
IBM XL Fortran for Linux, V15.1

Language Reference
for Big Endian Distributions
Version 15.1

SC27-4255-01

���

IBM XL Fortran for Linux, V15.1

Language Reference
for Big Endian Distributions
Version 15.1

SC27-4255-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 1019.

Second edition

This edition applies to IBM XL Fortran for Linux, V15.1 (Program 5765-J10; 5725-C75) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document xiii
Who should read this document xiii
How to use this document xiii
How this document is organized xiii
Conventions xiv
Related information xviii

IBM XL Fortran information xviii
Standards and specifications xix
Other IBM information xx

Technical support xx
How to send your comments xx

Chapter 1. XL Fortran for Linux 1
Fortran language standards 1

Fortran 2008 1
Fortran 2003 2
Fortran 95 2
Fortran 90 2
FORTRAN 77 3
IBM extensions 3

OpenMP API Version 3.1 3
Standards documents 3

Chapter 2. XL Fortran language
fundamentals 5
Characters 5
Names 6
Designators 6
Operators 7
Statements 7

Statement keywords 7
Statement labels 7

Delimiters 7
Lines and source formats 8

Fixed source form 9
Free source form. 11
IBM free source form (IBM extension) 12
Conditional compilation (IBM extension) . . . 13

Order of statements and execution sequence . . . 14
Data types. 15

Type declaration: type parameters and specifiers 15
Determining Type 17

Data objects 17
Constants 17
Automatic objects 18
Polymorphic entities (Fortran 2003) 18
Definition status of variables 19
Allocation status. 26
Storage classes for variables (IBM extension) . . 26

Typeless literal constants 28
Hexadecimal constants 29
Octal constants 29
Binary constants 30
Hollerith constants 30
Using typeless constants 31

Chapter 3. Intrinsic data types 35
Integer 35
Real 36
Complex 39
Logical 41
Character 42

Examples of character constants 43
Character substrings 44

Byte (IBM extension) 45
Vector (IBM extension). 45
Pixel (IBM extension) 46
Unsigned (IBM extension) 46

Chapter 4. Derived types 47
Syntax of a derived type 47
Derived type parameters (Fortran 2003) 48
Derived type components 49

Allocatable and pointer components 50
Procedure pointer components 51
Array components 52
Default initialization for components 52
Component order 54
Referencing components 54

Component and procedure accessibility 56
Sequence derived types 56
Extensible derived types (Fortran 2003) 56
Abstract types and deferred bindings (Fortran 2003) 58
Derived type Values 58
Type-bound procedures (Fortran 2003) 58

Syntax of a type-bound procedure 58
Specific binding 59
Generic binding 61
Final binding 63
Procedure overriding 65

Finalization (Fortran 2003) 66
The finalization process 66
When finalization occurs 67

Determining declared type for derived types . . . 68
Structure constructor 69

Chapter 5. Array concepts 73
Array basics 73

Bounds of a dimension 73
Extent of a dimension 74
Rank, shape, and size of an array 74

Array declarators 74
Explicit-shape arrays 75

Automatic arrays 76
Adjustable arrays 77
Pointee arrays (IBM extension) 77

Assumed-shape arrays. 77
Deferred-shape arrays 78

Allocatable arrays 79
Array pointers 80

Implied-shape arrays (Fortran 2008) 81

© Copyright IBM Corp. 1996, 2014 iii

Assumed-size arrays 82
Assumed-rank objects (Technical Specification) . . 84
Array elements 85
Array sections 86

Subscript triplets 88
Vector subscripts 89
Substring ranges. 90
Array sections and structure components . . . 90
Rank and shape of array sections 92

Array constructors 92
Implied-DO list for an array constructor 95

Contiguity (Fortran 2008) 96
Expressions involving arrays 98

Chapter 6. Expressions and
assignment 99
Introduction to expressions and assignment . . . 99

Primary 99
Constant expressions 100
Specification expressions 101
Operators and expressions 103

Arithmetic 103
Character. 105
General 106
Logical 107
Primary 109
Relational 109

Extended intrinsic and defined operations 111
How expressions are evaluated 112

Precedence of operators 112
Using BYTE data objects (IBM extension) . . . 114

Intrinsic assignment 115
Arithmetic conversion 117

WHERE construct 118
Interpreting masked array assignments 120

FORALL construct. 124
Interpreting the FORALL construct 126

Data pointer assignment. 127
Procedure pointer assignment (Fortran 2003) . . . 130
Integer pointer assignment (IBM extension) . . . 131

Chapter 7. Execution control 133
Statement blocks 133
ASSOCIATE Construct (Fortran 2003) 133
BLOCK construct (Fortran 2008) 134
DO construct 136

The terminal statement 137
DO WHILE construct. 140

IF construct 141
CASE construct. 143
SELECT TYPE construct (Fortran 2003) 145
Associate names 147
Branching 147
CONTINUE statement 148
STOP statement 148
ERROR STOP statement (Fortran 2008) 148

Chapter 8. Program units and
procedures 149
Scope 149

Scoping unit. 149
Entities with scope 149

Association 154
Host association 154
Use association 156
Construct Association 156
Pointer association 157
Integer pointer association (IBM extension) . . 158

Program units, procedures, and subprograms. . . 159
Internal procedures 159
Interface concepts 160

Interface blocks. 162
Generic interface blocks 165

Unambiguous generic procedure references . . 165
Extending intrinsic procedures with generic
interface blocks 167
Defined operators 168
Defined assignment 169
User-defined derived-type Input/Output
procedures (Fortran 2003) 170

Abstract interface (Fortran 2003) 172
Main program 174
Modules 175
Submodules (Fortran 2008) 178
Module subprograms. 181

Function and subroutine subprograms 181
Separate module subprograms (Fortran 2008) 186

Block data program unit. 188
Intrinsic procedures 189

Conflicts between intrinsic procedure names
and other names 189

Arguments 190
Actual argument specification 190

Argument association 192
%VAL and %REF (IBM extension) 194
Intent of dummy arguments 195
Optional dummy arguments 195
The passed-object dummy argument 196
Restrictions on optional dummy arguments not
present 196
Length of character arguments 197
Variables as dummy arguments 197
Allocatable objects as dummy arguments
(Fortran 2003) 200
Pointers as dummy arguments 201
Procedures as dummy arguments 202
Asterisks as dummy arguments 203

Resolution of procedure references 203
Rules for resolving procedure references to
names 204

Recursion 205
Pure procedures 206
Elemental procedures. 208

Chapter 9. XL Fortran Input/Output 211
Records 211

Formatted records 211
Unformatted records 211
Endfile records 211

Files 212
Definition of an external file 212

iv XL Fortran: Language Reference for Big Endian Distributions

File access methods 212
Units 214

Connection of a unit 214
Data transfer statements 215

Asynchronous Input/Output 216
Advancing and nonadvancing Input/Output 218
User-defined derived-type Input/Output
procedure interfaces (Fortran 2003) 218
User-defined derived-type Input/Output
(Fortran 2003) 219
File position before and after data transfer. . . 221

Conditions and IOSTAT values 222
End-of-record conditions 223
End-of-file conditions. 223
Error conditions 223

Chapter 10. Input/Output formatting 235
Format-directed formatting 235

Complex editing 235
Data edit descriptors 235
Control edit descriptors 240
Character string edit descriptors 241
Effective list items (Fortran 2003) 242
Interaction of Input/Output lists and format
specifications 242
Comma-separated Input/Output (IBM
extension) 244

Data edit descriptors 245
A (Character) Editing. 245
B (Binary) Editing 245
E, D, and Q (Extended Precision) Editing . . . 247
DT Editing (Fortran 2003) 248
EN Editing 249
ES Editing 250
F (Real without Exponent) Editing 251
G (General) Editing 252
H Editing 254
I (Integer) Editing 255
L (Logical) Editing. 256
O (Octal) Editing 257
Q (Character Count) Editing (IBM extension) 258
Z (Hexadecimal) Editing 259

Control edit descriptors 261
/ (Slash) Editing 261
: (Colon) Editing 261
$ (Dollar) Editing (IBM extension) 262
BN (Blank Null) and BZ (Blank Zero) Editing 262
DC and DP (Decimal) Editing (Fortran 2003) 263
P (Scale Factor) Editing 263
RC, RD, RN, RP, RU, and RZ (Round) Editing
(Fortran 2003) 264
S, SP, and SS (Sign Control) Editing 265
T, TL, TR, and X (Positional) Editing 265

List-directed formatting 267
Value separators 267
List-directed input. 267
List-directed output 268

Namelist formatting 270
Namelist input 271
Namelist output 275

Chapter 11. Statements and attributes 279
Attributes 282
ABSTRACT (Fortran 2003) 282
ALLOCATABLE (Fortran 2003) 283
ALLOCATE 285
ASSIGN 288
ASSOCIATE (Fortran 2003) 289
ASYNCHRONOUS 290
AUTOMATIC (IBM extension). 292
BACKSPACE 293
BIND (Fortran 2003) 295
BLOCK (Fortran 2008) 296
BLOCK DATA 297
BYTE (IBM extension) 298
CALL 300
CASE 303
CHARACTER 305
CLASS (Fortran 2003) 309
CLOSE 311
COMMON 313

Common association 315
COMPLEX 316
CONTAINS 320
CONTIGUOUS (Fortran 2008) 321
CONTINUE 323
CYCLE 324
DATA 325
DEALLOCATE 328
Derived Type 330
DIMENSION 332
DO 333
DO WHILE 335
DOUBLE COMPLEX (IBM extension) 336
DOUBLE PRECISION 339
ELSE 342
ELSE IF 343
ELSEWHERE 343
END 345
END (Construct) 346
END INTERFACE 349
END TYPE 350
ENDFILE. 351
ENTRY 353
ENUM/END ENUM (Fortran 2003) 356
EQUIVALENCE 357
ERROR STOP (Fortran 2008) 359
EXIT 361
EXTERNAL 363
FLUSH (Fortran 2003) 364
FORALL 366

Interpreting the FORALL statement 368
Loop parallelization 368

FORALL (construct) 369
FORMAT 371

Character format specification 372
FUNCTION 373

Recursion 377
Elemental procedures. 377

GO TO (assigned) 377
GO TO (computed) 379
GO TO (unconditional) 380

Contents v

IF (arithmetic) 380
IF (block) 381
IF (logical) 382
IMPLICIT 383
IMPORT (Fortran 2003) 385
INQUIRE. 386
INTEGER 394
INTENT 397
INTERFACE. 400
INTRINSIC 402
LOGICAL 403
MODULE 407
MODULE PROCEDURE (Fortran 2008). 408
NAMELIST 408
NULLIFY. 410
OPEN 410
OPTIONAL 417
PARAMETER 419
PAUSE 420
POINTER (Fortran 90) 421
POINTER (integer) (IBM extension) 423
PRINT. 424

Implied-DO List 426
PRIVATE 426
PROCEDURE 428
PROCEDURE declaration (Fortran 2003) 429
PROGRAM 432
PROTECTED (Fortran 2003) 432
PUBLIC 434
READ 435

Implied-DO List 443
REAL 443
RECORD (IBM extension) 447
RETURN 448
REWIND 450
SAVE 451
SELECT CASE 453
SELECT TYPE (Fortran 2003) 454
SEQUENCE 455
Statement Function 456
STATIC (IBM extension) 457
STOP 459
SUBMODULE (Fortran 2008) 461
SUBROUTINE 462
TARGET 465
TYPE 466
Type Declaration 470
Type Guard (Fortran 2003) 477
USE 478
VALUE (Fortran 2003) 482
VECTOR (IBM extension) 483
VIRTUAL (IBM extension) 483
VOLATILE 484
WAIT (Fortran 2003) 486
WHERE 488
WRITE 490

Implied-DO List 496

Chapter 12. Directives (IBM extension) 497
Comment and noncomment form directives . . . 497

Comment form directives 497

Noncomment form directives 499
Directives and optimization 500

Assertive directives 500
Directives for Loop Optimization 500

Detailed directive descriptions. 500
ALIGN 500
ASSERT 501
BLOCK_LOOP 504
CNCALL 505
COLLAPSE 506
EJECT 508
EXECUTION_FREQUENCY (IBM extension) 508
EXPECTED_VALUE 509
FUNCTRACE_XLF_CATCH 510
FUNCTRACE_XLF_ENTER. 511
FUNCTRACE_XLF_EXIT 511
IGNORE_TKR (IBM extension) 512
INCLUDE 513
INDEPENDENT 515
#LINE 518
LOOPID 520
MEM_DELAY 521
NEW 521
NOFUNCTRACE 522
NOSIMD 524
NOVECTOR. 524
PERMUTATION 525
@PROCESS 526
SNAPSHOT 527
SOURCEFORM. 528
STREAM_UNROLL 529
SUBSCRIPTORDER 531
UNROLL 533
UNROLL_AND_FUSE 534

Chapter 13. Hardware-specific
directives 537
Cache control 537

CACHE_ZERO 537
DCBF 537
DCBFL 538
DCBFLP 538
DCBST 538
EIEIO 539
ISYNC. 539
LIGHT_SYNC 539

PREFETCH 540
DCBTSTT 540
DCBTT 541
DEFAULT_PREFETCH_DEPTH 541
DEPTH_ATTAINMENT_URGENCY 542
HARDWARE_TRANSIENT_ENABLE 543
HARDWARE_UNIT_COUNT_ENABLE . . . 543
LOAD_STREAM_DISABLE. 543
LOAD_TRANSIENT_ENABLE 544
PARTIAL_DCBT 544
PREFETCH_BY_LOAD 545
PREFETCH_BY_STREAM 545
PREFETCH_FOR_LOAD 546
PREFETCH_FOR_STORE 546
PREFETCH_GET_DSCR_REGISTER 546

vi XL Fortran: Language Reference for Big Endian Distributions

PREFETCH_SET_DSCR_REGISTER(VALUE) . . 547
PROTECTED_STORE_STREAM_SET 547
PROTECTED_STREAM_COUNT 548
PROTECTED_STREAM_COUNT_DEPTH . . . 548
PROTECTED_STREAM_GO 549
PROTECTED_STREAM_SET 550
PROTECTED_STREAM_STRIDE 550
PROTECTED_STREAM_STOP. 551
PROTECTED_STREAM_STOP_ALL 551
PROTECTED_UNLIMITED_STORE_STREAM
_SET 552
PROTECTED_UNLIMITED_STREAM_SET . . 552
PROTECTED_UNLIMITED_STREAM_SET_GO 553
SET_PREFETCH_UNIT_COUNT 554
SOFTWARE_TRANSIENT_ENABLE. 554
SOFTWARE_UNIT_COUNT_ENABLE 554
STORE_TRANSIENT_ENABLE 555
STRIDE_N_STREAM_ENABLE 555
TRANSIENT_PROTECTED_STREAM_COUNT
_DEPTH 556
TRANSIENT_UNLIMITED_PROTECTED
_STREAM_DEPTH 556
UNLIMITED_PROTECTED_STREAM_DEPTH 556
Examples 557

Chapter 14. Intrinsic procedures . . . 559
Classes of intrinsic procedures. 559

Inquiry intrinsic functions 559
Elemental intrinsic procedures. 559
System inquiry intrinsic functions (IBM
extension) 561
Transformational intrinsic functions 561
Intrinsic subroutines 561

Data representation models. 562
Integer bit model 562
Integer data model 562
Real data model 563

Detailed descriptions of intrinsic procedures . . . 564
ABORT() (IBM extension) 564
ABS(A) 565
ACHAR(I, KIND) 565
ACOS(X) 566
ACOSD(X) (IBM extension). 567
ACOSH(X) (Fortran 2008) 568
ADJUSTL(STRING) 568
ADJUSTR(STRING) 569
AIMAG(Z), IMAG(Z). 569
AINT(A, KIND) 570
ALIGNX(K,M) (IBM extension) 571
ALL(MASK, DIM) 571
ALLOCATED(X) 572
ANINT(A, KIND) 573
ANY(MASK, DIM) 574
ASIN(X) 574
ASIND(X) (IBM extension) 575
ASINH(X) (Fortran 2008) 576
ASSOCIATED(POINTER, TARGET) 577
ATAN(X) 578
ATAN(Y, X) (Fortran 2008) 579
ATAN2(Y, X) 579
ATAN2D(Y, X) (IBM extension) 580

ATAND(X) (IBM extension). 581
ATANH(X) (Fortran 2008) 582
BTEST(I, POS) 582
BIT_SIZE(I) 583
CEILING(A, KIND) 584
CHAR(I, KIND) 584
CMPLX(X, Y, KIND) 585
COMMAND_ARGUMENT_COUNT() (Fortran
2003) 586
CONJG(Z) 587
COS(X) 587
COSD(X) (IBM extension) 588
COSH(X) 589
COUNT(MASK, DIM, KIND) 590
CPU_TIME(TIME) (Fortran 95) 591
CSHIFT(ARRAY, SHIFT, DIM) 592
CVMGx(TSOURCE, FSOURCE, MASK) (IBM
extension) 593
DATE_AND_TIME(DATE, TIME, ZONE,
VALUES) 594
DBLE(A) 596
DCMPLX(X, Y) (IBM extension) 596
DIGITS(X) 597
DIM(X, Y) 598
DOT_PRODUCT(VECTOR_A, VECTOR_B) . . 599
DPROD(X, Y) 599
DSHIFTL(I, J, SHIFT) (Fortran 2008) 600
DSHIFTR(I, J, SHIFT) (Fortran 2008) 601
EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM) 601
EPSILON(X) 603
ERF(X) (Fortran 2008) 604
ERFC(X) (Fortran 2008) 605
ERFC_SCALED(X) (Fortran 2008). 605
EXECUTE_COMMAND_LINE(COMMAND,
WAIT, EXITSTAT, CMDSTAT, CMDMSG)
(Fortran 2008) 606
EXP(X) 608
EXPONENT(X) 608
EXTENDS_TYPE_OF(A, MOLD) (Fortran 2003) 609
FINDLOC(ARRAY, VALUE, DIM, MASK, KIND,
BACK) or FINDLOC(ARRAY, VALUE, MASK,
KIND, BACK) (Fortran 2008) 610
FLOOR(A, KIND) 612
FRACTION(X) 612
GAMMA(X) (Fortran 2008) 613
GET_COMMAND(COMMAND, LENGTH,
STATUS) (Fortran 2003) 614
GET_COMMAND_ARGUMENT(NUMBER,
VALUE, LENGTH, STATUS) (Fortran 2003) . . 615
GET_ENVIRONMENT_VARIABLE(NAME,
VALUE, LENGTH, STATUS, TRIM_NAME)
(Fortran 2003) 616
GETENV(NAME, VALUE) (IBM extension) . . 617
HFIX(A) (IBM extension) 617
HYPOT(X, Y) (Fortran 2008) 618
HUGE(X). 618
IACHAR(C, KIND) 619
IAND(I, J) 620
IBCLR(I, POS) 620
IBITS(I, POS, LEN) 621
IBM2GCCLDBL(A) (IBM extension) 622

Contents vii

IBM2GCCLDBL_CMPLX(A) 622
IBSET(I, POS) 623
ICHAR(C, KIND) 624
IEOR(I, J) 625
ILEN(I) (IBM extension) 625
IMAG(Z) (IBM extension) 626
INDEX(STRING, SUBSTRING, BACK, KIND) 626
INT(A, KIND) 627
INT2(A) (IBM extension) 628
IOR(I, J) 629
IS_CONTIGUOUS(ARRAY) (Fortran 2008). . . 630
IS_IOSTAT_END(I) (Fortran 2003) 630
IS_IOSTAT_EOR(I) (Fortran 2003). 631
ISHFT(I, SHIFT) 631
ISHFTC(I, SHIFT, SIZE) 632
KIND(X) 633
LBOUND(ARRAY, DIM, KIND) 633
LEADZ(I) (Fortran 2008). 635
LEN(STRING, KIND). 635
LEN_TRIM(STRING, KIND) 636
LGAMMA(X) (IBM extension) 637
LGE(STRING_A, STRING_B) 637
LGT(STRING_A, STRING_B) 638
LLE(STRING_A, STRING_B) 639
LLT(STRING_A, STRING_B) 639
LOC(X) (IBM extension) 640
LOG(X) 641
LOG_GAMMA(X) (Fortran 2008) 642
LOG10(X) 643
LOGICAL(L, KIND) 644
LSHIFT(I, SHIFT) (IBM extension) 644
MASKL(I, KIND) (Fortran 2008) 645
MASKR(I, KIND) (Fortran 2008) 645
MATMUL(MATRIX_A, MATRIX_B, MINDIM) 646
MAX(A1, A2, A3, ...) 648
MAXEXPONENT(X) 649
MAXLOC(ARRAY, DIM, MASK, KIND, BACK)
or MAXLOC(ARRAY, MASK, KIND, BACK) . . 649
MAXVAL(ARRAY, DIM, MASK) or
MAXVAL(ARRAY, MASK) 651
MERGE(TSOURCE, FSOURCE, MASK). . . . 653
MERGE_BITS(I, J, MASK) (Fortran 2008) . . . 654
MIN(A1, A2, A3, ...) 654
MINEXPONENT(X) 655
MINLOC(ARRAY, DIM, MASK, KIND, BACK)
or MINLOC(ARRAY, MASK, KIND, BACK) . . 656
MINVAL(ARRAY, DIM, MASK) or
MINVAL(ARRAY, MASK) 658
MOD(A, P) 659
MODULO(A, P) 660
MOVE_ALLOC(FROM, TO) (Fortran 2003) . . 661
MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) 661
NEAREST(X,S) 662
NEW_LINE(A) (Fortran 2003) 663
NINT(A, KIND) 663
NOT(I) 664
NULL(MOLD) 665
NUM_PARTHDS() (IBM extension) 666
NUM_USRTHDS() (IBM extension) 667
NUMBER_OF_PROCESSORS(DIM) (IBM
extension) 667

PACK(ARRAY, MASK, VECTOR) 668
POPCNT(I) (Fortran 2008) 669
POPPAR(I) (Fortran 2008) 670
PRECISION(X) 670
PRESENT(A) 671
PROCESSORS_SHAPE() (IBM extension) . . . 672
PRODUCT(ARRAY, DIM, MASK) or
PRODUCT(ARRAY, MASK) 672
QCMPLX(X, Y) (IBM extension) 674
QEXT(A) (IBM extension) 675
RADIX(X) 675
RAND() (IBM extension) 676
RANDOM_NUMBER(HARVEST) 677
RANDOM_SEED(SIZE, PUT, GET,
GENERATOR) 677
RANGE(X) 678
RANK(A) (Technical Specification) 679
REAL(A, KIND) 680
REPEAT(STRING, NCOPIES) 681
RESHAPE(SOURCE, SHAPE, PAD, ORDER) 682
RRSPACING(X) 683
RSHIFT(I, SHIFT) (IBM extension) 683
SAME_TYPE_AS(A,B) (Fortran 2003) 684
SCALE(X,I) 685
SCAN(STRING, SET, BACK, KIND) 685
SELECTED_CHAR_KIND(NAME) (Fortran
2003) 686
SELECTED_INT_KIND(R) 687
SELECTED_REAL_KIND(P, R, RADIX) 687
SET_EXPONENT(X,I). 689
SHAPE(SOURCE, KIND) 690
SHIFTA(I, SHIFT) (Fortran 2008) 691
SHIFTL(I, SHIFT) (Fortran 2008) 691
SHIFTR(I, SHIFT) (Fortran 2008) 692
SIGN(A, B) 692
SIGNAL(I, PROC) (IBM extension) 694
SIN(X). 694
SIND(X) (IBM extension) 695
SINH(X) 696
SIZE(ARRAY, DIM, KIND) 696
SIZEOF(A) (IBM extension). 698
SPACING(X) 699
SPREAD(SOURCE, DIM, NCOPIES). 699
SQRT(X) 700
SRAND(SEED) (IBM extension) 701
SUM(ARRAY, DIM, MASK) or SUM(ARRAY,
MASK) 702
SYSTEM(CMD, RESULT) (IBM extension) . . . 704
SYSTEM_CLOCK(COUNT, COUNT_RATE,
COUNT_MAX) 704
TAN(X) 705
TAND(X) (IBM extension) 706
TANH(X). 707
TINY(X) 707
TRAILZ(I) (Fortran 2008) 708
TRANSFER(SOURCE, MOLD, SIZE). 709
TRANSPOSE(MATRIX) 710
TRIM(STRING) 711
UBOUND(ARRAY, DIM, KIND) 711
UNPACK(VECTOR, MASK, FIELD) 712
VERIFY(STRING, SET, BACK, KIND) 713

viii XL Fortran: Language Reference for Big Endian Distributions

Chapter 15. Hardware-specific
intrinsic procedures (IBM extension) . 715
Cryptography procedures 715

Advanced Encryption Standard procedures . . 715
Secure Hash Algorithm procedures 717
Miscellaneous procedures 719

BPERMD(MASK, SOURCE) 722
CMPB(X,Y) 722
DIVDE(X,Y) 723
DIVWE(X,Y). 724
FCFI(I) 724
FCFID(I) 725
FCFUD(I). 725
FCTID(X). 726
FCTIDZ(X) 727
FCTIW(X) 727
FCTIWZ(X) 727
FCTUDZ(X) 728
FCTUWZ(X). 728
FMADD(A, X, Y) 729
FMSUB(A, X, Y) 730
FNABS(X) 730
FNMADD(A, X, Y) 731
FNMSUB(A, X, Y) 731
FRE(X) 732
FRES(X) 732
FRIC(A) 733
FRIM(A) 733
FRIN(A) 734
FRIP(A) 734
FRIZ(A) 735
FRSQRTE(X). 735
FRSQRTES(X) 736
FSEL(X,Y,Z) 736
MTFSF(MASK, R) 737
MTFSFI(BF, I) 737
MULHY(RA, RB) 737
POPCNTB(I) 738
ROTATELI(RS, IS, SHIFT, MASK) 739
ROTATELM(RS, SHIFT, MASK) 739
SETFSB0(BT) 740
SETFSB1(BT) 740
SFTI(M, Y) 740
SWDIV(X,Y) 741
SWDIV_NOCHK(X,Y) 742
TRAP(A, B, TO) 743

Chapter 16. The
TRANSACTIONAL_MEMORY intrinsic
module (IBM extension) 745
Transaction begin and end functions. 746

TM_SIMPLE_BEGIN() 746
TM_BEGIN(TM_BUFF) 746
TM_END() 747

Transaction abort functions 747
TM_ABORT() 747
TM_NAMED_ABORT(CODE) 747

Transaction inquiry functions 748
TM_IS_USER_ABORT(TM_BUFF) 748

TM_IS_NAMED_USER_ABORT(TM_BUFF,
CODE) 748
TM_IS_ILLEGAL(TM_BUFF) 749
TM_IS_FOOTPRINT_EXCEEDED(TM_BUFF) 749
TM_NESTING_DEPTH(TM_BUFF) 750
TM_IS_NESTED_TOO_DEEP(TM_BUFF) . . . 750
TM_IS_CONFLICT(TM_BUFF) 751
TM_IS_FAILURE_PERSISTENT(TM_BUFF) . . 751
TM_FAILURE_ADDRESS() 752
TM_FAILURE_CODE(TM_BUFF) 752

Chapter 17. Vector intrinsic
procedures (IBM extension) 755
VEC_ABS(ARG1) 755
VEC_ABSS(ARG1). 755
VEC_ADD(ARG1, ARG2) 756
VEC_ADD_U128 (ARG1, ARG2) 756
VEC_ADDC_U128 (ARG1, ARG2) 757
VEC_ADDE_U128 (ARG1, ARG2, ARG3) 758
VEC_ADDEC_U128 (ARG1, ARG2, ARG3) . . . 758
VEC_ADDC(ARG1, ARG2) 759
VEC_ADDS(ARG1, ARG2) 759
VEC_ALL_EQ(ARG1, ARG2) 760
VEC_ALL_GE(ARG1, ARG2) 760
VEC_ALL_GT(ARG1, ARG2) 761
VEC_ALL_IN(ARG1, ARG2) 761
VEC_ALL_LE(ARG1, ARG2) 762
VEC_ALL_LT(ARG1, ARG2) 762
VEC_ALL_NAN(ARG1) 763
VEC_ALL_NE(ARG1, ARG2) 763
VEC_ALL_NGE(ARG1, ARG2) 764
VEC_ALL_NGT(ARG1, ARG2) 764
VEC_ALL_NLE(ARG1, ARG2). 765
VEC_ALL_NLT(ARG1, ARG2). 765
VEC_ALL_NUMERIC(ARG1) 766
VEC_AND(ARG1, ARG2) 766
VEC_ANDC(ARG1, ARG2) 767
VEC_ANY_EQ(ARG1, ARG2) 767
VEC_ANY_GE(ARG1, ARG2) 768
VEC_ANY_GT(ARG1, ARG2) 768
VEC_ANY_LE(ARG1, ARG2) 769
VEC_ANY_LT(ARG1, ARG2) 769
VEC_ANY_NAN(ARG1) 770
VEC_ANY_NE(ARG1, ARG2) 770
VEC_ANY_NGE(ARG1, ARG2) 770
VEC_ANY_NGT(ARG1, ARG2) 771
VEC_ANY_NLE(ARG1, ARG2) 771
VEC_ANY_NLT(ARG1, ARG2) 772
VEC_ANY_NUMERIC(ARG1) 772
VEC_ANY_OUT(ARG1, ARG2) 773
VEC_AVG(ARG1, ARG2) 773
VEC_BPERM (ARG1, ARG2) 774
VEC_CEIL(ARG1) 775
VEC_CMPB(ARG1, ARG2) 775
VEC_CMPEQ(ARG1, ARG2) 776
VEC_CMPGE(ARG1, ARG2) 777
VEC_CMPGT(ARG1, ARG2) 777
VEC_CMPLE(ARG1, ARG2) 778
VEC_CMPLT(ARG1, ARG2) 779
VEC_CNTLZ(ARG1) 779
VEC_CONVERT(V, MOLD). 780

Contents ix

VEC_CPSGN(ARG1, ARG2) 780
VEC_CTD(ARG1, ARG2) 781
VEC_CTF(ARG1, ARG2). 781
VEC_CTS(ARG1, ARG2). 782
VEC_CTSL(ARG1, ARG2) 782
VEC_CTU(ARG1, ARG2) 783
VEC_CTUL(ARG1, ARG2) 784
VEC_CVF(ARG1) 784
VEC_DIV(ARG1, ARG2). 785
VEC_DSS(ARG1) 785
VEC_DSSALL 785
VEC_DST(ARG1, ARG2, ARG3) 786
VEC_DSTST(ARG1, ARG2, ARG3) 786
VEC_DSTSTT(ARG1, ARG2, ARG3) 787
VEC_DSTT(ARG1, ARG2, ARG3) 787
VEC_EQV(ARG1, ARG2) 788
VEC_EXPTE(ARG1) 788
VEC_EXTRACT(ARG1, ARG2) 789
VEC_FLOOR(ARG1) 789
VEC_GBB(ARG1) 790
VEC_INSERT(ARG1, ARG2, ARG3) 790
VEC_LD(ARG1, ARG2) 791
VEC_LDE(ARG1, ARG2) 792
VEC_LDL(ARG1, ARG2) 792
VEC_LOGE(ARG1) 793
VEC_LVSL(ARG1, ARG2) 793
VEC_LVSR(ARG1, ARG2) 794
VEC_MADD(ARG1, ARG2, ARG3) 794
VEC_MADDS(ARG1, ARG2, ARG3) 795
VEC_MAX(ARG1, ARG2) 795
VEC_MERGEH(ARG1, ARG2) 796
VEC_MERGEL(ARG1, ARG2) 796
VEC_MFVSCR 797
VEC_MIN(ARG1, ARG2) 797
VEC_MLADD(ARG1, ARG2, ARG3) 798
VEC_MRADDS(ARG1, ARG2, ARG3) 798
VEC_MSUB(ARG1, ARG2, ARG3) 799
VEC_MSUM(ARG1, ARG2, ARG3) 800
VEC_MSUMS(ARG1, ARG2, ARG3) 800
VEC_MTVSCR(ARG1) 801
VEC_MUL(ARG1, ARG2) 801
VEC_MULE(ARG1, ARG2) 802
VEC_MULO(ARG1, ARG2) 802
VEC_NABS(ARG1) 803
VEC_NAND(ARG1, ARG2). 803
VEC_NEG(ARG1) 804
VEC_NMADD(ARG1, ARG2, ARG3) 804
VEC_NMSUB(ARG1, ARG2, ARG3) 805
VEC_NOR(ARG1, ARG2) 806
VEC_OR(ARG1, ARG2) 806
VEC_ORC(ARG1, ARG2) 806
VEC_PACK(ARG1, ARG2) 807
VEC_PACKPX(ARG1, ARG2) 808
VEC_PACKS(ARG1, ARG2) 808
VEC_PACKSU(ARG1, ARG2) 809
VEC_PERM(ARG1, ARG2, ARG3) 810
VEC_PERMI(ARG1, ARG2, ARG3) 810
VEC_POPCNT(ARG1) 811
VEC_PROMOTE(ARG1, ARG2) 811
VEC_RE(ARG1) 812
VEC_RL(ARG1, ARG2) 812

VEC_ROUND(ARG1) 813
VEC_ROUNDC(ARG1) 813
VEC_ROUNDM(ARG1) 814
VEC_ROUNDP(ARG1) 814
VEC_ROUNDZ(ARG1) 814
VEC_RSQRTE(ARG1). 814
VEC_SEL(ARG1, ARG2, ARG3) 815
VEC_SL(ARG1, ARG2) 815
VEC_SLD(ARG1, ARG2, ARG3) 816
VEC_SLDW(ARG1, ARG2, ARG3) 816
VEC_SLL(ARG1, ARG2) 817
VEC_SLO(ARG1, ARG2) 818
VEC_SPLAT(ARG1, ARG2) 818
VEC_SPLATS(ARG1) 819
VEC_SPLAT_S8(ARG1) 819
VEC_SPLAT_S16(ARG1). 819
VEC_SPLAT_S32(ARG1). 820
VEC_SPLAT_U8(ARG1) 820
VEC_SPLAT_U16(ARG1) 821
VEC_SPLAT_U32(ARG1) 821
VEC_SQRT(ARG1) 822
VEC_SR(ARG1, ARG2) 822
VEC_SRA(ARG1, ARG2) 823
VEC_SRL(ARG1, ARG2) 823
VEC_SRO(ARG1, ARG2) 824
VEC_ST(ARG1, ARG2, ARG3) 824
VEC_STE(ARG1, ARG2, ARG3) 825
VEC_STL(ARG1, ARG2, ARG3) 826
VEC_SUB(ARG1, ARG2). 826
VEC_SUB_U128 (ARG1, ARG2) 827
VEC_SUBC_U128 (ARG1, ARG2) 828
VEC_SUBE_U128 (ARG1, ARG2, ARG3) 828
VEC_SUBEC_U128 (ARG1, ARG2, ARG3) 829
VEC_SUBC(ARG1, ARG2) 830
VEC_SUBS(ARG1, ARG2) 830
VEC_SUM2S(ARG1, ARG2) 831
VEC_SUM4S(ARG1, ARG2) 831
VEC_SUMS(ARG1, ARG2) 832
VEC_TRUNC(ARG1) 832
VEC_UNPACKH(ARG1). 833
VEC_UNPACKL(ARG1) 833
VEC_XL(ARG1, ARG2) 834
VEC_XL_BE(ARG1, ARG2) 835
VEC_XLD2(ARG1, ARG2) 836
VEC_XLDS(ARG1, ARG2) 837
VEC_XLW4(ARG1, ARG2) 837
VEC_XOR(ARG1, ARG2) 838
VEC_XST(ARG1, ARG2, ARG3) 839
VEC_XST_BE(ARG1, ARG2, ARG3) 839
VEC_XSTD2(ARG1, ARG2, ARG3) 840
VEC_XSTW4(ARG1, ARG2, ARG3) 840

Chapter 18. Language interoperability
features 843
Interoperability of types 843

Intrinsic types 843
Derived types 843

Interoperability of variables 844
Interoperable variables in asynchronous
communication (Technical Specification) . . . 844

Interoperability of common blocks 845

x XL Fortran: Language Reference for Big Endian Distributions

Interoperability of procedures 846
Optional arguments (Technical Specification) 847
Allocatable and pointer arguments (Technical
Specification) 847
Assumed-type objects (Technical Specification) 851
Assumed-rank objects (Technical Specification) 853

The ISO_C_BINDING module 856
Constants for use as kind type parameters . . 856
Character constants 857
Other constants. 858
Types 858
Procedures 858

The ISO_Fortran_binding.h header file (Technical
Specification) 861

Type definitions and structures 862
Macros 864
Functions. 864

Binding labels 875

Chapter 19. The ISO_FORTRAN_ENV
intrinsic module 877
ISO_FORTRAN_ENV constants 877

CHARACTER_KINDS (Fortran 2008) 877
CHARACTER_STORAGE_SIZE 877
ERROR_UNIT 877
FILE_STORAGE_SIZE 878
INT8 (Fortran 2008) 878
INT16 (Fortran 2008) 878
INT32 (Fortran 2008) 878
INT64 (Fortran 2008) 879
INTEGER_KINDS (Fortran 2008) 879
INPUT_UNIT 879
IOSTAT_END 879
IOSTAT_EOR 880
IOSTAT_INQUIRE_INTERNAL_UNIT (Fortran
2008) 880
LOGICAL_KINDS (Fortran 2008) 881
NUMERIC_STORAGE_SIZE 881
OUTPUT_UNIT 881
REAL32 (Fortran 2008) 881
REAL64 (Fortran 2008) 882
REAL128 (Fortran 2008) 882
REAL_KINDS (Fortran 2008) 882

ISO_FORTRAN_ENV functions 882
COMPILER_OPTIONS (Fortran 2008) 883
COMPILER_VERSION (Fortran 2008) 883

Chapter 20. Floating-point control and
inquiry procedures 885
fpgets fpsets 885
Efficient floating-point control and inquiry
procedures 886

xlf_fp_util floating-point procedures 888
IEEE Modules and support (Fortran 2003) 891

Compiling and exception handling 891
General rules for implementing IEEE modules 892
IEEE derived data types and constants 892
IEEE Operators 894
IEEE procedures 894
Rules for floating-point status 917

Examples 919

Chapter 21. Service and utility
procedures (IBM extension) 923
General service and utility procedures 923
List of service and utility procedures 924

alarm_(time, func) 924
bic_(X1, X2) 925
bis_(X1, X2) 925
bit_(X1, X2) 926
clock_() 926
ctime_(STR, TIME) 926
date() 927
dtime_(dtime_struct) 927
etime_(etime_struct) 928
exit_(exit_status) 928
fdate_(str) 928
fiosetup_(unit, command, argument) 929
flush_(lunit) 930
ftell_(lunit) 930
ftell64_(lunit) 931
getarg(i1,c1) 931
getcwd_(name) 932
getfd(lunit) 932
getgid_() 933
getlog_(name) 933
getpid_() 933
getuid_() 934
global_timef() 934
gmtime_(stime, tarray) 934
hostnm_(name) 935
iargc() 935
idate_(idate_struct) 936
ierrno_() 936
irand(). 936
irtc() 937
itime_(itime_struct) 937
jdate() 937
lenchr_(str) 938
lnblnk_(str) 938
ltime_(stime, tarray) 939
mclock() 939
qsort_(array, len, isize, compar) 939
qsort_down(array, len, isize) 940
qsort_up(array, len, isize) 941
rtc() 941
setrteopts(c1) 942
sleep_(sec) 942
time_() 942
timef() 943
timef_delta(t) 943
umask_(cmask) 943
usleep_(msec) 944
xl__trbk() 944

The XLF_POSIX_BINDINGS module 944
Types 945
Named constants 945
Abstract interfaces. 950
Procedures 951

Contents xi

Chapter 22. Extensions for source
compatibility (IBM extension) 999
Record structures 999

Declaring record structures 1000
Storage mapping 1002

Union and map (IBM extension). 1003

Appendix. 1007
Compatibility across standards 1007

Fortran 90 compatibility 1008
Obsolescent features. 1008

Deleted features 1010
ASCII and EBCDIC character sets 1010

Notices 1019
Trademarks and service marks 1021

Glossary 1023

Index 1043

xii XL Fortran: Language Reference for Big Endian Distributions

About this document

This document, which is part of the XL Fortran documentation suite, describes the
syntax, semantics, and IBM® implementation of the Fortran programming language
on the Linux operating system. Although XL Fortran implementations conform to
partial Fortran 2008, full Fortran 2003, and other specifications maintained by the
ISO standards for the Fortran programming language, they also incorporate many
extensions to the core language. These extensions have been implemented with the
aims of enhancing usability in specific operating environments, assuring
compatibility with other compilers, and supporting new hardware capabilities.

Who should read this document
This document is a reference for users who already have experience programming
in Fortran. Users new to Fortran can still use this document to find information on
the language and features unique to XL Fortran; however, it does not aim to teach
programming concepts nor to promote specific programming practices.

How to use this document
While this document covers both standard and implementation-specific features of
XL Fortran, it does not include information on the following topics, which are
covered in other documents:
v Installation, system requirements, last-minute updates: see the XL Fortran

Installation Guide and product README.
v Overview of XL Fortran features: see the Getting Started with XL Fortran.
v Compiler setup, compiling and running programs, compiler options, diagnostics:

see the XL Fortran Compiler Reference.
v Optimizing, porting, OpenMP and SMP programming: see the XL Fortran

Optimization and Programming Guide.
v Operating system commands related to the use of the compiler: consult your

man page help and documentation of the Linux specific distribution.

How this document is organized
The following lists group information into sections that provide details on
particular language topics and implementations:
v XL Fortran language elements:

– XL Fortran for Linux
– XL Fortran language fundamentals
– Intrinsic data types
– Derived types
– Arrays concepts
– Expressions and assignment
– Execution control
– Program units and procedures
– XL Fortran Input/Output
– Input/Output formatting

© Copyright IBM Corp. 1996, 2014 xiii

– Statements and attributes
– Directives (IBM extension)
– Intrinsic procedures
– Vector intrinsic procedures (IBM extension)
– Language interoperability features (Fortran 2003)
– The ISO_FORTRAN_ENV intrinsic module
– Extensions for source compatibility (IBM extension)

v Procedures that provide hardware-related functionality, and additional features
for those already familiar with the Fortran language:
– Floating-point control and inquiry procedures
– Hardware–specific directives
– Hardware–specific intrinsic procedures (IBM extension)
– Service and utility procedures (IBM extension)

v The appendices provide information on compatibility across standards for users
of earlier versions of Fortran, and the ASCII and EBCDIC character sets
mapping table.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for Linux, V15.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

xiv XL Fortran: Language Reference for Big Endian Distributions

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Icon
Bracket
separator text Meaning

F2008

F2008

N/A The text describes an IBM XL Fortran implementation of
the Fortran 2008 standard.

Fortran 2003
begins / ends

The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard, and it applies to all later
standards.

IBM extension
begins / ends

The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

TS

TS

N/A The text describes a feature in a Technical Specification
that is not part of the current Fortran standard.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a command, directive, or statement.
The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───�� symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

About this document xv

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword
optional_argument

��

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

�� keyword required_argument1
required_argument2

��

If choosing one of the items is optional, the entire stack is shown below the
main path.

�� keyword
optional_argument1
optional_argument2

��

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

�� �

,

keyword repeatable_argument ��

v The item that is the default is shown above the main path.

�� keyword
default_argument
alternate_argument ��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

xvi XL Fortran: Language Reference for Big Endian Distributions

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

��
(1)

EXAMPLE char_constant a
b c

d

�

,

e name_list ��

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

About this document xvii

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
v The term free source form format often appears as free source form.
v The term fixed source form format often appears as fixed source form.
v The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1 Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.0/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are located by default in the /opt/ibm/xlf/15.1.0/doc/LANG/
pdf/ directory, where LANG is one of en_US or ja_JP. The PDF files are also
available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036672.
The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

Document title
PDF file
name Description

IBM XL Fortran for Linux,
V15.1 Installation Guide,
SC27-4253-01

install.pdf Contains information for installing XL Fortran
and configuring your environment for basic
compilation and program execution.

xviii XL Fortran: Language Reference for Big Endian Distributions

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.0/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.0/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files (continued)

Document title
PDF file
name Description

Getting Started with IBM
XL Fortran for Linux,
V15.1, SC27-4252-01

getstart.pdf Contains an introduction to the XL Fortran
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for Linux,
V15.1 Compiler Reference,
SC27-4254-01

compiler.pdf Contains information about the various
compiler options and environment variables.

IBM XL Fortran for Linux,
V15.1 Language Reference,
SC27-4255-01

langref.pdf Contains information about the Fortran
programming language as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for Linux,
V15.1 Optimization and
Programming Guide,
SC27-4256-01

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls, floating-point
operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran including IBM Redbooks® publications,
white papers, tutorials, documentation errata, and other articles, is available on the
web at:

http://www.ibm.com/support/docview.wss?uid=swg27036672

Note: Documentation errata is reflected only in the English version of the
information center.

For more information about Fortran, see the Fortran café at https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/html/
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa.

Standards and specifications
XL Fortran is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.
v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.

(This information uses its informal name, Fortran 90.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)
v Information technology - Programming languages - Fortran - Part 1: Base language,

ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

About this document xix

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 4.0 (Partial support), available at
http://www.openmp.org

Other IBM information
v ESSL for AIX® V5.1/ESSL for Linux on POWER® V5.1 Guide and Reference available

at the Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL
web page.

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/overview/software/rational/
xl_fortran_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://www.ibm.com/software/products/us/en/xlfortran-linux.

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments by email to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xx XL Fortran: Language Reference for Big Endian Distributions

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_fortran_for_linux
http://www.ibm.com/software/products/us/en/xlfortran-linux

Chapter 1. XL Fortran for Linux

The XL Fortran Language Reference is part of a documentation suite that offers
information on installing and using the XL Fortran compiler on Linux. This
document defines the syntax, semantics, and restrictions you must follow to write
valid XL Fortran programs.

Fortran (FORmula TRANslation) is a high-level programming language primarily
useful for engineering, mathematical, and scientific applications involving numeric
computations.

XL Fortran implements partial Fortran 2008, full Fortran 2003, and other language
specifications maintained by the ISO standards for the Fortran programming
language. XL Fortran also incorporates many extensions to the core language.
These extensions have been implemented with the aims of enhancing usability in
specific operating environments, assuring compatibility with other compilers, and
supporting new hardware capabilities. A program that compiles correctly on one
standard-conforming compiler should compile and execute correctly under all
other conforming compilers, insofar as hardware differences permit.

The compiler detects most nonconformances to the XL Fortran language rules. The
compiler cannot detect all combinations of syntax and semantic nonconformances
because the diagnosis might hinder performance. XL Fortran programs that contain
these undiagnosed nonconformances are not valid, even though they might run as
expected.

Fortran language standards

Fortran 2008
Segments of this document contain information based on the Fortran 2008
standard. The standard is open to continual interpretation, modification and
revision. IBM reserves the right to modify the behavior of any features of this
product to conform with future interpretations of this standard.

The Fortran Standards Committee responds to questions of interpretation about
aspects of Fortran. Some questions can relate to language features already
implemented in the XL Fortran compiler. Responses provided by the committee
relating to these language features can result in changes to future releases of the
XL Fortran compiler. These changes may result in incompatibilities with previous
releases of the product.

Some of the Fortran 2008 features are as follows:
v BLOCK construct
v Complex part designators
v ERROR STOP statement
v Implied-shape arrays
v Pointer dummy argument enhancements
v Submodules
v Type specification for index variables in “FORALL” on page 366 and “FORALL

(construct)” on page 369

© Copyright IBM Corp. 1996, 2014 1

v DSHIFTL(I, J, SHIFT), DSHIFTR(I, J, SHIFT), MASKL(I, KIND), MASKR(I,
KIND), MERGE(TSOURCE, FSOURCE, MASK), SHIFTA(I, SHIFT), SHIFTL(I,
SHIFT), SHIFTR(I, SHIFT)

v COTIGUOUS attribute and IS_CONTIGUOUS(ARRAY) intrinsic procedure
v POPCNT(I)
v BACK argument in MAXLOC and MINLOC
v CHARACTER_KINDS, INT8, INT16, INT32, INT64, INTEGER_KINDS,

IOSTAT_INQUIRE_INTERNAL_UNIT, LOGICAL_KINDS, REAL32, REAL64,
REAL128, REAL_KINDS, COMPILER_OPTIONS, and COMPILER_VERSION in
ISO_FORTRAN_ENV intrinsic module

Fortran 2003
Fortran 2003 offers many new features and feature enhancements to Fortran 95.
Some of the major new features in Fortran 2003 are:
v Derived type enhancements
v Object-oriented programming support: type extension, type-bound procedures,

type finalization, abstract and generic interfaces, polymorphism and PASS
attribute

v Scoping and data manipulation enhancements: allocatable components,
VOLATILE attribute, MAX, MIN, MAXLOC, MINLOC, MAXVAL and MINVAL
intrinsics for character type

v Input/Output enhancements: User defined derived type I/O, asynchronous
transfer including the WAIT statement

v Subroutine enhancements: VALUE attribute, Procedure pointers, deferred
CHARACTER length

v Support for IEEE Floating Point Standard (IEEE 1989) exceptions
v Interoperability with the C programming language

Related information
v “Allocatable and pointer components” on page 50

Fortran 95
The Fortran 95 language standard is upward-compatible with the FORTRAN 77
and Fortran 90 language standards, excluding deleted features. Some of the
improvements provided by the Fortran 95 standard are:
v Default initialization
v ELEMENTAL procedures
v The FORALL construct statement
v POINTER initialization
v PURE functions
v Specification expressions

Fortran 90
Fortran 90 offers many new features and feature enhancements to FORTRAN 77.
The following topics outline some of the key features that Fortran 90 brings to the
FORTRAN 77 language:
v Array enhancements
v Control construct enhancements
v Derived types

2 XL Fortran: Language Reference for Big Endian Distributions

v Dynamic behavior
v Free source form
v Modules
v Parameterized data types
v Procedure enhancements
v Pointers

FORTRAN 77
FORTRAN 77 introduced new features and enhancements to FORTRAN 66, for
more information see:
v The full American National Standard FORTRAN 77 language (referred to as

FORTRAN 77), defined in the document American National Standard
Programming Language FORTRAN, ANSI X3.9-1978.

IBM extensions
An IBM extension generally modifies a rule or restriction from a given standards
implementation. In this document, IBM extensions to the Fortran 2008, Fortran
2003, Fortran 95, and Fortran 90 standards are marked as indicated in the
Conventions section under Conventions, Standards, and Documentation.

OpenMP API Version 3.1
The OpenMP API provides additional features which you can use to supplement
the existing FORTRAN 77, Fortran 90, and Fortran 95 language standards.

The OpenMP Architecture Review Board (ARB) responds to questions of
interpretation about aspects of the API. Some of these questions can relate to
interface features implemented in this version of the XL Fortran compiler.
Responses provided by this board relating to the interface can result in changes in
future releases of the XL Fortran compiler. These changes may result in
incompatibilities with previous releases of the product.

You can find information pertaining to the implementation of OpenMP API Version
3.1 in the following sections:
v OpenMP environment variables in the XL Fortran Optimization and Programming

Guide

v SMP Directives in the XL Fortran Optimization and Programming Guide

Standards documents
XL Fortran is designed according to the standards listed in the Standards
documents section. You can refer to these standards for precise definitions of some
of the features found in this document.

Chapter 1. XL Fortran for Linux 3

4 XL Fortran: Language Reference for Big Endian Distributions

Chapter 2. XL Fortran language fundamentals

This section describes the fundamental aspects of an XL Fortran application. Refer
to the following headings for more information:

Characters
The XL Fortran character set consists of letters, digits, and special characters:

Table 4. The XL Fortran character set

Letters Digits Special Characters

A N a n
B O b o
C P c p
D Q d q
E R e r
F S f s
G T g t
H U h u
I V i v
J W j w
K X k x
L Y l y
M Z m z

0
1
2
3
4
5
6
7
8
9

Blank
Tab

= Equal sign
+ Plus sign
- Minus sign
* Asterisk
/ Slash
(Left parenthesis
) Right parenthesis
[Right square bracket
] Left square bracket
, Comma
. Decimal point / period
$ Currency symbol
’ Apostrophe
: Colon
! Exclamation point
" Double quotation mark
% Percent sign
& Ampersand
; Semicolon
? Question mark
< Less than
> Greater than
_ Underscore

The characters have an order known as a collating sequence, which is the
arrangement of characters that determines their sequence order for such processes
as sorting, merging, and comparing. XL Fortran uses American National Standard
Code for Information Interchange (ASCII) to determine the ordinal sequence of
characters. See “ASCII and EBCDIC character sets” on page 1010 for a complete
listing of the ASCII character set.

White space refers to blanks and tabs. The significance of white space depends on
the source format. See “Lines and source formats” on page 8 for details.

A lexical token is a sequence of characters with an indivisible interpretation that
forms a building block of a program. A lexical token can be a keyword, name,
literal constant (not of type complex), operator, label, delimiter, comma, equal sign,
colon, semicolon, percent sign, ::, or =>.

© Copyright IBM Corp. 1996, 2014 5

Names
A name is a sequence of any or all of the following elements:
v Letters (A-Z, a-z)
v Digits (0-9)
v Underscores (_)
v Dollar signs ($)

The first character of a name must not be a digit.

In Fortran 2003, the maximum length of a name is 63 characters. In Fortran 90 and
Fortran 95, the maximum length of a name is 31 characters.

IBM extension

In XL Fortran, the maximum length of a name is 250 characters. Although you can
begin a name with an underscore, the Linux operating system as well as the XL
Fortran compiler and libraries use reserved names that begin with underscores.

The compiler translates all letters in a source program into lowercase unless they
are in a character context. Character context refers to characters within character
literal constants, character-string edit descriptors, and Hollerith constants.

Note: When you specify the -qmixed compiler option, the compiler does not
translate names to lowercase. For example, XL Fortran treats
ia Ia iA IA

the same by default, but treats lower and uppercase letters as distinct if you
specify -qmixed.

End of IBM extension

A name can identify entities such as:
v A variable
v A named constant
v A procedure
v A derived type
v A construct
v A CRITICAL construct
v A program unit
v A common block
v A namelist group

Designators
A designator is a name that identifies a data object followed by zero or more
selectors such as array element selectors, array section selectors, F2008 complex
part selectors F2008 , component selectors, and substring selectors. A subobject
designator identifies the following items:
v An array element
v An array section
v A character substring

6 XL Fortran: Language Reference for Big Endian Distributions

v F2008 A complex part F2008

v A structure component

Operators
In Fortran an expression is comprised of operands and operators. For a detailed
description of Fortran operators, see “Operators and expressions” on page 103

Table 5. XL Fortran operators

Arithmetic Logical

Character Primary

General Relational

Statements
A Fortran statement is a sequence of lexical tokens. Statements are used to form
program units.

The maximum length of a statement in XL Fortran is 34 000 characters.

See Statements and Attributes for more information on statements supported by
XL Fortran.

Statement keywords
A statement keyword is part of the syntax of a statement. A sequence of characters
is not reserved in all contexts. A statement keyword is interpreted as an entity
name if the keyword is used in such a context.

Statement labels
A statement label is a sequence of one to five digits, one of which must be
nonzero, that you can use to identify statements in a Fortran scoping unit. In fixed
source form, a statement label can appear anywhere in columns 1 through 5 of the
initial line of the statement. In free source form, such column restrictions do not
apply.

XL Fortran ignores all characters that appear in columns 1 through 5 on
fixed source form continuation lines.

Giving the same label to more than one statement in a scoping unit causes
ambiguity, and the compiler generates an error. White space and leading zeros are
not significant in distinguishing between statement labels. You can label any
statement, but a statement label reference can only refer to an executable statement
or a FORMAT statement. The statement making the reference and the statement
referenced must be in the same scoping unit for the reference to resolve.

Delimiters
Delimiters are pairs used to enclose syntactic lists. XL Fortran supports the
following delimiters:
v Parentheses: (...)
v Slashes: /.../

Chapter 2. XL Fortran language fundamentals 7

v Array constructors: (/.../)
v Array constructors: [...]

Lines and source formats
A line is a horizontal arrangement of characters. A column is a vertical
arrangement of characters, where each character, or each byte of a multibyte
character, in a given column shares the same horizontal line position.

Because XL Fortran measures lines in bytes, these definitions apply only
to lines containing single-byte characters. Each byte of a multibyte character
occupies one column.

The kinds of lines are:

Initial line Is the first line of a statement.

Continuation
line

Continues a statement beyond its initial line.

Comment line Does not affect the executable program and can be used for
documentation. The comment text continues to the end of a line.
Although comment lines can follow one another, a comment line cannot
be continued. A line of all white space or a zero-length line is a
comment line without any text. Comment text can contain any
characters allowed in a character context.

If an initial line or continuation line is not continued, or if it is
continued but not in a character context, an inline comment can be
placed on the same line, to the right of any statement label, statement
text, and continuation character that may be present. An exclamation
mark (!) begins an inline comment.

Conditional
compilation line

Indicates that the line should only be compiled if recognition of
conditional compilation lines is enabled. A conditional compilation
sentinel should appear on a conditional compilation line. For more
information, see Conditional compilation.

Debug Line Indicates that the line is for debugging code (for fixed source form
only). In XL Fortran the letter D or X must be specified in column 1. For
more information, see Debug lines.

Directive line Provides instructions or information to the compiler in XL Fortran. For
more information, see Comment form directives.

IBM extension

In XL Fortran source lines can be in fixed source form or free source form format.
Use the SOURCEFORM directive to mix source formats within the same program
unit. When you use the f77 or fort77 invocation command, fixed source form is the
default. When you use xlf or xlf_r to compile the .f, .F, .f77, or .F77 files, fixed
source form is also the default. When you use the xlf90, xlf90_r, xlf95, xlf95_r,
xlf2003, xlf2003_r, xlf2008, or xlf2008_r invocation command, Fortran 90 free
source form is the default.

See Compiling XL Fortran Programs in the XL Fortran Compiler Reference for details
on invocation commands.

End of IBM extension

8 XL Fortran: Language Reference for Big Endian Distributions

Fixed source form
A fixed source form line is a sequence of 1 to 132 characters. The default

line size is 72 characters. This is also the Fortran standard line size. You can change
the default using the -qfixed=right_margin compiler option. In XL Fortran there is
no limit to the number of continuation lines for a statement, but the statement
cannot be longer than 34 000 characters. Fortran 2003 limits the number of
continuation lines to 255, while Fortran 95 limits the number of continuation lines
to 19.

In fixed source form, columns beyond the right margin are not part of the line and
you can use these columns for identification, sequencing, or any other purpose.

Except within a character context, white space is insignificant. You can embed
white space between and within lexical tokens, without affecting the way the
compiler treats them.

Tab formatting means that there is a tab character in columns 1 through 6
of an initial line in XL Fortran, which directs the compiler to interpret the next
character as being in column 7.

Requirements for lines and for items on those lines are:
v A comment line begins with a C, c, or an asterisk (*) in column 1, or is all white

space. Comments can also follow an exclamation mark (!), except when the
exclamation mark is in column 6 or in a character context.

v For an initial line without tab formatting:
– Columns 1 through 5 contain either blanks, a statement label, a D or

an X in column 1 optionally followed by a statement label.
– Column 6 contains a blank or zero.
– Columns 7 through to the right margin contain statement text, possibly

followed by other statements or by an inline comment.
v For an initial line with tab formatting in XL Fortran:

– Columns 1 through 6 begin with either blanks, a statement label, or a D or an
X in column 1, optionally followed by a statement label. You must follow this
with a tab character.

– If you specify the -qxflag=oldtab compiler option, all columns from the
column immediately following the tab character through to the right margin
contain statement text, possibly followed by other statements and by an inline
comment.

– If you do not specify -qxflag=oldtab compiler option, all columns from
column 7, which corresponds to the character after the tab, to the right
margin contain statement text, possibly followed by other statements and by
an inline comment.

v For a continuation line:
– Column 1 must not contain C, c, or an asterisk. Columns 1 through 5 must

not contain an exclamation mark as the leftmost nonblank character.
Column 1 can contain a D or an X which signifies a debug line in XL

Fortran. Otherwise, these columns can contain any characters allowed in a
character context; these characters are ignored.

– Column 6 must contain either a nonzero character or a nonwhite space
character. The character in column 6 is the continuation character.
Exclamation marks and semicolons are valid continuation characters.

Chapter 2. XL Fortran language fundamentals 9

– Columns 7 through to the right margin contain continued statement text,
possibly followed by other statements and an inline comment.

– Neither the END statement or a statement whose initial line appears to be a
program unit END statement can be continued.

F2008 A semicolon separates statements on a single source line, except when
appearing in a character context, in a comment, or in columns 1 through 6.

F2008 Two or more semicolon separators that are on the same line and are
themselves separated by only white space or other semicolons are considered to be
a single separator. A separator that is the last character on a line or before an inline
comment is ignored. Statements following a semicolon on the same line cannot be
labeled. Additional statements cannot follow a program unit END statement on the
same line.

Debug lines (IBM extension)
A debug line, allowed only for fixed source form, contains source code used for
debugging and is specified in XL Fortran by the letter D, or the letter X in column
1. The handling of debug lines depends on the -qdlines or the -qxlines compiler
options:
v If you specify the -qdlines option, the compiler interprets the D in column 1 as a

blank, and handles such lines as lines of source code. If you specify -qxlines ,
the compiler interprets the X in column 1 as a blank and treats these lines as
source code.

v If you do not specify -qdlines or -qxlines, the compiler handles such lines as
comment lines. This is the default setting.

If you continue a debugging statement on more than one line, every continuation
line must have a continuation character as well as a D or an X in column 1. If the
initial line is not a debugging line, you can designate any continuation lines as
debug lines provided that the statement is syntactically correct, whether or not you
specify the -qdlines or -qxlines compiler option.

Example of fixed source form
C Column Numbers:
C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

!IBM* SOURCEFORM (FIXED)
CHARACTER CHARSTR ; LOGICAL X ! 2 statements on 1 line
DO 10 I=1,10

PRINT *,’this is the index’,I ! with an inline comment
10 CONTINUE
C

CHARSTR="THIS IS A CONTINUED
X CHARACTER STRING"

! There will be 38 blanks in the string between "CONTINUED"
! and "CHARACTER". You cannot have an inline comment on
! the initial line because it would be interpreted as part
! of CHARSTR (character context).

100 PRINT *, IERROR
! The following debug lines are compiled as source lines if
! you use -qdlines
D IF (I.EQ.IDEBUG.AND.
D + J.EQ.IDEBUG) WRITE(6,*) IERROR
D IF (I.EQ.
D + IDEBUG)
D + WRITE(6,*) INFO

END

10 XL Fortran: Language Reference for Big Endian Distributions

Free source form
A free source form line can specify up to 132 characters on each line. In XL
Fortran, there is no limit to the number of continuation lines for a statement, but
the statement cannot be longer than 34 000 characters. Fortran 2003 limits the
number of continuation lines to 255, while Fortran 95 limits the number of
continuation lines to 39.

Items can begin in any column of a line, subject to the following requirements for
lines and items on those lines:
v A comment line is a line of white space or begins with an exclamation mark that

is not in a character context.
v An initial line can contain any of the following items, in the following sequence:

– A statement label.
– Statement text. Note that statement text is required in an initial line.
– Additional statements.
– The ampersand continuation character.
– An inline comment.

v If you want to continue an initial line or continuation line in a non-character
context, the continuation line must start on the first noncomment line that
follows the intial line or continuation line. To define a line as a continuation line,
you must place an ampersand after the statements on the previous
non-comment line.

v White space before and after the ampersand is optional, with the following
restrictions:
– If you also place an ampersand in the first nonblank character position of the

continuation line, the statement continues at the next character position
following the ampersand.

– If a lexical token is continued, the ampersand must immediately follow the
initial part of the token, and the remainder of the token must immediately
start after the ampersand on the continuation line.

v A character context can be continued if the following conditions are true:
– The last character of the continued line is an ampersand and is not followed

by an inline comment. If the rightmost character of the statement text to be
continued is an ampersand, you must enter a second ampersand as a
continuation character.

– The first nonblank character of the next noncomment line is an ampersand.

F2008 A semicolon separates statements on a single source line, except when the
semicolon appears in a character context or in a comment. F2008 Two or more
separators that are on the same line and are themselves separated by only white
space or other semicolons are considered to be a single separator. A separator that
is the last character on a line or before an inline comment is ignored. Additional
statements cannot follow a program unit END statement on the same line.

White space
White space must not appear within lexical tokens, except in a character context or
in a format specification. You can freely insert white space between tokens to
improve readability, and white space must separate names, constants, and labels
from adjacent keywords, names, constants, and labels.

Certain adjacent keywords can require white space. The following table lists
keywords where white space is optional.

Chapter 2. XL Fortran language fundamentals 11

Table 6. Keywords where white space is optional

BLOCK DATA END FILE END SUBMODULE �2�

DOUBLE COMPLEX �1� END FORALL END SUBROUTINE

DOUBLE PRECISION END FUNCTION END TYPE

ELSE IF END IF END UNION

ELSE WHERE END INTERFACE END WHERE

END ASSOCIATE END MAP �1� GO TO

END BLOCK �2� END MODULE IN OUT

END BLOCK DATA END PROGRAM SELECT CASE

END DO END SELECT SELECT TYPE �3�

END ENUM �3� END STRUCTURE

Note:

�1� IBM extension

�2� Fortran 2008

�3� Fortran 2003

Example of free source form
!IBM* SOURCEFORM (FREE(F90))
!
! Column Numbers:
! 1 2 3 4 5 6 7
!23456789012345678901234567890123456789012345678901234567890123456789012
DO I=1,20

PRINT *,’this statement&
& is continued’ ; IF (I.LT.5) PRINT *, I

ENDDO
EN&

&D ! A lexical token can be continued

IBM free source form (IBM extension)
An IBM free source form line or statement is a sequence of up to 34000 characters.
Items can begin in any column of a line, subject to the following requirements:
v A comment line begins with a double quotation mark in column 1, is a line of

all white space, or is a zero-length line. A comment line must not follow a
continued line. Comments can follow an exclamation mark except in a character
context.

v An initial line can contain any of the following items, in the following sequence:
– A statement label
– Statement text
– The minus sign continuation character
– An inline comment

v A continuation line immediately follows a continued line and can contain any of
the following items, in the following sequence:
– Statement text
– A continuation character
– An inline comment

12 XL Fortran: Language Reference for Big Endian Distributions

If statement text on an initial line or continuation line is to continue, a minus sign
indicates continuation of the statement text on the next line. In a character context,
if the rightmost character of the statement text to continue is a minus sign, a
second minus sign must be entered as a continuation character.

Except within a character context, white space is insignificant. You can embed
white space between and within lexical tokens, without affecting how the compiler
treats those tokens.

Example of IBM free source form
!IBM* SOURCEFORM (FREE(IBM))
"
" Column Numbers:
" 1 2 3 4 5 6 7
"23456789012345678901234567890123456789012345678901234567890123456789012
DO I=1,10
PRINT *,’this is -

the index’,I ! There will be 14 blanks in the string
! between "is" and "the"

END DO
END

Conditional compilation (IBM extension)
You can use sentinels to mark specific lines of an XL Fortran program for
conditional compilation. This allows you to port code that contains statements that
are only valid or applicable in an SMP environment to a non-SMP environment.

Conditional compilation is not supported with IBM free source form.

Syntax for conditional compilation

cond_comp_sentinel
is a conditional compilation sentinel defined by the current source form
and is either:
v !$, C$, c$, or *$, for fixed source form, or
v !$, for free source form

fortran_source_line
is an XL Fortran source line

Conditional compilation rules

General rules:

A valid XL Fortran source line must follow the conditional compilation sentinel.

A conditional compilation line can contain the EJECT, INCLUDE or noncomment
directives.

A conditional compilation sentinel must not contain embedded white space.

A conditional compilation sentinel must not follow a source statement or directive
on the same line.

�� cond_comp_sentinel fortran_source_line ��

Chapter 2. XL Fortran language fundamentals 13

If you are continuing a conditional compilation line, the conditional compilation
sentinel must appear on at least one of the continuation lines or on the initial line.

You must specify the -qcclines compiler option for conditional compilation lines to
be recognized. To disable recognition of conditional compilation lines, specify the
-qnocclines compiler option.

Trigger directives take precedence over conditional compilation sentinels. For
example, if you specify the -qdirective='$' option, then lines that start with the
trigger, such as !$, will be treated as comment directives, rather than conditional
compilation lines.

Fixed source form rules:

Conditional compilation sentinels must start in column 1.

All rules for fixed source form line length, case sensitivity, white space,
continuation, tab formatting, and columns apply.

Free source form rules:

Conditional compilation sentinels can start in any column.

All rules for free source form line length, case sensitivity, white space, and
continuation apply. When you enable recognition of conditional compilation lines,
two white spaces replace the conditional compilation sentinel.

Order of statements and execution sequence
In the Statement order table, vertical lines delineate statements that you can
intersperse, while horizontal lines delineate statements that you cannot intersperse.
The numbers in the diagram reappear later in this document to identify groups of
statements that you can specify in a particular context.

Table 7. Statement order

�1� PROGRAM, FUNCTION, SUBROUTINE, MODULE, F2008 SUBMODULE F2008 ,
or BLOCK DATA Statement

�2� USE Statements

�3� IMPORT Statements

�4� DATA, FORMAT, and ENTRY
Statements

�5� Derived-Type Definitions, Interface Blocks, Type
Declaration Statements, Enumeration Definitions,
Procedure Declarations, Specification Statements,

IMPLICIT Statements, and PARAMETER Statements

�6� Executable constructs

�7� CONTAINS Statement

�8� Internal Subprograms or Module Subprograms

�9� END Statement

Refer to Chapter 8, “Program units and procedures,” on page 149 or Chapter 11,
“Statements and attributes,” on page 279 for more details on rules and restrictions
concerning statement order.

14 XL Fortran: Language Reference for Big Endian Distributions

The normal execution sequence is the processing of references to specification
functions in any order, followed by the processing of executable statements in the
order they appear in a scoping unit.

A transfer of control is an alteration of the normal execution sequence. Some
statements that you can use to control the execution sequence are:
v Control statements like DO and IF.
v Input/output statements like READ and WRITE that contain an END=, ERR=,

or EOR= specifier.

When you reference a procedure that is defined by a subprogram, the execution of
the program continues with any specification functions referenced in the scoping
unit of the subprogram that defines the procedure. The program resumes with the
first executable statement following the ENTRY, FUNCTION or SUBROUTINE
statement that defines the procedure. When you return from the subprogram,
execution of the program continues from the point at which the procedure was
referenced or to a statement referenced by an alternate return specifier.

In this document, any description of the sequence of events in a specific transfer of
control assumes that no event, such as an error or the execution of a STOP
statement, changes that normal sequence.

Data types
A data type consists of a name, a set of valid values, constants used as a way to
denote those values, and a set of operations to manipulate those values. The two
categories of data types are Intrinsic types and Derived types.

A derived type is a composite data type that can contain both intrinsic and derived
data types.

Intrinsic types and their operations are predefined and always accessible. The two
classes of intrinsic types are numeric and nonnumeric, with a number of types
comprising each class.

Table 8. Intrinsic Types

Numeric Intrinsic Types Nonnumeric Intrinsic Types

Integer Logical

Real Character

Complex Vector �1�

Byte �1� Byte �1�

Note:

�1� IBM extension

Type declaration: type parameters and specifiers
This is an overview section on declaring the type of an entity. The Statements
section contains the particular syntax details and rules for derived and intrinsic
type declarations.

Chapter 2. XL Fortran language fundamentals 15

XL Fortran provides one or more representation methods for each intrinsic data
type. You can optionally specify this representation method with a kind type
parameter value, using kind_param in your type declaration statement. This value
can indicate:
v The range for the integer data type.
v The decimal precision and exponent range for the real data type.
v The decimal precision and exponent range for the complex data type.
v The representation method for the character data type.
v The representation method for the logical data type.

The BYTE intrinsic type does not have a kind type parameter.

A length type parameter specifies the number of characters for entities of type
character.

A type specifier denotes the type of all entities declared in a type declaration
statement. The INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER type
specifiers can include a kind_selector, that specifies the kind type parameter.

For example, here are some common ways you can declare a 4-byte integer:
v INTEGER(4)

v INTEGER(KIND=4)

v INTEGER, where the default integer size is set to 4 bytes.
v F2008 TYPE(INTEGER(4)) F2008

v F2008 TYPE(INTEGER(KIND=4)) F2008

v F2008 TYPE(INTEGER), where the default integer size is set to 4 bytes.
F2008

This document references 4-byte integers as INTEGER(4).

See Type Declaration for detailed information about type specifiers.

Applicable intrinsic procedures
For objects of an intrinsic type, the KIND intrinsic procedure returns the kind type
parameter of its argument.

You can use the LEN intrinsic procedure to determine the length type parameter of
a character object.

The SIZEOF intrinsic function returns the size of a data object in bytes.

Type parameter inquiry
You can use a type parameter inquiry to identify the type parameter value of a
data object.

Two examples of a type parameter inquiry are:
i%kind

string%len

16 XL Fortran: Language Reference for Big Endian Distributions

Determining Type
Each user-defined function or named entity has a data type. The type of an entity
accessed by host or use association is determined in the host scoping unit or
accessed module, respectively. The type of a name is determined, in the following
sequence, in one of three ways:
1. Explicitly, in one of the following ways:

v From a specified type declaration statement (see “Type Declaration” on page
470 for details).

v For function results, from a specified type statement or its FUNCTION
statement.

2. Implicitly, from a specified IMPLICIT type statement.
3. Implicitly, by predefined convention. By default (that is, in the absence of an

IMPLICIT type statement), if the first letter of the name is I, J, K, L, M, or N, the
type is default integer. Otherwise, the type is default real.

In a given scoping unit, if a letter, dollar sign, or underscore has not been specified
in an IMPLICIT statement, the implicit type used is the same as the implicit type
used by the host scoping unit. A program unit and interface body are treated as if
they had a host with an IMPLICIT statement listing the predefined conventions.

The data type of a literal constant is determined by its form.

Data objects
A data object is a variable, constant, or subobject of a constant.

A variable can have a value and can be defined or redefined during execution of
an executable program. A variable can be:
v A scalar variable name
v An array variable name
v A subobject

A subobject of a variable is a portion of a named object that you can reference or
define. A subobject can be:
v An array element.
v An array section
v A character substring
v A structure component

A subobject of a constant is a portion of a constant. The referenced portion can
depend on a variable value.

Constants
A constant has a value and cannot be defined or redefined during execution of an
executable program. A constant with a name is a named constant. You can use
either the ENUM statement or the PARAMETER attribute to provide a constant
with a name. A constant without a name is a literal constant. A literal constant can
be of intrinsic type or typeless. A typeless constant can be:
v Hexadecimal
v Octal
v Binary

Chapter 2. XL Fortran language fundamentals 17

v Hollerith

The optional kind type parameter of a literal constant can only be a digit string or
a scalar integer named constant.

A signed literal constant can have a leading plus or minus sign. All other literal
constants must be unsigned. These constants do not have a leading sign. The value
zero is neither positive nor negative. You can specify zero as signed or unsigned.

Automatic objects
An automatic object is a data object dynamically allocated within a procedure

F2008 or a BLOCK construct F2008 . This object is a local entity of a
subprogram F2008 or a BLOCK construct F2008 and can have a nonconstant
character length, a nonconstant array bound, or both. An automatic object is not a
dummy argument.

An automatic object always has the controlled automatic storage class.

You cannot specify an automatic object in any of the following statements:
v COMMON

v DATA

v EQUIVALENCE

v NAMELIST

Also, automatic objects cannot have the AUTOMATIC, PARAMETER, SAVE, or
STATIC attributes. You cannot initialize or define an automatic object with a
constant expression in a type declaration statement, but an automatic object can
have a default initialization. An automatic object must not appear in the
specification part of a main program, a module, F2008 or a submodule F2008 .

Polymorphic entities (Fortran 2003)
A polymorphic entity is a data entity that is able to be of differing types during
program execution. The type of a data entity at a particular point during execution
of a program is its dynamic type. The declared type of a data entity is the type
that it is declared to have, either explicitly or implicitly.

You use the CLASS type specifier to declare polymorphic objects. If the CLASS
type specifier contains a type name, the declared type of a polymorphic object is
that type.

You can use the CLASS(*) specifier to declare an unlimited polymorphic object. An
unlimited polymorphic entity is not declared to have a type. It is not considered to
have the same declared type as any other entity, including another unlimited
polymorphic entity.

A nonpolymorphic entity is type-compatible only with entities of the same type.
For a polymorphic entity, type compatibility is based on its declared type: a
polymorphic entity that is not unlimited polymorphic is type-compatible with
entities of the same type or any of its extensions. Even though an unlimited
polymorphic entity is not considered to have a declared type, it is type-compatible
with all entities.

An entity is said to be type-compatible with a type if it is type-compatible with
entities of that type. An entity is type-, kind-, and rank-compatible (TKR) with
another entity if the first entity is type-compatible with the second, the kind type

18 XL Fortran: Language Reference for Big Endian Distributions

parameters of the first entity have the same values as corresponding kind type
parameters of the second, and both entities have the same rank TS or either
is assumed-rank TS .

Only components of the declared type of a polymorphic object may be designated
by component selection.

A polymorphic allocatable object may be allocated to be of any type with which it
is type-compatible. A polymorphic pointer or dummy argument may, during
program execution, be associated with objects with which it is type-compatible.

The following table lists the dynamic type of objects.

Table 9. Dynamic type of objects

Object Dynamic type

Allocated allocatable polymorphic object The type with which the object was
allocated.

Associated polymorphic pointer The dynamic type of the pointer's target.

Nonallocatable nonpointer polymorphic
dummy argument

The dynamic type of dummy's associated
actual argument.

Deallocated allocatable The allocatable object's declared type.

Disassociated pointer The pointer's declared type.

Entity identified by an associate name The dynamic type of the selector with which
the object is associated.

Nonpolymorphic object The object's declared type.

Related information
v “CLASS (Fortran 2003)” on page 309

Definition status of variables
A variable is either defined or undefined, and its definition status can change
during program execution. A named constant has a value and cannot be defined or
redefined during program execution.

Arrays (including sections), structures, and variables of character, complex or
derived-type are objects made up of zero or more subobjects. Associations can be
established between variables and subobjects and between subobjects of different
variables.
v An object is defined if all of its subobjects are defined. That is, each object or

subobject has a value that does not change until it becomes undefined or until it
is redefined with a different value.

v A derived type scalar object is defined if and only if all of its nonpointer
components are defined.

v A complex or character scalar object is defined if and only if all of its subobjects
are defined.

v If an object is undefined, at least one of its subobjects is undefined. An
undefined object or subobject cannot provide a predictable value.

Variables are initially defined if they are specified to have initial values by DATA
statements, type declaration statements, or STATIC statements. Variables with the
BIND attribute that are initialized by means other than Fortran are also initially

Chapter 2. XL Fortran language fundamentals 19

defined. In addition, default initialization can cause a variable to be initially
defined. Zero-sized arrays and zero-length character objects are always defined.

All other variables are initially undefined.

Events causing definition
The following events will cause a variable to become defined:
1. Execution of an intrinsic assignment statement other than a masked array

assignment statement or FORALL assignment statement causes the variable
that precedes the equal sign to become defined.
Execution of a defined assignment statement may cause all or part of the
variable that precedes the equal sign to become defined.

2. Execution of a masked array assignment statement or FORALL assignment
statement may cause some or all of the array elements in the assignment
statement to become defined.

3. As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data are transferred
to it. Execution of a WRITE statement whose unit specifier identifies an
internal file causes each record that is written to become defined.
As execution of an asynchronous input statement proceeds, the variable does
not become defined until the matching WAIT statement is executed.

4. Execution of a DO statement causes the DO variable, if any, to become
defined.

5. Default initialization may cause a variable to be initially defined.
6. Beginning of execution of the action specified by an implied-DO list in an

input/output statement causes the implied-DO variable to become defined.
7. Execution of an ASSIGN statement causes the variable in the statement to

become defined with a statement label value.
8. A reference to a procedure causes the entire dummy argument data object to

become defined if the dummy argument does not have INTENT(OUT), and
the entire corresponding actual argument is defined with a value that is not a
statement label.
A reference to a procedure causes a subobject of a dummy argument that does
not have INTENT(OUT) to become defined if the corresponding subobject of
the corresponding actual argument is defined.

9. Execution of an input/output statement containing an IOSTAT= specifier
causes the specified integer variable to become defined.

10. Execution of an input/output statement containing an IOMSG=
specifier causes the specified character variable to become defined when an
error, end-of-file or end-of-record occurs.

11. Execution of a READ statement containing a SIZE= specifier causes the
specified integer variable to become defined.

12. Execution of a READ or WRITE statement in XL Fortran containing an ID=
specifier causes the specified integer variable to become defined.

13. Execution of a WAIT statement in XL Fortran containing a DONE= specifier
causes the specified logical variable to become defined.

14. Execution of a synchronous READ or WRITE statement in XL Fortran
containing a NUM= specifier causes the specified integer variable to become
defined.

20 XL Fortran: Language Reference for Big Endian Distributions

Execution of an asynchronous READ or WRITE statement containing a
NUM= specifier does not cause the specified integer variable to become
defined. The integer variable is defined upon execution of the matching WAIT
statement.

15. Execution of an INQUIRE statement causes any variable that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

16. When a character storage unit becomes defined, all associated character
storage units become defined.
When a numeric storage unit becomes defined, all associated numeric storage
units of the same type become defined, except that variables associated with
the variable in an ASSIGN statement become undefined when the ASSIGN
statement is executed. When an entity of type DOUBLE PRECISION becomes
defined, all totally associated entities of double precision real type become
defined.
A nonpointer scalar object of type nondefault integer, real other than default
or double precision, nondefault logical, nondefault complex, nondefault
character of any length, or nonsequence type occupies a single unspecified
storage unit that is different for each case. A pointer that is distinct from other
pointers in at least one of type, kind, and rank occupies a single unspecified
storage unit. When an unspecified storage unit becomes defined, all associated
unspecified storage units become defined.

17. When a default complex entity becomes defined, all partially associated
default real entities become defined.

18. When both parts of a default complex entity become defined as a result of
partially associated default real or default complex entities becoming defined,
the default complex entity becomes defined.

19. When all components of a numeric sequence structure or character sequence
structure become defined as a result of partially associated objects becoming
defined, the structure becomes defined.

20. Execution of an ALLOCATE or DEALLOCATE statement with a STAT=
specifier causes the variable specified by the STAT= specifier to become
defined.

21. If an error condition occurs during the execution of an ALLOCATE
or DEALLOCATE statement that has an ERRMSG= specifier, the
errmsg-variable becomes defined.

22. Allocation of a zero-sized array causes the array to become defined.
23. Invocation of a procedure causes any automatic object of zero size in that

procedure to become defined.
24. Execution of a pointer assignment statement that associates a pointer with a

target that is defined causes the pointer to become defined.
25. Invocation of a procedure that contains a nonpointer, nonallocatable,

automatic object, causes all nonpointer default-initialized subcomponents of
the object to become defined.

26. Invocation of a procedure that contains a nonpointer nonallocatable
INTENT(OUT) dummy argument causes all nonpointer default-initialized
subcomponents of the object to become defined.

27. Allocation of an object of a derived type where a nonpointer component is
initialized by default initialization, causes the component and its subobjects to
become defined.

28. In a FORALL statement or construct used in Fortran 95, the index-name
becomes defined when the index-name value set is evaluated.

Chapter 2. XL Fortran language fundamentals 21

29. If a THREADPRIVATE nonpointer nonallocatable variable that does
not appear in a COPYIN clause is defined on entry into the first parallel
region, each new thread's copy of the variable is defined.

30. If a THREADPRIVATE common block that does not appear in a COPYIN
clause is defined on entry into the first parallel region, each new thread's copy
of the variable is defined.

31. For THREADPRIVATE variables that are specified in a COPYIN clause, each
new thread duplicates the master thread's definition, allocation and
association status of these variables. Therefore, if the master thread's copy of a
variable is defined on entry to a parallel region, each new thread's copy of the
variable will also be defined.

32. For THREADPRIVATE common blocks that are in a COPYIN clause, each
new thread duplicates the master thread's definition, allocation and
association status of the variables in these common blocks. Therefore, if the
master thread's copy of a common block variable is defined on entry to a
parallel region, each new thread's copy of the common block variable will also
be defined.

33. When a variable is specified in a FIRSTPRIVATE clause of a PARALLEL,
PARALLEL DO, DO, PARALLEL SECTIONS, PARALLEL WORKSHARE,
SECTIONS, or SINGLE directive, each new thread duplicates the master
thread's definition and association status of the variable. Therefore, if the
master thread's copy of a variable is defined on entry to a parallel region, each
new thread's copy of the variable will also be defined.

34. When a variable, a dummy argument, or a private variable that its
data-sharing attribute is firstprivate in a TASK region, each task duplicates the
definition of the generating task and the association of the variable. If the
generating task's copy of a variable is defined on entry to the TASK region,
each new task's copy of the variable is also defined.

35. For each variable, or variable inside a common block, specified in a
COPYPRIVATE clause, then after the execution of the code enclosed in the
SINGLE construct and before any threads in the team have left the construct,
all copies of the variable become defined as follows:
v If the variable has the POINTER attribute, then copies of the variable in

other threads in the team have the same pointer association status as the
copy of the variable belonging to the thread that executed the code enclosed
in the SINGLE construct.

v If the variable does not have the POINTER attribute, then copies of the
variable in other threads in the team have the same definition as the copy
of the variable belonging to the thread that executed the code enclosed in
the SINGLE construct.

