value

is

either

y

for

yes,

or

n

for

no.

For

example,

if

the

flag

is

set

to

y,

then

finline

can

be

disabled

as

fno-inline,

and

the

entry

is:

ynn*

"-finline"

"-qinline"

If

given

-fno-inline,

then

gxlc

will

translate

it

to

-qnoinline.

b

Informs

the

utility

that

the

XL

C/C++

option

has

an

associated

value.

The

value

is

either

y

for

yes,

or

n

for

no.

For

example,

if

option

-fmyvalue=n

maps

to

-qmyvalue=n,

then

the

flag

is

set

to

y,

and

the

entry

is:

nyn*

"-fmyvalue"

"-qmyvalue"

gxlc

and

gxlc++

will

then

expect

a

value

for

these

options.

c

Controls

the

processing

of

the

options.

The

value

can

be:

v

n,

which

tells

the

utility

to

process

the

option

listed

in

the

gcc-option

field

v

i,

which

tells

the

utility

to

ignore

the

option

listed

in

the

gcc-option

field.

gxlc

and

gxlc++

will

generate

a

message

that

this

has

been

done,

and

continue

processing

the

given

options.

v

e,

which

tells

the

utility

to

halt

processing

if

the

option

listed

in

the

gcc-option

field

is

encountered.

gxlc

and

gxlc++

will

also

generate

an

error

message.

For

example,

the

gcc

option

-I-

is

not

supported

and

must

be

ignored

by

gxlc

and

gxlc++.

In

this

case,

the

flag

is

set

to

i,

and

the

entry

is:

nni*

"-I-"

If

gxlc

and

gxlc++

encounters

this

option

as

input,

it

will

not

process

it

and

will

generate

a

warning.

d

Lets

gxlc

and

gxlc++

include

or

ignore

an

option

based

on

the

type

of

compiler.

The

value

can

be:

v

c,

which

tells

gxlc

and

gxlc++

to

translate

the

option

only

for

C.

v

x,

which

tells

gxlc

and

gxlc++

to

translate

the

option

only

for

C++.

v

*,

which

tells

gxlc

and

gxlc++

to

translate

the

option

for

C

and

C++.

For

example,

-fwritable-strings

is

supported

by

both

compilers,

and

maps

to

-qnoro.

The

entry

is:

nnn*

"-fwritable-strings"

"-qnoro"

″gcc_or_g++_option″

Is

a

string

representing

a

gcc

or

g++

option

supported

by

GNU

C,

Version

3.3.

This

field

is

required

and

must

appear

in

double

quotation

marks.

″xlc_or_xlc++_option″

Is

a

string

representing

an

XL

C/C++

option.

This

field

is

optional,

and,

if

present,

must

appear

in

double

quotation

marks.

If

left

blank,

gxlc

and

gxlc++

ignores

the

gcc_or_g++_option

in

that

entry.

30

An

Introductory

Guide

It

is

possible

to

create

an

entry

that

will

map

a

range

of

options.

This

is

accomplished

by

using

the

asterisk

(*)

as

a

wildcard.

For

example,

the

gcc

-D

option

requires

a

user-defined

name

and

can

take

an

optional

value.

It

is

possible

to

have

the

following

series

of

options:

-DCOUNT1=100

-DCOUNT2=200

-DCOUNT3=300

-DCOUNT4=400

Instead

of

creating

an

entry

for

each

version

of

this

option,

the

single

entry

is:

nnn*

"-D*"

"-D*"

where

the

asterisk

will

be

replaced

by

any

string

following

the

-D

option.

Conversely,

you

can

use

the

asterisk

to

exclude

a

range

of

options.

For

example,

if

you

want

gxlc

or

gxlc++

to

ignore

all

the

-std

options,

then

the

entry

would

be:

nni*

"-std*"

When

the

asterisk

is

used

in

an

option

definition,

option

flags

a

and

b

are

not

applicable

to

these

entries.

The

character

%

is

used

with

a

GNU

C

or

GNU

C++

option

to

signify

that

the

option

has

associated

parameters.

This

is

used

to

insure

that

gxlc

or

gxlc++

will

ignore

the

parameters

associated

with

an

option

that

is

ignored.

For

example,

the

-include

option

is

not

supported

and

uses

a

parameter.

Both

must

be

ignored

by

the

application.

In

this

case,

the

entry

is:

nni*

"-include

%"

Related

References

v

The

GNU

Compiler

Collection

online

documentation

at

http://gcc.gnu.org/onlinedocs/

Options

summary:

C

compiler

This

chapter

appendix

presents

a

summary

of

the

C

compiler

options,

grouped

by

type.

The

higher

level

groupings

contain

subgroups

of

options.

In

addition

to

a

subgroup

for

basic

translation

of

source

code,

one

subgroup

comprises

options

for

special

handling

or

control

of

the

code,

such

as

adding

specialized

debugging

information.

Another

subgroup

pertains

to

control

of

the

linker

and

library

search

paths.

Options

related

to

performance

and

optimization

are

summarized

at

the

end

of

chapter

“Getting

started

with

optimization”

on

page

35.

For

description,

full

option

syntax,

and

usage

of

each

option,

see

XL

C/C++

Compiler

Reference.

Basic

translation

The

options

in

this

grouping

have

the

broadest

applicability

for

basic

translation

of

source

code.

The

subgroups

of

compiler

options

are

generally

concerned

with:

v

Standards

compliance.

v

Compilation

mode

or

control

of

the

compiler

driver.

v

Manipulating

the

source

code

for

code

generation.

v

Generating

specialized

diagnostics.

v

Manipulating

the

compiled

code.

Getting

started

with

compiler

options

31

http://gcc.gnu.org/onlinedocs

Options

related

to

basic

translation

of

source

code

Standards

compliance

Compilation

mode

or

control

of

compiler

driver

-qgenproto,

-qnogenproto

-qlanglvl

-qlibansi,

-qnolibansi

-#

-q32

-q64

-F

-qpath

-qproto,

-qnoproto

-qsourcetype

Source

code

generation

-qalloca

-qasm,

-qnoasm

-qasm_as

-qattr,

-qnoattr

-B

-C

-qcpluscmt,

-qnocpluscmt

-D

-qdbcs,

-qnodbcs

-qdigraph,

-qnodigraph

-qdirectstorage,

-qnodirectstorage

-E

-qfuncsect,

-qnofuncsect

-qignprag

-M

-ma

-qmacpstr,

-qnomacpstr

-qmakedep

-qmbcs,

-qnombcs

-P

-qpascal,

-qnopascal

-qroptrs,

-qnoroptrs

-qsmallstack,

-qnosmallstack

-qsyntaxonly

-t

-qtabsize

-qtrigraph,

-qnotrigraph

-U

-qutf,

-qnoutf

-W

-qweaksymbol,

-qnoweaksymbol

Diagnostics

Compiled

code

-qflag

-qinfo,

-qnoinfo

-qmaxerr,

-qnomaxerr

-qphsinfo,

-qnophsinfo

-qprint,

-qnoprint

-qshowinc,

-qnoshowinc

-qsource,

-qnosource

-qsrcmsg,

-qnosrcmsg

-qsuppress,

-qnosuppress

-V

-v

-w

-qwarn64,

-qnowarn64

-qxcall,

-qnoxcall

-qbitfields

-c

-qchars

-qdataimported

-qdatalocal

-qdollar,

-qnodollar

-qexpfile

-o

-qprocimported

-qproclocal

-qprocunknown

-S

-qstatsym,

-qnostatsym

-qtbtable

-qupconv,

-qnoupconv

Special

handling

and

control

The

options

in

this

grouping

provide

fine-grain

control

of

the

translation

process

and

have

less

general

applicability

than

basic

translation

options.

The

topics

within

this

grouping

of

compiler

options

are

generally

concerned

with:

v

Data

alignment.

v

Compilation

mode

or

control

of

the

compiler

driver.

v

Manipulating

the

source

code

for

code

generation.

v

Generating

specialized

diagnostics.

v

Manipulating

the

compiled

code.

32

An

Introductory

Guide

Options

for

special

handling,

fine

tuning,

and

debugging

Data

alignment

Parallelization

-qalign

-qenum

-qsmp,

-qnosmp

-qthreaded,

-qnothreaded

Floating-point

and

numerical

features

Sizes

-qldbl128,

-qnoldbl128

-qlongdouble,

-qnolongdouble

-qlonglit,

-qnolonglit

-qlonglong,

-qnolonglong

Rounding

of

floating-point

values

-qrndflt,

-qnorndflt

-y

Single-precision

values

-qhsflt,

-qnohsflt

-qhssngl,

-qnohssngl

Other

floating-point

options

-qfloat

-qflttrap,

-qnoflttrap

-qmaf,

-qnomaf

Debugging

-qcheck,

-qnocheck

-qdpcl,

-qnodpcl

-qdbxextra,

-qnodbxextra

-qextchk,

-qnoextchk

-qfullpath,

-qnofullpath

-g

-qhalt

-qheapdebug,

-qnoheapdebug

-qinitauto,

-qnoinitauto

-qkeepparm,

-qnokeepparm

-qlinedebug,

-qnolinedebug

-qlist,

-qnolist

-qlistopt,

-qnolistopt

-qsaveopt,

-qnosaveopt

-qsymtab

-qxref,

-qnoxref

Linking

and

library-related

options

The

options

in

this

grouping

are

related

to

the

linking

phase

of

the

compilation

process.

This

grouping

also

contains

options

that

provide

specialized

ways

to

specify

search

paths

for

finding

libraries

and

header

files.

These

compiler

options

are

generally

concerned

with:

v

Placing

string

literals

and

constants.

v

Static

and

dynamic

linking

and

libraries.

v

Specifying

search

directories.

Options

for

controlling

the

ld

command

Placing

string

literals

and

constants

Static

and

dynamic

linking

and

libraries

-qkeyword,

-qnokeyword

-qro,

-qnoro

-qroconst,

-qnoroconst

-b

-brtl

-e

-G

-qmkshrobj

-qstdinc,

-qnostdinc

Search

directories

Other

linker

options

-I

-L

-l

(lowercase

el)

-qidirfirst,

-qnoidirfirst

-r

-Z

-f

-qinlglue,

-qnoinglue

Getting

started

with

compiler

options

33

Options

summary:

C++

compiler

Most

of

the

C

compiler

options

are

available

for

compiling

C++

programs.

The

following

table

presents

additional

compiler

options

specific

to

compiling

C++

programs

and

the

C

options

that

are

not

available

for

compiling

C++

programs

on

the

AIX

platform:

Compiler

options

for

C++

programs

C++-specific

options

C-only

options

-+

-qcinc

-qeh,

-qnoeh

-qhaltonmsg

-qkeepinlines,

-qnokeepinlines

-qnamemangling

-qobjmodel

-qoldpassbyvalue,

-qnooldpassbyvalue

-qpriority

-qrtti,

-qnortti

-qstaticinline,

-qnostaticinline

-qtempinc,

-qnotempinc

-qtemplaterecompile,

-qnotemplaterecompile

-qtemplateregistry,

-qnotemplateregistry

-qtempmax

-qtmplparse

-qtwolink,

-qnotwolink

-qunique,

-qnounique

-qvftable,

-qnovftable

-qalloca

-qassert,

-qnoassert

-qc_stdinc

-qcpluscmt,

-qnocpluscmt

-qdbxextra,

-qnodbxextra

-qgenproto,

-qnogenproto

-ma

-macpstr,

-nomacpstr

-qproto,

-qnoproto

-qsrcmsg,

-qnosrcmsg

-qsyntaxonly

-qupconv,

-qnoupconv

34

An

Introductory

Guide

Getting

started

with

optimization

Simple

compilation

is

a

translation

or

transformation

of

the

source

code

into

an

executable

or

shared

object.

An

optimizing

transformation

is

one

that

gives

your

application

better

overall

performance

at

run

time.

XL

C/C++

provides

a

portfolio

of

optimizing

transformations

tailored

to

the

PowerPC

architecture.

These

transformations

can:

v

Reduce

the

number

of

instructions

executed

for

critical

operations.

v

Restructure

the

generated

object

code

to

make

optimal

use

of

the

PowerPC

architecture.

v

Improve

the

usage

of

the

memory

subsystem.

v

Exploit

the

ability

of

the

architecture

to

handle

large

amounts

of

shared

memory

parallelization.

Their

aim

is

to

make

your

application

run

faster.

Significant

performance

improvements

can

be

achieved

with

relatively

little

development

effort

if

you

understand

the

available

controls

that

affect

the

transformation

of

well-written

code.

Programming

models

such

as

OpenMP

allow

you

to

write

high-performance

code.

This

section

describes

some

of

the

optimizations

the

compiler

can

perform

to

help

you

balance

the

trade-offs

among

run-time

performance,

hand-coded

micro-optimizations,

general

readability,

and

overall

portability

of

your

source

code.

Optimizations

are

often

attempted

in

the

later

phases

of

application

development

cycles,

such

as

product

release

builds.

If

possible,

you

should

test

and

debug

your

code

without

optimization

before

attempting

to

optimize

it.

Embarking

on

optimization

should

mean

that

you

have

chosen

the

most

efficient

algorithms

for

your

program

and

that

you

have

implemented

them

correctly.

To

a

large

extent,

compliance

with

language

standards

is

directly

related

to

the

degree

to

which

your

code

can

be

successfully

optimized.

Optimizers

are

the

ultimate

conformance

test!

Optimization

is

controlled

by

compiler

options,

directives,

and

pragmas.

However,

compiler-friendly

programming

idioms

can

be

as

useful

to

performance

as

any

of

the

options

or

directives.

It

is

no

longer

necessary

nor

is

it

recommended

to

excessively

hand-optimize

your

code

(for

example,

manually

unrolling

loops).

Unusual

constructs

can

confuse

the

compiler

(and

other

programmers),

and

make

your

application

difficult

to

optimize

for

new

machines.

It

should

be

noted

that

not

all

optimizations

are

beneficial

for

all

applications.

A

trade-off

usually

has

to

be

made

between

an

increase

in

compile

time,

accompanied

by

reduced

debugging

capability,

and

the

degree

of

optimization

done

by

the

compiler.

Related

References

v

″Using

optimization

levels″

in

XL

C/C++

Programming

Guide

v

″Optimizing

your

applications″

in

XL

C/C++

Programming

Guide

©

Copyright

IBM

Corp.

2004

35

Selected

compiler

options

for

optimization

The

following

table

features

a

selection

of

basic

compiler

options

for

optimizing

program

performance.

For

an

exhaustive

list,

see

XL

C/C++

Programming

Guide.

For

documentation

of

the

available

suboptions,

see

XL

C/C++

Compiler

Reference

or

the

options

man

page.

Table

1.

Basic

compiler

options

for

optimization

Option

Description

-qnoopt

The

compiler

performs

very

limited

optimization.

This

is

the

default.

Before

you

start

optimizing

your

application,

ensure

that

it

compiles

successfully

with

-qnoopt.

-O2

The

compiler

performs

comprehensive

low-level

optimization,

which

includes

graph

coloring,

common

subexpression

elimination,

dead

code

elimination,

algebraic

simplification,

constant

propagation,

instruction

scheduling

for

the

target

machine,

loop

unrolling,

and

software

pipelining.

-qarch

-qtune

-qcache

The

compiler

takes

advantage

of

the

characteristics

of

the

specific

hardware

and

instruction

set

where

the

application

run.