36. F2008 Successful execution of an OPEN statement containing a NEWUNIT=
specifier causes the variable specified by the NEWUNIT= specifier to become
defined. F2008

37. F2008 For an unsaved, nonpointer, nonallocatable, local variable of a
BLOCK construct, the execution of the BLOCK statement of the construct
containing the variable causes all nonpointer, default-initialized ultimate
components of the variable to become defined. F2008

38. An object with the VOLATILE attribute might become defined when the
definition is not specified in the program.

Events causing undefinition
The following events will cause a variable to become undefined:

22 XL Fortran: Language Reference for Big Endian Distributions

1. When a variable of a given type becomes defined, all associated variables of
different type become undefined. However, when a variable of type default
real is partially associated with a variable of type default complex, the
complex variable does not become undefined when the real variable becomes
defined and the real variable does not become undefined when the complex
variable becomes defined. When a variable of type default complex is partially
associated with another variable of type default complex, definition of one
does not cause the other to become undefined.

2. Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Variables that are associated with the variable
also become undefined.

3. If the evaluation of a function may cause an argument of the function or a
variable in a module, F2008 in a submodule F2008 , or in a common block
to become defined, and if a reference to the function appears in an expression
in which the value of the function is not needed to determine the value of the
expression, the argument or variable becomes undefined when the expression
is evaluated.

4. The execution of a RETURN statement or END statement within a
subprogram causes all variables that are local to its scoping unit, or that are
local to the current instance of its scoping unit for a recursive invocation, to
become undefined, except for the following:
a. Variables with the SAVE or STATIC attribute.
b. Variables in blank common.
c. According to Fortran 90, variables in a named common block that appears

in the subprogram and appears in at least one other scoping unit that is
making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables, unless they are part of a
threadlocal common block.

d. Variables accessed from the host scoping unit.
e. According to Fortran 90, variables accessed from a module that also is

referenced directly or indirectly by at least one other scoping unit that is
making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables.

f. According to Fortran 90, variables in a named common block that are
initially defined and that have not been subsequently defined or redefined.

XL Fortran does not undefine these variables.
5. When an error condition or end-of-file condition occurs during execution of

an input statement, all of the variables specified by the input list or
namelist-group of the statement become undefined.

6. When an error condition, end-of-file condition, or end-of-record condition
occurs during execution of an input/output statement and the statement
contains any implied-DO lists, all of the implied-DO variables in the
statement become undefined.

7. Execution of a defined assignment statement may leave all or part of the
variable that precedes the equal sign undefined.

8. Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list
of the statement to become undefined.

9. Execution of an INQUIRE statement may cause the NAME=, RECL=,
NEXTREC=, and POS= variables to become undefined.

10. When a character storage unit becomes undefined, all associated character
storage units become undefined.

Chapter 2. XL Fortran language fundamentals 23

When a numeric storage unit becomes undefined, all associated numeric
storage units become undefined unless the undefinition is a result of defining
an associated numeric storage unit of different type (see (1) above).
When an entity of double precision real type becomes undefined, all totally
associated entities of double precision real type become undefined.
When an unspecified storage unit becomes undefined, all associated
unspecified storage units become undefined.

11. A reference to a procedure causes part of a dummy argument to become
undefined if the corresponding part of the actual argument is defined with a
value that is a statement label value.

12. When an allocatable entity is deallocated, it becomes undefined. Successful
execution of an ALLOCATE statement for a nonzero-sized object for which
default initialization has not been specified causes the object to become
undefined.

13. Execution of an INQUIRE statement causes all inquiry specifier variables to
become undefined if an error condition exists, except for the variable in the
IOSTAT= or IOMSG= specifier, if any.

14. When a procedure is invoked:
a. An optional dummy argument that is not associated with an actual

argument is undefined.
b. A nonpointer dummy argument with INTENT(OUT) and its associated

actual argument are undefined, except for nonpointer direct components
that have default initialization.

c. A pointer dummy argument with INTENT(OUT) and its associated actual
argument have an association status of undefined.

d. A subobject of a dummy argument is undefined if the corresponding
subobject of the actual argument is undefined.

e. The function result variable is undefined, unless it was declared with the
STATIC attribute and was defined in a previous invocation.

15. When the association status of a pointer becomes undefined or disassociated,
the pointer becomes undefined.

16. When the execution of a FORALL statement or construct in Fortran 95 has
completed, the index-name becomes undefined.

17. When execution of a RETURN or END statement causes a variable
to become undefined, any variable of type C_PTR becomes undefined if its
value is the C address of any part of the variable that becomes undefined.

18. When a variable with the TARGET attribute is deallocated, any variable of
type C_PTR becomes undefined if its value is the C address of any part of the
variable that is deallocated.

19. When a variable is specified in either the PRIVATE or
LASTPRIVATE clause of a PARALLEL, PARALLEL DO, DO, PARALLEL
SECTIONS, PARALLEL WORKSHARE, SECTIONS or SINGLE directive,
each new thread's copy of the variable is undefined when the thread is first
created.

20. When a variable is specified in the PRIVATE clause of a TASK directive, each
private copy of the variable is undefined when the task is first generated.

21. When a variable is specified in a FIRSTPRIVATE clause of a PARALLEL,
PARALLEL DO, DO, PARALLEL SECTIONS, PARALLEL WORKSHARE,
SECTIONS, SINGLE or TASK directive, each new thread duplicates the
master thread's definition and association status of the variable. Therefore, if

24 XL Fortran: Language Reference for Big Endian Distributions

the master thread's copy of a variable is undefined on entry to a parallel
region, each new thread's copy of the variable will also be undefined.

22. When a variable is specified in the NEW clause of an INDEPENDENT
directive, the variable is undefined at the beginning of every iteration of the
following DO loop.

23. When a variable appears in asynchronous input, that variable becomes
undefined, and remains undefined, until the matching WAIT statement is
reached.

24. If a THREADPRIVATE common block or a THREADPRIVATE variable is
specified in a COPYIN clause, each new thread duplicates the master thread's
definition, allocation and association status of the variables. Therefore, if the
master thread's copy of a variable is undefined on entry to a parallel region,
each new thread's copy of the variable will also be undefined.

25. If a THREADPRIVATE common block variable or a
THREADPRIVATE variable has the ALLOCATABLE attribute, the allocation
status of each copy created will be not allocated.

26. If a THREADPRIVATE common block variable or a THREADPRIVATE
variable has the POINTER attribute with an initial association status of
disassociated through either default or explicit initialization, each copy will
have an association status of disassociated. Otherwise the association status of
each copy is undefined.

27. If a THREADPRIVATE common block variable or a THREADPRIVATE
variable has neither the ALLOCATABLE nor the POINTER attribute and is
initially defined through default or explicit initialization, each copy has the
same definition. Otherwise, each copy is undefined.

28. F2008 When execution of a BLOCK construct is complete:
a. An unsaved, local variable of the BLOCK construct becomes undefined.
b. A variable of type C_PTR becomes undefined if its value is the C address of

an unsaved, local variable of the BLOCK construct.

F2008

29. An object with the VOLATILE attribute might become undefined when the
undefinition is not specified in the program.

Syntactic contexts of definition or undefinition of variables
The appearance of a variable in the following contexts implies definition or
undefinition of the variable:
1. The variable of an assignment statement
2. A pointer_object in a NULLIFY statement
3. A data pointer object or procedure pointer object in a pointer assignment

statement
4. A DO variable in a DO statement or an input/output statement containing

implied-DO lists
5. An input item in a READ statement
6. A variable whose name is in a namelist statement if the namelist group name

appears in a NML= specifier in a READ statement
7. An internal file variable in a WRITE statement
8. An IOSTAT=, SIZE=, or IOMSG= specifier in an input/output statement
9. A specifier in an INQUIRE statement except FILE=, ID=, and UNIT=

10. A NEWUNIT= specifier in an OPEN statement
11. A stat_variable, allocate_object, or errmsg_variable

Chapter 2. XL Fortran language fundamentals 25

12. An actual argument in a reference to a procedure with an explicit interface if
the corresponding dummy argument has the INTENT (OUT) or INTENT
(INOUT) attributes

13. A variable that is the selector in a SELECT TYPE or ASSOCIATE construct if
the associate name of the construct appears in any of the variable definition
contexts

Allocation status
The allocation status of an allocatable object is one of the following during
program execution:
v Not allocated, which means that the object has never been allocated, if it is given

that status by the allocation transfer procedure, or that the last operation on it
was a deallocation.

v Allocated, which means that the object has been allocated by an ALLOCATE
statement, if it is allocated during assignment, or if it is given that status by the
allocation transfer procedure.

v Undefined, which means that the object does not have the SAVE or
STATIC attribute and was allocated when execution of a RETURN or END
statement resulted in no executing scoping units having access to it. In XL
Fortran, undefined status is only available when you use the
-qxlf90=noautodealloc option.

If the allocation status of an allocatable object is allocated, the object may be
referenced and defined. An allocatable object that is not allocated must not be
referenced or defined. If the allocation status of an allocatable object is undefined,
the object must not be referenced, defined, allocated, or deallocated.

When the allocation status of an allocatable object changes, the allocation status of
any associated allocatable object changes accordingly. Allocation of an allocatable
variable establishes values for the deferred type parameters of all associated
allocatable variables.

In the Fortran standard, the allocation status of an allocatable object that is
declared in the scope of a module is processor-dependent if it does not have the
SAVE attribute and was allocated when execution of a RETURN or END
statement resulted in no executing scoping units referencing the module.

F2008 An unsaved, allocatable, local variable of a BLOCK construct is
deallocated when execution exits the BLOCK construct. F2008

In XL Fortran, the allocation status of such an object remains allocated.

Storage classes for variables (IBM extension)

Note: This section pertains only to storage for variables. Named constants and
their subobjects have a storage class of literal.

Fundamental storage classes
All variables are ultimately represented by one of five storage classes:

Automatic
for variables in a procedure that will not be retained once the procedure
ends. Variables reside in the stack storage area.

26 XL Fortran: Language Reference for Big Endian Distributions

Static for variables that retain memory throughout the program. Variables reside
in the data storage area. Uninitialized variables reside in the bss storage
area.

Common
for common block variables. If a common block variable is initialized, the
whole block resides in the data storage area; otherwise, the whole block
resides in the bss storage area.

Controlled Automatic
for automatic objects. Variables reside in the stack storage area. XL Fortran
allocates storage on entry to the procedure and deallocates the storage
when the procedure completes.

Controlled
for allocatable objects. Variables reside in the heap storage area. You must
explicitly allocate and deallocate the storage.

Secondary storage classes
None of the following storage classes own their own storage, but are associated
with a fundamental storage class at run time.

Pointee
is dependent on the value of the corresponding integer pointer.

Reference parameter
is a dummy argument whose actual argument is passed to a procedure
using the default passing method or %REF.

Value parameter
is a dummy argument whose actual argument is passed by value to a
procedure.

For details on passing methods, see “%VAL and %REF (IBM extension)” on page
194.

Storage class assignment
Variable names are assigned storage classes in one of the following ways:
1. Explicitly:

v Dummy arguments have an explicit storage class of reference parameter or
value parameter. See “%VAL and %REF (IBM extension)” on page 194 for
more details.

v Pointee variables have an explicit storage class of pointee.
v Variables for which the STATIC attribute is explicitly specified have an

explicit storage class of static.
v Variables for which the AUTOMATIC attribute is explicitly specified have an

explicit storage class of automatic.
v Variables that appear in a COMMON block have an explicit storage class of

common.
v Variables for which the SAVE attribute is explicitly specified have an explicit

storage class of static, unless they also appear in a COMMON statement, in
which case their storage class is common.

v Variables that appear in a DATA statement or are initialized in a type
declaration statement have an explicit storage class of static, unless they also
appear in a COMMON statement, in which case their storage class is
common.

Chapter 2. XL Fortran language fundamentals 27

v Function result variables that are of type character or derived have the
explicit storage class of reference parameter.

v Function result variables that do not have the SAVE or STATIC attribute
have an explicit storage class of automatic.

v Automatic objects have an explicit storage class of controlled automatic.
v Allocatable objects have an explicit storage class of controlled.
A variable that does not satisfy any of the above, but that is equivalenced with
a variable that has an explicit storage class, inherits that explicit storage class.
A variable that does not satisfy any of the above, and is not equivalenced with
a variable that has an explicit storage class, has an explicit storage class of static
if:
v A SAVE statement with no list exists in the scoping unit or,
v The variable is declared in the specification part of a main program.

2. Implicitly:
If a variable does not have an explicit storage class, it can be assigned an
implicit storage class as follows:
v Variables whose names begin with a letter, dollar sign or underscore that

appears in an IMPLICIT STATIC statement have a storage class of static.
v Variables whose names begin with a letter, dollar sign or underscore that

appears in an IMPLICIT AUTOMATIC statement have a storage class of
automatic.

In a given scoping unit, if a letter, dollar sign or underscore has not been
specified in an IMPLICIT STATIC or IMPLICIT AUTOMATIC statement, the
implicit storage class is the same as that in the host.
Variables declared in the specification part of a module F2008 or submodule

F2008 are associated with the static storage class.
A variable that does not satisfy any of the above but that is equivalenced with
a variable that has an implicit storage class, inherits that implicit storage class.

3. Default:
All other variables have the default storage class:
v Static, if you specified the -qsave=all compiler option.
v Static, for variables of derived type that have default initialization specified,

and automatic otherwise if you specify the –qsave=defaultinit compiler
option.

v Automatic, if you specified the -qnosave compiler option. This is the default
setting.
See -qsave option in the XL Fortran Compiler Reference for details on the
default settings with regard to the invocation commands.

Typeless literal constants
A typeless constant does not have an intrinsic type in XL Fortran. Hexadecimal,
octal, binary, and Hollerith constants can be used in any situation where intrinsic
literal constants are used, except as the length specification in a type declaration
statement (although typeless constants can be used in a type_param_value in
CHARACTER type declaration statements). The number of digits recognized in a
hexadecimal, octal, or binary constant depends on the context in which the
constant is used.

28 XL Fortran: Language Reference for Big Endian Distributions

Hexadecimal constants
The form of a hexadecimal constant is:

hexadecimal_number
is a string composed of digits (0-9) and letters (A-F, a-f). Corresponding
uppercase and lowercase letters are equivalent.

The Znn...nn form of a hexadecimal constant can only be used as a data
initialization value delimited by slashes. If this form of a hexadecimal constant is
the same string as the name of a constant you defined previously with the
PARAMETER attribute, XL Fortran recognizes the string as the named constant.

If 2x hexadecimal digits are present, x bytes are represented.

Examples
Z’0123456789ABCDEF’
Z"FEDCBA9876543210"
Z’0123456789aBcDeF’
Z0123456789aBcDeF ! This form can only be used as an initialization value

Related information

See “Using typeless constants” on page 31 for information on how XL Fortran
interprets the constant.

Octal constants
The form of an octal constant is:

octal_number
is a string composed of digits (0-7)

Because an octal digit represents 3 bits, and a data object represents a multiple of 8
bits, the octal constant may contain more bits than are needed by the data object.
For example, an INTEGER(2) data object can be represented by a 6-digit octal
constant if the leftmost digit is 0 or 1; an INTEGER(4) data object can be
represented by an 11-digit constant if the leftmost digit is 0, 1, 2, or 3; an
INTEGER(8) can be represented by a 22-digit constant if the leftmost digit is 0 or
1.

�� X ' hexadecimal_number '
Z " hexadecimal_number "
' hexadecimal_number ' X
" hexadecimal_number " Z

Z hexadecimal_number

��

�� O ' octal_number '
" octal_number "

' octal_number ' O
" octal_number "

��

Chapter 2. XL Fortran language fundamentals 29

Examples
O’01234567’
"01234567"O

Related information

See “Using typeless constants” on page 31 for information on how the constant is
interpreted by XL Fortran.

Binary constants
The form of a binary constant is:

binary_number
is a string formed from the digits 0 and 1

If 8x binary digits are present, x bytes are represented.

Examples
B"10101010"
’10101010’B

Related information

See “Using typeless constants” on page 31 for information on how XL Fortran
interprets the constant.

Hollerith constants
The form of a Hollerith constant is:

A Hollerith constant consists of a nonempty string of characters capable of
representation in the processor and preceded by nH, where n is a positive unsigned
integer constant representing the number of characters after the H. n cannot specify
a kind type parameter. The number of characters in the string may be from 1 to
255.

Note: If you specify nH and fewer than n characters are specified after the n, any
blanks that are used to extend the input line to the right margin are considered to
be part of the Hollerith constant. A Hollerith constant can be continued on a
continuation line. At least n characters must be available for the Hollerith constant.

XL Fortran also recognizes escape sequences in Hollerith constants, unless the
-qnoescape compiler option is specified. If a Hollerith constant contains an escape
sequence, n is the number of characters in the internal representation of the string,

�� B ' binary_number '
" binary_number "

' binary_number ' B
" binary_number "

��

�� n H character_string ��

30 XL Fortran: Language Reference for Big Endian Distributions

not the number of characters in the source string. (For example, 2H\"\" represents
a Hollerith constant for two double quotation marks.)

XL Fortran provides support for multibyte characters within character constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments. This support is provided through the -qmbcs option. Assignment of a
constant containing multibyte characters to a variable that is not large enough to
hold the entire string may result in truncation within a multibyte character.

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames.

See “Using typeless constants” for information on how the constant is interpreted
by XL Fortran.

Using typeless constants
The data type and length of a typeless constant are determined by the context in
which you use the typeless constant. XL Fortran does not convert the data type
and length until you use them and context is understood.
v If you compile your program with the -qctyplss compiler option, character

constant expressions follow the rules that apply to Hollerith constants.
v A typeless constant can assume only one of the intrinsic data types.
v When you use a typeless constant with an arithmetic or logical unary operator,

the constant assumes a default integer type.
v When you use a typeless constant with an arithmetic, logical, or relational binary

operator, the constant assumes the same data type as the other operand. If both
operands are typeless constants, they assume a type of default integer unless
both operands of a relational operator are Hollerith constants. In this case, they
both assume a character data type.

v When you use a typeless constant in a concatenation operation, the constant
assumes a character data type.

v When you use a typeless constant as the expression on the right-hand side of an
assignment statement, the constant assumes the type of the variable on the
left-hand side.

v When you use a typeless constant in a context that requires a specific data type,
the constant assumes that data type.

v When you use a typeless constant as an initial value in a DATA statement,
STATIC statement, or type declaration statement, or as the constant value of a
named constant in a PARAMETER statement, or when the typeless constant is
to be treated as any noncharacter type of data, the following rules apply:
– If a hexadecimal, octal, or binary constant is smaller than the length expected,

XL Fortran adds zeros on the left. If it is longer, the compiler truncates on the
left.

– If a Hollerith constant is smaller than the length expected, the compiler adds
blanks on the right. If it is longer, the compiler truncates on the right.

– If a typeless constant specifies the value of a named constant with a character
data type having inherited length, the named constant has a length equal to
the number of bytes specified by the typeless constant.

Chapter 2. XL Fortran language fundamentals 31

v When a typeless constant is treated as an object of type character (except when
used as an initial value in a DATA, STATIC, type declaration, or component
definition statement), the length is determined by the number of bytes
represented by the typeless constant.

v When you use a typeless constant as part of a complex constant, the constant
assumes the data type of the other part of the complex constant. If both parts are
typeless constants, the constants assume the real data type with length sufficient
to represent both typeless constants.

v When you use a typeless constant as an actual argument, the type of the
corresponding dummy argument must be an intrinsic data type. The dummy
argument must not be a procedure, pointer, array, object of derived type, or
alternate return specifier.

v When you use a typeless constant as an actual argument, and:
– The procedure reference is to a generic intrinsic procedure,
– All of the arguments are typeless constants, and
– There is a specific intrinsic procedure that has the same name as the generic

procedure name,

the reference to the generic name will be resolved through the specific
procedure.

v When you use a typeless constant as an actual argument, and:
– The procedure reference is to a generic intrinsic procedure,
– All of the arguments are typeless constants, and
– There is no specific intrinsic procedure that has the same name as the generic

procedure name,

the typeless constant is converted to default integer. If a specific intrinsic
function takes integer arguments, the reference is resolved through that specific
function. If there are no specific intrinsic functions, the reference is resolved
through the generic function.

v When you use a typeless constant as an actual argument, and:
– The procedure reference is to a generic intrinsic procedure, and
– There is another argument specified that is not a typeless constant,

the typeless constant assumes the type of that argument. However, if you specify
the compiler option -qport=typlssarg, the actual argument is converted to
default integer. The selected specific intrinsic procedure is based on that type.

v When you use a typeless constant as an actual argument, and the procedure
name is established to be generic but is not an intrinsic procedure, the generic
procedure reference must resolve to only one specific procedure. The constant
assumes the data type of the corresponding dummy argument of that specific
procedure. See Example 2.

v When you use a typeless constant as an actual argument, and the procedure
name is established to be only specific, the constant assumes the data type of the
corresponding dummy argument.

v When you use a typeless constant as an actual argument, and:
– The procedure name has not been established to be either generic or specific,

and
– The constant has been passed by reference,

the constant assumes the default integer size but no data type, unless it is a
Hollerith constant. The default for passing a Hollerith constant is the same as if
it were a character actual argument. However, using the compiler option

32 XL Fortran: Language Reference for Big Endian Distributions

-qctyplss=arg will cause a Hollerith constant to be passed as if it were an integer
actual argument. See “Resolution of procedure references” on page 203 for more
information about establishing a procedure name to be generic or specific.

v When you use a typeless constant as an actual argument, and:
– The procedure name has not been established to be either generic or specific,

and
– The constant has been passed by value,

the constant is passed as if it were a default integer for hexadecimal, binary, and
octal constants.
If the constant is a Hollerith constant and it is smaller than the size of a default
integer, XL Fortran adds blanks on the right. If the constant is a Hollerith
constant and it is larger than 8 bytes, XL Fortran truncates the rightmost
Hollerith characters. See “Resolution of procedure references” on page 203 for
more information about establishing a procedure name to be generic or specific.

v When you use a typeless constant in any other context, the constant assumes the
default integer type, with the exception of Hollerith constants. Hollerith
constants assume a character data type in the following situations:
– An H edit descriptor
– A relational operation with both operands being Hollerith constants
– An input/output list

v If a typeless constant is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is
promoted to a representable kind.

v A kind type parameter must not be replaced with a logical constant even if
-qintlog is on, nor by a character constant even if -qctyplss is on, nor can it be a
typeless constant.

Examples

Example 1
INT=B’1’ ! Binary constant is default integer
RL4=X’1’ ! Hexadecimal constant is default real
INT=INT + O’1’ ! Octal constant is default integer
RL4=INT + B’1’ ! Binary constant is default integer
INT=RL4 + Z’1’ ! Hexadecimal constant is default real
ARRAY(O’1’)=1.0 ! Octal constant is default integer

LOGICAL(8) LOG8
LOG8=B’1’ ! Binary constant is LOGICAL(8), LOG8 is .TRUE.

Example 2
INTERFACE SUB

SUBROUTINE SUB1(A)
REAL A

END SUBROUTINE
SUBROUTINE SUB2(A, B)

REAL A, B
END SUBROUTINE
SUBROUTINE SUB3(I)

INTEGER I
END SUBROUTINE

END INTERFACE
CALL SUB(’C0600000’X, ’40066666’X) ! Resolves to SUB2

CALL SUB(’00000000’X) ! Invalid - ambiguous, may
! resolve to either SUB1 or SUB3

Chapter 2. XL Fortran language fundamentals 33

34 XL Fortran: Language Reference for Big Endian Distributions

Chapter 3. Intrinsic data types

Intrinsic types and their operations are predefined and always accessible. The two
classes of intrinsic types are numeric and nonnumeric, with a number of types
comprising each class.

Table 10. Intrinsic Types

Numeric Intrinsic Types Nonnumeric Intrinsic Types

Integer Logical

Real Character

Complex Vector �1�

Byte �1� Byte �1�

Note:

�1� IBM extension

XL Fortran also supports derived types, which are composite data types that can
contain both intrinsic and derived types.

Integer

IBM extension

The Range of integer values table contains the range of values that XL Fortran can
represent using the integer data type.

Table 11. Range of integer values

Kind parameter Range of values

1 -128 through 127

2 -32 768 through 32 767

4 -2 147 483 648 through 2 147 483 647

8 -9 223 372 036 854 775 808 through 9 223 372 036 854 775 807

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for integer values. Use the -qintsize compiler option to
change the default integer size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default logical size.

End of IBM extension

The integer type specifier must include the INTEGER keyword.

The form of a signed integer literal constant is:

© Copyright IBM Corp. 1996, 2014 35

kind_param
is either a digit-string or a scalar-int-constant-name

A signed integer literal constant has an optional sign, followed by a string of
decimal digits containing no decimal point and expressing a whole number,
optionally followed by a kind type parameter. A signed, integer literal constant can
be positive, zero, or negative. If unsigned and nonzero, the constant is assumed to
be positive.

If kind_param is specified, the magnitude of the literal constant must be
representable within the value range permitted by that kind_param.

IBM extension

If no kind_param is specified in XL Fortran, and the magnitude of the constant
cannot be represented as a default integer, the constant is promoted to a kind in
which it can be represented.

XL Fortran represents integers internally in two's-complement notation, where the
leftmost bit is the sign of the number.

End of IBM extension

Example of integer constants
0 ! has default integer size
-173_2 ! 2-byte constant
9223372036854775807 ! Kind type parameter is promoted to 8

Real

IBM extension

The following table shows the range of values that XL Fortran can represent with
the real data type:

Kind
Parameter

Approximate Absolute
Nonzero Minimum

Approximate Absolute
Maximum

Approximate Precision
(decimal digits)

4 1.175494E-38 3.402823E+38 7

8 2.225074D-308 1.797693D+308 15

16 2.225074Q-308 1.797693Q+308 31

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for real values. Use the -qrealsize compiler option to
change the default real size to 4 or 8 bytes. Note that the -qrealsize option affects
the default complex size.

��
+
-

� digit
_ kind_param

��

36 XL Fortran: Language Reference for Big Endian Distributions

XL Fortran represents REAL(4) and REAL(8) numbers internally in the ANSI/IEEE
binary floating-point format, which consists of a sign bit (s), a biased exponent (e),
and a fraction (f). The REAL(16) representation is based on the REAL(8) format.
REAL(4)
Bit no. 0....|....1....|....2....|....3.

seeeeeeeefffffffffffffffffffffff

REAL(8)
Bit no. 0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff

REAL(16)
Bit no. 0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff
Bit no. .|....7....|....8....|....9....|....0....|....1....|....2....|..

seeeeeeeeeeeff

This ANSI/IEEE binary floating-point format also provides representations for
+infinity, -infinity, and NaN (not-a-number) values. A NaN can be further classified
as a quiet NaN or a signaling NaN. See Implementation details of XL Fortran
floating-point processing for details on the internal representation of NaN values.

The definition of intrinsic RANGE is INT(MIN(LOG10(HUGE(X)), -LOG10(TINY(X)))).

For REAL(8) numbers, the HUGE intrinsic returns 0x7FEFFFFFFFFFFFFF and the
TINY intrinsic returns 0x0010000000000000. As a result, we have
INT(MIN(308.254715559916747, 307.652655568588784)), and therefore the range is
307. Note that the LOG scale is not symmetric on both ends of the exponent.

The IBM format of REAL(16) numbers is composed of two REAL(8) numbers of
different magnitudes that do not overlap. That is, the binary exponents differ by at
least the number of fraction bits in a REAL(8).

For REAL(16), the RANGE intrinsic returns the range of the numbers that have
both REAL(8) numbers normalized. Consequently, for REAL(16) numbers, the
HUGE intrinsic returns 0x7FEFFFFFFFFFFFFF7C9FFFFFFFFFFFFF and the TINY
intrinsic returns 0x03600000000000000000000000000000. As a result, we have
INT(MIN(308.25471555991674389886862819788120,
291.69806579839777816211298898803388)), where the range is 291.

308 is the lowest or highest exponent that can be represented in the REAL(8) or
REAL(16) numbers.

End of IBM extension

A real type specifier must include either the REAL keyword or the DOUBLE
PRECISION keyword. The precision of DOUBLE PRECISION values is twice that
of default real values. See “REAL” on page 443 and “DOUBLE PRECISION” on
page 339 for details on declaring entities of type real.

The forms of a real literal constant are:
v A basic real constant optionally followed by a kind type parameter
v A basic real constant followed by an exponent and an optional kind type

parameter
v An integer constant (with no kind_param) followed by an exponent and an

optional kind type parameter

Chapter 3. Intrinsic data types 37

A basic real constant has, in order, an optional sign, an integer part, a decimal
point, and a fractional part. Both the integer part and fractional part are strings of
digits; you can omit either of these parts, but not both. You can write a basic real
constant with more digits than XL Fortran will use to approximate the value of the
constant. XL Fortran interprets a basic real constant as a decimal number.

The form of a real constant is:

exponent

kind_param
is either a digit-string or a scalar-int-constant-name

digit_string denotes a power of 10. E specifies a constant of type default real, unless
you also include a kind_param, which overrides the default type. D specifies a
constant of type default DOUBLE PRECISION. Q specifies a constant of
type REAL(16) in XL Fortran.

If both exponent and kind_param are specified, the exponent letter must be E. If D or
Q is specified, kind_param must not be specified.

A real literal constant that is specified without an exponent and a kind type
parameter is of type default real.

Example of real constants

�� �

�

�

�

�

digit exponent
+
-

digit .
+ exponent
-

digit

. digit
+ exponent
-

digit

�

�
_ kind_param

��

�� E
D
Q

digit_string
+
-

��

38 XL Fortran: Language Reference for Big Endian Distributions

+0.

+5.432E02_16 !543.2 in 16-byte representation

7.E3

3.4Q-301
! Extended-precision constant

Complex
A complex type specifier must include one of the following keywords:
v The COMPLEX keyword.
v The DOUBLE COMPLEX keyword.

See “COMPLEX” on page 316 and “DOUBLE COMPLEX (IBM extension)” on page
336 for details on declaring entities of type complex.

IBM extension

The following table shows the corresponding values for the kind type parameter
and the length specification when the complex type specifier has the COMPLEX
keyword:

Kind Type Parameter i
COMPLEX(i)

Length Specification j
COMPLEX*j

4
8

16

8
16
32

In XL Fortran, the kind type parameter specifies the precision of each part of the
complex entity, while the length specification specifies the length of the whole
complex entity.

End of IBM extension

The kind of a complex constant is determined by the kind of the constants in the
real and imaginary parts.

The precision of DOUBLE COMPLEX values is twice that of default complex
values.

Scalar values of type complex can be formed using complex constructors. The form
of a complex constructor is:

A complex literal constant is a complex constructor where each expression is a pair
of constant expressions. Variables and expressions can be used in each part of the
complex constructor as an XL Fortran extension.

�� (expression , expression) ��

Chapter 3. Intrinsic data types 39

In Fortran 95 you are only allowed to use a single signed integer, or real literal
constant in each part of the complex constructor. In Fortran 2003, you can also use
a named constant. F2008

In Fortran 2008, you can use complex part designators to access the real or
imaginary part of complex entities directly. The type of a complex part designator
is real and its kind and shape are those of the designator that appears to the left of
the complex part selector. A complex part selector is either %RE or %IM. %RE
selects the real part of a complex entity and %IM selects the imaginary part of a
complex entity. Here is the syntax for complex part designators where designator
has to be of type complex:

Complex part designators follow the rules for real data types. In addition, you can
use complex part designators as variables in assignment statements; if x is of type
complex, x%IM=0.0 sets the imaginary part of x to zero. F2008

If both parts of the literal constant are of type real, the kind type parameter of the
literal constant is the kind parameter of the part with the greater precision, and the
kind type parameter of the part with lower precision is converted to that of the
other part.

If both parts are of type integer, they are each converted to type default real. If one
part is of type integer and the other is of type real, the integer is converted to type
real with the precision of the real part.

See “COMPLEX” on page 316 and “DOUBLE COMPLEX (IBM extension)” on page
336 for details on declaring entities of type complex.

Each part of a complex number has the same internal representation as a real
number with the same kind type parameter.

Examples of complex constants
(3_2,-1.86) ! Integer constant 3 is converted to default real

! for constant 3.0.

(45Q6,6D45) ! The imaginary part is converted to extended
! precision 6.Q45.

(1+1,2+2) ! Use of constant expressions. Both parts are
! converted to default real.

Examples of complex part designators
COMPLEX :: x, y, z
print *, x%RE ! Prints the same value as REAL(x)
print *, y%IM ! Prints the same value as AIMAG(y)
z%IM = 0.0 ! Sets the imaginary part of z to zero

�� designator % IM
RE

��

40 XL Fortran: Language Reference for Big Endian Distributions

Logical

IBM extension

The following table shows the values that XL Fortran can represent using the
logical data type:

Kind parameter Values Internal (hex) Representation

1
.TRUE.
.FALSE.

01
00

2
.TRUE.
.FALSE.

0001
0000

4
.TRUE.
.FALSE.

00000001
00000000

8
.TRUE.
.FALSE.

0000000000000001
0000000000000000

Note: Any internal representation other than 1 for .TRUE. and 0 for .FALSE. is
undefined.

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for logical values. Use the -qintsize compiler option to
change the default logical size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default integer size. Use –qintlog to mix integer and logical
data entities in expressions and statements.

The -qport=clogicals option allows you to instruct the compiler to treat all nonzero
integers used in logical expressions as TRUE. In order to use the -qport=clogicals
option, you must also specify the -qintlog option.

End of IBM extension

The logical type specifier must include the LOGICAL keyword. See “LOGICAL”
on page 403 for details on declaring entities of type logical.

The form of a logical literal constant is:

kind_param
is either a digit-string or a scalar-int-constant-name

A logical constant can have a logical value of either true or false.

You can also use the abbreviations T and F (without the periods) for
.TRUE. and .FALSE., respectively, but only in formatted input, or as initial values

�� .TRUE.
.FALSE. _ kind_param

��

Chapter 3. Intrinsic data types 41

in DATA statements, STATIC statements, or type declaration statements. A kind
type parameter cannot be specified for the abbreviated form. If T or F has been
defined as a named constant, it is treated as that named constant rather than the
logical literal constant.

Example of a logical constant
.FALSE._4
.TRUE.

Character
The character type specifier must include the CHARACTER keyword. See
“CHARACTER” on page 305 for details on declaring entities of type character.

The form of a character literal constant is:

kind_param
is either a digit-string or a scalar-int-constant-name

XL Fortran supports a kind type parameter value of 1, representing the
ASCII collating sequence.

Character literal constants can be delimited by double quotation marks as well as
apostrophes.

character_string consists of any characters capable of representation in XL Fortran,
except the new-line character, because it is interpreted as the end of the source line.
The delimiting apostrophes (') or double quotation marks (") are not part of the
data represented by the constant. Blanks embedded between these delimiters are
significant.

If a string is delimited by apostrophes, you can represent an apostrophe within the
string with two consecutive apostrophes (without intervening blanks). If a string is
delimited by double quotation marks, you can represent a double quotation mark
within the string with two consecutive double quotation marks (without
intervening blanks). The two consecutive apostrophes or double quotation marks
will be treated as one character.

You can place a double quotation mark within a character literal constant delimited
by apostrophes to represent a double quotation mark, and an apostrophe character
within a character constant delimited by double quotation marks to represent a
single apostrophe.

The length of a character literal constant is the number of characters between the
delimiters, except that each pair of consecutive apostrophes or double quotation
marks counts as one character.

A zero-length character object uses no storage.

In XL Fortran each character object requires 1 byte of storage.

��
kind_param _

' character_string '
" character_string "

��

42 XL Fortran: Language Reference for Big Endian Distributions

For compatibility with C language usage, XL Fortran recognizes the following
escape sequences in character strings:

Escape Meaning

\b Backspace

\f Form feed

\n New-line

\r New-line

\t Tab

\0 Null

\'
Apostrophe

(does not terminate a string)

\"
Double quotation mark

(does not terminate a string)

\\ Backslash

\x x, where x is any other character

To ensure that scalar character constant expressions in procedure references are
terminated with null characters (\0) for C compatibility, use the -qnullterm
compiler option. (See -qnullterm option in the XL Fortran Compiler Reference for
details and exceptions).

All escape sequences represent a single character.

If you do not want these escape sequences treated as a single character, specify the
-qnoescape compiler option. (See -qescape option in the XL Fortran Compiler
Reference.) The backslash will have no special significance.

The maximum length of a character literal constant depends on the maximum
number of characters allowed in a statement.

If you specify the -qctyplss compiler option, character constant
expressions are treated as if they are Hollerith constants. See “Hollerith constants”
on page 30 for information on Hollerith constants. For information on the -qctyplss
compiler option, see -qctyplss option in the XL Fortran Compiler Reference

XL Fortran supports multibyte characters within character literal constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments through the -qmbcs compiler option.

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames. See the XL
Fortran Compiler Reference for more information.

Examples of character constants

Example 1:
’’ ! Zero-length character constant.

Chapter 3. Intrinsic data types 43

Example 2:
1_"ABCDEFGHIJ" ! Character constant of length 10, with kind 1.

Example 3:
’\"\2\’\A567\\\\\’’ ! Character constant of length 10 "2’A567\\’.

Character substrings
A character substring is a contiguous portion of a character string (called a parent
string), which is a scalar variable name, scalar constant, scalar structure
component, or array element. A character substring is identified by a substring
reference whose form is:

int_expr1 and int_expr2
specify the leftmost character position and rightmost character position,
respectively, of the substring. Each is a scalar integer expression called a
substring expression.

The length of a character substring is the result of the evaluation of MAX(int_expr2
- int_expr1 + 1,0).

If int_expr1 is less than or equal to int_expr2, their values must be such that:
v 1 ≤ int_expr1 ≤ int_expr2 ≤ length

where length is the length of the parent string. If int_expr1 is omitted, its default
value is 1. If int_expr2 is omitted, its default value is length.

FORTRAN 77 does not allow character substrings of length 0. Fortran 90
and up does allow these substrings. To perform compile-time checking on
substring bounds in accordance with FORTRAN 77 rules, use the -qnozerosize
compiler option. For Fortran 90 compliance, use -qzerosize. To perform run-time
checking on substring bounds, use both the -qcheck option and the -qzerosize (or
-qnozerosize) option. (See the XL Fortran Compiler Reference for more information.)

A substring of an array section is treated differently. See “Substring ranges” on
page 90.

Examples
CHARACTER(8) ABC, X, Y, Z
ABC = ’ABCDEFGHIJKL’(1:8) ! Substring of a constant

X = ABC(3:5) ! X = ’CDE’
Y = ABC(-1:6) ! Not allowed in either FORTRAN 77 or Fortran 90

Z = ABC(6:-1) ! Z = ’’ valid only in Fortran 90

�� scalar_variable_name
array_element
scalar_constant
scalar_struct_comp

(:)
int_expr1 int_expr2

��

44 XL Fortran: Language Reference for Big Endian Distributions

Byte (IBM extension)
The byte type specifier is the BYTE keyword in XL Fortran. See “BYTE (IBM
extension)” on page 298 for details on declaring entities of type byte.

The BYTE intrinsic data type does not have its own literal constant form. A BYTE
data object is treated as an INTEGER(1), LOGICAL(1), or CHARACTER(1) data
object, depending on how it is used.

Vector (IBM extension)
An entity you declare using the VECTOR keyword as part of a type declaration
statement is of a vector type. An entity of a vector type has the same type as
another entity if both entities are vectors that contain elements of the same type
and kind. Otherwise, the two entities are of different types. You must not include
vector objects in formatted I/O.

A vector can be any of the following types:
v A PIXEL vector
v An INTEGER vector with elements that have a kind type parameter of 1, 2, 4,

or 8
v An UNSIGNED vector with elements that have a kind type parameter of 1, 2, 4,

or 8
v A REAL vector with elements that have a kind parameter of 4 or 8

Note: A vector must only be declared if your -qarch option specifies an
architecture that supports the VMX or VSX instruction set extensions. The
INTEGER(8), UNSIGNED(8), and REAL(8) types require an architecture that
supports the VSX instruction set extensions, such as POWER7®. When you use
these types, you must specify an appropriate -qarch suboption, such as
-qarch=pwr7.

A vector is always a 16-byte entity.
v INTEGER(1) or UNSIGNED(1) vectors contains 16 elements.
v INTEGER(2), UNSIGNED(2), or PIXEL vectors contain 8 elements.
v INTEGER(4), UNSIGNED(4), or REAL(4) vectors contain 4 elements.
v INTEGER(8), UNSIGNED(8), or REAL(8) vectors contain 2 elements.

If kind type parameters are not specified for elements of INTEGER, or
UNSIGNED vectors, the elements have the default integer kind. If kind type
parameters are not specified for elements of REAL vectors, the elements have the
default real kind.

Vectors must be aligned on a 16-byte boundary. XL Fortran automatically aligns
vectors to 16 bytes, except in the following cases, where:
v The vector is a component of a sequence type or a record structure.
v The vector is a component of a derived type that has the BIND attribute and

you compile with the -qalign=bindc=packed or -qalign=bindc=bit_packed
options. This aligns the vector to a one-byte boundary.

v The vector is a member of a common block.
v The vector is storage-associated with a member of a common block that does not

have a 16-byte boundary alignment.

Chapter 3. Intrinsic data types 45

v The vector is storage-associated with an array element that does not have a
16-byte boundary alignment.

Use the Vector Interlanguage Interoperability table to determine the corresponding XL
C/C++ vector type when passing vectors between XL C/C++ and XL Fortran.

Table 12. Vector interlanguage interoperability

XL Fortran vector type XL C/C++ vector type

VECTOR(INTEGER(1)) vector signed char

VECTOR(INTEGER(2)) vector signed short

VECTOR(INTEGER(4)) vector signed int, vector signed long

VECTOR(INTEGER(8)) vector signed long long

VECTOR(PIXEL) vector pixel

VECTOR(REAL(4)) vector float

VECTOR(REAL(8)) vector double

VECTOR(UNSIGNED(1)) vector unsigned char

VECTOR(UNSIGNED(2)) vector unsigned short

VECTOR(UNSIGNED(4)) vector unsigned int, vector unsigned long

VECTOR(UNSIGNED(8)) vector unsigned long long

Pixel (IBM extension)
The PIXEL keyword specifies the pixel type. A pixel is a two-byte entity that the
compiler interprets in four parts. The first part consists of one bit. The remaining
three parts consist of 5 bits each. Pixel literals are not supported. You must specify
a pixel only as part of a vector declaration.

Unsigned (IBM extension)
The UNSIGNED keyword specifies the unsigned integer type. Use the -qintsize
compiler option to change the default integer size to 2 or 4 bytes. The default kind
type parameter is 4. Unsigned integer literals are not supported. You must specify
the unsigned integer type only as part of a vector declaration.

46 XL Fortran: Language Reference for Big Endian Distributions

Chapter 4. Derived types

A derived type is a composite data type that can contain both intrinsic and derived
data types. You can define a derived type by using a type definition. This
definition specifies the name of the derived type and its type parameters,
components, and procedures. In Fortran 95, a type definition must have at least
one component and must not contain procedures. In Fortran 2003, a type definition
can have zero or more components, procedures and type parameters. Within a
derived type, the names of type parameters, components and procedures must be
unique, although the names can be the same as the names outside the scope of the
derived type definition.

In Fortran 2003, a derived type can be parameterized by type parameters. Each
type parameter is defined to be either a kind or a length type parameter, and can
have a default value. For details, see “Derived type parameters (Fortran 2003)” on
page 48.

Syntax of a derived type

DERIVED_TYPE_statement
See “Derived Type” on page 330 for syntax details.

type_param_def_block
Consists of the declarations for all the type_param_names that exist in
DERIVED_TYPE_statement. For details, see Derived type parameters.

private_components_stmt
Specifies that default accessibility for the components of the derived type
are private. You can only specify one private_components_stmt for a given
derived type. You can only specify a private_components_stmt if the type
definition is within the specification part of a module.

SEQUENCE
You can only specify one SEQUENCE statement. For details see
“SEQUENCE” on page 455.

component_def_stmt_block
A component_def_stmt_block consists of one or more type declaration

�� DERIVED_TYPE_statement
type_param_def_block

�

�
private_components_stmt
SEQUENCE

component_def_stmt_block
�

�
type_bound_procedure_block

END_TYPE_statement ��

where private_components_stmt is as follows:

�� PRIVATE ��

© Copyright IBM Corp. 1996, 2014 47

statements or procedure component declaration statements to define the
components of the derived type. The attributes that a type declaration
statement in component_def_stmt_block can specify include

ALLOCATABLE , F2008 CONTIGUOUS F2008 ,
“DIMENSION” on page 332, POINTER, “PRIVATE” on page 426 and
“PUBLIC” on page 434 attributes. For more information, see “Type
Declaration” on page 470 and “Procedure pointer components” on page 51.

Fortran 2003

type_bound_procedure_block
Consists of a “CONTAINS” on page 320 statement, followed optionally by
a BINDING_PRIVATE_stmt statement, and one or more procedure binding
statements. BINDING_PRIVATE_stmt specifies that the default accessibility
for the derived type bindings are private, and you can only specify one
BINDING_PRIVATE_stmt binding statement for a given derived type. For
details about BINDING_PRIVATE_stmt, see “Syntax of a type-bound
procedure” on page 58.

End of Fortran 2003

END_TYPE_statement
Optionally contains the same type_name as specified on the TYPE
statement. For more information see “END TYPE” on page 350.

Derived type parameters (Fortran 2003)
A derived type is parameterized if the DERIVED_TYPE_statement has any
type_param_names, or if it inherits any type parameter from its ancestor type. You
can define the type parameters for the derived type.

Syntax of a type parameter definition

kind_selector
Specifies the kind type parameter for the integer type. See the kind_selector
section of INTEGER statement for syntax details.

type_param_decl

Each type_param_name in a type_param_decl must match one of the
type_param_name parameters listed in the DERIVED_TYPE_statement. Each
type_param_name in the DERIVED_TYPE_statement must be specified once in a
type_param_decl in the derived type definition.

�� INTEGER , KIND :: type_param_decl_list
kind_selector LEN

��

�� type_param_name
= scalar_int_initialization_expr

��

48 XL Fortran: Language Reference for Big Endian Distributions

A derived type parameter can be one of the following parameters.
v It is a kind type parameter if it is declared with the KIND specifier.
v It is a length type parameter if it is declared with the LEN specifier.

A derived type parameter can be used as a primary in a specification expression in
the derived type definition. A kind type parameter can also be used as a primary
in a constant expression in the derived type definition.

If a type_param_decl has a scalar_int_initialization_expr, the type parameter has a
default value specified by the expression.

Example
TYPE general_point (k, dim)

INTEGER, KIND :: k = selected_real_kind(6,70)
INTEGER, LEN :: dim

REAL(k) :: coordinates(dim)
END TYPE general_point

Type parameter order
Is the sequence of type parameters of a parameterized derived type. It is
used for derived type specifiers (see Type Declaration) that do not use type
parameter name keywords.

If a type is not an extended type, its type parameter order is the order of
the type parameter list in the DERIVED_TYPE_statement. The type
parameter order of an extended type consists of the type parameter order
of its parent type, followed by any additional type parameters in the order
of the type parameter list in its DERIVED_TYPE_statement.

Derived type components
The components of a derived type can be of any intrinsic type or can be of a
previously defined derived type. The components of a derived type can be either
direct or ultimate.

Direct components of a derived type are components that satisfy any of the
following conditions:
v The components of that derived type.
v The direct components of a derived type component that has neither the

ALLOCATABLE nor the POINTER attribute.

Ultimate components are components that satisfy any of the following three
conditions:
v Components of intrinsic data type.
v Components with the ALLOCATABLE or POINTER attribute.
v The ultimate components of a derived type component that has neither the

ALLOCATABLE nor POINTER attribute.

You can specify a default initialization for each nonallocatable component in the
definition of a derived type. Allocatable components are always initialized to
deallocated.

An attribute cannot appear more than once in a type declaration statement or a
procedure component declaration statement.

Chapter 4. Derived types 49

If you specify neither the ALLOCATABLE nor the POINTER
attribute for a component, that component must be of an intrinsic type or a
previously defined derived type.

If you specify neither the ALLOCATABLE nor the POINTER
attribute for an array component, the array bounds must be explicitly specified for
each dimension. Each bound must be an expression that does not include any
references to specification functions or the following intrinsic functions:
ALLOCATED, ASSOCIATED, EX-TENDS TYPE OF, PRESENT, or SAME TYPE
AS. Each specification inquiry reference is a constant expression whose value does
not depend on a variable value.

When you define a component, the value of a type parameter must be a colon or
an expression that does not include any references to specification functions or the
following intrinsic functions: ALLOCATED, ASSO-CIATED, EXTENDS TYPE OF,
PRESENT, or SAME TYPE AS. Each specification inquiry reference is a constant
expression whose value does not depend on a variable value.

A component of a derived type must not appear as an input/output list item if
any ultimate component of the object cannot be accessed by the scoping unit of the
input/output statement, unless a user-defined input/output procedure
processes the derived-type object. A derived-type object must not appear
in a data transfer statement if the object has a component that is a pointer or
allocatable, unless a user-defined input/output procedure processes the
object.

Allocatable and pointer components
A component is allocatable if it has the ALLOCATABLE attribute. A component is
a pointer if it has the POINTER attribute. A component cannot have both the
ALLOCATABLE and POINTER attributes.

A pointer component can be a data pointer or a procedure pointer. The type of a
data pointer component can be the same as the type containing the component.

Allocatable components are defined as ultimate components just as pointer
components are. This is because the value (if any) is stored separately from the rest
of the structure, and this storage does not exist (because the object is deallocated)
when the structure is created. As with pointer components, variables containing
allocatable components are forbidden from appearing directly in input/output lists,
unless the variable is processed by a user-defined derived type input/output
procedure.

As with allocatable arrays, allocatable components are forbidden from storage
association contexts. So, any variable containing a pointer or allocatable component
cannot appear in COMMON or EQUIVALENCE. However, allocatable
components are permitted in SEQUENCE types, which allows the same type to be
defined separately in more than one scoping unit.

If a component of type character or derived type has the ALLOCATABLE or
POINTER attribute, it can have deferred length.

Examples
MODULE REAL_POLYNOMIAL_MODULE

TYPE REAL_POLYNOMIAL
REAL, ALLOCATABLE :: COEFF(:)

END TYPE

50 XL Fortran: Language Reference for Big Endian Distributions

INTERFACE OPERATOR(+)
MODULE PROCEDURE RP_ADD_RP, RP_ADD_R

END INTERFACE
CONTAINS

FUNCTION RP_ADD_R(P1,R)
TYPE(REAL_POLYNOMIAL) RP_ADD_R, P1
REAL R
INTENT(IN) P1,R
ALLOCATE(RP_ADD_R%COEFF(SIZE(P1%COEFF)))
RP_ADD_R%COEFF = P1%COEFF
RP_ADD_R%COEFF(1) = P1%COEFF(1) + R

END FUNCTION
FUNCTION RP_ADD_RP(P1,P2)

TYPE(REAL_POLYNOMIAL) RP_ADD_RP, P1, P2
INTENT(IN) P1, P2
INTEGER M
ALLOCATE(RP_ADD_RP%COEFF(MAX(SIZE(P1%COEFF), SIZE(P2%COEFF))))
M = MIN(SIZE(P1%COEFF), SIZE(P2%COEFF))
RP_ADD_RP%COEFF(:M) = P1%COEFF(:M) + P2%COEFF(:M)
IF (SIZE(P1%COEFF)>M) THEN

RP_ADD_RP%COEFF(M+1:) = P1%COEFF(M+1:)
ELSE IF (SIZE(P2%COEFF)>M) THEN

RP_ADD_RP%COEFF(M+1:) = P2%COEFF(M+1:)
END IF

END FUNCTION
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOMIAL_MODULE
TYPE(REAL_POLYNOMIAL) P, Q, R
P = REAL_POLYNOMIAL((/4,2,1/)) ! Set P to (X**2+2X+4)
Q = REAL_POLYNOMIAL((/1,1/)) ! Set Q to (X+1)
R = P + Q ! Polynomial addition
PRINT *, ’Coefficients are: ’, R%COEFF

END

Related information
v “Procedure pointer components”

Procedure pointer components
Syntax of a procedure pointer component

procedure_interface

A declaration_type_spec or the name of a procedure that has an explicit
interface. For more information, see “Type Declaration” on page 470.

If procedure_interface is a declaration_type_spec and the type specified is a
parameterized derived type, all parameters used must be known at
compile time.

procedure_component_attr_spec_list
Attributes from the following list:
v POINTER

v PASS

�� PROCEDURE ()
procedure_interface ::

, procedure_component_attr_spec_list ::

�

� procedure_entity_name
=> null_init

��

Chapter 4. Derived types 51

v NOPASS

v access_spec

procedure_entity_name
is the name of the procedure pointer that is being declared.

null_init
is a reference to the NULL intrinsic function.

The PASS attribute defines the passed-object dummy arguments of the type-bound
procedure or procedure pointer component. When NOPASS is specified the
procedure has no passed-object dummy argument.

PASS or NOPASS shall not both appear in the same
procedure_component_attr_spec_list.

If the procedure pointer component has an implicit interface or has no arguments,
NOPASS shall be specified.

If PASS(arg-name) appears, the interface shall have a dummy argument named
arg-name which is the passed-object dummy arguments.

The passed-object dummy arguments must not be a pointer, must not be
allocatable, and all its length type parameters must be assumed.

If neither PASS nor NOPASS is specified or PASS has no arg-name, the first
dummy argument is the passed-object dummy argument.

POINTER must be present in each procedure_component_attr_spec_list.

Related information
v “Procedure pointers (Fortran 2003)” on page 182
v “Passed-object dummy arguments” on page 61

Array components
A derived type component can be an array. For details, see “Array sections” on
page 86, “Array sections and structure components” on page 90, “Array
declarators” on page 74, and “Type Declaration” on page 470.

Nonpointer, nonallocatable array components can be declared with either constant
dimension declarators or specification expressions that can involve type
parameters.

Note: You must declare pointer and allocatable array components with a
deferred_shape_spec_list array specification. For details, see “Deferred-shape arrays”
on page 78.

F2008 If the CONTIGUOUS attribute is specified, the component must be an
array with the POINTER attribute. F2008

Default initialization for components
You cannot specify default initialization for an allocatable component. Allocatable
components are always initialized to deallocated.

52 XL Fortran: Language Reference for Big Endian Distributions

You can specify default initialization for a nonpointer component using an equal
sign followed by a constant expression, or by enclosing an initial_value_list in
slashes. Enclosing an initial_value_list in slashes can apply to components in a
standard derived type declaration, or those within a record structure.

For pointer components default initialization, use an arrow (=>) and then a
reference to the NULL intrinsic with no arguments. You can specify default
initialization for zero or more components of a derived type, but it is not necessary
for every component.

A data object has default initialization if any direct component of its type is
initialized. Such an object cannot be a pointee. For more information about
pointees, see “POINTER (integer) (IBM extension)” on page 423.

If a nonpointer component is of a type that has default initialization, the default
initialization specified for the component overrides the default initialization
specified for the components of the type.

You can use an object that has default initialization in a common block as
an IBM extension.

Unlike explicit initialization, theSAVE attribute is not implied by default
initialization. The -qsave=defaultinit option causes default initialization to
imply the SAVE attribute.

If a storage unit that is storage associated has default initialization, the objects or
subobjects supplying the default initialization must be of the same type and type
parameters, bounds, and supply the same value for that storage unit.

A direct component receives an initial value if you specify default initialization on
the corresponding component definition in the type definition, regardless of the
accessibility of that component.

For a data object that can undergo default initialization, its nonpointer components
are either initially undefined, or their corresponding default initialization
expressions define them. Its pointer components with default initialization have
association status disassociated, and all other pointer components have association
status undefined.

If a variable that has default initialization has static storage class, then default
initialization occurs for that variable when your application executes.

If a variable that is a function result, an INTENT(OUT) dummy argument, or a
local variable without the SAVE attribute has default initialization, then default
initialization occurs when the procedure containing the variable's declaration
executes.

Allocation of an object that has default initialization for a component causes the
component to:
v Become defined, if the component is a nonpointer
v Become disassociated, if the component is a pointer.

In a subprogram with an ENTRY statement, default initialization occurs only for
the dummy arguments that appear in the argument list of the procedure name the

Chapter 4. Derived types 53

ENTRY statement references. If a dummy argument has the OPTIONAL attribute,
default initialization occurs only if that dummy argument is present.

Module data objects of derived type with default initialization must have the
SAVE attribute to be a candidate for default initialization.

Component order
Component order is the sequence of non-parent components of a derived type as
the sequence pertains to list-directed and namelist formatted input/output, and
structure constructors that do not use component keywords.

If a type is not an extended type, its component order is the order of the
declarations of the components in the derived type definition. The component
order of an extended type consists of the component order of its
parent type, followed by any additional components in the order of their
declarations in the extended derived type definition.

Referencing components
You can refer to a specific structure component using a component designator. A
scalar component designator has the following syntax:

scalar_struct_comp:

name is the name of an object of derived type

comp_name
is the name of a derived type component

int_expr
is a scalar integer or real expression called a subscript expression

separator
is % or .

The structure component has the same type, type parameters, and POINTER
attribute (if any) as the right-most comp_name. It inherits any INTENT, TARGET,
and PARAMETER attributes from the parent object.

Note:

v Each comp_name must be a component of the declared type of the immediate
preceding name or comp_name.

v The name and each comp_name, except the right-most, must be of derived type.
v The number of subscript expressions in any int_expr_list must equal the rank of

the preceding name or comp_name.

�� name
(int_expr_list)

�

� � separator comp_name
(int_expr_list)

��

54 XL Fortran: Language Reference for Big Endian Distributions

v The name must be the name of a data object.
v Only name or at most one comp_name can have nonzero rank. If name or a

comp_name has nonzero rank, the comp_name to the right must not have the
ALLOCATABLE or POINTER attribute.

v The rank of the structure component is the rank of the name of comp_name that
has nonzero rank (if any). Otherwise, the rank is zero.

v If the declared type of the rightmost comp_name is of abstract type, the
structure component must be polymorphic.

In namelist formatting, a separator must be a percentage sign.

If an expression has a form that could be interpreted either as a structure
component using periods as separators or as a binary operation, and an operator
with that name is accessible in the scoping unit, XL Fortran will treat the
expression as a binary operation. If that is not the interpretation you intended, you
should use the percent sign to dereference the parts, or, in free source form, insert
white space between the periods and the comp_name.

Examples

Example 1: Ambiguous use of a period as separator
MODULE MOD

STRUCTURE /S1/
STRUCTURE /S2/ BLUE

INTEGER I
END STRUCTURE

END STRUCTURE
INTERFACE OPERATOR(.BLUE.)

MODULE PROCEDURE BLUE
END INTERFACE

CONTAINS
INTEGER FUNCTION BLUE(R1, I)

RECORD /S1/ R1
INTENT(IN) :: R1
INTEGER, INTENT(IN) :: I
BLUE = R1%BLUE%I + I

END FUNCTION BLUE
END MODULE MOD

PROGRAM P
USE MOD
RECORD /S1/ R1
R1%BLUE%I = 17
I = 13
PRINT *, R1.BLUE.I ! Calls BLUE(R1,I) - prints 30
PRINT *, R1%BLUE%I ! Prints 17

END PROGRAM P

Example 2: Mix of separators
STRUCTURE /S1/

INTEGER I
END STRUCTURE
STRUCTURE /S2/

RECORD /S1/ C
END STRUCTURE
RECORD /S2/ R
R.C%I = 17 ! OK
R%C.I = 3 ! OK
R.C.I = 19 ! OK
END

Chapter 4. Derived types 55

Example 3: Percent and period work for any derived types
STRUCTURE /S/

INTEGER I, J
END STRUCTURE
TYPE DT

INTEGER I, J
END TYPE DT
RECORD /S/ R1
TYPE(DT) :: R2
R1.I = 17; R1%J = 13
R2.I = 19; R2%J = 11
END

Component and procedure accessibility
The default accessibility of a component of a derived type is PUBLIC. The
PRIVATE components statement changes that default accessibility to private.

You can use the PRIVATE or PUBLIC attribute on each component of a derived
type to override the default accessibility. If a component is private, the component
name is accessible only within the module containing the derived type definition,
even if the derived type itself is public.

Fortran 2003

The default accessibility of a procedure binding is PUBLIC. The
BINDING_PRIVATE_stmt changes that default accessibility to private. You can use
the PRIVATE or PUBLIC attribute on a procedure binding to override the default
accessibility. If the procedure binding is private, it is accessible only within the
defining module, even if the derived type itself is public.

End of Fortran 2003

Sequence derived types
By default, the order of derived type component definitions does not imply a
storage sequence. However, if you include a SEQUENCE statement, the derived
type becomes a sequence derived type. For a sequence derived type, the order of
the components specifies a storage sequence for objects of this derived type. If a
component of a sequence derived type is of a derived type, that derived type must
also be a sequence derived type.

Attention:

Using sequence derived types can lead to misaligned data, which can adversely
affect the performance of your application. Use with discretion.

Extensible derived types (Fortran 2003)

An extensible type is a nonsequence noninteroperable derived type from which
you can extend new types. You cannot use record structure syntax to define an
extensible type. You can further classify an extensible type to be one or more of the
following:

Base type
Extends only itself and no other types.

56 XL Fortran: Language Reference for Big Endian Distributions

Extended type
Extends not only itself, but all types for which its parent type is an
extension.

Parent type
Provides components and procedure bindings to all types that extend from
that type. A parent type is the extensible type from which an extended
type is derived

You define an extended type with the EXTENDS attribute. The EXTENDS
attribute specification includes the name of the parent type. For more information
on specifying the EXTENDS attribute see “Derived Type” on page 330.

An extended type inherits all of the type parameters, components and
nonoverridden, nonfinal procedure bindings from its parent type.

The extended type also inherits inaccessible components and bindings from the
parent type. They remain inaccessible in the extended type. A private entity is
inaccessible if the type that you extend is accessed through use association.

A base type is not required to have any type parameters, components or bindings.
An extended type is not required to have more type parameters, components or
bindings than its parent type.

A type is not required to use any type parameters it or any parent may have
defined.

An extended type has a scalar, nonpointer, nonallocatable, parent component with
the same type and type parameters as its parent type. The name of this component
is identical to the name of the parent type, and has the same accessibility.

A type parameter or component declared in an extended type must not have the
same name as any type parameter or component of its parent type.

Example of an extended type
TYPE :: POINT ! A base type

REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
INTEGER :: COLOR ! Components X and Y, and component name

END TYPE COLOR_POINT ! POINT, inherited from parent

In the example, the type COLOR_POINT inherits the components X and Y from parent
type POINT. The components retain all of the attributes they have in the parent
type. You can declare additional components and procedure bindings in the
derived type definition of the extended type. In the example of an extensible type,
the type COLOR_POINT has one additional component, COLOR. The type POINT is a
nonsequence type that is not an extension of another type and therefore a base
type. The type COLOR_POINT is an extended type, whose parent type is POINT.

COLOR_POINT has a parent component POINT. The parent component, POINT, is a
structure with the components X and Y. Components of the parent are inheritance
associated with the corresponding components inherited from the parent type. An
ancestor component of a type is the parent component of the type or an ancestor
component of the parent component. The ancestor component of COLOR_POINT is
the parent component POINT.

Chapter 4. Derived types 57

For code example of type parameters, see the “Type Declaration” on page 470
section.

Abstract types and deferred bindings (Fortran 2003)
An abstract type is a type with the ABSTRACT attribute. A nonpolymorphic object
must not be declared with an abstract type.

A binding with the DEFERRED attribute is a deferred binding. A deferred binding
defers the implementation of a procedure to extensions of the type. You can specify
a deferred binding only in an abstract type definition. The dynamic type of a
polymorphic object cannot be an abstract type. Therefore, a deferred binding
cannot be invoked. An extension of an abstract type does not have to be abstract if
that extension does not contain or inherit deferred bindings.

If a type definition contains or inherits a deferred binding, the ABSTRACT
attribute must appear. If ABSTRACT appears, the type must be extensible.

Example of an abstract type
TYPE, ABSTRACT :: FILE_HANDLE

CONTAINS
PROCEDURE(OPEN_FILE), DEFERRED, PASS(HANDLE) :: OPEN
...

END TYPE

INTERFACE
SUBROUTINE OPEN_FILE(HANDLE)
IMPORT FILE_HANDLE

CLASS(FILE_HANDLE), INTENT(IN):: HANDLE
END SUBROUTINE OPEN_FILE
END INTERFACE

Derived type Values
The set of values of a particular derived type consists of all possible sequences of
the component values of its components. The following table lists component
values of different types of components.

Table 13. Component values

Component Component value

Pointer Pointer association

Deallocated allocatable Allocation status

Allocated allocatable Allocation status, dynamic type and type
parameters, bounds and value

Nonpointer nonallocatable Value

Type-bound procedures (Fortran 2003)
The procedure portion of a derived type definition allows you to bind specific
procedures, generic interfaces, and final subroutines to a type.

Syntax of a type-bound procedure
The syntax of the type-bound procedure portion of a derived type definition is as
follows:

58 XL Fortran: Language Reference for Big Endian Distributions

CONTAINS
For more information see “CONTAINS” on page 320

BINDING_PRIVATE_stmt
You can only specify a BINDING_PRIVATE_stmt if the type definition is
within the specification part of a module.

specific_binding
Binds a procedure to the type, or specifies a deferred binding in an abstract
type. See “Specific binding”

generic_binding
Defines a generic interface. See “Generic binding” on page 61

final_binding
Defines a list of final subroutines. See “Final binding” on page 63

You can identify a procedure using a binding name in the scope of the type
definition, or an operator for a generic binding. The binding name is the name of a
procedure of the type name and is referred to in the same way as a component of
a type. For a specific binding, this name is the binding_name. For a generic binding
whose generic specification is generic_name, this name is the generic_name. A final
binding, or a generic binding whose generic specification is not generic_name, has
no binding name.

Specific binding
Syntax of a specific_binding

The form of specific binding is:

�� CONTAINS
BINDING_PRIVATE_stmt

� specific_binding
generic_binding
final_binding

��

where BINDING_PRIVATE_stmt is as follows:

�� PRIVATE ��

Chapter 4. Derived types 59

interface_name
defines the interface of the type-bound procedure. The interface_name must
be the name of an abstract interface or of a procedure that has an explicit
interface. If you specify an interface_name, you must not specify a
procedure_name. An interface-name can appear if and only if the binding
has the DEFERRED attribute.

attribute
A binding can have one or more attributes, called binding attributes. The
same binding attribute cannot appear more than once for the same
binding. The list of binding attributes that you specify in an attribute_list
includes:

PASS Defines the passed-object dummy argument of the procedure.

NOPASS
Indicates that the procedure has no passed-object dummy
argument. If the interface of the binding has no dummy argument
of the type being defined, use NOPASS. PASS and NOPASS can
not both be specified for the same binding.

access_spec
Is PUBLIC or PRIVATE.

NON_OVERRIDABLE
Prevents a binding from being overridden in an extended type.
You must not specify NON_OVERRIDABLE for a binding with
the DEFERRED attribute.

DEFERRED
Marks the procedure as deferred. Deferred bindings must only be
specified for derived type definitions with the ABSTRACT
attribute. A procedure with the DEFERRED binding attribute must
specify an interface_name. An overriding binding can have the
DEFERRED attribute only if the binding it overrides is deferred.
The NON_OVERRIDABLE and DEFERRED binding attributes
must not both be specified for the same procedure. See “Abstract
types and deferred bindings (Fortran 2003)” on page 58 and
“Procedure overriding” on page 65 for more information.

binding_name
is the name of a binding of a type.

�� PROCEDURE
(interface_name) , attribute_list ::

::

�

� �

,
(1)

binding_name
=> procedure_name

��

Notes:

1 Fortran 2008

60 XL Fortran: Language Reference for Big Endian Distributions

procedure_name
defines the interface of the type-bound procedure. The procedure_name must
be the name of an accessible module procedure or an external procedure
that has an explicit interface. If neither =>procedure_name nor interface_name
appears, the procedure_name is the same as the binding_name. If
=>procedure_name appears, you must specify the double-colon separator
and an interface_name must not be specified.

Passed-object dummy arguments

A passed-object dummy argument applies to a type-bound procedure, or a
procedure pointer component.
v If you specify PASS (arg-name) the interface of the procedure pointer component

or named type-bound procedure has a dummy argument with the same name as
arg-name. In this case, the passed-object dummy argument is the argument with
the given name.

v If you do not specify PASS or NOPASS, or specify PASS without arg-name, the
first dummy argument of a procedure pointer component or type-bound
procedure is the passed-object dummy argument.

The passed-object dummy argument must be a scalar, nonpointer, nonallocatable
dummy data object with the same declared type as the type being defined. All of
its length type parameters must be assumed. The dummy argument must be
polymorphic if and only if the type being defined is extensible.

In the example of a type-bound procedure with a specific binding, the type POINT
contains a type-bound procedure with a specific binding. LENGTH is the type-bound
procedure and POINT_LENGTH is the name of a module procedure.

Example of a type-bound procedure with a specific binding
MODULE smaple
TYPE :: POINT

REAL :: X, Y
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE

CONTAINS
REAL FUNCTION point_length (a, b)

CLASS (POINT), INTENT (IN) :: a, b
point_length = SQRT ((a%X - b%X)**2 + (a%Y - b%Y)**2)

END FUNCTION point_length
END MODULE

Generic binding
Syntax of a generic_binding

The form of generic_binding is:

Chapter 4. Derived types 61

The generic_spec can be any of the following:

generic_name

OPERATOR(defined-operator)
The interface of each binding must be as specified in “Defined operators”
on page 168.

ASSIGNMENT(=)
The interface of each binding must be as specified in “Defined assignment”
on page 169.

dtio_generic_spec
The interface of each binding must be as specified in “User-defined
derived-type Input/Output procedure interfaces (Fortran 2003)” on page
218.

If the generic_spec is a generic_name, the generic_name cannot be the name of a
nongeneric binding of the type. The same generic_spec may be used in several
generic bindings within a single derived-type definition. In this case, every
occurrence of the same generic_spec must have the same accessibility. Each binding
name in the binding_name_list must be the name of a specific binding of the type.

When generic_spec is not a generic_name, each specific binding name in the
binding_name_list must have the passed-object dummy argument. You can only
specify one binding attribute, PRIVATE or PUBLIC. The following is an example
of a generic binding where generic_spec is ASSIGNMENT(=).

Examples
! See example of a procedure with a specific binding for definition of COLOR_POINT
TYPE, EXTENDS(color_point) :: point_info
! An extension of TYPE(COLOR_POINT)

REAL :: color_code
CONTAINS
PROCEDURE, NOPASS:: get_color_code
PROCEDURE :: info1 => color_to_info
PROCEDURE :: point1 => point_to_info
GENERIC :: ASSIGNMENT(=) => info1, point1

END TYPE point_info

CONTAINS
ELEMENTAL SUBROUTINE color_to_info(a, b)

CLASS(point_info), INTENT(OUT) :: a
TYPE(color_point), INTENT(IN):: b
a%color_point = b
a%color_code = get_color_code(b%color)

END SUBROUTINE
ELEMENTAL SUBROUTINE point_to_info(a, b)

CLASS(point_info), INTENT(OUT) :: a
TYPE(point), INTENT(IN):: b
a%color_point = color_point(point=b, color=1)
a%color_code = get_color_code(1)

END SUBROUTINE

�� GENERIC :: generic_spec
, PRIVATE
, PUBLIC

=> binding_name_list ��

62 XL Fortran: Language Reference for Big Endian Distributions

The following is an example of type parameters that illustrates how length
parameters should be used. As illustrated in the example, multiple procedures
must be defined for multiple kind parameter values:
! Separate specific bindings may be needed for multiple possible kind parameters:
TYPE :: GRAPH (PREC,NNODES)

INTEGER, KIND :: PREC
INTEGER, LEN :: NNODES
REAL(PREC) :: XVAL(NNODES), YVAL(NNODES)

CONTAINS
PROCEDURE, PASS :: FINDMAX_Y_4
PROCEDURE, PASS :: FINDMAX_Y_8
GENERIC :: FINDMAX_Y => FINDMAX_Y_4, FINDMAX_Y_8

END TYPE GRAPH

CONTAINS
INTEGER FUNCTION FINDMAX_Y_4(G)

CLASS(GRAPH(4,*)) :: G
FINDMAX_Y_4 = MAXLOC(G%XVAL,1)

END FUNCTION FINDMAX_Y_4

INTEGER FUNCTION FINDMAX_Y_8(G)
CLASS(GRAPH(8,*)) :: G
FINDMAX_Y_8 = MAXLOC(G%XVAL,1)

END FUNCTION FINDMAX_Y_8

Final binding
Syntax of a final_binding

A derived type is finalizable if the derived type has any final subroutines or any
nonpointer, nonallocatable component with a type that is finalizable. A nonpointer
data entity is finalizable if the type of the entity is finalizable. The form of
final_binding is:

FINAL
Specifies a list of final subroutines. A final subroutine can be executed
when a data entity of that type is finalized.

final_subroutine_name_list
A final_subroutine_name must be a module procedure with exactly one
dummy argument. That argument must be nonoptional and must be a
nonpointer, nonallocatable, nonpolymorphic variable of the derived type
being defined. All length type parameters are assumed; separate final
subroutines must be defined for different kind parameters. The dummy
argument cannot be INTENT(OUT). A final_subroutine_name must not be
one previously specified as a final subroutine for that type. A final
subroutine must not have a dummy argument with the same kind type
parameters and rank as the dummy argument of another final subroutine
of that type.

Final subroutines are not inherited through type extension and cannot be
overridden.

The following is an example of extended types with final subroutines:

�� FINAL final_subroutine_name_list
::

��

Chapter 4. Derived types 63

Example of extended types with final subroutines
MODULE m
TYPE :: t1

REAL a,b
END TYPE
TYPE, EXTENDS(t1) :: t2

REAL, POINTER :: c(:), d(:)
CONTAINS

FINAL :: t2f
END TYPE
TYPE, EXTENDS(t2) :: t3 (k)

INTEGER, KIND :: k
REAL(k), POINTER :: e

CONTAINS
FINAL :: t3f4, t3f8

END TYPE

CONTAINS
SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)’s extra components

TYPE(t2) :: x

print *, ’entering t2f’
IF (ASSOCIATED(x%c)) THEN

print *, ’ c allocated, cleaning up’
DEALLOCATE(x%c)

END IF
IF (ASSOCIATED(x%d)) THEN

print *, ’ d allocated, cleaning up’
DEALLOCATE(x%d)

END IF
END SUBROUTINE
SUBROUTINE t3f4(y) ! Finalizer for TYPE(t3)’s extra components, where kind is 4

TYPE(t3(4)) :: y
print *, ’entering t3f4’
IF (ASSOCIATED(y%e)) THEN

print *, ’ e (k=4) allocated, cleanup up’
DEALLOCATE(y%e)

END IF
END SUBROUTINE
SUBROUTINE t3f8(y) ! Second finalizer for TYPE(t3), with kind = 8

TYPE(t3(8)) :: y
print *, ’entering t3f8’
IF (ASSOCIATED(y%e)) THEN

print *, ’ e (k=8) allocated, cleanup up’
DEALLOCATE(y%e)

END IF
END SUBROUTINE
! If we had a type t3 with kind parameter k=16, we would probably
! want yet another finalizer with an argument of the appropriate
! type and parameters, but it does not have to be defined.

END MODULE

PROGRAM my_main
CALL calc_span

END PROGRAM

SUBROUTINE calc_span
USE m
TYPE(t1) x1
TYPE(t2) x2
TYPE(t3(4)) x3
TYPE(t3(8)) x3a

ALLOCATE(x2%c(1:5), SOURCE=[1.0, 5.0, 10.0, 15.0, 20.0])
ALLOCATE(x3%e, SOURCE=2.0)
ALLOCATE(x3a%e, SOURCE=3.0_8)

64 XL Fortran: Language Reference for Big Endian Distributions

x2%c = x2%c + x3%e + x3a%e
print *, ’calcs are=’, x2%c

! Returning from this subroutine does
! nothing to x1. It is not finalizable.
! The Fortran compiler places calls to the finalizers at the
! end of a subroutine for the local variables of calc_span,
! as if the following calls were being made:
! CALL t2f(x2)
! CALL t3f4(x3)
! CALL t2f(x3%t2)
! CALL t3f8(x3a)
! CALL t2f(x3a%t2)
! Note that the specific order of invocation (x2 before x3 before x3a) may vary.

END SUBROUTINE

The output of the above program is:

calcs are= 6.000000000 10.00000000 15.00000000 20.00000000 25.00000000
entering t2f
c allocated, cleaning up

entering t3f8
e (k=8) allocated, cleanup up

entering t2f
entering t3f4
e (k=4) allocated, cleanup up

entering t2f

Related information
v “Finalization (Fortran 2003)” on page 66

Procedure overriding
If a nongeneric binding you specify in a type definition has the same binding
name as a binding inherited from the parent type, then the binding you specify in
the type definition overrides the binding inherited from the parent type.

The overriding binding and the overriden binding must satisfy the following
conditions:
v Both bindings have a passed-object dummy argument or neither does.
v If the overridden binding is pure, the overriding binding must also be pure.
v Both bindings are elemental or neither is.
v Both bindings must have the same number of dummy arguments.
v Passed-object dummy arguments, if any, must correspond by name and position.
v Dummy arguments that correspond by position must have the same names and

characteristics, except for the type of the passed-object dummy arguments.
v Both bindings must be subroutines or functions having the same result

characteristics.
v If the overridden binding is PUBLIC then the overriding binding cannot be

PRIVATE.

Example of procedure overriding
TYPE :: POINT

REAL :: X, Y
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH

END TYPE POINT
TYPE, EXTENDS (POINT) :: POINT_3D

Chapter 4. Derived types 65

REAL :: Z
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH

END TYPE POINT_3D
...

The module-subprogram-part of the same module:
REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B
POINT_LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)**2)

END FUNCTION POINT_LENGTH

REAL FUNCTION POINT_3D_LENGTH (A, B)
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)

CLASS IS (POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2 + (A%Z-B%Z)**2)
RETURN

END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP

END FUNCTION POINT_3D

If a generic binding specified in a type definition has the same generic_spec that
does not satisfy the conditions as an inherited binding, it extends the generic
interface and must satisfy the requirements specified in “Unambiguous generic
procedure references” on page 165.

If a generic binding in a type definition has the same dtio_generic_spec as one
inherited from the parent, it extends the generic interface for the dtio_generic_spec
and must satisfy the requirements specified in “Unambiguous generic procedure
references” on page 165.

A binding of a type and a binding of an extension of that type correspond if:
v The extension binding is the same as the type binding.
v The extension binding overrides a corresponding binding.
v The extension binding is an inherited corresponding binding.

Finalization (Fortran 2003)

The finalization process
Only finalizable entities are finalized. When an entity is finalized, the following
steps are carried out in sequence:
1. If the dynamic type of the entity has a final subroutine and the dummy

argument of the final subroutine has the same kind type parameters and rank
as the entity being finalized, it is called with the entity as an actual argument.
Otherwise, if an elemental final subroutine exists whose dummy argument has
the same kind type parameters as the entity being finalized, it is called with the
entity as an actual argument. No subroutine is called at this point otherwise.

2. Each finalizable component that appears in the type definition is finalized. If
the entity being finalized is an array, each finalizable component of each
element of that entity is finalized separately.

3. The parent component of an entity is finalized if the entity is of extended type
and the parent type is finalizable.

66 XL Fortran: Language Reference for Big Endian Distributions

If several entities are to be finalized as a result of one of the events that triggers
finalization, these entities can be finalized in any order.

A final subroutine must not reference or define an object that has already been
finalized. If the object is not finalized, it retains its definition status and is not
undefined.

When finalization occurs
Finalization occurs for the target of a pointer when the pointer is deallocated. If an
object is allocated through pointer allocation and later becomes unreachable
because all pointers to that object have had their pointer association status
changed, finalization on the object does not occur.

Finalization of an allocatable entity occurs when the entity is deallocated.

Finalization of a nonpointer, nonallocatable object that is not a dummy argument
or function result occurs immediately before the object is undefined by the
execution of a RETURN or END statement.

Finalization of the entity created by a structure constructor referenced by an
executable construct occurs after execution of the innermost executable construct
containing the reference.

Finalization of the entity created by an array constructor referenced by an
executable construct occurs after execution of the innermost executable construct
containing the reference.

Finalization of the result of a function referenced by an executable construct takes
place after execution of the innermost executable construct containing the
reference.

Finalization of the result of a function referenced by a specification expression in a
scoping unit takes place before the first executable statement in the scoping unit
executes.

Finalization of a nonpointer, nonallocatable object that is an actual argument
associated with an INTENT(OUT) dummy argument of a procedure occurs when
the procedure is invoked.

Finalization of a variable in an intrinsic assignment statement takes place after
evaluation of the expression and before the definition of the variable.

F2008 Finalization for an unsaved, nonpointer, nonallocatable, local variable of a
BLOCK construct occurs immediately before execution exits the BLOCK construct.

F2008

Non-finalized entities
If program execution is terminated, either by an error, such as an allocation failure,
or by the execution of a STOP, F2008 ERROR STOP F2008 , or END
PROGRAM statement, entities existing immediately before termination are not
finalized.

A nonpointer, nonallocatable object that has the SAVE attribute is never finalized
as a direct consequence of the execution of a RETURN or END statement.

Chapter 4. Derived types 67

Determining declared type for derived types
Two data objects have the same derived type if they are declared with reference to
the same derived-type definition.

If the data objects are in different scoping units, they can still have the same
derived type. Either the derived-type definition is accessible via host or use
association, or the data objects reference their own derived-type definitions with
the following conditions:
v They were both declared using standard derived type declarations, both have

the same name, either both have the SEQUENCE property, or both have the
BIND attribute, and both have components that do not have PRIVATE
accessibility and their type parameter and components agree in order, name and
attributes; or

v They were declared using record structure declarations that were not unnamed,
the types have the same name, have no %FILL components and have
components that agree in order and attributes, and any %FILL components
appear in the same positions in both.

A derived-type definition that has the BIND attribute or the SEQUENCE property
is not the same as a definition declared to be private or that has components that
are private.

Examples

Example 1:
PROGRAM MYPROG

TYPE NAME ! Sequence derived type
SEQUENCE
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL

END TYPE NAME
TYPE (NAME) PER1

CALL MYSUB(PER1)
PER1 = NAME(’Smith’,’John’,’K’) ! Structure constructor
CALL MYPRINT(PER1)

CONTAINS
SUBROUTINE MYSUB(STUDENT) ! Internal subroutine MYSUB

TYPE (NAME) STUDENT ! NAME is accessible via host association
...

END SUBROUTINE MYSUB
END

SUBROUTINE MYPRINT(NAMES) ! External subroutine MYPRINT
TYPE NAME ! Same type as data type in MYPROG

SEQUENCE
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL

END TYPE NAME
TYPE (NAME) NAMES ! NAMES and PER1 from MYPROG
PRINT *, NAMES ! have the same data type

END SUBROUTINE

Example 2:

68 XL Fortran: Language Reference for Big Endian Distributions

MODULE MOD
STRUCTURE /S/
INTEGER I
INTEGER, POINTER :: P
END STRUCTURE
RECORD /S/ R

END MODULE
PROGRAM P

USE MOD, ONLY: R
STRUCTURE /S/

INTEGER J
INTEGER, POINTER :: Q

END STRUCTURE
RECORD /S/ R2
R = R2 ! OK - same type name, components have same attributes and

! type (but different names)
END PROGRAM P

Structure constructor
A structure constructor allows a scalar value of derived type to be constructed
from a list of values. A structure constructor must not appear before the definition
of the referenced derived type.

derived_type_spec
is used to specify a particular derived type and type parameters.

type_name
is the name of the derived type, which must not be abstract.

type_param_spec is:

Note: The value of a type parameter for which no type_param_value has been
specified is its default value. For details, see “Derived type parameters (Fortran
2003)” on page 48.

type_param_keyword
is the name of parameter of the type.

type_param_value
must be a scalar integer expression in a structure constructor.

�� derived_type_spec ()
component_spec_list

��

�� type_name ()
type_param_spec_list

��

�� type_param_value
type_param_keyword =

��

Chapter 4. Derived types 69

Note: derived_type_spec is also used in declaring data entities, procedure
interfaces and so on. In these cases, a type_param_value that is a length parameter
can be either a * or : in addition to scalar integer expression.

component_spec is:

component_keyword
is the name of a component of the type.

expr is an expression. Expressions are defined under Chapter 6, “Expressions
and assignment,” on page 99.

The type_name and all components of the type for which an expr appears must be
accessible in the scoping unit containing the structure constructor.

In the absence of a component keyword, each expr is assigned to the corresponding
component in component order. If a component keyword appears, the expr is
assigned to the component named by the keyword. For a nonpointer component,
the declared type and type parameters of the component and expr must conform in
the same way as for a variable and expression in intrinsic assignment. If necessary,
each value of intrinsic type is converted according to the rules of intrinsic
assignment to a value that agrees in type and type parameters with the
corresponding component of derived type. For a nonpointer nonallocatable
component, the shape of the expression must conform with the shape of the
component.

If a component_spec is provided for a component, no component_spec can be
provided for any component with which it is inheritance-associated. At most one
component_spec can be provided for a component.

If a component with default initialization has no corresponding expr, then the
default initialization is applied to that component.

The component_keyword = specifier may be omitted from a component_spec only if
the component_keyword = specifier has been omitted from each preceding
component_spec in the constructor.

The type_param_keyword = specifier may be omitted from a type_param_spec only if
the type_param_keyword = specifier has been omitted from each preceding
type_param_spec in the constructor.

A component that is a pointer can be declared with the same type that it is a
component of. If a structure constructor is created for a derived type containing a
pointer, the expression corresponding to the pointer component must evaluate to
an object that would be an allowable target for such a pointer in a pointer
assignment statement.

If a component of a derived type is allocatable, the corresponding constructor
expression will either be a reference to the intrinsic function NULL() with no
arguments, an allocatable entity, or will evaluate to an entity of the same rank. If
the expression is a reference to the intrinsic function NULL(), the corresponding

�� expr
component_keyword =

��

70 XL Fortran: Language Reference for Big Endian Distributions

component of the constructor has a status of deallocated. If the expression is an
allocatable entity, the corresponding component of the constructor has the same
allocation status as that of allocatable entity and, if it is allocated, it has the same
dynamic type, bounds (if any) and value. If a length parameter of the component
is deferred, its value is the same as the corresponding parameter of the expression.
Otherwise, the corresponding component of the constructor has an allocation status
of allocated, and has the same bounds (if any) and value as the expression.