Use

-qarch

to

specify

family

of

processor

architectures

for

which

application

code

should

be

generated.

Use

-qtune

to

bias

optimization

toward

execution

on

a

given

microprocessor.

Use

-qcache

to

specify

a

specific

cache

or

memory

geometry.

-qpdf1

-qpdf2

The

compiler

uses

profile-directed

feedback

to

optimize

the

application

based

on

an

analysis

of

how

often

different

sections

of

code

are

typically

executed.

The

PDF

process

is

most

useful

for

applications

that

contain

unstructured

branching.

-O3

The

compiler

performs

more

aggressive

optimization

than

at

-O2:

deeper

loop

unrolling,

better

loop

scheduling,

elimination

of

the

limits

on

implicit

memory

usage.

-qhot

The

compiler

performs

high-order

transformations,

which

provide

additional

loop

optimization

and

optionally

performs

array

padding.

This

option

is

most

useful

for

scientific

applications

that

perform

a

large

amount

of

numerical

processing.

-qipa

The

compiler

performs

interprocedural

analysis

to

optimize

the

entire

application

as

a

unit

(whole-program

analysis).

This

option

is

most

useful

for

business

applications

that

contain

a

large

number

of

frequently

used

routines.

It

is

also

useful

for

C++

programs

with

a

high

level

of

abstraction.

In

many

cases,

this

option

significantly

increases

compilation

time.

-O4

This

is

equivalent

to

-O3

-qipa

-qhot

-qarch=auto

-qtune=auto

-qcache=auto.

If

the

compilation

takes

too

long,

try

compiling

with

-O4

-qnoipa.

-O5

This

is

equivalent

to

-O4

-qipa=level=2.

On

the

AIX

platform,

this

option

also

turns

on

-qhot=vector

-qhot=simd,

provided

that

the

processor

is

PowerPC

970

and

that

AltiVec

data

types

are

supported

by

the

operating

system.

Getting

started

with

optimization

pragmas

A

pragma

directive

is

an

implementation-specific

preprocessor

directive

that

provides

the

ability

to

section

off

a

group

of

lines

in

the

source

code

of

a

program

to

inform

the

compiler

of

something

about

that

section.

A

pragma

directive

often

provides

finer-grained

control

than

the

similarly

named,

corresponding

compiler

36

An

Introductory

Guide

option.

For

pragma

directives

related

to

optimization,

the

intention

is

to

explicitly

notify

the

compiler

of

potential

opportunities

for

optimization

that

it

may

not

be

able

to

detect

on

its

own,

or

of

assumptions

it

can

make,

which

might

facilitate

its

decisions

about

optimizing

the

source

code.

XL

C/C++

provides

pragma

directives

for

performance

optimization

that

have

counterparts

among

XL

Fortran

directives.

Like

the

Fortran

directives,

the

optimization

pragmas

can

be

thought

of

in

descriptive

categories:

imperative,

assertive,

and

prescriptive.

The

distinctions

among

categories

are

the

degree

to

which

the

compiler

must

comply

with

the

instructions

or

information

provided

by

the

pragma.

All

OpenMP

directives

are

imperative

pragmas.

The

compiler

is

required

to

behave

in

strict

conformance

with

its

implementation

of

the

OpenMP

standard.

However,

the

resulting

program

behavior

is

not

guaranteed

to

produce

correct

results.

XL

C/C++

implements

all

OpenMP

V2.0

pragma

directives.

An

assertive

pragma

informs

the

compiler

of

an

assumption

that

it

can

safely

make

when

transforming

the

lines

of

source

code

in

which

the

pragma

is

in

effect.

The

intention

of

an

assertive

pragma

is

informative,

an

assertion

that

imposes

no

specific

obligation

on

the

compiler

to

behave

in

a

certain

way.

XL

C/C++

provides

the

following

assertive

pragmas

related

to

optimization.

Selected

assertive

#pragma

directives

Name

Description

isolated_call(function_list)

Asserts

that

calls

to

the

named

functions

do

not

have

side

effects.

disjoint(variable_list)

Asserts

that

none

of

the

named

variables

have

overlapping

areas

of

storage.

ibm

independent_loop

Asserts

that

the

following

loop

has

no

loop-carried

dependencies.

This

freedom

enables

locality

and

parallel

transformations.

ibm

independent_calls

Asserts

that

the

calls

in

the

following

loop

do

not

cause

loop-carried

dependencies.

ibm

permutation

Asserts

that

elements

of

the

named

arrays

take

on

distinct

values

on

each

iteration

of

the

following

loop.

This

assertion

may

be

useful

in

sparse

codes.

ibm

iterations(iteration_count)

Specifies

the

number

of

iterations

for

the

following

loop,

which

helps

the

compiler

to

determine

if

it

is

advantageous

to

parallelize

the

loop.

The

pragma

is

applicable

to

a

single

loop

instead

of

the

entire

compilation

unit.

execution_frequency(very_low)

Asserts

that

the

control

path

containing

the

pragma

will

be

infrequently

executed

leaves(function_list)

Asserts

that

calls

to

the

named

functions

will

not

return.

A

prescriptive

pragma

is

a

suggestion

to

the

compiler

to

transform

the

source

code

under

its

effects

in

a

particular

way

in

hope

of

getting

better

performance.

A

prescriptive

pragma

functions

like

the

inline

keyword:

the

compiler

is

not

required

to

implement

the

suggestion,

but

it

might

if

doing

so

is

deemed

advantageous.

XL

C/C++

provides

the

following

prescriptive

pragmas

related

to

optimization.

Getting

started

with

optimization

37

Selected

prescriptive

#pragma

directives

Name

Description

ibm

sequential_loop

Directs

the

compiler

to

execute

the

following

loop

in

a

single

thread,

even

if

-qsmp=auto

is

specified.

ibm

snapshot(variable_name)

Sets

a

debugging

breakpoint

at

the

point

of

the

pragma

to

examine

the

specified

variable.

stream_unroll

Breaks

a

stream

contained

in

a

for

loop

into

multiple

streams.

Intended

for

loops

that

have

a

large

iteration

count

and

a

small

number

of

streams.

unroll

Indicates

to

the

compiler

that

the

for

loop

that

immediately

follows

the

directive

can

be

unrolled.

The

pragma

can

be

applied

to

both

the

innermost

and

outer

for

loops.

unrollandfuse

Instructs

the

compiler

to

replicate

the

body

of

the

outer

loop

of

a

for

loop

that

is

itself

a

loop

nest,

and

fuses

the

replicas

into

a

single

unrolled

loop

nest.

Related

References

v

All

XL

C/C++

pragmas

are

documented

in

XL

C/C++

Compiler

Reference.

38

An

Introductory

Guide

Porting

considerations

This

section

describes

general

areas

of

investigation

that

can

facilitate

porting

a

UNIX-based

application

to

the

AIX

platform.

Porting

an

application

to

run

on

another

platform

involves

a

source

platform

and

a

target

platform.

At

the

most

basic

level,

the

following

question

should

be

considered

before

doing

any

coding:

What

is

being

changed

as

part

of

the

port

to

the

target

platform?

A

true

port

involves

changing

only

the

hardware

and

operating

system.

In

theory,

well-written

programs

that

do

not

rely

on

platform-specific

dependencies,

adhere

to

industry

standards,

such

as

POSIX,

and

conform

to

standard

language

definitions

without

employing

nonstandard

language

extensions,

can

easily

be

ported

to

a

new

operating

system

with

a

minimum

of

extra

work

besides

recompiling

and

debugging.

When

the

source

platform

is

a

reasonably

recent

UNIX-based

operating

system,

the

changes

may

be

confined

to

becoming

more

compliant

with

industry

standards

or

with

a

newer

version

of

the

same

standard.

If

the

application

is

already

running

on

a

Linux

system,

you

have

the

option

to

recompile

it

and

run

it

natively

on

AIX.

Many

applications

recompile

and

run

without

change.

Moreover,

compiling

an

application

with

different

standards-conforming

compilers

can

drive

out

subtle

weaknesses

in

the

source

code

due

to

differences

in

the

implementations

of

the

language

standards.

The

result

is

that

the

application

becomes

more

robust.

Problems

that

arise

in

a

porting

exercise

can

be

classified

into

internal

and

external

portability

issues.

An

internal

portability

issue

deals

with

implicit

assumptions

that

are

intrinsic

to

the

programming

language.

For

example,

C

programs

assume

a

particular

byte

order

within

integers,

a

set

of

relative

sizes

of

integers,

and

a

particular

layout

of

fields

within

structures.

Internal

portability

pertains

to

the

relationship

of

the

program

code

to

the

hardware.

This

class

of

porting

problems

is

under

a

programmer’s

control.

On

the

other

hand,

external

portability

issues

pertain

to

the

choice

of

external

interfaces

that

a

program

uses,

the

semantics

of

these

interfaces

that

are

assumed

by

the

program,

and

the

arguments

and

return

values

that

are

passed

to

and

from

the

program.

They

deal

with

libraries

and

system

calls

that

the

program

depends

upon,

code

that

is

invoked

by,

but

external

to,

the

program.

External

portability

can

be

under

a

programmer’s

control

if

the

program

uses

standardized

external

interfaces.

Portability

issues

intrinsic

to

the

language

This

section

presents

some

internal

portability

considerations

related

to

porting

to

the

AIX

platform.

v

Checking

the

amount

of

reliance

on

GNU

C

and

other

language

extensions.

An

application

that

conforms

strictly

to

its

ISO

language

specification

will

be

maximally

portable.

IBM

XL

C/C++

supports

a

subset

of

the

GNU

C

and

C++

extensions

to

C

and

C++.

You

may

need

to

revisit

code

that

relies

on

unsupported

extensions.

©

Copyright

IBM

Corp.

2004

39

v

Checking

how

null

pointers

are

dereferenced.

Some

errors

in

the

code

can

go

undetected

on

a

platform

due

to

hardware-dependent

characteristics.

These

kinds

of

errors

might

show

up

when

the

program

is

ported

to

another

platform.

If

AIX

is

the

source

platform,

you

can

use

the

option

-qcheck=nullptr

to

help

detect

such

conditions

before

porting.

The

lowest

4K

of

memory

(that

is,

addresses

0

through

4K-1)

are

readable

and

contain

zeroes

on

AIX,

but

are

not

readable

on

the

Linux

and

Mac

OS

X

platforms,

and

will

cause

a

segmentation

violation

if

accessed

on

those

platforms.

For

example,

if

(strcmp(a,

NULL)

==

0)

...

results

in

a

segmentation

violation

on

Linux

and

Mac

OS

X,

but

not

on

AIX.

v

Checking

the

alignment.

The

types

of

alignment

supported

on

AIX

are

not

the

same

as

those

supported

on

the

Linux

or

Mac

OS

X

platforms,

even

though

the

names

might

be

the

same.

If

you

are

porting

a

program

that

relies

on

specific

values

for

-qalign

or

#pragma

align,

you

may

need

to

change

the

program.

v

Ensuring

the

portability

of

data

structures.

If

you

generate

data

with

an

application

on

one

platform

and

read

the

data

with

an

application

on

another

platform,

the

data

may

have

an

alignment

that

is

different

from

that

which

the

reading

application

expects.

To

avoid

this

problem,

make

sure

that

you

use

a

platform-neutral

mechanism

for

the

layout

of

data

in

structures.

For

example,

if

you

enclose

a

structure

with

#pragma

pack(1)

and

#pragma

pack(pop)

pair,

the

alignment

will

be

the

same

on

all

platforms.

v

Using

the

gxlc

or

gxlc++

utility

for

translating

the

commands

in

your

makefiles.

Not

all

gcc

or

g++

options

have

an

XL

C/C++

equivalent.

v

Using

a

different

compiler

invocation

mode

for

32-

or

64-bit

applications,

or

for

128-bit

support.

v

On

Linux

or

Mac

OS

X,

if

the

default

global

operator

new

is

called

and

the

allocation

request

cannot

be

fulfilled,

an

exception

of

type

std::bad_alloc

is

thrown.

On

AIX,

the

default

behavior

of

the

global

operator

new

is

to

return

a

null

pointer

if

allocation

fails.

v

Ensuring

the

portability

of

applications

that

use

templates.

The

C++

compiler

provides

two

different

methods

of

working

with

template

files,

as

alternatives

to

maintaining

templates

manually

in

the

source

code.

Each

method

has

an

associated

compiler

option.

The

-qtemplateregistry

compiler

option

maintains

a

record

of

all

templates.

This

method

is

recommended.

An

older

compiler

option,

-qtempinc,

is

also

provided

for

applications

that

you

port

from

another

platform.

However,

on

the

Mac

OS

X

platform,

the

compiler

option

-qtempinc

is

considered

deprecated.

Related

References

The

following

IBM

Redbooks

contain

information

related

to

porting.

Other

Redbooks

are

available

online

at

www.redbooks.ibm.com.

v

AIX

5L

Porting

Guide

(2001).

v

Developing

and

Porting

C

and

C++

Applications

on

AIX

(2003).

40

An

Introductory

Guide

http://www.redbooks.ibm.com
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246034.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245674.html

Diagnostics

for

compile-time

errors

A

basic

recommendation

for

a

porting

project

is

to

compile

the

application

with

the

option

-qinfo=por.

This

suboption

of

-qinfo

adds

diagnostic

messages

that

pertain

specifically

to

portability.

The

option

-qinfo=warn64

instructs

the

compiler

to

emit

diagnostic

messages

specific

to

porting

an

application

to

64-bit

mode.

These

messages

can

help

to

narrow

the

scope

of

investigation

or

to

pinpoint

a

particular

coding

construct.

The

following

table

shows

other

options

that

can

be

helpful

for

detecting

and

correcting

compile-time

errors.

Other

diagnostic

options

for

compile-time

errors

Option

Description

-qsrcmsg

Prints

to

standard

error

the

source

line

that

the

compiler

believes

to

contain

the

error,

a

line

below

it

pointing

to

a

particular

spot

in

that

source

line,

and

the

diagnostic

message.

-qsource

Requests

a

compiler

listing

to

be

returned.

The

various

sections

of

a

listing

include

the

source

code

with

line

numbers,

the

options

specified,

a

listing

of

all

files

used

in

the

compilation,

a

summary

of

the

diagnostic

messages

by

severity

level,

the

number

of

lines

read,

and

whether

or

not

the

compilation

was

successful.

The

attribute

and

cross-reference

section

of

a

listing

can

be

produced

by

specifying

the

-qattr

and

-qxref

options,

respectively.

The

object

section,

which

requires

specifying

the

option

-qlist,

shows

the

pseudo

assembly

code

generated

by

the

compiler

and

is

used

for

diagnosing

execution

time

problems

in

cases

where

you

suspect

the

program

is

not

performing

as

expected

due

to

code

generation

errors.

-qsuppress

Stops

particular

messages

from

being

emitted

by

the

compiler.

You

can

suppress

more

than

one

message

by

listing

the

message

numbers

in

a

colon

separated

list.

-qflag

Stops

specified

diagnostic

messages

from

being

emitted

to

the

terminal

and

the

listing

file.

The

option

uses

the

single-letter

severity

codes

of

the

default

compiler

message

format

to

specify

the

level

below

which

messages

should

be

ignored.

32-

and

64-bit

application

development

You

can

use

XL

C/C++

to

develop

both

32-

and

64-bit

applications.