If a derived type is declared using the record structure declaration and
has any %FILL component, the structure constructor for that type cannot be used.

If a derived type is accessible in a scoping unit and there is a local entity of class 1
that is not a derived type with the same name accessible in the scoping unit, the
structure constructor for that type cannot be used in that scope.

If derived_type_spec is a type name that is the same as a generic name,
component_spec_list must not be a valid actual_arg_spec_list for a function reference
that is resolvable as a generic reference.

In a structure constructor of a derived type containing an allocatable component,
the expression corresponding to the allocatable component must be one of the
following:
v A reference to the intrinsic function NULL with no argument. The allocatable

component receives the allocation status of deallocated.
v An allocatable variable with the same rank. The allocatable component has the

allocation status of the variable and, if it is allocated, the same dynamic type,
bounds, and value. The deferred length parameter of the component has the
same value as the corresponding parameter of the variable.

v Any other expression that evaluates to an entity of the same rank. The
allocatable component has the allocation status of allocated and has the same
bounds and value as the expression.

Examples

Example 1:
MODULE PEOPLE

TYPE NAME
SEQUENCE ! Sequence derived type
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL

END TYPE NAME

TYPE PERSON ! Components accessible via use
! association

INTEGER AGE
INTEGER BIRTHDATE(3) ! Array component
TYPE (NAME) FULLNAME ! Component of derived type

END TYPE PERSON
END MODULE PEOPLE

PROGRAM TEST1
USE PEOPLE
TYPE (PERSON) SMITH, JONES
SMITH = PERSON(30, (/6,30,63/), NAME(’Smith’,’John’,’K’))

! Nested structure constructors
JONES%AGE = SMITH%AGE ! Component designator
CALL TEST2
CONTAINS

Chapter 4. Derived types 71

SUBROUTINE TEST2
TYPE T

INTEGER EMP_NO
CHARACTER, POINTER :: EMP_NAME(:) ! Pointer component

END TYPE T
TYPE (T) EMP_REC
CHARACTER, TARGET :: NAME(10)
EMP_REC = T(24744,NAME) ! Pointer assignment occurs

END SUBROUTINE ! for EMP_REC%EMP_NAME
END PROGRAM

Example 2:
PROGRAM LOCAL_VAR

TYPE DT
INTEGER A
INTEGER :: B = 80

END TYPE

TYPE(DT) DT_VAR ! DT_VAR%B IS INITIALIZED
END PROGRAM LOCAL_VAR

Example 3:
MODULE MYMOD

TYPE DT
INTEGER :: A = 40
INTEGER, POINTER :: B => NULL()

END TYPE
END MODULE

PROGRAM DT_INIT
USE MYMOD
TYPE(DT), SAVE :: SAVED(8) ! SAVED%A AND SAVED%B ARE INITIALIZED
TYPE(DT) LOCAL(5) ! LOCAL%A LOCAL%B ARE INITIALIZED

END PROGRAM

Example 4:
PROGRAM NEW_LOCAL

TYPE DT
INTEGER :: A = 20
INTEGER :: B = 80
END TYPE

TYPE(DT):: DT_VAR = DT()
TYPE(DT):: DT_VAR2 = DT(B=40)
TYPE(DT):: DT_VAR3 = DT(B=10, A=50)

PRINT *, ’DT_VAR =’, DT_VAR
PRINT *, ’DT_VAR2=’, DT_VAR2
PRINT *, ’DT_VAR3=’, DT_VAR3

END PROGRAM NEW_LOCAL

! The expeceted output is :
DT_VAR = 20 80
DT_VAR2= 20 40
DT_VAR3= 50 10

72 XL Fortran: Language Reference for Big Endian Distributions

Chapter 5. Array concepts

An array is an ordered sequence of scalar data. All the elements of an array have
the same type and type parameters.

XL Fortran provides a set of features, commonly referred to as array language, that
allow you to manipulate arrays. This section provides background information on
arrays and array language.

Many statements in Chapter 11, “Statements and attributes,” on page 279, have
special features and rules for arrays.

This section makes frequent use of the DIMENSION attribute. See “DIMENSION”
on page 332.

A number of intrinsic functions are especially for arrays. These functions are
mainly those classified as “Transformational intrinsic functions” on page 561.

Array basics
A whole array is denoted by the name of the array.
! In this declaration, the array is given a type and dimension
REAL, DIMENSION(3) :: A
! In these expressions, each element is evaluated in each expression
PRINT *, A, A+5, COS(A)

A whole array is either a named constant or a variable.

Dimension

In Fortran 2008, an array can have up to fifteen dimensions.

In XL Fortran, an array can have up to twenty dimensions.

Bounds of a dimension
Each dimension in an array has an upper and lower bound, which determine the
range of values that can be used as subscripts for that dimension. The bound of a
dimension can be positive, negative, or zero.

In XL Fortran, the bound of a dimension can be positive, negative or zero
within the range -(2**31) to 2**31-1 in 32–bit mode. The 64-bit mode range for
bounds is -(2**63) to 2**63-1.

If any lower bound is greater than the corresponding upper bound, the array is a
zero-sized array, which has no elements but still has the properties of an array. The
return values for the intrinsic inquiry functions LBOUND and UBOUND for such
a dimension are one and zero, respectively.

When the bounds are specified in array declarators:
v The lower bound is a specification expression. If it is omitted, the default value

is 1.

© Copyright IBM Corp. 1996, 2014 73

v The upper bound is a specification expression or asterisk (*), and has no default
value.

Related information
v “Specification expressions” on page 101

Extent of a dimension
The extent of a dimension is the number of elements in that dimension, computed
as the value of the upper bound minus the value of the lower bound, plus one.
INTEGER, DIMENSION(5) :: X ! Extent = 5
REAL :: Y(2:4,3:6) ! Extent in 1st dimension = 3

! Extent in 2nd dimension = 4

The minimum extent is zero, in a dimension where the lower bound is greater than
the upper bound.

The theoretical maximum number of elments in an array is 2**31-1
elements in 32–bit mode, or 2**63-1 elements in XL Fortran 64-bit mode. Hardware
addressing considerations make it impractical to declare any combination of data
objects with a total size in bytes that exceeds this value.

Different array declarators associated by common, equivalence, or argument
association can have different ranks and extents.

Rank, shape, and size of an array
Rank

The rank of an array is the number of dimensions it has.
INTEGER, DIMENSION (10) :: A ! Rank = 1
REAL, DIMENSION (-5:5,100) :: B ! Rank = 2

A scalar is considered to have rank zero.

Shape

The shape of an array is derived from its rank and extents. It can be represented as
a rank-one array where each element is the extent of the corresponding dimension:
INTEGER, DIMENSION (10,10) :: A ! Shape = (/ 10, 10 /)
REAL, DIMENSION (-5:4,1:10,10:19) :: B ! Shape = (/ 10, 10, 10 /)

Size

The size of an array is the total number of elements in it. The size equals to the
product of the extents of all dimensions.
INTEGER A(5) ! Size = 5
REAL B(-1:0,1:3,4) ! Size = 2 * 3 * 4 = 24

Array declarators
An array declarator specifies the rank or rank and shape of an array.

You must declare every named array, and no scoping unit can have more than one
array declarator for the same name. An array declarator can appear in any of the
Compatible Statements and Attributes for Array Declarators table.

74 XL Fortran: Language Reference for Big Endian Distributions

Table 14. Compatible statements and attributes for array declarators

ALLOCATABLE �1� AUTOMATIC �2� COMMON

DIMENSION CONTIGUOUS �3� PARAMETER

POINTER (integer) �2� POINTER PROTECTED �1�

STATIC �2� TARGET Type Declaration

VOLATILE

Notes:
�1� Fortran 2003
�2� IBM extension
�3� Fortran 2008

For example:
DIMENSION :: A(1:5) ! Declarator is "(1:5)"
REAL, DIMENSION(1,1:5) :: B ! Declarator is "(1,1:5)"
INTEGER C(10) ! Declarator is "(10)"

The form of an array declarator is:

�� (array_spec) ��

array_spec
is an array specification. It is a list of dimension declarators, each of which
establishes the lower and upper bounds of an array, or specifies that one or
both will be set at run time. Each dimension requires one dimension
declarator.

An array_spec is one of:
explicit_shape_spec_list
assumed_shape_spec_list
deferred_shape_spec_list
implied_shape_spec_list
assumed_size_spec

TS assumed_rank_spec TS

Each array_spec declares a different kind of array. For details, see the topics
in the Chapter 5, “Array concepts,” on page 73 section.

Explicit-shape arrays
Explicit-shape arrays are arrays where the bounds are explicitly specified for each
dimension.

Chapter 5. Array concepts 75

Explicit_shape_spec_list

�� �

,

upper_bound
lower_bound :

��

lower_bound, upper_bound
are specification expressions

Arrays with bounds that are nonconstant expressions must be declared inside
subprograms or F2008 BLOCK constructs F2008 . The nonconstant bounds are
determined on entry to the subprogram or F2008 BLOCK construct F2008 . If a
lower bound is omitted, its default value is one.

The rank is the number of specified upper bounds. The shape of an explicit-shape
dummy argument can differ from that of the corresponding actual argument.

The size is determined by the specified bounds.

The size of an explicit-shape dummy argument does not need to be the same as
the size of the actual argument, but the size of the dummy argument cannot be
larger than the size of the actual argument.

Examples
INTEGER A,B,C(1:10,-5:5) ! All bounds are constant
A=8; B=3
CALL SUB1(A,B,C)
END
SUBROUTINE SUB1(X,Y,Z)

INTEGER X,Y,Z(X,Y) ! Some bounds are not constant
END SUBROUTINE

Automatic arrays
An automatic array is an explicit-shape array that is declared in a subprogram

F2008 or a BLOCK construct F2008 . It is not a dummy argument or pointee
array, and has at least one bound that is a nonconstant specification expression.
Evaluation of the bounds occurs on entry into the subprogram F2008 or BLOCK
construct F2008 . After the bounds are determined, they remain unchanged
during execution of the subprogram F2008 or BLOCK construct F2008 .

Example of an automatic array
INTEGER X
COMMON X
X = 10
CALL SUB1(5)
END

SUBROUTINE SUB1(Y)
INTEGER X
COMMON X
INTEGER Y

76 XL Fortran: Language Reference for Big Endian Distributions

REAL Z (X:20, 1:Y) ! Automatic array. Here the bounds are made
! available through dummy arguments and common
! blocks, although Z itself is not a dummy

END SUBROUTINE ! argument.

Related information

v For general information about automatic data objects, see “Automatic objects”
on page 18 and “Storage classes for variables (IBM extension)” on page 26.

Adjustable arrays
An adjustable array is an explicit-shape array dummy argument that has at least
one non-constant bound.

Example of an adjustable array
SUBROUTINE SUB1(X, Y)
INTEGER X, Y(X*3) ! Adjustable array. Here the bounds depend on a

! dummy argument, and the array name is also passed in.
END SUBROUTINE

Pointee arrays (IBM extension)
Pointee arrays are explicit-shape or assumed-size arrays that can only appear in
integer POINTER statements.

The declarator for a pointee array can only contain variables if you declare the
array inside a subprogram, and any such variables must be:
v dummy arguments
v members of a common block
v use associated
v host associated

Evaluation of the bounds occurs on entry into the subprogram, and remain
constant during execution of that subprogram.

Compiling with the -qddim option option relaxes the restrictions on which
variables can appear in an array declarator. Declarators in the main program can
contain variable names, and any specified nonconstant bounds are re-evaluated
each time you reference the array, so that you can change the properties of the
pointee array by changing the values of the variables used in the bounds
expressions.

Example using -qddim to relax array declarator restrictions
@PROCESS DDIM
INTEGER PTE, N, ARRAY(10)
POINTER (P, PTE(N))
N = 5
P = LOC(ARRAY(2)) !
PRINT *, PTE ! Print elements 2 through 6 of ARRAY
N = 7 ! Increase the size
PRINT *, PTE ! Print elements 2 through 8 of ARRAY
END

Assumed-shape arrays
Assumed-shape arrays are dummy argument arrays where the extent of each
dimension is taken from the associated actual arguments.

Chapter 5. Array concepts 77

Assumed_shape_spec_list

�� �

,

:
lower_bound

��

lower_bound
is a specification expression

Each lower bound defaults to one, or may be explicitly specified. Each upper
bound is set on entry to the subprogram to the specified lower bound (not the
lower bound of the actual argument array) plus the extent of the dimension minus
one.

The extent of any dimension is the extent of the corresponding dimension of the
associated actual argument.

The rank is the number of colons in the assumed_shape_spec_list.

The shape is assumed from the associated actual argument array.

The size is determined on entry to the subprogram where it is declared, and equals
the size of the associated actual argument array.

Note: Subprograms that have assumed-shape arrays as dummy arguments must
have explicit interfaces.

Examples
INTERFACE

SUBROUTINE SUB1(B)
INTEGER B(1:,:,10:)

END SUBROUTINE
END INTERFACE
INTEGER A(10,11:20,30)
CALL SUB1 (A)
END
SUBROUTINE SUB1(B)
INTEGER B(1:,:,10:)
! Inside the subroutine, B is associated with A.
! It has the same extents as A but different bounds (1:10,1:10,10:39).
END SUBROUTINE

Deferred-shape arrays
Deferred-shape arrays are allocatable arrays or array pointers, where the bounds
can be defined or redefined during execution of the program.

78 XL Fortran: Language Reference for Big Endian Distributions

Deferred_shape_spec_list

�� �

,

: ��

The extent of each dimension (and the related properties of bounds, shape, and
size) is undefined until the array is allocated or the pointer is associated with an
array that is defined. Before then, no part of the array may be defined, or
referenced except as an argument in certain situations.

An array pointer can have its bounds specified by one of the following:
v pointer assignment
v ALLOCATE statement
v if it is a dummy argument, argument association with a non-pointer actual

argument or an associated pointer argument

An allocatable array can have its bounds specified by one of the following:
v ALLOCATE statement
v if it is a dummy argument, argument association with an allocated argument

The rank is the number of colons in the deferred_shape_spec_list.

Although a deferred_shape_spec_list can appear identical to an
assumed_shape_spec_list, deferred-shape arrays and assumed-shape arrays are not
the same. A deferred-shape array must have the ALLOCATABLE or POINTER
attribute, while an assumed-shape array must be a dummy argument that does not
have the ALLOCATABLE or POINTER attribute. The bounds of a deferred-shape
array, and the actual storage associated with it, can be changed at any time by
reallocating the array or by associating the pointer with a different array, while
these properties remain the same for an assumed-shape array during the execution
of the containing subprogram.

Related information:
v “Allocation status” on page 26
v “Data pointer assignment” on page 127
v “Pointer association” on page 157
v “ALLOCATABLE (Fortran 2003)” on page 283
v “ALLOCATED(X)” on page 572
v “ASSOCIATED(POINTER, TARGET)” on page 577

Allocatable arrays
A deferred-shape array that has the ALLOCATABLE attribute is referred to as an
allocatable array. The bounds and shape of the array are determined when you
perform one of the following tasks:
v Allocate storage using an ALLOCATE statement
v Perform argument association

Chapter 5. Array concepts 79

Example

The following example declares an allocatable array and determines its bounds.
INTEGER, ALLOCATABLE, DIMENSION(:, :, :) :: arr
ALLOCATE(arr(10, -4:5, 20)) ! Bounds of arr are now defined (1:10, -4:5, 1:20)
DEALLOCATE(a)
ALLOCATE(arr(5, 5, 5)) ! Change the bounds of arr

If you compile your program with -qinitalloc, all elements of the allocatable array
arr are initialized to zero.

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “ALLOCATE” on page 285
v “DEALLOCATE” on page 328
v The -qinitalloc option

Array pointers
An array with the POINTER attribute is referred to as an array pointer. Its bounds
and shape are determined when it is associated with a target through the following
ways:
v Pointer assignment
v Argument association
v Execution of an ALLOCATE statement

Migration Tip:

If you do not know the size of an array at compile time, you can avoid unnecessary
memory usage by making the array allocatable instead of declaring it with a maximum
size.

FORTRAN 77 source

INTEGER A(1000),B(1000),C(1000)
C 1000 is the maximum size

WRITE (6,*) "Enter the size of the arrays:"
READ (5,*) N

...
DO I=1,N

A(I)=B(I)+C(I)
END DO
END

Source for Fortran 90 or above:

INTEGER, ALLOCATABLE, DIMENSION(:) :: A,B,C
WRITE (6,*) "Enter the size of the arrays:"
READ (5,*) N
ALLOCATE (A(N),B(N),C(N))

...
A=B+C
END

80 XL Fortran: Language Reference for Big Endian Distributions

Example

The following example declares an array pointer and determines its bounds and
storage association.
REAL, POINTER, DIMENSION(:, :) :: b
REAL, TARGET, DIMENSION(5, 10) :: c, d(10, 10)
b => c ! Bounds of b are now defined (1:5, 1:10)
b => d ! b now has different bounds and is associated with different storage

If you use the following ALLOCATE statement and compile your program with
the -qinitalloc option, all elements of the array pointer b are initialized to zero.
ALLOCATE(b(5, 5)) ! Change bounds and storage association again

Related information
v “Pointer association” on page 157
v “ALLOCATE” on page 285
v The -qinitalloc option

Implied-shape arrays (Fortran 2008)
An implied-shape array is a named constant that inherits its shape from the
constant expression in its declaration.

Implied_shape_spec_list

�� �

,

*
lower_bound:

��

lower_bound
A specification expression

The declaration of an implied-shape array contains an implied-shape specification
and a constant expression. The constant expression must be an array.

The rank is the number of implied-shape specifications in implied_shape_spec_list.

The extent of any dimension is the same as the extent of the corresponding
dimension of the constant expression.

Each lower bound is the corresponding lower bound in implied_shape_spec_list. For
dimensions whose lower bounds are not specified, the lower bounds default to
one. Each upper bound is the sum of the lower bound and extent minus one.

Examples
! Array imp1 is a rank-one array. Its upper bound is 5.
INTEGER, PARAMETER :: imp1(4:*) = [1, 2]

! Array imp2 is a rank-one array. Its upper bound is 4.
INTEGER, PARAMETER :: onetofour(4) = [1, 2, 3, 4]
INTEGER, PARAMETER, DIMENSION(*) :: imp2 = onetofour

Chapter 5. Array concepts 81

! Array imp3 is a rank-two array. Its shape is (/2, 2/) and the upper bounds for
the two dimensions are 2 and 11.
REAL, PARAMETER :: imp3(*, 10:*) = RESHAPE([1, 2, 3, 4], [2, 2])

Related information
v Constant expressions in the XL Fortran Language Reference

Assumed-size arrays
Assumed-size arrays are dummy argument arrays where the size is inherited from
the associated actual argument, but the rank and extents might differ.

Assumed_size_spec

��

�

*
, lower_bound :

upper_bound ,
lower_bound :

��

lower_bound, upper_bound
are specification expressions

If any bound is not constant, the array must be declared inside a subprogram and
the nonconstant bounds are determined on entry to the subprogram. If a lower
bound is omitted, its default value is 1.

The last dimension has no upper bound and is designated instead by an asterisk.
You must ensure that references to elements do not go past the end of the actual
array.

The rank equals one plus the number of upper_bound specifications in its
declaration, which may be different from the rank of the actual array it is
associated with.

The size is assumed from the actual argument that is associated with the
assumed-size array:
v TS If the actual argument is a scalar and the assumed-size dummy

argument is of assumed-type, the assumed-size array has exactly one element.
TS

v If the actual argument is a noncharacter array, the size of the assumed-size array
is that of the actual array.

v If the actual argument is an array element from a noncharacter array, and if the
size remaining in the array beginning at this element is S, then the size of the
dummy argument array is S. Array elements are processed in array element
order.

v If the actual argument is a character array, array element, or array element
substring, and assuming that:
– A is the starting offset, in characters, into the character array
– T is the total length, in characters, of the original array
– S is the length, in characters, of an element in the dummy argument array

then the size of the dummy argument array is:

82 XL Fortran: Language Reference for Big Endian Distributions

MAX(INT (T - A + 1) / S, 0)

For example:
CHARACTER(10) A(10)
CHARACTER(1) B(30)
CALL SUB1(A) ! Size of dummy argument array is 10
CALL SUB1(A(4)) ! Size of dummy argument array is 7
CALL SUB1(A(6)(5:10)) ! Size of dummy argument array is 4 because there

! are just under 4 elements remaining in A
CALL SUB1(B(12)) ! Size of dummy argument array is 1, because the

! remainder of B can hold just one CHARACTER(10)
END ! element.
SUBROUTINE SUB1(ARRAY)

CHARACTER(10) ARRAY(*)
...

END SUBROUTINE

Examples

Example 1
INTEGER X(3,2)
DO I = 1,3

DO J = 1,2
X(I,J) = I * J ! The elements of X are 1, 2, 3, 2, 4, 6

END DO
END DO
PRINT *,SHAPE(X) ! The shape is (/ 3, 2 /)
PRINT *,X(1,:) ! The first row is (/ 1, 2 /)
CALL SUB1(X)
CALL SUB2(X)
END
SUBROUTINE SUB1(Y)

INTEGER Y(2,*) ! The dimensions of y are the reverse of x above
PRINT *, SIZE(Y,1) ! We can examine the size of the first dimension

! but not the last one.
PRINT *, Y(:,1) ! We can print out vectors from the first
PRINT *, Y(:,2) ! dimension, but not the last one.

END SUBROUTINE
SUBROUTINE SUB2(Y)

INTEGER Y(*) ! Y has a different rank than X above.
PRINT *, Y(6) ! We have to know (or compute) the position of

! the last element. Nothing prevents us from
! subscripting beyond the end.

END SUBROUTINE

TS

Example 2
REAL r1
CALL sub(r1)
!You can pass a scalar as the actual argument that corresponds
!to an assumed-size dummy argument of assumed-type.
CONTAINS

SUBROUTINE sub(arg)
TYPE(*) :: arg(3, 2:*)

END
END

TS

Notes:

Chapter 5. Array concepts 83

1. An assumed-size array cannot be used as a whole array in an executable
construct unless it is an actual argument in a subprogram reference that does
not require the shape:
! A is an assumed-size array.
PRINT *, UBOUND(A,1) ! OK - only examines upper bound of first dimension.
PRINT *, LBOUND(A) ! OK - only examines lower bound of each dimension.
! However, ’B=UBOUND(A)’ or ’A=5’ would reference the upper bound of
! the last dimension and are not allowed. SIZE(A) and SHAPE(A) are
! also not allowed.

2. If a section of an assumed-size array has a subscript triplet as its last section
subscript, the upper bound must be specified. (Array sections and subscript
triplets are explained in a subsequent section.)
! A is a 2-dimensional assumed-size array
PRINT *, A(:, 6) ! Triplet with no upper bound is not last dimension.
PRINT *, A(1, 1:10) ! Triplet in last dimension has upper bound of 10.
PRINT *, A(5, 5:9:2) ! Triplet in last dimension has upper bound of 9.

Assumed-rank objects (Technical Specification)
Assumed-rank objects are dummy argument objects whose ranks are assumed
from the associated actual arguments at run time. The actual argument that
corresponds to an assumed-rank object can be an array or a scalar.

Assumed_rank_spec

�� .. ��

If an assumed-rank dummy argument is associated with a scalar actual argument,
the rank of the assumed-rank dummy argument is zero, and the shape of it is a
zero-sized array.

Restrictions:

v An assumed-type actual argument that corresponds to an assumed-rank dummy
argument must be assumed-shape or assumed-rank.

v An assumed-rank object cannot have the VALUE attribute.
v An assumed-rank object cannot be used in a designator or expression except in

the following ways:
– As an actual argument that corresponds to a dummy argument that is

assumed-rank
– As the argument of the C_LOC function in the ISO_C_BINDING intrinsic

module
– As the first argument in a reference to an intrinsic inquiry function

Examples
REAL :: a0
REAL :: a1(10)
REAL :: a2(10, 20)
REAL, POINTER :: a3(:,:,:)

CALL sub1(a0)
CALL sub1(a1)
CALL sub1(a2)

84 XL Fortran: Language Reference for Big Endian Distributions

CALL sub1(a3)

CONTAINS
SUBROUTINE sub1(a)

REAL :: a(..)
PRINT *, RANK(a)

END

END

The output is as follows:
0
1
2
3

Related information
v “Contiguity (Fortran 2008)” on page 96
v “LBOUND(ARRAY, DIM, KIND)” on page 633
v “RANK(A) (Technical Specification)” on page 679
v “UBOUND(ARRAY, DIM, KIND)” on page 711
v “VALUE (Fortran 2003)” on page 482
v “Assumed-rank objects (Technical Specification)” on page 853

Array elements
Array elements are the scalar data that make up an array. Each element inherits the
type, type parameters, and INTENT, PARAMETER, TARGET,

PROTECTED, ASYNCHRONOUS, and VOLATILE attributes
from its parent array. The POINTER and ALLOCATABLE attributes are not
inherited.

Syntax

You identify an array element by an array element designator, whose form is:

array_name
is the name of an array

array_struct_comp
is a structure component whose rightmost comp_name is an array

subscript
is a scalar integer expression

A subscript can be a scalar real expression in XL Fortran.

Rules
v The number of subscripts must equal the number of dimensions in the array.
v If array_struct_comp is present, each part of the structure component except the

rightmost must have rank zero (that is, must not be an array name or an array
section).

�� array_name (subscript_list)
array_struct_comp

��

Chapter 5. Array concepts 85

v The value of each subscript expression must not be less than the lower bound or
greater than the upper bound for the corresponding dimension.

v The subscript value depends on the value of each subscript expression and on
the dimensions of the array. It determines which element of the array is
identified by the array element designator.

Array element order

The elements of an array are arranged in storage in a sequence known as the array
element order, in which the subscripts change most rapidly in the first dimension,
and subsequently in the remaining dimensions.

For example, an array declared as A(2, 3, 2) has the following elements:
Position of Array Element Array Element Order
------------------------- -------------------

A(1,1,1) 1
A(2,1,1) 2
A(1,2,1) 3
A(2,2,1) 4
A(1,3,1) 5
A(2,3,1) 6
A(1,1,2) 7
A(2,1,2) 8
A(1,2,2) 9
A(2,2,2) 10
A(1,3,2) 11
A(2,3,2) 12

Related information
“Derived type components” on page 49
“Array sections and structure components” on page 90

Array sections
An array section is a selected portion of an array. It is an array subobject that
designates a set of elements from an array, or a specified substring or derived-type
component from each of those elements. An array section is also an array.

Note: This introductory section describes the simple case, where structure
components are not involved. “Array sections and structure components” on page
90 explains the additional rules for specifying array sections that are also structure
components.

section_subscript
designates some set of elements along a particular dimension. It can be
composed of a combination of the following:

�� array_name (section_subscript_list)
substring_range

��

86 XL Fortran: Language Reference for Big Endian Distributions

subscript
is a scalar integer expression. For details, see “Array elements” on
page 85.

A subscript can be a scalar real expression in XL Fortran.

subscript_triplet, vector_subscript
designate a sequence of subscripts in a given dimension. For
details, see “Subscript triplets” on page 88 and “Vector subscripts”
on page 89.

Notes:

v At least one of the dimensions must be a subscript triplet or vector
subscript, so that an array section is distinct from an array element. See
Example 1.

v An array section can contain a set of array elements that is contiguous
or not contiguous within the array. For more information, see
“Contiguity (Fortran 2008)” on page 96.

substring_range

int_expr1, int_expr2
are scalar integer expressions called substring expressions, defined
in “Character substrings” on page 44. They specify the leftmost
and rightmost character positions, respectively, of a substring of
each element in the array section. If an optional substring_range is
present, the section must be from an array of character objects. For
details, see “Substring ranges” on page 90.

An array section is formed from the array elements specified by the sequences of
values from the individual subscripts, subscript triplets, and vector subscripts,
arranged in column-major order. See Example 2.

Examples

Example 1
INTEGER, DIMENSION(5,5,5) :: A
A(1,2,3) = 100
A(1,3,3) = 101
PRINT *, A(1,2,3) ! A single array element, 100.
PRINT *, A(1,2:2,3) ! A one-element array section, (/ 100 /)
PRINT *, A(1,2:3,3) ! A two-element array section,

! (/ 100, 101 /)

�� subscript
subscript_triplet
vector_subscript

��

�� (:)
int_expr1 int_expr2

��

Chapter 5. Array concepts 87

Example 2

If SECTION = A(1:3, (/5, 6, 5/), 4)

v The sequence of numbers for the first dimension is 1, 2, 3.
v The sequence of numbers for the second dimension is 5, 6, 5.
v The subscript for the third dimension is the constant 4.

The section is made up of the following elements of A, in this order:
A(1,5,4) | | SECTION(1,1)
A(2,5,4) |----- First column -----| SECTION(2,1)
A(3,5,4) | | SECTION(3,1)
A(1,6,4) | | SECTION(1,2)
A(2,6,4) |----- Second column ----| SECTION(2,2)
A(3,6,4) | | SECTION(3,2)
A(1,5,4) | | SECTION(1,3)
A(2,5,4) |----- Third column -----| SECTION(2,3)
A(3,5,4) | | SECTION(3,3)

Example 3

Some other examples of array sections include:
INTEGER, DIMENSION(20,20) :: A
! These references to array sections require loops or multiple
! statements in FORTRAN 77.
PRINT *, A(1:5,1) ! Contiguous sequence of elements
PRINT *, A(1:20:2,10) ! Noncontiguous sequence of elements
PRINT *, A(:,5) ! An entire column
PRINT *, A((/1,10,5/), (/7,3,1/)) ! A 3x3 assortment of elements

Related information
v “Derived type components” on page 49

Subscript triplets
A subscript triplet consists of two subscripts and a stride, and defines a sequence
of numbers corresponding to array element positions along a single dimension.

subscript1
is the subscript that designates the first value in the sequence of indices for
a dimension.

If it is omitted, the lower array bound of that dimension is used.

subscript2
is the subscript that designates the last value in the sequence of indices for
a dimension.

If it is omitted, the upper array bound of that dimension is used. It is
mandatory for the last dimension when specifying sections of an
assumed-size array.

stride is a scalar integer expression that specifies how many subscript positions to
count to reach the next selected element.

A stride can be a scalar real expression in XL Fortran.

�� :
subscript1 subscript2 : stride

��

88 XL Fortran: Language Reference for Big Endian Distributions

If the stride is omitted, it has a value of 1. The stride must have a nonzero
value:
v A positive stride specifies a sequence of integers that begins with the

first subscript and proceeds in increments of the stride to the largest
integer that is not greater than the second subscript. If the first subscript
is greater than the second, the sequence is empty.

v When the stride is negative, the sequence begins at the first subscript
and continues in increments specified by the stride to the smallest
integer equal to or greater than the second subscript. If the second
subscript is greater than the first, the sequence is empty.

Calculations of values in the sequence use the same steps as shown in “Executing
a DO statement” on page 138.

A subscript in a subscript triplet does not have to be within the declared bounds
for that dimension if all the values used in selecting the array elements for the
array section are within the declared bounds:
INTEGER A(9)
PRINT *, A(1:9:2) ! Count from 1 to 9 by 2s: 1, 3, 5, 7, 9.
PRINT *, A(1:10:2) ! Count from 1 to 10 by 2s: 1, 3, 5, 7, 9.

! No element past A(9) is specified.

Examples
REAL, DIMENSION(10) :: A
INTEGER, DIMENSION(10,10) :: B
CHARACTER(10) STRING(1:100)

PRINT *, A(:) ! Print all elements of array.
PRINT *, A(:5) ! Print elements 1 through 5.
PRINT *, A(3:) ! Print elements 3 through 10.

PRINT *, STRING(50:100) ! Print all characters in
! elements 50 through 100.

! The following statement is equivalent to A(2:10:2) = A(1:9:2)
A(2::2) = A(:9:2) ! LHS = A(2), A(4), A(6), A(8), A(10)

! RHS = A(1), A(3), A(5), A(7), A(9)
! The statement assigns the odd-numbered
! elements to the even-numbered elements.

! The following statement is equivalent to PRINT *, B(1:4:3,1:7:6)
PRINT *, B(:4:3,:7:6) ! Print B(1,1), B(4,1), B(1,7), B(4,7)

PRINT *, A(10:1:-1) ! Print elements in reverse order.

PRINT *, A(10:1:1) ! These two are
PRINT *, A(1:10:-1) ! both zero-sized.
END

Vector subscripts
A vector subscript is an integer array expression of rank one, designating a
sequence of subscripts that correspond to the values of the elements of the
expression.

A vector subscript can be a real array expression of rank one in XL
Fortran.

The sequence does not have to be in order, and may contain duplicate values:

Chapter 5. Array concepts 89

INTEGER A(10), B(3), C(3)
PRINT *, A((/ 10,9,8 /)) ! Last 3 elements in reverse order
B = A((/ 1,2,2 /)) ! B(1) = A(1), B(2) = A(2), B(3) = A(2) also
END

If a vector subscript has more than one element with the same value, an array
section with that vector subscript cannot appear in any of the situations mentioned
in “Syntactic contexts of definition or undefinition of variables” on page 25.

Notes:

1. An array section used as an internal file must not have a vector subscript.
2. If you pass an array section with a vector subscript as an actual argument, the

associated dummy argument must not be defined or redefined.
3. An array section with a vector subscript must not be the target in a pointer

assignment statement.
4. F2008 In XL Fortran, a nonzero-sized array section containing a vector

subscript is considered noncontiguous. For details, see Contiguity. F2008

! We can use the whole array VECTOR as a vector subscript for A and B
INTEGER, DIMENSION(3) :: VECTOR= (/ 1,3,2 /), A, B
INTEGER, DIMENSION(4) :: C = (/ 1,2,4,8 /)
A(VECTOR) = B ! A(1) = B(1), A(3) = B(2), A(2) = B(3)
A = B((/ 3,2,1 /)) ! A(1) = B(3), A(2) = B(2), A(3) = B(1)
PRINT *, C(VECTOR(1:2)) ! Prints C(1), C(3)
END

Substring ranges
For an array section with a substring range, each element in the result is the
designated character substring of the corresponding element of the array section.
The rightmost array name or component name must be of type character.
PROGRAM SUBSTRING
TYPE DERIVED

CHARACTER(10) STRING(5) ! Each structure has 5 strings of 10 chars.
END TYPE DERIVED
TYPE (DERIVED) VAR, ARRAY(3,3) ! A variable and an array of derived type.

VAR%STRING(:)(1:3) = ’abc’ ! Assign to chars 1-3 of elements 1-5.
VAR%STRING(3:)(4:6) = ’123’ ! Assign to chars 4-6 of elements 3-5.

ARRAY(1:3,2)%STRING(3)(5:10) = ’hello’
! Assign to chars 5-10 of the third element in
! ARRAY(1,2)%STRING, ARRAY(2,2)%STRING, and

END ! ARRAY(3,2)%STRING

Array sections and structure components
Understanding how array sections and structure components interact requires a
familiarity with the syntax for “Derived type components” on page 49.

What we defined at the beginning of this section as an array section is really only
a subset of the possible array sections. An array name or array name with a
section_subscript_list can be a subobject of a structure component:

struct_sect_subobj:

90 XL Fortran: Language Reference for Big Endian Distributions

object_name
is the name of an object of derived type

section_subscript_list, substring_range
are the same as defined under “Array sections” on page 86

comp_name
is the name of a derived-type component

% or . Separator character.

Note: The . (period) separator is an IBM extension.

Note:

1. The type of the last component determines the type of the array.
2. Only one part of the structure component may have nonzero rank. Either the

rightmost comp_name must have a section_subscript_list with nonzero rank, or
another part must have nonzero rank.

3. Any parts to the right of the part with nonzero rank must not have the
ALLOCATABLE or POINTER attributes.

TYPE BUILDING_T
LOGICAL RESIDENTIAL

END TYPE BUILDING_T

TYPE STREET_T
TYPE (BUILDING_T) ADDRESS(500)

END TYPE STREET_T

TYPE CITY_T
TYPE (STREET_T) STREET(100,100)

END TYPE CITY_T

TYPE (CITY_T) PARIS
TYPE (STREET_T) S
TYPE (BUILDING_T) RESTAURANT
! LHS is not an array section, no subscript triplets or vector subscripts.
PARIS%STREET(10,20) = S
! None of the parts are array sections, but the entire construct
! is a section because STREET has a nonzero rank and is not
! the rightmost part.
PARIS%STREET%ADDRESS(100) = BUILDING_T(.TRUE.)

! STREET(50:100,10) is an array section, making the LHS an array section
! with rank=1, shape=(/51/).

�� object_name
(section_subscript_list)

�

� � % comp_name
. (section_subscript_list)

�

�
substring_range

��

Chapter 5. Array concepts 91

! ADDRESS(123) must not be an array section because only one can appear
! in a reference to a structure component.
PARIS%STREET(50:100,10)%ADDRESS(123)%RESIDENTIAL = .TRUE.
END

Rank and shape of array sections
For an array section that is not a subobject of a structure component, the rank is
the number of subscript triplets and vector subscripts in the section_subscript_list.
The number of elements in the shape array is the same as the number of subscript
triplets and vector subscripts, and each element in the shape array is the number
of integer values in the sequence designated by the corresponding subscript triplet
or vector subscript.

For an array section that is a subobject of a structure component, the rank and
shape are the same as those of the part of the component that is an array name or
array section.
DIMENSION :: ARR1(10,20,100)
TYPE STRUCT2_T

LOGICAL SCALAR_COMPONENT
END TYPE
TYPE STRUCT_T

TYPE (STRUCT2_T), DIMENSION(10,20,100) :: SECTION
END TYPE

TYPE (STRUCT_T) STRUCT

! One triplet + one vector subscript, rank = 2.
! Triplet designates an extent of 10, vector subscript designates
! an extent of 3, thus shape = (/ 10,3 /).
ARR1(:, (/ 1,3,4 /), 10) = 0

! One triplet, rank = 1.
! Triplet designates 5 values, thus shape = (/ 5 /).
STRUCT%SECTION(1,10,1:5)%SCALAR_COMPONENT = .TRUE.

! Here SECTION is the part of the component that is an array,
! so rank = 3 and shape = (/ 10,20,100 /), the same as SECTION.
STRUCT%SECTION%SCALAR_COMPONENT = .TRUE.

Array constructors
An array constructor is a sequence of specified scalar values. It constructs a
rank-one array whose element values are those specified in the sequence. You can
construct arrays of rank greater than one using an intrinsic function. See
“RESHAPE(SOURCE, SHAPE, PAD, ORDER)” on page 682 for details.

92 XL Fortran: Language Reference for Big Endian Distributions

Syntax

i_d_type_spec

Is an intrinsic_type_spec or derived_type_spec. For a list of possible type
specifications, see “Type Declaration” on page 470.

You cannot use BYTE as an intrinsic_type_spec in an array constructor.

ac_value
is an expression or implied-DO list that provides values for array elements.

Rules

An i_d_type_spec specifies the type and type parameters of the array constructor.
Each ac_value expression must be compatible with intrinsic assignment to a
variable with the type and type parameters. Each value is converted to the type
parameters of the array constructor.
v If you specify an intrinsic type, each ac_value expression in the array constructor

must be of an intrinsic type compatible with the type you specify.
v If you specify a derived type, all ac_value expressions in the array constructor

must be of that derived type and have the same kind type parameter values as
the type you specify.

If i_d_type_spec is omitted, each ac_value expression in the array constructor must
have the same type and type parameters.

If i_d_type_spec appears without an ac_value, a zero-sized rank-one array is created.

The ac_value complies with the following rules:
v If it is a scalar expression, its value specifies an element of the array constructor.
v If it is an array expression, the values of the elements of the expression, in array

element order, specify the corresponding sequence of elements of the array
constructor.

v If it is an implied-DO list, it is expanded to form an ac_value sequence under the
control of the implied_do_variable, as in the DO construct.

If ac_value is a polymorphic entity, its declared type is used. Because unlimited
polymorphic entities have no declared type, you cannot use them for ac_value.

If you compile your program with -qxlf2003=dynamicacval, the dynamic

�� (/ac_spec/)
[ac_spec]

��

where ac_spec is:

��

�

i_d_type_spec ::
,

ac_value
i_d_type_spec ::

��

Chapter 5. Array concepts 93

type of ac_value is used, and you can use unlimited polymorphic entities for
ac_value. For more details about using polymorphic entities for ac_value,
see Example 2.

For more information about unlimited polymorphic entities, the declared and
dynamic types of these entities, see Polymorphic entities.

Examples

Example 1: Different array constructors
INTEGER, DIMENSION(5) :: a, b, c, d(2, 2)
CHARACTER(5), DIMENSION(3) :: color

! Assign values to all elements in a
a = (/1, 2, 3, 4, 5/)

! Assign values to some elements
a(3:5) = (/0, 1, 0/)

! Construct temporary logical mask
c = MERGE(a, b, (/T, F, T, T, F/))

! The array constructor produces a rank-one array, which
! is turned into a 2x2 array that can be assigned to d.
d = RESHAPE(SOURCE = (/1, 2, 1, 2/), SHAPE = (/2, 2/))

! Here, the constructor linearizes the elements of d in
! array-element order into a one-dimensional result.
PRINT *, a((/d/))

! Without a type_spec,each character literal must be of length 5
color = [’RED ’, ’GREEN’, ’BLUE ’]

! With a type_spec, padding and truncation of each character literal occurs
color = [CHARACTER(5) :: ’RED’, ’GREEN’, ’BLUE’]

Example 2: Polymorphic entities as ac_value
PROGRAM PolyAcValues

TYPE base
INTEGER :: i

END TYPE

TYPE, EXTENDS(base) :: child
INTEGER :: j

END TYPE

TYPE(base) :: baseType = base(3)
TYPE(child) :: childType = child(4, 6)

! Declare a polymorphic entity of base type
CLASS(base), ALLOCATABLE :: baseClass
! Declare an unlimited polymorphic entity. It has no declared type.
! Its dynamic type can be any derived type or intrinsic type
CLASS(*), ALLOCATABLE :: anyClass
! Declare a deferred-shape array of unlimited polymorphic entities
CLASS(*), ALLOCATABLE :: anyClassArr(:)

! Allocate a child item to baseClass. The dynamic type of bassClass is child.
ALLOCATE(baseClass, source = childType)

94 XL Fortran: Language Reference for Big Endian Distributions

! Polymorphic entities used in the array constructor
ALLOCATE(anyClassArr(2), source = [baseClass, baseClass])

! Because the compiler uses the declared type, which is base, and the result
! is "Base item: 4 4". If you specify -qxlf2003=dynamicacval, the compiler uses
! the dynamic type, which is child, and the result is "Child item: 4,6 4,6".
CALL printAny(anyClassArr, 2)
DEALLOCATE(anyClassArr)
DEALLOCATE(baseClass)

! Allocate a base item to anyClass. The dynamic type of anyClass is base.
ALLOCATE(anyClass, source = baseType)
! Unlimited polymorphic entities used in the array constructor
ALLOCATE(anyClassArr(2), source = [anyClass, anyClass])

! If you specify -qxlf2003=dynamicacval, the use of unlimited polymorphic
! entities in the array constructor is valid, and the compiler uses the
! dynamic type, which is base. The result is "Base item: 3 3"; Otherwise,
! a severe error is issued at compile time.
CALL printAny(anyClassArr, 2)
DEALLOCATE(anyClassArr)
DEALLOCATE(anyClass)

CONTAINS
SUBROUTINE printAny(printItem, len)

CLASS(*) :: printItem(len)

DO i = 1, len
SELECT TYPE (item => printItem(i))

TYPE IS (base)
PRINT *, ’Base item: ’, item

TYPE IS (child)
PRINT *, ’Child item: ’, item

END SELECT
END DO

END SUBROUTINE
END PROGRAM

Related information
v The -qxlf2003=dynamicacval option
v “Polymorphic entities (Fortran 2003)” on page 18

Implied-DO list for an array constructor
Implied-DO loops in array constructors help to create a regular or cyclic sequence
of values, to avoid specifying each element individually.

A zero-sized array of rank one is formed if the sequence of values generated by the
loop is empty.

implied_do_variable
is a named scalar integer or real variable.

In a nonexecutable statement, the type must be integer. You must not
reference the value of an implied_do_variable in the limit expressions expr1

�� (ac_value_list , implied_do_variable = expr1 , expr2
, expr3

) ��

Chapter 5. Array concepts 95

or expr2. Loop processing follows the same rules as for an implied-DO in
“DATA” on page 325, and uses integer or real arithmetic depending on the
type of the implied-DO variable.

The variable has the scope of the implied-DO, and it must not have the
same name as another implied-DO variable in a containing array
constructor implied-DO:
M = 0
PRINT *, (/ (M, M=1, 10) /) ! Array constructor implied-DO
PRINT *, M ! M still 0 afterwards
PRINT *, (M, M=1, 10) ! Non-array-constructor implied-DO
PRINT *, M ! This one goes to 11
PRINT *, (/ ((M, M=1, 5), N=1, 3) /)
! The result is a 15-element, one-dimensional array.
! The inner loop cannot use N as its variable.

expr1, expr2, and expr3
are scalar integer or real expressions

PRINT *, (/ (I, I = 1, 3) /)
! Sequence is (1, 2, 3)
PRINT *, (/ (I, I = 1, 10, 2) /)
! Sequence is (1, 3, 5, 7, 9)
PRINT *, (/ (I, I+1, I+2, I = 1, 3) /)
! Sequence is (1, 2, 3, 2, 3, 4, 3, 4, 5)

PRINT *, (/ ((I, I = 1, 3), J = 1, 3) /)
! Sequence is (1, 2, 3, 1, 2, 3, 1, 2, 3)

PRINT *, (/ ((I, I = 1, J), J = 1, 3) /)
! Sequence is (1, 1, 2, 1, 2, 3)

PRINT *, (/2,3,(I, I+1, I = 5, 8)/)
! Sequence is (2, 3, 5, 6, 6, 7, 7, 8, 8, 9).
! The values in the implied-DO loop before
! I=5 are calculated for each iteration of the loop.

Contiguity (Fortran 2008)
Contiguous objects occupy a contiguous block of memory. The use of contiguous
objects makes it easier to enable optimizations that depend on the memory layout
of the objects.

An object is contiguous if it meets one of the following requirements:
v It is an object that has the CONTIGUOUS attribute.
v It is a whole array that is neither an array pointer nor an assumed-shape array.
v It is an array that is allocated by an ALLOCATE statement.
v It is a pointer that is associated with a contiguous target.
v It is an assumed-shape array that is argument associated with a contiguous

array.
v It is a nonzero-sized array section that meets all the following requirements:

– Its base object is contiguous.
– It does not have a vector_subscript.
– The elements of the section, in array element order, are a subset of the base

object elements that are consecutive in array element order.
– If the array is of type character and a substring_range is used, the

substring_range specifies all the characters of the parent string.
– Only its rightmost comp_name has nonzero rank.

96 XL Fortran: Language Reference for Big Endian Distributions

– It is not the real or imaginary part of an array of type complex.

An object is not contiguous if it is an array subobject and meets all the following
requirements:
v The object has two or more elements.
v The elements of the object in array element order are not consecutive in the

elements of the base object.
v The object is not of type character that has zero length.
v The object is not of a derived type that only contains zero-sized arrays and

characters that have zero length.

Note: In addition to the preceding scenarios, XL Fortran determines whether the
object is contiguous, based on its own rules.

Simply contiguous

A simply contiguous array is one that the XL Fortran compiler can determine to be
contiguous at compile time.

A section_subscript_list specifies a simply contiguous array section only if it meets
all the following requirements:
v It does not have a vector_subscript.
v All but the last subscript_triplet is a colon.
v The last subscript_triplet does not have a stride.
v No subscript_triplet is preceded by a section_subscript that is a subscript.

An array subobject designator is simply contiguous only if it meets one of the
following requirements:
v An object_name that has the CONTIGUOUS attribute
v An object_name that is not a pointer, not an assumed shape array, TS and

not a nonallocatable assumed-rank object TS

v A structure component whose rightmost part_name is an array. The rightmost
part_name either has the CONTIGUOUS attribute or is not a pointer.

v An array section that meets all the following requirements:
– It is not a complex part designator.
– It does not have a substring_range.
– Its rightmost comp_name has nonzero rank.
– Its rightmost part_name has the CONTIGUOUS attribute or is neither of

assumed shape nor a pointer.
– It either does not have a section_subscript_list, or has a section_subscript_list

which specifies a simply contiguous section.

An array variable is simply contiguous only if it meets one of the following
requirements:
v It is an array subobject designator that is simply contiguous.
v It is a reference to a function that returns a pointer with the CONTIGUOUS

attribute.

Note: In addition to the preceding scenarios, XL Fortran may determine contiguity
at compile time, based on its own rules.

Chapter 5. Array concepts 97

Related information
v Array sections
v CONTIGUOUS

Expressions involving arrays
Arrays can be used in the same kinds of expressions and operations as scalars.
Intrinsic operations, assignments, or elemental procedures can be applied to one or
more arrays.

For intrinsic operations, in expressions involving two or more array operands, the
arrays must have the same shape so that the corresponding elements of each array
can be assigned to or be evaluated. In a defined operation arrays can have
different shapes. Arrays with the same shape are conformable. In a context where a
conformable entity is expected, you can also use a scalar value: it is conformable
with any array, such that it is treated like an array where each array element has
the value of the scalar.

Examples
INTEGER, DIMENSION(5,5) :: A,B,C
REAL, DIMENSION(10) :: X,Y
! Here are some operations on arrays
A = B + C ! Add corresponding elements of both arrays.
A = -B ! Assign the negative of each element of B.
A = MAX(A,B,C) ! A(i,j) = MAX(A(i,j), B(i,j), C(i,j))
X = SIN(Y) ! Calculate the sine of each element.
! These operations show how scalars are conformable with arrays
A = A + 5 ! Add 5 to each element.
A = 10 ! Assign 10 to each element.
A = MAX(B, C, 5) ! A(i,j) = MAX(B(i,j), C(i,j), 5)

END

Related information
“Elemental intrinsic procedures” on page 559
“Intrinsic assignment” on page 115
“WHERE” on page 488 shows a way to assign values to some elements in an
array but not to others
“FORALL construct” on page 124

98 XL Fortran: Language Reference for Big Endian Distributions

Chapter 6. Expressions and assignment

Introduction to expressions and assignment
An expression is a data reference or a computation, and is formed from operands,
operators, and parentheses. An expression, when evaluated, produces a value,
which has a declared type, a dynamic type, a shape, and possibly type parameters.

An operand is either a scalar or an array. An operator is either intrinsic or defined. A
unary operation has the form:
v operator operand

A binary operation has the form:
v operand1 operator operand2

Any expression contained in parentheses is treated as a data entity. Parentheses can
be used to specify an explicit interpretation of an expression. They can also be
used to restrict the alternative forms of the expression, which can help control the
magnitude and accuracy of intermediate values during evaluation of the
expression. For example, the two expressions

(I*J)/K
I*(J/K)

are mathematically equivalent, but may produce different computational values as
a result of evaluation.

Primary
A primary is the simplest form of an expression. It can be one of the following
elements:
v A type parameter inquiry such as a%kind
v A type parameter name
v A data object
v An array constructor
v A structure constructor
v A complex constructor
v A function reference
v An expression enclosed in parentheses

A primary that is a data object must not be an assumed-size array.

Examples of primaries
12.3 ! Constant
’ABCDEFG’(2:3) ! Subobject of a constant
VAR ! Variable name
(/7.0,8.0/) ! Array constructor
EMP(6,’SMITH’) ! Structure constructor
SIN(X) ! Function reference
(T-1) ! Expression in parentheses

Type, parameters, and shape
The type, type parameters, and shape of a primary are determined as follows:

© Copyright IBM Corp. 1996, 2014 99

v A data object or function reference acquires the type, type parameters, and shape
of the object or function reference, respectively. The type, parameters, and shape
of a generic function reference are determined by the type, parameters, and
ranks of its actual arguments.

v A type parameter inquiry or type parameter name is a scalar integer with the
kind of the type parameter.

v A structure constructor is a scalar and its type and parameters are determined
by the derived_type_spec of the structure constructor.

v An array constructor has a shape determined by the number of constructor
expressions, and its type and parameters are determined by those of the
constructor expressions.

v A parenthesized expression acquires the type, parameters, and shape of the
expression.

If a pointer appears as a primary in an operation in which it is associated with a
nonpointer dummy argument, the target is referenced. The type, parameters, and
shape of the primary are those of the target. If the pointer is not associated with a
target, it can appear only as an actual argument in a procedure reference whose
corresponding dummy argument is a pointer, or as the target in a pointer
assignment statement. A disassociated pointer can also appear as an actual
argument to the ASSOCIATED intrinsic inquiry function.

Given the intrinsic operation [expr1] op expr2, the shape of the operation is the
shape of expr2 if op is unary or if expr1 is a scalar. Otherwise, its shape is that of
expr1.

The type and shape of an expression are determined by the operators and by the
types and shapes of the expression's primaries. The type of the expression can be
intrinsic or derived. An expression of intrinsic type has a kind parameter and, if it
is of type character, it also has a length parameter. An expression of derived type
can have both kind and length parameters.

Constant expressions
A constant expression is an expression in which each operation is intrinsic and
each primary is one of the following:

Note: In Fortran 2003, the constant expression is known as initialization
expression.
v A constant or a subobject of a constant.
v A structure constructor where each component is a constant expression.
v An array constructor where each element and the bounds and strides of each

implied-DO are expressions whose primaries are either constant expressions or
implied-DO variables.

v A structure constructor in which each expression corresponding to an allocatable
component is a reference to the intrinsic function NULL, and all other
expressions are constant expressions.

v An elemental intrinsic function reference where each argument is a constant
expression.

v A reference to the intrinsic function NULL that does not have an argument with
a type parameter that is assumed or defined by a nonconstant expression.

v A reference to the vector intrinsic function VEC_CONVERT where each
argument is a constant expression.

100 XL Fortran: Language Reference for Big Endian Distributions

v A reference to the transformational intrinsic function other than
COMMAND_ARGUMENT_COUNT and NULL where each argument is a
constant expression.

v A reference to the transformation intrinsic function
IEEE_SELECTED_REAL_KIND from the intrinsic module IEEE_ARITHMETIC,
where each argument is a constant expression.

v A kind type parameter of the type being defined or of its parent type, within the
derived type definition

v A specification inquiry where each designator or function argument is either a
constant expression, or a variable with properties that are not assumed, deferred
or defined by an expression that is not a constant expression.

v A data-i-DO variable within a data-implied-DO.
v An ac-DO-variable within an array constructor where each scalar-int-expr of the

corresponding acimplied-DO-control is a constant expression.
v A constant expression enclosed in parentheses.

and where each subscript, section subscript, substring starting point, substring
ending point, and type parameter value is a constant expression.

If a constant expression includes a specification inquiry that depends on a TYPE
parameter or an array bound of an object specified in the same specification part,
the type parameter or array bound must be specified in a prior specification of the
specification part. The prior specification can be to the left of the specification
inquiry in the same statement, but must not be within the same entity declaration.

Examples

Examples of different constant expressions:
-48.9
name(’Pat’,’Doe’)
TRIM(’ABC ’)
(MOD(9,4)**3.5)
3.4**3
KIND(57438)
(/’desk’,’lamp’/)
’ab’//’cd’//’ef’

Example of an elemental intrinsic function, SIN, used in a constant expression:
integer, parameter :: foo = 42.0 * sin(0.5)

Example of a transformational intrinsic function, CSHIFT, used in a constant
expression:
integer, parameter :: a(3) = (/ 1, 2, 3 /)
integer, parameter :: a_cshifted(3) = cshift(a,2)

Specification expressions
A specification expression is an expression with limitations that you can use to
specify items such as character lengths and array bounds.

A specification expression is a scalar, integer, restricted expression.

A restricted expression is an expression in which each operation is intrinsic and each
primary is:
v A type parameter of the derived type being defined.

Chapter 6. Expressions and assignment 101

v A constant or a subobject of a constant.
v A variable that is a dummy argument that has neither the OPTIONAL nor the

INTENT(OUT) attribute, or a subobject of such a variable.
v A variable that is in a common block, or a subobject of such a variable.
v A variable accessible by use association or host association, or a subobject of

such a variable.
v An array constructor where each element and the bounds and strides of each

implied-DO are expressions whose primaries are either restricted expressions or
implied-DO variables.

v A structure constructor where each component is a restricted expression.
v A specification inquiry where each designator or function argument is either a

restricted expression or a variable with properties that are not assumed,
deferred, or defined by an expression that is not a restricted expression.

v A reference to any remaining intrinsic functions defined in this document where
each argument is a restricted expression.

v A reference to a system inquiry function, where any arguments are
restricted expressions.

v Any subscript or substring expression must be a restricted expression.
v A reference to a specification function, where any arguments are restricted

expressions.

A specification inquiry is a reference to:
v An intrinsic inquiry function
v A type parameter inquiry (6.4.5)
v An IEEE inquiry function (14.10)

You can use a specification function in a specification expression. A function is a
specification function if it is a pure function that is not an intrinsic, internal or
statement function. A specification function cannot have a dummy procedure
argument.

A variable in a specification expression must have its type and type parameters, if
any, specified by a previous declaration in the same scoping unit, or by the implicit
typing rules in effect for the scoping unit, or by host or use association. If a
variable in a specification expression is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm the implied
type and type parameters.

If a specification expression includes a reference to an inquiry function for a type
parameter or an array bound of an entity specified in the same specification part,
the type parameter or array bound must be specified in a prior specification of the
specification part. If a specification expression includes a reference to the value of
an element of an array specified in the same specification part, the array bounds
must be specified in a prior declaration. The prior specification can be to the left of
the inquiry function in the same statement.

Examples
LBOUND(C,2)+6 ! C is an assumed-shape dummy array
ABS(I)*J ! I and J are scalar integer variables
276/NN(4) ! NN is accessible through host association

The following example shows how a user-defined pure function, fact, can be used
in the specification expression of an array-valued function result variable:

102 XL Fortran: Language Reference for Big Endian Distributions

MODULE MOD
CONTAINS

INTEGER PURE FUNCTION FACT(N)
INTEGER, INTENT(IN) :: N
...
END FUNCTION FACT

END MODULE MOD

PROGRAM P
PRINT *, PERMUTE(’ABCD’)
CONTAINS
FUNCTION PERMUTE(ARG)

USE MOD
CHARACTER(*), INTENT(IN) :: ARG
...
CHARACTER(LEN(ARG)) :: PERMUTE(FACT(LEN(ARG)))
...

END FUNCTION PERMUTE
END PROGRAM P

Operators and expressions
This section contains details on the XL Fortran expressions listed in the XL Fortran
Expressions table. For information on the order of evaluation precedence see, How
expressions are evaluated.

Table 15. XL Fortran expressions

Arithmetic Logical

Character Primary

General Relational

Arithmetic
An arithmetic expression (arith_expr), when evaluated, produces a numeric value.
The form of arith_expr is:

The form of arith_term is:

The form of arith_factor is:

�� arith_term
+

arith_expr -

��

��
arith_term /

*

arith_factor ��

Chapter 6. Expressions and assignment 103

An arith_primary is a primary of arithmetic type.

The following table shows the available arithmetic operators and the precedence
each takes within an arithmetic expression.

Arithmetic Operator Representation Precedence

** Exponentiation First

* Multiplication Second

/ Division Second

+ Addition or identity Third

- Subtraction or negation Third

XL Fortran evaluates the terms from left to right when evaluating an arithmetic
expression containing two or more addition or subtraction operators. For example,
2+3+4 is evaluated as (2+3)+4, although a processor can interpret the expression in
another way if it is mathematically equivalent and respects any parentheses.

The factors are evaluated from left to right when evaluating a term containing two
or more multiplication or division operators. For example, 2*3*4 is evaluated as
(2*3)*4.

The primaries are combined from right to left when evaluating a factor containing
two or more exponentiation operators. For example, 2**3**4 is evaluated as
2**(3**4). (Again, mathematical equivalents are allowed.)

The precedence of the operators determines the order of evaluation when XL
Fortran is evaluating an arithmetic expression containing two or more operators
having different precedence. For example, in the expression -A**3, the
exponentiation operator (**) has precedence over the negation operator (-).
Therefore, the operands of the exponentiation operator are combined to form an
expression that is used as the operand of the negation operator. Thus, -A**3 is
evaluated as -(A**3).

Note that expressions containing two consecutive arithmetic operators, such as
A**-B or A*-B, are not allowed. You can use expressions such as A**(-B) and
A*(-B).

If an expression specifies the division of an integer by an integer, the result is
rounded to an integer closer to zero. For example, (-7)/3 has the value -2.

For details of exception conditions that can arise during evaluation of
floating-point expressions, see Detecting and trapping floating-point exceptions.

Examples of arithmetic expressions

Arithmetic Expression Fully Parenthesized Equivalent

-b**2/2.0 -((b**2)/2.0)

�� arith_primary
** arith_factor

��

104 XL Fortran: Language Reference for Big Endian Distributions

Arithmetic Expression Fully Parenthesized Equivalent

i**j**2 i**(j**2)

a/b**2 - c (a/(b**2)) - c

Data type of an arithmetic expression
Because the identity and negation operators operate on a single operand, the type
of the resulting value is the same as the type of the operand.

The following table indicates the resulting type when an arithmetic operator acts
on a pair of operands.

Notation: T(param), where T is the data type (I: integer, R: real, X: complex) and
param is the kind type parameter.

Table 16. Result types for binary arithmetic operators

first
operand

second operand

I(1) I(2) I(4) I(8) R(4) R(8) R(16) X(4) X(8) X(16)
I(1) I(1) I(2) I(4) I(8) R(4) R(8) R(16) X(4) X(8) X(16)
I(2) I(2) I(2) I(4) I(8) R(4) R(8) R(16) X(4) X(8) X(16)
I(4) I(4) I(4) I(4) I(8) R(4) R(8) R(16) X(4) X(8) X(16)
I(8) I(8) I(8) I(8) I(8) R(4) R(8) R(16) X(4) X(8) X(16)
R(4) R(4) R(4) R(4) R(4) R(4) R(8) R(16) X(4) X(8) X(16)
R(8) R(8) R(8) R(8) R(8) R(8) R(8) R(16) X(8) X(8) X(16)

R(16) R(16) R(16) R(16) R(16) R(16) R(16) R(16) X(16) X(16) X(16)
X(4) X(4) X(4) X(4) X(4) X(4) X(8) X(16) X(4) X(8) X(16)
X(8) X(8) X(8) X(8) X(8) X(8) X(8) X(16) X(8) X(8) X(16)

X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16)

Note:

1. XL Fortran implements integer operations using INTEGER(4) arithmetic, or
INTEGER(8) arithmetic if data items are 8 bytes in length. If the intermediate
result is used in a context requiring INTEGER(1) or INTEGER(2) data type, it
is converted as required.

INTEGER(2) I2_1, I2_2, I2_RESULT
INTEGER(4) I4
I2_1 = 32767 ! Maximum I(2)
I2_2 = 32767 ! Maximum I(2)
I4 = I2_1 + I2_2
PRINT *, "I4=", I4 ! Prints I4=-2

I2_RESULT = I2_1 + I2_2 ! Assignment to I(2) variable
I4 = I2_RESULT ! and then assigned to an I(4)
PRINT *, "I4=", I4 ! Prints I4=-2
END

Character
A character expression, when evaluated, produces a result of type character. The
form of char_expr is:

Chapter 6. Expressions and assignment 105

char_primary is a primary of type character. All character primaries in the
expression must have the same kind type parameter, which is also the kind type
parameter of the result.

The only character operator is //, representing concatenation.

In a character expression containing one or more concatenation operators, the
primaries are joined to form one string whose length is equal to the sum of the
lengths of the individual primaries. For example, ’AB’//’CD’//’EF’ evaluates to
’ABCDEF’, a string 6 characters in length.

Parentheses have no effect on the value of a character expression.

A character expression can include concatenation of an operand when you declare
the length with an asterisk in parentheses. This indicates inherited length. In this
case, the actual length depends on whether you use the inherited length character
string to declare:
v A dummy argument specified in a FUNCTION, SUBROUTINE, or ENTRY

statement. The length of the dummy argument assumes the length of the
associated actual argument on invocation.

v A named constant. The character expression takes on the length of the constant
value.

v The length of an external function result. The calling scoping unit must not
declare the function name with an asterisk. On invocation, the length of the
function result assumes this defined length.

Examples
CHARACTER(7) FIRSTNAME,LASTNAME
FIRSTNAME=’Martha’
LASTNAME=’Edwards’
PRINT *, LASTNAME//’, ’//FIRSTNAME ! Output:’Edwards, Martha’
END

General
The general form of an expression (general_expr) is:

defined_binary_op
is a defined binary operator. See “Extended intrinsic and defined
operations” on page 111.

expr is one of the kinds of expressions defined below.

There are four kinds of intrinsic expressions: arithmetic, character, relational, and
logical.

��
char_expr //

char_primary ��

��
general_expr defined_binary_op

expr ��

106 XL Fortran: Language Reference for Big Endian Distributions

Logical
A logical expression (logical_expr), when evaluated, produces a result of type
logical. The form of a logical expression is:

The form of a logical_disjunct is:

The form of a logical_term is:

The form of a logical_factor is:

logical_primary is a primary of type logical.

rel_expr is a relational expression.

The logical operators are:

Logical Operator Representing Precedence

.NOT. Logical negation First (highest)

.AND. Logical conjunction Second

.OR. Logical inclusive disjunction Third

.XOR. �1� Logical exclusive disjunction Fourth (lowest)

.EQV. Logical equivalence Fourth (lowest)

.NEQV. Logical nonequivalence Fourth (lowest)

��
logical_expr .EQV.

.NEQV.
(1)

.XOR.

logical_disjunct ��

Notes:

1 XL Fortran logical operator

��
logical_disjunct .OR.

logical_term ��

��
logical_term .AND.

logical_factor ��

��
logical_primary

.NOT. rel_expr

��

Chapter 6. Expressions and assignment 107

Note:

1. XL Fortran logical operator.

The .XOR. operator is treated as an intrinsic operator only when the
-qxlf77=intxor compiler option is specified. (See the -qxlf77 option in the XL
Fortran Compiler Reference for details.) Otherwise, it is treated as a defined operator.
If it is treated as an intrinsic operator, it can also be extended by a generic
interface.

The precedence of the operators determines the order of evaluation when a logical
expression containing two or more operators having different precedences is
evaluated. For example, evaluation of the expression A.OR.B.AND.C is the same as
evaluation of the expression A.OR.(B.AND.C).

Value of a logical expression
Given that x1 and x2 represent logical values, use the following tables to determine
the values of logical expressions:

x1 .NOT. x1

True False

False True

x1 x2 .AND. .OR. .XOR. .EQV. .NEQV.

False False False False False True False

False True False True True False True

True False False True True False True

True True True True False True False

Sometimes a logical expression does not need to be completely evaluated to
determine its value. Consider the following logical expression (assume that LFCT is
a function of type logical):
A .LT. B .OR. LFCT(Z)

If A is less than B, the evaluation of the function reference is not required to
determine that this expression is true.

XL Fortran evaluates a logical expression to a LOGICAL(n) or INTEGER(n) result,
where n is the kind type parameter. The value of n depends on the kind parameter
of each operand.

By default, for the unary logical operator .NOT., n will be the same as the kind
type parameter of the operand. For example, if the operand is LOGICAL(2), the
result will also be LOGICAL(2).

The following table shows the resultant type for unary operations:

OPERAND RESULT of Unary Operation

BYTE�1� INTEGER(1)�1�

LOGICAL(1) LOGICAL(1)

LOGICAL(2) LOGICAL(2)

LOGICAL(4) LOGICAL(4)

108 XL Fortran: Language Reference for Big Endian Distributions

OPERAND RESULT of Unary Operation

LOGICAL(8) LOGICAL(8)

Typeless�1� Default integer�1�

Note:

1. IBM extension

If the operands are of the same length, n will be that length.

For binary logical operations with operands that have different kind type
parameters, the kind type parameter of the expression is the same as the larger
length of the two operands. For example, if one operand is LOGICAL(4) and the
other LOGICAL(2), the result will be LOGICAL(4).

The following table shows the resultant type for binary operations:

Table 17. Result Types for binary logical expressions

second operand

first
operand *BYTE LOGICAL(1) LOGICAL(2) LOGICAL(4) LOGICAL(8) *Typeless
*BYTE *INTEGER(1) *LOGICAL(1) *LOGICAL(2) *LOGICAL(4) *LOGICAL(8) *INTEGER(1)

LOGICAL(1) LOGICAL(1) LOGICAL(1) LOGICAL(2) LOGICAL(4) LOGICAL(8) LOGICAL(1)
LOGICAL(2) LOGICAL(2) LOGICAL(2) LOGICAL(2) LOGICAL(4) LOGICAL(8) LOGICAL(2)
LOGICAL(4) LOGICAL(4) LOGICAL(4) LOGICAL(4) LOGICAL(4) LOGICAL(8) LOGICAL(4)
LOGICAL(8) LOGICAL(8) LOGICAL(8) LOGICAL(8) LOGICAL(8) LOGICAL(8) LOGICAL(8)

*Typeless *INTEGER(1) *LOGICAL(1) *LOGICAL(2) *LOGICAL(4) *LOGICAL(8) *Default
Integer

Note: * Resultant types for binary logical expressions in XL Fortran

If the expression result is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is promoted
to a representable kind.

Primary
The form of a primary expression is:

defined_unary_op
is a defined unary operator. See “Extended intrinsic and defined
operations” on page 111.

Relational
A relational expression (rel_expr), when evaluated, produces a result of type logical,
and can appear wherever a logical expression can appear. It can be an arithmetic
relational expression or a character relational expression.

�� primary
defined_unary_op

��

Chapter 6. Expressions and assignment 109

Arithmetic relational expressions
An arithmetic relational expression compares the values of two arithmetic
expressions. Its form is:

arith_expr1 and arith_expr2
are each an arithmetic expression. Complex expressions can only be
specified if relational_operator is .EQ., .NE., <>, ==, or /=.

relational_operator
is any of:

Relational Operator Representing

.LT. or < Less than

.LE. or <= Less than or equal to

.EQ. or == Equal to

.NE. or *<> or /= Not equal to

.GT. or > Greater than

.GE. or >= Greater than or equal to

Note: * XL Fortran relational operator.

An arithmetic relational expression is interpreted as having the logical value
.true. if the values of the operands satisfy the relation specified by the operator. If
the operands do not satisfy the specified relation, the expression has the logical
value .false..

If the types or kind type parameters of the expressions differ, their values are
converted to the type and kind type parameter of the expression (arith_expr1 +
arith_expr2) before evaluation.

Examples
IF (NODAYS .GT. 365) YEARTYPE = ’leapyear’

Character relational expressions
A character relational expression compares the values of two character expressions.
Its form is:

char_expr1 and char_expr2
are each character expressions

relational_operator
is any of the relational operators described in “Arithmetic relational
expressions.”

�� arith_expr1 relational_operator arith_expr2 ��

�� char_expr1 relational_operator char_expr2 ��

110 XL Fortran: Language Reference for Big Endian Distributions

For all relational operators, the collating sequence is used to interpret a character
relational expression. The character expression whose value is lower in the
collating sequence is less than the other expression. The character expressions are
evaluated one character at a time from left to right. You can also use the intrinsic
functions (LGE, LLT, and LLT) to compare character strings in the order specified
by the ASCII collating sequence. For all relational operators, if the operands are of
unequal length, the shorter is extended on the right with blanks. If both char_expr1
and char_expr2 are of zero length, they are evaluated as equal.

Even if char_expr1 and char_expr2 are multibyte characters (MBCS) in XL
Fortran, the ASCII collating sequence is still used.

Examples
IF (CHARIN .GT. ’0’ .AND. CHARIN .LE. ’9’) CHAR_TYPE = ’digit’

Extended intrinsic and defined operations
A defined operation is either a defined unary operation or a defined binary
operation. It is defined by a function and a generic interface (see “Interface blocks”
on page 162 and “Type-bound procedures (Fortran 2003)” on page 58). A defined
operation is not an intrinsic operation, although an intrinsic operator can be
extended in a defined operation. For example, to add two objects of derived type,
you can extend the meaning of the intrinsic binary operator for addition (+). If an
extended intrinsic operator has typeless operands, the operation is evaluated
intrinsically.

The operand of a unary intrinsic operation that is extended must not have a type
that is required by the intrinsic operator. Either or both of the operands of a binary
intrinsic operator that is extended must not have the types or ranks that are
required by the intrinsic operator.

The defined operator of a defined operation must be defined in a generic interface.

A defined operator is an extended intrinsic operator or has the form:

In Fortran 90 and Fortran 95, a defined operator must not contain more than 31
letters, and must not be the same as any intrinsic operator or logical literal
constant. In Fortran 2003 the letter limit for a defined operator is 63.

�� �. letter .
(1)

_
(2)

$

��

Notes:

1 XL Fortran defined operator

2 XL Fortran defined operator

Chapter 6. Expressions and assignment 111

See “Generic interface blocks” on page 165 for details on defining and extending
operators in an interface block. See “Type-bound procedures (Fortran 2003)” on
page 58 for details on defining and extending operators that are bound to a
derived type.

How expressions are evaluated

Precedence of operators
An expression can contain more than one kind of operator. When it does, the
expression is evaluated from left to right, according to the following precedence
among operators:
1. Defined unary
2. Arithmetic
3. Character
4. Relational
5. Logical
6. Defined binary

For example, the logical expression:
L .OR. A + B .GE. C

where L is of type logical, and A, B, and C are of type real, is evaluated the same as
the logical expression below:
L .OR. ((A + B) .GE. C)

An extended intrinsic operator maintains its precedence. That is, the operator does
not have the precedence of a defined unary operator or a defined binary operator.

Summary of interpretation rules
Primaries that contain operators are combined in the following order:
1. Use of parentheses
2. Precedence of the operators
3. Right-to-left interpretation of exponentiations in a factor
4. Left-to-right interpretation of multiplications and divisions in a term
5. Left-to-right interpretation of additions and subtractions in an arithmetic

expression
6. Left-to-right interpretation of concatenations in a character expression
7. Left-to-right interpretation of conjunctions in a logical term
8. Left-to-right interpretation of disjunctions in a logical disjunct
9. Left-to-right interpretation of logical equivalences in a logical expression

Evaluation of expressions
Arithmetic, character, relational, and logical expressions are evaluated according to
the following rules:
v A variable or function must be defined at the time it is used. You must define an

integer operand with an integer value, not a statement label value. All
referenced characters in a character data object or referenced array elements in
an array or array section must be defined at the time the reference is made. All
components of a structure must be defined when a structure is referenced. A
pointer must be associated with a defined target.

112 XL Fortran: Language Reference for Big Endian Distributions

Execution of an array element reference, array section reference, and substring
reference requires the evaluation of its subscript, section subscript and substring
expressions. Evaluation of any array element subscript, section subscript,
substring expression, or the bounds and stride of any array constructor
implied-DO does not affect, nor is it affected by, the type of the containing
expression. See “Expressions involving arrays” on page 98. You cannot use any
constant integer operation or floating-point operation whose result is not
mathematically defined in an executable program. If such expressions are
nonconstant and are executed, they are detected at run time. (Examples are
dividing by zero and raising a zero-valued primary to a zero-valued or
negative-valued power.) As well, you cannot raise a negative-valued primary of
type real to a real power.

v The invocation of a function in a statement must not affect, or be affected by, the
evaluation of any other entity within the statement in which the function
reference appears. When the value of an expression is true, invocation of a
function reference in the expression of a logical IF statement or a WHERE
statement can affect entities in the statement that is executed. If a function
reference causes definition or undefinition of an actual argument of the function,
that argument or any associated entities must not appear elsewhere in the same
statement. For example, you cannot use the statements:

A(I) = FUNC1(I)
Y = FUNC2(X) + X

if the reference to FUNC1 defines I or the reference to FUNC2 defines X.
The data type of an expression in which a function reference appears does not
affect, nor is it affected by, the evaluation of the actual arguments of the
function.

v An argument to a statement function reference must not be altered by evaluating
that reference.

Several compiler options affect the data type of the final result:
v When you use the -qintlog compiler option, you can mix integer and logical

values in expressions and statements. The data type and kind type parameter of
the result depends on the operands and the operator involved. In general:
– For unary logical operators (.NOT.) and arithmetic unary operators (+,-):

Data Type of OPERAND Data Type of RESULT of Unary Operation

BYTE INTEGER(1)

INTEGER(n) INTEGER(n)

LOGICAL(n) LOGICAL(n)

Typeless Default integer

where n represents the kind type parameter. n must not be replaced with a
logical constant even if -qintlog is on, nor by a character constant even if
-qctyplss is on, nor can it be a typeless constant. In the case of INTEGER and
LOGICAL data types, the length of the result is the same as the kind type
parameter of the operand.

– For binary logical operators (.AND., .OR., .XOR., .EQV., .NEQV.) and
arithmetic binary operators (**, *, /, +, -), the following table summarizes
what data type the result has:

Chapter 6. Expressions and assignment 113

second operand

first
operand BYTE INTEGER(y) LOGICAL(y) Typeless

BYTE INTEGER(1) INTEGER(y) LOGICAL(y) INTEGER(1)
INTEGER(x) INTEGER(x) INTEGER(z) INTEGER(z) INTEGER(x)
LOGICAL(x) LOGICAL(x) INTEGER(z) LOGICAL(z) LOGICAL(x)

Typeless INTEGER(1) INTEGER(y) LOGICAL(y) Default integer

Note: z is the kind type parameter of the result such that z is equal to the
greater of x and y. For example, a logical expression with a LOGICAL(4)
operand and an INTEGER(2) operand has a result of INTEGER(4).
For binary logical operators (.AND., .OR., .XOR., .EQV., .NEQV.), the result
of a logical operation between an integer operand and a logical operand or
between two integer operands will be integer. The kind type parameter of the
result will be the same as the larger kind parameter of the two operands. If
the operands have the same kind parameter, the result has the same kind
parameter.

v When you use the -qlog4 compiler option and the default integer size is
INTEGER(4), logical results of logical operations will have type LOGICAL(4),
instead of LOGICAL(n) as specified in the table above. If you specify the -qlog4
option and the default integer size is not INTEGER(4), the results will be as
specified in the table above.

v When you specify the -qctyplss option compiler option, XL Fortran treats
character constant expressions as Hollerith constants. If one or both operands are
character constant expressions, the data type and the length of the result are the
same as if the character constant expressions were Hollerith constants. See the
"Typeless" rows in the previous tables for the data type and length of the result.

See Summary of compiler options by functional category and Detailed descriptions of the
XL Fortran compiler options in the XL Fortran Compiler Reference for information
about compiler options.

Using BYTE data objects (IBM extension)
Data objects of type BYTE can be used wherever a LOGICAL(1), CHARACTER(1),
or INTEGER(1) data object can be used.

The data types of BYTE data objects are determined by the context in which you
use them. XL Fortran does not convert them before use. For example, the type of a
named constant is determined by use, not by the initial value assigned to it.
v When you use a BYTE data object as an operand of an arithmetic, logical, or

relational binary operator, the data object assumes:
– An INTEGER(1) data type if the other operand is arithmetic, BYTE, or a

typeless constant
– A LOGICAL(1) data type if the other operand is logical
– A CHARACTER(1) data type if the other operand is character

v When you use a BYTE data object as an operand of the concatenation operator,
the data object assumes a CHARACTER(1) data type.

v When you use a BYTE data object as an actual argument to a procedure with an
explicit interface, the data object assumes the type of the corresponding dummy
argument:
– INTEGER(1) for an INTEGER(1) dummy argument

114 XL Fortran: Language Reference for Big Endian Distributions

– LOGICAL(1) for a LOGICAL(1) dummy argument
– CHARACTER(1) for a CHARACTER(1) dummy argument

v When you use a BYTE data object as an actual argument passed by reference to
an external subprogram with an implicit interface, the data object assumes a
length of 1 byte and no data type.

v When you use a BYTE data object as an actual argument passed by value
(VALUE attribute), the data object assumes an INTEGER(1) data type.

v When you use a BYTE data object in a context that requires a specific data type,
which is arithmetic, logical, or character, the data object assumes an
INTEGER(1), LOGICAL(1), or CHARACTER(1) data type, respectively.

v A pointer of type BYTE cannot be associated with a target of type character, nor
can a pointer of type character be associated with a target of type BYTE.

v When you use a BYTE data object in any other context, the data object assumes
an INTEGER(1) data type.

Intrinsic assignment
Assignment statements are executable statements that define or redefine variables
based on the result of expression evaluation.

A defined assignment is not intrinsic, and is defined by a subroutine and an
interface. See “Defined assignment” on page 169.

The general form of an intrinsic assignment is:

The shapes of variable and expression must conform unless variable is an
allocatable array. If variable is an allocatable array, and -qxlf2003=autorealloc has
been specified, then variable and expression must not be arrays of different ranks.

variable must be an array if expression is an array (see “Expressions involving
arrays” on page 98). If expression is a scalar and variable is an array, expression is
treated as an array of the same shape as variable, with every array element having
the same value as the scalar value of expression. variable must not be a many-one
array section (see “Vector subscripts” on page 89 for details), and neither variable
nor expression can be an assumed-size array. The types of variable and expression
must conform as follows:

Type of variable Type of expression

Numeric Numeric

Logical Logical

Character Character

Derived type Derived type (same as variable)

In numeric assignment statements, variable and expression can specify different
numeric types and different kind type parameters. For logical assignment
statements, the kind type parameters can differ. For character assignment
statements, the length type parameters can differ.

�� variable = expression ��

Chapter 6. Expressions and assignment 115

If the length of a character variable is greater than the length of a character
expression, the character expression is extended on the right with blanks until the
lengths are equal. If the length of the character variable is less than the character
expression, the character expression is truncated on the right to match the length of
the character variable.

If variable is a pointer, it must be associated with a definable target that has type,
type parameters and shape that conform with those of expression. The value of
expression is then assigned to the target associated with variable.

Both variable and expression can contain references to any portion of variable.

If variable is an allocated allocatable variable, it is deallocated if expression
is an array of different shape or any of the corresponding length type parameter
values of variable and expression differ. If variable is or becomes a deallocated
allocatable variable, then it is allocated with each deferred type parameter equal to
the corresponding type parameters of expression, with the shape of expression, and
with each lower bound equal to the corresponding element of LBOUND(expression)

Specify -qxlf2003=autorealloc for reallocation support. See the
-qxlf2003=autorealloc option option in the XL Fortran Compiler Reference for more
information

An assignment statement causes the evaluation of expression and all expressions
within variable before assignment, the possible conversion of expression to the type
and type parameters of variable, and the definition of variable with the resulting
value. No value is assigned to variable if it is a zero-length character object or a
zero-sized array.

A derived-type assignment statement is an intrinsic assignment statement if there
is no accessible defined assignment for objects of this derived type. The derived
type expression must be of the same declared type as the variable. Each kind type
parameter of the variable must have the same value as the corresponding kind of
expression. Each length type parameter of the variable must have the same value
as the corresponding type parameter of expression unless the variable is
allocatable, and its corresponding type parameter is deferred. See “Determining
declared type for derived types” on page 68 for the rules that determine when two
structures are of the same derived type. Assignment is performed as if each
component of the expression is assigned to the corresponding component of the
variable. Pointer assignment is executed for pointer components, defined
assignment is performed for each nonpointer nonallocatable component of a type
that has a defined assignment consistent with the component, and intrinsic
assignment is performed for each other nonpointer nonallocatable component.

For intrinsic assignment of the objects of a derived type containing an allocatable
component, the allocatable component of the variable receives the allocation status
and, if allocated, the bounds and value of the corresponding component of the
expression. This occurs as if the following sequence of steps applies:
1. If the component of variable is allocated, it is deallocated.
2. If the corresponding component of expression is allocated, the corresponding

component of variable is allocated with the same type and type parameters as
the component of expression. If it is an array, it is allocated with the same
bounds.

3. The value of the component of expression is then assigned to the corresponding
component of variable using:

116 XL Fortran: Language Reference for Big Endian Distributions

v Defined assignment if the declared type of the component has a defined
assignment consistent with the component.

v Intrinsic assignment for the dynamic type of that component otherwise.

When variable is a subobject, the assignment does not affect the definition status or
value of other parts of the object.

Arithmetic conversion
For numeric intrinsic assignment, the value of expression may be converted to the
type and kind type parameter of variable, as specified in the following table:

Type of variable Value Assigned

Integer INT(expression,KIND=KIND(variable))

Real REAL(expression,KIND=KIND(variable))

Complex CMPLX(expression,KIND=KIND(variable))

Note: Arithmetic integer operations for INTEGER(8) data items, including
intermediate results, are performed using INTEGER(8) arithmetic in both 32-bit
and 64-bit mode. Arithmetic integer operations for INTEGER(1), INTEGER(2), and
INTEGER(4) data objects, including intermediate results, are performed using
INTEGER(4) arithmetic in 32-bit mode and INTEGER(8) arithmetic in 64-bit mode.
If an intermediate result is used in a context requiring a smaller integer size, it is
converted as required.

Character assignment
Only as much of the character expression as is necessary to define the character
variable needs to be evaluated. For example:

CHARACTER SCOTT*4, DICK*8
SCOTT = DICK

This assignment of DICK to SCOTT requires only that you have previously defined
the substring DICK(1:4). You do not have to previously define the rest of DICK
(DICK(5:8)).

BYTE assignment
If expression is of an arithmetic type, arithmetic assignment is used.

Similarly, if expression is of type character, character assignment is used, and if
expression is of type logical, logical assignment is used. If the expression on the
right is of type BYTE, arithmetic assignment is used.