This

section

contains

reference

information

and

other

portability

considerations

for

moving

C

and

C++

programs

from

32-

to

64-bit

mode.

A

porting

exercise

is

a

true

port

if

the

hardware

and

operating

systems

are

the

only

things

that

are

changed.

Moving

a

32-bit

application

to

a

64-bit

programming

model

as

part

of

the

process

of

migrating

to

AIX

means

that

the

exercise

is

no

longer

a

true

port

but

a

development

activity.

A

32-bit

application

with

any

of

the

following

characteristics

is

very

likely

to

require

changes

when

ported

to

a

64-bit

environment:

v

Reads

and

interprets

kernel

memory

directly.

v

Uses

the

/proc

file

system

to

access

64-bit

processes.

v

Uses

a

library

that

has

only

a

64-bit

version.

Porting

considerations

41

v

Is

a

device

driver.

v

Is

being

ported

from

a

source

platform

that

has

interoperability

issues

with

AIX.

Developing

in

64-bit

mode

allows

the

application

to

take

advantage

of

the

newer,

faster

64-bit

hardware

and

operating

systems

to

improve

performance

on

large,

complex,

memory-intensive

programs,

such

as

database

and

scientific

applications.

Applications

that

are

limited

by

a

32-bit

address

space,

such

as

database

applications,

Web

search

engines,

and

scientific

computing

applications,

are

likely

to

benefit

from

a

transition

to

the

64-bit

mode.

I/O

bound

applications

in

64-bit

mode

can

also

realize

improved

performance

by

keeping

data

in

memory

rather

than

writing

to

disk,

since

disk

I/O

is

usually

slower

than

memory

access.

The

ability

to

handle

larger

problems

directly

in

physical

memory

is

perhaps

the

most

significant

performance

benefit

of

64-bit

machines.

However,

some

applications

compiled

in

32-bit

mode

perform

better

than

when

they

are

recompiled

in

64-bit

mode.

Some

reasons

for

this

include:

v

64-bit

programs

are

larger.

The

increase

in

program

size

places

greater

demands

on

physical

memory.

v

64-bit

long

division

is

more

time-consuming

than

32-bit

integer

division.

v

64-bit

programs

that

use

32-bit

signed

integers

as

array

indexes

might

require

additional

instructions

to

perform

sign

extension

each

time

the

array

is

referenced.

Other

disadvantages

of

64-bit

applications

are

that

they

require

more

stack

space

to

hold

the

larger

registers.

Applications

have

a

bigger

cache

footprint

due

to

the

larger

pointer

size.

64-bit

applications

do

not

run

on

32-bit

platforms.

Some

ways

to

compensate

for

the

performance

liabilities

of

64-bit

programs

are

listed

below.

v

Avoid

performing

mixed

32-

and

64-bit

operations.

For

example,

adding

a

32-bit

signed

data

type

to

a

64-bit

data

type

requires

the

32-bit

type

to

be

sign-extended

to

set

the

upper

32

bits

of

the

register

according

to

the

sign.

Setting

the

upper

bits

of

the

register

slows

the

computation.

If

the

32-bit

type

were

unsigned,

then

the

upper

bits

of

the

register

would

be

cleared.

v

Avoid

64-bit

long

division

whenever

possible.

Multiplication

is

usually

faster

than

division.

If

you

need

to

perform

many

divisions

with

the

same

divisor,

assign

the

reciprocal

of

the

divisor

to

a

temporary

variable,

and

change

all

divisions

to

multiplications

with

the

temporary

variable.

For

example,

the

function

double

preTax(double

total)

{

return

total

*

(1.0

/

1.0825);

}

will

perform

faster

than

the

more

straightforward:

double

preTax(double

total)

{

return

total

/

1.0825;

}

The

reason

is

that

the

division

(1.0

/

1.0825)

is

evaluated

once

at

compile

time

only,

due

to

constant

folding.

This

optimization

is

usually

done

by

the

compiler

if

the

-qnostrict

option

is

in

effect

(true

when

compiling

at

optimization

levels

-O2

and

higher).

v

Use

long

variables

as

array

indexes

instead

of

signed,

unsigned,

and

plain

int

types.

Doing

so

frees

the

compiler

from

having

to

perform

sign

extension

during

array

references.

Well-written

code

is

likely

to

compile

and

run

correctly

with

a

minimum

of

rework

and

debugging

if

moved

to

the

64-bit

programming

model.

The

term

well-written

42

An

Introductory

Guide

implies

conformance

to

the

language

standard

and

adherence

to

good

programming

practices.

In

the

context

of

moving

to

a

64-bit

programming

model,

the

term

also

includes

the

notions

that

the

code

does

not

depend

on

a

specific

byte

order

nor

on

external

data

formats,

and

that

it

uses

function

prototypes,

appropriate

system

header

files,

and

system-derived

data

types

32-

and

64-bit

development

environments

on

AIX

The

C

and

C++

compilers

and

the

AIX

operating

system

offer

two

different

programming

models:

ILP32

and

LP64.

ILP32,

an

acronym

for

integer/long/pointer

32,

is

the

native

32-bit

programming

environment

on

AIX.

The

ILP32

data

model

provides

a

32-bit

address

space,

with

a

theoretical

memory

limit

of

4

GB.

LP64,

an

acronym

for

long/pointer

64,

is

the

64-bit

programming

environment

on

AIX

and

is

the

de

facto

standard

data

model

on

64-bit

UNIX-based

systems

from

all

major

system

vendors.

Generally

speaking,

with

the

exception

of

data

type

size

and

alignments,

LP64

supports

the

same

programming

features

as

the

ILP32

model

and

is

backward

compatible

with

the

most

widely

used

int

data

type.

Compiler

support

By

default,

the

compiler

invocations

invoke

the

compiler

and

linker

in

32-bit

mode.

The

following

features

are

provided

to

enable

64-bit

development:

v

__64BIT__

preprocessor

macro,

which

is

predefined

when

compiling

in

64-bit

mode.

The

macro

allows

a

programmer

to

select

different

lines

of

code

for

32-

and

64-bit

execution

in

the

same

source

file.

v

OBJECT_MODE

environment

variable.

This

environment

variable

changes

the

default

compilation

mode

to

accept

objects

of

either

or

both

bit

modes.

A

number

of

AIX

utilities

commonly

employed

in

C

and

C++

application

development

use

this

environment

variable.

However,

neither

the

compiler

and

nor

the

linker

supports

OBJECT_MODE=32_64,

even

though

most

C

and

C++

libraries

provided

by

AIX

are

hybrid

mode

archives

(both

32-

and

64-bit

objects

are

included).

v

-q64

compiler

option.

This

option,

which

sets

64-bit

mode

support,

works

in

conjunction

with

the

-qarch

option,

which

specifies

the

instruction

set

for

the

target

architecture.

-q32

and

-q64

take

precedence

over

the

setting

of

the

-qarch

option.

In

conflicts

between

-q32

and

-q64,

the

last

option

specified

prevails.

v

-qarch

support

for

64-bit

compilation.

This

option

instructs

the

compiler

to

generate

code

for

optimal

execution

on

a

given

64-bit

architecture.

Accordingly,

only

certain

combinations

of

-qarch

and

-q64

are

accepted.

See

XL

C/C++

Programming

Guide

for

more

information.

AIX

utility

commands

support

The

AIX

operating

system

provides

a

number

of

utility

commands

that

deal

with

object

files

and

that

are

necessary

to

manipulate

the

objects

and

libraries

on

AIX.

These

utilities

support

a

64-bit

XCOFF

object

format

when

invoked

with

the

-X

option,

which

specifies

the

bit

mode

of

the

object

files

they

process.

The

eXtended

Common

Object

File

Format,

XCOFF,

is

the

object

format

for

AIX.

The

possible

values

for

the

-X

are:

32

Process

only

32-bit

object

files.

64

Process

only

64-bit

object

files.

32_64

Process

both

32-

and

64-bit

object

files.

Porting

considerations

43

AIX

utility

commands

for

manipulating

shared

objects

and

libraries

Command

Description

ar

Maintains

the

indexed

libraries

used

by

the

linkage

editor.

Silently

ignores

64-bit

objects

when

in

32-bit

mode.

dump

Displays

selected

parts

of

an

object

file.

In

the

context

of

linking

and

loading,

the

dump

command

is

used

to

examine

the

header

information

of

executable

files

and

shared

objects.

The

dump

-H

command

enables

you

to

determine

the

dependencies

for

an

executable

or

shared

object

for

symbol

resolution

at

run

time

by

displaying

header

information.

The

dump

-Tv

command

displays

the

symbol

definitions

for

a

shared

object

or

executable:

the

symbols

the

object

is

exporting

at

link

time,

the

symbols

the

object

or

executable

will

try

to

import

at

load

time,

and,

if

known,

the

name

of

the

shared

object

that

contains

those

symbols.

file

Displays

the

bit

mode

of

files

and

whether

the

file

has

been

stripped.

genkld

Lists

the

shared

objects

that

are

loaded

in

the

system

memory,

specifically

in

the

system

shared

library

segment.

Private

shared

objects

are

not

shown

in

the

genkld

command

output,

even

if

they

are

loaded

into

memory.

ldd

Lists

the

shared

objects

and

archive

members

that

will

be

loaded

to

start

the

executable.

lorder

Finds

the

best

order

for

member

files

in

an

object

library.

nm

Displays

information

about

the

symbols

in

object

files,

executables,

and

object

file

libraries.

The

nm

-g

command

handles

all

archive

members

contained

in

the

specified

library

archive.

Unlike

dump,

nm

does

not

display

the

shared

object

or

archive

member

name

that

is

expected

to

supply

the

symbol.

ranlib

Converts

archive

libraries

to

random

libraries.

rtl_enable

Converts

a

shared

library

compiled

for

default

linking,

static

linking,

or

lazy

loading

to

one

enabled

for

run-time

linking.

size

Displays

the

section

sizes

of

the

XCOFF

object

files.

slibclean

Allows

the

root

user

only

to

unload

all

shared

objects

with

a

use

count

of

zero

from

the

system

shared

library

segment.

The

utility

is

intended

for

use

on

production

systems

that

are

in

a

software

maintenance

phase,

in

particular,

before

the

removal

of

applications

no

longer

required

or

before

updating

installed

applications.

strip

Reduces

the

size

of

an

XCOFF

object

file

by

removing

information

used

by

the

binder

and

symbolic

debug

information.

Related

References

v

AIX

5L

Version

5.2

Reference

Documentation:

Commands

Reference

Objects

and

libraries

on

AIX

Like

other

UNIX

operating

systems,

the

AIX

operating

system

provides

facilities

for

the

creation,

development,

testing,

and

debugging

of

shared

libraries

and

applications

that

use

them.

AIX

shared

library

features

are

broadly

compatible

with

other

UNIX

operating

systems.

However,

AIX

also

provides

facilities

for

the

creation

and

use

of

dynamically

bound

shared

libraries.

With

dynamic

binding,

external

symbols

referenced

in

user

code

and

defined

in

a

shared

library

are

resolved

by

the

loader

at

run

time.

Dynamic

linking

uses

less

memory

to

run

programs

and

produces

smaller

executable

files.

In

addition,

AIX

supports

44

An

Introductory

Guide

dynamic

loading,

a

programming

scheme

provided

by

a

set

of

subroutines

rather

than

by

linker

options

or

special

object

file

types.

To

implement

and

support

this

variety

of

linking

methods,

AIX

requires

files

to

be

in

the

eXtensible

Common

Object

File

Format

(XCOFF).

When

discussing

objects

and

shared

libraries,

it

is

important

to

note

the

precise

meanings

of

terms

as

they

are

used

in

the

context

of

application

development

on

AIX.

An

object

file

is

a

generic

term

for

a

file

containing

executable

code,

data,

relocation

information,

a

symbol

table,

and

other

information.

Multiple

object

files

can

be

archived

into

a

single

library

archive

file,

also

referred

to

as

simply

a

library.

An

object

file

that

is

contained

in

a

library

is

referred

to

as

an

archive

member.

The

advantage

of

a

library

over

multiple

object

files

is

that

fewer

files

need

to

be

handled

to

create

an

executable.

To

build

an

executable

file

on

AIX,

all

participating

object

files

and

archive

members

must

be

in

the

same

bit

mode.

However,

a

library

archive

can

contain

both

32-

and

64-bit

object

modules.

Most

system

libraries

provided

by

AIX

are

hybrid

mode.

The

AIX

operating

system

provides

command

utilities

for

querying,

maintaining,

and

manipulating

objects

and

libraries,

such

as

ar

for

creating

and

maintaining

library

archive

files,

file

for

displaying

the

bit

mode

of

object

files,

dump

for

querying

symbols

in

an

archive,

and

nm

for

querying

the

available

symbols

in

a

library,

given

a

particular

bit

mode.

Difference

between

a

shared

object

and

library

on

AIX

The

terms

shared

library

and

shared

object

are

often

used

interchangeably

on

other

UNIX

operating

systems.

What

other

UNIX

operating

systems

refer

to

as

shared

libraries

(also

referred

to

as

dynamic

link

libraries

or

DLLs)

are

properly

referred

to

as

shared

objects

on

AIX.

There

is

a

distinct

difference

between

a

shared

library

and

a

shared

object

on

AIX.

When

a

program

is

linked

with

several

system

libraries,

the

shared

objects

are

dependent

modules

of

the

executable

file.

On

AIX,

the

names

of

the

shared

objects

do

not

have

to

be

unique,

except

within

the

same

library.

Shared

objects

with

the

same

name

in

different

libraries

are

considered

different

modules.

Most

system

libraries

provided

by

AIX

contain

one

or

more

shared

objects.

A

shared

object

is

a

single

object

file

that

has

the

SHROBJ

flag

in

its

XCOFF

header.

The

naming

convention

for

a

shared

object

on

AIX

is

name.o,

which

uses

the

default

file

name

extension

generated

by

compilers.

A

shared

library

on

AIX

refers

to

an

archive

library

file

created

by

the

ar

command,

in

which

one

or

more

of

the

archive

members

is

a

shared

object.

The

library

can

also

contain

nonshared

object

files

(also

referred

to

as

static

object

files).

The

naming

convention

for

a

shared

library

on

AIX

is

of

the

form

libname.a,

which

is

the

file

name

extension

expected

by

the

linker.

XCOFF

(eXtensible

Common

Object

File

Format)

is

the

object

file

format

for

the

AIX

operating

system.

It

is

the

formal

definition

of

machine-image

object

and

executable

files.

These

object

files

are

primarily

used

by

the

binder

and

the

system

loader.

XCOFF

extends

the

standard

common

object

file

format

(COFF)

to

provide

for

dynamic

linking

and

the

replacement

of

units

within

an

object

file.

XCOFF

also

provides

for

both

32-bit

and

64-bit

object

and

executable

files.

Porting

considerations

45

Programs

can

be

written

to

understand

32-bit

XCOFF

files,

64-bit

XCOFF

files,

or

both.

The

programs

themselves

may

be

compiled

in

either

bit

mode

to

create

32-bit

or

64-bit

programs.

By

defining

preprocessor

macros,

applications

can

select

the

proper

structure

definitions

from

the

XCOFF

header

files.

Assemblers

and

compilers

produce

XCOFF

files

as

output.

The

binder

combines

individual

object

files

into

an

XCOFF

executable

file.