Examples
INTEGER I(10)
LOGICAL INSIDE
REAL R,RMIN,RMAX
REAL :: A=2.3,B=4.5,C=6.7
TYPE PERSON

INTEGER(4) P_AGE
CHARACTER(20) P_NAME

END TYPE
TYPE (PERSON) EMP1, EMP2
CHARACTER(10) :: CH = ’ABCDEFGHIJ’

I = 5 ! All elements of I assigned value of 5

Chapter 6. Expressions and assignment 117

RMIN = 28.5 ; RMAX = 29.5
R = (-B + SQRT(B**2 - 4.0*A*C))/(2.0*A)
INSIDE = (R .GE. RMIN) .AND. (R .LE. RMAX)

CH(2:4) = CH(3:5) ! CH is now ’ACDEEFGHIJ’

EMP1 = PERSON(45, ’Frank Jones’)
EMP2 = EMP1

! EMP2%P_AGE is assigned EMP1%P_AGE using arithmetic assignment
! EMP2%P_NAME is assigned EMP1%P_NAME using character assignment

END

WHERE construct
The WHERE construct masks the evaluation of expressions and assignments of
values in array assignment statements. It does this according to the value of a
logical array expression.

WHERE_construct_statement
See “WHERE” on page 488 for syntax details.

where_body_construct

where_assignment_statement
Is an assignment_statement.

masked_ELSEWHERE_block

�� WHERE_construct_statement �

where_body_construct
�

� �

masked_ELSEWHERE_block

�

ELSEWHERE_block
�

� END_WHERE_statement ��

�� where_assignment_statement
WHERE_statement
WHERE_construct

��

�� masked_ELSEWHERE_statement
where_body_construct

��

118 XL Fortran: Language Reference for Big Endian Distributions

masked_ELSEWHERE_statement
Is an ELSEWHERE statement that specifies a mask_expr. See
“ELSEWHERE” on page 343 for syntax details.

ELSEWHERE_block

ELSEWHERE_statement
Is an ELSEWHERE statement that does not specify a mask_expr. See
“ELSEWHERE” on page 343 for syntax details.

END_WHERE_statement
See “END (Construct)” on page 346 for syntax details.

Rules:
v mask_expr is a logical array expression.
v In each where_assignment_statement, the mask_expr and the variable being defined

must be arrays of the same shape.
v A statement that is part of a where_body_construct must not be a branch target

statement. Also, ELSEWHERE, masked ELSEWHERE, and END WHERE
statements must not be branch target statements.

v A where_assignment_statement that is a defined assignment must be an elemental
defined assignment.

v The mask_expr on the WHERE construct statement and all corresponding masked
ELSEWHERE statements must have the same shape. The mask_expr on a nested
WHERE statement or nested WHERE construct statement must have the same
shape as the mask_expr on the WHERE construct statement of the construct in
which it is nested.

v If a construct name appears on a WHERE construct statement, it must also
appear on the corresponding END WHERE statement. A construct name is
optional on the masked ELSEWHERE and ELSEWHERE statements in the
WHERE construct.

Examples
REAL, DIMENSION(10) :: A,B,C,D
WHERE (A>0.0)

A = LOG(A) ! Only the positive elements of A
! are used in the LOG calculation.

B = A ! The mask uses the original array A
! instead of the new array A.

C = A / SUM(LOG(A)) ! A is evaluated by LOG, but
! the resulting array is an
! argument to a non-elemental
! function. All elements in A will
! be used in evaluating SUM.

END WHERE

WHERE (D>0.0)
C = CSHIFT(A, 1) ! CSHIFT applies to all elements in array A,

! and the array element values of D determine
! which CSHIFT expression determines the
! corresponding element values of C.

�� ELSEWHERE_statement
where_body_construct

��

Chapter 6. Expressions and assignment 119

ELSEWHERE
C = CSHIFT(A, 2)

END WHERE
END

The following example shows an array constructor in a WHERE construct
statement and in a masked ELSEWHERE mask_expr:
CALL SUB((/ 0, -4, 3, 6, 11, -2, 7, 14 /))

CONTAINS
SUBROUTINE SUB(ARR)
INTEGER ARR(:)
INTEGER N

N = SIZE(ARR)

! Data in array ARR at this point:
!
! A = | 0 -4 3 6 11 -2 7 14 |

WHERE (ARR < 0)
ARR = 0

ELSEWHERE (ARR < ARR((/(N-I, I=0, N-1)/)))
ARR = 2

END WHERE

! Data in array ARR at this point:
!
! A = | 2 0 3 2 11 0 7 14 |

END SUBROUTINE
END

The following example shows a nested WHERE construct statement and masked
ELSEWHERE statement with a where_construct_name:
INTEGER :: A(10, 10), B(10, 10)
...
OUTERWHERE: WHERE (A < 10)

INNERWHERE: WHERE (A < 0)
B = 0

ELSEWHERE (A < 5) INNERWHERE
B = 5

ELSEWHERE INNERWHERE
B = 10

END WHERE INNERWHERE
ELSEWHERE OUTERWHERE

B = A
END WHERE OUTERWHERE
...

Interpreting masked array assignments
To understand how to interpret masked array assignments, you need to
understand the concepts of a control mask (mc) and a pending control mask (mp):
v The mc is an array of type logical whose value determines which elements of an

array in a where_assignment_statement will be defined. This value is determined
by the execution of one of the following:
– a WHERE statement
– a WHERE construct statement
– an ELSEWHERE statement
– a masked ELSEWHERE statement

120 XL Fortran: Language Reference for Big Endian Distributions

– an END WHERE statement

The value of mc is cumulative; the compiler determines the value using the mask
expressions of surrounding WHERE statements and the current mask
expression. Subsequent changes to the value of entities in a mask_expr have no
effect on the value of mc. The compiler evaluates the mask_expr only once for
each WHERE statement, WHERE construct statement, or masked ELSEWHERE
statement.

v The mp is a logical array that provides information to the next masked
assignment statement at the same nesting level on the array elements not
defined by the current WHERE statement, WHERE construct statement, or
masked ELSEWHERE statement.

The following describes how the compiler interprets statements in a WHERE,
WHERE construct, masked ELSEWHERE, ELSEWHERE, or END WHERE
statement. It describes the effect on mc and mp and any further behavior of the
statements, in order of occurrence.
v WHERE statement

– If the WHERE statement is nested in a WHERE construct, the following
occurs:
1. mc becomes mc .AND. mask_expr.
2. After the compiler executes the WHERE statement, mc has the value it had

prior to the execution of the WHERE statement.
– Otherwise, mc becomes the mask_expr.

v WHERE construct
– If the WHERE construct is nested in another WHERE construct, the following

occurs:
1. mp becomes mc .AND. (.NOT. mask_expr).
2. mc becomes mc .AND. mask_expr.

– Otherwise:
1. The compiler evaluates the mask_expr, and assigns mc the value of that

mask_expr.
2. mp becomes .NOT. mask_expr.

v Masked ELSEWHERE statement
The following occurs:
1. mc becomes mp.
2. mp becomes mc .AND. (.NOT. mask_expr).
3. mc becomes mc .AND. mask_expr.

v ELSEWHERE statement
The following occurs:
1. mc becomes mp. No new mp value is established.

v END WHERE statement
After the compiler executes an END WHERE statement, mc and mp have the
values they had prior to the execution of the corresponding WHERE construct
statement.

v where_assignment_statement

The compiler assigns the values of the expr that correspond to the true values of
mc to the corresponding elements of the variable.

Chapter 6. Expressions and assignment 121

If a non-elemental function reference occurs in the expr or variable of a
where_assignment_statement or in a mask_expr, the compiler evaluates the function
without any masked control; that is, it fully evaluates all of the function's
argument expressions and then it fully evaluates the function. If the result is an
array and the reference is not within the argument list of a non-elemental function,
the compiler selects elements corresponding to true values in mc for use in
evaluating the expr, variable, or mask_expr.

If an elemental intrinsic operation or function reference occurs in the expr or
variable of a where_assignment_statement or in a mask_expr, and is not within the
argument list of a non-elemental function reference, the compiler performs the
operation or evaluates the function only for the elements corresponding to true
values in mc.

If an array constructor appears in a where_assignment_statement or in a mask_expr,
the compiler evaluates the array constructor without any masked control and then
executes the where_assignment_statement or evaluates the mask_expr.

The execution of a function reference in the mask_expr of a WHERE statement is
allowed to affect entities in the where_assignment_statement. Execution of an END
WHERE has no effect.

The following example shows how control masks are updated. In this example,
mask1, mask2, mask3, and mask4 are conformable logical arrays, mc is the control
mask, and mp is the pending control mask. The compiler evaluates each mask
expression once.

Sample code (with statement numbers shown in the comments):
WHERE (mask1) ! W1

WHERE (mask2) ! W2
... ! W3
ELSEWHERE (mask3) ! W4
... ! W5
END WHERE ! W6

ELSEWHERE (mask4) ! W7
... ! W8
ELSEWHERE ! W9
... ! W10
END WHERE ! W11

The compiler sets control and pending control masks as it executes each statement,
as shown below:

Statement W1
mc = mask1
mp = .NOT. mask1

Statement W2
mp = mask1 .AND. (.NOT. mask2)
mc = mask1 .AND. mask2

Statement W4
mc = mask1 .AND. (.NOT. mask2)
mp = mask1 .AND. (.NOT. mask2)

.AND. (.NOT. mask3)
mc = mask1 .AND. (.NOT. mask2)

.AND. mask3

122 XL Fortran: Language Reference for Big Endian Distributions

Statement W6
mc = mask1
mp = .NOT. mask1

Statement W7
mc = .NOT. mask1
mp = (.NOT. mask1) .AND. (.NOT.

mask4)
mc = (.NOT. mask1) .AND. mask4

Statement W9
mc = (.NOT. mask1) .AND. (.NOT.

mask4)
Statement W11

mc = 0
mp = 0

The compiler uses the values of the control masks set by statements W2, W4, W7,
and W9 when it executes the respective where_assignment_statements W3, W5, W8,
and W10.

Examples
REAL, DIMENSION(10) :: A,B,C,D
WHERE (A>0.0)

A = LOG(A) ! Only the positive elements of A
! are used in the LOG calculation.

B = A ! The mask uses the original array A
! instead of the new array A.

C = A / SUM(LOG(A)) ! A is evaluated by LOG, but
! the resulting array is an
! argument to a non-elemental
! function. All elements in A will
! be used in evaluating SUM.

END WHERE

WHERE (D>0.0)
C = CSHIFT(A, 1) ! CSHIFT applies to all elements in array A,

Migration Tip:

Simplify logical evaluation of arrays

FORTRAN 77 source:

INTEGER A(10,10),B(10,10)

...
DO I=1,10

DO J=1,10
IF (A(I,J).LT.B(I,J)) A(I,J)=B(I,J)

END DO
END DO
END

Fortran 90 or Fortran 95 source:

INTEGER A(10,10),B(10,10)

...
WHERE (A.LT.B) A=B
END

Chapter 6. Expressions and assignment 123

! and the array element values of D determine
! which CSHIFT expression determines the
! corresponding element values of C.

ELSEWHERE
C = CSHIFT(A, 2)

END WHERE
END

The following example shows an array constructor in a WHERE construct
statement and in a masked ELSEWHERE mask_expr:
CALL SUB((/ 0, -4, 3, 6, 11, -2, 7, 14 /))

CONTAINS
SUBROUTINE SUB(ARR)
INTEGER ARR(:)
INTEGER N

N = SIZE(ARR)

! Data in array ARR at this point:
!
! A = | 0 -4 3 6 11 -2 7 14 |

WHERE (ARR < 0)
ARR = 0

ELSEWHERE (ARR < ARR((/(N-I, I=0, N-1)/)))
ARR = 2

END WHERE

! Data in array ARR at this point:
!
! A = | 2 0 3 2 11 0 7 14 |

END SUBROUTINE
END

The following example shows a nested WHERE construct statement and masked
ELSEWHERE statement with a where_construct_name:
INTEGER :: A(10, 10), B(10, 10)
...
OUTERWHERE: WHERE (A < 10)

INNERWHERE: WHERE (A < 0)
B = 0

ELSEWHERE (A < 5) INNERWHERE
B = 5

ELSEWHERE INNERWHERE
B = 10

END WHERE INNERWHERE
ELSEWHERE OUTERWHERE

B = A
END WHERE OUTERWHERE
...

FORALL construct

The FORALL construct performs assignment to groups of subobjects, especially
array elements.

Unlike the WHERE construct, FORALL performs assignment to array elements,
array sections, and substrings. Also, each assignment within a FORALL construct
need not be conformable with the previous one. The FORALL construct can

124 XL Fortran: Language Reference for Big Endian Distributions

contain nested FORALL statements, FORALL constructs, WHERE statements, and
WHERE constructs.

-qxlf2003=autorealloc does not apply to FORALL constructs. No reallocation of
allocatable variables occurs during assignment statements inside a FORALL
construct.

The INDEPENDENT directive specifies that the left and right sides of the
assignments inside a FORALL construct do not overlap.

FORALL_construct_statement
See “FORALL (construct)” on page 369 for syntax details.

END_FORALL_statement
See “END (Construct)” on page 346 for syntax details.

forall_body
is one or more of the following statements or constructs:

forall_assignment
WHERE statement (see “WHERE” on page 488)
WHERE construct (see “WHERE construct” on page 118)
FORALL statement (see “FORALL” on page 366)
FORALL construct

forall_assignment
is either assignment_statement or pointer_assignment_statement

Any procedures that are referenced in a forall_body, including one referenced by a
defined operation, defined assignment, or finalization must be pure.

If a FORALL statement or construct is nested within a FORALL construct, the
inner FORALL statement or construct cannot redefine any index_name used in the
outer FORALL construct.

Although no atomic object can be assigned to, or have its association status
changed in the same statement more than once, different assignment statements
within the same FORALL construct can redefine or reassociate an atomic object.
Also, each WHERE statement and assignment statement within a WHERE
construct must follow these restrictions.

If a FORALL_construct_name is specified, it must appear in both the FORALL
statement and the END FORALL statement. Neither the END FORALL statement
nor any statement within the FORALL construct can be a branch target statement.

�� FORALL_construct_statement ��

�� forall_body ��

�� END_FORALL_statement ��

Chapter 6. Expressions and assignment 125

Interpreting the FORALL construct
1. From the FORALL Construct statement, evaluate the subscript and stride

expressions for each forall_triplet_spec in any order. All possible pairings of
index_name values form the set of combinations. For example, given the
statement:
FORALL (I=1:3,J=4:5)

The set of combinations of I and J is:
{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The -1 and -qnozerosize compiler options do not affect this step.
2. Evaluate the scalar_mask_expr (from the FORALL Construct statement) for the

set of combinations, in any order, producing a set of active combinations (those
that evaluated to .TRUE.). For example, if the mask (I+J.NE.6) is applied to the
above set, the set of active combinations is:

{(1,4),(2,5),(3,4),(3,5)}

3. Execute each forall_body statement or construct in order of appearance. For the
set of active combinations, each statement or construct is executed completely
as follows:

assignment_statement

Evaluate, in any order, all values in the right-hand side expression and
all subscripts, strides, and substring bounds in the left-hand side
variable for all active combinations of index_name values.

Assign, in any order, the computed expression values to the
corresponding variable entities for all active combinations of index_name
values. In a forall_assignment if variable is allocatable,
-qxlf2003=autorealloc will not cause variable to be deallocated and/or
allocated.
INTEGER, DIMENSION(50) :: A,B,C
INTEGER :: X,I=2,J=49
FORALL (X=I:J)

A(X)=B(X)+C(X)
C(X)=B(X)-A(X) ! All these assignments are performed after the

! assignments in the preceding statement
END FORALL
END

pointer_assignment_statement

Determine, in any order, what will be the targets of the pointer
assignment, and evaluate all subscripts, strides, and substring bounds
in the pointer for all active combinations of index_name values. If a
target is not a pointer, determination of the target does not include
evaluation of its value. Pointer assignment never requires the value of
the righthand side to be determined.

Associate, in any order, all targets with the corresponding pointer
entities for all active combinations of index_name values.

WHERE statement or construct

Evaluate, in any order, the control mask and pending control mask for
each WHERE statement, WHERE construct statement, ELSEWHERE
statement, or masked ELSEWHERE statement each active combination
of index_name values, producing a refined set of active combinations for
that statement, as described in “Interpreting masked array
assignments” on page 120. For each active combination, the compiler
executes the assignment(s) of the WHERE statement, WHERE construct

126 XL Fortran: Language Reference for Big Endian Distributions

statement, or masked ELSEWHERE statement for those values of the
control mask that are true for that active combination. The compiler
executes each statement in a WHERE construct in order, as described
previously.
INTEGER I(100,10), J(100), X
FORALL (X=1:100, J(X)>0)

WHERE (I(X,:)<0)
I(X,:)=0 ! Assigns 0 to an element of I along row X

! only if element value is less than 0 and value
! of element in corresponding column of J is

ELSEWHERE ! greater than 0.
I(X,:)=1

END WHERE
END FORALL
END

FORALL statement or construct

Evaluate, in any order, the subscript and stride expressions in the
forall_triplet_spec_list for the active combinations of the outer FORALL
statement or construct. The valid combinations are the Cartesian
product of combination sets of the inner and outer FORALL constructs.
The scalar_mask_expr determines the active combinations for the inner
FORALL construct. Statements and constructs for these active
combinations are executed.
! Same as FORALL (I=1:100,J=1:100,I.NE.J) A(I,J)=A(J,I)

INTEGER A(100,100)
OUTER: FORALL (I=1:100)

INNER: FORALL (J=1:100,I.NE.J)
A(I,J)=A(J,I)

END FORALL INNER
END FORALL OUTER
END

Data pointer assignment
Pointer assignment statement causes a pointer to become associated with a target
or causes the pointer's association status to become disassociated or undefined.

data_pointer_object
must have the POINTER attribute.

target is a variable or expression. If it is a variable, it must have the TARGET
attribute (or be a subobject of such an object) or the POINTER attribute. If
it is an expression, it must yield a value that has the POINTER attribute.

�� data_pointer_object => target
(1)

(bounds_spec_list)
(2)

(bounds_remapping_list)

��

Notes:

1 Fortran 2003

2 Fortran 2003

Chapter 6. Expressions and assignment 127

If target is not unlimited polymorphic, data_pointer_object must be type
compatible with it and the corresponding kind type parameters must be
equal. If target is unlimited polymorphic, data_pointer_object must be
unlimited polymorphic, of sequence derived type, or of a type with the
BIND attribute.

bounds_spec

lower_bound
is a scalar integer expression.

bounds_remapping

lower_bound
is a scalar integer expression.

upper_bound
is a scalar integer expression.

A target must not be an array section with a vector subscript, or a whole
assumed-size array.

The size, bounds, and shape of the target of a disassociated array pointer are
undefined. No part of such an array can be defined or referenced, although the
array can be the argument of an intrinsic inquiry function that is inquiring about
association status, argument presence, or a property of the type or type
parameters.

A pointer of type byte can only be associated with a target of type byte,
INTEGER(1), or LOGICAL(1).

F2008 If a data_pointer_object is an array with the CONTIGUOUS attribute, the
target must be contiguous. F2008

If target is a disassociated pointer, all nondeferred type parameters of the declared
type of data_pointer_object that correspond to nondeferred type parameters of target
shall have the same values as the corresponding type parameters of target.
Otherwise, all nondeferred type parameters of the declared type of
data_pointer_object must have the same values as the corresponding type
parameters of target.

�� lower_bound : ��

�� lower_bound : upper_bound ��

128 XL Fortran: Language Reference for Big Endian Distributions

If data_pointer_object has nondeferred type parameters that correspond to deferred
type parameters of target, target must not be a pointer with undefined association
status.

If the data_pointer_object is not polymorphic and the target is polymorphic with
dynamic type that differs from its declared type, the assignment target is the
ancestor component of target that has the type of data_pointer_object. Otherwise, the
assignment target is target.

If data_pointer_object is polymorphic, it assumes the dynamic type of target. If
data_pointer_object is of sequence derived type or a type with the BIND attribute,
the dynamic type of target must be that type.

If you specify bounds_spec_list, the number of bounds in the list must be equal to
the rank of data_pointer_object.

If you specify either a bounds_spec_list or a bounds_remapping_list, you must not use
a SUBSCRIPTORDER directive on the pointer

If you specify a bounds_remapping_list:
v F2008 The target must be simply contiguous or of rank one. F2008

v The target must not be a diassociated or undefined pointer, and the size of the
target must not be less than the size of the data_pointer_object.

v The number of bounds_remappings in the list must be equal to the rank of
data_pointer_object.

v The lower bound of each dimension of the data_pointer_object becomes equal to
the lower_bound you specify in the corresponding bounds_remapping.

v The upper bound of each dimension of the data_pointer_object becomes equal to
the upper_bound you specify in the corresponding bounds_remapping.

v The extent of each dimension of the data_pointer_object is equal to the upper
bound of that dimension, minus the lower bound of that dimension, plus 1.

v The elements of the target of data-pointer-object, in array element order, are the
first SIZE (data-pointer-object) elements of the target, after any
SUBSCRIPTORDER directives affect the target.

If you specify a bounds_spec_list:
v The number of bounds_spec shall equal the rank of data_pointer_object.
v If you specify a bounds_spec_list, then the lower_bound of each dimension of the

data_pointer_object becomes equal to the lower_bound in the corresponding
bounds_spec.

v The extent of each dimension of the data_pointer_object is equal to the extent of
the corresponding dimension of the target.

v The upper bound of each dimension of the data_pointer_object is equal to the lower
bound of that dimension, plus the extent of that dimension, minus 1.

If neither bounds_remapping_list nor bounds_spec_list are specified:

During pointer assignment of an array pointer, the lower bound of each dimension
is the result of the LBOUND intrinsic function applied to the corresponding
dimension of the target. For an array section or array expression that is not a

Chapter 6. Expressions and assignment 129

whole array or a structure component, the lower bound is 1. The upper bound of
each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.

Any previous association between a data_pointer_object and a target is broken. If
target is not a pointer, data_pointer_object becomes associated with target. If target is
itself an associated pointer, data_pointer_object is associated with the target of target.
If target is a pointer with an association status of disassociated or undefined,
data_pointer_object acquires the same status. If target of a pointer assignment is an
allocatable object, it must be allocated.

Pointer assignment for a pointer structure component can also occur via execution
of a derived-type intrinsic assignment statement or a defined assignment
statement.

Related information
v See “ALLOCATE” on page 285 for an alternative form of associating a pointer

with a target.
v F2008 Contiguity F2008

Procedure pointer assignment (Fortran 2003)
The procedure pointer assignment statement causes a procedure pointer to become
associated with a target or causes the procedure pointer's association status to
become disassociated or undefined.

proc_target
is an expression or a procedure name. If proc_target is an expression, it
must be a function that returns a procedure pointer. If proc_target is a
procedure name, it must be the name of an external procedure, a module
procedure, a dummy procedure, an intrinsic procedure that can be passed
as an actual argument, or another procedure pointer. F2008 proc_target
can also be the name of an internal procedure. F2008 proc_target must
not be an elemental procedure.

proc_pointer_object
is a procedure pointer.

If proc_target is not a procedure pointer, proc_pointer_object becomes associated with
proc_target. If proc_target is a procedure pointer and is associated with a procedure,
proc_pointer_object becomes associated with the same procedure. If proc_target is a
pointer with an association status of disassociated or undefined, proc_pointer_object
acquires the same status.

If the proc_pointer_object has an explicit interface, its characteristics must be the
same as proc_target except that proc_target can be pure even if proc_pointer_object is
not. If the characteristics of proc_pointer_object or proc_target are such that an
explicit interface is required, both proc_pointer_object and proc_target must have an
explicit interface.

�� proc_pointer_object => proc_target ��

130 XL Fortran: Language Reference for Big Endian Distributions

If proc_pointer_object has an implicit interface and is explicitly typed or referenced
as a function, proc_target must be a function. If proc_pointer_object has an implicit
interface and is referenced as a subroutine, proc_target must be a subroutine.

If proc_target and proc_pointer_object are functions, they must have the same type;
corresponding type parameters must either be both deferred or have the same
value.

If proc_target is a specific procedure name that is also a generic name, only the
specific procedure is associated with proc_pointer_object.

Related information::
v “PROCEDURE declaration (Fortran 2003)” on page 429

Integer pointer assignment (IBM extension)
Integer pointer variables can be:
v Used in integer expressions
v Assigned values as absolute addresses
v Assigned the address of a variable using the LOC intrinsic function. (Objects of

derived type and structure components must be of sequence-derived type when
used with the LOC intrinsic function.)

Note: The XL Fortran compiler does not use the size of an object as a multiplier
in an arithmetic expression where an integer pointer is an operand.

Examples
INTEGER INT_TEMPLATE
POINTER (P,INT_TEMPLATE)
INTEGER MY_ARRAY(10)
DATA MY_ARRAY/1,2,3,4,5,6,7,8,9,10/
INTEGER, PARAMETER :: WORDSIZE=4

P = LOC(MY_ARRAY)
PRINT *, INT_TEMPLATE ! Prints ’1’
P = P + 4; ! Add 4 to reach next element

! because arithmetic is byte-based
PRINT *, INT_TEMPLATE ! Prints ’2’

P = LOC(MY_ARRAY)
DO I = 1,10

PRINT *,INT_TEMPLATE
P = P + WORDSIZE ! Parameterized arithmetic is suggested

END DO
END

Chapter 6. Expressions and assignment 131

132 XL Fortran: Language Reference for Big Endian Distributions

Chapter 7. Execution control

You can control the execution of a program sequence using constructs. Constructs
contain statement blocks and other executable statements that can alter the normal
execution sequence. This section contains detailed descriptions of the following
constructs:
v ASSOCIATE
v F2008 BLOCK F2008

v DO
v DO WHILE
v IF
v SELECT CASE
v SELECT TYPE

Detailed syntax diagrams for the constructs in this section can be found by
following the links to the associated statements.

For nesting to occur, a construct must be wholly contained within another
construct. If a statement specifies a construct name, it applies to that construct. If
the statement does not specify a construct name, the statement applies to the
innermost construct in which it appears.

In addition to constructs, XL Fortran provides branching as a method for
transferring control from one statement to another statement in the same scoping
unit.

Statement blocks
A statement block consists of a sequence of zero or more executable statements,
executable constructs, FORMAT statements, or DATA statements embedded in
another executable construct and are treated as a single unit.

In the same program, you can not transfer control from outside the statement block
to within the statement block. You can transfer control within the statement block,
or from within the statement block to outside the block. For example, you can have
a GO TO statement branching to a label that is within a statement block. You
cannot branch into a statement block from a GO TO statement outside the
statement block.

ASSOCIATE Construct (Fortran 2003)

The ASSOCIATE construct creates an association between an identifier and a
variable, or the value of an expression, during the execution of that construct. The
identifier you specify in an ASSOCIATE construct becomes an associating entity.
You can create multiple associating entities inside a single ASSOCIATE construct.

© Copyright IBM Corp. 1996, 2014 133

Syntax

ASSOCIATE_statement
See “ASSOCIATE (Fortran 2003)” on page 289 for syntax details

END_ASSOCIATE_statement
See “END (Construct)” on page 346 for syntax details

Execution of an ASSOCIATE construct causes execution of an
ASSOCIATE_statement followed by the ASSOCIATE_statement_block. During
execution of that block, the construct creates an association with an identifier and
the corresponding selector. The associating entity assumes the declared type and
type parameters of the selector. The name of the associating entity is an associate
name. For further information on associate names, see “Associate names” on page
147.

Examples

The following example uses the ASSOCIATE construct as a shorthand for a
complex expression and renames an existing variable, MYREAL. After the end of
the ASSOCIATE construct, any change within the construct to the value of the
associating entity that associates with MYREAL is reflected.

PROGRAM ASSOCIATE_EXAMPLE

REAL :: MYREAL, X, Y, THETA, A
X = 0.42
Y = 0.35
MYREAL = 9.1
THETA = 1.5
A = 0.4

ASSOCIATE (Z => EXP(-(X**2+Y**2)) * COS(THETA), V => MYREAL)
PRINT *, A+Z, A-Z, V
V = V * 4.6

END ASSOCIATE

PRINT *, MYREAL

END PROGRAM ASSOCIATE_EXAMPLE

The expected output is.
0.4524610937 0.3475389183 9.100000381

41.86000061

BLOCK construct (Fortran 2008)
The BLOCK construct defines an executable block that can contain declarations.

�� ASSOCIATE_statement ��

�� ASSOCIATE_statement_block ��

�� END_ASSOCIATE_statement ��

134 XL Fortran: Language Reference for Big Endian Distributions

Syntax

BLOCK_statement
See “BLOCK (Fortran 2008)” on page 296 for syntax details.

END_BLOCK_statement
See “END (Construct)” on page 346 for syntax details.

To terminate execution of a BLOCK construct, you can use an EXIT statement. To
branch out of a BLOCK construct, you can use a GOTO (unconditional) statement.

A local variable of a BLOCK construct within a pure subprogram cannot have the
SAVE attribute.

COMMON, EQUIVALENCE, IMPLICIT, INTENT, NAMELIST, OPTIONAL,
statement function, and VALUE statements are not allowed in the specification
part of the BLOCK construct.

A common block name cannot be specified in a saved entity list in the BLOCK
construct.

You can transfer control within a BLOCK construct, or from inside to outside of a
BLOCK construct. You can transfer control from outside to inside of a BLOCK
construct only when the control is returned from a procedure call inside the
BLOCK construct.

Examples

Example 1: The following example shows that a BLOCK construct can be specified
with an optional name and nested within another BLOCK construct.
PROGRAM MyProgram

INTEGER :: a

add1 : BLOCK
INTEGER :: res1
res1 = a + 1
! The BLOCK statement has no BLOCK_construct_name
BLOCK

INTEGER :: res2
res2 = res1 + 1

�� BLOCK_statement ��

��
specification_part

��

�� statement_block ��

�� END_BLOCK_statement ��

Chapter 7. Execution control 135

END BLOCK
! The END BLOCK statement must have the same BLOCK construct name ’add1’
END BLOCK add1

END PROGRAM MyProgram

Example 2: You cannot transfer control from outside a BLOCK construct to inside
the BLOCK construct, except for the return from a procedure call inside the
construct. For example:
PROGRAM main

INTEGER :: a

a = 5
BLOCK

INTEGER :: b
b = a + 2
! Program control is returned from a procedure call inside the BLOCK construct
CALL Sub(b)

END BLOCK
END PROGRAM main

SUBROUTINE Sub(B)
INTEGER :: b

b = b * b
PRINT *, b

END SUBROUTINE Sub

Example 3: The following example shows how an unconditional GOTO statement
is used to exit a BLOCK construct.

PROGRAM MyProgram
INTEGER :: i
i = 100

BLOCK
INTEGER :: i
i = 1
! Before the BLOCK construct is exited, local allocatables are
! deallocated, and local finalizable objects are finalized.
GOTO 10
i = i + 1

END BLOCK

10 PRINT *, i
END PROGRAM MyProgram

Related information
v “BLOCK (Fortran 2008)” on page 296
v “SAVE” on page 451
v “Pure procedures” on page 206
v “EXIT” on page 361
v “GO TO (unconditional)” on page 380

DO construct
The DO construct specifies the repeated execution of a statement block. Such a
repeated block is called a loop.

The iteration count of a loop can be determined at the beginning of execution of
the DO construct, unless it is infinite.

136 XL Fortran: Language Reference for Big Endian Distributions

You can curtail a specific iteration with the CYCLE statement, and the EXIT
statement terminates the loop.

DO_statement
See “DO” on page 333 for syntax details

END_DO_statement
See “END (Construct)” on page 346 for syntax details

terminal_statement
is a statement that terminates the DO construct. See below.

If you specify a DO construct name on the DO statement, you must terminate the
construct with an END DO statement with the same construct name. Conversely, if
you do not specify a DO construct name on the DO statement, and you terminate
the DO construct with an END DO statement, you must not have a DO construct
name on the END DO statement.

The terminal statement
The terminal statement must follow the DO statement and must be executable. See
Chapter 11, “Statements and attributes,” on page 279 for a listing of statements that
can be used as the terminal statement. If the terminal statement of a DO construct
is a logical IF statement, it can contain any executable statement compatible with
the restrictions on a logical IF statement.

If you specify a statement label in the DO statement, you must terminate the DO
construct with a statement that is labeled with that statement label.

A labeled DO statement must be terminated with an END DO statement that has
a matching statement label. A DO statement with no label must be terminated with
an unlabeled END DO statement.

Nested, labeled DO and DO WHILE constructs can share the same terminal
statement if the terminal statement is labeled, and if it is not an END DO
statement.

Range of a DO construct
The range of a DO construct consists of all the executable statements following the
DO statement, up to and including the terminal statement. In addition to the rules
governing the range of constructs, you can only transfer control to a shared
terminal statement from the innermost sharing DO construct.

�� DO_statement ��

�� statement_block ��

�� END_DO_statement
terminal_statement

��

Chapter 7. Execution control 137

Active and inactive DO constructs
A DO construct is either active or inactive. Initially inactive, a DO construct
becomes active only when its DO statement is executed. Once active, the DO
construct becomes inactive only when:
v Its iteration count becomes zero.
v A RETURN statement occurs within the range of the DO construct.
v Control is transferred to a statement outside the range of the DO construct. That

statement cannot be an END DO statement.
v A subroutine invoked from within the DO construct returns, through an

alternate return specifier, to a statement that is outside the range of the DO
construct. That statement cannot be an END DO statement.

v An EXIT statement that belongs to the DO construct executes.
v An EXIT statement or a CYCLE statement that is within the range of the DO

construct, but belongs to an outer DO or DO WHILE construct, executes.
v A STOP statement executes or the program stops for any other reason.

When a DO construct becomes inactive, the DO variable retains the last value
assigned to it.

Executing a DO statement
An infinite DO does not have an iteration count limit or a termination condition.

If the loop is not an infinite DO, the DO statement includes an initial parameter, a
terminal parameter, and an optional increment.
1. The initial parameter, m1, the terminal parameter, m2, and the increment, m3, are

established by evaluating the DO statement expressions (a_expr1, a_expr2, and
a_expr3, respectively). Evaluation includes, if necessary, conversion to the type
of the DO variable according to the rules for arithmetic conversion. (See
“Arithmetic conversion” on page 117.) If you do not specify a_expr3, m3 has a
value of 1. m3 must not have a value of zero.

2. The DO variable becomes defined with the value of the initial parameter (m1).
3. The iteration count is determined by the expression:

MAX (INT ((m2 - m1 + m3) / m3), 0)

Note that the iteration count is 0 whenever:
m1 > m2 and m3 > 0, or

m1 < m2 and m3 < 0

The iteration count cannot be calculated if the DO variable is missing. This is
referred to as an infinite DO construct.

The iteration count cannot exceed 2**31 - 1 for integer variables of kind 1,
2, or 4, and cannot exceed 2**63 - 1 for integer variables of kind 8. The count
becomes undefined if an overflow or underflow situation arises during the
calculation.

At the completion of the DO statement, loop control processing begins.

Loop control processing
Loop control processing determines if further execution of the range of the DO
construct is required. The iteration count is tested. If the count is not zero, the first
statement in the range of the DO construct begins execution. If the iteration count
is zero, the DO construct becomes inactive. If, as a result, all of the DO constructs

138 XL Fortran: Language Reference for Big Endian Distributions

sharing the terminal statement of this DO construct are inactive, normal execution
continues with the execution of the next executable statement following the
terminal statement. However, if some of the DO constructs sharing the terminal
statement are active, execution continues with incrementation processing of the
innermost active DO construct.

DO execution range
The range of a DO construct includes all statements within the statement block.
These statements execute until reaching the terminal statement. A DO variable
must not become redefined or undefined during execution of the range of a DO
construct, and only becomes redefined through incremental processing.

Terminal statement execution
Execution of the terminal statement occurs as a result of the normal execution
sequence, or as a result of transfer of control, subject to the restriction that you
cannot transfer control into the range of a DO construct from outside the range.
Unless execution of the terminal statement results in a transfer of control,
execution continues with incrementation processing.

Incrementation processing
1. The DO variable, the iteration count, and the increment of the active DO

construct whose DO statement was most recently executed, are selected for
processing.

2. The value of the DO variable is increased by the value of m3.
3. The iteration count is decreased by 1.
4. Execution continues with loop control processing of the same DO construct

whose iteration count was decremented.

Chapter 7. Execution control 139

Examples
INTEGER :: SUM=0
OUTER: DO

INNER: DO
READ (5,*) J
IF (J.LE.I) THEN

PRINT *, ’VALUE MUST BE GREATER THAN ’, I
CYCLE INNER

END IF
SUM=SUM+J
IF (SUM.GT.500) EXIT OUTER
IF (SUM.GT.100) EXIT INNER

END DO INNER
SUM=SUM+I
I=I+10

END DO OUTER
PRINT *, ’SUM =’,SUM
END

DO WHILE construct
The DO WHILE construct specifies the repeated execution of a statement block for
as long as the scalar logical expression specified in the DO WHILE statement is
true. You can curtail a specific iteration with the CYCLE statement, and the EXIT
statement terminates the loop.

Migration Tip:

v Use EXIT, CYCLE, and infinite DO statements instead of a GOTO statement.

FORTRAN 77 source

I = 0
J = 0

20 CONTINUE
I = I + 1
J = J + 1
PRINT *, I
IF (I.GT.4) GOTO 10 ! Exiting loop
IF (J.GT.3) GOTO 20 ! Iterate loop immediately
I = I + 2
GOTO 20

10 CONTINUE
END

Fortran 90/95/2003 source:

I = 0 ; J = 0
DO

I = I + 1
J = J + 1
PRINT *, I
IF (I.GT.4) EXIT
IF (J.GT.3) CYCLE
I = I + 2

END DO
END

140 XL Fortran: Language Reference for Big Endian Distributions

DO_WHILE_statement
See “DO WHILE” on page 335 for syntax details

END_DO_statement
See “END (Construct)” on page 346 for syntax details

terminal_stmt
is a statement that terminates the DO WHILE construct. See “The terminal
statement” on page 137 for details.

The rules applicable to the DO construct names and ranges, active and inactive
DO constructs, and terminal statements also apply to the DO WHILE construct.

Examples
I=10
TWO_DIGIT: DO WHILE ((I.GE.10).AND.(I.LE.99))

J=J+I
READ (5,*) I

END DO TWO_DIGIT
END

IF construct
The IF construct selects no more than one of its statement blocks for execution.

�� DO_WHILE_statement ��

�� statement_block ��

�� END_DO_statement
terminal_statement

��

�� Block_IF_statement ��

�� statement_block ��

��

� ELSE_IF_block

��

��
ELSE_block

��

�� END_IF_statement ��

Chapter 7. Execution control 141

Block_IF_statement
See “IF (block)” on page 381 for syntax details.

END_IF_statement
See “END (Construct)” on page 346 for syntax details.

ELSE_IF_block

ELSE_IF_statement
See “ELSE IF” on page 343 for syntax details.

ELSE_block

ELSE_statement
See “ELSE” on page 342 for syntax details.

The scalar logical expressions in an IF construct (that is, the block IF and ELSE IF
statements) are evaluated in the order of their appearance until a true value, an
ELSE statement, or an END IF statement is found:
v If a true value or an ELSE statement is found, the statement block immediately

following executes, and the IF construct is complete. The scalar logical
expressions in any remaining ELSE IF statements or ELSE statements of the IF
construct are not evaluated.

v If an END IF statement is found, no statement blocks execute, and the IF
construct is complete.

If the IF construct name is specified, it must appear on the IF statement and END
IF statement, and optionally on any ELSE IF or ELSE statements. You can branch
to an END IF statement from only within its IF construct.

Examples
! Get a record (containing a command) from the terminal

DO
WHICHC: IF (CMD .EQ. ’RETRY’) THEN ! named IF construct

IF (LIMIT .GT. FIVE) THEN ! nested IF construct
! Print retry limit exceeded

CALL STOP
ELSE

CALL RETRY
END IF

ELSE IF (CMD .EQ. ’STOP’) THEN WHICHC ! ELSE IF blocks

�� ELSE_IF_statement ��

�� statement_block ��

�� ELSE_statement ��

�� statement_block ��

142 XL Fortran: Language Reference for Big Endian Distributions

CALL STOP
ELSE IF (CMD .EQ. ’ABORT’) THEN

CALL ABORT
ELSE WHICHC ! ELSE block

! Print unrecognized command
END IF WHICHC

END DO
END

CASE construct
The CASE construct has a concise syntax for selecting, at most, one of a number of
statement blocks for execution. The case selector of each CASE statement is
compared to the expression of the SELECT CASE statement.

SELECT_CASE_statement
defines the case expression that is to be evaluated. See “SELECT CASE” on
page 453 for syntax details.

END_SELECT_statement
terminates the CASE construct. See “END (Construct)” on page 346 for
syntax details.

CASE_statement_block

CASE_statement
defines the case selector, which is a value, set of values, or default case, for
which the subsequent statement block is executed. See “CASE” on page
303 for syntax details.

In the construct, each case value must be of the same type as the case expression.

The CASE construct executes as follows:
1. The case expression is evaluated. The resulting value is the case index.
2. The case index is compared to the case_selector of each CASE statement.

�� SELECT_CASE_statement ��

��

� CASE_statement_block

��

�� END_SELECT_statement ��

�� CASE_statement ��

�� statement_block ��

Chapter 7. Execution control 143

v If a match occurs, the statement block associated with that CASE statement
is executed.

v If no match occurs, but a default case_selector exists, the statement block
associated with the default case_selector is executed.

v Otherwise, no statement block is executed.
3. Execution of the construct is complete and control is transferred to the

statement after the END SELECT statement.

A CASE construct contains zero or more CASE statements that can each specify a
value range, although the value ranges specified by the CASE statements cannot
overlap.

A default case_selector can be specified by one of the CASE statements. A default
CASE_statement_block can appear anywhere in the CASE construct; it can appear at
the beginning or end, or among the other blocks.

If a construct name is specified, it must appear on the SELECT CASE statement
and END SELECT statement, and optionally on any CASE statements.

You can only branch to the END SELECT statement from within the CASE
construct. A CASE statement cannot be a branch target.

Examples
ZERO: SELECT CASE(N)

CASE DEFAULT ZERO
OTHER: SELECT CASE(N) ! start of CASE construct OTHER

CASE(:-1)
SIGNUM = -1 ! this statement executed when n≤-1

Migration Tip:

Use CASE in place of block IFs.

FORTRAN 77 source

IF (I .EQ.3) THEN
CALL SUBA()

ELSE IF (I.EQ. 5) THEN
CALL SUBB()

ELSE IF (I .EQ. 6) THEN
CALL SUBC()

ELSE
CALL OTHERSUB()

ENDIF
END

Fortran 90/95/2003 source:

SELECTCASE(I)
CASE(3)

CALL SUBA()
CASE(5)

CALL SUBB()
CASE(6)

CALL SUBC()
CASE DEFAULT

CALL OTHERSUB()
END SELECT
END

144 XL Fortran: Language Reference for Big Endian Distributions

CASE(1:) OTHER
SIGNUM = 1

END SELECT OTHER ! end of CASE construct OTHER
CASE (0)

SIGNUM = 0

END SELECT ZERO
END

Related information
v “CASE” on page 303

SELECT TYPE construct (Fortran 2003)
The SELECT TYPE construct selects, at most, one of its constituent blocks for
execution. The selection is based on the dynamic type of an expression. A name is
associated with the expression, in the same way as for the ASSOCIATE construct.

SELECT_TYPE_statement
defines the selector expression that is to be evaluated and optionally
associates a name (an associate name) with the selector expression. If you
do not specify an associate name in the SELECT_TYPE_statement, the
selector expression must be a named variable. The name of this variable
becomes the associate name. Execution of a SELECT TYPE construct
whose selector is not a variable causes the selector expression to be
evaluated. See “SELECT TYPE (Fortran 2003)” on page 454 for syntax
details.

type_guard_statement_block

type_guard_statement
The dynamic type of the selector expression is compared to the type
specified in the type_guard_statement. If the rules for type comparison
succeed for a particular type_guard_statement the subsequent statement
block is executed. A type guard statement cannot be a branch target
statement. It is permissible to branch to an end-select-type-stmt only from

�� SELECT_TYPE_statement ��

��

� type_guard_statement_block

��

�� END_SELECT_statement ��

�� type_guard_statement ��

�� statement_block ��

Chapter 7. Execution control 145

within its SELECT TYPE construct. See “Type Guard (Fortran 2003)” on
page 477 for syntax details. The other attributes of the associating entity
are described in “Associate names” on page 147.

END_SELECT_statement
terminates the SELECT TYPE construct. See “END (Construct)” on page
346 for syntax details.

The block to be executed is selected as follows:
1. If a TYPE IS type guard statement matches the selector, the block following

that statement is executed. A TYPE IS type guard statement matches the
selector if the dynamic type and kind type parameter values of the selector are
the same as those specified by the statement.

2. Otherwise, if exactly one CLASS IS type guard statement matches the selector,
the block following that statement is executed.A CLASS IS type guard
statement matches the selector if the dynamic type of the selector is an
extension of the type specified by the statement, and the kind type parameter
values specified by the statement are the same as the corresponding type
parameter values of the dynamic type of the selector.

3. Otherwise, if several CLASS IS type guard statements match the selector, one
of these statements must specify a type that is an extension of all the types
specified in the others; the block following that statement is executed.

4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
following that statement is executed.

If the associating entity follows a TYPE IS, CLASS IS, or CLASS DEFAULT type
guard statement, its polymorphism, type, and type parameter are determined as
follows:

Table 18. Characteristics of the associating entity in different locations within the construct

Location Polymorphism Type Type parameter

Within the block
following a TYPE IS
type guard statement

Not polymorphic The type named in
the type guard
statement

The type parameter
values of the selector

Within the block
following a CLASS
IS type guard
statement

Polymorphic The declared type
named in the type
guard statement

The type parameter
values of the selector

Within the block
following a CLASS
DEFAULT type
guard statement

Polymorphic The same declared
type as the selector

The type parameter
values of the
declared type of the
selector

Examples
PROGRAM p

TYPE base
INTEGER::i

END TYPE

TYPE,EXTENDS(base)::child
INTEGER::j

END TYPE

CLASS(base), POINTER :: bptr
TYPE(base), TARGET :: base_target = base(10)
TYPE(child), TARGET :: child_target = child(20, 30)

146 XL Fortran: Language Reference for Big Endian Distributions

bptr => base_target

SELECT type(bptr)
TYPE IS (base)
PRINT *, "base type: component value: ", bptr%i
TYPE IS (child)
PRINT *, "child type: component values: ", bptr%i, bptr%j

END SELECT

bptr => child_target

SELECT type(bptr)
TYPE IS (base)
PRINT *, "base type: component value: ", bptr%i
TYPE IS (child)
PRINT *, "child type: component values: ", bptr%i, bptr%j

END SELECT

END PROGRAM p

The output is as follows:
base type: component value: 10
child type: component values: 20 30

Associate names
Within a SELECT TYPE or ASSOCIATE construct, an associating entity has the
same rank as its associated selector. The lower bound for each dimension is equal
to the value of the intrinsic LBOUND(selector). The upper bound for each
dimension is equal to the lower bound plus the extent minus 1.

When the selector is a variable, the associating entity has the ASYNCHRONOUS
or VOLATILE attribute if and only if the selector has the same attribute. If and
only if the selector has the TARGET or POINTER attribute, the associating entity
has the TARGET attribute. If the associating entity is polymorphic, it assumes the
dynamic type and type parameter values of the selector. If the selector has the
OPTIONAL attribute, it must be present. F2008 If and only if the selector is
contiguous, the associating entity is contiguous. F2008

If the selector is not allowed in a variable definition context or is an array with a
vector subscript, the associate name must not appear in a variable definition
context.

Related information
v F2008 Contiguity F2008

Branching
You can also alter the normal execution sequence by branching. A branch transfers
control from one statement to a labeled branch target statement in the same
scoping unit. A branch target statement can be any executable statement except a
CASE, ELSE, ELSE IF, or type guard statement.

The following statements can be used for branching:
v Assigned GO TO

Chapter 7. Execution control 147

transfers program control to an executable statement, whose statement label is
designated in an ASSIGN statement. See “GO TO (assigned)” on page 377 for
syntax details.

v Computed GO TO

transfers control to possibly one of several executable statements. See “GO TO
(computed)” on page 379 for syntax details.

v Unconditional GO TO

transfers control to a specified executable statement. See “GO TO
(unconditional)” on page 380 for syntax details.

v Arithmetic IF

transfers control to one of three executable statements, depending on the
evaluation of an arithmetic expression. See “IF (arithmetic)” on page 380 for
syntax details.

The following input/output specifiers can also be used for branching:
v the END= end-of-file specifier

transfers control to a specified executable statement if an endfile record is
encountered (and no error occurs) in a READ statement.

v the ERR= error specifier
transfers control to a specified executable statement in the case of an error. You
can specify this specifier in the BACKSPACE, ENDFILE, REWIND, CLOSE,
OPEN, READ, WRITE, and INQUIRE statements.

v the EOR= end-of-record specifier
transfers control to a specified executable statement if an end-of-record condition
is encountered (and no error occurs) in a READ statement.

CONTINUE statement
Execution of a CONTINUE statement has no effect. For more information refer to
“CONTINUE” on page 323.

STOP statement
Execution of a STOP statement causes normal termination of execution of the
program. For more information, see “STOP” on page 459.

ERROR STOP statement (Fortran 2008)
Execution of an ERROR STOP statement causes error termination of execution of
the program. For more information, see ERROR STOP.

148 XL Fortran: Language Reference for Big Endian Distributions

Chapter 8. Program units and procedures

Scope

Scoping unit
A program unit consists of a set of nonoverlapping scoping units. A scoping unit is
that portion of a program unit that has its own scope boundaries. It is one of the
following:
v A derived-type definition.
v F2008 A BLOCK construct (not including any nested BLOCK constructs,

derived-type definitions, and interface bodies within it). F2008

v A procedure interface body (not including any derived-type definitions and
interface bodies within it).

v A program unit, module subprogram, or internal subprogram (not including
derived-type definitions, F2008 BLOCK constructs F2008 , interface bodies,
module subprograms, and internal subprograms within it).

A host scoping unit is the scoping unit that immediately surrounds another
scoping unit. For example, in the following diagram, the host scoping unit of the
internal function C is the scoping unit of the main program A. Using the
IMPORT statement, an interface body rather than a module procedure interface
body can also access names from its host.

Host association is the method by which an internal subprogram, module
subprogram, derived-type definition, or F2008 submodule F2008 accesses
names from its host.

Entities with scope
Entities that have scope are:
v A name (see below)
v A label (local entity)
v An external input/output unit number (global entity)
v An operator symbol. Intrinsic operators are global entities, while defined

operators are local entities.
v An assignment symbol (global entity)

SUBROUTINE B
REAL B1

END SUBROUTINE B

FUNCTION C ()
REAL C1

END FUNCTION C

END PROGRAM A

PROGRAM A
INTEGER A1
CONTAINS

scope of
variable B1

scope of
variable C1

scope of
variable A1
(not including
scope of B1
and C1)

© Copyright IBM Corp. 1996, 2014 149

If the scope is an executable program, the entity is called a global entity. If the
scope is a scoping unit, the entity is called a local entity. If the scope is a statement
or part of a statement, the entity is called a statement entity. If the scope is a
construct, the entity is called a construct entity.

Global entity
Global entities are:
v Common blocks
v CRITICAL lock_names

v External input or output units
v External procedures
v Entities that have binding labels.
v Pending data transfer operations
v Program units

You cannot identify an entity of the program by using more than one binding
label. If a name identifies a global entity, it cannot be the same as any
binding label in the same executable program, and it cannot be used to
identify any other global entity in the same executable program unless that entity
is an intrinsic module.

See Conventions for XL Fortran external names in the XL Fortran Optimization and
Programming Guide for details on restrictions on names of global entities.

Local entity
Entities of the following classes are local entities of the scoping unit in which they
are defined:
v Class 1: Named variables that are not statement entities, module procedures,

named constants, derived types, construct names, generic names, statement
functions, internal subprograms, dummy procedures, intrinsic procedures,
namelist group names, external procedures with binding labels, abstract
interfaces, intrinsic modules, external procedures accessed by a USE statement,
or statement labels.

v Class 2: Type parameters, components, and type-bound procedure bindings of a
derived type definition where each derived type definition has its own class.
– A derived type parameter name, including all that are inherited from its

parent type, has the same scope as the derived type being defined.
– A component name has the same scope as the type of which it is a

component. You can specify a name within a component designator of a
structure of that type, or as a component keyword in a structure constructor
for that type.

– A binding name of a procedure has the same scope as the type. It can appear
only as the binding-name in a procedure reference. A generic binding for
which the generic-spec is not a generic name has a scope that consists of all
scoping units in which an entity of that type is accessible.

If the derived type is defined in a module and contains the PRIVATE statement,
the type and its components are accessible in any of the defining module's
subprograms by host association. If the accessing scoping unit accesses this type
by use association, that scoping unit, and any scoping unit that accesses the
entities of that scoping unit by host association can access the derived types, and
only those components with the PUBLIC attribute.

v Class 3: Argument keywords (in a separate class for each procedure with an
explicit interface).

150 XL Fortran: Language Reference for Big Endian Distributions

A dummy argument name in an internal procedure, module procedure, or
procedure interface block has a scope as an argument keyword of the scoping
unit of its host. As an argument keyword, it may appear only in a procedure
reference for the procedure of which it is a dummy argument. If the procedure
or procedure interface block is accessible in another scoping unit by use
association or host association, the argument keyword is accessible for procedure
references for that procedure in that scoping unit.

v Class 4: Common blocks that have binding labels.

In a scoping unit, a name that identifies a local entity of one class can be used to
identify a local entity of another class. Such a name must not be used to identify
another local entity of the same class, except in the case of generic names. A
generic name of an interface block can be the same as:
v A derived type name in the same scope.
v A specific procedure name in the interface block, any accessible generic name, or

any generic intrinsic procedure name. For details, see “Resolution of procedure
references” on page 203.

In a scoping unit, a name that identifies a global entity cannot be used to identify a
local entity of class 1 or class 4 in the same scoping unit, except that the name:
v Identifies a common block.
v Identifies an external function whose name is also a generic name.
v Identifies an accessible data entity as use-name of a rename in a USE statement.0
v Identifies an external function and the inclusive scope is its defining

subprogram.

A name declared to be a derived type can have the same name as another
local entity of class 1 of that scoping unit that is not a derived-type. In this case,
the structure constructor for that type is not available in that scope. Similarly, a
local entity of class 1 is accessible through host association or use association, even
if there is another local entity of class 1 accessible in that scope, if both of the
following conditions are satisfied:
v one of the two entities is a derived type and the other is not.
v in the case of host association, the derived type is accessible via host association.

For example, given a module M, a program unit P, and an internal subprogram
or module subprogram S nested in P, if you have an entity named T1 declared
in M that is accessed by use association in P (or in S), you can declare another
entity in P (or in S, respectively) with the same name T1, so long as one of the
two is a derived type. If you have an entity named T2 accessible in P, and an
entity named T2 declared in S, then the T2 accessible in P is accessible in S if the
T2 in P is a derived type. If the T2 in P was not a derived type, it would not be
accessible in S if S declared another T2 (of derived type or not).

The structure constructor for that type will not be available in that scope. A local
entity of class 1 in a scope that has the same name as a derived type accessible in
that scope must be explicitly declared in a declaration statement in that scope.

If two local entities of class 1, one of which is a derived type, have the same name
identifier and are accessible in a scoping unit, any PUBLIC or PRIVATE statement
that specifies the name of the entities applies to both entities. The PUBLIC or
PRIVATE attribute that is specified in the derived type declaration statement also
applies to both entities.

Chapter 8. Program units and procedures 151

If the name of the entities is specified in a VOLATILE statement, the entity or
entities declared in that scope have the volatile attribute. If the two entities are
public entities of a module, any rename on a USE statement that references the
module and specifies the names of the entities as the use_name applies to both
entities.

A common block name in a scoping unit can be the name of any local entity other
than a named constant or intrinsic procedure. The name is recognized as the
common block entity only when the name is delimited by slashes in a BIND,
COMMON, VOLATILE, or SAVE statement. If it is not, the name identifies the
local entity. An intrinsic procedure name can be the name of a common block in a
scoping unit that does not reference the intrinsic procedure. In this case, the
intrinsic procedure name is not accessible.

An external function name can also be the function result name. This is the only
way that an external function name can also be a local entity.

If a scoping unit contains a local entity of class 1 with the same name as an
intrinsic procedure, the intrinsic procedure is not accessible in that scoping unit.

Statement entity
The following items are statement entities:
v Name of a statement function dummy argument.

SCOPE: Scope of the statement in which it appears.
v Name of a variable that appears as the DO variable of an implied-DO in a

DATA statement or array constructor.
SCOPE: Scope of the implied-DO list.

Except for a common block name or scalar variable name, the name of a global
entity or local entity of class 1 that is accessible in the scoping unit of a statement
or construct must not be the name of a statement or construct entity of that
statement or construct. Within the scope of a statement or construct entity, another
statement or construct entity must not have the same name.

The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type and
type parameters that it would have if it were the name of a variable in the scoping
unit that includes the statement function.

If the name of a global or local entity accessible in the scoping unit of a statement
or construct is the same as the name of a statement or construct entity in that
statement or construct, the name is interpreted within the scope of the statement or
construct entity as that of the statement or construct entity. Elsewhere in the
scoping unit, including parts of the statement or construct outside the scope of the
statement or construct entity, the name is interpreted as that of the global or local
entity.

If a statement or construct entity has the same name as an accessible name that
denotes a variable, constant, or function, the statement or construct entity has the
same type and type parameters as the variable, constant or function. Otherwise,
the type of the statement or construct entity is determined through the implicit
typing rules in effect. If the statement entity is the DO variable of an implied-DO
in a DATA statement, the variable cannot have the same name as an accessible
named constant.

152 XL Fortran: Language Reference for Big Endian Distributions

Statement and construct entity
The following is a statement and/or construct entity:
v Name of a variable that appears as an index_name in a FORALL statement or

FORALL construct.
– SCOPE: Scope of the FORALL statement or construct.

The only attributes held by the FORALL statement or construct entity are the type
and type parameters that it would have if it were the name of a variable in the
scoping unit that includes the FORALL. It is type integer.

Except for a common block name or a scalar variable name, a name that identifies
a global entity or a local entity of class 1, accessible in the scoping unit of a
FORALL statement or construct, must not be the same as the index_name. Within
the scope of a FORALL construct, a nested FORALL statement or FORALL
construct must not have the same index_name.

If the name of a global or local entity accessible in the scoping unit of a FORALL
statement or construct is the same as the index_name, the name is interpreted
within the scope of the FORALL statement or construct as that of the index_name.
Elsewhere in the scoping unit, the name is interpreted as that of the global or local
entity.

Construct entity (Fortran 2003)
See the following construct entity:
v The associate name of an ASSOCIATE construct.

– SCOPE: Scope of the block of the ASSOCIATE construct.
v The associate name of a SELECT TYPE construct.

– SCOPE: (Separate) Scope of each block of the SELECT TYPE construct.

F2008

v An entity that is explicitly declared in the specification part of a BLOCK
construct, other than only in ASYNCHRONOUS and VOLATILE statements.
– SCOPE: Scope of the BLOCK construct.

F2008

If the name of a global or local entity accessible in the scoping unit of an
ASSOCIATE or SELECT TYPE construct is the same as an associate name, the
name is interpreted within the blocks of an ASSOCIATE or SELECT TYPE
construct as that of the associate name. Elsewhere in the scoping unit, the name is
interpreted as the global and local entities.

Examples

F2008

Example 1: In the following example, the ASYNCHRONOUS statement does not
define a new variable a. It merely gives variable a, defined in the outer scope, the
ASYNCHRONOUS attribute for the duration of the BLOCK construct scope.
PROGRAM foo

INTEGER :: a

BLOCK
! This a is the same as the a declared outside the BLOCK construct.
! It merely gives variable a, defined in the outer scope, the ASYNCHRONOUS

Chapter 8. Program units and procedures 153

! attribute for the duration of the BLOCK construct scope.
ASYNCHRONOUS :: a

END BLOCK
END PROGRAM foo

Example 2: In the following example, variable a is a construct entity for the
BLOCK construct, because there is no a declared outside the BLOCK construct.
PROGRAM foo

BLOCK
! This a is a local entity since there is no a in the outer scope.
INTEGER, ASYNCHRONOUS :: a

END BLOCK
END PROGRAM foo

F2008

Association
Association exists if the same data can be identified with different names in the
same scoping unit, or if the same data can be accessed in different scoping units of
the same executable program. See “Argument association” on page 192 for
information on argument association in procedures and functions.

Host association
Host association allows an internal subprogram, module subprogram, interface
body, derived-type definition, or F2008 submodule F2008 to access named
entities that exist in its host. In interface bodies, entities cannot be accessed by host
association unless they are made accessible by an IMPORT statement Accessed
entities have the same attributes and are known by the same name as they are in
the host.

A name that is specified with the EXTERNAL attribute is a global name. Any
entity in the host scoping unit that has this name as its nongeneric name is
inaccessible by that name and by host association.

The following list of entities are local within a scoping unit when declared or
initialized in that scoping unit:
v A variable name in a COMMON statement or initialized in a DATA statement
v An array name in a DIMENSION statement
v A name of a derived type
v An object name in a type declaration, EQUIVALENCE, POINTER,

ALLOCATABLE, SAVE, TARGET, AUTOMATIC, integer POINTER, STATIC,
or VOLATILE statement

Note: VOLATILE is controlled by compiler option -qxlf2003. For more
information see the XL Fortran Compiler Reference.

v A named constant in a PARAMETER statement
v A namelist group name in a NAMELIST statement
v A generic interface name or a defined operator
v An intrinsic procedure name in an INTRINSIC statement
v A function name in a FUNCTION statement, statement function statement, or

type declaration statement
v A result name in a FUNCTION statement or an ENTRY statement
v A subroutine name in a SUBROUTINE statement

154 XL Fortran: Language Reference for Big Endian Distributions

v An entry name in an ENTRY statement
v A dummy argument name in a FUNCTION, SUBROUTINE, ENTRY, or

statement function statement
v The name of a named construct
v The name of an entity declared by an interface body or PROCEDURE

declaration statement

Entities in the host scoping unit that have the same name as a local entity are not
accessible by host association.

A local entity must not be referenced or defined before the DATA statement when:
1. An entity is local to a scoping unit only because it is initialized in a DATA

statement, and
2. An entity in the host has the same name as this local entity.

If a derived-type name of a host is inaccessible, structures of that type or
subobjects of such structures are still accessible.

If a subprogram gains access to a pointer (or integer pointer) by host association,
the pointer association that exists at the time the subprogram is invoked remains
current within the subprogram. This pointer association can be changed within the
subprogram. The pointer association remains current when the procedure finishes
executing, except when this causes the pointer to become undefined, in which case
the association status of the host-associated pointer becomes undefined. For more
information on events that cause definition and undefinition of variables, see
“Definition status of variables” on page 19.

The host scoping unit of an internal or module subprogram can contain the same
use-associated entities.

Host associated entities are known by the same name and have the same attributes
as in the host, except that an accessed entity may have the VOLATILE or
ASYNCHRONOUS attribute even if the host entity does not. In an internal or
module procedure, if a variable that is accessible via host association is specified in
an ASYNCHRONOUS or VOLATILE statement, that host variable is given the
ASYNCHRONOUS or VOLATILE attribute in the local scope.

Note: VOLATILE is controlled by compiler option -qxlf2003.

F2008 A submodule has access to the entities that are declared and defined in its
ancestor module or submodules by host association. The declarations and
definitions of entities in a submodule are accessible by host association in its
descendant submodules. F2008

Examples
SUBROUTINE MYSUB
TYPE DATES ! Define DATES

INTEGER START
INTEGER END

END TYPE DATES
CONTAINS

INTEGER FUNCTION MYFUNC(PNAME)

Chapter 8. Program units and procedures 155

TYPE PLANTS
TYPE (DATES) LIFESPAN ! Host association of DATES
CHARACTER(10) SPECIES
INTEGER PHOTOPER

END TYPE PLANTS
END FUNCTION MYFUNC

END SUBROUTINE MYSUB

Related information
v -qinfo=HOSTASSOCiation
v XL Fortran Compiler Reference

.

Use association
Use association occurs when a scoping unit accesses the entities of a module with
the USE statement. You can rename use-associated entities for use in the local
scoping unit. The association is in effect for the duration of the executable
program. For details, see “USE” on page 478.

A USE associated entity may have the ASYNCHRONOUS or VOLATILE attribute
in the local scoping unit even if the associated module entity does not.

Note: VOLATILE is controlled by compiler option -qxlf2003. For more
information: XL Fortran Compiler Reference.

Example
MODULE m

CONTAINS
SUBROUTINE printchar(x)

CHARACTER(20) x
PRINT *, x

END SUBROUTINE
END MODULE

PROGRAM main
USE m ! Accesses public entities of module m
CHARACTER(20) :: name = ’George’
CALL printchar(name) ! Calls printchar from module m

END PROGRAM

Construct Association

Fortran 2003

Construct association establishes an association between each selector and the
corresponding associate name of the construct. Each associate name remains
associated with the corresponding selector throughout the execution of the
executed block. Within the block, each selector is known by and may be accessed
by the corresponding associate name. Construct termination terminates the
association as well. See the ASSOCIATE and SELECT TYPE constructs for more
information.

End of Fortran 2003

156 XL Fortran: Language Reference for Big Endian Distributions

Pointer association
A target that is associated with a pointer can be referenced by a reference to the
pointer. This is called pointer association.

A pointer always has an association status:

Associated

v The ALLOCATE statement successfully allocates the pointer, which has
not been subsequently disassociated or undefined.
ALLOCATE (P(3))

v The pointer is pointer-assigned to a target that is associated or has the
TARGET attribute and, if allocatable, is allocated.
P => T

Disassociated

v The pointer is nullified by a NULLIFY statement or by the -qinit=f90ptr
option. See -qinit in the XL Fortran Compiler Reference.
NULLIFY (P)

v The pointer is an ultimate component of an object with default
initialization specified for the component and:
– a procedure is invoked with this object as an actual argument

corresponding to a nonpointer, nonallocatable dummy argument with
INTENT(OUT),

– a procedure with the object as an unsaved nonpointer, nonallocatable
local object that is not accessed by use or host association is invoked,

– this object is allocated, or
– F2008 execution enters a BLOCK construct, and the object is an

unsaved, nonpointer, nonallocatable, local variable of the BLOCK
construct,
TYPE DT

INTEGER, POINTER :: POINT => NULL()
END TYPE

BLOCK
TYPE(DT) DT1 ! DT1%POINT becomes disassociated here

END BLOCK

F2008

v The pointer is successfully deallocated.
DEALLOCATE (P)

v The pointer is pointer-assigned to a disassociated pointer.
NULLIFY (Q); P => Q

Undefined
v Initially (unless the -qinit=f90ptr option is specified)
v The pointer is an ultimate component of an object, default

initialization is not specified for the component, and a procedure is
invoked with this object as an actual argument corresponding to a
dummy argument with INTENT(OUT), or a procedure is invoked with
the pointer as an actual argument corresponding to a pointer dummy
argument with INTENT(OUT).

v If it is pointer-assigned to a pointer whose association status is
undefined.

v If its target was deallocated other than through the pointer.

Chapter 8. Program units and procedures 157

POINTER P(:), Q(:)
ALLOCATE (P(3))
Q => P
DEALLOCATE (Q) ! Deallocate target of P through Q.

! P is now undefined.
END

v If the execution of a RETURN or END statement causes the pointer's
target to become undefined.

v After the execution of a RETURN or END statement in a procedure
where the pointer was declared or accessed, except for objects described
in item 4 under “Events causing undefinition” on page 22.

v F2008 The target of the pointer becomes undefined when execution
exits a BLOCK construct.
INTEGER, POINTER :: POINT
BLOCK

INTEGER, TARGET :: TARG = 2
POINT => TARG

END BLOCK ! point becomes undefined here

F2008

v F2008 The pointer is an unsaved, local pointer of a BLOCK construct,
and the execution of the BLOCK construct is complete. F2008

Definition status and association status

The definition status of a pointer is that of its target. If a pointer is associated with
a definable target, the definition status of the pointer can be defined or undefined
according to the rules for a variable.

If the association status of a pointer is disassociated or undefined, the pointer must
not be referenced or deallocated. Whatever its association status, a pointer can
always be nullified, allocated or pointer-assigned. When it is allocated, its
definition status is undefined. When it is pointer-assigned, its association and
definition status are determined by its target. So, if a pointer becomes associated
with a target that is defined, the pointer becomes defined.

Integer pointer association (IBM extension)
An integer pointer that is associated with a data object can be used to reference the
data object. This is called integer pointer association.

Integer pointer association can only occur in the following situations:
v An integer pointer is assigned the address of a variable:

POINTER (P,A)
P=LOC(B) ! A and B become associated

v Multiple pointees are declared with the same integer pointer:
POINTER (P,A), (P,B) ! A and B are associated

v Multiple integer pointers are assigned the address of the same variable or the
address of other variables that are storage associated:

POINTER (P,A), (Q,B)
P=LOC(C)
Q=LOC(C) ! A, B, and C become associated

v An integer pointer variable that appears as a dummy argument is assigned the
address of another dummy argument or member of a common block:

POINTER (P,A)
.
.

158 XL Fortran: Language Reference for Big Endian Distributions

CALL SUB (P,B)
.
.

SUBROUTINE SUB (P,X)
POINTER (P,Y)
P=LOC(X) ! Main program variables A

! and B become associated.

Program units, procedures, and subprograms
A program unit is a sequence of one or more lines, organized as statements,
comments, and directives. A subprogram is either a function or a subroutine, and
is either an internal, external, or module subprogram. Specifically, a program unit
can be:
v The main program
v A module
v F2008 A submodule F2008

v A block data program unit
v An external function subprogram
v An external subroutine subprogram

An executable program is a collection of program units consisting of one main
program and any number of external subprograms, modules, F2008 submodules

F2008 , and block data program units.

A subprogram can be invoked by a main program or by another subprogram to
perform a particular activity. When a procedure is invoked, the referenced
subprogram is executed.

An external or module subprogram can contain multiple ENTRY statements. The
subprogram defines a procedure for the SUBROUTINE or FUNCTION statement,
as well as one procedure for each ENTRY statement.

An external procedure is defined either by an external subprogram or by a
program unit in a programming language other than Fortran.

Main programs, external procedures, block data program units, common blocks,
entities with binding labels, modules, and F2008 submodules F2008 are global
entities. Internal and module procedures are local entities.

Internal procedures
External subprograms, module subprograms, and main programs can have internal
subprograms, whether the internal subprograms are functions or subroutines, as
long as the internal subprograms follow the CONTAINS statement.

An internal procedure is defined by an internal subprogram. Internal subprograms
cannot appear in other internal subprograms. A module procedure is defined by a
module subprogram or an entry in a module subprogram. Internal procedures and
module procedures are the same as external procedures except that:
v The name of the internal procedure or module procedure is not a global entity
v An internal subprogram must not contain an ENTRY statement
v The internal procedure name must not be an argument associated with a

dummy procedure

Chapter 8. Program units and procedures 159

v The internal subprogram or module subprogram has access to host entities by
host association

v The BIND attribute is not allowed on an internal procedure

Interface concepts
The interface of a procedure determines the form of the procedure reference. The
interface consists of:
v The characteristics of the procedure
v The name of the procedure
v The name and characteristics of each dummy argument
v The generic identifiers of the procedure, if any

The characteristics of a procedure:
v Distinguishing the procedure as a subroutine or a function
v Distinguishing each dummy argument either as a data object, dummy

procedure, or alternate return specifier
The characteristics of a dummy data object are its declared type, type parameters
(if any), shape TS (unless it is assumed-rank) TS , intent, whether it is
optional, allocatable, polymorphic, a pointer, a target, or has
the VALUE or F2008 CONTIGUOUS F2008 attribute. Any
dependence on other objects for type parameter or array bound determination is
a characteristic. If a shape, size, or character length is assumed or deferred, it is
a characteristic.
The characteristics of a dummy procedure are the explicitness of its interface, its
procedure characteristics (if the interface is explicit), and whether it is optional.

v If the procedure is a function, it specifies the characteristics of the result value,
specifically:

Migration Tip:

Turn your external procedures into internal subprograms or put them into modules. The
explicit interface provides type checking.

FORTRAN 77 source

PROGRAM MAIN
INTEGER A
A=58
CALL SUB(A) ! A must be passed

END
SUBROUTINE SUB(A)

INTEGER A,B,C ! A must be redeclared
C=A+B

END

Fortran 90/95/2003 source:

PROGRAM MAIN
INTEGER :: A=58
CALL SUB
CONTAINS
SUBROUTINE SUB

INTEGER B,C
C=A+B ! A is accessible by host association

END SUBROUTINE
END

160 XL Fortran: Language Reference for Big Endian Distributions

– Declared type
– Any type parameters
– Rank
– Whether the result value is a pointer
– Whether the result value is a procedure pointer
– Whether the result value is allocatable.
– Whether the result value is polymorphic
– F2008 Whether the result value is contiguous. F2008

For nonpointer, nonallocatable array results, its shape is a characteristic. Any
dependence on other objects for type parameters or array bound determination
is a characteristic. If the length of a character object is assumed, this is a
characteristic. If type parameters of a function result are deferred, which
parameters are deferred is a characteristic.

v Determine whether the procedure is PURE or ELEMENTAL.
v Determine if the procedure has the BIND attribute.

If a procedure is accessible in a scoping unit, it has an interface that is either
explicit or implicit in that scoping unit. The rules are:

Entity Interface

Dummy procedure Explicit in a scoping unit if an interface block exists or
is accessible, or if an explicit interface is specified by a
PROCEDURE declaration statement. Implicit in all
other cases.

External subprogram Explicit in a scoping unit other than its own if an
interface block exists or is accessible, or if an explicit
interface is specified by a PROCEDURE declaration
statement. Implicit in all other cases.

Recursive procedure with a result
clause

Explicit in the subprogram's own scoping unit.

Module procedure Always explicit.

Internal procedure Always explicit.

Generic procedure Always explicit.

Intrinsic procedure Always explicit.

Statement function Always implicit.

Internal subprograms cannot appear in an interface block or in a PROCEDURE
declaration statement.

A procedure must not have more than one accessible interface in a scoping unit.

The interface of a statement function cannot be specified in an interface block or in
a PROCEDURE declaration statement.

Explicit interface
A procedure must have an explicit interface in any of the following cases:
1. A reference to the procedure appears

v with an argument keyword
v as a defined assignment (for subroutines only)
v in an expression as a defined operator (for functions only)

Chapter 8. Program units and procedures 161

v as a reference by its generic name
v in a context that requires it to be pure

2. The procedure has
v a dummy argument that has the ALLOCATABLE,

OPTIONAL, POINTER, TARGET or VALUE attributes
v a dummy argument that is polymorphic
v an array-valued result (for functions only)
v a result whose length type parameter is neither assumed nor constant (for

character functions only)
v a pointer or allocatable result (for functions only)
v a dummy argument that is an assumed-shape array

3. The procedure is elemental.
4. The procedure has the BIND attribute.

Implicit interface
A procedure has an implicit interface if its interface is not fully known; that is, it
has no explicit interface.

Interface blocks
The interface block allows you to specify an explicit interface for external and
dummy procedures. You can also use an interface block to define generic
identifiers. An interface body in an interface block contains the explicit specific
interface for an existing external procedure or dummy procedure. You can also
specify the interface for a procedure using a procedure statement.

INTERFACE_statement
See “INTERFACE” on page 400 for syntax details

END_INTERFACE_statement
See “END INTERFACE” on page 349 for syntax details

PROCEDURE_statement
See “PROCEDURE” on page 428 for syntax details

FUNCTION_interface_body

�� INTERFACE_statement ��

�� �

FUNCTION_interface_body
SUBROUTINE_interface_body
PROCEDURE_statement

��

�� END_INTERFACE_statement ��

162 XL Fortran: Language Reference for Big Endian Distributions

SUBROUTINE_interface_body

FUNCTION_statement, SUBROUTINE_statement
For syntax details, see “FUNCTION” on page 373 and “SUBROUTINE” on
page 462.

specification_part
is a sequence of statements from the statement groups numbered �2�, �3�
and �5� in “Order of statements and execution sequence” on page 14.

end_function_statement, end_subroutine_statement
For syntax details of both statements, see “END” on page 345.

In an interface body or with a procedure declaration statement, you specify all the
characteristics of the procedure or abstract interface. See “Interface concepts” on
page 160. The characteristics must be consistent with those specified in the
subprogram definition, except that:
1. dummy argument names may be different.
2. you do not have to indicate that a procedure is pure, even if the subprogram

that defines it is pure.
3. you can associate a pure actual argument with a dummy procedure that is not

pure.
4. when you associate an intrinsic elemental procedure with a dummy procedure,

the dummy procedure does not have to be elemental.

The specification_part of an interface body can contain statements that specify
attributes or define values for data objects that do not determine characteristics of
the procedure. Such specification statements have no effect on the interface.
Interface blocks do not specify the characteristics of module procedures, whose
characteristics are defined in the module subprogram definitions.

�� FUNCTION_statement ��

��
specification_part

��

�� end_function_statement ��

�� SUBROUTINE_statement ��

��
specification_part

��

�� end_subroutine_statement ��

Chapter 8. Program units and procedures 163

An interface body cannot contain ENTRY statements, DATA statements, FORMAT
statements, statement function statements, or executable statements. You can
specify an entry interface by using the entry name as the procedure name in an
interface body.

An interface body does not access named entities by host association unless you
specify the IMPORT statement. It is treated as if it had a host
with the default implicit rules. See “Determining Type” on page 17 for a discussion
of the implicit rules.

An interface block can be abstract, generic or specific. A generic interface block
must specify a generic specification in the INTERFACE statement, while an
abstract or specific interface block must not specify such a generic specification.
See “INTERFACE” on page 400 for details.

The interface bodies within an abstract or specific interface block can contain
interfaces for both subroutines and functions.

A generic name specifies a single name to reference all of the procedures in the
interface block. At most, one specific procedure is invoked each time there is a
procedure reference with a generic name.

The PROCEDURE statement is allowed only if the interface block has a generic
specification and is contained in a scoping unit where each procedure name is
accessible.

A procedure name used in a PROCEDURE statement must not have been
previously specified in any MODULE PROCEDURE statement in any accessible
interface block with the same generic identifier.

For an interface to a non-Fortran subprogram, the dummy argument list
in the FUNCTION or SUBROUTINE statement can explicitly specify the passing
method. See “Dummy arguments” on page 191 for details.

Examples
MODULE M
CONTAINS
SUBROUTINE S1(IARG)

IARG = 1
END SUBROUTINE S1
SUBROUTINE S2(RARG)

RARG = 1.1
END SUBROUTINE S2
SUBROUTINE S3(LARG)

LOGICAL LARG
LARG = .TRUE.

END SUBROUTINE S3
END

USE M
INTERFACE SS

SUBROUTINE SS1(IARG,JARG)
END SUBROUTINE
MODULE PROCEDURE S1,S2,S3

END INTERFACE
CALL SS(II) ! Calls subroutine S1 from M
CALL SS(I,J) ! Calls subroutine SS1
END

164 XL Fortran: Language Reference for Big Endian Distributions

SUBROUTINE SS1(IARG,JARG)
IARG = 2
JARG = 3

END SUBROUTINE

You can always reference a procedure through its specific interface. If a generic
interface exists for a procedure, the procedure can also be referenced through the
generic interface.

Within an interface body, if a dummy argument is intended to be a dummy
procedure, it must have the EXTERNAL attribute or there must be an interface for
the dummy argument.

Generic interface blocks
In an INTERFACE statement, a generic interface block must specify one of the
following:
v a generic name
v defined operator
v defined assignment
v a derived-type input/output generic specification

The generic name is a single name with which to reference all of the procedures
specified in the interface block. It can be the same as any accessible generic name,
or any of the procedure names in the interface block.

If two or more generic interfaces that are accessible in a scoping unit have the
same local name, they are interpreted as a single generic interface.

Unambiguous generic procedure references
When making a reference to a generic procedure, only one specific procedure is
invoked. This section includes rules that ensure a generic reference is
unambiguous.

If two procedures in the same scoping unit both define assignment or both have
the same defined operator and the same number of arguments, you must specify a
dummy argument that corresponds by position in the argument list to a dummy
argument of the other that is distinguishable from it. Two dummy arguments are
distinguishable if they meet one of the following requirements:
v F2008 One is a procedure and the other is a data object. F2008

v Both are data objects and neither is TKR-compatible with the other.
v F2008 Both are functions and neither is TKR-compatible with the other.

F2008

v F2008 Both are data objects where one has the ALLOCATABLE attribute and
the other has the POINTER attribute but does not have the INTENT(IN)
attribute. F2008

v F2008 One is a function that returns an array and the other is not known to be
a function. F2008

Within a scoping unit, if two procedures have the same dtio_generic_spec, their dtv
arguments must be type-incompatible or have different kind type parameters. (For
information about dtio_generic_spec specifications and the dtv argument, see
“User-defined derived-type Input/Output procedure interfaces (Fortran 2003)” on
page 218).

Chapter 8. Program units and procedures 165

Within a scoping unit, two procedures that have the same generic name must both
be subroutines or both be functions. They must also adhere to the following
conditions:
1. One of the procedures contains a non-passed-object dummy argument such that

the number of dummy arguments in one procedure that are nonoptional, not
passed-object, and with which the dummy argument is TKR-compatible,
possibly including the dummy argument itself, exceeds the number of
non-passed-object dummy arguments, both optional and nonoptional, in the
other procedure that is not distinguishable from the dummy argument.

2. Both procedures have passed-object dummy arguments, which are
distinguishable.

3. At least one of the procedures has both:
a. A nonoptional non-passed-object dummy argument at an effective position

such that either the other procedure has no dummy argument at that
effective position or the dummy argument at that position is distinguishable
from it

b. A nonoptional non-passed-object dummy argument whose name is such
that either the other procedure has no dummy argument with that name or
the dummy argument with that name is distinguishable from it.

The dummy argument that disambiguates by position must either be the same as,
or occur earlier in the argument list than, the one that disambiguates by name.

The effective position of a dummy argument is its position in the argument list
after any passed-object dummy argument has been removed.

When an interface block extends an intrinsic procedure, the rules in this section
apply as if the intrinsic procedure consists of a collection of specific procedures,
one procedure for each allowed set of arguments.

Notes:

v Dummy arguments of type BYTE are considered to have the same type as
corresponding 1-byte dummy arguments of type INTEGER(1), LOGICAL(1),
and character.

v When the -qintlog compiler option is specified, dummy arguments of type
integer and logical are considered to have the same type as corresponding
dummy arguments of type integer and logical with the same kind type
parameter.

Examples
PROGRAM MAIN
INTERFACE A

FUNCTION AI(X)
INTEGER AI, X

END FUNCTION AI
END INTERFACE
INTERFACE A

FUNCTION AR(X)
REAL AR, X

END FUNCTION AR
END INTERFACE
INTERFACE FUNC

INTEGER FUNCTION FUNC1(I, EXT)
INTEGER I
EXTERNAL EXT ! Here, EXT is a procedure

166 XL Fortran: Language Reference for Big Endian Distributions

END FUNCTION FUNC1
INTEGER FUNCTION FUNC2(EXT, I)

INTEGER I
REAL EXT ! Here, EXT is a variable

END FUNCTION FUNC2
END INTERFACE
EXTERNAL MYFUNC
IRESULT=A(INTVAL) ! Call to function AI
RRESULT=A(REALVAL) ! Call to function AR
RESULT=FUNC(1,MYFUNC) ! Call to function FUNC1
END PROGRAM MAIN

FUNCTION AI(X)
INTEGER AI, X
PRINT *," Inside AI()"
AI = X + 10

END FUNCTION AI

FUNCTION AR(X)
REAL AR, X
PRINT *," Inside AR()"
AR = X - 2.0

END FUNCTION AR

INTEGER FUNCTION FUNC1(I, EXT)
INTEGER I
EXTERNAL EXT
PRINT *," Inside FUNC1()"
FUNC1 = EXT(I)

END FUNCTION FUNC1

INTEGER FUNCTION MYFUNC (I)
INTEGER I
PRINT *," Inside MYFUNC()"
MYFUNC = I - 100

END FUNCTION MYFUNC

Extending intrinsic procedures with generic interface blocks
A generic intrinsic procedure can be extended or redefined. An extended intrinsic
procedure supplements the existing specific intrinsic procedures. A redefined
intrinsic procedure replaces an existing specific intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name has the INTRINSIC attribute (or appears in an intrinsic context), the generic
interface extends the generic intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name does not have the INTRINSIC attribute (nor appears in an intrinsic context),
the generic interface can redefine the generic intrinsic procedure.

A generic interface name cannot be the same as a specific intrinsic procedure name
if the name has the INTRINSIC attribute (or appears in an intrinsic context).