The

system

loader

reads

an

XCOFF

executable

file

to

create

an

executable

memory

image

of

a

program.

The

symbolic

debugger

reads

an

XCOFF

executable

file

to

provide

access

to

functions

and

variables

of

an

executable

memory

image.

Difference

between

shared

and

static

objects

on

AIX

On

many

UNIX

operating

systems,

the

file

name

extension

.so

indicates

a

file

for

a

shared

object

and

the

extension

.o,

one

for

a

static

object.

On

AIX,

both

static

and

shared

object

files

use

the

file

name

extension

.o.

For

shared

object

files,

the

extension

.o

is

a

convention

rather

than

a

requirement:

the

linker

reads

the

file

header

to

determine

the

content

of

the

file.

A

shared

object

file

is

distinguished

from

a

static

object

file

in

that

a

shared

object

file

is

fully

linked

and

resolved,

can

be

loaded

and

executed,

and

FLAGS

field

of

the

XCOFF

file

header

has

the

SHROBJ

bit

set.

The

SHROBJ

bit

is

set

when

the

object

is

dynamically

referenced.

Otherwise,

the

linker

treats

the

object

as

static.

AIX

also

supports

shared

objects

with

the

file

name

.so.

Apart

from

the

conventions

for

the

.o

file

name

extension,

a

shared

object

file

on

AIX

can

be

named

using

any

extension.

On

AIX,

the

file

name

extension

.so

is

sometimes

used

to

indicate

run-time

linking.

The

AIX

operating

system

provides

various

AIX

commands

to

display

the

XCOFF

header

of

a

file

to

determine

whether

an

object

is

shared

or

static.

The

dump

-ov

command

displays

the

XCOFF

header

of

the

specified

file.

The

dump

-gov

command

allows

you

to

examine

the

archive

members

of

the

specified

library

to

determine

if

archive

members

are

shared

or

static.

Link

time

and

load

time

Shared

objects

and

libraries

are

used

in

two

stages

when

creating

and

executing

a

program

on

AIX.

At

link

time,

the

link

editor

searches

the

specified

shared

objects

and

libraries

to

resolve

all

undefined

symbols

needed

to

create

the

executable

file.

If

a

shared

object

contains

a

referenced

symbol,

the

loader

section

in

the

XCOFF

header

of

the

resultant

executable

contains

a

reference

to

that

shared

object.

The

same

is

true

for

a

referenced

symbol

in

a

library

member

that

is

shared

object.

Symbols

are

exported

from

those

shared

objects

or

libraries

and

imported

to

the

executable

file.

At

program

load

time,

the

system

loader

reads

the

XCOFF

header

information

in

the

executable

and

attempts

to

locate

the

referenced

shared

libraries.

If

all

referenced

shared

objects

and

libraries

are

found,

the

executable

is

started.

The

system

loader

attempts

to

load

the

sections

of

program

executable

components

into

the

appropriate

segments

in

the

process

address

space.

The

program

text

contained

in

shared

objects

and

libraries

is

loaded

into

the

global

system

memory

by

the

first

program

that

needs

it

and

is

subsequently

shared

by

all

programs

that

use

it.

46

An

Introductory

Guide

Diagnostics

for

link-time

errors

Common

link-time

errors

are

unresolved

symbols,

duplicate

symbols,

and

insufficient

memory

for

the

linker.

Unresolved

symbols

Linker

error

warnings

often

arise

when

an

application

is

linked

with

many

libraries,

particularly

those

supplied

by

a

third

party

product.

When

an

external

symbol

cannot

be

resolved,

the

link

fails

and

an

executable

is

not

generated.

The

most

common

cause

for

unresolved

symbol

errors

is

missing

input

files.

For

example,

if

you

call

a

library

function

that

is

not

in

the

default

C

run-time

library

libc.a,

you

need

to

specify

the

archive

library

file

in

which

the

symbol

is

found.

The

system

link

editor

accepts

input

such

as

object

files,

shared

object

files,

archive

object

files,

libraries,

and

import

and

export

files.

How

do

you

find

the

library

file

in

which

an

unresolved

symbol

is

defined?

You

can

search

the

product

documentation,

you

can

include

all

supplied

libraries

in

the

link

command

and

let

the

link

editor

find

where

the

symbol

is,

or

you

might

use

the

nm

command

to

try

find

it

yourself.

Certain

linker

options

generate

log

files

which

can

be

analyzed

to

determine

the

library

or

object

file

that

references

the

unresolved

symbol.

The

log

files

can

track

interdependent

or

redundant

libraries

being

used

in

error.

v

The

-bnoquiet

option

writes

each

binder

subcommand

and

its

results

to

stdout.

Any

unresolved

symbol

references

appear

in

the

output.

The

output

also

lists

the

symbols

imported

from

specified

library

modules.

v

The

-bmap:filename

option

generates

an

address

map.

Unresolved

symbols

are

listed

at

the

top

of

the

file,

followed

by

imported

symbols.

v

The

-bloadmap:filename

option

generates

a

log

file

that

includes

information

on

all

of

the

arguments

passed

to

the

linker,

the

shared

objects

being

read,

and

the

number

of

symbols

being

imported.

If

an

unresolved

symbol

is

found,

the

log

file

lists

the

object

file

or

shared

object

that

references

the

symbol.

To

find

an

unresolved

symbol

in

libraries

supplied

by

a

third-party

product,

you

can

use

the

log

file

to

search

the

other

libraries

supplied

by

the

product.

Duplicate

symbols

Duplicate

symbol

errors

usually

indicate

a

programming

error.

It

is

incorrect

to

have

multiple

external

function

definitions

of

the

same

name.

When

source

code

contains

multiple

external

function

definitions,

the

link

editor

uses

the

first

definition

that

it

encounters,

and

the

result

may

not

be

desirable.

The

recommended

solution

is

to

change

the

function

name

or

to

use

a

static

function.

The

use

of

template

functions

in

C++

may

also

generate

duplicate

symbol

errors

at

link

time

when

the

template

is

implicitly

instantiated

in

multiple

source

files.

The

recommended

solution

is

to

use

the

-qtemplateregistry

option

and

the

template

handling

mechanism

introduced

with

VisualAge

C++

Professional,

Version

6.

Another

source

of

duplicate

symbols

is

inlined

functions.

Every

inlined

function

creates

symbol

table

entries

that

appear

as

distinct

instantiations.

Compiling

with

the

option

-qweaksymbol

on

AIX

5.2

can

reduce

the

number

of

these

warnings.

Insufficient

memory

for

the

linker

Porting

considerations

47

Linking

very

large

files

can

exhaust

the

memory

allowed

for

the

linker

process.

The

solutions

might

be

to

increase

the

paging

space

or

the

resource

limits

for

the

user

invoking

the

command.

The

ulimit

command

controls

the

resource

limits

for

the

user

invoking

the

linker.

Alternatively,

you

might

consider

running

the

linker

process

in

the

32-bit

large

memory

model.

Diagnostics

for

run-time

errors

A

program

might

compile

and

link

successfully,

yet

produce

unexpected

results

during

execution.

The

compiler

does

not

diagnose

programming

errors

that

do

not

violate

the

syntax

of

the

language.

This

section

describes

some

common

errors,

how

to

detect

them,

and

how

to

correct

them.

Uninitialized

variables

An

object

of

automatic

storage

duration

is

not

implicitly

initialized

and

its

initial

value

is

therefore

indeterminate.

If

an

auto

variable

is

used

before

it

is

set,

it

may

or

may

not

produce

the

same

results

every

time

the

program

is

run.

The

-qinfo=gen

compiler

option

displays

the

location

of

auto

variables

that

are

used

before

being

set.

The

-qinitauto

option

instructs

the

compiler

to

initialize

all

automatic

variables

to

the

specified

value.

This

option

reduces

the

run-time

performance

of

the

application

and

is

recommended

for

debugging

only.

Run-time

checking

The

-qcheck

option

inserts

run-time

checking

code

into

the

executable.

The

suboptions

specify

checking

for

null

pointers,

indexing

outside

of

array

bounds,

and

division

by

zero.

Like

-qinitauto,

-qcheck

degrades

application

performance

and

is

recommended

for

debugging

purposes

only.

ANSI

aliasing

Type-based

aliasing,

also

referred

to

as

ANSI

aliasing,

restricts

the

lvalues

that

can

be

safely

used

to

access

a

data

object.

When

compiling

under

a

language

level

that

enforces

conformance

to

the

language

standards,

the

C

and

C++

compilers

enforce

type-based

aliasing

during

optimization.

The

ANSI

aliasing

rule

states

that

a

pointer

can

only

be

dereferenced

to

an

object

of

the

same

type

or

a

compatible

type.

The

exceptions

are

that

sign

and

type

qualifiers

are

not

subject

to

type-based

aliasing

and

that

a

character

pointer

can

point

to

any

type.

The

common

coding

practice

of

casting

a

pointer

to

an

incompatible

type

and

then

dereferencing

it

violates

this

rule.

Turning

off

ANSI

aliasing

by

setting

-qalias=noansi

may

correct

program

behavior,

but

doing

so

reduces

the

opportunities

for

the

compiler

to

optimize

the

application

and

thereby

degrades

run-time

performance.

The

recommended

solution

is

to

change

the

program

to

conform

to

the

type-based

aliasing

rule.

#pragma

option_override

Sometimes

an

error

appears

only

when

optimization

is

used.

It

can

be

worthwhile,

especially

for

complex

applications,

to

turn

off

optimization

for

a

function

known

to

contain

a

programming

error,

while

allowing

the

rest

of

the

program

to

be

optimized.

The

#pragma

option_override

directive

allows

you

to

specify

alternate

optimization

options

for

specific

functions.

48

An

Introductory

Guide

The

#pragma

option_override

directive

can

also

be

used

to

determine

the

function

is

causing

the

problem.

The

discovery

is

made

by

selectively

turning

off

optimization

for

each

function

within

the

directive

until

the

problem

disappears.

Shared

memory

parallelization

Several

proven

techniques

are

available

to

achieve

parallel

execution

of

a

program

and

more

rapid

job

completion

than

running

on

a

single

processor.

These

techniques

include:

v

Directive-based

shared

memory

parallelization

(SMP)

v

Instructing

the

compiler

to

automatically

generate

shared

memory

parallelization

v

Message

passing

based

shared

or

distributed

memory

parallelization

(MPI)

v

POSIX

threads

(pthreads)

parallelization

v

Low-level

UNIX

parallelization

using

fork()

and

exec()

The

portability

requirements

for

the

application

are

definitely

a

factor

in

selecting

the

best

technique

to

use.

The

choice

is

also

highly

dependent

on

the

application,

the

programmer’s

skills

and

preferences,

and

the

characteristics

of

the

target

machine.

The

two

principal

ways

of

accomplishing

parallelization

on

AIX

is

by

using

hand-coded

POSIX

threads

(pthreads)

and

OpenMP

directives.

The

parallel

programming

facilities

of

the

AIX

operating

system

are

based

on

the

concept

of

threads.

Parallel

programming

exploits

the

advantages

of

multiprocessor

systems,

while

maintaining

a

full

binary

compatibility

with

existing

uniprocessor

systems.

This

means

that

a

multithreaded

program

that

works

on

a

uniprocessor

system

can

take

advantage

of

a

multiprocessor

system

without

recompiling.

Pthreads

offer

great

flexibility

for

making

effective

use

of

multiple

processors

because

they

provide

the

maximal

amount

of

control

of

the

parallelization

process.

The

trade-off

is

a

considerable

increase

in

code

complexity.

In

many

cases,

the

simpler

approach

of

using

OpenMP

directives,

SMP-enabled

libraries,

or

the

automatic

SMP

capabilities

of

compilers

is

preferable.

The

explicit

use

of

threads

does

not

necessarily

lead

to

better

performance.

Debugging

multithreaded

applications

is

awkward

at

best.

However,

in

some

programs,

it

is

the

only

viable

approach.

The

following

lists

some

pros

and

cons

of

the

different

techniques.

Automatic

parallelization

by

the

compiler

v

Easy

to

implement

(compile

with

-qsmp=auto).

v

Enables

teamwork

easily.

v

Limited

scalability

because

data

scoping

is

neglected.

v

Compiler-dependent

(even

on

the

release

of

a

particular

compiler).

v

Not

necessarily

portable.

SMP-enabled

libraries

v

Requires

the

least

effort.

v

Not

necessarily

portable

(usually

is

proprietary).

v

Limited

flexibility.

OpenMP

directives

v

Portable.

v

Potentially

better

scalability

of

the

automatic

parallelization.

Porting

considerations

49

v

Uniform

memory

access

is

assumed.

Hybrid

approach

(subset

or

mixture

of

OpenMP

and

pthreads,

or

UNIX

fork()

and

exec()

parallelization,

platform-specific

constructs)

v

Might

enable

teamwork.

v

Needs

a

well-tested

concept

to

assure

performance

and

portability.

v

Not

necessarily

portable.

pthreads

v

Portable.

v

Provides

maximal

control

over

the

parallelization

process.

v

Potentially

the

best

scalability

of

the

automatic

parallelization.

v

Needs

experienced

programmers

to

handle

code

complexity.

OpenMP

directives

OpenMP

directives

are

a

set

of

commands

that

instruct

the

compiler

how

a

particular

loop

should

be

parallelized.

The

existence

of

the

directives

in

the

source

removes

the

need

for

the

compiler

to

perform

any

parallel

analysis

on

the

parallel

code.

The

use

of

OpenMP

directives

requires

the

presence

of

the

pthread

libraries

to

provide

the

necessary

infrastructure

for

parallelization.

The

OpenMP

directives

address

three

important

issues

of

parallelizing

an

application.

First,

clauses

and

directives

are

available

for

scoping

variables.

Frequently,

variables

should

not

be

shared;

that

is,

each

processor

should

have

its

own

copy

of

the

variable.

Second,

work

sharing

directives

specify

how

the

work

contained

in

a

parallel

region

of

code

should

be

distributed

across

the

SMP

processors.

Finally,

there

are

directives

for

synchronization

between

the

processors.

The

compiler

supports

the

OpenMP

Version

2.0

specification.

Related

References

v

Appendix

B,

“OpenMP

compliance

and

support,”

on

page

67

Threads

on

AIX

The

implementation

of

threads

on

AIX

is

classified

as

an

external

portability

issue

because

it

deals

with

external

interfaces

and

their

assumed

semantics

that

the

program

uses.

The

AIX

threads

library

conforms

to

the

Single

UNIX

Specification

Version

2,

which

includes

the

IEEE

POSIX

1003.1c

standard,

known

as

the

POSIX

thread

standard.

The

library

also

conforms

to

the

Open

Group

98

specification,

which

adds

extended

thread

functions

to

the

POSIX

thread

standard.

The

standardized

interface

of

pthreads

therefore

assures

the

portability

of

a

threaded

program.

The

POSIX

threads

library

on

AIX

On

AIX,

POSIX

threads

(pthreads)

are

defined

as

a

set

of

C

language

programming

types

and

subroutine

calls,

implemented

with

a

header

file

(/usr/include/pthread.h)

and

the

POSIX

thread

library

(/usr/lib/libpthreads.a).

The

following

data

types

are

defined

for

the

threads

library

in

the

pthread.h

header

file.

The

definition

of

these

data

types

can

vary

between

systems.

pthread_t

Identifies

a

thread.

pthread_attr_t

Identifies

a

thread

attributes

object.

50

An

Introductory

Guide

pthread_cond_t

Identifies

a

condition

variable.

pthread_condattr_t

Identifies

a

condition

attributes

object.

pthread_key_t

Identifies

a

thread-specific

data

key.

pthread_mutex_t

Identifies

a

mutex.

pthread_mutexattr_t

Identifies

a

mutex

attributes

object.

pthread_once_t

Identifies

a

one-time

initialization

object.

AIX

provides

binary

compatibility

for

existing

multithreaded

applications

that

were

written

for

the

draft

of

Version

7

of

the

POSIX

threads

standard.

The

compatibility

POSIX

thread

library,

/usr/lib/libpthreads_compat.a,

is

only

provided

for

backward

compatibility

for

those

applications.

The

compatibility

POSIX

thread

library

supports

32-bit

applications

only.

The

following

operating

system

files

provide

the

AIX

implementation

of

pthreads:

/usr/include/pthread.h

C/C++

header

with

most

pthread

definitions.

/usr/include/sched.h

C/C++

header

with

some

scheduling

definitions.

/usr/include/unistd.h

C/C++

header

with

pthread_atfork()

definition.

/usr/include/sys/limits.h

C/C++

header

with

some

pthread

definitions.

/usr/include/sys/pthdebug.h

C/C++

header

with

most

pthread

debug

definitions.

/usr/include/sys/sched.h

C/C++

header

with

some

scheduling

definitions.

/usr/include/sys/signal.h

C/C++

header

with

pthread_kill()

and

pthread_sigmask()

definitions.

/usr/include/sys/types.h

C/C++

header

with

some

pthread

definitions.

/usr/lib/libpthreads.a

32-bit/64-bit

library

providing

UNIX98

and

POSIX

1003.1c

pthreads.

/usr/lib/libpthreads_compat.a

32-bit

only

library

providing

POSIX

1003.1c

Draft

7

pthreads.

/usr/lib/profiled/libpthreads.a

Profiled

32-bit/64-bit

library

providing

UNIX98

and

POSIX

1003.1c

pthreads.

/usr/lib/profiled/libpthreads_compat.a

Profiled

32-bit

only

library

providing

POSIX

1003.1c

Draft

7

pthreads.

Thread-unsafe

libraries

may

be

used

by

only

one

thread

in

a

program.

Thread-unsafe

code

can

only

be

used

safely

by

the

main

thread.

This

restriction

is

due

to

access

of

the

global

errno,

rather

than

the

thread-specific

errno,

and

also

applies

to

library

calls

made

by

the

main

thread.

Pthreads

on

AIX

Traditionally,

multiple

single-threaded

processes

have

been

used

to

achieve

parallelism,

but

some

programs

can

benefit

from

a

finer

level

of

parallelism.

Multithreaded

processes

offer

parallelism

within

a

process

and

share

many

of

the

concepts

involved

in

programming

multiple

single-threaded

processes.

Porting

considerations

51

This

section

discusses

points

about

the

implementation

of

parallel

programming

facilities

in

AIX,

as

compared

to

that

in

other

UNIX

systems.

Terminology:

In

traditional

single-threaded

process

systems,

thread

and

process

characteristics

are

grouped

into

a

single

entity

called

a

process.

In

other

systems,

a

thread

is

sometimes

synonymous

with

a

lightweight

process,

or

the

meaning

of

the

word

thread

is

sometimes

only

slightly

different

from

process.

On

AIX,

a

distinction

is

made

between

a

kernel

thread

and

a

user

thread.

On

AIX,

the

term

lightweight

process

usually

refers

to

a

kernel

thread.

A

user

thread

is

an

independent

flow

of

control

that

operates

within

the

same

address

space

as

other

independent

flows

of

controls

within

a

process.

In

the

remainder

of

this

discussion,

the

term

thread

refers

to

a

user

thread.

A

kernel

thread

is

the

schedulable

entity

handled

by

the

system

scheduler.

On

AIX,

a

kernel

thread

runs

within

a

process,

but

can

be

referenced

by

any

other

thread

in

the

system.

However,

a

kernel

thread

cannot

be

directly

controlled

by

the

programmer.

Kernel

threads

are

strongly

implementation-dependent,

and

so

libraries,

such

as

the

POSIX

threads

library,

provide

user

threads

to

facilitate

writing

portable

programs.

A

user

thread

is

an

entity

used

by

programmers

to

handle

multiple

flows

of

controls

within

a

program.

The

standardized

API

for

handling

user

threads

is

provided

by

the

threads

library.

A

user

thread

only

exists

within

a

process

and

cannot

reference

a

user

thread

in

another

process.

The

library

uses

a

proprietary

interface

to

handle

kernel

threads

for

executing

user

threads.

Properties:

In

traditional

single-threaded

process

systems,

a

process

has

a

set

of

properties.

In

a

multithreaded

process

system

like

AIX,

these

properties

are

divided

between

processes

and

threads.

A

process

in

a

multithreaded

system

is

the

changeable

entity.

It

must

be

considered

as

an

execution

frame.

It

has

traditional

process

attributes,

such

as

process

ID,

process

group

ID,

user

ID,

and

group

ID,

an

environment,

a

working

directory.

A

process

also

provides

a

common

address

space

and

common

system

resources,

such

as

file

descriptors,

signal

actions,

shared

libraries,

and

interprocess

communication

tools.

A

thread

is

the

schedulable

entity,

with

only

those

properties

that

are

required

to

ensure

its

independent

control

of

flow.

These

properties

include

stack,

scheduling

policy

or

priority,

set

of

pending

and

blocked

signals,

thread-specific

data.

An

example

of

thread-specific

data

is

the

errno

error

indicator.

On

AIX,

each

thread

has

its

own

errno

error

indicator.

In

multithreaded

systems,

errno

is

usually

a

subroutine

returning

a

thread-specific

errno

value

rather

than

a

global

variable.

Other

systems

may

provide

other

implementations

of

errno.

Threads

within

a

process

must

not

be

considered

as

a

group

of

processes.

All

threads

share

the

same

address

space.

This

means

that

two

pointers

having

the

same

value

in

two

threads

refer

to

the

same

data.

Also,

if

any

thread

changes

one

of

the

shared

system

resources,

all

threads

within

the

process

are

affected.

For

example,

if

a

thread

closes

a

file,

the

file

is

closed

for

all

threads.

A

thread

does

not

maintain

a

list

of

created

threads,

nor

does

it

know

the

thread

that

created

it.

Thread

creation

differs

from

process

creation

in

that

no

parent-child

52

An

Introductory

Guide

relation

exists

between

threads:

all

threads,

except

the

initial

thread,

are

on

the

same

hierarchical

level.

The

initial

thread

is

automatically

created

by

the

operating

system

when

a

process

is

created.

A

thread

attributes

object,

which

encapsulates

the

attributes

of

the

thread,

must

be

defined

before

the

thread

is

created.

An

entry-point

routine

and

an

argument

must

also

be

specified

at

time

of

creation.

Every

thread

has

an

entry-point

routine

with

one

argument,

but

the

same

entry-point

routine

may

be

used

by

several

threads.

Thread

models

and

virtual

processors:

User

threads

are

mapped

to

kernel

threads

by

virtual

processors

(VPs)

in

the

threads

library.

The

way

the

mapping

is

done

is

called

the

thread

model.

The

default

thread

model

on

AIX

is

the

M:N

model,

in

which

all

user

threads

are

mapped

to

a

pool

of

kernel

threads;

all

user

threads

run

on

a

pool

of

virtual

processors.

This

is

the

most

efficient

and

complex

thread

model,

in

which

the

facilities

for

user

threads

programming

are

shared

between

the

threads

library

and

kernel

threads.

The

M:N

model

can

also

accommodate

the

case

in

which

a

single

user

thread

is

bound

to

a

specific

virtual

processor

(the

1:1

thread

model)

and

all

unbound

user

threads

share

the

remaining

VPs.

The

1:1

thread

model

maps

each

user

thread

to

one

kernel

thread;

all

user

threads

run

on

one

VP.

Most

of

the

facilities

for

user

threads

programming

are

directly

handled

by

the

kernel

threads.

The

1:1

model

can

be

enabled

by

setting

the

value

of

the

AIXTHREAD_SCOPE

variable

to

S.

The

M:1

thread

model

can

be

used

on

any

system,

especially

on

traditional

single-threaded

systems.

All

user

threads

are

mapped

to

one

kernel

thread

by

a

library

scheduler;

all

user

threads

run

on

one

VP.

All

facilities

for

user

threads

programming

are

completely

handled

by

the

library.

Synopsis

of

the

pthread

life

cycle:

Each

thread

in

a

threaded

program

has

its

own

private

program

counter,

stack,

and

registers.

The

memory

state

and

file

descriptors

are

shared.

The

pthread.h

header

file

The

pthread.h

header

file

must

be

the

first

included

file

of

each

source

file

using

the

threads

library

to

ensure

that

thread-safe

subroutines

are

used.

The

header

file

contains

all

subroutine

prototypes,

macros,

and

other

definitions

for

using

the

threads

library.

It

also

redefines

the

errno

global

variable

as

a

function

returning

a

thread-specific

errno

value.

The

errno

identifier

is,

therefore,

no

longer

an

lvalue

in

a

multithreaded

program.

The

following

global

symbols

are

defined

in

the

pthread.h

file:

POSIX_REENTRANT_FUNCTIONS

Specifies

that

all

functions

should

be

reentrant.

POSIX_THREADS

Specifies

the

availability

of

the

POSIX

threads

API.

Compiler

invocation

A

threaded

application

should

be

compiled

and

linked

with

one

of

the

_r-suffixed

invocations

of

the

compiler.

These

are

the

reentrant

invocation

commands,

which

ensure

that

adequate

and

appropriate

options

are

used

and

that

the

program

is

Porting

considerations

53

linked

with

the

reentrant

and

thread-safe

libraries.

For

example

xlc_r

defines

the

symbol

_THREAD_SAFE

and

links

with

the

pthreads

library.

Thread

creation

The

execution

of

a

pthread

program

begins

as

a

single

thread

created

by

the

operating

system.

Additional

threads

are

created

and

terminated

as

necessary

to

concurrently

schedule

work

onto

the

available

processors.

Threads,

except

for

the

initial

thread,

are

created

using

the

pthread_create

function.

This

function

has

four

arguments:

A

thread

identifier,

which

is

returned

upon

successful

completion,

a

pointer

to

a

thread-attributes

object,

the

function

that

the

thread

will

execute,

and

the

argument

to

be

passed

to

the

thread

function.

The

thread

function

takes

a

single

pointer

argument

(of

type

void

*)

and

returns

a

pointer

(of

type

void

*).

In

practice,

the

argument

to

the

thread

function

is

often

a

pointer

to

a

structure,

and

the

structure

may

contain

many

data

items

that

are

accessible

to

the

thread

function.

A

program

can

create

a

fixed

number

of

threads.

However,

in

many

cases,

it

can

be

useful

to

have

the

program

decide

how

many

threads

to

create

at

run

time

while

providing

the

ability

to

override

the

default

behavior

by

setting

an

environment

variable.

For

example,

for

OpenMP

programs

the

default

is

to

create

as

many

threads

as

processors

are

available.

In

AIX,

you

can

get

the

number

of

online

processors

by

calling

the

sysconf

routine

from

libc.

Thread

termination

A

thread

terminates

implicitly

when

the

execution

of

the

thread

function

is

completed.

A

thread

can

terminate

itself

explicitly

by

calling

pthread_exit.

It

is

also

possible

for

one

thread

to

terminate

other

threads

by

calling

the

pthread_cancel

function.

The

initial

thread

has

a

special

property.

If

the

initial

thread

reaches

the

end

of

its

execution

stream

and

returns,

the

exit

routine

is

invoked,

and,

at

that

time,

all

threads

that

belong

to

the

process

will

be

terminated.

However,

the

initial

thread

can

create

detached

threads,

and

then

safely

call

pthread_exit.

In

this

case,

the

remaining

threads

will

continue

execution

of

their

thread

functions

and

the

process

will

remain

active

until

the

last

thread

exits.

In

many

applications,

it

is

useful

for

the

initial

thread

to

create

a

group

of

threads

and

then

wait

for

them

to

terminate

before

continuing

or

exiting.

This

is

can

be

achieved

with

threads

that

are

joinable.

On

AIX,

the

default

setting

is

detached.

The

function

pthread_join

suspends

the

calling

thread

until

the

referenced

thread

has

terminated.

The

system

scope

attribute

of

the

AIXTHREAD_SCOPE

environment

variable

is

appropriate

when

N

threads

are

supposed

to

run

on

N

processors

concurrently.

Synchronization:

In

multithreaded

programs,

the

same

functions

and

the

same

resources

may

be

accessed

concurrently

by

several

flows

of

control.

To

protect

resource

integrity,

code

written

for

multithreaded

programs

must

be

both

reentrant

and

thread-safe.

Reentrance

and

thread

safety

are

separate

concepts

that

can

pertain

to

a

function.

A

function

can

be

either

reentrant,

thread-safe,

both,

or

neither.

A

reentrant

function

does

not

hold

static

data

over

successive

calls,

nor

does

it

return

a

pointer

to

static

data.

All

data

is

provided

by

the

caller

of

the

function.

A

reentrant

function

must

also

not

call

a

non-reentrant

function.

In

most

cases,

a

54

An

Introductory

Guide

non-reentrant

function

will

need

to

be

replaced

with

a

function

with

a

modified

interface

in

order

for

the

function

to

become

reentrant.

Non-reentrant

functions

are

usually

thread-unsafe,

as

well.

A

thread-safe

function

protects

shared

resources

from

concurrent

access

by

locks.

Thread

safety

concerns

only

the

implementation

of

a

function

and

does

not

affect

its

external

interface.

In

multithreaded

programs,

all

functions

called

by

multiple

threads

must

be

thread-safe.

The

use

of

global

data

is

thread-unsafe

without

explicit

synchronization

or

serialization.

Global

data

should

be

maintained

per

thread

or

encapsulated

so

that

its

access

can

be

serialized.

A

thread

may

read

an

error

code

corresponding

to

an

error

caused

by

another

thread.

In

AIX,

each

thread

has

its

own

errno

value.

Some

of

the

standard

C

subroutines

are

non-reentrant,

such

as

the

ctime

and

strtok

subroutines,

even

though

they

belong

to

libraries

are

considered

thread-safe.

Reentrant

versions

of

subroutines

have

the

name

of

the

original

subroutine

with

the

suffix

_r.

The

distinction

between

threadprivate

and

shared

variables

is

essential

for

the

correctness

and

performance

of

a

program.

This

is

also

true

for

programs

that

achieve

shared

memory

parallelization

using

OpenMP

directives.

The

access

to

shared

variables

must

be

synchronized

to

avoid

conflicts

and

to

assure

correct

results.

However,

the

use

of

synchronization

needs

to

be

balanced

with

its

degradation

of

performance

and

scalability.

A

major

difficulty

of

parallel

programming

for

shared

memory

is

to

find

the

right

balance

of

local

and

global

variables,

since

the

scoping

defines

which

variables

are

private

or

shared.

Contention

for

global

variables,

as

in

a

reduction

sum,

is

a

major

source

of

performance

problems.

The

introduction

of

temporary

local

variables

often

helps

to

resolve

such

problems.