Examples
PROGRAM MAIN
INTRINSIC MAX
INTERFACE MAX ! Extension to intrinsic MAX

FUNCTION MAXCHAR(STRING)
CHARACTER(50) STRING

END FUNCTION MAXCHAR
END INTERFACE
INTERFACE ABS ! Redefines generic ABS as

FUNCTION MYABS(ARG) ! ABS does not appear in

Chapter 8. Program units and procedures 167

REAL(8) MYABS, ARG ! an INTRINSIC statement
END FUNCTION MYABS

END INTERFACE
REAL(8) DARG, DANS
REAL(4) RANS
INTEGER IANS,IARG
CHARACTER(50) NAME
DANS = ABS(DARG) ! Calls external MYABS
IANS = ABS(IARG) ! Calls intrinsic IABS
DANS = DABS(DARG) ! Calls intrinsic DABS
IANS = MAX(NAME) ! Calls external MAXCHAR
RANS = MAX(1.0,2.0) ! Calls intrinsic AMAX1
END PROGRAM MAIN

Defined operators
A defined operator is a user-defined unary or binary operator, or an extended
intrinsic operator (see “Extended intrinsic and defined operations” on page 111). It
must be defined by both a function and a generic interface block.
1. To define the unary operation op x₁:

a. A function or entry must exist that specifies exactly one dummy argument,
d₁.

b. Either:
1) the generic_spec in an INTERFACE statement specifies OPERATOR

(op), or
2) there is a generic binding in the declared type of x1 with a generic_spec

of OPERATOR(op) and there is a corresponding binding to the
function in the dynamic type of x1.

c. The dynamic type of x₁ is compatible with the type of the dummy
argument d₁.

d. The type parameters, if any, of x₁ must match those of d₁.
e. Either

v The function is ELEMENTAL, or
v The rank of x₁, and its shape, if it is an array, match those of d₁

2. To define the binary operation x₁ op x₂:
a. The function is specified with a FUNCTION or ENTRY statement that

specifies two dummy arguments, d₁ and d₂.
b. Either:

1) the generic_spec in an INTERFACE block specifies OPERATOR (op), or
2) there is a generic binding in the declared type of x1 or x2 with a

generic_spec of OPERATOR(op) and there is a corresponding binding to
the function in the dynamic type of x1 or x2, respectively.

c. The dynamic types of x₁ and x₂ are compatible with the types of the
dummy arguments d₁ and d₂, respectively.

d. The type parameters, if any, of x₁ and x₂ match those of d₁ and d₂,
respectively.

e. Either:
v The function is ELEMENTAL and x₁ and x₂ are conformable or,
v The ranks of x₁ and x₂ and their shapes, if either or both are arrays,

match those of d₁ and d₂, respectively.
3. If op is an intrinsic operator, the types or ranks of either x₁ or x₂ are not those

required for an intrinsic operation.
4. The generic_spec must not specify OPERATOR for functions with no

arguments or for functions with more than two arguments.
5. Each argument must be nonoptional.
6. The arguments must be specified with INTENT(IN).

168 XL Fortran: Language Reference for Big Endian Distributions

7. Each function specified in the interface cannot have a result of assumed
character length.

8. If the operator specified is an intrinsic operator, the number of function
arguments must be consistent with the intrinsic uses of that operator.

9. A given defined operator can, as with generic names, apply to more than one
function, in which case it is generic just like generic procedure names. For
intrinsic operator symbols, the generic properties include the intrinsic
operations they represent.

10. The following rules apply only to extended intrinsic operations:
a. The type of one of the arguments can only be of type BYTE when the type

of the other argument is of derived type.
b. When the -qintlog compiler option has been specified for non-character

operations, and d₁ is numeric or logical, then d₂ must not be numeric or
logical.

c. When the -qctyplss compiler option has been specified for non-character
operations, if x₁ is numeric or logical and x₂ is a character constant, the
intrinsic operation is performed.

Examples
INTERFACE OPERATOR (.DETERMINANT.)

FUNCTION IDETERMINANT (ARRAY)
INTEGER, INTENT(IN), DIMENSION (:,:) :: ARRAY
INTEGER IDETERMINANT

END FUNCTION
END INTERFACE
END

Defined assignment
A defined assignment is treated as a reference to a subroutine, with the left-hand
side as the first argument and the right-hand side enclosed in parentheses as the
second argument.
1. To define the defined assignment x₁ = x₂:

a. The subroutine is specified with a SUBROUTINE or ENTRY statement that
specifies two dummy arguments, d₁ and d₂.

b. Either:
1) the generic_spec of an interface block specifies ASSIGNMENT (=), or
2) there is a generic binding in the declared type of x1 or x2 with a

generic_spec of ASSIGNMENT(=) and there is a corresponding binding
to the subroutine in the dynamic type of x1 or x2, respectively.

c. The dynamic types of x₁ and x₂ are compatible with the types of dummy
arguments d₁ and d₂, respectively.

d. The type parameters, if any, of x₁ and x₂ match those of d₁ and d₂,
respectively.

e. Either:
v The subroutine is ELEMENTAL and either x₁ and x₂ have the same

shape, x₂ is scalar, or
v The ranks of x₁ and x₂, and their shapes, if either or both are arrays,

match those of d₁ and d₂, respectively.
2. ASSIGNMENT must only be used for subroutines with exactly two arguments.
3. Each argument must be nonoptional.

Chapter 8. Program units and procedures 169

4. The first argument must have INTENT(OUT) or INTENT(INOUT), and the
second argument must have INTENT(IN).

5. The types of the arguments must not be both numeric, both logical, or both
character with the same kind parameter.

The type of one of the arguments can only be of type BYTE when the
type of the other argument is of derived type.
When the -qintlog compiler option has been specified, and d₁ is numeric or
logical, then d₂ must not be numeric or logical.
When the -qctyplss compiler option has been specified, if x₁ is numeric or
logical and x₂ is a character constant, intrinsic assignment is performed.

6. The ASSIGNMENT generic specification specifies that the assignment
operation is extended or redefined if both sides of the equal sign are of the
same derived type.

Examples
INTERFACE ASSIGNMENT(=)

SUBROUTINE BIT_TO_NUMERIC (N,B)
INTEGER, INTENT(OUT) :: N
LOGICAL, INTENT(IN), DIMENSION(:) :: B

END SUBROUTINE
END INTERFACE

User-defined derived-type Input/Output procedures (Fortran
2003)

User-defined derived-type input/output procedures allow a program to override
the default handling of derived-type objects and values in data transfer
input/output statements.

There are four interfaces, one for each of the following I/O operations:
v formatted input
v formatted output
v unformatted input
v unformatted output

The four interfaces use a dtv type specification, or dtv_type_spec. The syntax for the
dtv_type_spec is as follows:

If derived_type_spec specifies an extensible type, use the CLASS keyword;
otherwise, use the TYPE keyword.

All length type parameters of derived_type_spec must be assumed.

The following table shows the required characteristics of the user-defined
procedures for each of the four dtio_generic_spec specifications of the interface block
or generic binding:

�� TYPE
CLASS

(derived_type_spec) ��

170 XL Fortran: Language Reference for Big Endian Distributions

Table 19. Interfaces for user-defined derived-type input/output procedures

dtio_generic_spec Interface

READ (FORMATTED) SUBROUTINE my_read_routine_formatted &
(dtv, unit, iotype, v_list, iostat, iomsg)

INTEGER, INTENT(IN) :: unit ! unit number
! the derived-type value/variable
dtv_type_spec, INTENT(INOUT) :: dtv
! the edit descriptor string
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END SUBROUTINE

READ (UNFORMATTED) SUBROUTINE my_read_routine_unformatted &
(dtv, unit, iostat, iomsg)

INTEGER, INTENT(IN) :: unit
! the derived-type value/variable
dtv_type_spec, INTENT(INOUT) :: dtv
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END SUBROUTINE

WRITE (FORMATTED) SUBROUTINE my_write_routine_formatted &
(dtv, unit, iotype, v_list, iostat, iomsg)

INTEGER, INTENT(IN) :: unit
! the derived-type value/variable
dtv_type_spec, INTENT(IN) :: dtv
! the edit descriptor string
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END SUBROUTINE

WRITE (UNFORMATTED) SUBROUTINE my_write_routine_unformatted &
(dtv, unit, iostat, iomsg)

INTEGER, INTENT(IN) :: unit
! the derived-type value/variable
dtv_type_spec, INTENT(IN) :: dtv
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END SUBROUTINE

Note: The actual specific procedure names (the my ... routine ... procedure
names above) are not significant. In the discussion here and elsewhere, the dummy
arguments in these interfaces are referred by the names given above; the names
are, however, arbitrary.

The following are the characteristics of the arguments:

dtv

If the parent data transfer statement is a READ statement, dtv is the
argument associated with the effective list item that caused the
user-defined derived-type input procedure to be invoked, as if the effective
list item were an actual argument in this procedure reference. If the parent
data transfer statement is a WRITE or PRINT statement, dtv contains the
effective list item.

unit When you invoke a user-defined derived-type input/output procedure,
unit has a value as follows:

Chapter 8. Program units and procedures 171

v If the parent data transfer statement uses a file-unit-number, the value is
that of the file-unit-number.

v If the parent data transfer statement is a WRITE statement with an
asterisk unit or a PRINT statement, the value is the same as that of the
OUTPUT_UNIT named constant of the ISO_FORTRAN_ENV intrinsic
module.

v If the parent data transfer statement is a READ statement with an
asterisk unit or a READ statement without an io-control-spec-list, the
value is the same as that of the INPUT_UNIT named constant of the
ISO_FORTRAN_ENV intrinsic module.

v Otherwise the parent data transfer statement must access an internal file.
In this case the value is negative.

iotype For formatted data transfer, iotype has a value as follows:
v "LISTDIRECTED" if the parent data transfer statement specified list

directed formatting
v "NAMELIST" if the parent data transfer statement specified namelist

formatting
v "DT" concatenated with the char-literal-constant, if any, of the edit

descriptor, if the parent data transfer statement contained a format
specification and the list item's corresponding edit descriptor was a DT
edit descriptor.

v_list For formatted data transfer, v_list has values as follows:
v If the v-list of the edit descriptor appears in the parent data transfer

statement, v_list contains the values specified in v-list, with the same
number of elements, in the same order.

v If there is no v-list in the edit descriptor or if the data transfer statement
specifies list-directed or namelist formatting, v_ list is a zero-sized array.

iostat is used to report whether an error, end-of-record, or end-of-file condition
occurs. Values are assigned to iostat as follows:
v If an error condition occurs, the value is positive.
v If an end-of-file condition occurs, the value is that of the named constant

IOSTAT_END.
v If an end-of-record condition occurs, the value is that of the named

constant IOSTAT_EOR.
v Otherwise, the value is zero.

iomsg If the iostat argument returns a nonzero value, the procedure returns an
explanatory message in iomsg. Otherwise, the procedure does not change
the value of the iomsg argument.

Abstract interface (Fortran 2003)
An abstract interface allows you to specify procedure characteristics and dummy
argument names without declaring a procedure with those characteristics. You can
use an abstract interface to declare interfaces for procedures and deferred bindings.
The procedure names defined in an abstract interface block do not have an
EXTERNAL attribute.

172 XL Fortran: Language Reference for Big Endian Distributions

ABSTRACT_INTERFACE_statement
See “ABSTRACT (Fortran 2003)” on page 282 for syntax details

FUNCTION_interface_body
See “Interface blocks” on page 162 for syntax details

SUBROUTINE_interface_body
See “Interface blocks” on page 162 for syntax details

PROCEDURE_statement
See “PROCEDURE” on page 428 for syntax details

END_ABSTRACT_INTERFACE_statement
See “END INTERFACE” on page 349 for syntax details

Examples
MODULE M
ABSTRACT INTERFACE
SUBROUTINE SUB(X,Y)
INTEGER ,INTENT(IN)::X
INTEGER ,INTENT(IN)::Y
END SUBROUTINE
END INTERFACE
END MODULE

PROGRAM MAIN
USE M
PROCEDURE (SUB) SUB1
PROCEDURE (SUB), POINTER::P
P=>SUB1
CALL P(5,10)
END PROGRAM

SUBROUTINE SUB1 (X,Y)
INTEGER ,INTENT(IN)::X
INTEGER ,INTENT(IN)::Y
PRINT*, "The sum of X and Y is: ", X + Y

END SUBROUTINE

Related information

For more information see:
v PROCEDURE declaration “PROCEDURE declaration (Fortran 2003)” on page

429
v external procedures “Program units, procedures, and subprograms” on page 159

�� ABSTRACT_INTERFACE_statement ��

�� �

FUNCTION_interface_body
SUBROUTINE_interface_body
PROCEDURE_statement

��

�� END_ABSTRACT_INTERFACE_statement ��

Chapter 8. Program units and procedures 173

v dummy procedures “Procedures as dummy arguments” on page 202
v module procedures “Modules” on page 175

Main program
A main program is the program unit that receives control from the system when
the executable program is invoked at run time.

PROGRAM_statement
See “PROGRAM” on page 432 for syntax details

specification_part
is a sequence of statements from the statement groups numbered �2�, �4�,
and �5� in “Order of statements and execution sequence” on page 14

execution_part
is a sequence of statements from the statement groups numbered �4� and
�6� in “Order of statements and execution sequence” on page 14, and
which must begin with a statement from statement group �6�

internal_subprogram_part
See “Internal procedures” on page 159 for details

END_PROGRAM_statement
See “END” on page 345 for syntax details

A main program cannot contain an ENTRY statement, nor can it specify an
automatic object.

A RETURN statement can appear in a main program. The execution of a
RETURN statement has the same effect as the execution of an END statement.

��
PROGRAM_statement

��

��
specification_part

��

��
execution_part

��

��
internal_subprogram_part

��

�� END_PROGRAM_statement ��

174 XL Fortran: Language Reference for Big Endian Distributions

Modules
A module contains specifications and definitions that can be accessed from other
program units. These definitions include data object definitions, namelist groups,
derived-type definitions, procedure interface blocks and procedure definitions.

There are two types of modules, intrinsic and nonintrinsic. XL Fortran provides
intrinsic modules, while nonintrinsic modules are user-defined.

An intrinsic module can have the same name as other global entities, such as
program units, common blocks, external procedures, critical sections, or binding
labels of global entities. A scoping unit must not access both an intrinsic module
and a non-intrinsic module with the same name.

Modules define global data, which, like COMMON data, is shared across
threads and is therefore thread-unsafe. To make an application thread-safe, you
must declare the global data as THREADPRIVATE or THREADLOCAL. See
“COMMON” on page 313, THREADLOCAL, and THREADPRIVATE in the XL
Fortran Optimization and Programming Guide for more information.

Syntax

MODULE_statement
See “MODULE” on page 407 for syntax details.

MODULE

�� MODULE_statement ��

��
specification_part

��

��
module_subprogram_part

��

�� END_MODULE_statement ��

module_subprogram_part

�� CONTAINS_statement ��

�� � module_subprogram ��

Chapter 8. Program units and procedures 175

specification_part
It is a sequence of statements from the statement groups numbered �2�,
�4�, and �5� in “Order of statements and execution sequence” on page 14.

CONTAINS_statement
See “CONTAINS” on page 320 for syntax details.

END_MODULE_statement
See “END” on page 345 for syntax details.

Rules

A module subprogram is contained in a module but is not an internal subprogram.
Module subprograms must follow a CONTAINS statement, and can contain
internal procedures. A module procedure is defined by a module subprogram or
an entry in a module subprogram.

Executable statements within a module can only be specified in module
subprograms.

The declaration of a module function name of type character cannot have an
asterisk as a length specification.

specification_part cannot contain statement function statements, ENTRY statements,
or FORMAT statements, although these statements can appear in the specification
part of a module subprogram.

Automatic objects and objects with the AUTOMATIC attribute cannot appear in
the scope of a module.

An accessible module procedure can be invoked by another subprogram in the
module or by any scoping unit outside the module through use association (that is,
by using the USE statement). See “USE” on page 478 for details.

Integer pointers cannot appear in specification_part if the pointee specifies a
dimension declarator with nonconstant bounds.

All objects in the scope of a module retain their association status, allocation status,
definition status, and value when any procedure that accesses the module through
use association executes a RETURN or END statement. See point 4 under “Events
causing undefinition” on page 22 for more information.

A module is a host to any module procedures, interface blocks, derived-type
definitions it contains, F2008 or its descendant submodules F2008 . Through
host association, the module procedures, interface blocks, derived-type definitions,

F2008 and descendant submodules F2008 can access entities in the scope of
the module.

A module procedure can be used as an actual argument associated with a dummy
procedure argument.

176 XL Fortran: Language Reference for Big Endian Distributions

The name of a module procedure is local to the scope of the module and cannot be
the same as the name of any entity in the module, except for a common block
name.

F2008 In specification_part, you can declare a module procedure interface body to
specify the interface of a separate module procedure. See Example 2. You can later
define the separate module procedure in one of the descendant submodules.

F2008

Example 1
MODULE m

INTEGER some_data

CONTAINS
SUBROUTINE sub() ! Module subprogram

INTEGER stmtfnc
stmtfnc(i) = i + 1
some_data = stmtfnc(5) + inner(3)
CONTAINS

INTEGER FUNCTION inner(iarg) ! Internal subprogram
inner = iarg * 2

END FUNCTION
END SUBROUTINE sub

END MODULE

Migration Tips:

v Eliminate common blocks and INCLUDE directives

v Use modules to hold global data and procedures to ensure consistency of definitions

FORTRAN 77 source:

COMMON /BLOCK/A, B, C, NAME, NUMBER
REAL A, B, C
A = 3
CALL CALLUP(D)
PRINT *, NAME, NUMBER
END
SUBROUTINE CALLUP (PARM)

COMMON /BLOCK/A, B, C, NAME, NUMBER
REAL A, B, C
...
NAME = 3
NUMBER = 4

END

Fortran 90/95/2003 source:

MODULE FUNCS
REAL A, B, C ! Common block no longer needed
INTEGER NAME, NUMBER ! Global data
CONTAINS

SUBROUTINE CALLUP (PARM)
...
NAME = 3
NUMBER = 4

END SUBROUTINE
END MODULE FUNCS
PROGRAM MAIN
USE FUNCS
A = 3
CALL CALLUP(D)
PRINT *, NAME, NUMBER
END

Chapter 8. Program units and procedures 177

PROGRAM main
USE m ! Main program accesses module m
CALL sub()

END PROGRAM

Example 2 (Fortran 2008)
MODULE m

INTERFACE
! A module procedure interface body that specifies the
! interface of a separate module subroutine
MODULE SUBROUTINE sub(arg)

INTEGER :: arg
END SUBROUTINE

! A module procedure interface body that specifies the
! interface of a separate module function
INTEGER MODULE FUNCTION func(a, b)

INTEGER :: a, b
END FUNCTION

END INTERFACE
END MODULE

Related information
v “Submodules (Fortran 2008)”

Submodules (Fortran 2008)
A submodule is a program unit that extends a module or another submodule. It
might provide definitions for procedures whose interfaces are declared in the
ancestor module or an ancestor submodule. It might also contain declarations and
definitions of other entities. These definitions include data object definitions,
namelist groups, derived-type definitions, procedure interface blocks, and
procedure definitions.

A submodule cannot have the same name as other global entities, such as program
units, common blocks, external procedures, critical sections, or binding labels of
global entities. The name of a submodule can be the same as the name of another
submodule if they do not have the same ancestor module.

178 XL Fortran: Language Reference for Big Endian Distributions

Syntax

SUBMODULE_statement
For syntax details, see SUBMODULE.

specification_part
It is a sequence of statements from the statement groups numbered �2�,
�4�, and �5� in “Order of statements and execution sequence” on page 14,
excluding ENTRY and FORMAT statements.

CONTAINS_statement
For syntax details, see “CONTAINS” on page 320.

END_SUBMODULE_statement
For syntax details, see “END” on page 345.

Rules

A submodule has only one ancestor module and can have one or more ancestor
submodules.

A submodule might contain module subprograms and is the host scoping unit of
the module subprograms. Module subprograms must follow a CONTAINS
statement and can contain internal procedures. A module procedure is defined by a
module subprogram or an entry in a module subprogram.

SUBMODULE

�� SUBMODULE_statement ��

��
specification_part

��

��
module_subprogram_part

��

�� END_SUBMODULE_statement ��

module_subprogram_part

�� CONTAINS_statement ��

�� � module_subprogram ��

Chapter 8. Program units and procedures 179

In a submodule, you can define separate module procedures that are declared by
corresponding module procedure interface bodies in the ancestor module or an
ancestor submodule.

A submodule has access to the entities that are declared and defined in its ancestor
module or submodules by host association. A submodule is a host to any module
procedures, interface blocks, or derived-type definitions that it contains. Through
host association, the module procedures, interface blocks, and derived-type
definitions that a submodule contains can access entities in the scope of the
submodule. The declarations and definitions of entities in a submodule are also
accessible by host association in its descendant submodules.

A submodule cannot be accessed by use association.

A local variable of a submodule is accessible only in that submodule scoping unit,
in any contained scoping units, or in its descendant submodules.

A variable, common block, or procedure pointer that is declared in the scoping
unit of a submodule implicitly has the SAVE attribute, which might be confirmed
by explicit specification.

The following rules apply to the specification_part of a submodule:
v It cannot contain statement function statements, ENTRY statements, or

FORMAT statements, although these statements can appear in the specification
part of a module subprogram.

v If a specification expression or constant expression includes a reference to a
generic entity, that generic entity cannot have specific procedures that are
defined in the submodule subsequent to the specification expression or constant
expression.

Example

In this example, two separate module procedures are defined in the submodule n
by a subroutine subprogram with the MODULE prefix specifier and by a separate
module subprogram. Their corresponding module procedure interface bodies are
declared in the ancestor module m.
MODULE m ! The ancestor module m

INTEGER :: i

INTERFACE
MODULE SUBROUTINE sub1(arg1) ! Module procedure interface body for sub1

INTEGER :: arg1
END SUBROUTINE

MODULE SUBROUTINE sub2(arg2) ! Module procedure interface body for sub2
INTEGER :: arg2

END SUBROUTINE
END INTERFACE

END MODULE

SUBMODULE (m) n ! The descendant submodule n
INTEGER :: j ! Specification part

CONTAINS ! Module subprogram part
MODULE SUBROUTINE sub1(arg1) ! Definition of sub1 by subroutine subprogram

INTEGER :: arg 1
arg1 = 1
i = 2 ! Host association
j = 3 ! Host association

180 XL Fortran: Language Reference for Big Endian Distributions

END SUBROUTINE

MODULE PROCEDURE sub2 ! Definition of sub2 by separate module subprogram
arg2 = 1

END PROCEDURE
END SUBMODULE

Related information
v “Modules” on page 175
v “SUBMODULE (Fortran 2008)” on page 461
v “Separate module subprograms (Fortran 2008)” on page 186
v “Separate module procedures (Fortran 2008)” on page 185

Module subprograms
A module subprogram is a subprogram that is contained in a module or

F2008 submodule F2008 , but is not an internal subprogram. A module
subprogram has one of the following forms:
v A function subprogram
v A subroutine subprogram
v F2008 A separate module subprogram F2008

Function and subroutine subprograms
A function or subroutine subprogram is a subprogram that has a FUNCTION or
SUBROUTINE statement as its first statement. You can also specify a function in a
statement function statement. An external function or subroutine subprogram is a
program unit.

Syntax

subprogram_statement
See “FUNCTION” on page 373 or “SUBROUTINE” on page 462 for syntax
details

�� subprogram_statement ��

��
specification_part

��

��
execution_part

��

��
internal_subprogram_part

��

�� end_subprogram_statement ��

Chapter 8. Program units and procedures 181

specification_part
is a sequence of statements from the statement groups numbered �2�, �4�
and �5� in “Order of statements and execution sequence” on page 14

execution_part
is a sequence of statements from the statement groups numbered �4� and
�6� in “Order of statements and execution sequence” on page 14, and
which must begin with a statement from statement group �6�

internal_subprogram_part
See “Internal procedures” on page 159 for details

end_subprogram_statement
See “END” on page 345 for syntax details on the END statement for
functions and subroutines

Rules

An internal subprogram is declared after the CONTAINS statement in the main
program, a module subprogram, or an external subprogram, but before the END
statement of the host program. The name of an internal subprogram must not be
defined in the specification section in the host scoping unit.

An external procedure has global scope with respect to the executable program. In
the calling program unit, you can specify the interface to an external procedure in
an interface block or you can define the external procedure name with the
EXTERNAL attribute.

A subprogram can contain any statement except PROGRAM, BLOCK DATA,
MODULE, and F2008 SUBMODULE F2008 statements. An internal
subprogram cannot contain an ENTRY statement or an internal subprogram.

Declaring procedures
An EXTERNAL statement, PROCEDURE declaration statement, or a procedure
component definition statement can be used to declare a procedure.

An EXTERNAL statement declares external procedures and dummy procedures.
See “EXTERNAL” on page 363.

A PROCEDURE declaration statement declares procedure pointers, dummy
procedures, and external procedures. For further information on the PROCEDURE
declaration statement, see “PROCEDURE declaration (Fortran 2003)” on page 429.

A procedure component definition statement declares procedure pointer
components of a derived type definition. See “Procedure pointer components” on
page 51.

Procedure pointers (Fortran 2003): A procedure pointer is a procedure that has
the EXTERNAL and POINTER attribute. A derived type component which has
been declared with the PROCEDURE statement can be a procedure pointer.

A procedure pointer points at a procedure rather than a data object. A procedure
pointer can be associated in the same way as a dummy procedure with an external
procedure, a module procedure, an intrinsic procedure, or a dummy procedure
that is not a procedure pointer. F2008 A procedure pointer can also be associated
with an internal procedure. However, an internal procedure cannot be invoked
using a procedure pointer after the host instance of the internal procedure

182 XL Fortran: Language Reference for Big Endian Distributions

completes its execution. F2008 Procedure pointers can have both an explicit and
implicit interface, can be structure components and can be associated using
procedure pointer assignment.

A dummy procedure with the pointer attribute is a dummy procedure pointer and
its associated actual argument is a procedure pointer.

A procedure pointer shall be storage associated only with another procedure
pointer; either both interfaces shall be explicit (the characteristics are the same) or
both interfaces shall be implicit (both interfaces will be functions or subroutines
with the same type and type parameters).

Although both type-bound procedures and procedure pointer components are
invoked through an object , the type-bound procedure which is executed depends
upon the type of the invoking object whereas procedure pointer components
depend upon the value. The PASS attribute defines the passed-object dummy
arguments of the procedure pointer component

Examples
PROCEDURE(PROC), POINTER :: PTR

Procedure references
There are two types of procedure references:
v A subroutine is invoked by any of the following cases:

– execution of a CALL statement
– execution of a defined assignment statement
– user-defined derived-type input/output
– execution of finalization

v A function is invoked during evaluation of a function reference or defined
operation.

Function reference: A function reference is used as a primary in an expression:

Executing a function reference results in the following order of events:
1. Actual arguments that are expressions are evaluated.
2. Actual arguments are associated with their corresponding dummy arguments.
3. Control transfers to the specified function.

��
(1)

data_ref separator binding_name
(2)

procedure_component_ref
function_name

�

� ()
actual_argument_spec_list

��

Notes:

1 Fortran 2003

2 Fortran 2003

Chapter 8. Program units and procedures 183

4. The function is executed.
5. The value (or status or target, for pointer functions) of the function result

variable is available to the referencing expression.

Fortran 2003

If the binding_name in a function reference is that of a specific function, the
function referenced is the one identified by the binding with that name in the
dynamic type of the data-ref.

If the binding_name in a function reference is that of a generic procedure, the
generic binding with that name in the declared type of the data-ref is used to select
a specific binding:
1. If the reference is consistent with one of the specific bindings of that generic

binding, that specific binding is selected.
2. Otherwise, if the reference is consistent with an elemental reference to one of

the specific bindings of that generic binding, that specific binding is selected.

The reference is to the procedure identified by the binding with the same name as
the selected specific binding, in the dynamic type of the data-ref.

End of Fortran 2003

Execution of a function reference must not alter the value of any other data item
within the statement in which the function reference appears. Invocation of a
function reference in the logical expression of a logical IF statement or WHERE
statement can affect entities in the statement that is executed when the value of the
expression is true.

IBM extension

The argument list built-in functions %VAL and %REF are supplied to aid
interlanguage calls by allowing arguments to be passed by value and by reference,
respectively. They can be specified in non-Fortran procedure references and in a
subprogram statement in an interface body. (See “%VAL and %REF (IBM
extension)” on page 194.) See Statement Function and Recursion examples of
function references.

End of IBM extension

On entry to an allocatable function, the allocation status of the result variable
becomes not allocated

The function result variable may be allocated and deallocated any number of times
during the execution of the function. However, it shall be allocated and have a
defined value on exit from the function. Automatic deallocation of the result
variable does not occur immediately on exit from the function, but instead occurs
after execution of the statement in which the function reference occurs.

Examples of subprograms and procedure references:
MODULE QUAD_MOD

TYPE QUAD_TYPE
REAL:: a, b, c
CONTAINS
PROCEDURE Q2

END TYPE

184 XL Fortran: Language Reference for Big Endian Distributions

INTERFACE
SUBROUTINE Q2(T,QUAD) ! External subroutine

IMPORT QUAD_TYPE
CLASS(QUAD_TYPE) T
REAL QUAD

END SUBROUTINE
END INTERFACE

END MODULE
PROGRAM MAIN

USE QUAD_MOD
REAL QUAD,X2,X1,X0,A,C3
TYPE(QUAD_TYPE) QT
QUAD=0; A=X1*X2
X2 = 2.0
X1 = SIN(4.5) ! Reference to intrinsic function
X0 = 1.0
QT = QUAD_TYPE(X2, X1, X0)
CALL Q(X2,X1,X0,QUAD) ! Reference to external subroutine
CALL QT%Q2(QUAD) ! Reference to a subroutine
C3 = CUBE() ! Reference to internal function
CONTAINS
REAL FUNCTION CUBE() ! Internal function

CUBE = A**3
END FUNCTION CUBE

END
SUBROUTINE Q(A,B,C,QUAD) ! External subroutine

REAL A,B,C,QUAD
QUAD = (-B + SQRT(B**2-4*A*C)) / (2*A)

END SUBROUTINE Q
SUBROUTINE Q2(T,QUAD) ! External subroutine

USE QUAD_MOD
TYPE(QUAD_TYPE) T
REAL QUAD
QUAD = (-T%B + SQRT(T%B**2-4*T%A*T%C)) / (2*T%A)

END SUBROUTINE Q2

Examples of allocatable function results:
FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED_STATUS)

LOGICAL,ALLOCATABLE :: OPENED_STATUS(:)
INTEGER I,J
LOGICAL TEST
DO I=1000,0,–1

INQUIRE(UNIT=I,OPENED=TEST,ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE(OPENED_STATUS(0:I))
DO J=0,I

INQUIRE(UNIT=J,OPENED=OPENED_STATUS(J))
END DO

END FUNCTION INQUIRE_FILES_OPEN

Separate module procedures (Fortran 2008)
A separate module procedure is a module procedure that is defined by a separate
module subprogram, or by a function or subroutine subprogram whose initial
statement contains the MODULE prefix specifier. A separate module procedure
defines a module procedure interface body.
v A separate module procedure must be previously declared by a module

procedure interface body in the containing program unit, in the ancestor
module, or in an ancestor submodule.

v A separate module procedure cannot be defined more than once.
v A separate module procedure must have the same characteristics and dummy

argument names as its corresponding module procedure interface body.

Chapter 8. Program units and procedures 185

v If you specify a binding label for a separate module procedure, the binding label
must be the same as that is specified in the corresponding module procedure
interface body.

v You must specify the RECURSIVE prefix specifier for a separate module
procedure if and only if it is also specified for the corresponding module
procedure interface body.

v When a separate module procedure is a function, the following rules apply to
the result variable:
– If it is defined by a separate module subprogram, the result variable name is

determined by the FUNCTION statement in the corresponding module
procedure interface body.

– If it is defined by a function subprogram with the MODULE prefix specifier,
the result variable name is determined by the FUNCTION statement of the
subprogram.

For how the MODULE prefix specifier is used for a function or subroutine
subprogram, see “FUNCTION” on page 373 or “SUBROUTINE” on page 462.

Related information
v “Modules” on page 175
v “Submodules (Fortran 2008)” on page 178
v “Separate module subprograms (Fortran 2008)”

Separate module subprograms (Fortran 2008)
A separate module subprogram defines a separate module procedure that is
declared by a corresponding module procedure interface body.

Syntax

separate_module_subprogram_statement
For syntax details, see MODULE PROCEDURE.

Separate module subprogram

�� separate_module_subprogram_statement ��

��
specification_part

��

��
execution_part

��

��
internal_subprogram_part

��

�� end_separate_module_subprogram_statement ��

186 XL Fortran: Language Reference for Big Endian Distributions

specification_part
It is a sequence of statements from the statement groups numbered �2�,
�4� and �5� in “Order of statements and execution sequence” on page 14.

execution_part
It is a sequence of statements from the statement groups numbered �4�
and �6� in “Order of statements and execution sequence” on page 14,
which must begin with a statement from statement group �6�.

internal_subprogram_part
For details, see “Internal procedures” on page 159.

end_separate_module_subprogram_statement
For syntax details, see “END” on page 345.

Rules

The interface of a separate module subprogram must be declared by a module
procedure interface body in one of the following places:
v The specification_part of the program unit where the separate module procedure

is defined.
v The ancestor module.
v An ancestor submodule.

If a separate module procedure that is defined by a separate module subprogram
is a function, the variable name of the function result is determined by the
FUNCTION statement in the corresponding module procedure interface body.

Example

This example shows how a separate module procedure is defined by a separate
module subprogram in a submodule.
MODULE m

INTEGER :: i

INTERFACE
MODULE SUBROUTINE sub(arg)

INTEGER :: arg
END SUBROUTINE

END INTERFACE
END MODULE

SUBMODULE (m) n
INTEGER :: j

CONTAINS
MODULE PROCEDURE sub ! Separate module subprogram

arg = 1
i = 2
j = 3

END PROCEDURE
END SUBMODULE

Related information
v “Modules” on page 175
v “Submodules (Fortran 2008)” on page 178
v “Separate module procedures (Fortran 2008)” on page 185

Chapter 8. Program units and procedures 187

Block data program unit
A block data program unit provides initial values for objects in named common
blocks.

BLOCK_DATA_statement
See “BLOCK DATA” on page 297 for syntax details

specification_part
is a sequence of statements from the statement groups numbered �2�, �4�,
and �5� in “Order of statements and execution sequence” on page 14

END_BLOCK_DATA_statement
See “END” on page 345 for syntax details

In specification_part, you can specify type declaration,USE, IMPLICIT, COMMON,
DATA, EQUIVALENCE, and integer pointer statements, derived-type definitions,
and the allowable attribute specification statements. The only attributes that can be
specified are: BIND , DIMENSION, INTRINSIC, PARAMETER,
POINTER, SAVE, TARGET, and ASYNCHRONOUS .

A type declaration statement in a block data specification-part must not contain
ALLOCATABLE or EXTERNAL attribute specifiers.

You can have more than one block data program unit in an executable program,
but only one can be unnamed. You can also initialize multiple named common
blocks in a block data program unit.

Restrictions on common blocks in block data program units are:
v All items in a named common block must appear in the COMMON statement,

even if they are not all initialized.
v The same named common block must not be referenced in two different block

data program units.
v Only nonpointer objects in named common blocks can be initialized in block

data program units.
v Objects in blank common blocks cannot be initialized.

Examples
PROGRAM MAIN

COMMON /L3/ C, X(10)
COMMON /L4/ Y(5)

END PROGRAM
BLOCK DATA BDATA

COMMON /L3/ C, X(10)
DATA C, X /1.0, 10*2.0/ ! Initializing common block L3

�� BLOCK_DATA_statement ��

��
specification_part

��

�� END_BLOCK_DATA_statement ��

188 XL Fortran: Language Reference for Big Endian Distributions

END BLOCK DATA

BLOCK DATA ! An unnamed block data program unit
PARAMETER (Z=10)
DIMENSION Y(5)
COMMON /L4/ Y
DATA Y /5*Z/

END BLOCK DATA

Intrinsic procedures
An intrinsic procedure is a procedure already defined by XL Fortran. See
Chapter 14, “Intrinsic procedures,” on page 559 for details.

You can reference some intrinsic procedures by a generic name, some by a specific
name, and some by both:

A generic intrinsic function
does not require a specific argument type and usually produces a result of
the same type as that of the argument, with some exceptions. Generic
names simplify references to intrinsic procedures because the same
procedure name can be used with more than one type of argument; the
type and kind type parameter of the arguments determine which specific
function is used.

A specific intrinsic function
requires a specific argument type and produces a result of a specific type.

A specific intrinsic function name can be passed as an actual argument. If a
specific intrinsic function has the same name as a generic intrinsic function,
the specific name is referenced. All references to a dummy procedure that
are associated with a specific intrinsic procedure must use arguments that
are consistent with the interface of the intrinsic procedure. Specific intrinsic
functions may be procedure pointer targets.

Whether or not you can pass the name of an intrinsic procedure as an argument
depends on the procedure. You can use the specific name of an intrinsic procedure
that has been specified with the INTRINSIC attribute as an actual argument in a
procedure reference.
v An IMPLICIT statement does not change the type of an intrinsic function.
v If an intrinsic name is specified with the INTRINSIC attribute, the name is

always recognized as an intrinsic procedure.

Conflicts between intrinsic procedure names and other names
When you declare a data object with the same name as an intrinsic procedure, the
intrinsic procedure is inaccessible.

A generic interface block can extend or redefine a generic intrinsic function, as
described in “Interface blocks” on page 162. If the function already has the
INTRINSIC attribute, it is extended; otherwise, it can be redefined.

Chapter 8. Program units and procedures 189

Arguments

Actual argument specification

arg_keyword
is a dummy argument name in the explicit interface of the procedure being
invoked

argument
is an actual argument

%VAL, %REF
specifies the passing method. See “%VAL and %REF (IBM extension)” on
page 194 for more information.

An actual argument appears in the argument list of a procedure reference. The
following actual arguments are valid in procedure references:
v An expression
v A variable
v A procedure name
v An alternate return specifier (if the actual argument is in a CALL statement),

having the form *stmt_label, where stmt_label is the statement label of a branch
target statement in the same scoping unit as the CALL statement.

An actual argument specified in a statement function reference must be a scalar
object.

In Fortran 2003, a procedure name cannot be the name of an internal procedure,
statement function, or the generic name of a procedure, unless it is also a specific
name. F2008 However, Fortran 2008 permits the name of an internal procedure.

F2008

The rules and restrictions for referencing a procedure described in “Procedure
references” on page 183. You cannot use a non-intrinsic elemental procedure as an
actual argument in Fortran 95.

Argument keywords
Argument keywords allow you to specify actual arguments in a different order
than the dummy arguments. With argument keywords, any actual arguments that
correspond to optional dummy arguments can be omitted; that is, dummy
arguments that merely serve as placeholders are not necessary.

��
arg_keyword =

argument
(1)

%VAL (argument)
(2)

%REF (argument)

��

Notes:

1 IBM extension

2 IBM extension

190 XL Fortran: Language Reference for Big Endian Distributions

Each argument keyword must be the name of a dummy argument in the explicit
interface of the procedure being referenced. An argument keyword must not
appear in an argument list of a procedure that has an implicit interface.

In the argument list, if an actual argument is specified with an argument keyword,
the subsequent actual arguments in the list must also be specified with argument
keywords.

An argument keyword cannot be specified for label parameters. Label parameters
must appear before referencing the argument keywords in that procedure
reference.

Examples
INTEGER MYARRAY(1:10)
INTERFACE

SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY_SIZE)
INTEGER ARRAY_SIZE, ARRAY(ARRAY_SIZE)
LOGICAL, OPTIONAL :: DESCENDING

END SUBROUTINE
END INTERFACE
CALL SORT(MYARRAY, ARRAY_SIZE=10) ! No actual argument corresponds to the

! optional dummy argument DESCENDING
END
SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY_SIZE)

INTEGER ARRAY_SIZE, ARRAY(ARRAY_SIZE)
LOGICAL, OPTIONAL :: DESCENDING
IF (PRESENT(DESCENDING)) THEN

.

.

.
END SUBROUTINE

Dummy arguments

A dummy argument is specified in a Statement Function statement, FUNCTION
statement, SUBROUTINE statement, or ENTRY statement. Dummy arguments in
statement functions, function subprograms, interface bodies, and subroutine
subprograms indicate the types of actual arguments and whether each argument is
a scalar value, array, procedure, or statement label. A dummy argument in an
external, module, or internal subprogram definition, or in an interface body, is
classified as one of the following:
v A variable name
v A procedure name

�� dummy_arg_name
(1)

%VAL (dummy_arg_name)
*

(2)
%REF (dummy_arg_name)

*

��

Notes:

1 IBM extension

2 IBM extension

Chapter 8. Program units and procedures 191

v An asterisk (in subroutines only, to indicate an alternate return point)

IBM extension

%VAL or %REF can only be specified for a dummy argument in a FUNCTION or
SUBROUTINE statement in an interface block. The interface must be for a
non-Fortran procedure interface. If %VAL or %REF appears in an interface block
for an external procedure, this passing method is implied for each reference to that
procedure. If an actual argument in an external procedure reference specifies
%VAL or %REF, the same passing method must be specified in the interface block
for the corresponding dummy argument. See “%VAL and %REF (IBM extension)”
on page 194 for more details.

End of IBM extension

A dummy argument in a statement function definition is classified as a variable
name.

A given name can appear only once in a dummy argument list.

The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type that it
would have if it were the name of a variable in the scoping unit that includes the
statement function. It cannot have the same name as an accessible array.

Argument association
Actual arguments are associated with dummy arguments when a function or
subroutine is referenced. In a procedure reference, the actual argument list
identifies the correspondence between the actual arguments provided in the list
and the dummy arguments of the subprogram.

Fortran 2003

The reduced dummy argument list is the full dummy argument list or, if there is a
passed-object dummy argument, the dummy argument list with the passed object
dummy argument omitted. When there is no argument keyword, an actual
argument is associated with the dummy argument that occupies the corresponding
position in the reduced dummy argument list. The first actual argument becomes
associated with the first dummy argument in the reduced list, the second actual
argument with the second dummy argument, continuing until reaching the end of
the list. Each actual argument must be associated with a dummy argument.

End of Fortran 2003

When a keyword is present, the actual argument is associated with the dummy
argument whose name is the same as the argument keyword. In the scoping unit
that contains the procedure reference, the names of the dummy arguments must
exist in an accessible explicit interface.

Argument association within a subprogram terminates upon execution of a
RETURN or END statement in the subprogram. There is no retention of argument
association between one reference of a subprogram and the next reference of the
subprogram, unless you specify -qxlf77=persistent and the subprogram contains at
least one entry procedure.

192 XL Fortran: Language Reference for Big Endian Distributions

If associated with a null argument in a procedure reference, the corresponding
dummy argument is undefined and undefinable.

IBM extension

Except when %VAL or the VALUE attribute is used, the subprogram reserves no
storage for the dummy argument. It uses the corresponding actual argument for
calculations. Therefore, the value of the actual argument changes when the dummy
argument changes. If the corresponding actual argument is an expression or an
array section with vector subscripts, the calling procedure reserves storage for the
actual argument, and the subprogram must not define, redefine, or undefine the
dummy argument.

If the actual argument is specified with %VAL, or the corresponding dummy
argument has the VALUE attribute, the subprogram does not have access to the
storage area of the actual argument.

End of IBM extension

Actual arguments must agree in type and type parameters with their
corresponding dummy arguments (and in shape if the dummy arguments are
pointers or assumed-shape), except for two cases: a subroutine name has no type
and must be associated with a dummy procedure name that is a subroutine, and
an alternate return specifier has no type and must be associated with an asterisk.

Argument association can be carried through more than one level of procedure
reference.

If a subprogram reference causes a dummy argument in the referenced
subprogram to become associated with another dummy argument in the referenced
subprogram, neither dummy argument can become defined, redefined, or
undefined during that subprogram. For example, if a subroutine definition is:

SUBROUTINE XYZ (A,B)

and it is referenced by:
CALL XYZ (C,C)

the dummy arguments A and B each become associated with the same actual
argument C and, therefore, with each other. Neither A nor B can be defined,
redefined, or undefined during the execution of subroutine XYZ or by any
procedures referenced by XYZ.

If a dummy argument becomes associated with an entity in a common block or an
entity accessible through use or host association, the value of the entity must only
be altered through the use of the dummy argument name, while the entity is
associated with the dummy argument. If any part of a data object is defined
through a dummy argument, the data object can be referenced only through that
dummy argument, either before or after the definition occurs. These restrictions
also apply to pointer targets.

If you have programs that do not conform to these restrictions, using the
compiler option -qalias=nostd may be appropriate. See the -qalias option in the
XL Fortran Compiler Reference for details.

An allocated allocatable component of an actual argument that is associated with
an INTENT(OUT) dummy argument is deallocated on procedure entry so that the

Chapter 8. Program units and procedures 193

corresponding component of the dummy argument has an allocation status of not
allocated. This ensures that any pointers that point to the previous contents of the
allocatable component of the variable become undefined.

%VAL and %REF (IBM extension)
To call subprograms written in languages other than Fortran (for example,
user-written C programs, or Linux operating system routines), the actual
arguments may need to be passed by a method different from the default method
used by XL Fortran. The default method passes the address of the actual argument
and, if it is of type character, the length. (Use the -qnullterm compiler option to
ensure that scalar character constant expressions are passed with terminating null
strings. See -qnullterm option in the XL Fortran Compiler Reference for details.)

The default passing method can be changed by using the %VAL and %REF
built-in functions in the argument list of a CALL statement or function reference,
or with the dummy arguments in interface bodies. These built-in functions specify
the way an actual argument is passed to the external subprogram.

%VAL and %REF built-in functions cannot be used in the argument lists of Fortran
procedure references, nor can they be used with alternate return specifiers.

The argument list built-in functions are:

%VAL This built-in function can be used with actual arguments that are
CHARACTER(1), logical, integer, real, complex expressions, or sequence
derived type. Objects of derived type cannot contain character structure
components whose lengths are greater than 1 byte, or arrays.

%VAL cannot be used with actual arguments that are arrays, derived types
with allocatable components, procedure names, or character expressions of
length greater than 1 byte.

%REF This built-in function causes the actual argument to be passed by reference;
that is, only the address of the actual argument is passed. Unlike the
default passing method, %REF does not pass the length of a character
argument. If such a character argument is being passed to a C routine, the
string must be terminated with a null character (for example, using the
-qnullterm option) so that the C routine can determine the length of the
string.

Examples
EXTERNAL FUNC
CALL RIGHT2(%REF(FUNC)) ! procedure name passed by reference
REAL XVAR
CALL RIGHT3(%VAL(XVAR)) ! real argument passed by value

IVARB=6
CALL TPROG(%VAL(IVARB)) ! integer argument passed by value

See “VALUE (Fortran 2003)” on page 482 for a standard-conforming alternative to
%VAL.

See Interlanguage calls in theXL Fortran Optimization and Programming Guide for
more information.

194 XL Fortran: Language Reference for Big Endian Distributions

Intent of dummy arguments
With the INTENT attribute, you can explicitly specify the intended use of a
dummy argument. Use of this attribute may improve optimization of the
program's calling procedure when an explicit interface exists. Also, the explicitness
of argument intent may provide more opportunities for error checking. See
“INTENT” on page 397 for syntax details.

IBM extension

The following table outlines passing method of XL Fortran for internal procedures
(not including assumed-shape, pointer, or allocatable dummy arguments):

Table 20. Passing method and intent

Argument Type Intent(IN) Intent(OUT) Intent(INOUT) No Intent

Non-CHARACTER
Scalar

VALUE default default default

CHARACTER*1
Scalar

VALUE REFERENCE REFERENCE REFERENCE

CHARACTER*n
Scalar

REFERENCE REFERENCE REFERENCE REFERENCE

CHARACTER*(*)
Scalar

default default default default

Derived Type 1

Scalar
VALUE default default default

Derived Type 2

Scalar
default default default default

Non-CHARACTER
Array

default default default default

CHARACTER*1
Array

REFERENCE REFERENCE REFERENCE REFERENCE

CHARACTER*n
Array

REFERENCE REFERENCE REFERENCE REFERENCE

CHARACTER*(*)
Array

default default default default

Derived Type 3

Array
default default default default

End of IBM extension

Optional dummy arguments
The OPTIONAL attribute specifies that a dummy argument need not be associated
with an actual argument in a reference to a procedure. Some advantages of the
OPTIONAL attribute include:
v The use of optional dummy arguments to override default behavior. For an

example, see “Argument keywords” on page 190.

1. A data object of derived type with no array components or CHARACTER*n components, where n > 1.

2. A data object of derived type with array components or CHARACTER*n components, where n > 1.

3. A data object of derived-type with components of any type, size and rank.

Chapter 8. Program units and procedures 195

v Additional flexibility in procedure references. For example, a procedure could
include optional arguments for error handlers or return codes, but you can select
which procedure references would supply the corresponding actual arguments.

See “OPTIONAL” on page 417 for details about syntax and rules.

The passed-object dummy argument

Fortran 2003

In a reference to a procedure that has a passed-object dummy argument, the
data_ref of the function reference or call statement is associated, as an actual
argument, with the passed object dummy argument. See passed-object dummy
arguments.

End of Fortran 2003

Restrictions on optional dummy arguments not present
A dummy argument is present in an instance of a subprogram if it is associated
with an actual argument that is not a dummy argument itself, or if it is associated
with a dummy argument that is either nonoptional or present in the invoking
subprogram. A dummy argument that is not optional must be present.

A dummy argument or an entity that is host associated with a dummy argument is
absent under one of these conditions:
v It does not correspond to an actual argument.
v It corresponds to an actual argument that is not present.

F2008 When the -qxlf2008=checkpresence option is in effect, a dummy argument
or an entity that is host associated with a dummy argument is also absent under
one of these conditions:
v It does not have the ALLOCATABLE attribute, and corresponds to an actual

argument that has the ALLOCATABLE attribute but is not allocated.
v It does not have the POINTER attribute, and corresponds to an actual argument

that has the POINTER attribute but is not associated.

Exceptions:

The -qxlf2008=checkpresence option does not affect argument presence under any
of these conditions:
v A procedure pointer actual argument is supplied to an optional dummy

procedure argument.
v A pointer or allocatable actual argument is supplied to an optional argument of

an intrinsic procedure.
v A pointer or allocatable actual argument is supplied to an optional dummy

argument of an elemental procedure.

F2008

An optional dummy argument that is not present must conform to the following
rules:
v If it is a dummy data object, it must not be referenced or defined. If the dummy

data object is of a type for which default initialization can be specified, the
initialization has no effect.

196 XL Fortran: Language Reference for Big Endian Distributions

v It must not be used as the data_target or proc_target of a pointer assignment
v If it is a procedure or procedure pointer, it must not be invoked.
v It must not be supplied as an actual argument that corresponds to a nonoptional

dummy argument, except as the argument of the PRESENT intrinsic function.
v A subobject of an optional dummy argument that is not present must not be

supplied as an actual argument that corresponds to an optional dummy
argument.

v If the optional dummy argument that is not present is an array, it must not be
supplied as an actual argument to an elemental procedure unless an array of the
same rank is supplied as an actual argument that corresponds to a nonoptional
dummy argument of that elemental procedure.

v If the optional dummy argument that is not present is a pointer, it must not be
allocated, deallocated, nullified, pointer-assigned or supplied as an actual
argument that corresponds to a nonpointer dummy argument, except as the
argument of the PRESENT intrinsic function.

v If the optional dummy argument that is not present is allocatable, it must not be
allocated, deallocated, or supplied as an actual argument corresponding to a
nonallocatable dummy argument other than as the argument of the PRESENT
intrinsic function.

v If it has length type parameters, they must not be the subject of an inquiry.
v An optional dummy argument that is not present must not be used as

the selector in an ASSOCIATE or SELECT TYPE construct.

Length of character arguments
If the length of a character dummy argument is a nonconstant specification
expression or is a colon, the object is a dummy argument with a run-time length. A
character dummy argument with a colon length is a deferred length character
dummy argument. If an object that is not a dummy argument has a run-time
length and is not deferred length, it is an automatic object. See “Automatic objects”
on page 18 for details.

If a dummy argument has a length specifier of an asterisk in parentheses, the
length of the dummy argument is “inherited” from the actual argument. The
length is inherited because it is specified outside the program unit containing the
dummy argument. If the associated actual argument is an array name, the length
inherited by the dummy argument is the length of an array element in the
associated actual argument array. %REF cannot be specified for a character dummy
argument with inherited length.

Variables as dummy arguments
If a dummy argument is neither allocatable nor a pointer, it must be

type-compatible with the associated actual argument. If a dummy argument is
allocatable or a pointer, the associated actual argument is polymorphic only if the
dummy argument is polymorphic, and the declared type of the actual argument is
the same as the declared type of the dummy argument.

If the actual argument is scalar, the corresponding dummy argument belongs to
one of the following categories:
v The dummy argument must be scalar unless the actual argument meets one of

the following conditions:
– The actual argument is of type default character.

Chapter 8. Program units and procedures 197

– The actual argument is of type character with the C character kind.

– The actual argument is an element or substring of an element of an array that
is not an assumed-shape or pointer array.

v TS The dummy argument is an assumed-rank object. TS

v TS The dummy argument is an assumed-size array of assumed-type.
TS

If the actual argument is allocatable, the corresponding dummy argument must
also be allocatable. If the procedure is referenced by a generic name or as a defined
operator or defined assignment, the ranks of the actual arguments and
corresponding dummy arguments must agree. A scalar dummy argument can be
associated only with a scalar actual argument.

If the procedure is nonelemental and is referenced by a generic name or
as defined operator or defined assignment, the ranks of the actual arguments and
corresponding dummy arguments must agree.

The following apply to dummy arguments used in elemental subprograms:
v All dummy arguments must be scalar, and cannot have the

ALLOCATABLE or POINTER attribute.
v A dummy argument, or a suboject thereof, cannot be used in a specification

expression, except if it is used as an argument to the BIT_SIZE, KIND, or LEN
intrinsic functions, or as an argument to one of the numeric inquiry intrinsic
functions, see Chapter 14, “Intrinsic procedures,” on page 559.

v A dummy argument cannot be an asterisk.
v A dummy argument cannot be a dummy procedure.

If a scalar dummy argument is of type character, its length must be less
than or equal to the length of the actual argument. The dummy argument is
associated with the leftmost characters of the actual argument. If the character
dummy argument is an array, the length restriction applies to the entire array
rather than each array element. That is, the lengths of associated array elements
can vary, although the whole dummy argument array cannot be longer than the
whole actual argument array.

If the dummy argument is an assumed-shape array, the rank of the actual
argument must be the same as the rank of the dummy argument; the
actual argument must not be an assumed-size array or a scalar, including a
designator for an array element or an array element substring.

If the dummy argument is an explicit-shape or assumed-size array, and if the
actual argument is a noncharacter array, the size of the dummy argument must not
exceed the size of the actual argument array. Each actual array element is
associated with the corresponding dummy array element. If the actual argument is
a noncharacter array element with a subscript value of as, the size of the dummy
argument array must not exceed the size of the actual argument array + 1 - as.
The dummy argument array element with a subscript value of ds becomes
associated with the actual argument array element that has a subscript value of as
+ ds - 1.

If an actual argument is a character array, character array element, or character
substring, and begins at a character storage unit acu of an array, character storage
unit dcu of an associated dummy argument array becomes associated with
character storage unit acu+dcu-1 of the actual array argument.

198 XL Fortran: Language Reference for Big Endian Distributions

You can define a dummy argument that is a variable name within a subprogram if
the associated actual argument is a variable. You must not redefine a dummy
argument that is a variable name within a subprogram if the associated actual
argument is not definable.

If the actual argument is an array section with a vector subscript, the associated
dummy argument cannot be defined and must not have the INTENT(OUT),
INTENT(INOUT), VOLATILE, or ASYNCHRONOUS attribute.

If an actual argument is an array section or an assumed-shape array, and the
corresponding dummy argument has either the VOLATILE or

ASYNCHRONOUS attribute, that dummy argument must be an
assumed-shape array.

If an actual argument is an nonpointer array with the VOLATILE or
ASYNCHRONOUS attribute F2008 but is not simply

contiguous, F2008 and the corresponding dummy argument has either the
VOLATILE or ASYNCHRONOUS attribute, that dummy
argument must be an assumed-shape array F2008 without the CONTIGUOUS
attribute. F2008

If an actual argument is an array pointer with the VOLATILE or
ASYNCHRONOUS attribute F2008 but without the

CONTIGUOUS attribute F2008 , and the corresponding dummy argument has
either the VOLATILE or ASYNCHRONOUS attribute, that
dummy argument must be an array pointer or an assumed-shape array

F2008 without the CONTIGUOUS attribute. F2008

F2008 If the dummy argument is a pointer with the CONTIGUOUS attribute,
the corresponding actual argument must be simply contiguous. F2008

Except in references to intrinsic inquiry functions, if a nonpointer
dummy argument is associated with a pointer actual argument, the actual
argument must be currently associated with a target, to which the dummy
argument becomes argument associated. Any restrictions on the passing method
apply to the target of the actual argument.

Except in references to intrinsic inquiry functions, if the dummy argument is not
allocatable and the actual argument is allocatable, the actual argument must be
allocated.

If the dummy argument has the VALUE attribute it becomes associated with a
definable anonymous data object whose initial value is that of the actual argument.
Subsequent changes to the value or definition status of the dummy argument do
not affect the actual argument.

If the dummy argument is neither a target nor a pointer, any pointers associated
with the actual argument do not become associated with the corresponding
dummy argument on invocation of the procedure.

Chapter 8. Program units and procedures 199

If both the dummy and actual arguments are targets (with the TARGET attribute),
in the following table, when all the conditions listed on the left apply, the
associations listed on the right occur:

Conditions for dummy and actual arguments
that are both targets Associations

1. The dummy argument does not have the
VALUE attribute. �1�

2. The actual argument is simply contiguous or
the dummy argument is a scalar or an
assumed-shape array that does not have the
CONTIGUOUS attribute. �2�

3. The actual argument is not a coindexed
object or an array section with a vector
subscript.

1. Any pointers associated with the
actual argument become associated
with the corresponding dummy
argument on invocation of the
procedure.

2. When execution of the procedure
completes, any pointers associated
with the dummy argument remain
associated with the actual argument.

1. The dummy argument is an explicit-shape
array, an assumed-shape array with the
CONTIGUOUS attribute�2�, or an
assumed-size array.

2. The actual argument is not simply
contiguous. �2�

3. The actual argument is not an array section
with a vector subscript.

1. Whether any pointers associated with
the actual argument become
associated with the corresponding
dummy argument on invocation of
the procedure is processor
dependent.

2. When execution of the procedure
completes, whether any pointers
associated with the dummy
argument remain associated with the
actual argument is processor
dependent.

Notes:

�1� Fortran 2003

�2� Fortran 2008

If the dummy argument is a target and the corresponding actual argument is not a
target or is an array section with a vector subscript, any pointers associated with
the dummy argument become undefined when execution of the procedure
completes.

If the dummy argument has the TARGET attribute and the VALUE
attribute, any pointers associated with the dummy argument become undefined
when execution of the procedure completes.

Allocatable objects as dummy arguments (Fortran 2003)
An allocatable dummy argument can only be associated with an actual argument
which is also allocatable. If the allocatable dummy argument is an array, the
associated actual argument must also be an array of the same rank. The
nondeferred type parameters of the actual argument must agree with those of the
dummy argument.

An actual argument associated with a dummy argument that is allocatable must
have deferred the same type parameters as the dummy argument.

On procedure entry, the allocation status of an allocatable dummy argument
becomes that of the associated actual argument. If the dummy argument is
INTENT(OUT) and the associated actual argument is allocated, the actual
argument is deallocated on procedure invocation so that the dummy argument has

200 XL Fortran: Language Reference for Big Endian Distributions

an allocation status of not allocated. If the dummy argument is not INTENT(OUT)
and the actual argument is allocated, the value of the dummy argument is that of
the associated actual argument.

While the procedure is active, an allocatable dummy argument that does not have
INTENT(IN) may be allocated, deallocated, defined, or become undefined. No
reference to the associated actual argument is permitted via another alias if any of
these events occur.

On exit from the routine, the actual argument has the allocation status of the
allocatable dummy argument (there is no change, of course, if the allocatable
dummy argument has INTENT(IN)). The usual rules apply for propagation of the
value from the dummy argument to the actual argument.

Automatic deallocation of the allocatable dummy argument does not occur as a
result of execution of a RETURN or END statement in the procedure of which it is
a dummy argument.

Note: An allocatable dummy argument that has the INTENT(IN) attribute must
not have its allocation status altered within the called procedure. The main
difference between such a dummy argument and a normal dummy argument is
that it might be deallocated on entry (and throughout execution of the procedure).

Examples
SUBROUTINE LOAD(ARRAY, FILE)

REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(:, :, :)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN() ! Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM=’UNFORMATTED’)
READ(UNIT) N1, N2, N3
ALLOCATE(ARRAY(N1, N2, N3))
READ(UNIT) ARRAY
CLOSE(UNIT)

END SUBROUTINE LOAD

Pointers as dummy arguments
The following requirements apply to actual arguments that correspond to dummy
data pointers:
v If a dummy argument is a pointer, the actual argument must be a pointer

F2008 unless the dummy argument has the INTENT(IN) attribute and the
actual argument has the TARGET attribute. F2008 The type, nondeferred type
parameters, and rank of a dummy argument must match those of the
corresponding actual argument.

v F2008 An actual argument associated with a dummy argument that is a
pointer and has the CONTIGUOUS attribute must be simply contiguous.

F2008

v An actual argument associated with a dummy argument that is a pointer must
have deferred the same type parameters as the dummy argument.

v The actual argument reference is to the pointer itself, not to its target. When the
procedure is invoked:
– The dummy argument acquires the pointer association status of the actual

argument.
– If the actual argument is associated, the dummy argument is associated with

the same target.

Chapter 8. Program units and procedures 201

The association status can change during execution of the procedure. When the
procedure finishes executing, the dummy argument's association status becomes
undefined, if it is associated.

The passing method must be by reference; that is, %VAL must not be
specified for the pointer actual argument.

Related information
v F2008 Contiguity F2008

Procedures as dummy arguments
A dummy argument that is identified as a procedure or a procedure
pointer is called a dummy procedure or dummy procedure
pointer, respectively.

If a dummy argument is a dummy procedure without the POINTER
attribute, the associated actual argument must be the specific name of an external
procedure, module procedure, dummy procedure, or intrinsic procedure whose
name can be passed as an argument, an associated procedure pointer, or a
reference to a function that returns an associated procedure pointer. If the specific
name is also a generic name, only the specific procedure is associated with the
dummy argument.

If a dummy argument is a procedure pointer, the associated actual argument must
be a procedure pointer, a reference to a function that returns a procedure pointer,
or a reference to the NULL intrinsic function.

If an external procedure name or a dummy procedure name is used as an actual
argument, its interface must be explicit or it must be explicitly declared with the
EXTERNAL attribute.

If the interface of the dummy argument is explicit, the characteristics must be the
same for the associated actual argument and the corresponding dummy argument,
except that a pure actual argument may be associated with a dummy argument
that is not pure.

If the interface of the dummy argument is implicit and either the name of the
dummy argument is explicitly typed or it is referenced as a function, the dummy
argument must not be referenced as a subroutine and the actual argument must be
a function, function procedure pointer , or dummy procedure.

If the interface of the dummy argument is implicit and a reference to it appears as
a subroutine reference, the actual argument must be a subroutine,
subroutine procedure pointer , or dummy procedure.

Internal subprograms cannot be associated with a dummy procedure argument.
You cannot use a non-intrinsic elemental procedure as an actual argument in
Fortran 95.

Examples of procedures as dummy arguments
PROGRAM MYPROG
INTERFACE

SUBROUTINE SUB (ARG1)
EXTERNAL ARG1
INTEGER ARG1

END SUBROUTINE SUB

202 XL Fortran: Language Reference for Big Endian Distributions

END INTERFACE
EXTERNAL IFUNC, RFUNC
REAL RFUNC

CALL SUB (IFUNC) ! Valid reference
CALL SUB (RFUNC) ! Invalid reference
!
! The first reference to SUB is valid because IFUNC becomes an
! implicitly declared integer, which then matches the explicit
! interface. The second reference is invalid because RFUNC is
! explicitly declared real, which does not match the explicit
! interface.
END PROGRAM

SUBROUTINE ROOTS
EXTERNAL NEG
X = QUAD(A,B,C,NEG)
RETURN

END
FUNCTION QUAD(A,B,C,FUNCT)

INTEGER FUNCT
VAL = FUNCT(A,B,C)
RETURN

END

FUNCTION NEG(A,B,C)
RETURN

END

Related information
v See Chapter 14, “Intrinsic procedures,” on page 559 for details on which intrinsic

procedures can be passed as actual arguments.
v See “Procedure references” on page 183 for the rules and restrictions for

referencing a procedure.

Asterisks as dummy arguments
A dummy argument that is an asterisk can only appear in the dummy argument
list of a SUBROUTINE statement or an ENTRY statement in a subroutine
subprogram. The corresponding actual argument must be an alternate return
specifier, which indicates the statement label of a branch target statement in the
same scope as the CALL statement, to which control is returned.

Examples
CALL SUB(*10)
STOP ! STOP is never executed

10 PRINT *, ’RETURN 1’
CONTAINS

SUBROUTINE SUB(*)
...

RETURN 1 ! Control returns to statement with label 10
END SUBROUTINE

END

Resolution of procedure references
The subprogram name in a procedure reference is either established to be generic,
established to be only specific, or not established.

A subprogram name is established to be generic in a scoping unit if one or more of
the following cases is true:
v The scoping unit has an interface block with that name.

Chapter 8. Program units and procedures 203

v The name of the subprogram is the same as the name of a generic intrinsic
procedure that is specified in the scoping unit with the INTRINSIC attribute.

v The scoping unit accesses the generic name from a module through use
association.

v There are no declarations of the subprogram name in the scoping unit, but the
name is established to be generic in the host scoping unit.

A subprogram name is established to be only specific in a scoping unit when it has
not been established to be generic and one of the following cases is true:
v An interface body in the scoping unit has the same name.
v There is a statement function, module procedure, or an internal subprogram in

the scoping unit that has the same name.
v The name of the subprogram is the same as the name of a specific intrinsic

procedure that is specified with the INTRINSIC attribute in the scoping unit.
v The scoping unit contains an EXTERNAL statement with the subprogram name.
v The scoping unit accesses the specific name from a module through use

association.
v There are no declarations of the subprogram name in the scoping unit, but the

name is established to be specific in the host scoping unit.

If a subprogram name is not established to be either generic nor specific, it is not
established.

Rules for resolving procedure references to names
The following rules are used to resolve a procedure reference to a name established
to be generic:
1. If there is an interface block with that name in the scoping unit or accessible

through use association, and the reference is consistent with a non-elemental
reference to one of the specific interfaces of that interface block, the reference is
to the specific procedure associated with the specific interface.

2. If rule 1 does not apply, there is an interface block with that name in the
scoping unit or accessible through use association, and the reference is
consistent with an elemental reference to one of the specific interfaces of that
interface block, the reference is to the specific elemental procedure associated
with the specific interface.

3. If neither Rule 1 nor Rule 2 applies, the reference is to an intrinsic procedure if
the procedure name in the scoping unit is specified with the INTRINSIC
attribute or accesses a module entity whose name is specified with the
INTRINSIC attribute, and the reference is consistent with the interface of that
intrinsic procedure.

4. If Rule 1, Rule 2 and Rule 3 do not apply, but the name is established to be
generic in the host scoping unit, the name is resolved by applying the rules to
the host scoping unit. For this rule to apply, there must be agreement between
the host scoping unit and the scoping unit of which the name is either a
function or a subroutine.

The following rules are used to resolve a procedure reference to a name established
to be only specific:
1. If the scoping unit is a subprogram, and it contains either an interface body

with that name or the name has the EXTERNAL attribute, and if the name is a
dummy argument of that subprogram, the dummy argument is a dummy
procedure. The reference is to that dummy procedure.

204 XL Fortran: Language Reference for Big Endian Distributions

2. If Rule 1 does not apply, and the scoping unit contains either an interface body
with that name or the name has the EXTERNAL attribute, the reference is to an
external subprogram.

3. In the scoping unit, if a statement function or internal subprogram has that
name, the reference is to that procedure.

4. In the scoping unit, if the name has the INTRINSIC attribute, the reference is
to the intrinsic procedure with that name.

5. The scoping unit contains a reference to a name that is the name of a module
procedure that is accessed through use association. Because of possible
renaming in the USE statement, the name of the reference may differ from the
original procedure name.

6. If none of these rules apply, the reference is resolved by applying these rules to
the host scoping unit.

The following rules are used to resolve a procedure reference to a name that is not
established:
1. If the scoping unit is a subprogram and if the name is the name of a dummy

argument of that subprogram, the dummy argument is a dummy procedure.
The reference is to that dummy procedure.

2. If Rule 1 does not apply, and the name is the name of an intrinsic procedure,
the reference is to that intrinsic procedure. For this rule to apply, there must be
agreement between the intrinsic procedure definition and the reference that the
name is either a function or subroutine.

3. If neither Rule 1 nor 2 applies, the reference is to the external procedure with
that name.

Recursion
A procedure that can reference itself, directly or indirectly, is called a recursive
procedure. Such a procedure can reference itself indefinitely until a specific
condition is met. For example, you can determine the factorial of the positive
integer N as follows:
INTEGER N, RESULT
READ (5,*) N
IF (N.GE.0) THEN

RESULT = FACTORIAL(N)
END IF
CONTAINS

RECURSIVE FUNCTION FACTORIAL (N) RESULT (RES)
INTEGER RES
IF (N.EQ.0) THEN

RES = 1
ELSE

RES = N * FACTORIAL(N-1)
END IF

END FUNCTION FACTORIAL
END

For details on syntax and rules, see “FUNCTION” on page 373, “SUBROUTINE”
on page 462, or “ENTRY” on page 353.

You can also call external procedures recursively when you specify the
-qrecur compiler option, although XL Fortran disregards this option if the
procedure specifies either the RECURSIVE or RESULT keyword.

Chapter 8. Program units and procedures 205

Pure procedures
Pure procedures are free of side effects and are particularly useful in FORALL
statements and constructs, which by design require that all referenced procedures
be free of side effects.

A pure procedure is a procedure that satisfies one of the following conditions:
v The procedure has the PURE prefix specifier.
v The procedure has the ELEMENTAL prefix specifier F2008 and does not have

the IMPURE specifier F2008 .

A procedure must be pure in the following contexts:
v An internal procedure of a pure procedure
v A procedure referenced in the scalar_mask_expr or body of a FORALL statement

or construct, including one referenced by a defined operator, defined
assignment, or finalization

v A procedure referenced in a pure procedure
v A procedure actual argument to a pure procedure

Intrinsic functions (except RAND, an XL Fortran extension) and the
MOVE_ALLOC and MVBITS subroutines are always pure. They do not need to
be explicitly declared to be pure. A statement function is pure if and only if all
functions that it references are pure.

The specification_part of a pure function must specify that all dummy arguments
have an INTENT(IN), except procedure arguments, arguments with the POINTER
attribute, F2008 and arguments with the VALUE attribute F2008 . The
specification_part of a pure subroutine must specify the intents of all dummy
arguments, except for procedure arguments, asterisks, arguments that have the
POINTER attribute, F2008 and arguments that have the VALUE attribute

F2008 . Any interface body for such pure procedures must similarly specify the
intents of its dummy arguments.

The execution_part and internal_subprogram_part of a pure procedure cannot refer to
a dummy argument with an INTENT(IN), a global variable (or any object that is
storage associated with one), or any subobject thereof, in contexts that may cause
its value to change: that is, in contexts that produce side effects. The execution_part
and internal_subprogram_part of a pure function must not use a dummy argument,
a global variable, or an object that is associated with a global variable, or a
subobject thereof, in the following contexts:
v As variable in an assignment statement, or as expression in an assignment

statement if variable is of a derived type that has a pointer component at any
level

v As pointer_object or target in a pointer assignment statement
v As a DO or implied-DO variable
v As an input_item in a READ statement
v As an internal file identifier in a WRITE statement
v As an IOSTAT=, SIZE= or IOMSG= specifier variable in an input/output

statement
v As a variable in an ALLOCATE, DEALLOCATE, NULLIFY, or ASSIGN

statement

206 XL Fortran: Language Reference for Big Endian Distributions

v As an actual argument that is associated with a dummy argument with the
POINTER attribute or with an intent of OUT or INOUT

v As the argument to LOC

v As a STAT= or ERRMSG= specifier
v As a variable in a NAMELIST which appears in a READ statement
v A variable that is the selector in a SELECT TYPE or ASSOCIATE construct if

the associate name of that construct appears in a variable definition context.

A pure procedure must not specify that any entity is VOLATILE. In addition, it
must not contain any references to data that is VOLATILE, that would otherwise
be accessible through use- or host-association. This includes references to data
which occur through NAMELIST I/O.

F2008 A local variable of a pure subprogram or a local variable of a BLOCK
construct within a pure subprogram cannot have the SAVE attribute. F2008

Only internal I/O is permitted in pure procedures. Therefore, the unit identifier of
an I/O statement cannot be an asterisk (*) or refer to an external unit. The I/O
statements are as follows:
v BACKSPACE

v CLOSE

v ENDFILE

v FLUSH

v INQUIRE

v OPEN

v PRINT

v READ

v REWIND

v WAIT

v WRITE

The PAUSE and STOP statements are not permitted in pure procedures.

There are two differences between pure functions and pure subroutines:
1. Subroutine nonpointer dummy data objects may have any intent, while

function nonpointer dummy data objects must be INTENT(IN).
2. Subroutine dummy data objects with the POINTER attribute can change

association status and/or definition status

If a procedure is not defined as pure, it must not be declared pure in an interface
body. However, the converse is not true: if a procedure is defined as pure, it does
not need to be declared pure in an interface body. Of course, if an interface body
does not declare that a procedure is pure, that procedure (when referenced through
that explicit interface) cannot be used as a reference where only pure procedure
references are permitted (for example, in a FORALL statement).

Examples
PROGRAM ADD

INTEGER ARRAY(20,256)
INTERFACE ! Interface required for

PURE FUNCTION PLUS_X(ARRAY) ! a pure procedure
INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY))

Chapter 8. Program units and procedures 207

END FUNCTION
END INTERFACE
INTEGER :: X
X = ABS(-4) ! Intrinsic function

! is always pure
FORALL (I=1:20, I /= 10)

ARRAY(I,:) = I + PLUS_X(ARRAY(I,:)) ! Procedure references in
! FORALL must be pure

END FORALL
END PROGRAM
PURE FUNCTION PLUS_X(ARRAY)

INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY)),X
INTERFACE

PURE SUBROUTINE PLUS_Y(ARRAY)
INTEGER, INTENT(INOUT) :: ARRAY(:)

END SUBROUTINE
END INTERFACE
X=8
PLUS_X = ARRAY+X
CALL PLUS_Y(PLUS_X)

END FUNCTION

PURE SUBROUTINE PLUS_Y(ARRAY)
INTEGER, INTENT(INOUT) :: ARRAY(:) ! Intent must be specified
INTEGER :: Y
Y=6
ARRAY = ARRAY+Y

END SUBROUTINE

Elemental procedures
An elemental subprogram definition must have the ELEMENTAL prefix specifier.
If the ELEMENTAL prefix specifier is used, the RECURSIVE specifier cannot be
used.

You cannot use the -qrecur option when specifying elemental procedures.

An elemental subprogram is declared using the ELEMENTAL prefix specifier. It
can be pure F2008 or impure F2008 . Specifying the PURE prefix specifier is
optional for pure elemental subprograms. F2008 The IMPURE prefix specifier is
required to declare an impure elemental subprogram. F2008

Elemental procedures, subprograms, and user-defined elemental procedures must
conform to the following rules:
v The result of an elemental function must be a scalar, and must not have the

ALLOCATABLE or POINTER attribute.
v The following apply to dummy arguments used in elemental subprograms:

– All dummy arguments must be scalar, and must not have the
ALLOCATABLE or POINTER attribute.

– A dummy argument, or a subobject thereof, cannot be used in a specification
expression, except if it is used as an argument to the BIT_SIZE, KIND, or
LEN intrinsic functions, or as an argument to one of the numeric inquiry
intrinsic functions, see Chapter 14, “Intrinsic procedures,” on page 559.

– A dummy argument cannot be an asterisk.
– A dummy argument cannot be a dummy procedure.

v Pure elemental subprograms must follow all of the rules that apply to pure
subprograms, defined in “Pure procedures” on page 206.

208 XL Fortran: Language Reference for Big Endian Distributions

v Elemental subprograms can have ENTRY statements, but the ENTRY statement
cannot have the ELEMENTAL prefix. The procedure defined by the ENTRY
statement is elemental if the ELEMENTAL prefix is specified in the
SUBROUTINE or FUNCTION statement.

v Elemental procedures can be used as defined operators in elemental expressions,
but they must follow the rules for elemental expressions as described in
“Operators and expressions” on page 103.

A reference to an elemental procedure is elemental only if:
v The reference is to an elemental function, one or more of the actual arguments is

an array, and all array actual arguments have the same shape; or
v The reference is to an elemental subroutine, and all actual arguments that

correspond to the INTENT(OUT) and INTENT(INOUT) dummy arguments are
arrays that have the same shape. The remaining actual arguments are
conformable with them.

A reference to an elemental subprogram is not elemental if all of its arguments are
scalar.

The actual arguments in a reference to an elemental procedure can be either of the
following:
v All scalar. For elemental functions, if the arguments are all scalar, the result is

scalar.
v One or more array-valued. The following rules apply if one or more of the

arguments is array-valued:
– For elemental functions, the shape of the result is the same as the shape of the

array actual argument with the greatest rank. If more than one argument
appears then all actual arguments must be conformable.

– For elemental subroutines, all actual arguments associated with
INTENT(OUT) and INTENT(INOUT) dummy arguments must be arrays of
the same shape, and the remaining actual arguments must be conformable
with them.

For pure elemental references, the resulting values of the elements are the same as
would be obtained if the subroutine or function had been applied separately in any
order to the corresponding elements of each array actual argument.

F2008 For impure elemental references, the resulting values of the elements are
the same as would be obtained if the subroutine or function had been applied
separately, in the array element order, to the corresponding elements of each array
actual argument. F2008

If the intrinsic subroutine MVBITS is used, the arguments that correspond to the
TO and FROM dummy arguments may be the same variable. Apart from this, the
actual arguments in a reference to an elemental subroutine or elemental function
must satisfy the restrictions described in “Argument association” on page 192.

Special rules apply to generic procedures that have an elemental specific
procedure. See “Rules for resolving procedure references to names” on page 204.

Examples

Example 1:

Chapter 8. Program units and procedures 209

! Example of an elemental function
PROGRAM P
INTERFACE

ELEMENTAL REAL FUNCTION LOGN(X,N)
REAL, INTENT(IN) :: X
INTEGER, INTENT(IN) :: N

END FUNCTION LOGN
END INTERFACE

REAL RES(100), VAL(100,100)
...

DO I=1,100
RES(I) = MAXVAL(LOGN(VAL(I,:),2))

END DO
...

END PROGRAM P

Example 2:
! Elemental procedure declared with a generic interface
INTERFACE RAND

ELEMENTAL FUNCTION SCALAR_RAND(x)
REAL, INTENT(IN) :: X

END FUNCTION SCALAR_RAND

FUNCTION VECTOR_RANDOM(x)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(x))

END FUNCTION VECTOR_RANDOM
END INTERFACE RAND

REAL A(10,10), AA(10,10)

! The actual argument AA is a two-dimensional array. The procedure
! taking AA as an argument is not declared in the interface block.
! The specific procedure SCALAR_RAND is then called.

A = RAND(AA)

! The actual argument is a one-dimensional array section. The procedure
! taking a one-dimensional array as an argument is declared in the
! interface block. The specific procedure VECTOR_RANDOM is then called.
! This is a non-elemental reference since VECTOR_RANDOM is not elemental.

A(:,1) = RAND(AA(6:10,2))
END

210 XL Fortran: Language Reference for Big Endian Distributions

Chapter 9. XL Fortran Input/Output

XL Fortran supports both synchronous and asynchronous input/output (I/O).
Synchronous I/O halts an executing application until I/O operations complete.
Asynchronous I/O allows an application to continue processing while I/O
operations occur in the background. Both I/O types support the following file
access methods:
v Sequential access
v Direct access
v Stream access

Each method of access offers benefits and limitations based on the I/O concepts of,
Records, Files and Units.

This section also provides explanations of the IOSTAT= specifier codes that can
result when using XL Fortran I/O statements.

Records
A record contains a sequence of characters or values. XL Fortran supports three
record types:
v formatted
v unformatted
v endfile

Formatted records
A formatted record consists of a sequence of ASCII characters that can print in a
readable format. Reading a formatted record converts the data values from
readable characters into an internal representation. Writing a formatted record
converts the data from the internal representation into characters.

Unformatted records
An unformatted record contains a sequence of values in an internal representation
that can contain both character and noncharacter data. An unformatted record can
also contain no data. Reading or writing an unformatted record does not convert
any data the record contains from the internal representation.

Endfile records
If it exists, an endfile record is the last record of a file. It has no length. It can be
written explicitly by an ENDFILE statement. It can be written implicitly to a file
connected for sequential access when the last data transfer statement was a WRITE
statement, no intervening file positioning statement referring to the file has been
executed, and the following is true:
v A REWIND or BACKSPACE statement references the unit to which the file is

connected; or
v The file is closed, either explicitly by a CLOSE statement, implicitly by a

program termination not caused by an error condition, or implicitly by another
OPEN statement for the same unit.

© Copyright IBM Corp. 1996, 2014 211

Files
A file is an internal or external sequence of records or file storage units. You
determine the file access method when connecting a file to a unit. You can access
an external file using three methods:
v Sequential access
v Direct access
v Stream access

You can only access an internal file sequentially.

Definition of an external file
You must associate an external file with an I/O device such as a disk, or terminal.
An external file exists for a program when a program creates that file, or the file is
available to that program for reading and writing. Deleting an external file ends
the existence of that file. An external file can exist and contain no records.

To specify an external file by a file name, you must designate a valid
operating system file name. Each file name can contain a maximum of 255
characters. If you specify a full path name, it can contain a maximum of 4095
characters.

The preceding I/O statement determines the position of an external file. You can
position an external file to:
v The initial point, which is the position immediately before the first record, or the

first file storage unit.
v The terminal point, which is the position immediately after the last record, or

the last file storage unit.
v The current record, when the file position is within a record. Otherwise, there is

no current record.
v The preceding record, which is the record immediately before the current record.

If there is no current record, the preceding record is the record immediately
before the current file position. A preceding record does not exist when the file
position is at its initial point or within the first record of the file.

v The next record, which is the record immediately after the current record. If
there is no current record, the next record is the record immediately after the
current position. The next record does not exist when the file position is at the
terminal point or within the last record of the file.

An external file can also have indeterminate position after an error.

File access methods

Sequential access
Using sequential access, records in a file are read or written based on the logical
order of records in that file. Sequential access supports both internal and external
files.

External files: A file connected for sequential access contains records in the order
they were written. The records must be either all formatted or all unformatted; the
last record of the file must be an endfile record. The records must not be read or
written by direct or stream access I/O statements during the
time the file is connected for sequential access.

212 XL Fortran: Language Reference for Big Endian Distributions

Internal files: An internal file is a character variable that is not an array section
with a vector subscript. You do not need to create internal files. They always exist,
and are available to the application.

If an internal file is a scalar character variable, the file consists of one record with a
length equal to that of the scalar variable. If an internal file is a character array,
each element of the array is a record of the file, with each record having the same
length.

An internal file must contain only formatted records. READ and WRITE are the
only statements that can specify an internal file. If a WRITE statement writes less
than an entire record, blanks fill the remainder of that record.

An internal file is positioned at the beginning of the first record prior to
data transfer, except for child data transfer statements. This record becomes the
current record.

Direct access
Using direct access, the records of an external file can be read or written in any
order. The records must be either all formatted or all unformatted. The records
must not be read or written using sequential or stream access, list-directed or
namelist formatting, or a nonadvancing input/output statement. If the file was
previously connected for sequential access, the last record of the file is an endfile
record. The endfile record is not considered a part of the file connected for direct
access.

Each record in a file connected for direct access has a record number that identifies
its order in the file. The record number is an integer value that must be specified
when the record is read or written. Records are numbered sequentially. The first
record is number 1. Records need not be read or written in the order of their
record numbers. For example, records 9, 5, and 11 can be written in that order
without writing the intermediate records.

All records in a file connected for direct access must have the same length, which
is specified in the OPEN statement when the file is connected.

Records in a file connected for direct access cannot be deleted, but they can be
rewritten with a new value. A record cannot be read unless it has first been
written.

Stream access (Fortran 2003)
You can connect external files for stream access as either formatted or unformatted.
Both forms use external stream files composed of one byte file storage units. While
a file connected for unformatted stream access has only a stream structure, files
connected for formatted stream access have both a record and a stream structure.
These dual structure files have the following characteristics:
v Some file storage units represent record markers.
v The record structure is inferred from the record markers stored in the file.
v There is no theoretical limit on record length.
v Writing an empty record without a record marker has no effect.
v If there is no record marker at the end of a file, the final record is incomplete but

not empty.
v The endfile record in a file previously connected for sequential access is not

considered part of the file when you connect that file for stream access.

Chapter 9. XL Fortran Input/Output 213

The first file storage unit of a file connected for formatted stream access has a
position of 1. The position of each subsequent storage unit is greater than the
storage unit immediately before it. The positions of successive storage units are not
always consecutive and positionable files need not be read or written to in order of
position. To determine the position of a file storage unit connected for formatted
stream access, use the POS= specifier of the INQUIRE statement. If the file can be
positioned, you can use the value obtained using the INQUIRE statement to
position that file. You read from the file while connected to the file, as long as the
storage unit has been written to since file creation and that the connection permits
a READ statement. File storage units of a file connected for formatted stream
access can only be read or written by formatted stream access input/output
statements.

The first file storage unit of a file connected for unformatted stream access has a
position of 1. The position value of successive storage units is incrementally one
greater than the storage unit it follows. Positionable files need not be read or
written to in order of position. Any storage unit can be read from the file while
connected to the file, if the storage unit has been written to since file creation and
that the connection permits a READ statement. File storage units of a file
connected for unformatted stream access can only be read or written by stream
access input/output statements.

Units
A unit is a means of referring to a file. Programs refer to files by the unit numbers
indicated by unit specifiers in input/output statements. See [UNIT=] for the form
of a unit specifier.

Connection of a unit
A connection refers to the association between a file and a unit. A connection must
occur before the records of a file can be read or written.

There are three ways to connect a file to a unit:
v Preconnection
v Implicit connection
v Explicit connection, using the OPEN statement

Preconnection
Preconnection occurs when the program begins executing. You can specify
preconnection in I/O statements without the prior execution of an OPEN
statement. Three units are preconnected for formatted sequential access to the
standard error, input, and output devices. You can refer to these units in
input/output statements using the ERROR_UNIT, INPUT_UNIT, and
OUTPUT_UNIT constants from the ISO_FORTRAN_ENV module.