In

multithreaded

applications,

the

update

of

shared

memory

locations

is

usually

protected

with

mutex

locks.

The

operating

system

ensures

that

access

to

the

shared

data

is

serialized.

At

a

given

time,

only

one

thread

can

enter

the

region

between

lock

and

unlock

to

modify

the

data.

Sharing

memory

between

AIX

processes:

AIX

and

most

UNIX

systems

allow

several

processes

to

share

a

common

data

space,

known

as

shared

memory.

The

process-sharing

attributes

for

condition

variables

and

mutexes

are

meant

to

allow

these

objects

to

be

allocated

in

shared

memory

to

support

synchronization

among

threads

belonging

to

different

processes.

However,

because

there

is

no

industry-standard

interface

for

shared

memory

management,

the

process-sharing

POSIX

option

is

not

implemented

in

the

AIX

threads

library.

Debugging

a

multithreaded

program

The

AIX

operating

system

provides

the

dbx

command,

which

invokes

a

symbolic

debug

program

for

C/C++

and

Fortran

programs.

The

dbx

command

has

subcommands

for

displaying

thread-related

objects,

including

attribute,

condition,

mutex,

and

thread.

For

kernel

programming,

the

operating

system

provides

a

kernel

debug

program.

For

more

information,

see

AIX

5L

Version

5.2

Kernel

Extensions

and

Device

Support

Programming

Concepts,

which

is

part

of

the

AIX

documentation.

Porting

considerations

55

Tuning

a

multithreaded

program

One

aspect

of

tuning

a

multithreaded

program

concerns

adjusting

the

amounts

of

time

spent

in

different

states

in

the

thread

life

cycle.

Various

threading

functions

control

the

pace

and

resource

consumption

of

the

sequence

of

life

cycle

events.

After

parallel

work

for

a

thread

has

completed,

the

thread

waits

(spins)

for

a

period

(the

spin

wait

time),

but

it

consumes

processor

time

while

waiting.

After

the

spin

wait

time

and

if

a

yield

wait

time

has

been

specified,

the

thread

can

yield

its

place

on

the

kernel

thread

to

another

runnable

thread.

If

the

yield

wait

time

has

expired,

the

thread

enters

a

sleep

state.

Reactivating

a

thread

from

a

sleep

state

is

more

resource-intensive

than

if

the

thread

is

in

a

yielded

state.

The

AIX

operating

system

provides

environmental

variables

that

modify

the

behavior

of

various

threading

functions.

The

following

table

presents

selected

environment

variables

that

can

be

useful

when

tuning

a

multithreaded

program.

Selected

environment

variables

that

affect

threading

Description

Syntax

AIXTHREAD_SCOPE

The

thread

contention

scope

controls

the

mapping

of

application-level

pthreads

to

entries

in

the

system

scheduling

queue.

AIXTHREAD_SCOPE

permits

exploring

application

behavior

by

being

able

to

change

the

thread

scope

without

having

to

modify

the

application.

A

single

process

may

contain

pthreads

of

both

scopes.

This

is

achieved

when

the

attribute

argument

to

pthread_create()

is

not

NULL.

Then,

the

contents

of

the

attribute

structure

determines

the

scope

of

the

thread.

��

P

AIXTHREAD_SCOPE=

S

��

where

P

Represents

process

contention

scope

(default),

which

implies

the

M:N

thread

model.

Best

used

when

there

are

many

more

threads

than

processors.

S

Represents

system

contention

scope,

which

implies

the

1:1

thread

model.

Each

user

thread

is

directly

mapped

to

one

kernel

thread.

AIXTHREAD_MNRATIO

Controls

the

scaling

factor

used

within

the

pthread

library

when

creating

and

terminating

pthreads.

Applies

only

to

process-scope

threads.

The

default

M:N

ratio

is

8:1,

that

is,

eight

pthreads

for

every

kernel

thread.

Modify

the

M:N

ratio

by

setting

and

exporting

the

environmental

variable:

��

AIXTHREAD_MNRATIO=

M:N

��

where

M

Represents

the

number

of

user

threads.

Default

value

is

8.

N

Represents

the

number

of

kernel

threads.

Default

value

is

1.

SPINLOOPTIME

Controls

the

number

of

times

a

pthread

will

attempt

to

obtain

a

mutex

before

blocking

on

the

mutex

availability.

Modify

the

spin

loop

time

by

setting

and

exporting

the

environmental

variable:

��

SPINLOOPTIME=N

��

where

N

Represents

the

number

of

times

to

retry

a

busy

lock

before

yielding

to

another

pthread.

Default

value

is

40.

YIELDLOOPTIME

Controls

the

number

of

times

the

system

yields

the

processor

when

trying

to

acquire

a

busy

spin

lock

before

going

to

sleep.

If

the

pthread

spins

on

the

lock

and

cannot

get

it,

the

thread

will

be

put

to

sleep.

Increasing

the

value

of

yield

loop

time

prevents

the

pthread

delays

the

pthread

from

entering

sleep

state.

This

variable

is

used

only

if

SPINLOOPTIME

is

also

set.

The

value

of

yield

loop

time

can

be

modified

by

setting

and

exporting

the

environmental

variable:

��

YIELDLOOPTIME=N

��

where

N

Represents

the

number

of

times

to

yield

to

acquire

a

busy

mutex

or

spin

lock.

Default

value

is

0.

56

An

Introductory

Guide

Selected

environment

variables

that

affect

threading

Description

Syntax

AIXTHREAD_MINKTHREADS

Sets

the

minimum

number

of

kernel

threads

that

should

be

used

for

a

process.

An

average

threaded

process

will

have

at

least

this

number

of

kernel

threads

available

for

scheduling

pthreads.

��

AIXTHREAD_MINKTHREADS=N

��

where

N

Represents

the

number

of

kernel

threads.

Default

value

is

8.

AIXTHREAD_MUTEX_DEBUG

Switch

that

controls

the

collection

of

debug

information

regarding

mutexes

in

running

thread

processes.

Default

is

OFF.

Maintaining

the

debug

information

may

adversely

affect

performance.

��

OFF

AIXTHREAD_MUTEX_DEBUG=

ON

��

AIXTHREAD_COND_DEBUG

Switch

that

controls

the

collection

of

debug

information

regarding

condition

variables.

Default

is

OFF.

Maintaining

the

debug

information

may

adversely

affect

performance.

��

OFF

AIXTHREAD_COND_DEBUG=

ON

��

AIXTHREAD_RWLOCK_DEBUG

Causes

the

pthreads

library

to

maintain

a

list

of

all

read-write

locks

that

can

be

viewed

by

debugging

programs.

Default

is

OFF.

��

OFF

AIXTHREAD_RWLOCK_DEBUG=

ON

��

AIXTHREAD_GUARDPAGES

Specifies

the

number

of

4

KB

guard

pages

to

create.

Guard

pages

are

used

to

detect

when

a

thread

stack

has

grown

beyond

its

maximum

size

and

to

guard

against

errant

memory

writes.

The

thread

stack,

created

on

the

process

heap,

can

be

protected

by

setting

read-only

guard

pages

at

the

top

of

the

stack.

Any

attempt

to

write

onto

these

pages

results

in

an

immediate

segmentation

violation.

Investigating

the

conditions

at

the

time

of

the

stack

overflow

can

help

to

debug

the

program

and

determine

an

appropriate

corrective

action.

Set

and

export

this

variable.

��

AIXTHREAD_GUARDPAGES=N

��

where

N

Represents

the

number

of

4

KB

size

pages.

Default

value

is

0.
If

the

application

specifies

its

own

stack

or

uses

large

pages

for

its

process

heap,

no

guard

pages

are

created.

AIXTHREAD_SLPRATIO

Sets

the

sleep

ratio

for

the

system.

The

value

tells

the

system

how

many

kernel

threads

should

be

held

in

reserve

for

sleeping

pthreads.

This

tuning

parameter

allows

greater

management

of

kernel

resources.

The

default

sleep

ratio

is

1:12.

��

AIXTHREAD_SLPRATIO=

k:p

��

where

k

Represents

the

number

of

kernel

threads.

Default

value

is

1.

p

Represents

the

number

of

sleeping

pthreads.

Default

value

is

12.
Any

positive

integer

value

may

be

specified

for

k

and

p.

If

k

>

p,

then

the

ratio

is

treated

as

1:1

(that

is,

you

cannot

specify

more

kernel

threads

than

pthreads).

Porting

considerations

57

Selected

environment

variables

that

affect

threading

Description

Syntax

AIXTHREAD_STK

Modifies

the

thread

stack

size.

Use

this

environment

variable

to

specify

stacks

of

up

to

256MB

in

size

instead

of

adjusting

a

parameter

in

the

pthread

attribute

structure

and

then

recompiling

and

rebuilding

the

application.

Note

that

increasing

the

size

of

the

thread

stack

decreases

the

amount

of

space

available

for

dynamically

allocated

memory

because

each

thread

stack

is

created

on

the

process

heap.

Export

this

environment

variable

to

modify

the

stack

size

for

pthreads

created

without

specifying

the

stack

size

programmatically.

��

AIXTHREAD_STK=N

��

where

N

Represents

the

number

of

bytes.

The

default

thread

stack

size

is

96

KB

for

32-bit

applications

and

192

KB

for

64-bit

applications.

Features

related

to

GNU

C

and

C++

portability

To

facilitate

porting

an

application

or

code

developed

with

GNU

C,

XL

C/C++

supports

a

subset

of

the

GNU

C

and

C++

language

extensions

to

C99

and

Standard

C++.

The

tables

in

this

section

list

the

features

that

are

supported,

unsupported,

and

those

for

which

the

syntax

is

accepted

but

the

semantics

ignored.

To

use

supported

extensions

with

your

C

code,

use

the

xlc

or

cc

invocation

commands,

or

specify

one

of

-qlanglvl=extc89,

-qlanglvl=extc99,

or

-qlanglvl=extended.

To

use

these

features

with

your

C++

code,

specify

the

-qlanglvl=extended

option.

In

C++,

all

supported

GNU

C

and

C++

features

are

accepted

by

default.

In

the

following

tables,

extensions

marked

accept/ignore

are

recognized

by

the

compiler

as

acceptable

programming

keywords,

but

the

GNU

C/C++

semantics

are

not

supported.

This

means

that

compilation

does

not

halt

if

the

compiler

encounters

an

accept/ignore

keyword

or

extension,

but

the

GNU

semantics

are

not

implemented

in

the

application.

Compiling

source

code

that

uses

these

extensions

under

a

strict

language

level

(stdc89,

stdc99)

will

result

in

error

messages.

Related

References

The

GNU

C

and

C++

language

extensions

are

fully

documented

in

the

GNU

manuals

at

http://gcc.gnu.org/onlinedocs.

Function

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

when

making

a

function

declaration

or

definition.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

XL

C/C++

supports

a

subset

of

the

GNU

C

and

C++

function

attributes.

Behavior

described

as

accept/ignore

means

that

the

syntax

is

accepted,

but

the

semantics

are

ignored,

and

compilation

continues.

GNU

C/C++

function

attribute

compatibility

with

XL

C/C++

Function

Attribute

Behavior

alias

supported

always_inline

supported

cdecl

accept/ignore

58

An

Introductory

Guide

http://gcc.gnu.org/onlinedocs

GNU

C/C++

function

attribute

compatibility

with

XL

C/C++

Function

Attribute

Behavior

const

supported

constructor

accept/ignore

destructor

accept/ignore

dllexport

accept/ignore

dllimport

accept/ignore

eightbit_data

accept/ignore

exception

accept/ignore

format

supported

format_arg

supported

function_vector

accept/ignore

interrupt

accept/ignore

interrupt_handler

accept/ignore

longcall

accept/ignore

model

accept/ignore

no_check_memory_usage

accept/ignore

no_instrument_function

accept/ignore

noinline

supported

noreturn

supported

pure

supported

regparm

accept/ignore

section

accept/ignore

stdcall

accept/ignore

tiny_data

accept/ignore

weak

supported

Related

References

v

″Function

attributes″

in

XL

C/C++

Language

Reference

Variable

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

of

variables

or

structure

fields.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

XL

C/C++

supports

a

subset

of

the

GNU

C

and

C++

variable

attributes.

Behavior

described

as

accept/ignore

means

that

the

syntax

is

accepted,

but

the

semantics

are

ignored,

and

compilation

continues.

GNU

C/C++

variable

attribute

compatibility

with

XL

C/C++

Variable

Attribute

Behavior

aligned

supported

2000C++

init_priority

accept/ignore

mode

supported

model

accept/ignore

nocommon

accept/ignore

Porting

considerations

59

GNU

C/C++

variable

attribute

compatibility

with

XL

C/C++

Variable

Attribute

Behavior

packed

supported

section

accept/ignore

transparent_union

accept/ignore

unused

accept/ignore

weak

accept/ignore

Related

References

v

″Variable

attributes″

in

XL

C/C++

Language

Reference

Type

attributes

Use

the

keyword

__attribute__

to

specify

special

attributes

of

struct

and

union

types

when

you

define

these

types.

This

keyword

is

followed

by

an

attribute

specification

inside

double

parentheses.

XL

C/C++

supports

a

subset

of

the

GNU

C

and

C++

type

attributes.

Behavior

described

as

accept/ignore

means

that

the

syntax

is

accepted,

but

the

semantics

are

ignored,

and

compilation

continues.

GNU

C/C++

type

attribute

compatibility

with

XL

C/C++

Type

Attribute

Behavior

aligned

supported

packed

supported

transparent_union

2000C

supported

unused

accept/ignore

Related

References

v

″Type

attributes″

in

XL

C/C++

Language

Reference

GNU

C

and

C++

assertions

Use

assertions

to

test

what

sort

of

computer

or

system

the

compiled

program

will

run

on.

The

assertions

#cpu,

#machine,

and

#system

are

predefined.

You

can

also

define

assertions

with

the

preprocessing

directives

#assert

and

#unassert.

GNU

C

and

C++

assertions

in

XL

C/C++

GNU

C

Assertions

Behavior

#assert

supported

#unassert

supported

#cpu

supported

#machine

supported

#system

supported

possible

values

are

aix

and

unix

Other

extensions

related

to

GNU

C

and

C++

The

following

features

related

to

GNU

C

and

C++

are

supported

under

extended

language

levels

(extc89,

extc99,

extended).

60

An

Introductory

Guide

v

Use

directive

#warning

to

cause

the

preprocessor

to

issue

a

warning

and

continue

processing.

v

Use

directive

#include_next

to

specify

inclusion

of

the

next

header

file

in

a

directory

after

the

current

one.

v

Local

labels

can

be

declared

at

the

start

of

each

lexical

block.

v

Use

a

brace-enclosed

compound

statement

inside

of

parentheses

as

an

expression.

v

Refer

to

the

type

of

an

expression

with

the

__typeof__

keyword.

v

Use

compound

expressions,

conditional

expressions,

and

casts

as

lvalues.

v

Use

a

computed

goto

statement

to

jump

to

a

label,

which

has

had

its

address

taken

and

the

address

is

used

as

a

value.

v

Use

keyword

__alignof__

to

inquire

about

variable

alignment,

or

the

alignment

usually

required

by

a

type.

v

Use

alternate

spelling

of

these

keywords:

__asm__,

__const__,

__volatile__,

__inline__,

__signed__,

and

__typeof__.

v

Use

the

__extension__

keyword

to

avoid

an

error

when

using

an

extended

language

feature

in

a

strict

language

level

mode.

v

An

array

of

zero

length

can

occur

without

generating

an

error.

v

2000C

A

function

definition

that

appears

within

the

definition

of

another

function

(a

nested

function)

is

permitted.

v

2000C

A

union

member

can

be

cast

to

the

union

type

to

which

it

belongs.