IBM extension

You can also refer to these units directly using the following values:
v Unit 0 for the standard error device
v Unit 5 for the standard input device
v Unit 6 for the standard output device

The preconnected units use the default specifier values for the OPEN statement
with the following exceptions:

214 XL Fortran: Language Reference for Big Endian Distributions

v STATUS='OLD'

v ACTION='READWRITE'

v FORM='FORMATTED'

End of IBM extension

Implicit connection (IBM extension)
Implicit connection occurs when a sequential statement that is; ENDFILE, PRINT,
READ, REWIND, or WRITE executes on a unit not already connected to an
external file. The executing statement connects that unit to a file with a
predetermined name. By default, this connection is unit n to file fort.n. You do not
need to create the file before implicit connection. To implicitly connect to a
different file name, refer to the UNIT_VARS run-time option under Setting runtime
options in the XL Fortran Compiler Reference.

You can not specify unit 0 for implicit connection.

You can only connect a preconnected unit implicitly if you terminate the
connection between the unit and the external file. In the next example a
preconnected unit closes before implicit connection takes place.
Sample Implicit Connection

PROGRAM TRYME
WRITE (6, 10) "Hello1" ! "Hello1" written to standard output
CLOSE (6)
WRITE (6, 10) "Hello2" ! "Hello2" written to fort.6

10 FORMAT (A)
END

A unit with an implicit connection uses the default specifier values of the OPEN
statement, except for the FORM= and ASYNCH= specifiers. The first data transfer
statement determines the values for FORM= and ASYNCH=.

If the first I/O statement uses format-directed, list-directed, or namelist formatting,
the value of the FORM= specifier is set to FORMATTED. An unformatted I/O
statement sets the specifier to UNFORMATTED.

If the first I/O statement is asynchronous, the value of the ASYNCH= specifier is
set to YES. A synchronous I/O statement sets the specifier to NO.

Disconnection
The CLOSE statement disconnects a file from a unit. You can connect the file again
within the same program to the same unit or to a different unit. You can connect
the unit again within the same program to the same file or a different file.

v You can not close unit 0

v You can not reconnect unit 5 to standard input after the unit closes
v You can not reconnect unit 6 to standard output after the unit closes

Data transfer statements
The READ statement obtains data from an external or internal file and transfers
the data to internal storage. If you specify an input list, values transfer from the
file to the data items you specify.

Chapter 9. XL Fortran Input/Output 215

The WRITE statement transfers data from internal storage into an external or
internal file.

The PRINT statement transfers data from internal storage into an external file.
Specifying the –qport=typestmt compiler option enables the TYPE statement which
supports functionality identical to PRINT. If you specify an output list and format
specification, values transfer to the file from the data items you specify. If you do
not specify an output list, the PRINT statement transfers a blank record to the
output device unless the FORMAT statement it refers to contains, as the first
specification, a character string edit descriptor or a slash edit descriptor. In this
case, the records these specifications indicate transfer to the output device.

Execution of a WRITE or PRINT statement for a file that does not exist creates
that file, unless an error occurs.

If an input/output item is a pointer, data is transferred between the file and the
associated target.

If an input or output item is polymorphic, or is a derived type with a
pointer or an allocatable component, it must be processed by a user-defined
derived-type input/output procedure.

During advancing input from a file with a PAD= specifier that has the value NO,
the input list and format specification must not require more characters from the
record than that record contains. If the PAD= specifier has the value YES, blank
characters are supplied if the input list and format specification require more
characters from the record than the record contains.

If you want to pad files connected for sequential access, specify the
-qxlf77=noblankpad compiler option. This compiler option also sets the default
value for the PAD= specifier to NO for direct and stream files and YES for
sequential files.

During nonadvancing input from a file with a PAD= specifier that has the value
NO, an end-of-record condition occurs if the input list and format specification
require more characters from the record than the record contains. If the PAD=
specifier has the value YES, an end-of-record condition occurs and blank characters
are supplied if an input item and its corresponding data edit descriptor require
more characters from the record than the record contains. If the record is the last
record of a stream file, an end-of-file condition occurs.

Asynchronous Input/Output
You can specify asynchronous READ and WRITE data transfer statements to
initiate asynchronous data transfer. Execution continues after the asynchronous I/O
statement, without waiting for the data transfer to complete.

Executing a matching WAIT statement with the same ID= value that was returned
to the ID= variable in the data transfer statement detects that the data transfer
statement is complete, or waits for that data transfer statement to complete.

The data transfer of an I/O item in an asynchronous I/O statement can complete:
v During the execution of the asynchronous data transfer statement
v At any time before the execution of the matching WAIT statement
v During the matching WAIT statement

216 XL Fortran: Language Reference for Big Endian Distributions

For information on situations where data transfer must complete during the
asynchronous data transfer statement, see Implementation details of XL Fortran
Input/Output in the XL Fortran Optimization and Programming Guide.

If an error occurs during the execution of an asynchronous data transfer statement,
the variable associated with the ID= specifier remains undefined. The IOSTAT=
specifier indicates the status of the I/O operation and control is transferred to the
statement specified by the ERR= specifier.

You must not reference, define, or undefine variables or items associated with a
variable appearing in an I/O list for an asynchronous data transfer statement, until
the execution of the matching WAIT statement.

Any deallocation of allocatable objects and pointers and changing association
status of pointers are disallowed between an asynchronous data transfer statement
and the matching WAIT statement.

Multiple outstanding data transfer operations on the same unit can be
both READ and WRITE. A WAIT statement will perform a wait operation for all
pending data transfers for the specified unit if the ID= specifier is omitted.

In the case of direct access, an asynchronous WRITE statement must not specify
both the same unit and record number as any asynchronous WRITE statement for
which the matching WAIT statement has not been executed. For stream
access, an asynchronous WRITE statement must not specify either the same unit
and location within a file as any asynchronous WRITE statement for which the
matching WAIT statement has not been executed.

In the portion of the program that executes between the asynchronous data
transfer statement and the matching WAIT statement, you must not reference,
define, or undefine variables or items associated with the integer_variable in the
NUM= specifier of that data transfer statement.

Using Asynchronous I/O
SUBROUTINE COMPARE(ISTART, IEND, ISIZE, A)
INTEGER, DIMENSION(ISIZE) :: A
INTEGER I, ISTART, IEND, ISIZE
DO I = ISTART, IEND

IF (A (I) /= I) THEN
PRINT *, "Expected ", I, ", got ", A(I)

END IF
END DO
END SUBROUTINE COMPARE

PROGRAM SAMPLE
INTEGER, PARAMETER :: ISIZE = 1000000
INTEGER, PARAMETER :: SECT1 = (ISIZE/2) - 1, SECT2 = ISIZE - 1
INTEGER, DIMENSION(ISIZE), STATIC :: A
INTEGER IDVAR

OPEN(10, STATUS="OLD", ACCESS="DIRECT", ASYNCH="YES", RECL=(ISIZE/2)*4)
A = 0

! Reads in the first part of the array.

READ(10, REC=1) A(1:SECT1)

! Starts asynchronous read of the second part of the array.

READ(10,ID=IDVAR, REC=2) A(SECT1+1:SECT2)

Chapter 9. XL Fortran Input/Output 217

! While the second asynchronous read is being performed,
! do some processing here.

CALL COMPARE(1, SECT1, ISIZE, A)

WAIT(ID=IDVAR)

CALL COMPARE(SECT1+1, SECT2, ISIZE, A)
END

Advancing and nonadvancing Input/Output
Advancing I/O positions the file after the last record that is read or written, unless
an error condition occurs.

Nonadvancing I/O can position the file at a character position within the current
record, or a subsequent record. With nonadvancing I/O, you can READ or WRITE
a record of the file by a sequence of I/O statements that each access a portion of
the record. You can also read variable-length records and about the length of the
records.

Nonadvancing I/O
! Reads digits using nonadvancing input

INTEGER COUNT
CHARACTER(1) DIGIT
OPEN (7)
DO
READ (7,FMT="(A1)",ADVANCE="NO",EOR=100) DIGIT

COUNT = COUNT + 1
IF ((ICHAR(DIGIT).LT.ICHAR(’0’)).OR.(ICHAR(DIGIT).GT.ICHAR(’9’))) THEN

PRINT *,"Invalid character ", DIGIT, " at record position ",COUNT
STOP

END IF
END DO

100 PRINT *,"Number of digits in record = ", COUNT
END

! When the contents of fort.7 is ’1234\n’, the output is:

! Number of digits in record = 4

User-defined derived-type Input/Output procedure interfaces
(Fortran 2003)

User-defined derived-type input/output procedures allow a program to override
the default handling of derived-type objects and values in data transfer
input/output statements.

A user-defined derived-type input/output procedure is a procedure accessible by a
dtio_generic_spec. A particular user-defined derived-type input/output procedure is
selected based on the existence of one of the following:
1. A suitable generic interface with both:

a. a dtio_generic_spec that is appropriate to the direction (read or write) and
form (formatted or unformatted) of the data transfer, and

b. a specific interface whose dtv argument is compatible with the effective
item. For more information on dtv see “User-defined derived-type
Input/Output procedures (Fortran 2003)” on page 170.

2. A suitable generic binding for the declared type of the effective item.

218 XL Fortran: Language Reference for Big Endian Distributions

If a derived-type input/output procedure is selected as specified above, it is called
for any appropriate data transfer input/output statements executed in that scoping
unit. The procedure controls the actual data transfer operations for the
derived-type input/output list item.

A data transfer statement that includes a derived-type input/output list item and
that causes a user-defined derived-type input/output procedure to be invoked is
called a parent data transfer statement. A data transfer statement that is executed
while a parent data transfer statement is being processed, and that specifies the
unit passed into a user-defined derived-type input/output procedure, is called a
child data transfer statement.

A child data transfer statement is processed differently from a nonchild data
transfer statement in the following ways:
v Executing a child data transfer statement does not position the file prior to data

transfer.
v An unformatted child data transfer statement does not position the file after

data transfer is complete.

User-defined derived-type Input/Output (Fortran 2003)
For a particular derived type and a particular set of kind type parameter values,
there are four possible user-defined derived-type input/output procedures: one
each for formatted input, formatted output, unformatted input, and unformatted
output. You do not need to supply all four procedures. You can specify the
procedures to be used for derived-type input/output by interface blocks or by
generic bindings, with a dtio_generic_spec (the values for dtio_generic_spec are given
in Table 19 on page 171).

While a parent data transfer statement is active, the following rules apply:
v When a parent READ statement is active, an input/output statement does not

read from any external unit other than the one specified by the dummy
argument unit and does not write to any external unit.

v When a parent WRITE or PRINT statement is active, an input/output statement
does not write to any external unit other than the one specified by the dummy
argument unit and does not read from any external unit.

v A data transfer statement that specifies an internal file is permitted.
v OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements are not

executed.
v The user-defined procedure, and any procedures that it invokes, cannot define or

undefine any storage location referenced by any input/output list item, the
corresponding format, or any specifier in any active parent data transfer
statement, except through the dtv argument.

The following are additional rules for user-defined derived-type input/output
procedure data transfer statements:
v The procedure may use a FORMAT with a DT edit descriptor for handling a

component of the derived type that is itself of a derived type. A child data
transfer statement that is a list-directed or namelist input/output statement may
contain a list item of derived type.

v Because a child data transfer statement does not position the file prior to data
transfer, it starts transferring data from where the file was positioned by the

Chapter 9. XL Fortran Input/Output 219

parent data transfer statement's most recently processed effective list item or
record positioning edit descriptor. This is not necessarily at the beginning of a
record.

v A record positioning edit descriptor, such as TL and TR, used on unit by a child
data transfer statement, does not cause the record to be positioned before its
position at the time the procedure was invoked.

v Parent and child data transfer statements cannot be asynchronous.
v A child data transfer statement must not specify the ID=, POS=, or REC=

specifiers in an input/output control list.

Examples

Example 1:
! Example of an elemental function
PROGRAM P
INTERFACE

ELEMENTAL REAL FUNCTION LOGN(X,N)
REAL, INTENT(IN) :: X
INTEGER, INTENT(IN) :: N

END FUNCTION LOGN
END INTERFACE

REAL RES(100), VAL(100,100)
...

DO I=1,100
RES(I) = MAXVAL(LOGN(VAL(I,:),2))

END DO
...

END PROGRAM P

Example 2:
! Elemental procedure declared with a generic interface
INTERFACE RAND

ELEMENTAL FUNCTION SCALAR_RAND(x)
REAL, INTENT(IN) :: X

END FUNCTION SCALAR_RAND

FUNCTION VECTOR_RANDOM(x)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(x))

END FUNCTION VECTOR_RANDOM
END INTERFACE RAND

REAL A(10,10), AA(10,10)

! The actual argument AA is a two-dimensional array. The procedure
! taking AA as an argument is not declared in the interface block.
! The specific procedure SCALAR_RAND is then called.

A = RAND(AA)

! The actual argument is a one-dimensional array section. The procedure
! taking a one-dimensional array as an argument is declared in the
! interface block. The specific procedure VECTOR_RANDOM is then called.
! This is a non-elemental reference since VECTOR_RANDOM is not elemental.

A(:,1) = RAND(AA(6:10,2))
END

220 XL Fortran: Language Reference for Big Endian Distributions

File position before and after data transfer
For an explicit connection using an OPEN statement for sequential or stream I/O
that specifies the POSITION= specifier, you can position the file explicitly at the
beginning, at the end, where the position is on opening.

If the OPEN statement does not specify the POSITION= specifier:
v If the STATUS= specifier has the value NEW or SCRATCH, the file position is

at the beginning.

IBM extension

v If you specify STATUS='OLD' with the -qposition=appendold compiler option,
and the next operation that changes the file position is a WRITE statement, then
the file position is at the end. If these conditions are not met, the file position is
at the beginning.

v If you specify STATUS='UNKNOWN' with the -qposition=appendunknown
compiler option, and the next operation is a WRITE statement, then the file
position is at the end. If these conditions are not met, the file position is at the
beginning.

After an implicit OPEN, the file position is at the beginning:
v If the first I/O operation on the file is READ, the application reads the first

record of the file.
v If the first I/O operation on the file is WRITE or PRINT, the application deletes

the contents of the file and writes at the first record.

End of IBM extension

You can use a REWIND statement to position a file at the beginning. The
preconnected units 0, 5 and 6 are positioned as they come from the parent process
of the application.

The positioning of a file prior to data transfer depends on the method of access:
v Sequential access for an external file:

– For advancing input, the file position is at the beginning of the next record.
This record becomes the current record.

– Advancing output creates a new record and becomes the last record of the
file.

v Sequential access for an internal file:
– File position is at the beginning of the first record of the file. This record

becomes the current record.
v Direct access:

– File position is at the beginning of the record that the REC= specifier
indicates. This record becomes the current record.

v Stream access:
– File position is immediately before the file storage unit the POS= specifier

indicates. If there is no POS= specifier, the file position remains unchanged.

File positioning for a child data transfer statement is processed differently
from a nonchild data transfer statement in the following ways:

Chapter 9. XL Fortran Input/Output 221

v Executing a child data transfer statement does not position the file prior to data
transfer.

v An unformatted child data transfer statement does not position the file after
data transfer is complete.

After advancing I/O data transfer, the file position is:
v Beyond the endfile record if an end-of-file condition exists as a result of reading

an endfile record.
v Beyond the last record read or written if no error or end-of-file condition exists.

That last record becomes the preceding record. A record written on a file
connected for sequential or formatted stream access becomes the last record of
the file.

After nonadvancing input the file position:
v If no error condition or end-of-file condition occurs, but an end-of-record

condition occurs, the file position is immediately after the record read.
v If no error condition, end-of-file condition or end-of-record condition occurs in a

nonadvancing input statement, the file position does not change.
v If no error condition occurs in a nonadvancing output statement, the file

position does not change.
v In all other cases, the file position is immediately after the record read or written

and that record becomes the preceding record.

If the file position is beyond the endfile record, a READ, WRITE, PRINT, or
ENDFILE statement can not execute if the compiler option -qxlf77=softeof is not
set. A BACKSPACE or REWIND statement can be used to reposition the file.

Use the -qxlf77=softeof option to be able to read and write past the
end-of-file.

For formatted stream output with no errors, the terminal point of the file
is set to the highest-numbered position to which data was transferred by the
statement. For unformatted stream output with no errors, the file position is
unchanged. If the file position exceeds the previous terminal point of the file, the
terminal point is set to the file position. Use the POS= specifier with an empty
output list to extend the terminal point of the file without writing data. After data
transfer, if an error occurs, the file position is indeterminate.

Conditions and IOSTAT values
An IOSTAT value is a value assigned to the variable for the IOSTAT= specifier if
end-of-file condition, end-of-record condition or an error condition occurs during
an input/output statement. The IOSTAT= specifier reports the following types of
error conditions. If the input or output statement is successful, the IOSTAT value
is 0.
v Catastrophic
v Severe
v Recoverable
v Conversion
v Language

222 XL Fortran: Language Reference for Big Endian Distributions

End-of-record conditions
When an application encounters an end-of-record condition with the IOSTAT=
specifier, it sets the value of the variable specified by the IOSTAT= specifier to -4
and branches to the EOR= label if that label is present. If the IOSTAT= and EOR=
specifiers are not present on the I/O statement when an application encounters an
end-of-record condition, the application stops.

Table 21. IOSTAT values for end-of-record conditions

IOSTAT Value End-of-Record Condition Description

-4 End of record encountered on a nonadvancing, format-directed READ
of an internal or external file.

End-of-file conditions
An end-of-file condition can occur in the following instances:
v At the beginning of the execution of an input statement.
v During execution of a formatted input statement that requires more than one

record through the interaction of the input list and the format.
v During execution of a stream input statement.
v When encountering an endfile record while reading of a file connected for

sequential access.
v When attempting to read a record beyond the end of an internal file.

For stream access, an end-of-file condition occurs when you attempt to
read beyond the end of a file. An end-of-file condition also occurs if you attempt to
read beyond the last record of a stream file connected for formatted access.

An end-of-file condition causes IOSTAT= to be set to one of the values defined
below and branches to the END= label if these specifiers are present on the input
statement. If the IOSTAT= and END= specifiers are not present on the input
statement when an end-of-file condition is encountered, the program stops.

Table 22. IOSTAT values for end-of-file conditions

IOSTAT Value End-of-File Condition Description

-1 End of file encountered on sequential or
stream READ of an external file, or END= is
specified on a direct access read and the
record is nonexistent.

-1 �1� End of file encountered on READ of an
internal file.

-2 End of file encountered on READ of an
internal file.

Note:

�1� Fortran 2003. See the IOSTAT_END run-time option for more information.

Error conditions

Catastrophic errors
Catastrophic errors are system-level errors encountered within the run-time system
that prevent further execution of the program. When a catastrophic error occurs, a

Chapter 9. XL Fortran Input/Output 223

short (non-translated) message is written to unit 0, followed by a call to the C
library routine abort(). A core dump can result, depending on how you configure
your execution environment.

Severe errors
A severe error cannot be recovered from, even if the ERR_RECOVERY run-time
option has been specified with the value YES. A severe error causes the IOSTAT=
specifier to be set to one of the values defined below and the ERR= label to be
branched to if these specifiers are present on the input/output statement. If the
IOSTAT= and ERR= specifiers are not present on the input/output statement
when a severe error condition is encountered, the program stops.

Table 23. IOSTAT Values for severe error conditions

IOSTAT Value Error Description

1 END= is not specified on a direct access
READ and the record is nonexistent.

2 End of file encountered on WRITE of an
internal file.

6 File cannot be found and STATUS='OLD' is
specified on an OPEN statement.

10 Read error on direct file.

11 Write error on direct file.

12 Read error on sequential or stream file.

13 Write error on sequential or stream file.

14 Error opening file.

15 Permanent I/O error encountered on file.

37 Dynamic memory allocation failure - out of
memory.

38 REWIND error.

39 ENDFILE error.

40 BACKSPACE error.

107 File exists and STATUS='NEW' was specified
on an OPEN statement.

119 BACKSPACE statement attempted on unit
connected to a tape device.

122 Incomplete record encountered during direct
access READ.

130 ACTION='READWRITE' specified on an
OPEN statement to connect a pipe.

135 The user program is making calls to an
unsupported version of the XL Fortran
run-time environment.

139 I/O operation not permitted on the unit
because the file was not opened with an
appropriate value for the ACTION=
specifier.

142 CLOSE error.

144 error.

224 XL Fortran: Language Reference for Big Endian Distributions

Table 23. IOSTAT Values for severe error conditions (continued)

IOSTAT Value Error Description

152 ACCESS='DIRECT' is specified on an OPEN
statement for a file that can only be accessed
sequentially.

153 POSITION='REWIND' or
POSITION='APPEND' is specified on an
OPEN statement and the file is a pipe.

156 Invalid value for RECL= specifier on an
OPEN statement.

159 External file input could not be flushed
because the associated device is not
seekable.

165 The record number of the next record that
can be read or written is out of the range of
the variable specified with the NEXTREC=
specifier of the INQUIRE statement.

169 The asynchronous I/O statement cannot be
completed because the unit is connected for
synchronous I/O only.

172 The connection failed because the file does
not allow asynchronous I/O.

173 An asynchronous READ statement was
executed while asynchronous WRITE
statements were pending for the same unit,
or an asynchronous WRITE statement was
executed while asynchronous READ
statements were pending for the same unit.

174 The synchronous I/O statement cannot be
completed because an earlier asynchronous
I/O statement has not been completed.

175 The WAIT statement cannot be completed
because the value of the ID= specifier is
invalid.

176 The WAIT statement cannot be completed
because the corresponding asynchronous
I/O statement is in a different scoping unit.

178 The asynchronous direct WRITE statement
for a record is not permitted because an
earlier asynchronous direct WRITE
statement for the same record has not been
completed.

179 The I/O operation cannot be performed on
the unit because there are still incomplete
asynchronous I/O operations on the unit.

181 A file cannot be connected to a unit because
multiple connections are allowed for
synchronous I/O only.

182 Invalid value for UWIDTH= option. It must
be set to either 32 or 64.

Chapter 9. XL Fortran Input/Output 225

Table 23. IOSTAT Values for severe error conditions (continued)

IOSTAT Value Error Description

183 The maximum record length for the unit is
out of the range of the scalar variable
specified with the RECL= specifier in the
INQUIRE statement.

184 The number of bytes of data transmitted is
out of the range of the scalar variable
specified with the SIZE= or NUM= specifier
in the I/O statement.

185 A file cannot be connected to two units with
different UWIDTH values.

186 Unit numbers must be in the range 0 to
2,147,483,647.

192 The value of the file position is out of the
range of the scalar variable specified with
the POS= specifier in the INQUIRE
statement.

193 The value of the file size is out of the range
of the scalar variable specified with the
SIZE= specifier in the INQUIRE statement.

200 FLUSH error.

201 The unit specified in the FLUSH statement
is connected to a non-seekable file.

Recoverable errors
A recoverable error is an error that can be recovered from. A recoverable error
causes the IOSTAT= specifier to be set to one of the values defined below and the
ERR= label to be branched to if these specifiers are present on the input/output
statement. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement and the ERR_RECOVERY run-time option is set to YES,
recovery action occurs and the program continues. If the IOSTAT= and ERR=
specifiers are not present on the input/output statement and the ERR_RECOVERY
option is set to NO, the program stops.

Table 24. IOSTAT values for recoverable error conditions

IOSTAT Value Error Description

16 Value of REC= specifier invalid on direct
I/O.

17 I/O statement not allowed on direct file.

18 Direct I/O statement on an unconnected
unit.

19 Unformatted I/O attempted on formatted
file.

20 Formatted I/O attempted on unformatted
file.

21 Sequential or stream I/O attempted on
direct file.

22 Direct I/O attempted on sequential or
stream file.

226 XL Fortran: Language Reference for Big Endian Distributions

Table 24. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value Error Description

23 Attempt to connect a file that is already
connected to another unit.

24 OPEN specifiers do not match the connected
file's attributes.

25 RECL= specifier omitted on an OPEN
statement for a direct file.

26 RECL= specifier on an OPEN statement is
negative.

27 ACCESS= specifier on an OPEN statement is
invalid.

28 FORM= specifier on an OPEN statement is
invalid.

29 STATUS= specifier on an OPEN statement is
invalid.

30 BLANK= specifier on an OPEN statement is
invalid.

31 FILE= specifier on an OPEN or INQUIRE
statement is invalid.

32 STATUS='SCRATCH' and FILE= specifier
specified on same OPEN statement.

33 STATUS='KEEP' specified on CLOSE
statement when file was opened with
STATUS='SCRATCH'.

34 Value of STATUS= specifier on CLOSE
statement is invalid.

36 Invalid unit number specified in an I/O
statement.

47 A namelist input item was specified with
one or more components of nonzero rank.

48 A namelist input item specified a zero-sized
array.

58 Format specification error.

93 I/O statement not allowed on error unit
(unit 0).

110 Illegal edit descriptor used with a data item
in formatted I/O.

120 The NLWIDTH setting exceeds the length of
a record.

125 BLANK= specifier given on an OPEN
statement for an unformatted file.

127 POSITION= specifier given on an OPEN
statement for a direct file.

128 POSITION= specifier value on an OPEN
statement is invalid.

129 ACTION= specifier value on an OPEN
statement is invalid.

Chapter 9. XL Fortran Input/Output 227

Table 24. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value Error Description

131 DELIM= specifier given on an OPEN
statement for an unformatted file.

132 DELIM= specifier value on an OPEN
statement is invalid.

133 PAD= specifier given on an OPEN statement
for an unformatted file.

134 PAD= specifier value on an OPEN statement
is invalid.

136 ADVANCE= specifier value on a READ
statement is invalid.

137 ADVANCE='NO' is not specified when
SIZE= is specified on a READ statement.

138 ADVANCE='NO' is not specified when
EOR= is specified on a READ statement.

145 READ or WRITE attempted when file is
positioned after the endfile record.

163 Multiple connections to a file located on a
non-random access device are not allowed.

164 Multiple connections with ACTION='WRITE'
or ACTION='READWRITE' are not allowed.

170 ASYNCH= specifier value on an OPEN
statement is invalid.

171 ASYNCH= specifier given on an OPEN
statement is invalid because the FORM=
specifier is set to FORMATTED.

177 The unit was closed while there were still
incomplete asynchronous I/O operations.

191 The RECL= specifier is specified on an
OPEN statement that has
ACCESS='STREAM'.

194 The BACKSPACE statement specifies a unit
connected for unformatted stream I/O.

195 POS= specifier on an I/O statement is less
than one.

196�1� The stream I/O statement cannot be
performed on the unit because the unit is
not connected for stream access.

197 POS= specifier on an I/O statement for a
unit connected to a non-seekable file.

198 Stream I/O statement on an unconnected
unit.

202�1� The ID=, POS=, or REC= specifier is not
allowed in a child READ or WRITE
statement.

203�1� The child READ or WRITE statement
specified a unit number which does not
match the unit number of the parent
statement.

228 XL Fortran: Language Reference for Big Endian Distributions

Table 24. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value Error Description

204�1� The child READ or WRITE statement is not
allowed because the parent statement is not
a READ or WRITE statement.

205 The user-defined derived type I/O
procedure set the IOSTAT variable, but the
parent statement did not specify IOSTAT=.

209 The BLANK= specifier in the READ
statement has an illegal value.

210 A specifier in the READ statement has an
illegal value.

211 The DELIM= specifier in the WRITE
statement has an illegal value.

212�1� The data item in the formatted READ or
WRITE statement must be processed by a
DT edit descriptor. The READ or WRITE
statement is ignored.

213 The NAMELIST item name encountered by
the NAMELIST READ statement was not
followed by an equals ('=')

214 The DELIM= specifier in the internal WRITE
statement has an illegal value.

215 SIGN= specifier value on a WRITE
statement is invalid for the external file.

216 SIGN= specifier value on a WRITE
statement is invalid for the internal file.

217 SIGN= specifier given on an OPEN
statement for an unformatted file.

218 SIGN= specifier value on an OPEN
statement is invalid.

219 DECIMAL= specifier value is invalid for
external file.

220 DECIMAL= specifier value is invalid for
internal file.

221 DECIMAL= specifier is used in an
unformatted I/O statement.

222 The ROUND= specifier was specified in an
OPEN statement with
FORM='UNFORMATTED'

223 The ROUND= specifier in the I/O statement
has an illegal value.

224 There is no outstanding asynchronous data
transfer specified by the ID= specifier.

225 A specifier in the OPEN statement has an
illegal value.

226 There is no outstanding asynchronous data
transfer specified.

227 Asynchronous data transfer error is not
associated with the specified unit.

Chapter 9. XL Fortran Input/Output 229

Table 24. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value Error Description

228 The UFMT_LITTLEENDIAN option was
specified for a unit connected for formatted
I/O.

229 The v-list of the DT edit descriptor contains
an unexpected character.

230 The v-list of the DT edit descriptor contains
an unexpected non-printable character.

231 Asynchronous data transfer error is not
associated with the specified file.

232 OpenMP thread number is not available.

233 BACKSPACE performed on a unit that does
not have read access.

235 ENCODING= specifier is used in OPEN
statement for an unformatted file.

236 ENCODING= specifier has incorrect value in
the OPEN statement.

240�2� NEWUNIT= specifer in an OPEN statement
is missing FILE= or STATUS= with value
'SCRATCH'.

Note:

1. Fortran 2003
2. Fortran 2008

Conversion errors
A conversion error occurs as a result of invalid data or the incorrect length of data
in a data transfer statement. A conversion error causes the IOSTAT= specifier to be
set to one of the values defined below and the ERR= label to be branched to if
these specifiers are present on the input/output statement and the CNVERR
option is set to YES. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement, both the CNVERR option and the ERR_RECOVERY
option are set to YES, recovery action is performed and the program continues. If
the IOSTAT= and ERR= specifiers are not present on the input/output statement,
the CNVERR option is set to YES, the ERR_RECOVERY option is set to NO, and
the program stops. If CNVERR is set to NO, the ERR= label is never branched to
but the IOSTAT= specifier may be set, as indicated below.

Table 25. IOSTAT values for conversion error conditions

IOSTAT
Value Error Description

IOSTAT set if
CNVERR=NO

3 End of record encountered on an unformatted file. no

4 End of record encountered on a formatted external file
using advancing I/O.

no

5 End of record encountered on an internal file. no

7 Incorrect format of list-directed input found in an external
file.

yes

8 Incorrect format of list-directed input found in an internal
file.

yes

230 XL Fortran: Language Reference for Big Endian Distributions

Table 25. IOSTAT values for conversion error conditions (continued)

IOSTAT
Value Error Description

IOSTAT set if
CNVERR=NO

9 List-directed or NAMELIST data item too long for the
internal file.

yes

41 Valid logical input not found in external file. no

42 Valid logical input not found in internal file. no

43 Complex value expected using list-directed or NAMELIST
input in external file but not found.

no

44 Complex value expected using list-directed or NAMELIST
input in internal file but not found.

no

45 NAMELIST item name specified with unknown or invalid
derived-type component name in NAMELIST input.

no

46 NAMELIST item name specified with an invalid substring
range in NAMELIST input.

no

49 List-directed or namelist input contained an invalid
delimited character string.

no

56 Invalid digit found in input for B, O or Z format edit
descriptors.

no

84 NAMELIST group header not found in external file. yes

85 NAMELIST group header not found in internal file. yes

86 Invalid NAMELIST input value found in external file. no

87 Invalid NAMELIST input value found in internal file. no

88 Invalid name found in NAMELIST input. no

90 Invalid character in NAMELIST group or item name in
input.

no

91 Invalid NAMELIST input syntax. no

92 Invalid subscript list for NAMELIST item in input. no

94 Invalid repeat specifier for list-directed or NAMELIST
input in external file.

no

95 Invalid repeat specifier for list-directed or NAMELIST
input in internal file.

no

96 Integer overflow in input. no

97 Invalid decimal digit found in input. no

98 Input too long for B, O or Z format edit descriptors. no

121 Output length of NAMELIST item name or NAMELIST
group name is longer than the maximum record length or
the output width specified by the NLWIDTH option.

yes

Fortran 90, 95, 2003, and 2008 standard language errors
Fortran 90 standard language errors

A Fortran 90 language error results from the use of XL Fortran extensions to the
Fortran 90 language that cannot be detected at compile time. A Fortran 90
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 90STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=90STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable

Chapter 9. XL Fortran Input/Output 231

error. If LANGLVL= EXTENDED is specified, the error condition is not considered
an error.

Fortran 95 standard language errors

A Fortran 95 language error results from the use of XL Fortran extensions to the
Fortran 95 language that cannot be detected at compile time. A Fortran 95
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 95STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=95STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable
error. If LANGLVL=EXTENDED is specified, the error condition is not considered
an error.

Fortran 2003 standard language errors

A Fortran 2003 standard language error results from the use of XL Fortran
extensions to the Fortran 2003 language standard that cannot be detected at
compile time. A Fortran 2003 language error is considered a severe error when the
LANGLVL run-time option has been specified with the value 2003STD and the
ERR_RECOVERY run-time option has either not been set or is set to NO. If both
LANGLVL=2003STD and ERR_RECOVERY=YES have been specified, the error is
considered a recoverable error. If LANGLVL=EXTENDED is specified, the error
condition is not considered an error.

Fortran 2008 standard language errors

A Fortran 2008 standard language error results from the use of XL Fortran
extensions to the Fortran 2008 language standard that cannot be detected at
compile time. A Fortran 2008 language error is considered a severe error when the
LANGLVL run-time option has been specified with the value 2008STD and the
ERR_RECOVERY run-time option has either not been set or is set to NO. If both
LANGLVL=2008STD and ERR_RECOVERY=YES have been specified, the error is
considered a recoverable error. If LANGLVL=EXTENDED is specified, the error
condition is not considered an error.

Table 26. IOSTAT Values for Fortran 90, 95, 2003, and 2008 Standard Language Error
Conditions

IOSTAT Value Error Description

53 Mismatched edit descriptor and item type in
formatted I/O.

58 Format specification error.

140 Unit is not connected when the I/O
statement is attempted. Only for READ,
WRITE, PRINT, REWIND, and ENDFILE.

141 Two ENDFILE statements without an
intervening REWIND or BACKSPACE on
the unit.

151 The FILE= specifier is missing and the
STATUS= specifier does not have a value of
'SCRATCH' on an OPEN statement.

187 NAMELIST comments are not allowed by
the Fortran 90 standard.

232 XL Fortran: Language Reference for Big Endian Distributions

Table 26. IOSTAT Values for Fortran 90, 95, 2003, and 2008 Standard Language Error
Conditions (continued)

IOSTAT Value Error Description

199 STREAM is not a valid value for the
ACCESS= specifier on an OPEN statement
in Fortran 90 or Fortran 95.

Chapter 9. XL Fortran Input/Output 233

234 XL Fortran: Language Reference for Big Endian Distributions

Chapter 10. Input/Output formatting

Formatted READ, WRITE and PRINT data transfer statements use formatting
information to direct the conversion between internal data representations and
character representations in a formatted record. You can control the conversion
process, called editing, by using a formatting type. The Formatting and Access Types
table details the access types that support each formatting type.

Table 27. Formatting and access types

Formatting Type Access Types

Format-directed sequential, direct, and stream

List-directed sequential and stream

Namelist sequential and stream

Editing occurs on all fields in a record. A field is the part of a record that is read
on input or written on output when format control processes a data or character
string edit descriptor. The field width is the size of that field in characters.

Format-directed formatting
Format-directed formatting allows you to control editing using edit descriptors in a
format specification. Specify a format specification in a FORMAT statement or as
the value of a character array or character expression in a data transfer statement.
Edit descriptors allow you to control editing in the following ways:
v Data edit descriptors allow you to specify editing by data type
v Control edit descriptors focus on the editing process
v Character string edit descriptors control string outputs

Complex editing
To edit complex values, you must specify complex editing by using a pair of data
edit descriptors. A complex value is a pair of separate real components. When
specifying complex editing, the first edit descriptor applies to the real part of the
number. The second edit descriptor applies to the imaginary part of the number.

You can specify different edit descriptors for a complex editing pair and use one or
more control edit descriptors between the edit descriptors in that pair. You must
not specify data edit descriptors between the edit descriptors in that pair.

Data edit descriptors
Data edit descriptors allow you to specify editing by data type. You can use them
to edit character, numeric, logical, and derived type data. The Data Edit Descriptors
table contains a complete list of all character, character string, numeric, logical, and
derived type edit descriptors. Numeric data refers to integer, real, and complex
values.

© Copyright IBM Corp. 1996, 2014 235

Table 28. Data edit descriptors

Forms Use

A
Aw

Edits character values

Bw
Bw.m

Edits binary values

DT •
DTchar-literal-constant •
DT(v-list) •
DTchar-literal-constant(v-list) •

Edits an item of derived type. You can use a procedure
instead of the default input/output formatting of an item
of derived type.

Ew.d
Ew.dEe
Ew.dDe *
Ew.dQe *
Dw.d
ENw.d
ENw.dEe
ESw.d
ESw.dEe
Qw.d *

Edits real and complex numbers with exponents

Fw.d Edits real and complex numbers without exponents

Gw.d
Gw.dEe
Gw.dDe *
Gw.dQe *

Edits data fields of any intrinsic type, with the output
format adapting to the type of the data and, if the data is
of type real, the magnitude of the data

Iw
Iw.m

Edits integer numbers

Lw Edits logical values

Ow
Ow.m

Edits octal values

Q * Returns the count of characters remaining in an input
record *

Zw
Zw.m

Edits hexadecimal values

where:

char-literal-constant
Specifies a character literal constant in a DT edit descriptor that must not
have a kind parameter.

v Fortran 2003

* Specifies an IBM extension.

d Specifies the number of digits to the right of the decimal point.

236 XL Fortran: Language Reference for Big Endian Distributions

e Specifies the number of digits in the exponent field.

m Specifies the number of digits to print.

n Specifies the number of characters in a literal field. Blanks are included in
character count.

v-list
A comma-separated list of integer literal constants that have the same kind
parameter.

w Specifies the width of a field including all blanks as a positive value.

If you specify the B, F, I, O, or Z, edit descriptors on output, the value of
w can be zero.

Rules for Data Edit Descriptor and Modifiers
You must not specify kind type parameters.

Edit descriptor modifiers must be unsigned integer literal constants.

IBM extension

For the w, m, d, and e modifiers, you must enclose a scalar integer expression in
angle brackets (< and >). See “Variable format expressions (IBM extension)” on
page 373 for details.

Note:

There are two types of Q data edit descriptor:

extended precision Q
is the Q edit descriptor with theQw.d syntax

character count Q
is the Q edit descriptor with the Q syntax

End of IBM extension

Rules for numeric edit descriptors on input
Leading blanks are not significant. You can control the interpretation of other
blanks using the BLANK= specifier in the OPEN or READ statements and the BN
and BZ edit descriptors. A field of all blanks is treated as zero.

Plus signs are optional, though you must not specify plus signs for the B, O, and Z
edit descriptors.

In F, E, EN, ES, D, G, and extended precision Q editing, a decimal point appearing
in the input field overrides the portion of an edit descriptor that specifies the
decimal point location. The field can contain more digits than can be represented
internally.

Input of IEEE Exceptional Values

For real and complex editing, XL Fortran can now input IEEE exceptional values.
The Fortran 2003 standard specifies a set of values for IEEE NaN (Not-a-Number)
and IEEE infinity which XL Fortran now supports, along with another set of IEEE
NaN values that are unique to XL Fortran. Input of IEEE exceptional values under
real and complex editing are governed by the field width of the real or complex

Chapter 10. Input/Output formatting 237

edit descriptor. IEEE exceptional values are case insensitive during input. The F, E,
EN, ES, D, G, and Q edit descriptors support the input of IEEE exceptional values.

The Fortran 2003 standard allows the following values for IEEE infinity: 'INF',
'+INF', '-INF', 'INFINITY', '+INFINITY', or '-INFINITY'. These values can be
preceded and followed by blanks.

The Fortran 2003 standard allows the following values for IEEE NaN: 'NAN',
'+NAN', or '-NAN'. The sign that precedes 'NAN' will not have any significant
meaning in XL Fortran. These values can also be preceded and followed by blanks.
IEEE NaN can also be directly followed by zero or more characters in parentheses.
The parentheses are used to indicate a quiet or signaling NaN. If only 'NAN' or
'NAN()' is specified it is interpreted as a quiet NaN. 'NAN(Q)' will be interpreted
as a quiet NaN, and 'NAN(S)' as a signaling NaN. Any other alphanumeric
characters specified inside the parentheses will have no significant meaning and
will be interpreted as a quiet NaN by default.

As an IBM extension, XL Fortran allows the following values for IEEE NaN:
'NANQ' or 'NANS'. These exceptional values are case insensitive. 'NANQ' will be
interpreted as a quiet NaN and 'NANS' as a signaling NaN. This form of IEEE
NaN will only be allowed when the runtime option 'langlvl' is set to 'extended'.

Rules for numeric data edit descriptors on output
Characters are right-justified in the field.

When the number of characters in a field is less than the field width, leading
blanks fill the remaining field space.

When the number of characters in a field is greater than the field width, or if an
exponent exceeds its specified width, asterisks fill the entire field space.

A minus sign prefixes a negative value. A positive or zero value does not receive a
plus sign prefix on output, unless you specify the S, SP, or SS edit descriptors.

If you specify the -qxlf90 compiler option the E, D, Q(Extended Precision), F, EN,
ES and G(General Editing) edit descriptors output a negative value differently
depending on the signedzero suboption.
v If you specify the signedzero suboption, the output field contains a minus sign

for a negative value, even if that value is negative zero. This behavior conforms
to the Fortran 95, Fortran 2003, and Fortran 2008 standards.

XL Fortran does not evaluate a REAL(16) internal value of zero as a
negative zero.

v If you specify the nosignedzero suboption, a minus sign is not written to the
output field for a value of zero, even if the internal value is negative.

The EN and ES edit descriptors output a minus sign when the value is negative
for the signedzero and nosignedzero suboptions.

Output of IEEE Exceptional Values

XL Fortran supports output of IEEE exceptional values for real and complex
editing. Output of IEEE exceptional values can be Fortran 2003 standard compliant
or compatible with previous releases of XL Fortran. A new compiler option and
runtime option control the output of IEEE exceptional values. The
-qxlf2003=oldnaninf compiler option will output IEEE exceptional values like

238 XL Fortran: Language Reference for Big Endian Distributions

previous releases of XL Fortran; whereas, -qxlf2003=nooldnaninf will output IEEE
exceptional values in accordance with the Fortran standard. In addition to the
compiler option, a new runtime option, naninfoutput, can force the output of IEEE
exceptional values to be Fortran 2003 standard compliant or compliant to the
previous releases of XL Fortran. For more information on the naninfoutput
runtime option see: Running XL Fortran programs section of the XL Fortran
Compiler Reference. The F, E, EN, ES, D, G, and Q edit descriptors support the
output of IEEE exceptional values.

Output of IEEE exceptional values under real and complex editing are governed by
the field width of the real or complex edit descriptor. IEEE exceptional values are
case sensitive during output.

Fortran 2003 Standard Output

IEEE infinity is output as 'Inf'. It can be preceded by as many blanks as necessary
to be right justified. If the internal value is positive infinity, it can also be directly
preceded by an optional plus sign if the field width allows for it. If the field width
is less than three, asterisks are output instead. However, if the SIGN= specifier has
a value of 'PLUS' or the 'sp' descriptor is used, then the plus sign is mandatory
and the minimum field width is 4. If the internal value is negative infinity, it must
be preceded by a negative sign. The minimum field width is 4. If the field width is
less than four, asterisks are output instead.

IEEE Nan is output as 'NaN'. It can be preceded by as many blanks as necessary to
be right justified. If the field width is greater than or equal to five, the standard
allows for zero or more alphanumeric characters in parentheses to optionally
follow the 'NaN'. XL Fortran will output 'NaN(Q)' for a quiet NaN and 'NaN(S)'
for a signaling NaN if the field width is greater than five, otherwise only a 'NaN'
is output. If the field width is less than three, asterisks are output instead.

Previous XL Fortran Output

IEEE infinity is output as 'INF'. It can be preceded by as many blanks as necessary
to be right justified. If the field width is less than three, asterisks are output
instead.

IEEE NaN is output as 'NaNQ' for a quiet NaN and 'NaNS' for a signaling NaN. It
can also be directly preceded by an optional sign. It can be preceded by as many
blanks as necessary to be right justified. If the field width is less than four,
asterisks are output instead.

Rules for derived type edit descriptors (Fortran 2003)
The DT edit descriptor allows you to provide a procedure instead of the default
input/output formatting for processing a list item of derived type. If you specify
the optional char-literal-constant, the character value DT is concatenated to the
char-literal-constant and passed to your user-defined derived-type input/output
procedure as the iotype argument.

The values in the v-list of the DT edit descriptor are passed to the derived-type
input/output procedure you define as the v_list array argument.

If a derived type variable or value corresponds to the DT edit descriptor, there
must be an accessible interface to a derived type input/output procedure for that
derived type.

Chapter 10. Input/Output formatting 239

You must not specify a DT edit descriptor as a non-derived type list item.

Control edit descriptors
Table 29. Control edit descriptors

Forms Use

/
r /

Specifies the end of data transfer on the current record

: Specifies the end of format control if there are no more items in the
input/output list

$ * Suppresses end-of-record in output *

BN Ignores nonleading blanks in numeric input fields

BZ Interprets nonleading blanks in numeric input fields as zeros

DC v Specifies decimal comma as the decimal edit mode.

DP v Specifies decimal point as the decimal edit mode.

kP Specifies a scale factor for real and complex items.

RU v Specifies the UP rounding mode.

RC v Specifies the COMPATIBLE rounding mode.

RD v Specifies the DOWN rounding mode.

RN v Specifies the NEAREST rounding mode.

RP v Specifies the PROCESSOR_DEFINED rounding mode.

RZ v Specifies the ZERO rounding mode.

S
SS

Specifies that plus signs are not to be written

SP Specifies that plus signs are to be written

Tc Specifies the absolute position in a record from which, or to which,
the next character is transferred

TLc Specifies the relative position (backward from the current position
in a record) from which, or to which, the next character is
transferred

TRc
oX

Specifies the relative position (forward from the current position in
a record) from which, or to which, the next character is transferred

where:

v Fortran 2003

* specifies an IBM extension.

r is a repeat specifier. It is an unsigned, positive, integer literal constant.

k specifies the scale factor to be used. It is an optionally signed, integer
literal constant.

c specifies the character position in a record. It is an unsigned, nonzero,
integer literal constant.

o is the relative character position in a record. It is an unsigned, nonzero,
integer literal constant.

240 XL Fortran: Language Reference for Big Endian Distributions

Rules for Control Edit Descriptors and Modifiers
You must not specify kind type parameters.

r, k, c, and o can also be expressed as an arithmetic expression enclosed
by angle brackets that evaluates into an integer value.

Character string edit descriptors
Character string edit descriptors allow you to edit character data.

Forms Use Page

nHstr Outputs a character string (str) “H Editing” on
page 254

'str'
"str"

Outputs a character string (str) “Apostrophe/
Double quotation
mark editing”

n is the number of characters in a literal field. It is an unsigned, positive,
integer literal constant. Blanks are included in character count. A kind type
parameter cannot be specified.

Apostrophe/Double quotation mark editing
Purpose

The apostrophe/double quotation mark edit descriptor specifies a character literal
constant in an output format specification.

Syntax
v ’character string’

v "character string"

Rules

The width of the output field is the length of the character literal constant. See
“Character” on page 42 for additional information on character literal constants.

IBM extension

Note:

1. A backslash is recognized, by default, as an escape sequence, and as a
backslash character when the -qnoescape compiler option is specified. See
escape sequences for more information.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and
filenames.

End of IBM extension

Chapter 10. Input/Output formatting 241

Examples
ITIME=8
WRITE(*,5) ITIME

5 FORMAT(’The value is -- ’,I2) ! The value is -- 8
WRITE(*,10) ITIME

10 FORMAT(I2,’o’’clock’) ! 8o’clock
WRITE(*,’(I2,7Ho’’clock)’) ITIME ! 8o’clock
WRITE(*,15) ITIME

15 FORMAT("The value is -- ",I2) ! The value is -- 8
WRITE(*,20) ITIME

20 FORMAT(I2,"o’clock") ! 8o’clock
WRITE(*,’(I2,"o’’clock")’) ITIME ! 8o’clock

Effective list items (Fortran 2003)
This section discusses the rules for expanding a data transfer statement's array and
derived-type input/output list items. The scalar objects that result from the
application of these rules are called effective items. Zero-sized arrays and
implied-DO lists with an iteration count of zero do not contribute to the effective
list items. A scalar character item of zero length is an effective list item.

The following rules are re-applied to each expanded list item until none of the
rules applies.
1. If an array appears as an input/output list item, it is treated as if the elements,

if any, were specified in array element order.
2. If a list item of derived type in an unformatted input/output statement is not

processed by a user-defined derived-type input/output procedure, and if any
subobject of that list item would be processed by a user-defined derived-type
input/output procedure, the list item is treated as if all of the components of
the object were specified in the list in component order. Those components are
accessible in the scoping unit containing the input/output statement, and they
must not be pointers or allocatable.

3. An effective input/output list item of derived type in an unformatted
input/output statement is treated as a single value in a processor-dependent
form, unless the list item or a subobject of a list item is processed by a
user-defined derived-type input/output procedure.

4. If a list item of derived type in a formatted input/output statement is not
processed by a user-defined derived-type input/output procedure, that list item
is treated as if all of the components of the list item were specified in the list in
component order. Those components are accessible in the scoping unit
containing the input/output statement, and they must not be pointers or
allocatable.

5. If a derived-type list item is not treated as a list of its individual components,
its ultimate components cannot have the POINTER or ALLOCATABLE
attribute, unless the list item is processed by a user-defined derived-type
input/output procedure.

Interaction of Input/Output lists and format specifications
Beginning format-directed formatting initiates format control. Each action of format
control depends on the next edit descriptor in the format specification, and on the
next effective item in the input/output list, if one exists.

If an input/output list specifies at least one effective item, at least one data edit
descriptor must exist in the format specification. Note that an empty format
specification (parentheses only) can be used only if there are no effective items in
the input/output list or if each item is a zero-sized array or an implied-DO list

242 XL Fortran: Language Reference for Big Endian Distributions

with an iteration count of zero. If this is the case and advancing input/output is in
effect, one input record is skipped, or one output record containing no characters is
written. For nonadvancing input/output, the file position is left unchanged.

A format specification is interpreted from left to right, except when a repeat
specification (r) is present. A format item that is preceded by a repeat specification
is processed as a list of r format specifications or edit descriptors identical to the
format specification or edit descriptor without the repeat specification.

One effective item specified by the input/output list corresponds to each data edit
descriptor. An effective list item of complex type requires the interpretation of two
F, E, EN, ES, D, G, or extended precision Q edit descriptors. No item specified by
the input/output list corresponds to a control edit descriptor or character string
edit descriptor. Format control communicates information directly with the record.

Format control operates as follows:
1. If a data edit descriptor is encountered, format control processes an effective

input/output list item, if there is one, or terminates the input/output command
if the list is empty. If the effective list item processed is of type complex, any
two edit descriptors are processed.

2. The colon edit descriptor terminates format control if no more effective items
are in the input/output list. If more effective items are in the input/output list
when the colon is encountered, it is ignored.

3. If the end of the format specification is reached, format control terminates if the
entire effective input/output list has been processed, or control reverts to the
beginning of the format item terminated by the last preceding right parenthesis.
The following items apply when the latter occurs:
v The reused portion of the format specification must contain at least one data

edit descriptor.
v If reversion is to a parenthesis that is preceded by a repeat specification, the

repeat specification is reused.
v Reversion, of itself, has no effect on the scale factor, on the S, SP, or SS edit

descriptors, or on the BN or BZ edit descriptors.
v If format control reverts, the file is positioned in a manner identical to the

way it is positioned when a slash edit descriptor is processed.

During a read operation, any unprocessed characters of the record are
skipped whenever the next record is read. A comma or semicolon can be used as a
value separator for noncharacter data in an input record processed under
format-directed formatting. The value separator will override the format width
specifications when it appears before the end of the field width. For example, the
format (I10,F20.10,I4) will read the following record correctly:
-345, .05E-3, 12

It is important to consider the maximum size record allowed on the input/output
medium when defining a Fortran record by a FORMAT statement. For example, if
a Fortran record is to be printed, the record should not be longer than the printer's
line length.

Chapter 10. Input/Output formatting 243

Comma-separated Input/Output (IBM extension)
When reading floating-point data using format-directed input/output, a comma
that appears in the input terminates the field. This can be useful for reading files
containing comma-separated values.

For example, the following program reads two reals using the E edit descriptor. It
requires that the field width be 16 characters. The program attempts to read the
remaining characters in the record as a character string.
> cat read.f
real a,b
character*10 c
open(11, access=’sequential’, form=’formatted’)
read(11, ’(2e16.10, A)’) a,b,c
print *, a
print *, b
print *, c
end

If the floating-point fields are 16 characters wide, as the format specifies, the
program executes correctly. (0.4000000000E+02 is 16 characters long.)
> cat fort.11
0.4000000000E+020.3000000000E+02hello
> a.out
40.00000000
30.00000000
hello

But if the floating-point input contains less than 16 characters, errors occur because
parts of the next field are read. (0.400000E+02 is 12 characters long.)
> cat fort.11
0.400000E+020.3000000E+02hello
> a.out
1525-097 A READ statement using decimal base input found the invalid digit
’.’ in the input file.
The program will recover by assuming a zero in its place.
1525-097 A READ statement using decimal base input found the invalid digit
’h’ in the input file.
The program will recover by assuming a zero in its place.
1525-097 A READ statement using decimal base input found the invalid digit
’e’ in the input file.
The program will recover by assuming a zero in its place.
1525-097 A READ statement using decimal base input found the invalid digit
’l’ in the input file.
The program will recover by assuming a zero in its place.
1525-097 A READ statement using decimal base input found the invalid digit
’l’ in the input file.
The program will recover by assuming a zero in its place.
1525-097 A READ statement using decimal base input found the invalid digit
’o’ in the input file.
The program will recover by assuming a zero in its place.
INF
0.0000000000E+00

If you use commas to terminate the fields, the floating-point values are read
correctly. (0.400000E+02 is 12 characters long, but the fields are separated by
commas.)

244 XL Fortran: Language Reference for Big Endian Distributions

> cat fort.11
0.400000E+02,0.3000000E+02,hello
> a.out
40.00000000
30.00000000
hello

If decimal comma mode is in effect, a semicolon acts as a value separator instead
of a comma.

Data edit descriptors
In the examples of data edit descriptors, a lowercase b in the Output column
indicates that a blank appears at that position.

A (Character) Editing
Purpose

The A edit descriptor directs the editing of character values. It can correspond to
an input/output list item of type character or any other type. The kind type
parameter of all characters transferred and converted is implied by the
corresponding list item.

Syntax
v A

v Aw

Rules

On input, if w is greater than or equal to the length (call it len) of the input list
item, the rightmost len characters are taken from the input field. If the specified
field width is less than len, the w characters are left-justified, with (len - w)
trailing blanks added.

On output, if w is greater than len, the output field consists of (w - len) blanks
followed by the len characters from the internal representation. If w is less than or
equal to len, the output field consists of the leftmost w characters from the internal
representation.

If w is not specified, the width of the character field is the length of the
corresponding input/output list item.

During formatted stream access, character output is split across more than
one record if it contains newline characters.

B (Binary) Editing
Purpose

The B edit descriptor directs editing between values of any type in internal form
and their binary representation. (A binary digit is either 0 or 1.)

Syntax
v Bw

v Bw.m

Chapter 10. Input/Output formatting 245

Rules

On input, w binary digits are edited and form the internal representation for the
value of the input list item. The binary digits in the input field correspond to the
rightmost binary digits of the internal representation of the value assigned to the
input list item. m has no effect on input.

On input, w must be greater than zero.

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

The output field for Bw consists of zero or more leading blanks followed by the
internal value in a form identical to the binary digits without leading zeros. Note
that a binary constant always consists of at least one digit.

The output field for Bw.m is the same as for Bw, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w unless w is zero. If m is zero
and the value of the internal data is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero, and the value of the
internal datum is zero, the output field consists of only one blank character.

If the nooldboz suboption of the -qxlf77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BLANK= specifier and the BN and BZ edit descriptors
affect the B edit descriptor.

If the oldboz suboption of the -qxlf77 compiler option is specified, the
following occurs on output:
v Bw is treated as Bw.m, with m assuming the value that is the minimum of w and

the number of digits required to represent the maximum possible value of the
data item.

v The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BLANK= specifier and the BN and BZ edit
descriptors do not affect the B edit descriptor.

Examples

Example 1: Examples of B editing on input
Input Format Value
111 B3 7
110 B3 6

Example 2: Examples of B editing on output

246 XL Fortran: Language Reference for Big Endian Distributions

Value Format Output Output
(with -qxlf77=oldboz) (with -qxlf77=nooldboz)

7 B3 111 111
6 B5 00110 bb110
17 B6.5 b10001 b10001
17 B4.2 0001 ****
22 B6.5 b10110 b10110
22 B4.2 0110 ****
0 B5.0 bbbbb bbbbb

2 B0 10 10

E, D, and Q (Extended Precision) Editing
Purpose

The E, D, and extended precision Q edit descriptors direct editing between real
and complex numbers in internal form and their character representations with
exponents. An E, D, or extended precision Q edit descriptor can correspond to an
input/output list item of type real, to either part (real or imaginary) of an
input/output list item of type complex, or to any other type in XL
Fortran, as long as the length is at least 4 bytes.

Syntax
v Ew.d

v Ew.d Ee

v Dw.d

v Ew.d De

v Ew.d Qe

v Qw.d

Rules

The form of the input field is the same as for F editing. e has no effect on input.

The form of the output field for a scale factor of 0 is:

digit_string
is a digit string whose length is the d most significant digits of the value
after rounding.

decimal_exponent
is a decimal exponent of one of the following forms (z is a digit):

Edit Descriptor
Absolute Value of Exponent (with scale
factor of 0) Form of Exponent

Ew.d |decimal_exponent| ≤ 99 E±z1z2

Ew.d 99<|decimal_exponent| ≤ 309 ±z1z2z3

Ew.dEe |decimal_exponent| ≤ (10e)-1 E±z1z2 ...ze

��
+
-

. digit_string decimal_exponent
0

��

Chapter 10. Input/Output formatting 247

Edit Descriptor
Absolute Value of Exponent (with scale
factor of 0) Form of Exponent

Ew.dDe * |decimal_exponent| ≤ (10e)-1 * D±z1z2 ...ze *

Ew.dQe * |decimal_exponent| ≤ (10e)-1 * Q±z1z2 ...ze *

Dw.d |decimal_exponent| ≤ 99 D±z1z2

Dw.d 99<|decimal_exponent| ≤ 309 ±z1z2z3

Qw.d * |decimal_exponent| ≤ 99 * Q±z1z2 *

Qw.d * 99<|decimal_exponent| ≤ 309 * ±z1z2z3 *

Note: * IBM extensions

The scale factor k (see “P (Scale Factor) Editing” on page 263) controls decimal
normalization. If -d<k≤0, the output field contains |k| leading zeros and d - |k|
significant digits after the decimal symbol. If 0<k<d+2, the output field contains k
significant digits to the left of the decimal symbol and d-k+1 significant digits to
the right of the decimal symbol. You cannot use other values of k.

For general information about numeric editing on input, see “Rules for numeric
edit descriptors on input” on page 237.

For more information regarding numeric editing on output, see “Rules for numeric
data edit descriptors on output” on page 238.

Examples

Example 1: Examples of E, D, and extended precision Q editing on input

(Assume BN editing is in effect for blank interpretation.)
Input Format Value
12.34 E8.4 12.34
.1234E2 E8.4 12.34
2.E10 E12.6E1 2.E10

Example 2: Examples of E, D, and extended precision Q editing on output
Value Format Output Output

(with -qxlf77=noleadzero) (with -qxlf77=leadzero)
1234.56 E10.3 bb.123E+04 b0.123E+04
1234.56 D10.3 bb.123D+04 b0.123D+04

DT Editing (Fortran 2003)
Purpose

The DT edit descriptor allows you to specify that a user-defined procedure is
called instead of the default input/output formatting for processing an
input/output list item of derived type

Syntax
v DT

v DTchar-literal-constant

v DT(v-list)

v DTchar-literal-constant(v-list)

248 XL Fortran: Language Reference for Big Endian Distributions

Rules

The iotype dummy argument passed to the user-defined input/output procedure
contains the text from the char-literal-constant, prefixed with DT. If you do not
include a char-literal-constant, the iotype argument contains only DT.

The v-list is passed to the user-defined input/output procedure in the v_list integer
array dummy argument. If you do not include a v-list, the v_list dummy argument
is a zero-sized array.

When you use the DT edit descriptor, the corresponding derived type
input/output list item must be associated with an appropriate user-defined
derived type input/output procedure.

EN Editing
Purpose

The EN edit descriptor produces an output field in the form of a real number in
engineering notation such that the decimal exponent is divisible by 3 and the
absolute value of the significand is greater than or equal to 1 and less than 1000,
except when the output value is zero. The scale factor has no effect on output.

The EN edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,

or to any other type in XL Fortran, as long as the length is at least 4
bytes.

Syntax
v ENw.d

v ENw.dEe

Rules

The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

yyy are the 1 to 3 decimal digits representative of the most significant digits of
the value of the datum after rounding (yyy is an integer such that 1 ≤ yyy <
1000 or, if the output value is zero, yyy = 0).

digit_string
are the d next most significant digits of the value of the datum after
rounding.

exp is a decimal exponent, divisible by 3, of one of the following forms (z is a
digit):

��
+
-

. digit_string exp
yyy

��

Chapter 10. Input/Output formatting 249

Edit Descriptor Absolute Value of Exponent Form of Exponent

ENw.d |exp| ≤ 99 E±z1z2

ENw.d 99 < |exp| ≤ 309 ±z1z2z3

ENw.dEe |exp| ≤ 10e-1 E±z1 ... ze

For general information about numeric editing on input, see “Rules for numeric
edit descriptors on input” on page 237.

For more information regarding numeric editing on output, see “Rules for numeric
data edit descriptors on output” on page 238.

Examples
Value Format Output
3.14159 EN12.5 b3.14159E+00
1.41425D+5 EN15.5E4 141.42500E+0003
3.14159D-12 EN15.5E1 ***************

(with -qxlf90=signedzero) (with -qxlf90=nosignedzero)
-0.001 EN9.2 -1.00E-03 -1.00E-03

ES Editing
Purpose

The ES edit descriptor produces an output field in the form of a real number in
scientific notation such that the absolute value of the significand is greater than or
equal to 1 and less than 10, except when the output value is zero. The scale factor
has no effect on output.

The ES edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,

or to any other type in XL Fortran, as long as the length is at least 4
bytes.

Syntax
v ESw.d

v ESw.dEe

Rules

The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

y is a decimal digit representative of the most significant digit of the value of
the datum after rounding.

��
+
-

. digit_string exp
y

��

250 XL Fortran: Language Reference for Big Endian Distributions

digit_string
are the d next most significant digits of the value of the datum after
rounding.

exp is a decimal exponent having one of the following forms (z is a digit):

Edit Descriptor Absolute Value of Exponent Form of Exponent

ESw.d |exp| ≤ 99 E±z1z2

ESw.d 99 < |exp| ≤ 309 ±z1z2z3

ESw.dEe |exp| ≤ 10e-1 E±z1 ... ze

For general information about numeric editing on input, see “Rules for numeric
edit descriptors on input” on page 237.

For more information regarding numeric editing on output, see “Rules for numeric
data edit descriptors on output” on page 238.

Examples
Value Format Output
31415.9 ES12.5 b3.14159E+04
14142.5D+3 ES15.5E4 bb1.41425E+0007
31415.9D-22 ES15.5E1 ***************

(with -qxlf90=signedzero) (with -qxlf90=nosignedzero)
-0.001 ES9.2 -1.00E-03 -1.00E-03

F (Real without Exponent) Editing
Purpose

The F edit descriptor directs editing between real and complex numbers in internal
form and their character representations without exponents.

The F edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,

or to any other type in XL Fortran, as long as the length is at least 4
bytes.

Syntax
v Fw.d

Rules

The input field for the F edit descriptor consists of, in order:
1. An optional sign.
2. A string of digits optionally containing a decimal symbol. If the decimal symbol

is present, it overrides the d specified in the edit descriptor. If the decimal
symbol is omitted, the rightmost d digits of the string are interpreted as
following the decimal symbol, and leading blanks are converted to zeros if
necessary.

3. Optionally, an exponent, having one of the following forms:
v A signed digit string
v E, D, or Q followed by zero or more blanks and by an optionally signed

digit string. E, D, and Q are processed identically.

Chapter 10. Input/Output formatting 251

The output field for the F edit descriptor consists of, in order:
1. Blanks, if necessary.
2. A minus sign if the internal value is negative, or an optional plus sign if the

internal value is zero or positive.
3. A string of digits that contains a decimal symbol and represents the magnitude

of the internal value, as modified by the scale factor in effect and rounded to d
fractional digits. See “P (Scale Factor) Editing” on page 263 for more
information.

On input, w must be greater than zero.

In Fortran 95 on output, w can be zero. If w is zero, the output field consists of the
least number of characters required to represent the output value.

For general information about numeric editing on input, see “Rules for numeric
edit descriptors on input” on page 237.

For more information regarding numeric editing on output, see “Rules for numeric
data edit descriptors on output” on page 238.

Examples

Example 1: Examples of F editing on input

(Assume BN editing is in effect for blank interpretation.)
Input Format Value
-100 F6.2 -1.0
2.9 F6.2 2.9
4.E+2 F6.2 400.0

Example 2: Examples of F editing on output
Value Format Output Output

(with -qxlf77=noleadzero) (with -qxlf77=leadzero)
+1.2 F8.4 bb1.2000 bb1.2000
.12345 F8.3 bbbb.123 bbbb0.123
-12.34 F6.2 -12.34 -12.34

-12.34 F0.2 -12.34 -12.34

(with -qxlf90=signedzero) (with -qxlf90=nosignedzero)
-0.001 F5.2 -0.00 b0.00

G (General) Editing
Purpose

The G edit descriptor can correspond to an input/output list item of any type.
Editing of integer data follows the rules of the I edit descriptor; editing of real and
complex data follows the rules of the E or F edit descriptors (depending on the
magnitude of the value); editing of logical data follows the rules of the L edit
descriptor; and editing of character data follows the rules of the A edit descriptor.

Syntax
v Gw.d

v Gw.dEe

v Gw.dDe

v Gw.dQe

252 XL Fortran: Language Reference for Big Endian Distributions

Rules

For general information about numeric editing on input, see “Rules for numeric
edit descriptors on input” on page 237.

For more information regarding numeric editing on output, see “Rules for numeric
data edit descriptors on output” on page 238.

Examples
Value Format Output Output

(with -qxlf77=gedit77) (with -qxlf77=nogedit77)
0.0 G10.2 bb0.00E+00 bbb0.0
0.0995 G10.2 bb0.10E+00 bb0.10
99.5 G10.2 bb100. bb0.10E+03

Generalized real and complex editing
If the nogedit77 suboption (the default) of the -qxlf77 option is specified, the
method of representation in the output field depends on the magnitude of the
datum being edited. Let N be the magnitude of the internal datum. If
0 < N < 0.1-0.5×10 -d-1 or N ≥ 10 d-0.5 or N is 0 and d is 0, Gw.d output editing is
the same as kPE w.d output editing and Gw.dEe output editing is the same as
kPEw.dEe output editing, where kP refers to the scale factor (“P (Scale Factor)
Editing” on page 263) currently in effect. If 0.1-0.5×10-d-1 ≤ N < 10d-0.5 or N is
identically 0 and d is not zero, the scale factor has no effect, and the value of N
determines the editing as follows:

Magnitude of Datum Equivalent Conversion

N = 0 F(w-n).(d-1),n('b')
(d must not be 0)

0.1-0.5×10-d-1 ≤ N < 1-0.5×10-d F(w-n).d,n('b')

1-0.5×10-d ≤ N < 10-0.5×10-d+1 F(w-n).(d-1),n('b')

10-0.5×10-d+1

≤ N < 100-0.5×10-d+2
F(w-n).(d-2),n('b')

... ...

10d-2-0.5×10-2 ≤ N < 10d-1-0.5×10-1 F(w-n).1,n('b')

10d-1-0.5×10-1 ≤ N < 10d-0.5 F(w-n).0,n('b')

where b is a blank. n is 4 for Gw.d and e+2 for Gw.dEe. The value of w-n must also
be positive.

Note that the scale factor has no effect unless the magnitude of the datum to be
edited is outside the range that permits effective use of F editing.

If 0 < N < 0.1-0.5×10-d-1, N ≥ 10d-0.5, or N is 0 and d is 0, Gw.dDe
output editing is the same as kPEw.dDe output editing and Gw.dQe output editing
is the same as kPEw.dQe output editing.

Chapter 10. Input/Output formatting 253

On output, if the gedit77 suboption of the -qxlf77 compiler option is specified, the
number is converted using either E or F editing, depending on the number. The
field is padded with blanks on the right as necessary. Letting N be the magnitude
of the number, editing is as follows:
v If N<0.1 or N≥10d:

– Gw.d editing is the same as Ew.d editing
– Gw.dEe editing is the same as Ew.dEe editing.

v If N≥0.1 and N<10d:

Magnitude of Datum Equivalent Conversion

0.1 ≤ N < 1
1 ≤ N < 10

.

.
10d-2 ≤ N < 10d-1

10d-1 ≤ N < 10d

F(w-n).d, n('b')
F(w-n).(d-1), n('b')

.

.
F(w-n).1, n('b')
F(w-n).0, n('b')

Note: While FORTRAN 77 does not address how rounding of values affects the
output field form, Fortran 90 does. Therefore, using -qxlf77=gedit77 may produce
a different output form than -qxlf77=nogedit77 for certain combinations of values
and G edit descriptors.

H Editing
Purpose

The H edit descriptor specifies a character string (str) and its length (n) in an
output format specification. The string can consist of any of the characters allowed
in a character literal constant.

Syntax
v nH str

Rules

If an H edit descriptor occurs within a character literal constant, the constant
delimiter character (for example, apostrophe) can be represented within str if two
such characters are consecutive. Otherwise, another delimiter must be used.

The H edit descriptor must not be used on input.

Note:

1. A backslash is recognized as an escape character by default, and as a backslash
character when the -qnoescape compiler option is specified. See escape
sequences for more information.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

254 XL Fortran: Language Reference for Big Endian Distributions

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and
filenames.

4. Fortran 95 does not include the H edit descriptor, although it was part of both
FORTRAN 77 and Fortran 90. See page “Deleted features” on page 1010 for
more information.

Examples
50 FORMAT(16HThe value is -- ,I2)
10 FORMAT(I2,7Ho’clock)

WRITE(*,’(I2,7Ho’’clock)’) ITIME

I (Integer) Editing
Purpose

The I edit descriptor directs editing between integers in internal form and
character representations of integers. The corresponding input/output list item can
be of type integer or any other type in XL Fortran.

Syntax
v Iw

v Iw.m

Rules

w includes the optional sign.

m must have a value that is less than or equal to w, unless w is zero in Fortran 95.

The input field for the I edit descriptor must be an optionally signed digit string,
unless it is all blanks. If it is all blanks, the input field is considered to be zeros.

m is useful on output only. It has no effect on input.

On input, w must be greater than zero.

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

The output field for the I edit descriptor consists of, in order:
1. Zero or more leading blanks
2. A minus sign, if the internal value is negative, or an optional plus sign, if the

internal value is zero or positive
3. The magnitude in the form of:

v A digit string without leading zeros if m is not specified
v A digit string of at least m digits if m is specified and, if necessary, with

leading zeros. If the internal value and m are both zero, blanks are written.

For additional information about numeric editing, see editing.

Chapter 10. Input/Output formatting 255

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero and the value of the
internal datum is zero, the output field consists of only one blank character.

Examples

Example 1: Examples of I editing on input

(Assume BN editing is in effect for blank interpretation.)
Input Format Value
-123 I6 -123
123456 I7.5 123456
1234 I4 1234

Example 2: Examples of I editing on output
Value Format Output
-12 I7.6 -000012
12345 I5 12345

0 I6.0 bbbbbb
0 I0.0 b
2 I0 2

L (Logical) Editing
Purpose

The L edit descriptor directs editing between logical values in internal form and
their character representations. The L edit descriptor can correspond to an
input/output list item of type logical, or any other type in XL Fortran.

Syntax
v Lw

Rules

The input field consists of optional blanks, followed by an optional decimal
symbol, followed by a T for true or an F for false. w includes blanks. Any
characters following the T or F are accepted on input but are ignored; therefore, the
strings .TRUE. and .FALSE. are acceptable input forms.

The output field consists of T or F preceded by (w - 1) blanks.

Examples

Example 1: Examples of L editing on input
Input Format Value
T L4 true
.FALSE. L7 false

Example 2: Examples of L editing on output
Value Format Output
TRUE L4 bbbT
FALSE L1 F

256 XL Fortran: Language Reference for Big Endian Distributions

O (Octal) Editing
Purpose

The O edit descriptor directs editing between values of any type in internal form
and their octal representation. (An octal digit is one of 0-7.)

Syntax
v Ow

v Ow.m

Rules

w includes blanks.

On input, w octal digits are edited and form the internal representation for the
value of the input list item. The octal digits in the input field correspond to the
rightmost octal digits of the internal representation of the value assigned to the
input list item. m has no effect on input.

On input, w must be greater than zero.

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

The output field for Ow consists of zero or more leading blanks followed by the
internal value in a form identical to the octal digits without leading zeros. Note
that an octal constant always consists of at least one digit.

The output field for Ow.m is the same as for Ow, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w, unless w is zero. If m is zero
and the value of the internal datum is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If the nooldboz suboption of the -qxlf77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BLANK= specifier and the BN and BZ edit descriptors
affect the O edit descriptor.

IBM extension

If the oldboz suboption of the -qxlf77 compiler option is specified, the following
occurs on output:
v Ow is treated as Ow.m, with m assuming the value that is the minimum of w

and the number of digits required to represent the maximum possible value of
the data item.

v The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

Chapter 10. Input/Output formatting 257

With the oldboz suboption, the BLANK= specifier and the BN and BZ edit
descriptors do not affect the O edit descriptor.

End of IBM extension

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero and the value of the
internal datum is zero, the output field consists of only one blank character.

Examples

Example 1: Examples of O editing on input
Input Format Value
123 O3 83
120 O3 80

Example 2: Examples of O editing on output
Value Format Output Output

(with -qxlf77=oldboz) (with -qxlf77=nooldboz)
80 O5 00120 bb120
83 O2 23 **

0 O5.0 bbbbb bbbbb
0 O0.0 b b
80 O0 120 120

Q (Character Count) Editing (IBM extension)
Purpose

The character count Q edit descriptor returns the number of characters remaining
in an input record. The result can be used to control the rest of the input.

Syntax
v Q

Rules

There also exists the extended precision Q edit descriptor. By default, XL Fortran
only recognizes the extended precision Q edit descriptor described earlier. See “E,
D, and Q (Extended Precision) Editing” on page 247 for more information. To
enable both Q edit descriptors, you must specify the -qqcount compiler option.

When you specify the -qqcount compiler option, the compiler will distinguish
between the two Q edit descriptors by the way the Q edit descriptor is used. If
only a solitary Q is found, the compiler will interpret it as the character count Q
edit descriptor. If Qw. or Qw.d is encountered, XL Fortran will interpret it as the
extended precision Q edit descriptor. You should use correct format specifications
with the proper separators to ensure that XL Fortran correctly interprets which Q
edit descriptor you specified.

The value returned as a result of the character count Q edit descriptor depends on
the length of the input record and on the current character position in that record.
The value is returned into a scalar integer variable on the READ statement whose
position corresponds to the position of the character count Q edit descriptor in the
FORMAT statement.

258 XL Fortran: Language Reference for Big Endian Distributions

The character count Q edit descriptor can read records of the following file types
and access modes:
v Formatted sequential external files. A record of this file type is terminated by a

new-line character. Records in the same file have different lengths.
v Formatted sequential internal nonarray files. The record length is the length of

the scalar character variable.
v Formatted sequential internal array files. The record length is the length of an

element in the character array.
v Formatted direct external files. The record length is the length specified by the

RECL= specifier in the OPEN statement.
v Formatted stream external files. A record of this file type is terminated by a

new-line character. Records in the same file have different lengths.

In an output operation, the character count Q edit descriptor is ignored. The
corresponding output item is skipped.

Examples
@PROCESS QCOUNT

CHARACTER(50) BUF
INTEGER(4) NBYTES
CHARACTER(60) STRING
...
BUF = ’This string is 29 bytes long.’
READ(BUF, FMT=’(Q)’) NBYTES
WRITE(*,*) NBYTES

! NBYTES equals 50 because the buffer BUF is 50 bytes long.
READ(*,20) NBYTES, STRING

20 FORMAT(Q,A)
! NBYTES will equal the number of characters entered by the user.

END

Z (Hexadecimal) Editing
Purpose

The Z edit descriptor directs editing between values of any type in internal form
and their hexadecimal representation. (A hexadecimal digit is one of 0-9, A-F, or
a-f.)

Syntax
v Zw

v Zw.m

Rules

On input, w hexadecimal digits are edited and form the internal representation for
the value of the input list item. The hexadecimal digits in the input field
correspond to the rightmost hexadecimal digits of the internal representation of the
value assigned to the input list item. m has no effect on input.

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

The output field for Zw consists of zero or more leading blanks followed by the
internal value in a form identical to the hexadecimal digits without leading zeros.
Note that a hexadecimal constant always consists of at least one digit.

Chapter 10. Input/Output formatting 259

The output field for Zw.m is the same as for Zw, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w, unless w is zero. If m is zero
and the value of the internal datum is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters.

If both w and m are zero and the value of the internal datum is zero, the output
field consists of only one blank character.

If the nooldboz suboption of the -qxlf77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BLANK= specifier and the BN and BZ edit descriptors
affect the Z edit descriptor.

IBM extension

If the oldboz suboption of the -qxlf77 compiler option is specified, the following
occurs on output:
v Zw is treated as Zw.m, with m assuming the value that is the minimum of w and

the number of digits required to represent the maximum possible value of the
data item.

v The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BLANK= specifier and the BN and BZ edit
descriptors do not affect the Z edit descriptor.

End of IBM extension

Examples

Example 1: Examples of Z editing on input
Input Format Value
0C Z2 12
7FFF Z4 32767

Example 2: Examples of Z editing on output
Value Format Output Output

(with -qxlf77=oldboz) (with -qxlf77=nooldboz)
-1 Z2 FF **
12 Z4 000C bbbC

12 Z0 C C
0 Z5.0 bbbbb bbbbb
0 Z0.0 b b

260 XL Fortran: Language Reference for Big Endian Distributions

Control edit descriptors

/ (Slash) Editing
Purpose

The slash edit descriptor indicates the end of data transfer on the current record.
The repeat specifier (r) has a default value of 1.

Syntax
v /

v r/

Rules

When you connect a file for input using sequential access, each slash edit
descriptor positions the file at the beginning of the next record.

When you connect a file for output using sequential access, each slash edit
descriptor creates a new record and positions the file to write at the start of the
new record.

When you connect a file for input or output using direct access, each slash edit
descriptor increases the record number by one, and positions the file at the
beginning of the record that has that record number.

Fortran 2003

When you connect a file for input using stream access, each slash edit descriptor
positions the file at the beginning of the next record, skipping the remaining
portion of the current record. On output to a file connected for stream access, a
newly created empty record follows the current record. The new record becomes
both the current and last record of the file, with the file position coming at the
beginning of the new record.

End of Fortran 2003

Examples
500 FORMAT(F6.2 / 2F6.2)
100 FORMAT(3/)

: (Colon) Editing
Purpose

The colon edit descriptor terminates format control if no more items are in the
input/output list. If more items are in the input/output list when the colon is
encountered, it is ignored.

Syntax
v :

Rules

See “Interaction of Input/Output lists and format specifications” on page 242 for
more information.

Chapter 10. Input/Output formatting 261

Examples
10 FORMAT(3(:’Array Value’,F10.5)/)

$ (Dollar) Editing (IBM extension)
Purpose

The dollar edit descriptor inhibits an end-of-record for a sequential or formatted
stream WRITE statement.

Syntax
v $

Rules

Usually, when the end of a format specification is reached, data transmission of the
current record ceases and the file is positioned so that the next input/output
operation processes a new record. But, if a dollar sign occurs in the format
specification, the automatic end-of-record action is suppressed. Subsequent
input/output statements can continue writing to the same record.

Examples

A common use for dollar sign editing is to prompt for a response and read the
answer from the same line.

WRITE(*,FMT=’($,A)’)’Enter your age ’
READ(*,FMT=’(BN,I3)’)IAGE
WRITE(*,FMT=1000)

1000 FORMAT(’Enter your height: ’,$)
READ(*,FMT=’(F6.2)’)HEIGHT

BN (Blank Null) and BZ (Blank Zero) Editing
Purpose

The BN and BZ edit descriptors control the interpretation of nonleading blanks by
subsequently processed I, F, E, EN, ES, D, G, B, O, Z, and extended precision Q
edit descriptors. BN and BZ have effect only on input.

Syntax
v BN

v BZ

Rules

BN specifies that blanks in numeric input fields are to be ignored, and remaining
characters are to be interpreted as though they were right-justified. A field of all
blanks has a value of zero.

BZ specifies that nonleading blanks in numeric input fields are to be interpreted as
zeros.

The initial setting for blank interpretation is determined by the BLANK= specifier
of the OPEN statement. (See “OPEN” on page 410.) The initial setting is
determined as follows:

262 XL Fortran: Language Reference for Big Endian Distributions

v If BLANK= is not specified, blank interpretation is the same as if BN editing
were specified.

v If BLANK= is specified, blank interpretation is the same as if BN editing were
specified when the specifier value is NULL, or the same as if BZ editing were
specified when the specifier value is ZERO.

The initial setting for blank interpretation takes effect at the start of a formatted
READ statement and stays in effect until a BN or BZ edit descriptor is
encountered or until format control finishes. Whenever a BN or BZ edit descriptor
is encountered, the new setting stays in effect until another BN or BZ edit
descriptor is encountered, or until format control terminates.

If you specify the oldboz suboption of the –qxlf77 compiler option, the
BN and BZ edit descriptors do not affect data input edited with the B, O, or Z edit
descriptors. Blanks are interpreted as zeros.

DC and DP (Decimal) Editing (Fortran 2003)
Purpose

Decimal edit descriptors, DC and DP change the decimal edit mode to decimal
comma and decimal point respectively.

Syntax
v DC

v DP

Rules

The decimal edit descriptors are used to control the representation of the decimal
symbol in formatted input and output. The decimal comma or decimal point mode
is in effect when the corresponding edit descriptor is encountered. They continue
to be in effect until another DC or DP edit descriptor is encountered or until the
end of the current I/O statement is reached.

Examples
program main

real :: pi=3.14
print ’(t2, dp, f4.2)’, pi
print ’(t2, dc, f4.2)’, pi

end program

Output
3.14
3,14

P (Scale Factor) Editing
Purpose

The scale factor, k, applies to all subsequently processed F, E, EN, ES, D, G, and
extended precision Q edit descriptors until another scale factor is encountered or
until format control terminates. The value of k is zero at the beginning of each
input/output statement. It is an optionally signed integer value representing a
power of ten.

Chapter 10. Input/Output formatting 263

Syntax
v kP

Rules

On input, when an input field using an F, E, EN, ES, D, G, or extended precision
Q edit descriptor contains an exponent, the scale factor is ignored. Otherwise, the
internal value equals the external value multiplied by 10(-k).

On output:
v In F editing, the external value equals the internal value multiplied by 10k.
v In E, D, and extended precision Q editing, the external decimal field is

multiplied by 10k. The exponent is then reduced by k.
v In G editing, fields are not affected by the scale factor unless they are outside

the range that can use F editing. If the use of E editing is required, the scale
factor has the same effect as with E output editing.

v In EN and ES editing, the scale factor has no effect.

Examples

Example 1: Examples of P editing on input
Input Format Value
98.765 3P,F8.6 .98765E-1
98.765 -3P,F8.6 98765.
.98765E+2 3P,F10.5 .98765E+2

Example 2: Examples of P editing on output
Value Format Output Output

(with -qxlf77=noleadzero) (with -qxlf77=leadzero)
5.67 -3P,F7.2 bbbb.01 bbb0.01
12.34 -2P,F6.4 b.1234 0.1234
12.34 2P,E10.3 b12.34E+00 b12.34E+00

RC, RD, RN, RP, RU, and RZ (Round) Editing (Fortran 2003)
Purpose

Round edit descriptors are used in a Format statement and are one of RC, RD,
RN, RP, RU, and RZ, which correspond to the COMPATIBLE, DOWN,
NEAREST, PROCESSOR_DEFINED, UP, and ZERO rounding modes
respectively. The round edit descriptors temporarily change the connections
rounding mode in formatted I/O. The round edit descriptors only affect D, E, ES,
EN, F and G editing.

Syntax
v RC

v RD

v RN

v RU

v RZ

264 XL Fortran: Language Reference for Big Endian Distributions

Rules

The round edit descriptors help specify how decimal numbers are converted to an
internal representation (i.e. in binary) from a character representation and vice
versa during formatted input and output.

Examples
program main

real :: i
100 format (f10.7, ru)
open(UNIT=2,file =’temp.txt’, form=’formatted’, round=’compatible’)
read(UNIT=2, 100) i
print ’(f10.7 , ru)’ i

end program

Input - temp.txt
3.1415926
Output - temp.txt
3.1415928

S, SP, and SS (Sign Control) Editing
Purpose

The S, SP, and SS edit descriptors control the output of plus signs by all
subsequently processed I, F, E, EN, ES, D, G, and extended precision Q edit
descriptors until another S, SP, or SS edit descriptor is encountered or until format
control terminates.

The sign control edit descriptors can temporarily overwrite the SIGN mode set by
the SIGN=specifier for the connection. The S, SP, and SS edit descriptors set the
sign mode corresponding to the SIGN=specifier values default, PLUS and
SUPPRESS, respectively.

Syntax
v S

v SP

v SS

Rules

S and SS specify that plus signs are not to be written. (They produce identical
results.) SP specifies that plus signs are to be written.

Examples
Value Format Output
12.3456 S,F8.4 b12.3456
12.3456 SS,F8.4 b12.3456
12.3456 SP,F8.4 +12.3456

T, TL, TR, and X (Positional) Editing
Purpose

The T, TL, TR, and X edit descriptors specify the position where the transfer of the
next character to or from a record starts.

Chapter 10. Input/Output formatting 265

Syntax
v Tc

v TLc

v TRc

v oX

Rules

The T and TL edit descriptors use the left tab limit for file positioning.
Immediately before the non-child data transfer the definition of the left tab limit is
the character position of the current record or the current position of the stream
file. The T, TL, TR, and X specify the character position as follows:
v For Tc, the cth character position of the record, relative to the left tab limit.
v For TLc, c characters backward from the current position unless c is greater than

the difference between the current character position and the left tab limit. Then,
transmission of the next character to or from the record occurs at the left tab
limit.

v For TRc, c characters forward from the current position.
v For oX, o characters forward from the current position.

The TR and X edit descriptors give identical results.

On input, a TR or X edit descriptor can specify a position beyond the last
character of the record if no characters are transferred from that position.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to
be transferred. If characters are transferred to positions at or after the position
specified by the edit descriptor, positions skipped and previously unfilled are filled
with blanks. The result is the same as if the entire record were initially filled with
blanks.

On output, a T, TL, TR, or X edit descriptor can result in repositioning so that
subsequent editing with other edit descriptors causes character replacement.

IBM extension

The X edit descriptor can be specified without a character position. It is treated as
1X. When the source file is compiled with -qlanglvl=90std or -qlanglvl=95std, this
extension is disabled in all compile-time format specifications, and the form of oX
is enforced. To disable this extension in run-time formats, the following run-time
option must be set:
XLFRTEOPTS="langlvl=90std" or "langlvl=95std" ; export XLFRTEOPTS

End of IBM extension

Examples

Example 1: Examples of T, TL, and X editing on input
150 FORMAT(I4,T30,I4)
200 FORMAT(F6.2,5X,5(I4,TL4))

Example 2: Examples of T, TL, TR, and X editing on output

266 XL Fortran: Language Reference for Big Endian Distributions

50 FORMAT(’Column 1’,5X,’Column 14’,TR2,’Column 25’)
100 FORMAT(’aaaaa’,TL2,’bbbbb’,5X,’ccccc’,T10,’ddddd’)

List-directed formatting
List-directed formatting allows you to control the editing process using the lengths
and types of data that is read or written. You can only use list-directed formatting
with sequential or stream access.

Use the asterisk format identifier to specify list-directed formatting. For example:
REAL TOTAL1, TOTAL2
PRINT *, TOTAL1, TOTAL2

Value separators
If you specify list-directed formatting for a formatted record, that record consists of
a sequence of values and value separators.

where:

value is a constant or null.

value separator
is a comma, slash, semicolon or set of adjacent blanks that occur between
values in a record. You can specify one or more blanks before and after a
comma or slash. If decimal comma mode is in effect, a semicolon replaces
a comma as a value separator.

null is one of the following:
v Two successive commas, with zero or more intervening blanks.
v A comma followed by a slash, with zero or more intervening blanks.
v An initial comma in the record, preceded by zero or more blanks.

A null value has no effect on the definition status of the corresponding
input list item.

List-directed input
Effective input list items in a list-directed READ statement are defined by
corresponding values in a formatted record. The syntax of each value must agree
with the type of the corresponding effective input list item.

Table 30. List-directed input

Syntax Type

c A literal constant of intrinsic type, or a non-delimited character
constant.

r * r is an unsigned, nonzero, integer literal constant. r * indicates r
successive appearances of the null value.

r * c Indicates r successive appearances of the constant.

Rules for list-directed input
You must not specify a kind type parameter for c or r.

List-directed formatting interprets two or more consecutive blanks as a single
blank, unless the blanks are within a character value.

Chapter 10. Input/Output formatting 267

The constant c will have the same kind type parameter as the corresponding list
item.

Use the -qintlog compiler option to specify integer or logical values for
input items of either integer or logical type.

List-directed formatting interprets an object of derived type that occurs in an input
list as if all structure components occur in the same order as in the derived type
definition. The ultimate components of the derived type must not have the pointer

or allocatable attribute.

A slash indicates the end of the input list and terminates list-directed formatting.
Additional input list items after the slash evaluate as null values. If a slash is
encountered by a child READ statement, it indicates the end of the input list for
that particular child READ statement only. Any other input in the record following
the slash is ignored. The slash has no effect on other child READ statements in the
user-defined derived type I/O procedure or the parent READ statement.

Continuing a character value
A character value that meets the following conditions can continue in as many
records as necessary:
v The next item or ultimate component of a derived type is of type character.
v The character constant does not contain the value separators blank, comma, or

slash
v The character constant does not cross a record boundary.
v The first non-blank character is not a quotation mark or apostrophe.
v The leading characters are non numeric and followed by an asterisk.
v The character constant contains at least one character.

Delimiting apostrophes or quotation marks are not necessary to continue a
character value across multiple records. If you omit delimiting characters, the first
blank, comma, slash, or end-of-record terminates the character constant.

If you do not specify delimiting apostrophes or quotation marks, apostrophes and
double quotation marks in the character value are not doubled.

End-of-record and list-directed input
In list-directed input an end-of-record has the same effect as a blank separator,
unless the blank is within a character literal constant or complex literal constant.
An end-of record does not insert a blank or any other character in a character
value. An end-of-record must not occur between a doubled apostrophe in an
apostrophe-delimited character sequence, or between a doubled quote in a
quote-delimited character sequence

List-directed output
List-directed PRINT and WRITE statements output values in an order identical to
the output list. Values are written in a form valid for the data type of each output
list item.

Types of list-directed output
Table 31. List-directed output

Data Type Form of Output

Arrays Column-major order

268 XL Fortran: Language Reference for Big Endian Distributions

Table 31. List-directed output (continued)

Character Depends on DELIM= specifier and file type,
see Character Output.

Complex Enclosed in parentheses with a comma
separating the real and imaginary parts.
Uses E or F editing.

Derived Types User-defined derived-type I/O procedure.

Integer Uses I editing.

Logical T for a true value
F for a false value

Real Uses E or F editing.

List-directed character output
The output of character constants can change depending on the DELIM= specifier
on the OPEN or READ statements.

Character constants output to a file opened without a DELIM= specifier, or a file
opened with a DELIM= specifier with a value of NONE, output as follows:
v Values are not delimited by apostrophes or quotation marks.
v Value separators do not occur between values. Value separators will be emitted

around the output of format-directed child I/O statements that have a
list-directed parent statement.

v Each internal apostrophe or double quotation mark outputs as one apostrophe
or double quotation mark.

v The processor inserts a blank character for carriage control at the beginning of
any record that continues a character constant from the preceding record.

Note: Non-delimited character data can not always be read back correctly using
list-directed input. Use with discretion.

Double quotation marks delimit character constants in a file opened with a
DELIM= specifier with a value of QUOTE. A value separator follows the delimiter.
Each internal quote outputs as two contiguous double quotation marks.

Apostrophes delimit character constants in a file opened with a DELIM= specifier
with a value of APOSTROPHE A value separator follows the delimiter. Each
internal apostrophe outputs as two contiguous apostrophes.

Rules for list-directed output
Each output record begins with a blank character that provides carriage control
when that record outputs.

The end-of-record must not occur within a constant that is not character or
complex.

In a complex constant, the end of a record can occur between the comma and the
imaginary part of the constant only if the constant is as long or longer than a
record. The only embedded blanks that can occur within a complex constant are
one blank between the comma and the end of a record, and one blank at the
beginning of the next record.

Blanks must not occur within a constant that is not character or complex.

Chapter 10. Input/Output formatting 269

Null values are not output.

Slashes you specify as value separators are not output.

IBM extension

For output that does not involve a user-defined derived-type I/O procedure, the
Width of a Written Field table contains the width of the written field for any data
type and length. The size of the record is the sum of the field widths plus one byte
to separate each non-character field.

Table 32. Width of a written field

Data Type
Length
(bytes)

Maximum Field Width
(characters)

Fraction (decimal
digits)

Precision/IEEE
(decimal

digits)

integer
1
2
4
8

4
6
11
20

n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a

real
4
8
16

17
26
43

10
18
35

7
15
31

complex
8
16
32

37
55
89

10
18
35

7
15
31

logical
1
2
4
8

1
1
1
1

n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a

character n n n/a n/a

End of IBM extension

Namelist formatting
Namelist formatting allows you to use the NAME= specifier as part of the
NAMELIST statement to assign a name to a collection of variables. This name
represents the entire collection of variables for input and output. You can also use
namelist formatting to include namelist comments with input, making the data
more user accessible.
v In Fortran 90 and Fortran 95, you can only use namelist formatting with

sequential access.
v The Fortran 2003 standard allows you to use namelist formatting with sequential

and stream access.
v The Fortran 2003 standard allows you to use namelist formatting with internal

files.

270 XL Fortran: Language Reference for Big Endian Distributions

Namelist input
The form of namelist input is:
1. Optional blanks and namelist comments.
2. The ampersand character, followed immediately by the namelist group name

specified in the NAMELIST statement.
3. One or more blanks.
4. A sequence of zero or more name-value subsequences, separated by value

separators.
5. A slash to terminate the namelist input.

Blanks at the beginning of an input record that continues a delimited character
constant are considered part of the constant.

If you specify the NAMELIST=OLD run-time option, the form of input
for a NAMELIST statement is:
1. Optional blanks
2. An ampersand or dollar sign, followed immediately by the namelist group

name specified in the NAMELIST statement.
3. One or more blanks.
4. A sequence of zero or more name-value subsequences separated by a single

comma. You can insert a comma after the last name-value subsequence.
5. &END or $END to terminate the namelist input.

The first character of each input record must be a blank, including those records
that continue a delimited character constant.

Namelist comments
In Fortran 95 and higher, you can use comments in namelists.

You must not specify comments in stream input.

If you specify the NAMELIST=NEW run-time option:
v If you specify an exclamation point after a value separator that is not a slash, or

in the first non-blank position of a namelist input record, you initiate a
comment. You can not initiate comments inside character literal constants.

v The comment extends to the end of the input record, and can contain any
character in the XL Fortran character set.

v The comment is ignored.
v A slash within a namelist comment does not terminate execution of that namelist

input statement.

If you specify the NAMELIST=OLD run-time option:
v If you specify an exclamation point after a single comma or in the first

non-blank position of a namelist input record that is not the first character of
that record, you initiate a comment. You must not initiate a namelist comment
within a character literal constant.

v The comment extends to the end of the input record, and can contain any
character in the XL Fortran character set.

v The comment is ignored.

Chapter 10. Input/Output formatting 271

v An &END or $END within a namelist comment does not terminate execution of the
namelist input statement.

Name-value subsequence
The form of a name-value subsequence in an input record is:

name is a variable

constant
has the following forms:

r is an unsigned, nonzero, scalar, integer literal constant specifying
the number of times the literal_constant occurs. You must not
specify a kind type parameter for r.

literal_constant
is a scalar literal constant of intrinsic type, or null value. You must
not specify a kind type parameter for the constant. The constant
evaluates with the same kind type parameter as the corresponding
list item.

You must specify delimiting apostrophes or quotation marks if
literal_constant is of type character.

You can specify T or F if literal_constant is of type logical.

Rules for namelist input
Any subscripts, strides, and substring range expressions that qualify name must be
integer literal constants with no kind type parameter.

If name is not an array or an object of derived type, constant_list must contain a
single constant.

Variable names you specify in the input file must appear in the variable_name_list of
a NAMELIST statement. Variables can appear in any order.

If a name that you specify in an EQUIVALENCE statement shares storage with
name, you must not substitute for that name in the variable_name_list.

You can use one or more optional blanks before or after name, but name must not
contain embedded blanks.

In each name-value subsequence, the name must be the name of a namelist group
item with an optional qualification. The name with the optional qualification must
not be a:
v zero-sized array.

�� name = constant_list ��

��
r *

literal_constant ��

272 XL Fortran: Language Reference for Big Endian Distributions

v zero-sized array section.
v zero-length character string.

If you specify the optional qualification, it must not contain a vector subscript.

If name is an array, array section without vector subscripts, or a structure, name
expands where applicable into a sequence of scalar list items of intrinsic data type
according to the rules outlined in “Effective list items (Fortran 2003)” on page 242.

If name is an array or structure, the number of constants in constant_list must be
less than or equal to the number of items specified by the expansion of name. If the
number of constants is less than the number of items, the remaining items retain
their former values.

You can specify a null value using:
v The r* form that indicates r successive appearances of the null value.
v Blanks between two consecutive value separators following an equal sign.
v Zero or more blanks preceding the first value separator and following an equal

sign.
v Two consecutive non-blank value separators.

A null value has no effect on the definition status of the corresponding input list
item. If the namelist group object list item is defined, it retains its previous value;
if it is undefined, it remains undefined.

If decimal comma mode is in effect, a semicolon acts as a value separator instead
of a comma.

You must not use a null value as the real or imaginary part of a complex constant.
A single null value can represent an entire complex constant.

The end of a record following a value separator, with or without intervening
blanks, does not specify a null value.

IBM extension

When you set the LANGLVL=EXTENDED run-time option, XL Fortran allows you
to specify multiple input values in conjunction with a single array element. XL
Fortran assigns the values to successive elements of that array, in array element
order. The array element must not specify subobject designators.

Consider the following example, which declares array A as follows:
INTEGER A(100)
NAMELIST /FOO/ A
READ (5, FOO)

Unit 5 contains the following input:
&FOO
A(3) = 2, 10, 15, 16
/

During execution of the READ statement, XL Fortran assigns the following values:
v 2 to A(3)

v 10 to A(4)

v 15 to A(5)

Chapter 10. Input/Output formatting 273

v 16 to A(6)

If you specify multiple values in conjunction with a single array element, any
logical constant must be specified with a leading period, for example, .T.

If you use the NAMELIST=OLD option at run time, the BLANK= specifier in the
OPEN or READ statements determines how XL Fortran interprets embedded and
trailing blanks between non-character constants.

If you specify the -qmixed compiler option, the namelist group name and list item
names are case-sensitive.

End of IBM extension

A slash appearing as a value separator terminates the input statement after
assignment of the previous value. Any additional items in the namelist group
object receive null values

Example of namelist input data
File NMLEXP contains the following data before execution of the READ statement.

Character position:
1 2 3

1...+....0....+....0....+....0

File contents:
&NAME1
I=5,
SMITH%P_AGE=27
/

NMLEXP contains four data records. The program contains the following code:
TYPE PERSON

INTEGER P_AGE
CHARACTER(20) P_NAME

END TYPE PERSON
TYPE(PERSON) SMITH
NAMELIST /NAME1/ I,J,K,SMITH
I=1
J=2
K=3
SMITH=PERSON(20,’John Smith’)
OPEN(7,FILE=’NMLEXP’)
READ(7,NML=NAME1)
! Only the value of I and P_AGE in SMITH are
! altered (I = 5, SMITH%P_AGE = 27).
! J, K and P_NAME in SMITH remain the same.
END

Note: In the previous example, data items appear in separate data records. The
next example is a file with the same data items in one data record:

Character position:
1 2 3 4

1...+....0....+....0....+....0....+....0

File contents:
&NAME1 I= 5, SMITH%P_AGE=40 /

274 XL Fortran: Language Reference for Big Endian Distributions

An example of a NAMELIST comment when you specify NAMELIST=NEW. The
comment appears after the value separator space.
&TODAY I=12345 ! This is a comment. /
X(1)=12345, X(3:4)=2*1.5, I=6,
P="!ISN’T_BOB’S", Z=(123,0)/

An example of a NAMELIST comment when you specify
NAMELIST=OLD. The comment appears after the value separator space.
&TODAY I=12345, ! This is a comment.
X(1)=12345, X(3:4)=2*1.5, I=6,
P="!ISN’T_BOB’S", Z=(123,0) &END

Namelist output
The WRITE statement outputs data from the variable_name_list in a NAMELIST
statement according to data type. This data can be read using namelist input
except for non-delimited character data.

You must not specify a single long character variable for namelist output.

Each output record that is not continuing a delimited character constant from a
previous record begins with a blank character that provides carriage control.

The output data fields become large enough to contain all significant digits, as
shown in the Width of a Written Field table.

The values of a complete array output in column-major order.

If the length of an array element is not sufficient to hold the data, you must
specify an array with more than three elements.

A WRITE statement with a variable_name_list produces a minimum of
three output records:
v One record containing the namelist name.
v One or more records containing the output data items.
v One record containing a slash to terminate output.

To output namelist data to an internal file, the file must be a character array
containing at least three elements. If you use the WRITE statement to transfer data
to an internal file, the character array can require more than three elements.

You can delimit character data using the DELIM= specifier on the OPEN or READ
statements.

Namelist character output
The output of character constants can change depending on the DELIM= specifier
on the OPEN or READ statements.

For character constants in a file opened without a DELIM= specifier, or with a
DELIM=NONE:
v Values are non-delimited by apostrophes or quotation marks.
v Value separators do not occur between values.

Chapter 10. Input/Output formatting 275

v Each internal apostrophe or double quotation mark outputs as one apostrophe
or quotation mark.

v XL Fortran inserts a blank character for carriage control at the beginning of any
record that continues a character constant from the preceding record.

Nondelimited character data that has been written must not be read as character
data.

Double quotation marks delimit character constants in a file opened with
DELIM=QUOTE, with a value separator preceding and following each constant.
Each internal quote outputs as two contiguous quotation marks.

Apostrophes delimit character constants in a file opened with
DELIM=APOSTROPHE with a value separator preceding and following each
constant. Each internal apostrophe outputs as two contiguous apostrophes.

Rules for namelist output
You must not specify a single character variable to output namelist data to an
internal file, even if it is large enough to hold all of the data.

If you do not specify the NAMELIST run-time option, or you specify
NAMELIST=NEW, the namelist group name and namelist item names output in
uppercase.

IBM extension

If you specify NAMELIST=OLD at run-time:
v The namelist group name and namelist item names output in lower case.
v An &END terminates the output record.

If you specify NAMELIST=OLD at run-time and do not use the DELIM= specifier
on an OPEN or READ statement:
v Apostrophes delimit character data
v Apostrophes delimit non-delimited character strings. A comma separator occurs

between each character string.
v If a record starts with the continuation of a character string from the previous

record, blanks are not added to the beginning of that record.

If you use the -qmixed compiler option, the namelist group name is case sensitive,
regardless of the value of the NAMELIST run-time option.

To restrict namelist output records to a given width, use the RECL= specifier on
the OPEN statement, or the NLWIDTH run-time option.

By default all output items for external files appear in a single output record. To
have the record output on separate lines, use the RECL= specifier on the OPEN
statement, or the NLWIDTH run-time option.

If decimal comma mode is in effect, a semicolon acts as a value separator instead
of a comma.

End of IBM extension

276 XL Fortran: Language Reference for Big Endian Distributions

Example of namelist output data
TYPE PERSON

INTEGER P_AGE
CHARACTER(20) P_NAME

END TYPE PERSON
TYPE(PERSON) SMITH
NAMELIST /NL1/ I,J,C,SMITH
CHARACTER(5) :: C=’BACON’
INTEGER I,J
I=12046
J=12047
SMITH=PERSON(20,’John Smith’)
WRITE(6,NL1)
END

After execution of the WRITE statement with NAMELIST=NEW, the output data
is:

1 2 3 4
1...+....0....+....0....+....0....+....0
&NL1
I=12046, J=12047, C=BACON, SMITH=20, John Smith
/

After execution of the WRITE statement with NAMELIST=OLD, the
output data is:

1 2 3 4
1...+....0....+....0....+....0....+....0
&nl1
i=12046, j=12047, c=’BACON’, smith=20, ’John Smith ’
&end

Chapter 10. Input/Output formatting 277

278 XL Fortran: Language Reference for Big Endian Distributions

Chapter 11. Statements and attributes

This section provides an alphabetical reference to all XL Fortran statements. The
section for each statement is organized to help you readily access the syntax and
rules, and points to the structure and uses of the statement.

The following table lists the statements, and shows which ones are executable,
which ones are specification_part statements, and which ones can be used as the
terminal statement of a DO or DO WHILE construct. The executable statements,
specification statements, and terminal statements are marked with "'".

Table 33. Statements table

Statement Name
Executable
Statement

Specification
Statement

Terminal
Statement

ABSTRACT �1� '

ALLOCATABLE �1� '

ALLOCATE ' '

ASSIGN '

ASSOCIATE �1� '

ASYNCHRONOUS �2� '

AUTOMATIC �2� '

BACKSPACE ' '

BIND �1� '

BLOCK �3�

BLOCK DATA

BYTE �2� '

CALL ' '

CASE '

CHARACTER '

CLASS �1� '

CLOSE ' '

COMMON '

COMPLEX '

CONTAINS

CONTIGUOUS �3� '

CONTINUE ' '

CYCLE '

DATA '

DEALLOCATE ' '

Derived Type

DIMENSION '

DO '

DO WHILE '

© Copyright IBM Corp. 1996, 2014 279

Table 33. Statements table (continued)

Statement Name
Executable
Statement

Specification
Statement

Terminal
Statement

DOUBLE COMPLEX �2� '

DOUBLE PRECISION '

ELSE '

ELSE IF '

ELSEWHERE '

END '

END ASSOCIATE �1� '

END BLOCK DATA

END DO ' '

END ENUM �1� '

END IF '

END FORALL '

END FUNCTION '

END INTERFACE '

END MAP �2� '

END MODULE

END PROGRAM '

END SELECT '

END SUBMODULE �3�

END SUBROUTINE '

END STRUCTURE �2� '

END TYPE '

END UNION �2� '

END WHERE '

ENDFILE ' '

ENTRY '

ENUM �1� '

ENUMERATOR �1� '

EQUIVALENCE '

ERROR STOP �3� '

EXIT '

EXTERNAL '

FLUSH �1� ' '

FORALL ' '

FORMAT '

FUNCTION

GO TO (Assigned) '

GO TO (Computed) ' '

GO TO (Unconditional) '

280 XL Fortran: Language Reference for Big Endian Distributions

Table 33. Statements table (continued)

Statement Name
Executable
Statement

Specification
Statement

Terminal
Statement

IF (Arithmetic) '

IF (Block) '

IF (Logical) ' '

IMPLICIT '

IMPORT �1� '

INQUIRE ' '

INTEGER '

INTENT '

INTERFACE '

INTRINSIC '

LOGICAL '

MAP �2� '

MODULE

MODULE PROCEDURE �3�

NAMELIST '

NULLIFY ' '

OPEN ' '

OPTIONAL '

PARAMETER '

PAUSE ' '

POINTER (Fortran 90) '

POINTER (integer) �2� '

PRINT ' '

PRIVATE '

PROCEDURE �1� '

PROGRAM

PROTECTED �1� '

PUBLIC '

READ ' '

REAL '

RECORD �2� '

RETURN '

REWIND ' '

SAVE '

SELECT CASE '

SELECT TYPE �1� '

SEQUENCE '

Statement Function '

STATIC �2� '

Chapter 11. Statements and attributes 281

Table 33. Statements table (continued)

Statement Name
Executable
Statement

Specification
Statement

Terminal
Statement

STOP '

SUBMODULE �3�

SUBROUTINE

STRUCTURE �2� '

TARGET '

TYPE '

Type Declaration '

Type Guard �1� '

UNION �2� '

USE '

VALUE �1� '

VECTOR �2� '

VIRTUAL �2� '

VOLATILE '

WAIT �1� ' '

WHERE ' '

WRITE ' '

Notes:
�1� Fortran 2003
�2� IBM extension
�3� Fortran 2008

Assignment and pointer assignment statements are discussed in Chapter 6,
“Expressions and assignment,” on page 99. Both statements are executable and can
serve as terminal statements.

Attributes
Each attribute has a corresponding attribute specification statement, and the syntax
diagram provided for the attribute illustrates this form. An entity can also acquire
this attribute from a type declaration statement or, in some cases, through a default
setting. For example, entity A, said to have the PRIVATE attribute, could have
acquired the attribute in any of the following ways:

REAL, PRIVATE :: A ! Type declaration statement
PRIVATE :: A ! Attribute specification statement

MODULE X
PRIVATE ! Default setting
REAL :: A

END MODULE

ABSTRACT (Fortran 2003)
Purpose

The ABSTRACT INTERFACE statement is the first statement of an abstract
interface block, which can specify procedure characteristics and dummy argument

282 XL Fortran: Language Reference for Big Endian Distributions

names without declaring a procedure with those characteristics.

Syntax

Rules

If the interface statement is ABSTRACT INTERFACE, then the function_name in
the function statement or the subroutine-name in the subroutine statement shall not
be the same as a keyword that specifies an intrinsic type.

As an ABSTRACT INTERFACE cannot have a generic specification, a
PROCEDURE statement is not allowed in the ABSTRACT INTERFACE block.

A proc-language-binding-spec with a NAME= specifier shall not be specified in the
function or subroutine statement of an abstract interface body.

Examples

ABSTRACT INTERFACE can be used to declare the interface for deferred
bindings.
ABSTRACT INTERFACE
REAL FUNCTION PROC(A, B, C)
REAL, INTENT (IN) :: A, B, C
END FUNCTION
END INTERFACE
! P is declared to be a procedure pointer that is
! initially null with the same interfaceas procedure PROC.
PROCEDURE (PROC),POINTER:: P => NULL()

Procedure pointer P can point to any external procedure or module procedure if it
has the same interface as PROC.

Related information
v “Abstract interface (Fortran 2003)” on page 172
v “INTERFACE” on page 400

ALLOCATABLE (Fortran 2003)
Purpose

The ALLOCATABLE attribute allows you to declare an allocatable object. You can
dynamically allocate the storage space of these objects by executing an ALLOCATE
statement or by a derived-type assignment statement. If the object is an array, it is
a deferred-shape array or an assumed-rank array.

Syntax

�� ABSTRACT INTERFACE ��

Chapter 11. Statements and attributes 283

object_name
The name of an allocatable object.

deferred_shape_spec
A colon, where each colon represents a dimension.

assumed_rank_spec
Two periods. For more information, see Assumed_rank_spec.

Rules

The object must not be a pointee.

If the object is an array specified elsewhere in the scoping unit with the
DIMENSION attribute, the array specification must be a deferred_shape_spec or
an assumed_rank_spec.

You can initialize an allocatable object after the storage space is allocated. If you
compile your program with -qinitalloc, all uninitialized allocated objects are
initialized.

Table 34. Attributes compatible with the ALLOCATABLE attribute

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PRIVATE STATIC �2�

DIMENSION PROTECTED �1� TARGET

INTENT PUBLIC VOLATILE

Note:
�1� Fortran 2003
�2� IBM extension

Examples
! Two-dimensional array a declared but no space yet allocated
REAL, ALLOCATABLE :: a(:, :)
READ (5, *) i, j
ALLOCATE(a(i, j))

Related information
v “Allocatable arrays” on page 79
v “ALLOCATED(X)” on page 572
v “ALLOCATE” on page 285
v “DEALLOCATE” on page 328

�� ALLOCATABLE
::

�

� �

,

object_name
(deferred_shape_spec_list)
assumed_rank_spec

��

284 XL Fortran: Language Reference for Big Endian Distributions

v “Allocation status” on page 26
v “Deferred-shape arrays” on page 78
v “Allocatable objects as dummy arguments (Fortran 2003)” on page 200
v “Interoperability of procedures” on page 846
v The -qinitalloc option

ALLOCATE
Purpose

The ALLOCATE statement dynamically provides storage for pointer targets and
allocatable objects.

Syntax

stat_variable
A scalar integer variable.

errmsg_variable (Fortran 2003)
A scalar character variable.

source_expr (Fortran 2003)
An expression which is scalar or has the same rank as allocate_object.

i_d_type_spec (Fortran 2003)
Is an intrinsic_type_spec or derived_type_spec. See “Type Declaration” on
page 470 for a list of possible type specifications.

allocation_list

�� ALLOCATE (allocation_list
(1) , STAT = stat_variable

i_d_type_spec ::

�

�)
(2) (3) (4)

, ERRMSG = errmsg_variable , SOURCE = source_expr , MOLD = source_expr

��

Notes:

1 Fortran 2003

2 Fortran 2003

3 Fortran 2003

4 Fortran 2008

��

�

allocate_object
,

(upper_bound)
lower_bound :

��

Chapter 11. Statements and attributes 285

allocate_object
A variable name or structure component that must be a data pointer or an
allocatable object.

lower_bound, upper_bound
are each scalar integer expressions.

Rules

Execution of an ALLOCATE statement for a pointer causes the pointer to become
associated with the target allocated. For an allocatable object, the object becomes
definable.

The number of dimensions specified (that is, the number of upper bounds in
allocation) must be equal to the rank of allocate_object, F2008 unless you specify
SOURCE= or MOLD= F2008 . When an ALLOCATE statement is executed for
an array, the values of the bounds are determined at that time. Subsequent
redefinition or undefinition of any entities in the bound expressions does not affect
the array specification. Any lower bound, if omitted, is assigned a default value of
1. If any lower bound value exceeds the corresponding upper bound value, that
dimension has an extent of 0 and allocate_object is zero-sized.

If you allocate a polymorphic allocate_object using i_d_type_spec, allocation
of the object occurs with the dynamic type and type parameters you specify. If you
specify source_expr, the polymorphic allocate_object has the same dynamic type and
type parameters as the source_expr. Otherwise the allocation_object has the same
dynamic type as the declared type.

If any allocate_object is unlimited polymorphic or has deferred type parameters,
either i_d_type_spec or SOURCE= must appear. If an i_d_type_spec appears, it must
specify a type with which each allocate_object is type-compatible. If SOURCE=
appears, i_d_type_spec must not appear, and allocation_list can only contain one
allocate_object, which must be type-compatible with source_expr.

Any allocate_object or a specified bound of an allocate_object must not depend on the
value of stat_variable or errmsg_variable, or on the value, bounds, length type
parameters, allocation status, or association status of any allocate_object in the same
ALLOCATE statement

stat_variable,source_expr, and errmsg_variable must not be allocated within the
ALLOCATE statement in which they appear. They also must not depend on the
value, bounds, length type parameters, allocation status, or association status of
any allocate_object in the same ALLOCATE statement.

F2008

When you use an ALLOCATE statement without specifying the bounds for an
array, the bounds of source_expr in the SOURCE= or MOLD= specifier determine
the bounds of the array. Subsequent changes to the bounds of source_expr do not
affect the array bounds.

Note: In the same ALLOCATE statement, you can specify only one of SOURCE=
or MOLD=.

286 XL Fortran: Language Reference for Big Endian Distributions

The MOLD= specifier works almost in the same way as SOURCE=. If you specify
MOLD= and source_expr is a variable, its value need not be defined. In addition,
MOLD= does not copy the value of source_expr to the variable to be allocated.

F2008

If the STAT= specifier is not present and an error condition occurs during
execution of the statement, the program terminates. If the STAT= specifier is
present, the stat_variable is assigned one of the following values:

Stat value Error condition

0 No error

1 Error in system routine attempting to do
allocation

2 An invalid data object has been specified for
allocation

3 Both error conditions 1 and 2 have occurred

If an error condition occurs during execution of the ALLOCATE
statement and the ERRMSG=specifier is present, an explanatory message is assigned
to errmsg_variable. If no such condition occurs, the value of errmsg_variable is not
changed.

Allocating an allocatable object that is already allocated causes an error condition
in the ALLOCATE statement.

Pointer allocation creates an object that has the TARGET attribute. Additional
pointers can be associated with this target (or a subobject of it) through pointer
assignment. If you reallocate a pointer that is already associated with a target:
v A new target is created and the pointer becomes associated with this target.
v Any previous association with the pointer is broken.
v Any previous target that had been created by allocation and is not associated

with any other pointers becomes inaccessible.

When an object of derived type is created by an ALLOCATE statement, any
allocatable ultimate components have an allocation status of not allocated.

Use the ALLOCATED intrinsic function to determine if an allocatable object is
allocated. Use the ASSOCIATED intrinsic function to determine the association
status of a pointer or whether a pointer is associated with a specified target.

Examples
CHARACTER, POINTER :: P(:,:)
CHARACTER, TARGET :: C(4,4)
INTEGER, ALLOCATABLE, DIMENSION(:) :: A
P => C
N = 2; M = N
ALLOCATE (P(N,M),STAT=I) ! P is no longer associated with C
N = 3 ! Target array for P maintains 2X2 shape
IF (.NOT.ALLOCATED(A)) ALLOCATE (A(N**2))
END

Chapter 11. Statements and attributes 287

The following example uses the MOLD= specifier in an ALLOCATE statement in
which the bounds are determined by reference to another object:
INTEGER, ALLOCATABLE :: NEW(:)
INTEGER, POINTER :: OLD(:)
ALLOCATE(OLD(4))
ALLOCATE (NEW, MOLD=OLD) ! Allocate NEW with the bounds of OLD
END

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “DEALLOCATE” on page 328
v “Allocation status” on page 26
v “Pointer association” on page 157
v “Deferred-shape arrays” on page 78
v “ALLOCATED(X)” on page 572
v “ASSOCIATED(POINTER, TARGET)” on page 577
v “Allocatable objects as dummy arguments (Fortran 2003)” on page 200

ASSIGN
Purpose

The ASSIGN statement assigns a statement label to an integer variable.

Syntax

stmt_label
specifies the statement label of an executable statement or a FORMAT
statement in the scoping unit containing the ASSIGN statement

variable_name
is the name of a scalar INTEGER(4) or INTEGER(8) variable

Rules

A statement containing the designated statement label must appear in the same
scoping unit as the ASSIGN statement.
v If the statement containing the statement label is an executable statement, you

can use the label name in an assigned GO TO statement that is in the same
scoping unit.

v If the statement containing the statement label is a FORMAT statement, you can
use the label name as the format specifier in a READ, WRITE, or PRINT
statement that is in the same scoping unit.

You can redefine an integer variable defined with a statement label value with the
same or different statement label value or an integer value. However, you must
define the variable with a statement label value before you reference it in an
assigned GO TO statement or as a format identifier in an input/output statement.

�� ASSIGN stmt_label TO variable_name ��

288 XL Fortran: Language Reference for Big Endian Distributions

The value of variable_name is not the integer constant represented by the label itself,
and you cannot use it as such.

The ASSIGN statement has been deleted from Fortran 95 and higher.

Examples
ASSIGN 30 TO LABEL
NUM = 40
GO TO LABEL
NUM = 50 ! This statement is not executed

30 ASSIGN 1000 TO IFMT
PRINT IFMT, NUM ! IFMT is the format specifier

1000 FORMAT(1X,I4)
END

Related information
v “Statement labels” on page 7
v “GO TO (assigned)” on page 377
v “Deleted features” on page 1010

ASSOCIATE (Fortran 2003)
Purpose

An ASSOCIATE statement is the first statement in an ASSOCIATE construct. It
establishes an association between each identifier and either a variable or the value
of an expression.

Syntax

associate_construct_name
is a name that identifies the ASSOCIATE construct

associate_name
is an identifier that once associated with the selector, becomes an
associating entity.

selector is a variable or expression that once associated becomes the associated
entity.

Rules

If the selector is an expression or a variable with a vector subscript, the
associate_name is assigned the value of the expression or variable. That associating
entity must not become redefined or undefined.

If the selector is a variable without a vector subscript, the associate_name is
associated with the data object specified by the selector. Whenever the value of the
associate_name (or the associating entity identified by the associate_name) changes,
the value of the variable changes with it.

�� �

,

ASSOCIATE (associate_name => selector)
associate_construct_name :

��

Chapter 11. Statements and attributes 289

If the selector has the ALLOCATABLE attribute, the associating entity does not
have the ALLOCATABLE attribute. If the selector has the POINTER attribute, then
the associating entity has the TARGET attribute. If the selector has the TARGET,
VOLATILE, or ASYNCHRONOUS attribute, the associating
entity that is a variable has those attributes.

If the selector has the OPTIONAL attribute, it must be present.

An associating entity has the same type, type parameters, and rank as the selector.
If the selector is polymorphic, the associating entity is polymorphic. If the selector is
an array, the associating entity is an array with a lower bound for each dimension
equal to the value of the intrinsic LBOUND(selector). The upper bound for each
dimension is equal to the lower bound plus the extent minus 1.

An associate_name must be unique within an ASSOCIATE construct.

If the associate_construct_name appears on an ASSOCIATE construct statement, it
must also appear on the corresponding END ASSOCIATE statement.

An ASSOCIATE construct statement must not appear within the dynamic or
lexical extent of a .

Examples
test_equiv: ASSOCIATE (a1 => 2, a2 => 40, a3 => 80)

IF ((a1 * a2) .eq. a3) THEN
PRINT *, "a3 = (a1 * a2)"

END IF
END ASSOCIATE test_equiv

END

ASYNCHRONOUS
Purpose

The ASYNCHRONOUS statement specifies which variables may be associated
with a pending I/O storage sequence while the scoping unit is in action.

TS You must specify the ASYNCHRONOUS attribute for the variables that
are used for asynchronous communication. See Interoperable variables in
asynchronous communication for details. TS

When you specify the ASYNCHRONOUS attribute for a variable, it is excluded
from certain code motion optimizations.

Syntax

ioitem is a variable name

�� ASYNCHRONOUS :: ioitem_list ��

290 XL Fortran: Language Reference for Big Endian Distributions

Rules

The ASYNCHRONOUS attribute may be assigned implicitly by using a variable in
an ASYNCHRONOUS I/O statement.

An object may have the ASYNCHRONOUS attribute in a particular scoping unit
without having it in other scoping units.

If an object has the ASYNCHRONOUS attribute, then all of its subobjects have the
ASYNCHRONOUS attribute.

An entity may have the ASYNCHRONOUS or VOLATILE attribute in the local
scoping unit even if the associated module entity does not.

An accessed entity may have the ASYNCHRONOUS or VOLATILE attribute even
if the host entity does not.

An associating entity has the ASYNCHRONOUS attribute if and only if the
selector is a variable and has the ASYNCHRONOUS attribute.

Examples

Here is an example of variables that can be associated with a pending I/O
sequence:
MODULE MOD
INTEGER :: IOITEM
END MODULE

PROGRAM MAIN

CALL SUB1()
CALL SUB2()
END PROGRAM

SUBROUTINE SUB1() ! OPTIMIZATION MAY NOT BE PERFORMED
USE MOD
ASYNCHRONOUS :: IOITEM
....
END SUBROUTINE

SUBROUTINE SUB2() ! OPTIMIZATION MAY BE PERFORMED
USE MOD
.....
END SUBROUTINE

! OPTIMIZATION IS NOT POSSIBLE IN SUB2()IF MODULE MOD IS REWRITTEN AS FOLLOWS:

MODULE MOD
INTEGER, ASYNCHRONOUS :: IOITEM
END MODULE

TS

Here is an example of how to use the ASYNCHRONOUS attribute when doing
asynchronous communication:
INTEGER :: ARRAY(1000)

... ! Code that writes to ARRAY

BLOCK
ASYNCHRONOUS :: ARRAY

Chapter 11. Statements and attributes 291

CALL MPI_ISEND(ARRAY,...REQ,...)
... ! Code that does not write to ARRAY
CALL MPI_WAIT(REQ,...)

END BLOCK

... ! Code that writes to ARRAY

TS

Related information
v “Asynchronous Input/Output” on page 216
v “OPEN” on page 410
v “CLOSE” on page 311
v “INQUIRE” on page 386
v “Interoperable variables in asynchronous communication (Technical

Specification)” on page 844
v “READ” on page 435
v “WAIT (Fortran 2003)” on page 486
v “WRITE” on page 490

AUTOMATIC (IBM extension)
Purpose

The AUTOMATIC attribute specifies that a variable has a storage class of
automatic; that is, the variable is not defined once the procedure ends.

Syntax

automatic
is a variable name or an array declarator with an explicit-shape
specification list or a deferred-shape specification list

Rules

If automatic is a function result it must not be of type character or of derived type.

Function results that are pointers or arrays, dummy arguments, statement
functions, automatic objects, or pointees must not have the AUTOMATIC
attribute. A variable with the AUTOMATIC attribute cannot be defined in the
scoping unit of a module F2008 or submodule F2008 . A variable that is
explicitly declared with the AUTOMATIC attribute cannot be a common block
item.

A variable must not have the AUTOMATIC attribute specified more than once in
the same scoping unit.

�� AUTOMATIC automatic_list
::

��

292 XL Fortran: Language Reference for Big Endian Distributions

Any variable declared as AUTOMATIC within the scope of a thread's work will be
local to that thread.

A variable with the AUTOMATIC attribute cannot be initialized by a DATA
statement or a type declaration statement.

If automatic is a pointer, the AUTOMATIC attribute applies to the pointer itself,
not to any target that is (or may become) associated with the pointer.

Note: An object with the AUTOMATIC attribute should not be confused with an
automatic object. See “Automatic objects” on page 18.

Table 35. Attributes compatible with the AUTOMATIC attribute

ALLOCATABLE �1� CONTIGUOUS �2� VOLATILE

ASYNCHRONOUS POINTER

DIMENSION TARGET

Note:
�1� Fortran 2003
�2� Fortran 2008

Examples
CALL SUB
CONTAINS

SUBROUTINE SUB
INTEGER, AUTOMATIC :: VAR
VAR = 12

END SUBROUTINE ! VAR becomes undefined
END

Related information
v “Storage classes for variables (IBM extension)” on page 26
v -qinitauto option in the XL Fortran Compiler Reference

BACKSPACE
Purpose

The BACKSPACE statement positions an external file connected for sequential
access or formatted stream access.

Execution of a BACKSPACE statement performs a wait operation for any
pending asynchronous data transfer operations for the specified unit.

Syntax

u is an external unit identifier. The value of u must not be an asterisk or a
Hollerith constant.

�� BACKSPACE u
(position_list)

��

Chapter 11. Statements and attributes 293

position_list
is a list that must contain one unit specifier ([UNIT=]u) and can also
contain one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by an integer expression. The integer expression has
one of the following values:
v A value in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
position_list.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

IOMSG= iomsg_variable (Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is an variable. When the BACKSPACE
statement finishes executing, ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

Rules

After the execution of a BACKSPACE statement, the file position is before the
current record if a current record exists. If there is no current record, the file
position is before the preceding record. If the file is at its initial point, file position
remains unchanged.

You cannot backspace over records that were written using list-directed or namelist
formatting.

For sequential access, if the preceding record is the endfile record, the file is
positioned before the endfile record.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

IBM extension

If IOSTAT= and ERR= are not specified,

294 XL Fortran: Language Reference for Big Endian Distributions

v The program stops if a severe error is encountered.
v The program continues to the next statement if a recoverable error is

encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

End of IBM extension

Examples
BACKSPACE 15
BACKSPACE (UNIT=15,ERR=99)

...
99 PRINT *, "Unable to backspace file."

END

Related information
v “Conditions and IOSTAT values” on page 222
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Setting Run-Time Options in the XL Fortran Compiler Reference

BIND (Fortran 2003)
Purpose

The BIND attribute declares that a Fortran variable or common block is
interoperable with the C programming language.

Syntax

binding_label
is a scalar character constant expression

Rules

This attribute specifies that a Fortran variable or common block is interoperable
with a C entity with external linkage. Refer to “Interoperability of variables” on
page 844 and “Interoperability of common blocks” on page 845 for details.

If the NAME= specifier appears in a BIND statement, then only one variable_name
or common_block_name can appear.

If a BIND statement specifies a common block, then each variable of that common
block must be of interoperable type and type parameters, and must not have the
POINTER or ALLOCATABLE attribute.

Table 36. Attributes compatible with the BIND attribute

ASYNCHRONOUS SAVE

DIMENSION STATIC �2�

�� �

,

BIND (C) variable_name
, NAME = binding_label :: common_block_name

��

Chapter 11. Statements and attributes 295

Table 36. Attributes compatible with the BIND attribute (continued)

PRIVATE TARGET

PROTECTED �1� VOLATILE

PUBLIC

Note:
�1� Fortran 2003
�2� IBM extension

Related information
v Chapter 18, “Language interoperability features,” on page 843
v “Interoperability of variables” on page 844
v “Interoperability of common blocks” on page 845
v “ENTRY” on page 353
v “FUNCTION” on page 373
v “PROCEDURE declaration (Fortran 2003)” on page 429
v “SUBROUTINE” on page 462
v “Derived Type” on page 330
v –qbindcextname

BLOCK (Fortran 2008)
Purpose

The BLOCK statement declares a named or an unnamed BLOCK construct. It is
the first statement of the BLOCK construct.

Syntax

BLOCK_construct_name
is a name that identifies the BLOCK construct.

Rules

If you specify a BLOCK_construct_name in a BLOCK statement, you must specify
the same name in the corresponding END BLOCK statement.

Example

In the following example, the BLOCK statement declares an unnamed BLOCK
construct:
SUBROUTINE swap(i, j)

INTEGER :: i, j

IF (i < j) THEN
! The BLOCK statement has no BLOCK_construct_name. The corrsponding END BLOCK
! statement cannot have a BLOCK_construct_name either.
BLOCK

INTEGER :: temp

��
BLOCK_construct_name :

BLOCK ��

296 XL Fortran: Language Reference for Big Endian Distributions

temp = i
i = j
j = temp

END BLOCK
END IF

END SUBROUTINE swap

Related information
v “BLOCK construct (Fortran 2008)” on page 134
v “END (Construct)” on page 346

BLOCK DATA
Purpose

A BLOCK DATA statement is the first statement in a block data program unit,
which provides initial values for variables in named common blocks.

Syntax

block_data_name
is the name of a block data program unit

Rules

You can have more than one block data program unit in an executable program,
but only one can be unnamed.

The name of the block data program unit, if given, must not be the same as an
external subprogram, entry, main program, module, F2008 submodule F2008 ,
or common block in the executable program. It also must not be the same as a
local entity in this program unit.

Examples
BLOCK DATA ABC

PARAMETER (I=10)
DIMENSION Y(5)
COMMON /L4/ Y
DATA Y /5*I/

END BLOCK DATA ABC

Related information
v “Block data program unit” on page 188
v “END” on page 345 for details on the END BLOCK DATA statement

�� BLOCK DATA
block_data_name

��

Chapter 11. Statements and attributes 297

BYTE (IBM extension)
Purpose

The BYTE type declaration statement specifies the attributes of objects and
functions of type byte. Each scalar object has a length of 1. Initial values can be
assigned to objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds

entity_decl

�� BYTE entity_decl_list
::
, attr_spec_list ::

��

298 XL Fortran: Language Reference for Big Endian Distributions

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name

=> NULL()
provides the initial value for the pointer object

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit or
if it appears in a named common block in a module F2008 or submodule

F2008 .

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

�� a
(array_spec) / initial_value_list /

= constant_expr
=> NULL()

��

Chapter 11. Statements and attributes 299

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If constant_expr or NULL() is specified, and the entity you are declaring:
v is a variable, the variable is initially defined.
v is a derived type component, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of constant_expr or NULL() implies that a is a saved object,
except for an object in a named common block. The initialization of an object could
affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
BYTE, DIMENSION(4) :: X=(/1,2,3,4/)

Related information
v “Byte (IBM extension)” on page 45
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

CALL
Purpose

The CALL statement invokes a subroutine to execute.

300 XL Fortran: Language Reference for Big Endian Distributions

Syntax

name The name of an internal, external, or module subroutine, an entry in an
external or module subroutine, an intrinsic subroutine, a generic name, or
a procedure pointer.

procedure_component_ref
The name of a procedure pointer component of the declared type of
data_ref. For details, see “Procedure pointer components” on page 51.

data_ref
The name of an object of derived type

separator
is % or .

binding_name
is the name of a procedure binding of the declared type of data_ref

Rules

Executing a CALL statement results in the following order of events:
1. Actual arguments that are expressions are evaluated.
2. Actual arguments are associated with their corresponding dummy arguments.
3. Control transfers to the specified subroutine.
4. The subroutine is executed.
5. Control returns from the subroutine.

Fortran 2003

A procedure pointer is a pointer that is associated with a procedure. Procedure
pointers may have either an explicit or implicit interface and the interface may not
be generic or elemental.

If the binding_name in a procedure designator is that of a specific procedure, the
procedure referenced is the one identified by the binding with that name in the
dynamic type of the data_ref. If the binding_name in a procedure designator is that
of a generic procedure, the generic binding with that name in the declared type of
the data_ref is used to select a specific binding according to the following rules:

�� CALL name
(1)

procedure_component_ref
(2)

data_ref separator binding_name

�

�
()

actual_argument_spec_list

��

Notes:

1 Fortran 2003

2 Fortran 2003

Chapter 11. Statements and attributes 301

1. If the reference is consistent with one of the specific bindings of that generic
binding, that specific binding is selected.

2. Otherwise, if the reference is consistent with an elemental reference to one of
the specific bindings of that generic binding, that specific binding is selected.

The reference is to the procedure identified by the binding with the same name as
the selected specific binding, in the dynamic type of the data_ref.

End of Fortran 2003

A subprogram can call itself recursively, directly or indirectly, if the subroutine
statement specifies the RECURSIVE keyword.

If a CALL statement includes one or more alternate return specifiers among its
arguments, control may be transferred to one of the statement labels indicated,
depending on the action specified by the subroutine in the RETURN statement.

IBM extension

An external subprogram can also refer to itself directly or indirectly if the -qrecur
compiler option is specified.

The argument list built-in functions %VAL and %REF are supplied to aid
interlanguage calls by allowing arguments to be passed by value and by reference,
respectively. They can only be references to non-Fortran procedures.

End of IBM extension

The VALUE attribute also allows you to pass arguments by value.

Examples
INTERFACE

SUBROUTINE SUB3(D1,D2)
REAL D1,D2

END SUBROUTINE
END INTERFACE
ARG1=7 ; ARG2=8
CALL SUB3(D2=ARG2,D1=ARG1) ! subroutine call with argument keywords
END

SUBROUTINE SUB3(F1,F2)
REAL F1,F2,F3,F4
F3 = F1/F2
F4 = F1-F2
PRINT *, F3, F4

END SUBROUTINE

Related information
v “Recursion” on page 205
v “%VAL and %REF (IBM extension)” on page 194
v “VALUE (Fortran 2003)” on page 482
v “Actual argument specification” on page 190
v “Asterisks as dummy arguments” on page 203
v “Type-bound procedures (Fortran 2003)” on page 58

302 XL Fortran: Language Reference for Big Endian Distributions

CASE
Purpose

The CASE statement initiates a CASE statement block in a CASE construct, which
has a concise syntax for selecting, at most, one of a number of statement blocks for
execution.

Syntax

case_selector

case_construct_name
Is a name that identifies the CASE construct.

case_value
is a scalar constant expression of type integer, character, or logical

low_case_value, high_case_value
are each scalar constant expressions of type integer, character, or logical

Rules

The case index, determined by the SELECT CASE statement, is compared to each
case_selector in a CASE statement. When a match occurs, the stmt_block associated
with that CASE statement is executed. If no match occurs, no stmt_block is
executed. No two case value ranges can overlap.

A match is determined as follows:

case_value

DATA TYPE: integer, character or logical
MATCH for integer and character: case index = case_value
MATCH for logical: case index .EQV. case_value is
true

low_case_value : high_case_value

�� CASE case_selector
case_construct_name

��

��

�

DEFAULT
,

(case_value)
low_case_value : high_case_value
low_case_value :
: high_case_value

��

Chapter 11. Statements and attributes 303

DATA TYPE: integer or character
MATCH: low_case_value ≤ case index ≤
high_case_value

low_case_value :

DATA TYPE: integer or character
MATCH: low_case_value ≤ case index

: high_case_value

DATA TYPE: integer or character
MATCH: case index ≤ high_case_value

DEFAULT

DATA TYPE: not applicable
MATCH: if no other match occurs.

There must be only one match. If there is a match, the statement block associated
with the matched case_selector is executed, completing execution of the case
construct. If there is no match, execution of the case construct is complete.

If the case_construct_name is specified, it must match the name specified on the
SELECT CASE and END SELECT statements.

DEFAULT is the default case_selector. Only one of the CASE statements may have
DEFAULT as the case_selector.

Each case value must be of the same data type as the case_expr, as defined in the
SELECT CASE statement. If any typeless constants or BYTE named constants are
encountered in the case_selectors, they are converted to the data type of the
case_expr.

When the case_expr and the case values are of type character, they can have
different lengths. If you specify the -qctyplss compiler option, a character constant
expression used as the case_expr remains as type character. The character constant
expression will not be treated as a typeless constant.

Examples
ZERO: SELECT CASE(N)

CASE DEFAULT ZERO ! Default CASE statement for
! CASE construct ZERO

OTHER: SELECT CASE(N)
CASE(:-1) ! CASE statement for CASE

! construct OTHER
SIGNUM = -1

CASE(1:) OTHER
SIGNUM = 1

END SELECT OTHER
CASE (0)

SIGNUM = 0

END SELECT ZERO

Related information
v “CASE construct” on page 143
v “SELECT CASE” on page 453

304 XL Fortran: Language Reference for Big Endian Distributions

v “END (Construct)” on page 346, for details on the END SELECT statement

CHARACTER
Purpose

A CHARACTER type declaration statement specifies the kind, length, and
attributes of objects and functions of type character. You can assign initial values to
objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

char_selector

specifies the character length.

�� CHARACTER
char_selector ::

, attr_spec_list ::

�

� entity_decl_list ��

�� (LEN = type_param_value , KIND = int_constant_expr)
type_param_value , int_constant_expr

KIND =
KIND = int_constant_expr

, LEN = type_param_value
type_param_value

LEN =
* char_length

,

��

Chapter 11. Statements and attributes 305

type_param_value
is a specification expression, an asterisk (*) or a colon

int_constant_expr
is a scalar integer constant expression that must evaluate to 1

char_length
is either a scalar integer literal constant (which cannot specify a
kind type parameter) or a type_param_value enclosed in parentheses

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds.

entity_decl

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name.

=> NULL()
provides the initial value for the pointer object.

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.

�� a
* char_length (array_spec)

(array_spec) * char_length

�

�
(1)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension

306 XL Fortran: Language Reference for Big Endian Distributions

v If = appears in a component initialization, the POINTER attribute cannot appear
in the component attr_spec_list.

v The compiler will evaluate constant_expr within the scoping unit of the type
definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements. For details, see “Type Declaration” on page 470.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object must not be initially defined in a type declaration statement if it is a
dummy argument, an allocatable object, a pointer, a function result, an object in
blank common, an integer pointer, an external name, an intrinsic name, or an
automatic object. Nor can an object be initialized if it has the AUTOMATIC
attribute. The object may be initialized if:
v it appears in a named common block in a block data program unit.
v if it appears in a named common block in a module F2008 or submodule

F2008 .

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of a type_param_value or an array_spec can be a
nonconstant expression if the specification expression appears in an interface body
or in the specification part of a subprogram. Any object being declared that uses
this nonconstant expression and is not a dummy argument or a pointee is called an
automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If constant_expr or NULL() is specified, and the entity you are declaring:
v is a variable, the variable is initially defined.
v is a derived type component, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of constant_expr or NULL() implies that a is a saved object,
except for an object in a named common block. The initialization of an object could
affect the fundamental storage class of an object.

Chapter 11. Statements and attributes 307

An array_spec specified in an entity_decl takes precedence over the array_spec in the
DIMENSION attribute. A char_length specified in an entity_decl takes precedence
over any length specified in char_selector.

An array function result that does not have the POINTER attribute must have an
explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

The optional comma after char_length in a CHARACTER type declaration
statement is permitted only if no double colon separator (::) appears in the
statement.

Fortran 2003

If the CHARACTER type declaration statement specifies a length of a colon, the
length type parameter is a deferred type parameter. An entity or component with a
deferred type parameter must specify the ALLOCATABLE or POINTER attribute.
A deferred type parameter is a length type parameter whose value can change
during the execution of the program.

End of Fortran 2003

If the CHARACTER type declaration statement is in the scope of a module,
F2008 submodule F2008 , block data program unit, or main program, and you

specify the length of the entity as an inherited length, the entity must be the name
of a named character constant. The character constant assumes the length of its
corresponding expression defined by the PARAMETER attribute.

If the CHARACTER type declaration statement is in the scope of a procedure and
the length of the entity is inherited, the entity name must be the name of a dummy
argument or a named character constant. If the statement is in the scope of an
external function, it can also be the function or entry name in a FUNCTION or
ENTRY statement in the same program unit. If the entity name is the name of a
dummy argument, the dummy argument assumes the length of the associated
actual argument for each reference to the procedure. If the entity name is the name
of a character constant, the character constant assumes the length of its
corresponding expression defined by the PARAMETER attribute. If the entity
name is a function or entry name, the entity assumes the length specified in the
calling scoping unit.

The length of a character function can be a specification expression (which must be
a constant expression if the function type is not declared in an interface block) or it
is a colon, or an asterisk, indicating the length of a dummy procedure name. The
length cannot be an asterisk if the function is an internal or module function, if it
is recursive, or if it returns array or pointer values.

Examples
CHARACTER(KIND=1,LEN=6) APPLES /’APPLES’/
CHARACTER(7), TARGET :: ORANGES = ’ORANGES’
I=7

308 XL Fortran: Language Reference for Big Endian Distributions

CALL TEST(APPLES,I)
CONTAINS

SUBROUTINE TEST(VARBL,I)
CHARACTER*(*), OPTIONAL :: VARBL ! VARBL inherits a length of 6
CHARACTER(I) :: RUNTIME ! Automatic object with length of 7

END SUBROUTINE
END

Related information
v “Character” on page 42
v “Constant expressions” on page 100
v “Determining Type” on page 17 for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

CLASS (Fortran 2003)
Purpose

A CLASS type declaration statement specifies the declared type, type parameters,
and attributes of objects of derived type. Initial values can be assigned to objects.

Syntax

derived_type_spec
is the name of an extensible derived type. For more information, see “Type
Declaration” on page 470.

attr_spec
For more information, see “TYPE” on page 466.

entity_decl
For more information, see “TYPE” on page 466.

Rules

The rules for the TYPE type declaration and CLASS type declaration are similar;
for further information, see “TYPE” on page 466.

The following rules are unique to CLASS type declarations:
v The CLASS type specifier is used to declare a polymorphic object. The type_name

is the declared type of a polymorphic object.

�� CLASS (derived_type_spec)
* ::

, attr_spec_list ::

�

� entity_decl_list ��

Chapter 11. Statements and attributes 309

v Use the CLASS(*) specifier to declare an unlimited polymorphic object. An
unlimited polymorphic entity is not declared to have a type, and is not
considered to have the same declared type as any other entity, including another
unlimited polymorphic entity.

v An entity declared with the CLASS keyword must be a dummy argument or
have the ALLOCATABLE or POINTER attribute. Also, dummy arguments
declared with the CLASS keyword must not have the value attribute.

Examples
program sClass

type base
integer::i
end type

type,extends(base)::child
integer::j
end type

type(child),target::child1=child(4,6)
type(base), target::base1=base(7)
! declare an item that could contain any extensible derived type
! or intrinsic type
class(*),allocatable::anyThing

! declare basePtr as a polymorphic item with declared type base,
! could have run time type of base or child
class(base),pointer::basePtr

! set basePtr to point to an item of type child
basePtr=>child1
call printAny(basePtr)

! set basePtr to point to an item of type base
basePtr=>base1
call printAny(basePtr)

! allocate an integer item
allocate(anyThing, source=base1%i)
call printAny(anyThing)

contains

subroutine printAny(printItem)
! declare a dummy arg of unlimited polymorphic, can point
! to any extensible derived type or intrinsic type
class(*)::printItem

select type(item=>printItem)
type is (base)
print*,’ base item is ’,item

type is (child)
print*,’ child item is ’, item

type is (integer)
print*,’ integer item is ’,item
end select
end subroutine
end program

The output of the program is:

310 XL Fortran: Language Reference for Big Endian Distributions

child item is 4 6
base item is 7
integer item is 7

Related information
v “Polymorphic entities (Fortran 2003)” on page 18

CLOSE
Purpose

The CLOSE statement disconnects an external file from a unit.

Execution of a CLOSE statement performs a wait operation for any
pending asynchronous data transfer operations for the specified unit.

Syntax

close_list
is a list that must contain one unit specifier (UNIT=u) and can also contain
one of each of the other valid specifiers. The valid specifiers are:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by an integer expression. The integer expression has
one of the following values:
v A value in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
close_list.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

Fortran 2003

IOMSG= iomsg_variable
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

�� CLOSE (close_list) ��

Chapter 11. Statements and attributes 311

End of Fortran 2003

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is an integer variable. When the input/output
statement containing this specifier finishes executing, ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

STATUS= char_expr
specifies the status of the file after it is closed. char_expr is a scalar
character expression whose value, when any trailing blanks are removed, is
either KEEP or DELETE.
v If KEEP is specified for a file that exists, the file will continue to exist

after the CLOSE statement. If KEEP is specified for a file that does not
exist, the file will not exist after the CLOSE statement. KEEP must not
be specified for a file whose status prior to executing the CLOSE
statement is SCRATCH.

v If DELETE is specified, the file will not exist after the CLOSE statement.

The default is DELETE if the file status is SCRATCH; otherwise, the
default is KEEP.

Rules

A CLOSE statement that refers to a unit can occur in any program unit of an
executable program and need not occur in the same scoping unit as the OPEN
statement referring to that unit. You can specify a unit that does not exist or has no
file connected; the CLOSE statement has no effect in this case.

Unit 0 cannot be closed.

When an executable program stops for reasons other than an error condition, all
units that are connected are closed. Each unit is closed with the status KEEP unless
the file status prior to completion was SCRATCH, in which case the unit is closed
with the status DELETE. The effect is as though a CLOSE statement without a
STATUS= specifier were executed on each connected unit.

If a preconnected unit is disconnected by a CLOSE statement, the rules of implicit
opening apply if the unit is later specified in a WRITE statement (without having
been explicitly opened).

Examples
CLOSE(15)
CLOSE(UNIT=16,STATUS=’DELETE’)

Related information
v “Units” on page 214
v “Conditions and IOSTAT values” on page 222
v “OPEN” on page 410

312 XL Fortran: Language Reference for Big Endian Distributions

COMMON
Purpose

The COMMON statement specifies common blocks and their contents. A common
block is a storage area that two or more scoping units can share, allowing them to
define and reference the same data and to share storage units.

Syntax

object

Rules

object cannot refer to a dummy argument, automatic object, allocatable object , or
an object of a derived type that has an allocatable ultimate component, pointee,
function, function result, or entry to a procedure, or a variable with the BIND
attribute. object cannot have the STATIC or AUTOMATIC attributes.

If an explicit_shape_spec_list is present, variable_name must not have the POINTER
attribute. Each dimension bound must be a constant specification expression. This
form specifies that variable_name has the DIMENSION attribute.

A given variable_name or procedure pointer name can only appear once in
all common block object lists within a scoping unit. Their names cannot be made
accessible by use association.

If object is of derived type, it must be a sequence derived type. Given a sequenced
structure where all the ultimate components are nonpointers, and are all of
character type or all of type default integer, default real, default complex, default
logical or double precision real, the structure is treated as if its components are
enumerated directly in the common block.

�� COMMON object_list
/ /

common_block_name

�

�

� / / object_list
, common_block_name

��

�� variable_name
(explicit_shape_spec_list)

(1)
procedure_pointer_name

��

Notes:

1 Fortran 2003

Chapter 11. Statements and attributes 313

Data pointers that are storage associated shall have deferred the same type
parameters. Furthermore, a data pointer object in a common block can only be
storage associated with pointers of the same type, type parameters, and rank.

An object in a common block with TARGET attribute can be storage associated
with another object. That object must have the TARGET attribute and have the
same type and type parameters.

Pointers of type BYTE can be storage associated with pointers of type
INTEGER(1) and LOGICAL(1). Integer and logical pointers of the same length can
be storage associated if you specify the -qintlog compiler option.

A procedure pointer can be storage associated only with another
procedure pointer; both interfaces must be either explicit or implicit. If both
interfaces are explicit, their characteristics must be the same. If both interfaces are
implicit, both must be subroutines or both must be functions with the same type
and type parameters.

If you specify common_block_name, all variables specified in the object_list that
follows are declared to be in that named common block. If you omit
common_block_name, all variables that you specify in the object_list that follows are
in the blank common block.

Within a scoping unit, a common block name can appear more than once in the
same or in different COMMON statements. Each successive appearance of the
same common block name continues the common block specified by that name.
Common block names are global entities.

The variables in a common block can have different data types. You can mix
character and noncharacter data types within the same common block. Variable
names in common blocks can appear in only one COMMON statement in a
scoping unit, and you cannot duplicate them within the same COMMON
statement.

See “Interoperability of common blocks” on page 845 for BIND information.

IBM extension

By default, common blocks are shared across threads, and so the use of the
COMMON statement is thread-unsafe if any storage unit in the common block
needs to be updated by more than one thread, or is updated by one thread and
referenced by another. To ensure your application uses COMMON in a thread-safe
manner, you must either serialize access to the data using locks, or make certain
that the common blocks are local to each thread. The Pthreads library module
provides mutexes to allow you to serialize access to the data using locks. See
Pthreads library module in the XL Fortran Optimization and Programming Guide for
more information. The lock_name attribute on the CRITICAL directive also
provides the ability to serialize access to data. See CRITICAL /END CRITICAL in
the XL Fortran Optimization and Programming Guide for more information. The
THREADLOCAL and THREADPRIVATE directives ensure that common blocks
are local to each thread. See THREADLOCAL and THREADPRIVATE in the XL
Fortran Optimization and Programming Guide for more information.

End of IBM extension

314 XL Fortran: Language Reference for Big Endian Distributions

Common association
Within an executable program, all nonzero-sized named common blocks with the
same name have the same first storage unit. There can be one blank common
block, and all scoping units that refer to nonzero-sized blank common refer to the
same first storage unit.

All zero-sized common blocks with the same name are storage-associated with one
another. All zero-sized blank common blocks are associated with one another and
with the first storage unit of any nonzero-sized blank common blocks. Use
association or host association can cause these associated objects to be accessible in
the same scoping unit.

Because association is by storage unit, variables in a common block can have
different names and types in different scoping units.

Common block storage sequence
Storage units for variables within a common block in a scoping unit are assigned
in the order that their names appear within the COMMON statement.

You can extend a common block by using an EQUIVALENCE statement, but only
by adding beyond the last entry, not before the first entry. For example, these
statements specify X:

COMMON /X/ A,B ! common block named X
REAL C(2)
EQUIVALENCE (B,C)

The contents of common block X are as follows:
| | | | | | | | | | | | |

Variable A: | A |
Variable B: | B |
Array C: | C(1) | C(2) |

Only COMMON and EQUIVALENCE statements that appear in a scoping unit
contribute to the common block storage sequences formed in that unit, not
including variables in common made accessible by use association or host
association.

An EQUIVALENCE statement cannot cause the storage sequences of two different
common blocks to become associated. While a common block can be declared in
the scoping unit of a module F2008 or submodule F2008 , it must not be
declared in another scoping unit that accesses entities from the module F2008 or
submodule F2008 through use association.

Use of COMMON can lead to misaligned data. Any use of misaligned data can
adversely affect the performance of the program.

Size of a common block
The size of a common block is equal to the number of bytes of storage needed to
hold all the variables in the common block, including any extensions resulting
from equivalence association.

Differences between named and blank common blocks
v Within an executable program, there can be more than one named common

block, but only one blank common block.
v In all scoping units of an executable program, named common blocks of the

same name must have the same size, but blank common blocks can have

Chapter 11. Statements and attributes 315

different sizes. (If you specify blank common blocks with different sizes in
different scoping units, the length of the longest block becomes the length of the
blank common block in the executable program.)

v You can initially define objects in a named common block by using a BLOCK
DATA program unit containing a DATA statement or a type declaration
statement. You cannot initially define any elements of a blank common block.

If a named common block, or any part of it, is initialized in more than
one scoping unit, the initial value is undefined. To avoid this problem, use block
data program units or modules to initialize named common blocks; each named
common block should be initialized in only one block data program unit or
module.

Examples
INTEGER MONTH,DAY,YEAR
COMMON /DATE/ MONTH,DAY,YEAR
REAL R4
REAL R8
CHARACTER(1) C1
COMMON /NOALIGN/ R8,C1,R4 ! R4 will not be aligned on a

! full-word boundary

Related information
v Pthreads library module in the XL Fortran Optimization and Programming Guide

v “BIND (Fortran 2003)” on page 295
v “Interoperability of common blocks” on page 845
v THREADLOCAL in the XL Fortran Optimization and Programming Guide.
v “Block data program unit” on page 188
v “Explicit-shape arrays” on page 75
v “Entities with scope” on page 149
v “Storage classes for variables (IBM extension)” on page 26

COMPLEX
Purpose

A COMPLEX type declaration statement specifies the length and attributes of
objects and functions of type complex. Initial values can be assigned to objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

�� COMPLEX
kind_selector ::

, attr_spec_list ::

entity_decl_list ��

316 XL Fortran: Language Reference for Big Endian Distributions

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

kind_selector

specifies the length of complex entities:
v If int_constant_expr is specified, the valid values are 4, 8 and 16. These

values represent the precision and range of each part of the complex
entity.

v If the *int_literal_constant form is specified, the valid values are 8, 16 and
32. These values represent the length of the whole complex entity, and
correspond to the values allowed for the alternative form.
int_literal_constant cannot specify a kind type parameter.

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds.

entity_decl

�� (int_constant_expr)
KIND =

(1)
* int_literal_constant

��

Notes:

1 IBM extension.

Chapter 11. Statements and attributes 317

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

len
overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name.

=> NULL()
provides an initial value for the pointer object

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

�� a
(1) (array_spec)

* len
(2)

(array_spec) * len

�

�
(3)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension.

2 IBM extension.

3 IBM extension.

318 XL Fortran: Language Reference for Big Endian Distributions

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if:
v it appears in a named common block in a block data program unit.
v if it appears in a named common block in a module or submodule.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If constant_expr or NULL() is specified, and the entity you are declaring:
v is a variable, the variable is initially defined.
v is a derived type component, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit.

A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of constant_expr or NULL() implies that a is a saved object,
except for an object in a named common block. The initialization of an object could
affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

Chapter 11. Statements and attributes 319

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
COMPLEX, DIMENSION (2,3) :: ABC(3) ! ABC has 3 (not 6) array elements

Related information
v “Complex” on page 39
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

CONTAINS
Purpose

The CONTAINS statement separates the body of a main program, external
subprogram, or module subprogram from any internal subprograms that it may
contain. Similarly, it separates the specification part of a module F2008 or
submodule F2008 from any module subprograms.

The CONTAINS statement also introduces the procedure part of a
derived-type definition.

Syntax

Rules

For a CONTAINS statement associated with subprograms, the following rules
apply:
v The CONTAINS statement cannot appear in a block data program unit or in an

internal subprogram.
v Any label of a CONTAINS statement is considered as part of the main program,

subprogram, module, F2008 or submodule F2008 that contains the
CONTAINS statement.

Examples

An example of a CONTAINS statement
MODULE A

...
CONTAINS ! Module subprogram must follow
SUBROUTINE B(X)

...

�� CONTAINS ��

320 XL Fortran: Language Reference for Big Endian Distributions

CONTAINS ! Internal subprogram must follow
FUNCTION C(Y)

...
END FUNCTION

END SUBROUTINE
END MODULE

An example of a CONTAINS statement in a derived type definition
TYPE CUST

INTEGER :: CUST_NUMBER
CONTAINS
PROCEDURE, PASS :: GET_CUST => GET_CUST_NUMBER

END TYPE CUST

Related information
v “Program units, procedures, and subprograms” on page 159

CONTIGUOUS (Fortran 2008)
Purpose

The CONTIGUOUS attribute specifies that the array elements of an array pointer,
an assumed-shape array TS , or an assumed-rank object TS are not
separated by other data objects.

An array pointer with the CONTIGUOUS attribute can only be pointer associated
with a contiguous target. An assumed-shape array TS or an assumed-rank
object TS with the CONTIGUOUS attribute is always contiguous; however,
the corresponding actual argument can be contiguous or noncontiguous. For
details, see the “Rules” section.

Syntax

contiguous_array
an array that is contiguous

Rules

The entity that is specified with the CONTIGUOUS attribute must be an array
pointer, an assumed-shape array TS , or an assumed-rank object TS .

In a pointer assignment, if the pointer has the CONTIGUOUS attribute, the target
associated must be contiguous. The actual argument that corresponds to a pointer
dummy argument with the CONTIGUOUS attribute must be simply contiguous.

If the actual argument that corresponds to an assumed-shape array dummy
argument TS or an assumed-rank dummy argument TS with the
CONTIGUOUS attribute is not contiguous, and the call is made from Fortran or
the callee is a Fortran procedure, the compiler makes it contiguous by performing
the following actions:

�� CONTIGUOUS contiguous_array_list
::

��

Chapter 11. Statements and attributes 321

1. Create a temporary contiguous argument to associate with the dummy
argument.

2. Initialize the temporary contiguous argument with the value of the actual
argument.

3. When control returns from the procedure, copy the value of the temporary
contiguous argument back to the actual argument.

Note: The value is not copied back if the actual argument is specified as
INTENT(IN).

If an actual argument is a nonpointer array with the ASYNCHRONOUS or
VOLATILE attribute but is not simply contiguous, and the corresponding dummy
argument has either the VOLATILE or ASYNCHRONOUS attribute, that dummy
argument must be an assumed-shape array without the CONTIGUOUS attribute.

If an actual argument is an array pointer with the ASYNCHRONOUS or
VOLATILE attribute but without the CONTIGUOUS attribute, and the
corresponding dummy argument has either the VOLATILE or ASYNCHRONOUS
attribute, that dummy argument must be an array pointer or an assumed-shape
array without the CONTIGUOUS attribute.

Compatible attributes

The following table lists the attributes that are compatible with the
CONTIGUOUS attribute.

Table 37. Attributes compatible with the CONTIGUOUS attribute

AUTOMATIC �1� OPTIONAL SAVE

ASYNCHRONOUS POINTER STATIC �1�

DIMENSION PRIVATE TARGET

EXTERNAL PROTECTED �2� VOLATILE

INTENT PUBLIC

Notes:
�1� IBM extension
�2� Fortran 2003

Examples

Example 1: CONTIGUOUS attribute specified for an array pointer
INTEGER, CONTIGUOUS, POINTER :: ap(:)
INTEGER, TARGET :: targ(10)
INTEGER, POINTER :: ip(:)
LOGICAL :: contig

! Invalid because ap is contiguous. A severe error is issued at compile time.
ap => targ(1:10:2)
ip => targ(1:10:2)
! contig has a value of .FALSE.
contig = IS_CONTIGUOUS(ip)

! contig has a value of .TRUE.
ALLOCATE(ip(10))
contig = IS_CONTIGUOUS(ip)

Example 2: CONTIGUOUS attribute specified for an assumed-shape array

322 XL Fortran: Language Reference for Big Endian Distributions

LOGICAL :: contig

! Define a derived type named base
TYPE base(k, j, l)

INTEGER, KIND :: k, j
INTEGER, LEN :: l
INTEGER(k) :: x
INTEGER(j) :: y(l)

END TYPE

! Declare an allocatable, assumed-shape array b of base type
TYPE(base(4, 8, 0)), ALLOCATABLE :: b(:)
! Allocate two elements to b
ALLOCATE(b(2))
! contig has a value of .FALSE.
contig = IS_CONTIGUOUS(b%x)

Example 3: CONTIGUOUS attribute specified for an assumed-shape array
INTEGER, POINTER :: p(:)
INTEGER, TARGET :: t(10) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

p => t(1:10:2)

! The actual argument p, which corresponds to the contiguous dummy argument,
! is not contiguous. The compiler makes it contiguous by creating a temporary
! contiguous argument.
CALL fun(p)

CONTAINS
SUBROUTINE fun(arg)

! Contiguous dummy argument arg
INTEGER, CONTIGUOUS :: arg(:)
PRINT *, arg(1)

END SUBROUTINE

Related information
v IS_CONTIGUOUS
v “Contiguity (Fortran 2008)” on page 96
v “Argument association” on page 192

CONTINUE
Purpose

The CONTINUE statement is an executable control statement that takes no action;
it has no effect. This statement is often used as the terminal statement of a loop.

Syntax

Examples
DO 100 I = 1,N

X = X + N
100 CONTINUE

�� CONTINUE ��

Chapter 11. Statements and attributes 323

Related information
v Chapter 7, “Execution control,” on page 133

CYCLE
Purpose

The CYCLE statement terminates the current execution cycle of a DO or DO
WHILE construct.

Syntax

DO_construct_name
is the name of a DO or DO WHILE construct

Rules

The CYCLE statement is placed within a DO or DO WHILE construct and belongs
to the particular DO or DO WHILE construct specified by DO_construct_name or, if
not specified, to the DO or DO WHILE construct that immediately surrounds it.
The statement terminates only the current cycle of the construct that it belongs to.

When the CYCLE statement is executed, the current execution cycle of the DO or
DO WHILE construct is terminated. Any executable statements after the CYCLE
statement, including any terminating labeled action statement, will not be
executed. For DO constructs, program execution continues with incrementation
processing, if any. For DO WHILE constructs, program execution continues with
loop control processing.

A CYCLE statement can have a statement label. However, it cannot be used as a
labeled action statement that terminates a DO construct.

Examples
LOOP1: DO I = 1, 20

N = N + 1
IF (N > NMAX) CYCLE LOOP1 ! cycle to LOOP1

LOOP2: DO WHILE (K==1)
IF (K > KMAX) CYCLE ! cycle to LOOP2
K = K + 1

END DO LOOP2

LOOP3: DO J = 1, 10
N = N + 1
IF (N > NMAX) CYCLE LOOP1 ! cycle to LOOP1
CYCLE LOOP3 ! cycle to LOOP3

END DO LOOP3

END DO LOOP1
END

�� CYCLE
DO_construct_name

��

324 XL Fortran: Language Reference for Big Endian Distributions

Related information
v “DO” on page 333
v “DO WHILE” on page 335

DATA
Purpose

The DATA statement provides initial values for variables.

Syntax

data_object
is a variable or an implied-DO list. Any subscript or substring expression
must be a constant expression.

implied-DO list

do_object
is an array element, scalar structure component, substring, or
implied-DO list

do_variable
is a named scalar integer variable called the implied-DO variable.
This variable is a statement entity.

integer_expr1, integer_expr2, and integer_expr3
are each scalar integer expressions. The primaries of an expression
can only contain constants or implied-DO variables of other
implied-DO lists that have this implied-DO list within their
ranges. Each operation must be intrinsic.

initial_value

r is a nonnegative scalar integer constant. If r is a named constant, it

�� �

,

DATA data_object_list / initial_value_list / ��

�� (do_object_list , do_variable = integer_expr1 , integer_expr2 �

�
, integer_expr3

) ��

��
r *

data_value ��

Chapter 11. Statements and attributes 325

must have been declared previously in the scoping unit or made
accessible by use or host association.

r may also be a nonnegative scalar integer subobject of a constant.
Similar to the above paragraph, if it is a subobject of a named
constant, it must have been declared previously in the scoping unit
or made accessible by use or host association.

If r is a subobject of a constant, any subscript in it is a constant
expression. If r is omitted, the default value is 1. The form
r*data_value is equivalent to r successive appearances of the data
value.

data_value
is a scalar constant, signed integer literal constant, signed real
literal constant, structure constructor, scalar subobject of a constant,
or NULL().

Rules

If you specify that a nonpointer object has default initialization in a type definition,
you cannot initialize that object with a DATA statement. Specifying a nonpointer
array object as a data_object is the same as specifying a list of all the elements in the
array object in the order they are stored.

An array with pointer attribute has only one corresponding initial value which is
NULL().

Each data_object_list must specify the same number of items as its corresponding
initial_value_list. There is a one-to-one correspondence between the items in these
two lists. This correspondence establishes the initial value of each data_object.

For pointer initialization, if the data_value is NULL() then the corresponding
data_object must have pointer attribute. If the data_object has pointer attribute then
the corresponding data_value must be NULL().

The definition of each data_object by its corresponding initial_value must follow the
rules for intrinsic assignment, except as noted under “Using typeless constants” on
page 31.

If initial_value is a structure constructor, each component must be a constant
expression. If data_object is a variable, any substring, subscript, or stride
expressions must be constant expressions.

If data_value is a named constant or a subobject of a named constant, the named
constant must have been previously declared in the scoping unit, or made
accessible by host or use association. If data_value is a structure constructor, the
derived type must have been previously declared in the scoping unit, or made
accessible by host or use association.

Zero-sized arrays, implied-DO lists with iteration counts of zero, and values with a
repeat factor of zero contribute no variables to the expanded initial_value_list,
although a zero-length scalar character variable contributes one variable to the list.

You can use an implied-DO list in a DATA statement to initialize array elements,
scalar structure components and substrings. The implied-DO list is expanded into
a sequence of scalar structure components, array elements, or substrings, under the

326 XL Fortran: Language Reference for Big Endian Distributions

control of the implied-DO variable. Array elements and scalar structure
components must not have constant parents. Each scalar structure component must
contain at least one component reference that specifies a subscript list.

The range of an implied-DO list is the do_object_list. The iteration count and the
values of the implied-DO variable are established from integer_expr1, integer_expr2,
and integer_expr3, the same as for a DO statement. When the implied-DO list is
executed, it specifies the items in the do_object_list once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the implied-DO variables. If the implied-DO variable has an iteration count of 0,
no variables are added to the expanded sequence.

Each subscript expression in a do_object can only contain constants or implied-DO
variables of implied-DO lists that have the subscript expression within their
ranges. Each operation must be intrinsic.

IBM extension

To initialize list items of type logical with logical constants, you can also use the
abbreviated forms (T for .TRUE. and F for .FALSE.). If T or F is a constant name
that was defined previously with the PARAMETER attribute, XL Fortran
recognizes it as the named constant and assigns its value to the corresponding list
item in the DATA statement.

End of IBM extension

In a block data program unit, you can use a DATA statement or type declaration
statement to provide an initial value for a variable in a named common block.

In an internal or module subprogram, if the data_object is the same name as an
entity in the host, and the data_object is not declared in any other specification
statement in the internal subprogram, the data_object must not be referenced or
defined before the DATA statement.

A DATA statement cannot provide an initial value for:
v An automatic object.
v A dummy argument.
v A pointee.
v A variable in a blank common block.
v The result variable of a function.
v A data object whose storage class is automatic.
v A variable that has the ALLOCATABLE attribute.

You must not initialize a variable more than once in an executable program. If you
associate two or more variables, you can only initialize one of the data objects.

Examples

Example 1:
INTEGER Z(100),EVEN_ODD(0:9)
LOGICAL FIRST_TIME
CHARACTER*10 CHARARR(1)
DATA FIRST_TIME / .TRUE. /
DATA Z / 100* 0 /

! Implied-DO list

Chapter 11. Statements and attributes 327

DATA (EVEN_ODD(J),J=0,8,2) / 5 * 0 / &
& ,(EVEN_ODD(J),J=1,9,2) / 5 * 1 /

! Nested example
DIMENSION TDARR(3,4) ! Initializes a two-dimensional array
DATA ((TDARR(I,J),J=1,4),I=1,3) /12 * 0/

! Character substring example
DATA (CHARARR(J)(1:3),J=1,1) /’aaa’/
DATA (CHARARR(J)(4:7),J=1,1) /’bbbb’/
DATA (CHARARR(J)(8:10),J=1,1) /’ccc’/

! CHARARR(1) contains ’aaabbbbccc’

Example 2:
TYPE DT

INTEGER :: COUNT(2)
END TYPE DT

TYPE(DT), PARAMETER, DIMENSION(3) :: SPARM = DT ((/3,5/))

INTEGER :: A(5)

DATA A /SPARM(2)%COUNT(2) * 10/

Related information
v “Executing a DO statement” on page 138
v “Statement and construct entity” on page 153

DEALLOCATE
Purpose

The DEALLOCATE statement dynamically deallocates allocatable objects and
pointer targets. A specified pointer becomes disassociated, while any other pointers
associated with the target become undefined.

Syntax

allocate_object
is a data pointer or an allocatable object

stat_variable
is a scalar integer variable

errmsg_variable
is a scalar character variable

Rules

An allocatable object that appears in a DEALLOCATE statement must be allocated.

�� DEALLOCATE �

� (allocate_object_list)
, STAT = stat_variable (1)

, ERRMSG = errmsg_variable

��

Notes:

1 Fortran 2003

328 XL Fortran: Language Reference for Big Endian Distributions

When the result of a referenced function is allocatable, or has a structure
with allocatable subobjects, that result and any allocated allocatable subobjects are
deallocated after execution of the innermost executable construct containing the
function reference.

An allocatable object with the TARGET attribute cannot be deallocated through an
associated pointer. Deallocation of such an object causes the association status of
any associated pointer to become undefined. An allocatable object that has an
undefined allocation status cannot be subsequently referenced, defined, allocated,
or deallocated. Successful execution of a DEALLOCATE statement causes the
allocation status of an allocatable object to become not allocated.

An object being deallocated will be finalized first. When a variable of
derived type is deallocated, any allocated subobject with the ALLOCATABLE
attribute is also deallocated. If an allocatable component is a subojbect of a
finalizable object, that object is finalized before the component is automatically
deallocated.

When an intrinsic assignment statement is executed, any allocated subobject of the
variable is deallocated before the assignment takes place.

A pointer that appears in a DEALLOCATE statement must be associated with a
whole target that was created with an ALLOCATE statement. Deallocation of a
pointer target causes the association status of any other pointer associated with all
or part of the target to become undefined.

Deallocation of a variable containing allocatable components automatically
deallocates all such components of the variable that are allocated.