Under

extended

language

levels

(extc89,

extc99,

extended),

XL

C/C++

recognizes

the

syntax

of

the

following

features,

but

their

semantics

are

not

supported.

v

2000C++

The

declaration

of

a

register

variable,

either

global

or

local,

can

suggest

a

preferred

register.

Porting

considerations

61

62

An

Introductory

Guide

Appendix

A.

Language

support

This

appendix

discusses

the

implementations

of

the

C

and

C++

programming

languages

and

the

language

extensions

provided

by

XL

C/C++.

Compatibility

with

ISO/IEC

International

Standards

XL

C/C++

can

foster

a

programming

style

that

emphasizes

portability.

Syntax

and

semantics

constitute

a

complete

specification

of

a

programming

language,

but

conforming

implementations

of

a

particular

language

specification

can

differ

due

to

language

extensions.

A

program

that

conforms

strictly

to

its

language

specification

will

have

maximum

portability

among

different

environments.

In

theory,

a

program

that

compiles

correctly

with

one

standards-conforming

compiler

and

that

does

not

use

any

extension

or

implementation-defined

behavior,

will

compile

and

execute

properly

under

all

other

conforming

compilers,

insofar

as

hardware

differences

permit.

A

program

that

correctly

exploits

the

extensions

to

the

language

that

are

provided

by

the

language

implementation

can

improve

the

efficiency

of

its

object

code.

ISO/IEC

14882:2003(E)

International

Standard

compatibility

XL

C/C++

is

consistent

with

the

ISO/IEC

International

Standard

14882:2003(E),

which

specifies

the

form

and

establishes

the

interpretation

of

programs

written

in

the

C++

programming

language.

The

international

standard

is

designed

to

promote

the

portability

of

C++

programs

among

a

variety

of

implementations.

ISO/IEC

14882:1998

was

the

first

C++

language.

ISO/IEC

9899:1990

International

Standard

compatibility

The

ISO/IEC

9899:1990

International

Standard

(also

known

as

C89)

specifies

the

form

and

establishes

the

interpretation

of

programs

written

in

the

C

programming

language.

This

specification

is

designed

to

promote

the

portability

of

C

programs

among

a

variety

of

implementations.

This

Standard

was

amended

and

corrected

by

ISO/IEC

9899/COR1:1994,

ISO/IEC

9899/AMD1:1995,

and

ISO/IEC

9899/COR2:1996.

To

ensure

that

your

source

code

adheres

strictly

to

the

amended

and

corrected

C89

standard,

specify

the

-qlanglvl=stdc89

compiler

option.

ISO/IEC

9899:1999

International

Standard

support

The

ISO/IEC

9899:1999

International

Standard

(also

known

as

C99)

is

an

updated

standard

for

programs

written

in

the

C

programming

language.

It

is

designed

to

enhance

the

capability

of

the

C

language,

provide

clarifications

to

C89,

and

incorporate

technical

corrections.

XL

C/C++

supports

many

features

of

this

language

specification.

2000C

The

C

compiler

supports

all

language

features

specified

in

the

C99

Standard.

To

ensure

that

your

source

code

adheres

to

this

set

of

language

features,

use

the

c99

invocation

command.

Note

that

the

Standard

also

specifies

features

in

the

run-time

library.

These

features

may

not

be

supported

in

the

current

run-time

library

and

operating

environment.

The

availability

of

system

header

files

provides

an

indication

of

whether

such

support

exists.

©

Copyright

IBM

Corp.

2004

63

Major

features

in

C99

XL

C/C++

implements

all

C99

language

features.

The

following

is

a

table

of

selected

major

features.

The

references

refer

to

articles

in

XL

C/C++

Language

Reference.

ISO/IEC

9899:1999

international

standard

extensions

to

IBM

C

C99

Feature

Related

Reference

restrict

type

qualifier

for

pointers

The

restrict

Type

Qualifier

universal

character

names

The

Unicode

Standard

predefined

identifier

__func__

Predefined

Identifiers

function-like

macros

with

variable

and

empty

arguments

Function-Like

Macros

_Pragma

unary

operator

The

_Pragma

Operator

variable

length

array

Variable

Length

Arrays

static

keyword

in

array

index

declaration

Arrays

complex

data

type

Complex

Types

long

long

int

and

unsigned

long

long

int

types

Integer

Variables

hexadecimal

floating-point

constants

Hexadecimal

Floating

Constants

compound

literals

for

aggregate

types

Compound

Literals

designated

initializers

Initializers

C++

style

comments

Comments

implicit

function

declaration

not

permitted

Function

Declarations

mixed

declarations

and

code

The

for

Statement

_Bool

type

Simple

Type

Specifiers

inline

function

declarations

Inline

Functions

initializers

for

aggregates

Initializing

Arrays

Using

Designated

Initializers

Changes

and

clarifications

of

C89

supported

in

C99

Certain

specifications

in

the

C99

Standard

are

based

on

changes

and

clarifications

of

the

C89

standard,

rather

than

on

new

features

of

the

language.

XL

C/C++

supports

all

C99

language

features,

including

the

following:

v

Flexible

array

members

are

allowed.

The

last

member

of

a

structure

with

two

or

more

members

can

be

declared

without

the

size.

v

Declaring

implicit

int

is

not

supported.

All

declarations

must

have

a

type

specifier.

v

Trailing

commas

are

allowed

in

enumeration

specifiers.

v

Duplicate

type

qualifiers

are

accepted

and

ignored,

unless

explicitly

specified

otherwise.

v

A

diagnostic

message

will

be

issued

if

a

required

expression

is

missing

from

the

return

statement.

v

Constant

expressions

evaluated

during

preprocessing

now

use

long

long

and

unsigned

long

long

data

types.

v

Empty

macro

arguments

are

allowed

in

function-like

macros.

v

The

maximum

value

of

#line

has

increased

to

2

147

483

647.

64

An

Introductory

Guide

C99

features

in

XL

C/C++

Some

features

of

the

ISO/IEC

9899:1999

International

Standard

(C99)

are

also

implemented

in

C++.

These

extensions

are

available

under

the

-qlanglvl=extended

compiler

option.

ISO/IEC

9899:1999

international

standard

extensions

to

IBM

C++

C99

Feature

Reference

restrict

type

qualifier

for

pointers

The

restrict

Type

Qualifier

universal

character

names

The

Unicode

Standard

predefined

identifier

__func__

Predefined

Identifiers

variable

length

array

Variable

Length

Arrays

complex

data

type

Complex

Types

hexadecimal

floating-point

constants

Hexadecimal

Floating

Constants

compound

literals

for

aggregate

types

Compound

Literals

function-like

macros

with

variable

and

empty

arguments

Function-Like

Macros

_Pragma

unary

operator

The

_Pragma

Operator

Enhanced

language

level

support

The

-qlanglvl

compiler

option

is

used

to

specify

the

supported

language

level,

and

therefore

affects

the

way

your

code

is

compiled.

You

can

also

specify

the

language

level

implicitly

by

using

different

compiler

invocation

commands.

In

general,

a

valid

program

that

compiles

and

runs

correctly

under

a

standard

language

level

should

continue

to

compile

correctly

and

run

to

produce

the

same

result

with

the

orthogonal

extensions

enabled.

For

example,

to

compile

C

programs

so

that

they

comply

strictly

with

the

ISO/IEC

9899:1990

International

Standard

(C89),

you

need

to

specify

-qlanglvl=stdc89.

The

stdc89

suboption

instructs

the

compiler

to

strictly

enforce

the

standard,

and

not

to

allow

any

language

extensions.

(The

c89

compiler

invocation

command

specifies

this

language

level

implicitly.)

You

can

also

use

extensions

to

the

standard

language

levels.

Extensions

that

do

not

interfere

with

the

standard

features

are

called

orthogonal

extensions.

For

example,

when

you

compile

C

programs,

you

can

enable

extensions

that

are

orthogonal

to

C89

by

specifying

-qlanglvl=extc89.

Most

of

the

language

features

described

in

the

ISO/IEC

9899:1999

International

Standard

(C99)

are

considered

orthogonal

extensions

to

C89.

When

you

compile

C++

programs,

you

can

enable

the

use

of

orthogonal

extensions

by

specifying

-qlanglvl=extended.

Non-orthogonal

extensions,

on

the

other

hand,

can

interfere

or

conflict

with

aspects

of

the

language

as

described

in

one

of

the

international

standards.

Acceptance

of

these

extensions

must

be

explicitly

enabled

by

a

particular

compiler

option.

Reliance

on

non-orthogonal

extensions

reduces

the

ease

with

which

your

application

can

be

ported

to

different

environments.

Appendix

A.

Language

support

65

The

main

suboptions

for

the

-qlanglvl

option

are

listed

below.

Selected

-qlanglvl

suboptions

-qlanglvl

Suboption

Suboption

Description

-qlanglvl=stdc99

2000C

Specifies

strict

conformance

to

the

C99

standard.

-qlanglvl=stdc89

2000C

Specifies

strict

conformance

to

the

C89

standard.

-qlanglvl=ansi

2000C

Specifies

strict

conformance

to

the

C89

standard

and

enables

the

-qlonglong

compiler

option.

-qlanglvl=extc99

2000C

Enables

all

extensions

orthogonal

to

C99.

-qlanglvl=extc89

2000C

Enables

all

extensions

orthogonal

to

C89.

-qlanglvl=extended

2000C

Enables

all

extensions

orthogonal

to

C89

and

specifies

the

-qupconv

compiler

option.

2000C++

Enables

all

the

orthogonal

extensions

on

top

of

Standard

C++.

66

An

Introductory

Guide

Appendix

B.

OpenMP

compliance

and

support

The

OpenMP

Application

Program

Interface

(API)

is

a

portable,

scalable

programming

model

that

provides

a

standard

interface

for

developing

multiplatform,

shared-memory

parallel

applications

in

C,

C++,

and

Fortran.

The

specification

is

defined

by

the

OpenMP

organization,

a

group

of

major

computer

hardware

and

software

vendors,

which

includes

IBM.

XL

C/C++

is

compliant

with

OpenMP

Specification

2.0.

The

compiler

recognizes

and

preserves

the

semantics

of

the

following

OpenMP

V2.0

elements:

v

Comma

delimiter

for

multiple

clauses

in

the

#pragma

omp

directive.

v

The

num_threads

clause.

v

The

copyprivate

clause.

v

threadprivate

static

block

scope

variables.

v

Support

for

C99

variable

length

arrays.

v

Redundant

declaration

of

private

variables.

v

Timing

routines

omp_get_wtick

and

omp_get_wtime.

The

directives,

library

functions,

and

environment

variables

described

below

allow

you

to

create

and

manage

parallel

programs

while

maintaining

portability.

To

enable

OpenMP

parallel

processing,

you

must

specify

the

-qsmp

compiler

option.

v

To

choose

automated

parallelism,

specify

-qsmp

or

-qsmp=auto.

This

suboption

enables

the

compiler

to

perform

implicit

parallelism,

in

addition

to

recognizing

and

implementing

any

OpenMP

directives,

library

functions,

and

environment

variables

included

in

the

program.

v

To

choose

strict

compliance

to

the

OpenMP

Specification

2.0,

specify

-qsmp=omp.

This

suboption

ensures

that

the

compiler

implements

only

the

OpenMP

directives,

library

functions,

and

environment

variables

specified

in

the

code.

It

does

not

perform

any

additional

automated

parallel

processing.

Related

References

v

http://www.openmp.org

v

″Pragmas

to

control

parallel

processing″

in

XL

C/C++

Compiler

Reference

v

″Program

parallelization″

in

XL

C/C++

Compiler

Reference

OpenMP

directives

Each

directive

starts

with

#pragma

omp,

to

reduce

the

potential

for

conflict

with

other

pragma

directives.

OpenMP

directives

in

XL

C/C++

Directive

name

Directive

Description

parallel

The

parallel

directive

defines

a

parallel

region,

which

is

a

region

of

the

program

that

is

to

be

executed

by

multiple

threads

in

parallel.

©

Copyright

IBM

Corp.

2004

67

http://www.openmp.org

OpenMP

directives

in

XL

C/C++

Directive

name

Directive

Description

for

The

for

directive

identifies

an

iterative

work-sharing

construct

that

specifies

a

region

in

which

the

iterations

of

the

associated

loop

should

be

executed

in

parallel.

The

iterations

of

the

for

loop

are

distributed

across

threads

that

already

exist.

sections

The

sections

directive

identifies

a

non-iterative

work-sharing

construct

that

specifies

a

set

of

constructs

that

are

to

be

divided

among

threads

in

a

team.

Each

section

is

executed

once

by

a

thread

in

the

team.

single

The

single

directive

identifies

a

construct

that

specifies

that

the

associated

structured

block

is

executed

by

only

one

thread

in

the

team

(not

necessarily

the

master

thread).

parallel

for

The

parallel

for

directive

is

a

shortcut

form

for

a

parallel

region

that

contains

a

single

for

directive.

The

semantics

are

identical

to

explicitly

specifying

a

parallel

directive

immediately

followed

by

a

for

directive.

parallel

sections

The

parallel

sections

directive

provides

a

shortcut

form

for

specifying

a

parallel

region

containing

a

single

sections

directive.

The

semantics

are

identical

to

explicitly

specifying

a

parallel

directive

immediately

followed

by

a

sections

directive.

master

The

master

directive

identifies

a

construct

that

specifies

a

structured

block

that

is

executed

by

the

master

thread

of

the

team.

critical

The

critical

directive

identifies

a

construct

that

restricts

execution

of

the

associated

structured

block

to

a

single

thread

at

a

time.

An

optional

name

may

be

used

to

identify

the

critical

region.

A

thread

waits

at

the

beginning

of

a

critical

region

until

no

other

thread

is

executing

a

critical

region

with

the

same

name.

All

unnamed

critical

directives

map

to

the

same

unspecified

name.

barrier

The

barrier

directive

synchronizes

all

the

threads

in

a

team.

When

encountered,

each

thread

waits

until

all

of

the

others

have

reached

this

point.

After

all

threads

have

encountered

the

barrier,

each

thread

begins

executing

the

statements

after

the

barrier

directive

in

parallel.

atomic

The

atomic

directive

identifies

a

specific

memory

location

that

must

be

updated

atomically

and

not

be

exposed

to

multiple,

simultaneous

writing

threads.

flush

The

flush

directive

identifies

a

point

at

which

the

compiler

ensures

that

all

threads

in

a

parallel

region

have

the

same

view

of

specified

objects

in

memory.

ordered

The

ordered

directive

identifies

a

structured

block

of

code

that

must

be

executed

in

sequential

order.

threadprivate

The

threadprivate

directive

declares

file-scope,

namespace-scope,

or

static

block-scope

variables

to

be

private

to

a

thread.

2000C

The

C

compiler

recognizes

the

following

additional

directives

used

for

program

parallelism.

They

are

not

part

of

the

OpenMP

Specification

1.0

or

2.0

and

are

not

recognized

by

the

C++

compiler.

68

An

Introductory

Guide

v

#pragma

ibm

critical

v

#pragma

ibm

independent_calls

v

#pragma

ibm

independent_loop

v

#pragma

ibm

iterations

v

#pragma

ibm

parallel_loop

v

#pragma

ibm

permutation

v

#pragma

ibm

schedule

v

#pragma

ibm

sequential_loop

OpenMP

data

scope

attribute

clauses

Clauses

may

be

specified

on

the

directives

to

control

the

scope

attributes

of

variables

for

the

duration

of

the

parallel

or

work-sharing

constructs.

OpenMP

data

scope

attribute

clauses

in

XL

C/C++

Data

Scope

Attribute

Clause

Name

Data

Scope

Attribute

Clause

Description

private

The

private

clause

declares

the

variables

in

the

list

to

be

private

to

each

thread

in

a

team.

firstprivate

The

firstprivate

clause

provides

a

superset

of

the

functionality

provided

by

the

private

clause.

lastprivate

The

lastprivate

clause

provides

a

superset

of

the

functionality

provided

by

the

private

clause.

copyprivate

The

copyprivate

clause

provides

an

alternative

to

using

a

shared

variable

to

broadcast

a

value

to

a

team.

The

mechanism

uses

a

private

variable

to

broadcast

a

value

from

one

team

member

to

other

members.

num_threads

The

num_threads

clause

provides

the

ability

to

request

a

specific

number

of

threads

for

a

parallel

construct.

shared

The

shared

clause

shares

variables

that

appear

in

the

list

among

all

the

threads

in

a

team.

All

threads

within

a

team

access

the

same

storage

area

for

shared

variables.

reduction

The

reduction

clause

performs

a

reduction

on

the

scalar

variables

that

appear

in

list,

with

a

specified

operator.

default

The

default

clause

allows

the

user

to

affect

the

data

scope

attributes

of

variables.

OpenMP

library

functions

OpenMP

runtime

library

functions

are

included

in

the

header

<omp.h>.

They

include

execution

environment

functions

that

can

be

used

to

control

and

query

the

parallel

execution

environment,

and

lock

functions

that

can

be

used

to

synchronize

access

to

data.

OpenMP

runtime

library

functions

in

XL

C/C++

Runtime

Library

Function

Name

Runtime

Library

Function

Description

omp_set_num_threads

Sets

the

number

of

threads

to

use

for

subsequent

parallel

regions.

omp_get_num_threads

Returns

the

number

of

threads

currently

in

the

team

executing

the

parallel

region

from

which

it

is

called.

Appendix

B.

OpenMP

compliance

and

support

69

OpenMP

runtime

library

functions

in

XL

C/C++

Runtime

Library

Function

Name

Runtime

Library

Function

Description

omp_get_max_threads

Returns

the

maximum

value

that

can

be

returned

by

calls

to

omp_get_num_threads.

omp_get_thread_num

Returns

the

thread

number,

within

its

team,

of

the

thread

executing

the

function.

The

master

thread

of

the

team

is

thread

0.

omp_get_num_procs

Returns

the

maximum

number

of

processors

that

could

be

assigned

to

the

program.

omp_in_parallel

Returns

non-zero

if

it

is

called

within

the

dynamic

extent

of

a

parallel

region

executing

in

parallel;

otherwise,

it

returns

0.

omp_set_dynamic

Enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

execution

of

parallel

regions.

omp_get_dynamic

Returns

non-zero

if

dynamic

thread

adjustment

is

enabled

and

returns

0

otherwise.

omp_set_nested

Enables

or

disables

nested

parallelism.

omp_get_nested

Returns

non-zero

if

nested

parallelism

is

enabled

and

0

if

it

is

disabled.

omp_init_lock

Initializes

a

simple

lock.

omp_destroy_lock

Removes

a

simple

lock.

omp_set_lock

Waits

until

a

simple

lock

is

available.

omp_unset_lock

Releases

a

simple

lock.

omp_test_lock

Tests

a

simple

lock.

omp_init_nest_lock

Initializes

a

nestable

lock.

omp_destroy_nest_lock

Removes

a

nestable

lock.

omp_set_nest_lock

Waits

until

a

nestable

lock

is

available.

omp_unset_nest_lock

Releases

a

nestable

lock.

omp_test_nest_lock

Tests

a

nestable

lock.

omp_get_wtick

Returns

the

number

of

seconds

between

successive

clock

ticks.

omp_get_wtime

Returns

the

elapsed

wall-clock

time

in

seconds.

OpenMP

environment

variables

OpenMP

environment

variables

control

the

execution

of

parallel

code.

The

names

of

environment

variables

must

always

be

in

upper

case,

while

their

values

are

not

case-sensitive.

70

An

Introductory

Guide

OpenMP

environment

variables

in

XL

C/C++

Description

Syntax

OMP_SCHEDULE

Sets

the

run-time

schedule

type

and

chunk

size.

Applies

only

to

OpenMP

directives

that

have

the

scheduling

type

set

to

runtime.

��

static

,

n

OMP_SCHEDULE=

affinity

dynamic

,

n

guided

runtime

��

where

affinity

An

IBM

extension

valid

for

C

only.

Specifies

that

iterations

of

a

loop

are

initially

divided

into

local

partitions

of

a

size

equal

to

the

ceiling

of

the

number

of

iterations

divided

by

the

number

of

threads:

CEILING(number_of_iterations

÷

number_of_threads).

Each

local

partition

is

further

subdivided

into

chunks

of

a

size

equal

to

the

ceiling

of

half

of

the

number

of

iterations

remaining

in

the

local

partition:

CEILING(iterations_left_in_local_partition

÷

2).

When

a

thread

becomes

free,

it

takes

the

next

chunk

from

its

local

partition.

If

no

chunks

are

in

the

local

partition,

the

thread

takes

an

available

chunk

from

a

partition

of

another

thread.

If

n

is

specified,

each

local

partition

is

subdivided

into

chunks

of

size

n.

If

n

is

not

specified,

the

default

value

is

1.

dynamic

Specifies

that

iterations

for

a

for

loop

should

be

divided

into

a

series

of

chunks

of

size

n

and

that

the

chunks

are

handled

according

to

the

following

process.

A

thread

waiting

for

an

assignment

is

assigned

a

chunk

of

iterations,

which

it

executes

and

then

waits

for

its

next

assignment.

This

process

is

repeated

until

all

chunks

are

assigned.

If

n

is

not

specified,

the

default

chunk

size

is

1.

guided

Specifies

that

iterations

for

a

for

loop

should

be

assigned

to

threads

in

chunks

with

decreasing

sizes

and

that

the

chunks

are

handled

according

to

the

following

process.

A

thread

that

finishes

its

assigned

chunk

of

iterations

is

dynamically

assigned

another

chunk,

until

all

chunks

are

assigned.

If

n

is

not

specified,

the

default

value

for

the

initial

chunk

size

is

1.

static

Specifies

that

iterations

for

a

for

loop

should

be

divided

into

a

series

of

chunks

of

size

n

and

that

the

chunks

are

handled

according

to

the

following

process.

Available

threads

are

assigned

chunks

in

an

order

determined

by

the

thread

number.

When

n

is

not

specified,

the

iteration

space

is

divided

into

chunks

that

are

approximately

equal

in

size,

with

one

chunk

assigned

to

each

thread.

n

Is

a

positive

number,

representing

the

chunk

size.

Appendix

B.

OpenMP

compliance

and

support

71

OpenMP

environment

variables

in

XL

C/C++

Description

Syntax

OMP_DYNAMIC

Enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

the

execution

of

parallel

regions.

��

true

OMP_DYNAMIC=

false

��

where

true

Enables

dynamic

adjustment

of

the

number

of

threads

available.

false

Disables

dynamic

adjustment

of

the

number

of

threads

available.

OMP_NUM_THREADS

Sets

of

the

number

of

threads

available

for

the

execution.

��

OMP_NUM_THREADS=n

��

where

n

Represents

the

number

of

threads.

OMP_NESTED

Enables

or

disables

nested

parallelism.

��

true

OMP_NESTED=

false

��

where

true

Enables

nested

parallelism.

false

Disables

nested

parallelism.

OpenMP

implementation-defined

behavior

The

following

information

is

not

specified

in

the

standard.

Each

implementation

of

the

standard

may

have

its

own

implementation-defined

values.

Conditional

Compilation

The

_OPENMP

macro

is

defined

to

199810.

Scheduling

The

schedule

clause

specifies

how

iterations

of

a

for

loop

are

divided

among

threads

of

the

team.

The

possible

OpenMP

standard

values

are

static,

dynamic,

guided,

and

runtime.

In

addition,

IBM

C

adds

the

value

affinity

as

an

extension.

In

the

absence

of

an

explicitly

defined

schedule

clause,

the

default

schedule

for

XL

C/C++

is

static.

Tuning

an

OpenMP

program

In

addition

to

the

environment

variables

that

adjust

various

timings

in

the

pthread

life

cycle,

the

following

environment

variables

can

be

helpful

for

tuning

an

OpenMP

application.

72

An

Introductory

Guide

Selected

environment

variables

for

tuning

OpenMP

applications

Description

Syntax

OMP_DYNAMIC

Enables

or

disables

dynamic

adjustment

of

the

number

of

threads

available

for

the

execution

of

parallel

regions.

When

the

variable

is

enabled

(default

setting),

the

run-time

environment

can

adjust

the

number

of

threads

it

uses

for

executing

parallel

regions

so

it

makes

the

most

efficient

use

of

system

resources.

The

variable

should

be

disabled

for

benchmarking,

scaling

tests,

or

if

an

application

depends

on

a

specific

number

of

threads

because

dynamic

checking

can

add

a

small

amount

of

overhead.

��

true

OMP_DYNAMIC=

false

��

where

true

Enables

dynamic

adjustment

of

the

number

of

threads

available.

false

Disables

dynamic

adjustment

of

the

number

of

threads

available.

MALLOCMULTIHEAP

Multiple

heaps

are

useful

so

that

a

threaded

application

can

have

more

than

one

thread

issuing

memory

allocation

subroutine

calls.

With

a

single

heap,

all

threads

trying

to

do

a

malloc(),

free(),

or

realloc()

call

would

be

serialized

(that

is,

only

one

thread

can

do

any

of

these

three

functions

at

a

time).

Such

a

situation

could

have

a

serious

impact

on

multiprocessor

machines.

With

multiple

heaps,

each

thread

gets

its

own

heap,

to

a

maximum

of

32

separate

heaps.

Enable

the

use

of

multiple

heaps

by

exporting

this

environment

variable,

which

is

not

set

by

default.

��

export

MALLOCMULTIHEAP

��

XLSMPOPTS

For

32-bit

OpenMP

applications,

the

default

limit

on

stack

size

per

thread

is

rather

small

and

if

it

is

exceeded

it

results

in

a

run-time

error.

Should

this

occur,

the

stack

size

can

be

increased

by

setting

the

XLSMPOPTS

environment

variable

with

the

stack

suboption.

��

export

XLSMPOPTS=stack=n

��

where

n

Represents

the

stack

size

in

bytes.

The

total

stack

size

for

all

threads

cannot

exceed

256

MB

(one

memory

segment).

The

one-segment

limitation

does

not

apply

to

64-bit

applications.

Default

value

is

4

MB

per

thread.

Related

References

v

“Tuning

a

multithreaded

program”

on

page

56

Appendix

B.

OpenMP

compliance

and

support

73

74

An

Introductory

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

75

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

1998,

2004.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

76

An

Introductory

Guide

Programming

interface

information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

the

customer

to

write

application

software

that

obtains

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

Eserver

IBM

POWER3

POWER4

POWER5

PowerPC

PowerPC

Architecture

pSeries

Redbooks

RS/6000

VisualAge

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names,

may

be

trademarks

or

service

marks

of

others.

Industry

standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

C

(ANSI/ISO-IEC

9899–1990

[1992]).

This

standard

has

officially

replaced

American

National

Standard

for

Information

Systems-Programming

Language

C

(X3.159–1989)

and

is

technically

equivalent

to

the

ANSI

C

standard.

The

compiler

supports

the

changes

adopted

into

the

C

Standard

by

ISO/IEC

9899:1990/Amendment

1:1994.

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899–1999

(E)).

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998),

the

first

formal

definition

of

the

language.

v

The

C++

language

is

also

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:2002

(E)),

currently

referred

to

as

Standard

C++.

v

The

C

and

C++

compilers

support

the

OpenMP

C

and

C++

Application

Programming

Interface

Version

2.0.

Notices

77

	Contents
	About this book
	Highlighting conventions
	How to read the syntax diagrams

	XL C/C++ overview
	Command-line C and C++ compiler
	Libraries
	Standard C++ library
	IBM Mathematics Acceleration Subsystem libraries

	IBM Distributed Debugger
	Other tools and utilities
	National language support
	Documentation and online help

	What's new in version 7
	Performance and optimization
	Machine architecture and hardware
	New built-in functions for POWER5 processors
	New built-in functions for floating-point division

	New XL C/C++ pragmas
	New optimization utilities
	IBM Mathematics Accelerated Subsystem (MASS) libraries
	SMP thread binding

	Conformance to industry standards
	Ease of use
	New XL C/C++ options

	Customizing the compilation environment
	Environment variables
	Create symbolic links for the path

	Configuration files

	Controlling the compilation process
	Invoking the compiler
	Object model
	Types of input and output files
	Default behavior

	Getting started with compiler options
	Compiler messages
	Return codes
	Compiler message format

	Reusing GNU C and C++ compiler options with gxlc and gxlc++
	gxlc and gxlc++ syntax
	GNU C and C++ to XL C/C++ option mapping
	Configuring the option mapping

	Options summary: C compiler
	Basic translation
	Special handling and control
	Linking and library-related options

	Options summary: C++ compiler

	Getting started with optimization
	Selected compiler options for optimization
	Getting started with optimization pragmas

	Porting considerations
	Portability issues intrinsic to the language
	Diagnostics for compile-time errors
	32- and 64-bit application development
	32- and 64-bit development environments on AIX
	Compiler support
	AIX utility commands support

	Objects and libraries on AIX
	Difference between a shared object and library on AIX
	Difference between shared and static objects on AIX
	Link time and load time

	Diagnostics for link-time errors
	Diagnostics for run-time errors
	Shared memory parallelization
	OpenMP directives
	Threads on AIX
	The POSIX threads library on AIX
	Pthreads on AIX
	Debugging a multithreaded program
	Tuning a multithreaded program

	Features related to GNU C and C++ portability
	Function attributes
	Variable attributes
	Type attributes
	GNU C and C++ assertions
	Other extensions related to GNU C and C++

	Appendix A. Language support
	Compatibility with ISO/IEC International Standards
	ISO/IEC 14882:2003(E) International Standard compatibility
	ISO/IEC 9899:1990 International Standard compatibility
	ISO/IEC 9899:1999 International Standard support
	Major features in C99
	Changes and clarifications of C89 supported in C99
	C99 features in XL C/C++

	Enhanced language level support

	Appendix B. OpenMP compliance and support
	OpenMP directives
	OpenMP data scope attribute clauses
	OpenMP library functions
	OpenMP environment variables
	OpenMP implementation-defined behavior
	Tuning an OpenMP program

	Notices
	Programming interface information
	Trademarks and service marks
	Industry standards