If the STAT= specifier is not present and an error condition occurs during
execution of the statement, the program terminates. If the STAT= specifier is
present, stat_variable is assigned one of the following values:

IBM extension

Stat value Error condition

0 No error

1 Error in system routine attempting to do deallocation

2 An invalid data object has been specified for deallocation

3 Both error conditions 1 and 2 have occurred

End of IBM extension

Tips

Use the DEALLOCATE statement instead of the NULLIFY statement if no other pointer
is associated with the allocated memory.

Deallocate memory that a pointer function has allocated.

Chapter 11. Statements and attributes 329

If an error condition occurs during execution of the DEALLOCATE
statement, an explanatory message is assigned to errmsg_variable. If no such
condition occurs, the value of errmsg_variable is not changed.

An allocate_object must not depend on the value, bounds, allocation status, or
association status of another allocate_object in the same DEALLOCATE statement;
nor does it depend on the value of the stat_variable or errmsg_variable

in the same DEALLOCATE statement.

stat_variable and errmsg_variable must not be deallocated within the same
DEALLOCATE statement. The variable must not depend on the value, bounds,
allocation status, or association status of any allocate_object in the same
DEALLOCATE statement.

Examples
INTEGER, ALLOCATABLE :: A(:,:)
INTEGER X,Y

.

.

.
ALLOCATE (A(X,Y))

.

.

.
DEALLOCATE (A,STAT=I)
END

Related information
v “ALLOCATE” on page 285
v “ALLOCATABLE (Fortran 2003)” on page 283
v “Allocation status” on page 26
v “Pointer association” on page 157
v “Deferred-shape arrays” on page 78
v “Allocatable objects as dummy arguments (Fortran 2003)” on page 200

Derived Type
Purpose

The Derived Type statement is the first statement of a derived-type definition.

Syntax

type_attribute
is PRIVATE, PUBLIC, BIND(C), extends_spec, or ABSTRACT

.

type_name
is the name of the derived type

�� TYPE type_name
:: (type_param_name_list)
,type_attribute_list ::

��

330 XL Fortran: Language Reference for Big Endian Distributions

extends_spec (Fortran 2003)
is

type_param_name (Fortran 2003)
is the name of a type parameter. For more information, see “Derived type
parameters (Fortran 2003)” on page 48.

Rules

The same type attribute can not occur more than once on the same
derived type statement.

You can specify the PRIVATE or PUBLIC attribute only if the derived type
definition is within the specification part of a module. A derived type definition
can be PRIVATE or PUBLIC, not both.

If you define a type as PRIVATE, the following are accessible only within the
defining module:
v The type name and any type parameter names for this

derived type.
v Structure constructors for the type.
v Any procedure that has a dummy argument or function result of the type.

The type_name must not be the same as the name of any intrinsic type, except
BYTE and DOUBLECOMPLEX. The type_name must also not be the name of any
other accessible derived type.

Fortran 2003

BIND(C) explicitly defines the Fortran derived type as interoperable with a C type.
The components must be of interoperable types. (See “Interoperability of types” on
page 843 for additional information.) A derived type with the BIND attribute
cannot be a SEQUENCE type. A component of a derived type with the BIND
attribute must have interoperable type and type parameters, and cannot have the
POINTER or ALLOCATABLE attribute.

A derived type with the BIND attribute cannot have type parameters.

The parent_type_name must be an accessible extensible type.

You can only specify the ABSTRACT attribute for an extensible type.

If EXTENDS is specified, SEQUENCE cannot appear for that type.

�� EXTENDS (parent_type_name) ��

�� type_param_name
,

��

Chapter 11. Statements and attributes 331

If EXTENDS is specified and the type being defined has an ultimate component of
type LOCK TYPE from the ISO_FORTRAN_ENV intrinsic module, its parent type
must have an ultimate component of type LOCK TYPE.

If EXTENDS is specified, the type must not have the BIND(C) attribute.

End of Fortran 2003

If the corresponding END TYPE statement specifies a name, it must be the same as
type_name.

Examples
MODULE ABC

TYPE, PRIVATE :: SYSTEM ! Derived type SYSTEM can only be accessed
SEQUENCE ! within module ABC
REAL :: PRIMARY
REAL :: SECONDARY
CHARACTER(20), DIMENSION(5) :: STAFF

END TYPE
END MODULE

TYPE MULTIDIM (K,NDIMS)
INTEGER, KIND :: K
INTEGER, LEN :: NDIMS
REAL(K) :: POS(NDIMS)

END TYPE MULTIDIM
TYPE, EXTENDS(MULTIDIM) :: NAMED_MULTI (L)

INTEGER, LEN :: L
CHARACTER(L) :: NAME

END TYPE NAMED_MULTI

Related information
v Chapter 4, “Derived types,” on page 47
v “Interoperability of types” on page 843
v “END TYPE” on page 350
v “SEQUENCE” on page 455
v “Extensible derived types (Fortran 2003)” on page 56
v “Abstract types and deferred bindings (Fortran 2003)” on page 58

DIMENSION
Purpose

The DIMENSION attribute specifies that an entity is an array.

Syntax

array_declarator_list
is a list of array declarators that specifies the rank or rank and shape of an
array.

�� DIMENSION array_declarator_list
::

��

332 XL Fortran: Language Reference for Big Endian Distributions

Rules

The Fortran standard allows arrays with up to fifteen dimensions.

With XL Fortran, you can specify up to twenty dimensions.

Only one dimension specification for an array name can appear in a scoping unit.

Table 38. Attributes compatible with the DIMENSION attribute

ALLOCATABLE �1� OPTIONAL PUBLIC

ASYNCHRONOUS PARAMETER SAVE

AUTOMATIC �3� POINTER STATIC �3�

BIND �1� PRIVATE TARGET

CONTIGUOUS �2� PROTECTED �1� VOLATILE

INTENT

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples
CALL SUB(5,6)
CONTAINS
SUBROUTINE SUB(I,M)

DIMENSION LIST1(I,M) ! automatic array
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: A ! deferred-shape array

...
END SUBROUTINE
END

Related information
v Chapter 5, “Array concepts,” on page 73
v “VIRTUAL (IBM extension)” on page 483

DO
Purpose

The DO statement controls the execution of the statements that follow it, up to and
including a specified terminal statement. Together, these statements form a DO
construct.

Syntax

Chapter 11. Statements and attributes 333

DO_construct_name
is a name that identifies the DO construct.

stmt_label
is the statement label of an executable statement appearing after the DO
statement in the same scoping unit. This statement denotes the end of the
DO construct.

var_name
is a scalar variable name of type integer or real, called the DO variable

a_expr1, a_expr2, and a_expr3
are each scalar expressions of type integer or real

Rules

If you specify a DO_construct_name on the DO statement, you must terminate the
construct with an END DO and the same DO_construct_name. Conversely, if you
do not specify a DO_construct_name on the DO statement, and you terminate the
DO construct with an END DO statement, you must not have a
DO_construct_name on the END DO statement.

If you specify a statement label in the DO statement, you must terminate the DO
construct with a statement that is labeled with that statement label. You can
terminate a labeled DO statement with an END DO statement that is labeled with
that statement label, but you cannot terminate it with an unlabeled END DO
statement. If you do not specify a label in the DO statement, you must terminate
the DO construct with an END DO statement.

If the control clause (the clause beginning with var_name) is absent, the statement is
an infinite DO. The loop will iterate indefinitely until interrupted (for example, by
the EXIT statement).

Examples
INTEGER :: SUM=0
OUTER: DO

INNER: DO M=1,10
READ (5,*) J
IF (J.LE.I) THEN

PRINT *, ’VALUE MUST BE GREATER THAN ’, I
CYCLE INNER

END IF
SUM=SUM+J
IF (SUM.GT.500) EXIT OUTER
IF (SUM.GT.100) EXIT INNER

END DO INNER
SUM=SUM+I
I=I+10

END DO OUTER
PRINT *, ’SUM =’,SUM
END

��
DO_construct_name :

DO
stmt_label

�

�
var_name = a_expr1, a_expr2

, , a_expr3

��

334 XL Fortran: Language Reference for Big Endian Distributions

Related information
v “DO construct” on page 136
v “END (Construct)” on page 346, for details on the END DO statement
v “EXIT” on page 361
v “CYCLE” on page 324
v “INDEPENDENT” on page 515
v “ASSERT” on page 501
v “CNCALL” on page 505
v “PERMUTATION” on page 525
v PARALLEL DO/END PARALLEL DO in the XL Fortran Optimization and

Programming Guide

DO WHILE
Purpose

The DO WHILE statement is the first statement in the DO WHILE construct,
which indicates that you want the following statement block, up to and including
a specified terminal statement, to be repeatedly executed for as long as the logical
expression specified in the statement continues to be true.

Syntax

DO_construct_name
is a name that identifies the DO WHILE construct

stmt_label
is the statement label of an executable statement appearing after the DO
WHILE statement in the same scoping unit. It denotes the end of the DO
WHILE construct.

logical_expr
is a scalar logical expression

Rules

If you specify a DO_construct_name on the DO WHILE statement, you must
terminate the construct with an END DO and the same DO_construct_name.
Conversely, if you do not specify a DO_construct_name on the DO WHILE
statement, and you terminate the DO WHILE construct with an END DO
statement, you must not have a DO_construct_name on the END DO statement.

If you specify a statement label in the DO WHILE statement, you must terminate
the DO WHILE construct with a statement that is labeled with that statement
label. You can terminate a labeled DO WHILE statement with an END DO
statement that is labeled with that statement label, but you cannot terminate it

�� DO
DO_construct_name : stmt_label ,

�

� WHILE (logical_expr) ��

Chapter 11. Statements and attributes 335

with an unlabeled END DO statement. If you do not specify a label in the DO
WHILE statement, you must terminate the DO WHILE construct with an END
DO statement.

Examples
MYDO: DO 10 WHILE (I .LE. 5) ! MYDO is the construct name

SUM = SUM + INC
I = I + 1

10 END DO MYDO
END

SUBROUTINE EXAMPLE2
REAL X(10)
LOGICAL FLAG1
DATA FLAG1 /.TRUE./
DO 20 WHILE (I .LE. 10)

X(I) = A
I = I + 1

20 IF (.NOT. FLAG1) STOP
END SUBROUTINE EXAMPLE2

Related information
v “DO WHILE construct” on page 140
v “END (Construct)” on page 346, for details on the END DO statement
v “EXIT” on page 361
v “CYCLE” on page 324

DOUBLE COMPLEX (IBM extension)
Purpose

A DOUBLE COMPLEX type declaration statement specifies the attributes of
objects and functions of type double complex. Initial values can be assigned to
objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

�� DOUBLE COMPLEX entity_decl_list
::
, attr_spec_list ::

��

336 XL Fortran: Language Reference for Big Endian Distributions

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL()

array_spec
is a list of dimension bounds

entity_decl

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name

=> NULL()
provides the initial value for the pointer object

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

�� a
(array_spec) / initial_value_list /

= constant_expr
=> NULL()

��

Chapter 11. Statements and attributes 337

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit or
if it appears in a named common block in a module F2008 or submodule

F2008 .

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined. If the entity you are declaring is a
derived type component, and constant_expr or NULL() is specified, the derived
type has default initialization. a becomes defined with the value determined by
constant_expr, in accordance with the rules for intrinsic assignment. If the entity is
an array, its shape must be specified either in the type declaration statement or in a
previous specification statement in the same scoping unit. A variable or variable
subobject cannot be initialized more than once. If a is a variable, the presence of
constant_expr or => NULL() implies that a is a saved object, except for an object in
a named common block. The initialization of an object could affect the
fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

338 XL Fortran: Language Reference for Big Endian Distributions

Examples
SUBROUTINE SUB

DOUBLE COMPLEX, STATIC, DIMENSION(1) :: B
END SUBROUTINE

Related information
v “COMPLEX” on page 316
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

DOUBLE PRECISION
Purpose

A DOUBLE PRECISION type declaration statement specifies the attributes of
objects and functions of type double precision. Initial values can be assigned to
objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

�� DOUBLE PRECISION entity_decl_list
::
, attr_spec_list ::

��

Chapter 11. Statements and attributes 339

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =initialization_expr, or => NULL()

array_spec
is a list of dimension bounds

entity_decl

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

initialization_expr
provides an initial value, by means of a constant expression, for
the entity specified by the immediately preceding name.

=> NULL()
provides the initial value for the pointer object.

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate initialization_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If initialization_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

�� a
(array_spec) (1)

/ initial_value_list /
= initialization_expr
=> NULL()

��

Notes:

1 IBM extension.

340 XL Fortran: Language Reference for Big Endian Distributions

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in blank common, an
integer pointer, an external name, an intrinsic name, or an automatic object. Nor
can an object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module or submodule.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

initialization_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and initialization_expr or
NULL() is specified, the variable is initially defined. If the entity you are declaring
is a derived type component, and initialization_expr or NULL() is specified, the
derived type has default initialization. a becomes defined with the value
determined by initialization_expr, in accordance with the rules for intrinsic
assignment. If the entity is an array, its shape must be specified either in the type
declaration statement or in a previous specification statement in the same scoping
unit. A variable or variable subobject cannot be initialized more than once. If a is a
variable, the presence of initialization_expr or => NULL() implies that a is a saved
object, except for an object in a named common block. The initialization of an
object could affect the fundamental storage class of an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the POINTER attribute must have an
explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
DOUBLE PRECISION, POINTER :: PTR
DOUBLE PRECISION, TARGET :: TAR

Chapter 11. Statements and attributes 341

Related information
v “REAL” on page 443
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

ELSE
Purpose

The ELSE statement is the first statement of the optional ELSE block within an IF
construct.

Syntax

IF_construct_name
is a name that identifies the IF construct

Syntax

Control branches to the ELSE block if every previous logical expression in the IF
construct evaluates as false. The statement block of the ELSE block is executed and
the IF construct is complete.

If you specify an IF_construct_name, it must be the same name that you specified in
the block IF statement.

Examples
IF (A.GT.0) THEN

B = B-A
ELSE ! the next statement is executed if a<=0

B = B+A
END IF

Related information
v “IF construct” on page 141
v “END (Construct)” on page 346, for details on the END IF statement
v “ELSE IF” on page 343

�� ELSE
IF_construct_name

��

342 XL Fortran: Language Reference for Big Endian Distributions

ELSE IF
Purpose

The ELSE IF statement is the first statement of an optional ELSE IF block within
an IF construct.

Syntax

IF_construct_name
is a name that identifies the IF construct

Rules

scalar_logical_expr is evaluated if no previous logical expressions in the IF construct
are evaluated as true. If scalar_logical_expr is true, the statement block that follows
is executed and the IF construct is complete.

If you specify an IF_construct_name, it must be the same name that you specified in
the block IF statement.

Examples
IF (I.EQ.1) THEN

J=J-1
ELSE IF (I.EQ.2) THEN

J=J-2
ELSE IF (I.EQ.3) THEN

J=J-3
ELSE

J=J-4
END IF

Related information
v “IF construct” on page 141
v “END (Construct)” on page 346, for details on the END IF statement
v “ELSE” on page 342

ELSEWHERE
Purpose

The ELSEWHERE statement is the first statement of the optional ELSEWHERE or
masked ELSEWHERE block within a WHERE construct.

�� ELSE IF (scalar_logical_expr) THEN
IF_construct_name

��

Chapter 11. Statements and attributes 343

Syntax

mask_expr
is a logical array expression

where_construct_name
is a name that identifies a WHERE construct

Rules

A masked ELSEWHERE statement contains a mask_expr. See “Interpreting masked
array assignments” on page 120 for information on interpreting mask expressions.
Each mask_expr in a WHERE construct must have the same shape.

If you specify a where_construct_name, it must be the same name that you specified
on the WHERE construct statement.

ELSEWHERE and masked ELSEWHERE statements must not be branch target
statements.

Examples

The following example shows a program that uses a simple masked ELSEWHERE
statement to change the data in an array:
INTEGER ARR1(3, 3), ARR2(3,3), FLAG(3, 3)

ARR1 = RESHAPE((/(I, I=1, 9)/), (/3, 3 /))
ARR2 = RESHAPE((/(I, I=9, 1, -1 /), (/3, 3 /))
FLAG = -99

! Data in arrays ARR1, ARR2, and FLAG at this point:
!
! ARR1 = | 1 4 7 | ARR2 = | 9 6 3 | FLAG = | -99 -99 -99 |
! | 2 5 8 | | 8 5 2 | | -99 -99 -99 |
! | 3 6 9 | | 7 4 1 | | -99 -99 -99 |

WHERE (ARR1 > ARR2)
FLAG = 1

ELSEWHERE (ARR1 == ARR2)
FLAG = 0

ELSEWHERE
FLAG = -1

END WHERE

! Data in arrays ARR1, ARR2, and FLAG at this point:
!
! ARR1 = | 1 4 7 | ARR2 = | 9 6 3 | FLAG = | -1 -1 1 |
! | 2 5 8 | | 8 5 2 | | -1 0 1 |
! | 3 6 9 | | 7 4 1 | | -1 1 1 |

Related information
v “WHERE construct” on page 118
v “WHERE” on page 488
v “END (Construct)” on page 346, for details on the END WHERE statement

�� ELSEWHERE
(mask_expr) where_construct_name

��

344 XL Fortran: Language Reference for Big Endian Distributions

END
Purpose

An END statement indicates the end of a program unit or procedure.

Syntax

Rules

The END statement is the only required statement in a program unit.

If a name is specified in an END BLOCK DATA, END FUNCTION, END
MODULE, END PROGRAM, END SUBROUTINE, F2008 END SUBMODULE,
or END PROCEDURE F2008 statement, it must be identical to the name that is
specified in the corresponding BLOCK DATA, FUNCTION, MODULE,
PROGRAM, SUBROUTINE, F2008 SUBMODULE, or MODULE PROCEDURE

F2008 statement.

For an internal subprogram or module subprogram, you must specify the
FUNCTION or SUBROUTINE keyword on the END statement. F2008 In
Fortran 2008, you can omit the FUNCTION and SUBROUTINE keywords on the
END statements for internal and module subprograms. However, you cannot add
a function or subroutine name on the END statement when the FUNCTION or
SUBROUTINE keyword is omitted. F2008 For block data program units,
external subprograms, the main program, modules, interface bodies,

F2008 submodules, and separate module subprograms F2008 , the
corresponding keyword is optional.

The END, END FUNCTION, F2008 END PROCEDURE F2008 , END
PROGRAM, and END SUBROUTINE statements are executable statements that

�� END
BLOCK DATA

BLOCK_DATA_name
FUNCTION

FUNCTION_name
MODULE

MODULE_name
(1)

PROCEDURE
PROCEDURE_name

PROGRAM
PROGRAM_name

SUBROUTINE
SUBROUTINE_name

(2)
SUBMODULE

SUBMODULE_name

��

Notes:

1 Fortran 2008

2 Fortran 2008

Chapter 11. Statements and attributes 345

can be branched to. In both fixed source form and Fortran 90 free source form
formats, no other statement can follow the END statement on the same line. In
fixed source form format, you cannot continue a program unit END statement, nor
can a statement whose initial line appears to be a program unit END statement be
continued.

The END statement of a main program terminates execution of the program. The
END statement of a function or subroutine has the same effect as a RETURN
statement. An inline comment can appear on the same line as an END statement.
Any comment line appearing after an END statement belongs to the next program
unit.

Examples
PROGRAM TEST

CALL SUB()
CONTAINS

SUBROUTINE SUB

...
END SUBROUTINE ! Reference to subroutine name SUB is optional

END PROGRAM TEST

Related information
v Chapter 8, “Program units and procedures,” on page 149

END (Construct)
Purpose

The END (Construct) statement terminates the execution of a construct. The
Construct Termination Statements table lists the appropriate statement to end each
construct.

Table 39. Construct termination statements

Construct Termination Statement

ASSOCIATE �1� END ASSOCIATE

BLOCK �2� END BLOCK

DO END DO

DO WHILE

FORALL END FORALL

IF END IF

SELECT CASE END SELECT

SELECT TYPE �1�

WHERE END WHERE

Notes:
�1� Fortran 2003
�2� Fortran 2008

346 XL Fortran: Language Reference for Big Endian Distributions

Syntax

ASSOCIATE_construct_name (Fortran 2003)
A name that identifies an ASSOCIATE construct.

BLOCK_construct_name (Fortran 2008)
A name that identifies a BLOCK construct.

DO_construct_name
A name that identifies a DO or DO WHILE construct.

FORALL_construct_name
A name that identifies a FORALL construct.

IF_construct_name
A name that identifies an IF construct.

CASE_construct_name
A name that identifies a SELECT CASE construct.

SELECT_TYPE_construct_name (Fortran 2003)
A name that identifies a SELECT TYPE construct.

where_construct_name
A name that identifies a WHERE construct.

Rules

If you label the END DO statement, you can use it as the terminal statement of a
labeled or unlabeled DO or DO WHILE construct. An END DO statement
terminates the innermost DO or DO WHILE construct only. If a DO or DO

�� END ASSOCIATE
(1)

ASSOCIATE_construct_name
BLOCK

(2)
BLOCK_construct_name

DO
DO_construct_name

FORALL
FORALL_construct_name

IF
IF_construct_name

(3)
SELECT

CASE_construct_name

SELECT_TYPE_construct_name
WHERE

where_construct_name

��

Notes:

1 Fortran 2003

2 Fortran 2008

3 Fortran 2003

Chapter 11. Statements and attributes 347

WHILE statement does not specify a statement label, the terminal statement of the
DO or DO WHILE construct must be an END DO statement.

You can branch from inside or outside of the following constructs to their
corresponding END statements.

Table 40. Branch from inside or outside of a construct to its END statement

Construct name Branch from inside Branch from outside Branch target

ASSOCIATE �1� ' END ASSOCIATE �1�

BLOCK �2� ' ' END BLOCK �2�

DO ' END DO

DO WHILE ' END DO

IF �3� ' ' END IF

CASE ' END SELECT

Notes:
�1� Fortran 2003
�2� Fortran 2008
�3� In Fortran 95, you cannot branch from outside of an IF construct to its END IF
statement.

If you specify a construct name on the statement that begins the construct, the
END statement that terminates the construct must have the same construct name.
Conversely, if you do not specify a construct name on the statement that begins the
construct, you must not specify a construct name on the END statement.

An END WHERE statement must not be a branch target statement.

Examples
INTEGER X(100,100)
DECR: DO WHILE (I.GT.0)

...
IF (J.LT.K) THEN

...
END IF ! Cannot reference a construct name
I=I-1

END DO DECR ! Reference to construct name DECR mandatory

END

The following example shows an invalid use of the where_construct_name:
BW: WHERE (A /= 0)

B = B + 1
END WHERE EW ! The where_construct_name on the END WHERE statement

! does not match the where_construct_name on the WHERE
! statement.

Related information
v Chapter 7, “Execution control,” on page 133
v “ASSOCIATE Construct (Fortran 2003)” on page 133
v “BLOCK construct (Fortran 2008)” on page 134
v “DO” on page 333
v “FORALL” on page 366
v “FORALL (construct)” on page 369

348 XL Fortran: Language Reference for Big Endian Distributions

v “IF (block)” on page 381
v “SELECT CASE” on page 453
v “SELECT TYPE (Fortran 2003)” on page 454
v “WHERE” on page 488
v “Deleted features” on page 1010

END INTERFACE
Purpose

The END INTERFACE statement terminates a procedure interface block.

Syntax

generic_spec

defined_operator
is a defined unary operator, defined binary operator, or extended intrinsic
operator

Fortran 2003

dtio_generic_spec

End of Fortran 2003

Rules

Each INTERFACE statement must have a corresponding END INTERFACE
statement.

�� END INTERFACE
generic_spec

��

�� generic_name
OPERATOR (defined_operator)
ASSIGNMENT (=)

(1)
dtio_generic_spec

��

Notes:

1 Fortran 2003

�� READ (FORMATTED)
READ (UNFORMATTED)
WRITE (FORMATTED)
WRITE (UNFORMATTED)

��

Chapter 11. Statements and attributes 349

An END INTERFACE statement without a generic_spec can match any
INTERFACE statement, with or without a generic_spec.

If the generic_spec in an END INTERFACE statement is a generic_name, the
generic_spec of the corresponding INTERFACE statement must be the same
generic_name.

If the generic_spec in an END INTERFACE statement is an
OPERATOR(defined_operator), the generic_spec of the corresponding INTERFACE
statement must be the same OPERATOR(defined_operator).

If the generic_spec in an END INTERFACE statement is an ASSIGNMENT(=), the
generic_spec for the corresponding INTERFACE statement must be the same
ASSIGNMENT(=).

If the generic_spec in an END INTERFACE statement is a dtio_generic_spec,
the generic_spec for the corresponding INTERFACE statement must be the same
dtio_generic_spec.

Examples
INTERFACE OPERATOR (.DETERMINANT.)

FUNCTION DETERMINANT (X)
INTENT(IN) X
REAL X(50,50), DETERMINANT

END FUNCTION
END INTERFACE

INTERFACE OPERATOR(.INVERSE.)
FUNCTION INVERSE(Y)

INTENT(IN) Y
REAL Y(50,50), INVERSE

END FUNCTION
END INTERFACE OPERATOR(.INVERSE.)

Related information
v “INTERFACE” on page 400
v “Interface concepts” on page 160

END TYPE
Purpose

The END TYPE statement indicates the completion of a derived-type definition.

Syntax

Rules

If type_name is specified, it must match the type_name in the corresponding Derived
Type.

�� END TYPE
type_name

��

350 XL Fortran: Language Reference for Big Endian Distributions

If a label is specified on the END TYPE statement, the label belongs to the scoping
unit of the derived-type definition.

Examples
TYPE A

INTEGER :: B
REAL :: C

END TYPE A

Related information
v Chapter 4, “Derived types,” on page 47

ENDFILE
Purpose

The ENDFILE statement writes an endfile record as the next record of an external
file connected for sequential access. This record becomes the last record in the file.

An ENDFILE statement for a file connected for stream access causes the terminal
point to become the current file position. File storage units before the current
position are considered written, and can be read. You can write additional data to
the file by using subsequent stream output statements.

Execution of an ENDFILE statement performs a wait operation for any
pending asynchronous data transfer operations for the specified unit.

Syntax

u is an external unit identifier. The value of u must not be an asterisk or a
Hollerith constant.

position_list
is a list that must contain one unit specifier ([UNIT=]u) and can also
contain one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file.
It is one of the following:
v An integer expression whose value is in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
position_list.

IOMSG= iomsg_variable (Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.

�� ENDFILE u
(position_list)

��

Chapter 11. Statements and attributes 351

When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is a scalar variable of type INTEGER(4) or
default integer. When the ENDFILE statement finishes executing, ios is
defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

Rules

IBM extension

If the unit is not connected, an implicit OPEN specifying sequential access is
performed to a default file named fort.n, where n is the value of u with leading
zeros removed.

If two ENDFILE statements are executed for the same file without an intervening
REWIND or BACKSPACE statement, the second ENDFILE statement is ignored.

End of IBM extension

After execution of an ENDFILE statement for a file connected for sequential access,
a BACKSPACE or REWIND statement must be used to reposition the file prior to
execution of any data transfer input/output statement.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

IBM extension

If IOSTAT= and ERR= are not specified,
v The program stops if a severe error is encountered.
v The program continues to the next statement if a recoverable error is

encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

End of IBM extension

Examples
ENDFILE 12
ENDFILE (IOSTAT=IOSS,UNIT=11)

352 XL Fortran: Language Reference for Big Endian Distributions

Related information
v “Conditions and IOSTAT values” on page 222
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Setting Run-Time Options in the XL Fortran Compiler Reference

ENTRY
Purpose

A function subprogram or subroutine subprogram has a primary entry point that is
established through the SUBROUTINE or FUNCTION statement. The ENTRY
statement establishes an alternative entry point for an external subprogram or a
module subprogram.

Syntax

entry_name
is the name of an entry point in a function subprogram or subroutine
subprogram

binding_label
is a scalar expression for initializing a character

Rules

The ENTRY statement cannot appear in a main program, block data program unit,
internal subprogram, IF construct, DO construct, CASE construct, derived-type
definition, or interface block.

The ENTRY statement cannot appear in a CRITICAL, MASTER,
PARALLEL, PARALLEL SECTIONS, SECTIONS, or SINGLE construct.

An ENTRY statement can appear anywhere after the FUNCTION or
SUBROUTINE statement (and after any USE statements) of an external or module
subprogram, except in a statement block within a control construct, in a

�� ENTRY entry_name
()

dummy_argument_list

�

� �

RESULT (result_name)
(1)

BIND (C)
, NAME = binding_label

��

Notes:

1 Fortran 2003

Chapter 11. Statements and attributes 353

derived-type definition, or in an interface block. ENTRY statements are
nonexecutable and do not affect control sequencing during the execution of a
subprogram.

The result variable is result_name, if specified; otherwise, it is entry_name. If the
characteristics of the ENTRY statement's result variable are the same as those of
the FUNCTION statement's result variable, the result variables identify the same
variable, even though they can have different names. Otherwise, they are
storage-associated and must be all nonpointer, nonallocatable scalars of intrinsic
(noncharacter) type. result_name can be the same as the result variable name
specified for the FUNCTION statement or another ENTRY statement.

The result variable cannot be specified in a COMMON, DATA, integer POINTER,
or EQUIVALENCE statement, nor can it have the PARAMETER, INTENT,
OPTIONAL, SAVE, or VOLATILE attributes. The STATIC and AUTOMATIC
attributes can be specified only when the result variable is not an allocatable object,
an array or a pointer, and is not of character or derived type.

If the RESULT keyword is specified, the ENTRY statement must be within a
function subprogram, entry_name must not appear in any specification statement in
the scope of the function subprogram, and result_name cannot be the same as
entry_name.

A result variable must not be initialized in a type declaration statement or DATA
statement.

The entry name in an external subprogram is a global entity; an entry name in a
module subprogram is not a global entity. An interface for an entry can appear in
an interface block only when the entry name is used as the procedure name in an
interface body.

At most one RESULT clause and at most one BIND clause can appear. They can
appear in any order.

The BIND keyword implicitly or explicitly defines a binding label which
specifies the name by which an entity is accessed from the C programming
language. The result variable, if there is a result, must be a scalar that is
interoperable. A binding label cannot be specified for a dummy argument. A
dummy argument cannot be zero-sized. A dummy argument for a procedure with
the BIND attribute must have interoperable types and type parameters, and cannot
have the ALLOCATABLE, OPTIONAL, or POINTER attribute.

In a function subprogram, entry_name identifies a function and can be referenced as
a function from the calling procedure. In a subroutine subprogram, entry_name
identifies a subroutine and can be referenced as a subroutine from the calling
procedure. When the reference is made, execution begins with the first executable
statement following the ENTRY statement.

The result variable must be defined before exiting from the function, if the function
is invoked through that ENTRY statement.

A name in the dummy_argument_list must not appear in the following places:
v In an executable statement preceding the ENTRY statement unless it also

appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes
the executable statement.

354 XL Fortran: Language Reference for Big Endian Distributions

v In the expression of a statement function statement, unless the name is also a
dummy argument of the statement function, appears in a FUNCTION or
SUBROUTINE statement, or appears in an ENTRY statement that precedes the
statement function statement.

The order, number, type, and kind type parameters of the dummy arguments can
differ from those of the FUNCTION or SUBROUTINE statement, or other ENTRY
statements.

Suppose a dummy argument is used in a specification expression to specify an
array bound or character length of an object. You can only specify the object in a
statement that is executed during a procedure reference if the dummy argument is
present and appears in the dummy argument list of the procedure name
referenced.

F2008 Note: The ENTRY statement is marked as obsolescent in Fortran 2008
and later language standards. A warning message is generated if you use an
ENTRY statement when -qlanglvl=2008pure is specified. Instead, you can use a
module containing the private data item, with a module procedure for each entry
point and the shared code in a private module procedure. F2008

Recursion

An ENTRY statement can reference itself directly only if the subprogram statement
specifies RECURSIVE and the ENTRY statement specifies RESULT. The entry
procedure then has an explicit interface within the subprogram. The RESULT
clause is not required for an entry to reference itself indirectly.

Elemental subprograms can have ENTRY statements, but the ENTRY statement
cannot have the ELEMENTAL prefix. The procedure defined by the ENTRY
statement is elemental if the ELEMENTAL prefix is specified in the SUBROUTINE
or FUNCTION statement.

In a recursive function, if entry_name is of type character, its length cannot be
represented by an asterisk (*, meaning assumed or specified elsewhere).

You can also call external procedures recursively when you specify the
-qrecur compiler option, although XL Fortran disregards this option if a procedure
specifies either the RECURSIVE or RESULT keyword.

Examples
RECURSIVE FUNCTION FNC() RESULT (RES)

...
ENTRY ENT () RESULT (RES) ! The result variable name can be

! the same as for the function

...
END FUNCTION

Related information
v “FUNCTION” on page 373
v “SUBROUTINE” on page 462
v “Recursion” on page 205
v “Dummy arguments” on page 191
v -qrecur option in the XL Fortran Compiler Reference

Chapter 11. Statements and attributes 355

ENUM/END ENUM (Fortran 2003)
Purpose

You can specify an ENUM statement to define and group a set of named integer
constants. The named integer constants in an ENUM statement are called
enumerators.

Syntax

To define an enumerator, you must use an enumeration construct:

If you want to specify an enumerator with a scalar_int_exp, you must also specify a
double colon seperator (::).

Rules

If you specify a scalar integer constant expression, the value of the enumerator is
the result of the scalar integer constant expression.

You can use a scalar logical constant expression only if you compile with
-qintlog.

If you do not specify a scalar integer constant expression and the enumerator is
first in the enumeration_block, the value of the enumerator is 0.

If you do not specify a scalar integer constant expression and the enumerator is
after another enumerator in the enumeration_block, the value is one greater than the
value of the preceding enumerator.

You can set the kind type parameter of an enumerator using the -qenum option. If
you do not specify -qenum, the default kind for an enumerator is 4.

Enumeration construct

�� ENUM, BIND(C) ��

�� enumeration_block ��

�� ENDENUM ��

enumeration_block

�� �

,

ENUMERATOR named_constant
:: = scalar_int_exp

��

356 XL Fortran: Language Reference for Big Endian Distributions

Examples

The following example uses the ENUM statement in different ways to define
enumerators.
enum, bind(c)

enumerator :: red =1, blue, black =5
enumerator yellow
enumerator gold, silver, bronze
enumerator :: purple
enumerator :: pink, lavender

endenum

The values of these enumerators are: red = 1, blue = 2, black = 5, yellow = 6 , gold
= 7, silver = 8, bronze = 9, purple = 10, pink = 11, lavender = 12.

If you supply an initial value for an enumerator, then a :: is required in the
ENUMERATOR statement. The red and black enumerators in the list are initialized
with a scalar integer constant expression.

The :: is optional in an enumerator definition when scalar integer constant
expressions are not used to initialize any of the enumerators in the list of
enumerators being declared:
v In the second and third enumerator definitions, the :: is not necessary as yellow,

gold, silver, and bronze are not initialized with a scalar integer constant
expression.

v The fourth and fifth enumerator definitions show that :: can be used even when
purple is not initialized with a scalar integer constant expression.

Related information
v “PARAMETER” on page 419

EQUIVALENCE
Purpose

The EQUIVALENCE statement specifies that two or more objects in a scoping unit
are to share the same storage.

Syntax

equiv_object
is a variable name, array element, or substring. Any subscript or substring
expression must be an integer constant expression. A substring cannot have
a length of zero.

�� �

,

EQUIVALENCE (equiv_object , equiv_object_list) ��

Chapter 11. Statements and attributes 357

Rules

equiv_object must not be a target, pointer, dummy argument, function name,
pointee, entry name, result name, structure component, named constant, automatic
data object, allocatable object, object of nonsequence derived type, object of
sequence derived type that contains a pointer or allocatable component, or a
subobject of any of these.

Variables with the BIND attribute, or variables that are members of a
common block with the BIND attribute must not be objects in an EQUIVALENCE
statement.

Because all items named within a pair of parentheses have the same first storage
unit, they become associated. This is called equivalence association. It may cause the
association of other items as well.

You can specify default initialization for a storage unit that is storage associated.
However, the objects or subobjects supplying the default initialization must be of
the same type. They must also be of the same type parameters and supply the
same value for the storage unit.

If you specify an array element in an EQUIVALENCE statement, the number of
subscript quantities cannot exceed the number of dimensions in the array. If you
specify a multidimensional array using an array element with a single subscript n,
the n element in the array's storage sequence is specified. In all other cases, XL
Fortran replaces any missing subscript with the lower bound of the corresponding
dimension of the array. A nonzero-sized array without a subscript refers to the first
element of the array.

If equiv_object is of derived type, it must be of a sequence derived type.

IBM extension

You can equivalence an object of sequence derived type with any other object of
sequence derived type or intrinsic data type provided that the object is allowed in
an EQUIVALENCE statement.

In XL Fortran, associated items can be of any intrinsic type or of sequence derived
type. If they are, the EQUIVALENCE statement does not cause type conversion.

End of IBM extension

The lengths of associated items do not have to be equal.

Any zero-sized items are storage-associated with one another and with the first
storage unit of any nonzero-sized sequences.

An EQUIVALENCE statement cannot associate the storage sequences of two
different common blocks. It must not specify that the same storage unit is to occur
more than once in a storage sequence. An EQUIVALENCE statement must not
contradict itself or any previously established associations caused by an
EQUIVALENCE statement.

You can cause names not in common blocks to share storage with a name in a
common block using the EQUIVALENCE statement.

358 XL Fortran: Language Reference for Big Endian Distributions

If you specify that an object declared by an EQUIVALENCE group has
the PROTECTED attribute, all objects specified in that EQUIVALENCE group
must have the PROTECTED attribute.

You can extend a common block by using an EQUIVALENCE statement, but only
by adding beyond the last entry, not before the first entry. For example, if the
variable that you associate to a variable in a common block, using the
EQUIVALENCE statement, is an element of an array, the implicit association of the
rest of the elements of the array can extend the size of the common block.

Examples
DOUBLE PRECISION A(3)
REAL B(5)
EQUIVALENCE (A,B(3))

Association of storage units:
| | | | | | | | |

Array A: | A(1) | A(2) | A(3) |
Array B: | B(1) | B(2) | B(3) | B(4) | B(5) |

This example shows how association of two items can result in further association.
AUTOMATIC A
CHARACTER A*4,B*4,C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))

Association of storage units:
| | | | | | | |

Variable A: | A |
Variable B: | B |
Array C: | C(1) | C(2) |

Because XL Fortran associates both A and B with C, A and B become associated with
each other, and they all have the automatic storage class.

INTEGER(4) G(2,-1:2,-3:2)
REAL(4) H(3,1:3,2:3)
EQUIVALENCE (G(2),H(1,1)) ! G(2) is G(2,-1,-3)

! H(1,1) is H(1,1,2)

Related information
v “Storage classes for variables (IBM extension)” on page 26
v “Definition status of variables” on page 19

ERROR STOP (Fortran 2008)
Purpose

The ERROR STOP statement initiates error termination of a program, which
terminates the execution of the program. If a stop_code is specified, the keyword
"ERROR STOP" followed by the stop_code is printed to ERROR_UNIT.

Syntax

Chapter 11. Statements and attributes 359

scalar_char_constant_expr
is a scalar character constant expression

scalar_int_constant_expr
is a scalar integer constant expression

Rules

When an ERROR STOP statement is executed, a system return code is supplied
and an error message is printed to ERROR_UNIT, depending on whether the
stop_code is specified:
v If the stop_code is scalar-char-constant-expr, the system return code is 1. The

keyword "ERROR STOP" followed by the stop_code is printed.
v If the stop_code is scalar-int-constant-expr, XL Fortran sets the system return code

to MOD (stop_code, 256). The keyword "ERROR STOP" followed by the stop_code
is printed.

v If nothing is specified, the system return code is 1. No error message is printed.

You cannot use an ERROR STOP statement as the labeled statement that terminates
a DO construct.

Examples

The following example shows how ERROR STOP statements are used:
PROGRAM p

INTEGER, SAVE :: s = -1
INTEGER, SAVE :: arr(3) = -1

! If the initialization for s is wrong, the error
! message "ERROR STOP Initial value wrong!" is printed.
! The system return code is 1.
IF (s .NE. -1) ERROR STOP "Initial value wrong!"

! If the initialization for arr is wrong, no message is printed.
! The system return code is 1.
IF (ANY(arr .NE. -1)) ERROR STOP

s = 1
arr = 1

! If the value for s is not 1, the error message "ERROR STOP 127" is printed.
! The system return code is 127.
IF (s .NE. 1) ERROR STOP 127

! If the value for arr is not 1, the error message "ERROR STOP 0" is printed.
! The system return code is 0.

�� ERROR STOP
stop_code

��

where stop_code is:

�� scalar_char_constant_expr
scalar_int_constant_expr

��

360 XL Fortran: Language Reference for Big Endian Distributions

IF (ANY(arr .NE. 1)) ERROR STOP 0

STOP "Good!"
END PROGRAM p

Related information
v “STOP” on page 459
v “Non-finalized entities” on page 67

EXIT
Purpose

The EXIT statement terminates execution of a DO construct or DO WHILE
construct before the construct terminates all of its iterations. F2008 In addition, it
can be used to terminate execution of a specified construct that is not DO or DO
WHILE. F2008

Syntax

construct_name
The name of a construct.

F2008

It can be one of the following constructs:
v ASSOCIATE
v BLOCK
v DO
v IF
v SELECT CASE
v SELECT TYPE

F2008

Rules

If construct_name is specified, the EXIT statement must be within the construct
specified by construct_name. If construct_name is not specified, the EXIT statement
must be within the range of at least one DO or DO WHILE construct.

If construct_name is specified, the EXIT statement belongs to the construct specified
by construct_name. If construct_name is not specified, the EXIT statement belongs to
the DO or DO WHILE construct that immediately surrounds it.

If an EXIT statement belongs to a DO or DO WHILE construct, execution of the
EXIT statement causes the construct to become inactive. If the EXIT statement is
nested in any other DO or DO WHILE constructs, they also become inactive. Any
DO variable present retains its last defined value. If the DO construct has no

�� EXIT
construct_name

��

Chapter 11. Statements and attributes 361

construct control, it will iterate infinitely unless it becomes inactive. The EXIT
statement can be used to make the construct inactive.

F2008 If an EXIT statement belongs to a construct that is not DO or DO WHILE,
execution of the EXIT statement terminates execution of the construct. Any DO or
DO WHILE loops contained within the construct become inactive. F2008

An EXIT statement can have a statement label; it cannot be used as the labeled
statement that terminates a construct.

Examples

Example 1: The following example illustrates the usage of the EXIT statement in
the DO and DO WHILE statements:

LOOP1: DO I = 1, 20
N = N + 1

10 IF (N > NMAX) EXIT LOOP1 ! EXIT from LOOP1

LOOP2: DO WHILE (K==1)
KMAX = KMAX - 1

20 IF (K > KMAX) EXIT ! EXIT from LOOP2
END DO LOOP2

LOOP3: DO J = 1, 10
N = N + 1

30 IF (N > NMAX) EXIT LOOP1 ! EXIT from LOOP1
EXIT LOOP3 ! EXIT from LOOP3

END DO LOOP3

END DO LOOP1

F2008

Example 2: The following example shows how the EXIT statement is used to
terminate execution of a BLOCK construct:
a : BLOCK

DO i = 1, num_in_set
IF (X == a(i)) EXIT a ! EXIT from the a BLOCK construct

END DO
CALL r

END BLOCK a

F2008

Related information
v “ASSOCIATE Construct (Fortran 2003)” on page 133
v “BLOCK construct (Fortran 2008)” on page 134
v “CASE construct” on page 143
v “SELECT CASE” on page 453
v “DO construct” on page 136
v “DO WHILE construct” on page 140
v “IF construct” on page 141
v “SELECT TYPE construct (Fortran 2003)” on page 145

362 XL Fortran: Language Reference for Big Endian Distributions

EXTERNAL
Purpose

The EXTERNAL attribute specifies that a name represents an external procedure, a
dummy procedure, or a block data program unit. A procedure name with the
EXTERNAL attribute can be used as an actual argument.

Syntax

name is the name of an external procedure, dummy procedure, or BLOCK
DATA program unit

Rules

If an external procedure name or dummy argument name is used as an actual
argument, it must be declared with the EXTERNAL attribute or by an interface
block in the scoping unit, but may not appear in both.

If an intrinsic procedure name is specified with the EXTERNAL attribute in a
scoping unit, the name becomes the name of a user-defined external procedure.
Therefore, you cannot invoke that intrinsic procedure by that name from that
scoping unit.

You can specify a name to have the EXTERNAL attribute appear only once in a
scoping unit.

A name in an EXTERNAL statement must not also be specified in a procedure
declaration statement or as a specific procedure name in an interface block in the
scoping unit.

Table 41. Attributes compatible with the EXTERNAL attribute

CONTIGUOUS �1� PRIVATE

OPTIONAL PUBLIC

Note:
�1� Fortran 2008

Examples
PROGRAM MAIN

EXTERNAL AAA
CALL SUB(AAA) ! Procedure AAA is passed to SUB

END

SUBROUTINE SUB(ARG)
CALL ARG() ! This results in a call to AAA

END SUBROUTINE

�� EXTERNAL name_list
::

��

Chapter 11. Statements and attributes 363

Related information
v “Procedures as dummy arguments” on page 202
v Item 4 under “Compatibility across standards” on page 1007

FLUSH (Fortran 2003)
Purpose

The FLUSH statement makes data written to an external file available to other
processes, or causes data placed in an external file by means other than Fortran to
be available to a READ statement.

Syntax

u is an integer scalar expression which has one of the following values:
v A value in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

This unit references an external file. The value of the integer scalar
expression must not be an asterisk or a Hollerith constant.

flush_list
a list of specifiers that must contain UNIT=, and can also contain one of
each of the following specifiers:
v [UNIT=] specifies the external file as an integer scalar expression which

has one of the following values:
– A value in the range 1 through 2147483647
– F2008 A NEWUNIT value F2008

The value of the integer scalar expression must not be an asterisk or a
Hollerith constant.

v ERR=stmt_label is an error specifier that specifies the statement label of
an executable statement in the same scoping unit to which control is to
transfer in the case of an error. Inclusion of the ERR= specifier
suppresses error messages. stmt_label must be the statement label of a
branch target statement that appears in the same scoping unit as the
FLUSH statement.

v IOMSG=iomsg_variable is an input/output status specifier that specifies
the message returned by the input/output operation. iomsg_variable is a
scalar default character variable. It must not be a use-associated
nonpointer protected variable. When the input/output statement
containing this specifier finishes execution, iomsg_variable is defined as
follows:
– If an error, end-of-file, or end-of-record condition occurs, the variable

is assigned an explanatory message as if by assignment.
– If no such condition occurs, the value of the variable is unchanged.

�� FLUSH u
flush_list

��

364 XL Fortran: Language Reference for Big Endian Distributions

v IOSTAT=ios specifies the status of the flush operation as a scalar
variable of type INTEGER. When execution of the flush statement
completes, ios is:
– A zero value if no error condition occurs.
– A positive value if an error occurs.
– A negative value if the device is not seekable such as a tape or TTY

and the most recent data transfer operation was input.
Inclusion of the IOSTAT specifier suppresses error messages. If the
program encounters a severe error, the value of ios is 200.

If you do not specify ERR or IOSTAT, the program terminates on
encountering a severe error.

Rules

The FLUSH statement must not appear in a pure subprogram.

A FLUSH statement has no effect on file position.

The buffering run-time option does not affect the execution of the FLUSH
statement.

Examples

Example 1:

In the following example a data file written by a Fortran program is read by a C
routine. The program specifies a FLUSH statement for the buffered I/O.
! The following Fortran program writes data to an external file.
subroutine process_data()

integer data(10)
external read_data

data = (/(i,i=1,10)/)
open(50, file="data_file")
write(50, *) data ! write data to an external file
flush(50) ! since Fortran I/O is buffered, a FLUSH

! statement is needed for the C routine to
! to read the data

call read_data(10) ! call C routine to read the file
end subroutine

/* The following C routine reads data from the external file. */
void read_data(int *sz) {

#include < stdio.h>
#include < stdlib.h>
int *data, i;

FILE *fp;

data = (int *) malloc((*sz)*sizeof(int));
fp = fopen("data_file", "r");
for (i=0; i<*sz-1; i++) {

fscanf(fp, "%d", &dat5[i]);
}

}

Chapter 11. Statements and attributes 365

Related information
v Chapter 9, “XL Fortran Input/Output,” on page 211
v “flush_(lunit)” on page 930
v Flushing I/O buffers in the XL Fortran Optimization and Programming Guide

FORALL
Purpose

The FORALL statement performs assignment to groups of subobjects, especially
array elements. Unlike the WHERE statement, assignment can be performed on an
elemental level rather than on an array level. The FORALL statement also allows
pointer assignment.

Syntax

forall_header

forall_triplet_spec

forall_assignment
is either assignment_statement or pointer_assignment_statement

F2008 type_spec
specifies an integer type F2008

scalar_mask_expr
is a scalar logical expression

subscript, stride
are each scalar integer expressions

�� FORALL forall_header forall_assignment ��

�� (forall_triplet_spec_list)
(1) , scalar_mask_expr

type_spec ::

��

Notes:

1 Fortran 2008

�� index_name = subscript : subscript
: stride

��

366 XL Fortran: Language Reference for Big Endian Distributions

Rules

Only pure procedures can be referenced in the mask expression of forall_header and
in a forall_assignment (including one referenced by a defined operation, assignment,
or finalization).

index_name must be a scalar integer variable. It is also a statement entity; that is, it
does not affect and is not affected by other entities in the scoping unit.

F2008

You must explicitly declare the FORALL index variables in the following cases:
v The value range of index_name exceeds the range of the default integer type.
v The IMPLICIT NONE statement is in effect. See Example 2.

You can specify type_spec to declare index_name within the scope of the FORALL
statement. If you specify type_spec in forall_header, you can reuse any accessible
identifier for index_name.

F2008

In forall_triplet_spec_list, neither a subscript nor a stride can contain a reference to
any index_name in the forall_triplet_spec_list. Evaluation of any expression in
forall_header must not affect evaluation of any other expression in forall_header.

Given the forall_triplet_spec
index1 = s1:s2:s3

the maximum number of index values is determined by:
max = INT((s2-s1+s3)/s3)

If the stride (s3 above) is not specified, a value of 1 is assumed. If max ≤ 0 for any
index, forall_assignment is not executed. For example,

index1 = 2:10:3 ! The index values are 2,5,8.
max = INT((10-2+3)/3) = 3.

index2 = 6:2:-1 ! The index values are 6,5,4,3,2.
index2 = 6:2 ! No index values.

If the mask expression is omitted, a value of .TRUE. is assumed.

No atomic object can be assigned to more than once. Assignment to a nonatomic
object assigns to all subobjects or associates targets with all subobjects.

Examples

Example 1
INTEGER A(1000,1000), B(200)
I=17
FORALL (I=1:1000,J=1:1000,I.NE.J) A(I,J)=A(J,I)
PRINT *, I ! The value 17 is printed because the I

! in the FORALL has statement scope.
FORALL (N=1:200:2) B(N)=B(N+1)
END

Chapter 11. Statements and attributes 367

F2008

Example 2
IMPLICIT NONE
INTEGER, PARAMETER :: limit=60000
INTEGER(1) :: flag(limit)
flag=0
FORALL (INTEGER(4) :: i=2:limit:2) flag(i)=1
PRINT *, flag(limit)
END

F2008

Related information
v “Intrinsic assignment” on page 115
v “Data pointer assignment” on page 127
v “FORALL construct” on page 124
v “INDEPENDENT” on page 515
v “Statement and construct entity” on page 153

Interpreting the FORALL statement
1. Evaluate the subscript and stride expressions for each forall_triplet_spec in any

order. All possible pairings of index_name values form the set of combinations.
For example, given the following statement:
FORALL (I=1:3,J=4:5) A(I,J) = A(J,I)

The set of combinations of I and J is:
{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The -1 and -qnozerosize compiler options do not affect this step.
2. Evaluate the scalar_mask_expr for the set of combinations, in any order,

producing a set of active combinations (those for which scalar_mask_expr
evaluated to .TRUE.). For example, if the mask (I+J.NE.6) is applied to the
above set, the set of active combinations is:

{(1,4),(2,5),(3,4),(3,5)}

3. For assignment_statement, evaluate, in any order, all values in the right-hand
side expression and all subscripts, strides, and substring bounds in the left-hand
side variable for all active combinations of index_name values.
For pointer_assignment, determine, in any order, what will be the targets of the
pointer assignment and evaluate all subscripts, strides, and substring bounds in
the pointer for all active combinations of index_name values. Whether or not the
target is a pointer, the determination of the target does not include evaluation
of its value.

4. For assignment_statement, assign, in any order, the computed expression values to
the corresponding variable entities for all active combinations of index_name
values.
For pointer_assignment, associate, in any order, all targets with the
corresponding pointer entities for all active combinations of index_name values.

Loop parallelization
The FORALL statement and FORALL construct are designed to allow for
parallelization of assignment statements. When executing an assignment statement

368 XL Fortran: Language Reference for Big Endian Distributions

in a FORALL, the assignment of an object will not interfere with the assignment of
another object. In the next example, the assignments to elements of A can be
executed in any order without changing the results:

FORALL (I=1:3,J=1:3) A(I,J)=A(J,I)

IBM extension

The INDEPENDENT directive asserts that each iteration of a DO loop or each
operation in a FORALL statement or FORALL construct can be executed in any
order without affecting the semantics of the program. The operations in a FORALL
statement or FORALL construct are defined as:
v The evaluation of mask

v The evaluation of the right-hand side and/or left-hand side indexes
v The evaluation of assignments

Thus, the following loop,
INTEGER, DIMENSION(2000) :: a

!IBM* INDEPENDENT
FORALL (i=1:1999:2) a(i) = a(i+1)

is semantically equivalent to the following array assignment:
INTEGER, DIMENSION(2000) :: A
A(1:1999:2) = A(2:2000:2)

End of IBM extension

FORALL (construct)
Purpose

The FORALL (Construct) statement is the first statement of the FORALL construct.

Syntax

forall_header

Tip:

If it is possible and beneficial to make a specific FORALL parallel, specify the
INDEPENDENT directive before the FORALL statement. Because XL Fortran may not
always be able to determine whether it is legal to parallelize a FORALL, the
INDEPENDENT directive provides an assertion that it is legal.

�� FORALL
FORALL_construct_name : forall_header

��

Chapter 11. Statements and attributes 369

forall_triplet_spec

F2008 type_spec
specifies an integer type F2008

scalar_mask_expr
is a scalar logical expression

subscript, stride
are both scalar integer expressions

Rules

Any procedures that are referenced in the mask expression of forall_header
(including one referenced by a defined operation or assignment) must be pure.

The index_name must be a scalar integer variable. The scope of index_name is the
whole FORALL construct.

F2008

You must explicitly declare the FORALL index variables in the following cases:
v The value range of index_name exceeds the range of the default integer type.
v The IMPLICIT NONE statement is in effect.

You can specify type_spec to declare index_name within the scope of the FORALL
construct. If you specify type_spec in forall_header, you can reuse any accessible
identifier for index_name.

F2008

In forall_triplet_spec_list, neither a subscript nor a stride can contain a reference to
any index_name in the forall_triplet_spec_list. Evaluation of any expression in
forall_header must not affect evaluation of any other expression in forall_header.

Given the following forall_triplet_spec:
index1 = s1:s2:s3

The maximum number of index values is determined by:
max = INT((s2-s1+s3)/s3)

�� (forall_triplet_spec_list)
(1) , scalar_mask_expr

type_spec ::

��

Notes:

1 Fortran 2008

�� index_name = subscript : subscript
: stride

��

370 XL Fortran: Language Reference for Big Endian Distributions

If the stride (s3 above) is not specified, a value of 1 is assumed. If max ≤ 0 for any
index, forall_assignment is not executed. For example:

index1 = 2:10:3 ! The index values are 2,5,8.
! max = floor(((10-2)/3)+1) = 3.

index2 = 6:2:-1 ! The index values are 6,5,4,3,2.
index2 = 6:2 ! No index values.

If the mask expression is omitted, a value of .TRUE. is assumed.

Examples
POSITIVE: FORALL (X=1:100,A(X)>0)

I(X)=I(X)+J(X)
J(X)=J(X)-I(X+1)

END FORALL POSITIVE

Related information
v “END (Construct)” on page 346
v “FORALL construct” on page 124
v “Statement and construct entity” on page 153

FORMAT
Purpose

The FORMAT statement provides format specifications for input/output
statements.

Syntax

format_item

r is an unsigned, positive, integer literal constant that cannot specify
a kind type parameter, or it is a scalar integer expression enclosed
by angle brackets (< and >). It is called a repeat specification. It
specifies the number of times to repeat the format_item_list or the
data_edit_desc. The default is 1.

data_edit_desc
is a data edit descriptor

�� FORMAT ()
format_item_list

��

�� data_edit_desc
r

control_edit_desc
(format_item_list)

r
char_string_edit_desc

��

Chapter 11. Statements and attributes 371

control_edit_desc
is a control edit descriptor

char_string_edit_desc
is a character string edit descriptor

Rules

When a format identifier in a formatted READ, WRITE, or PRINT statement is a
statement label or a variable that is assigned a statement label, the statement label
identifies a FORMAT statement.

The FORMAT statement must have a statement label. FORMAT statements cannot
appear in block data program units, interface blocks, the scope of a module

F2008 or submodule F2008 , or derived-type definitions.

Commas separate edit descriptors. You can omit the comma between a P edit
descriptor and an F, E, EN, ES, D, G, or Q (both extended precision and character
count) edit descriptor immediately following it, before a slash edit descriptor when
the optional repeat specification is not present, after a slash edit descriptor, and
before or after a colon edit descriptor.

FORMAT specifications can also be given as character expressions in input/output
statements.

XL Fortran treats uppercase and lowercase characters in format specifications the
same, except in character string edit descriptors.

Examples
CHARACTER*32 CHARVAR
CHARVAR="(’integer: ’,I2,’ binary: ’,B8)" ! Character format
M = 56 ! specification
J = 1 ! OUTPUT:
X = 2355.95843 !
WRITE (6,770) M,X ! 56 2355.96
WRITE (6,CHARVAR) M,M ! integer: 56

! binary: 00111000
WRITE (6,880) J,M ! 1

! 56
770 FORMAT(I3, 2F10.2)
880 FORMAT(I<J+1>)

END

Related information
v Chapter 10, “Input/Output formatting,” on page 235
v “PRINT” on page 424
v “READ” on page 435
v “WRITE” on page 490

Character format specification
When a format identifier in a formatted READ, WRITE, or PRINT statement is a
character array name or character expression, the value of the array or expression
is a character format specification.

If the format identifier is a character array element name, the format specification
must be completely contained within the array element. If the format identifier is a

372 XL Fortran: Language Reference for Big Endian Distributions

character array name, the format specification can continue beyond the first
element into following consecutive elements.

Blanks can precede the format specification. Character data can follow the right
parenthesis that ends the format specification without affecting the format
specification.

Variable format expressions (IBM extension)
Wherever an integer constant is required by an edit descriptor, you can specify an
integer expression in a FORMAT statement. The integer expression must be
enclosed by angle brackets (< and >). You cannot use a sign outside of a variable
format expression. The following are valid format specifications:

WRITE(6,20) INT1
20 FORMAT(I<MAX(20,5)>)

WRITE(6,FMT=30) INT2, INT3
30 FORMAT(I<J+K>,I<2*M>)

The integer expression can be any valid Fortran expression, including function calls
and references to dummy arguments, with the following restrictions:
v Expressions cannot be used with the H edit descriptor
v Expressions cannot contain graphical relational operators.

The value of the expression is reevaluated each time an input/output item is
processed during the execution of the READ, WRITE, or PRINT statement.

Examples
CHARACTER*32 CHARVAR
CHARVAR="(’integer: ’,I2,’ binary: ’,B8)" ! Character format
M = 56 ! specification
J = 1 ! OUTPUT:
X = 2355.95843 !
WRITE (6,770) M,X ! 56 2355.96
WRITE (6,CHARVAR) M,M ! integer: 56

! binary: 00111000
WRITE (6,880) J,M ! 1

! 56
770 FORMAT(I3, 2F10.2)
880 FORMAT(I<J+1>)

END

Related information
v Chapter 10, “Input/Output formatting,” on page 235
v “PRINT” on page 424
v “READ” on page 435
v “WRITE” on page 490

FUNCTION
Purpose

The FUNCTION statement is the first statement of a function subprogram.

Syntax

Chapter 11. Statements and attributes 373

prefix is one of the following:
declaration_type_spec
ELEMENTAL

F2008 IMPURE F2008

F2008 MODULE F2008

PURE
RECURSIVE

declaration_type_spec
specifies the type and type parameters of the function result. See “Type
Declaration” on page 470 for details about declaration_type_spec.

name The name of the function subprogram.

len
An unsigned integer literal or a parenthesized scalar integer constant
expression. The value of len specifies the length of the function's result
variable. It can be included only when you specify the type in the
FUNCTION statement. The type cannot be DOUBLE PRECISION,
DOUBLE COMPLEX, BYTE, or a derived type.

binding_label
a scalar character constant expression.

Rules

At most one of each kind of prefix can be specified. You cannot specify both the
RECURSIVE and ELEMENTAL prefix specifiers. F2008 You cannot specify both
the PURE and IMPURE prefix specifiers. F2008

At most one RESULT clause and at most one BIND clause may appear. They can
appear in any order.

The type and type parameters of the function result can be specified by either
declaration_type_spec or by declaring the result variable in the declaration part of
the function subprogram, but not by both. If they are not specified at all, the
implicit typing rules are in effect. A length specifier cannot be specified by both
declaration_type_spec and len.

If RESULT is specified, result_name becomes the function result variable. name must
not be declared in any specification statement in the subprogram, although it can
be referenced. result_name must not be the same as name. If RESULT is not

�� �

prefix
FUNCTION name

(1)
* len

�

� �()
dummy_argument_list RESULT (result_name)

(2)
BIND (C)

, NAME = binding_label

��

Notes:

1 IBM extension.

2 Fortran 2003

374 XL Fortran: Language Reference for Big Endian Distributions

specified, name becomes the function result variable.

The BIND keyword implicitly or explicitly defines a binding label by
which a procedure is accessed from the C programming language. The result
variable must be a scalar that is interoperable. A dummy argument cannot be
zero-sized. A dummy argument for a procedure with the BIND attribute must
have interoperable types and type parameters, and cannot have the
ALLOCATABLE or POINTER attribute.

The BIND attribute must not be specified for an internal procedure. If the
FUNCTION statement appears as part of an interface body that describes a
dummy procedure, the NAME= specifier must not appear. An elemental procedure
cannot have the BIND attribute.

End of

If the result variable is an array or pointer, the DIMENSION or POINTER
attributes, respectively, must be specified within the function body.

If the function result is a pointer, the shape of the result variable determines the
shape of the value returned by the function. If the result variable is a pointer, the
function must either associate a target with the pointer or define the association
status of the pointer as disassociated.

If the result variable is not a pointer, the function must define its value.

If the name of an external function is of derived type, the derived type must be a
sequence derived type if the type is not use-associated or host-associated.

The function result variable must not appear within a variable format expression,
nor can it be specified in a COMMON, DATA, integer POINTER, or
EQUIVALENCE statement, nor can it have the PARAMETER, INTENT,
OPTIONAL, or SAVE attributes. The STATIC and AUTOMATIC attributes can be
specified only when the result variable is not an allocatable object, an array or a
pointer, and is not of character or derived type.

The function result variable is associated with any entry procedure result variables.
This is called entry association. The definition of any of these result variables
becomes the definition of all the associated variables having that same type and
type parameters, and is the value of the function regardless of the entry point.

If the function subprogram contains entry procedures, the result variables are not
required to be of the same type unless the type is of character or derived type, or
if the variables have the ALLOCATABLE or POINTER attribute, or if they are not
scalars. The variable whose name is used to reference the function must be in a
defined state when a RETURN or END statement is executed in the subprogram.
An associated variable of a different type must not become defined during the
execution of the function reference, unless an associated variable of the same type
and type parameters redefines it later during execution of the subprogram.

F2008

Chapter 11. Statements and attributes 375

You can specify the MODULE prefix specifier for the FUNCTION statement of a
module subprogram or of a nonabstract interface body that is declared in the
scoping unit of a module or submodule. See Example 2.
v When you specify the MODULE prefix specifier for the FUNCTION statement

of a module subprogram, the module subprogram is a separate module
procedure.

v When you specify the MODULE prefix specifier for the FUNCTION statement
of a nonabstract interface body, the interface body is a module procedure
interface body.

F2008

Example 1
RECURSIVE FUNCTION FACTORIAL (N) RESULT (RES)

INTEGER RES
IF (N.EQ.0) THEN

RES=1
ELSE

RES=N*FACTORIAL(N-1)
END IF

END FUNCTION FACTORIAL

PROGRAM P
INTERFACE OPERATOR (.PERMUTATION.)

ELEMENTAL FUNCTION MYPERMUTATION(ARR1,ARR2)
INTEGER :: MYPERMUTATION
INTEGER, INTENT(IN) :: ARR1,ARR2

END FUNCTION MYPERMUTATION
END INTERFACE

INTEGER PERMVEC(100,150),N(100,150),K(100,150)
...
PERMVEC = N .PERMUTATION. K
...

END

Example 2 (Fortran 2008)
MODULE m

! The MODULE prefix specifier is specified for the FUNCTION
! statement of a module procedure interface body.
INTERFACE

INTEGER MODULE FUNCTION func(a, b)
INTEGER :: a, b

END FUNCTION
END INTERFACE

END MODULE

SUBMODULE (m) n

CONTAINS
! The MODULE prefix specifier is specified for the FUNCTION
! statement of a separate module procedure.
INTEGER MODULE FUNCTION func(a, b) RESULT (res)

INTEGER :: a, b
res = a + b

END FUNCTION
END SUBMODULE

Related information
v “Function and subroutine subprograms” on page 181
v “ENTRY” on page 353

376 XL Fortran: Language Reference for Big Endian Distributions

v “BIND (Fortran 2003)” on page 295
v “Function reference” on page 183
v “Dummy arguments” on page 191
v “Statement Function” on page 456
v “Recursion” on page 205
v -qrecur option in the XL Fortran Compiler Reference

v “Pure procedures” on page 206
v “Elemental procedures” on page 208
v “Interoperability of procedures” on page 846
v “Modules” on page 175
v “Submodules (Fortran 2008)” on page 178
v “Separate module procedures (Fortran 2008)” on page 185

Recursion
The RECURSIVE keyword must be specified if, directly or indirectly:
v The function invokes itself
v The function invokes a function defined by an ENTRY statement in the same

subprogram
v An entry procedure in the same subprogram invokes itself
v An entry procedure in the same subprogram invokes another entry procedure in

the same subprogram
v An entry procedure in the same subprogram invokes the subprogram defined by

the FUNCTION statement.

A function that directly invokes itself requires that both the RECURSIVE and
RESULT keywords be specified. The presence of both keywords makes the
procedure interface explicit within the subprogram.

If name is of type character, its length cannot be an asterisk if the function is
recursive.

If RECURSIVE is specified, the result variable has a default storage class
of automatic.

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if the FUNCTION
statement specifies either RECURSIVE or RESULT.

Elemental procedures
For elemental procedures, the keyword ELEMENTAL must be specified. If the
ELEMENTAL keyword is specified, the RECURSIVE keyword cannot be specified.

GO TO (assigned)
Purpose

The assigned GO TO statement transfers program control to an executable
statement, whose statement label is designated in an ASSIGN statement.

Chapter 11. Statements and attributes 377

Syntax

variable_name
is a scalar variable name of type INTEGER(4) or INTEGER(8) that you
have assigned a statement label to in an ASSIGN statement.

stmt_label
is the statement label of an executable statement in the same scoping unit
as the assigned GO TO. The same statement label can appear more than
once in stmt_label_list.

Rules

When the assigned GO TO statement is executed, the variable you specify by
variable_name with the value of a statement label must be defined. You must
establish this definition with an ASSIGN statement in the same scoping unit as the
assigned GO TO statement. If the integer variable is a dummy argument in a
subprogram, you must assign it a statement label in the subprogram in order to
use it in an assigned GO TO in that subprogram. Execution of the assigned GO
TO statement transfers control to the statement identified by that statement label.

If stmt_label_list is present, the statement label assigned to the variable specified by
variable_name must be one of the statement labels in the list.

The assigned GO TO cannot be the terminal statement of a DO or DO WHILE
construct.

The assigned GO TO statement has been deleted in Fortran 95.

Examples
INTEGER RETURN_LABEL

.

.

.
! Simulate a call to a local procedure

ASSIGN 100 TO RETURN_LABEL
GOTO 9000

100 CONTINUE
.
.
.

9000 CONTINUE
! A "local" procedure

.

.

.
GOTO RETURN_LABEL

Related information
v “Statement labels” on page 7
v “Branching” on page 147

�� GO TO variable_name
(stmt_label_list)

,

��

378 XL Fortran: Language Reference for Big Endian Distributions

v “Deleted features” on page 1010

GO TO (computed)
Purpose

The computed GO TO statement transfers program control to one of possibly
several executable statements.

Syntax

stmt_label
is the statement label of an executable statement in the same scoping unit
as the computed GO TO. The same statement label can appear more than
once in stmt_label_list.

arith_expr

is a scalar integer expression.

It can also be real or complex. If the value of the expression is
noninteger, XL Fortran converts it to INTEGER(4) before using it.

Rules

When a computed GO TO statement is executed, the arith_expr is evaluated. The
resulting value is used as an index into stmt_label_list. Control then transfers to the
statement whose statement label you identify by the index. For example, if the
value of arith_expr is 4, control transfers to the statement whose statement label is
fourth in the stmt_label_list, provided there are at least four labels in the list.

If the value of arith_expr is less than 1 or greater than the number of statement
labels in the list, the GO TO statement has no effect (like a CONTINUE
statement), and the next statement is executed.

Examples
INTEGER NEXT

...
GO TO (100,200) NEXT

10 PRINT *,’Control transfers here if NEXT does not equal 1 or 2’
...

100 PRINT *,’Control transfers here if NEXT = 1’
...

200 PRINT *,’Control transfers here if NEXT = 2’

Related information
v “Statement labels” on page 7
v “Branching” on page 147

�� GO TO (stmt_label_list) arith_expr
,

��

Chapter 11. Statements and attributes 379

GO TO (unconditional)
Purpose

The unconditional GO TO statement transfers program control to a specified
executable statement.

Syntax

stmt_label
is the statement label of an executable statement in the same scoping unit
as the unconditional GO TO

Rules

The unconditional GO TO statement transfers control to the statement identified
by stmt_label.

The unconditional GO TO statement cannot be the terminal statement of a DO or
DO WHILE construct.

Examples
REAL(8) :: X,Y
GO TO 10

...
10 PRINT *, X,Y

END

Related information
v “Statement labels” on page 7
v “Branching” on page 147

IF (arithmetic)
Purpose

The arithmetic IF statement transfers program control to one of three executable
statements, depending on the evaluation of an arithmetic expression.

Syntax

arith_expr
is a scalar arithmetic expression of type integer or real

�� GO TO stmt_label ��

�� IF (arith_expr) stmt_label1 , stmt_label2 , stmt_label3 ��

380 XL Fortran: Language Reference for Big Endian Distributions

stmt_label1, stmt_label2, and stmt_label3
are statement labels of executable statements within the same scoping unit
as the IF statement. The same statement label can appear more than once
among the three statement labels.

Rules

The arithmetic IF statement evaluates arith_expr and transfers control to the
statement identified by stmt_label1, stmt_label2, or stmt_label3, depending on
whether the value of arith_expr is less than zero, zero, or greater than zero,
respectively.

Examples
IF (K-100) 10,20,30

10 PRINT *,’K is less than 100.’
GO TO 40

20 PRINT *,’K equals 100.’
GO TO 40

30 PRINT *,’K is greater than 100.’
40 CONTINUE

Related information
v “Branching” on page 147
v “Statement labels” on page 7

IF (block)
Purpose

The block IF statement is the first statement in an IF construct.

Syntax

IF_construct_name
Is a name that identifies the IF construct.

Rules

The block IF statement evaluates a logical expression and executes at most one of
the blocks contained within the IF construct.

If the IF_construct_name is specified, it must appear on the END IF statement, and
optionally on any ELSE IF or ELSE statements in the IF construct.

Examples
WHICHC: IF (CMD .EQ. ’RETRY’) THEN

IF (LIMIT .GT. FIVE) THEN ! Nested IF constructs
...
CALL STOP

ELSE

��
IF_construct_name :

IF (scalar_logical_expr) THEN ��

Chapter 11. Statements and attributes 381

CALL RETRY
END IF

ELSE IF (CMD .EQ. ’STOP’) THEN WHICHC
CALL STOP

ELSE IF (CMD .EQ. ’ABORT’) THEN
CALL ABORT

ELSE WHICHC
GO TO 100

END IF WHICHC

Related information
v “IF construct” on page 141
v “ELSE IF” on page 343
v “ELSE” on page 342
v “END (Construct)” on page 346, for details on the END IF statement

IF (logical)
Purpose

The logical IF statement evaluates a logical expression and, if true, executes a
specified statement.

Syntax

logical_expr
is a scalar logical expression

stmt is an unlabeled executable statement

Rules

When a logical IF statement is executed, the logical_expr is evaluated. If the value
of logical_expr is true, stmt is executed. If the value of logical_expr is false, stmt does
not execute and the IF statement has no effect (like a CONTINUE statement).

Execution of a function reference in logical_expr can change the values of variables
that appear in stmt.

stmt cannot be a SELECT CASE, CASE, END SELECT, DO, DO WHILE, END
DO, block IF, ELSE IF, ELSE, END IF, END FORALL, another logical IF,
ELSEWHERE, END WHERE, END, END FUNCTION, END SUBROUTINE
statement, ASSOCIATE construct statement, FORALL construct statement, or
WHERE construct statement.

Examples
IF (ERR.NE.0) CALL ERROR(ERR)

Related information
v Chapter 7, “Execution control,” on page 133

�� IF (logical_expr) stmt ��

382 XL Fortran: Language Reference for Big Endian Distributions

IMPLICIT
Purpose

The IMPLICIT statement changes or confirms the default implicit typing or the
default storage class for local entities or, with the form IMPLICIT NONE specified,
voids the implicit type rules altogether.

Syntax

declaration_type_spec
specifies a data type. See “Type Declaration” on page 470.

range is either a single letter or range of letters. A range of letters has the form
letter1-letter2, where letter1 is the first letter in the range and letter2, which
follows letter1 alphabetically, is the last letter in the range. Dollar sign ($)
and underscore (_) are also permitted in a range. The underscore (_)
follows the dollar sign ($), which follows the Z. Thus, the range Y - _ is the
same as Y, Z, $, _.

Rules

Letter ranges cannot overlap; that is, no more than one type can be specified for a
given letter.

In a given scoping unit, if a character has not been specified in an IMPLICIT
statement, the implicit type for entities in a program unit or interface body is
default integer for entities that begin with the characters I-N, and default real
otherwise. The default for an internal or module procedure is the same as the
implicit type used by the host scoping unit.

For any data entity name that begins with the character specified by range_list, and
for which you do not explicitly specify a type, the type specified by the
immediately preceding declaration_type_spec is provided. Note that implicit typing
can be to a derived type that is inaccessible in the local scope if the derived type is
accessible to the host scope.

��

�

IMPLICIT NONE
,

declaration_type_spec (range_list)
(1)

STATIC
(2)

AUTOMATIC
(3)

UNDEFINED

��

Notes:

1 IBM extension.

2 IBM extension.

3 IBM extension.

Chapter 11. Statements and attributes 383

F2008 The implicit typing rules of the host scoping unit also apply within a
BLOCK construct. F2008

A type specified in an IMPLICIT statement must not be a VECTOR type.

Deferred length type parameters cannot be specified in declaration_type_spec.

A character or a range of characters that you specify as STATIC or AUTOMATIC
can also appear in an IMPLICIT statement for any data type. A letter in a
range_list cannot have both declaration_type_spec and UNDEFINED specified for it
in the scoping unit. Neither can both STATIC and AUTOMATIC be specified for
the same letter.

If you specify the form IMPLICIT NONE in a scoping unit, you must use type
declaration statements to specify data types for names local to that scoping unit.
You cannot refer to a name that does not have an explicitly defined data type; this
lets you control all names that are inadvertently referenced. When IMPLICIT
NONE is specified, you cannot specify any other IMPLICIT statement in the same
scoping unit, except ones that contain STATIC or AUTOMATIC. You can compile
your program with the -qundef compiler option to achieve the same effect as an
IMPLICIT NONE statement appearing in each scoping unit where an IMPLICIT
statement is allowed.

IMPLICIT UNDEFINED turns off the implicit data typing defaults for the
character or range of characters specified. When you specify IMPLICIT
UNDEFINED, you must declare the data types of all symbolic names in the
scoping unit that start with a specified character. The compiler issues a diagnostic
message for each symbolic name local to the scoping unit that does not have an
explicitly defined data type.

An IMPLICIT statement does not change the data type of an intrinsic function.

Using the -qsave/-qnosave compiler option modifies the predefined
conventions for storage class:

-qsave compiler option makes the predefined
convention

IMPLICIT STATIC(a - _)

-qnosave compiler option makes the predefined
convention

IMPLICIT AUTOMATIC(a - _)

Even if you specified the -qmixed compiler option, the range list items are not case
sensitive. For example, with -qmixed specified, IMPLICIT INTEGER(A) affects the
implicit typing of data objects that begin with A as well as those that begin with a.

Examples
IMPLICIT INTEGER (B), COMPLEX (D, K-M), REAL (R-Z,A)

! This IMPLICIT statement establishes the following
! implicit typing:
!
! A: real
! B: integer
! C: real
! D: complex
! E to H: real
! I, J: integer
! K, L, M: complex

384 XL Fortran: Language Reference for Big Endian Distributions

! N: integer
! O to Z: real
! $: real
! _: real

Related information
v “Determining Type” on page 17 for a discussion of the implicit rules
v “Storage classes for variables (IBM extension)” on page 26
v -qundef option in the XL Fortran Compiler Reference

v -qsave option in the XL Fortran Compiler Reference

IMPORT (Fortran 2003)
Purpose

Named entities from the host scoping unit are not accessible in an interface body
that is not a module procedure interface body. The IMPORT statement makes
those entities accessible in such interface body by host association. The IMPORT
statement is not valid in a module procedure interface body.

Syntax

import_name_list
is a list of named entities that are accessible in the host scoping unit

Rules

The IMPORT statement is allowed only in an interface body with the exception of
the module procedure interface body. Each of the specified names must be
explicitly declared before the interface body.

The entities in the import name list are imported into the current scoping unit and
are accessible by host association. If no names are specified, all of the accessible
named entities in the host scoping unit are imported.

The names of imported entities must not appear in any context that would cause
the host entity to be inaccessible.

Examples
use, intrinsic :: ISO_C_BINDING
interface

subroutine process_buffer(buffer, n_bytes), bind(C,NAME="ProcessBuffer")
IMPORT :: C_PTR, C_INT
type (C_PTR), value :: buffer
integer (C_INT), value :: n_bytes

end subroutine process_buffer
end interface
......

�� IMPORT
import_name_list

::

��

Chapter 11. Statements and attributes 385

Related information
v “INTERFACE” on page 400
v “Host association” on page 154
v “Interface concepts” on page 160

INQUIRE
Purpose

The INQUIRE statement obtains information about the properties of a named file
or the connection to a particular unit.

There are three forms of the INQUIRE statement:
v Inquire by file, which requires the FILE= specifier.
v Inquire by output list, which requires the IOLENGTH= specifier
v Inquire by unit, which requires the UNIT= specifier.

Syntax

iol indicates the number of bytes of data that would result from the use of the
output list in an unformatted output statement. iol is a scalar integer
variable.

output_item
See the PRINT or WRITE statement

inquiry_list
is a list of inquiry specifiers for the inquire-by-file and inquire-by-unit
forms of the INQUIRE statement. The inquire-by-file form cannot contain
a unit specifier, and the inquire-by-unit form cannot contain a file specifier.
No specifier can appear more than once in any INQUIRE statement. The
inquiry specifiers are:

[UNIT=] u
is a unit specifier. It specifies the unit about which the inquire-by-unit form
of the statement is inquiring. u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file.
It is one of the following:
v An integer expression whose value is in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
inquiry_list.

ACCESS= char_var
indicates whether the file is connected for direct access, sequential access,

or stream access. char_var is a scalar character variable
that is assigned the value SEQUENTIAL if the file is connected for
sequential access. The value assigned is DIRECT if the file is connected for

�� INQUIRE (inquiry_list)
(IOLENGTH = iol) output_item_list

��

386 XL Fortran: Language Reference for Big Endian Distributions

direct access. The value assigned is STREAM if the file is
connected for stream access. If there is no connection, char_var is
assigned the value UNDEFINED.

ACTION= act
indicates if the file is connected for read and/or write access. act is a scalar
character variable that is assigned the value READ if the file is connected
for input only, WRITE if the file is connected for output only,
READWRITE if the file is connected for both input and output, and
UNDEFINED if there is no connection.

ASYNCH= char_variable (IBM extension)
indicates whether the unit is connected for asynchronous access.

char_variable is a character variable that is assigned the value:
v YES if the unit is connected for both synchronous and asynchronous

access;
v NO if the unit is connected for synchronous access only; or
v UNDEFINED if the unit is not connected.

ASYNCHRONOUS= char_var (Fortran 2003)
indicates whether the file is connected and asynchronous I/O on the unit
is allowed.

char_var is a character variable that is assigned the value:
v YES if the file is connected and asynchronous I/O on the unit is

allowed;
v NO if the file is connected and asynchronous I/O on the unit is not

allowed; or
v UNDEFINED if the file is not connected.

An ASYNCH= specifier and an
ASYNCHRONOUS= specifier should not appear on the same
INQUIRE statement, the second one is ignored.

BLANK= char_var
indicates the default treatment of blanks for a file connected for formatted
input/output. char_var is a scalar character variable that is assigned the
value NULL if all blanks in numeric input fields are ignored, or the value
ZERO if all nonleading blanks are interpreted as zeros. If there is no
connection, or if the connection is not for formatted input/output, char_var
is assigned the value UNDEFINED.

DECIMAL= char_var (Fortran 2003)
char_var is a scalar character variable which is assigned a value of either
POINT, or COMMA, corresponding to the decimal edit mode in effect for
a formatted input/output connection. If there is no connection, or if the
connection is not for formatted input/output, char_var is assigned the
value UNDEFINED.

DELIM= del
indicates the form, if any, that is used to delimit character data that is
written by list-directed or namelist formatting. del is a scalar character
variable that is assigned the value APOSTROPHE if apostrophes are used
to delimit data, QUOTE if quotation marks are used to delimit data,

Chapter 11. Statements and attributes 387

NONE if neither apostrophes nor quotation marks are used to delimit data,
and UNDEFINED if there is no file connection or no connection to
formatted data.

DIRECT= dir
indicates if the file is connected for direct access. dir is a scalar character
variable that is assigned the value YES if the file can be accessed directly,
the value NO if the file cannot be accessed directly, or the value
UNKNOWN if access cannot be determined.

ENCODING=char_variable (Fortran 2003)
indicates the encoding form of the file. char_variable is a character variable
that is assigned the value DEFAULT if the encoding form of the file is
ASCII, UNDEFINED if the I/O connection is unformatted, and
UNKNOWN if there is no file connection.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

EXIST= ex
indicates if a file or unit exists. ex is an integer variable that is assigned the
value true or false. For the inquire-by-file form of the statement, the value
true is assigned if the file specified by the FILE= specifier exists. The value
false is assigned if the file does not exist. For the inquire-by-unit form of
the statement, the value true is assigned if the unit specified by UNIT=
exists. The value false is assigned if it is an invalid unit.

FILE= char_expr

is a file specifier. It specifies the name of the file about which the
inquire-by-file form of the statement is inquiring. char_expr is a scalar
character expression whose value, when any trailing blanks are removed, is
a valid Linux operating system file name. The named file does not have to
exist, nor does it have to be associated with a unit.

Note: A valid Linux operating system file name must have a full path
name of total length ≤ 1023 characters, with each file name ≤ 255 characters
long (though the full path name need not be specified).

FORM= char_var
indicates whether the file is connected for formatted or unformatted
input/output. char_var is a scalar default character variable that is assigned
the value FORMATTED if the file is connected for formatted
input/output. The value assigned is UNFORMATTED if the file is
connected for unformatted input/output. If there is no connection, char_var
is assigned the value UNDEFINED.

FORMATTED= fmt
indicates if the file can be connected for formatted input/output. fmt is a
scalar character variable that is assigned the value YES if the file can be
connected for formatted input/output, the value NO if the file cannot be
connected for formatted input/output, or the value UNKNOWN if
formatting cannot be determined.

388 XL Fortran: Language Reference for Big Endian Distributions

ID= scalar_int_expr (Fortran 2003)
is a specifier that identifies a pending data transfer operation for a
specified unit. scalar_int_expr is a scalar default character variable.

If an ID= specifier appears and the specified data transfer operation is
complete, then the variable specified in the PENDING= specifier is
assigned the value false and the INQUIRE statement performs the wait
operation for the specified data transfer.

If there is no ID= specifier and all data transfer operations for the specified
unit are complete, then the variable specified in the PENDING= specifier
is assigned the value false and the INQUIRE statement performs wait
operations for all previously pending data transfers for the specified unit.

PENDING= specifier will be assigned the value true in all other cases and
no wait operations will be performed. Previously pending data transfers
will remain pending after the execution of the INQUIRE statement.

IOMSG= iomsg_variable (Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is an integer variable. When the input/output
statement containing this specifier is finished executing, ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

Coding the IOSTAT= specifier suppresses error messages.

NAME= fn
indicates the name of the file. fn is a scalar character variable that is
assigned the name of the file to which the unit is connected.

NAMED= nmd
indicates if the file has a name. nmd is an integer variable that is assigned
the value true if the file has a name. The value assigned is false if the file
does not have a name.

NEXTREC= nr

indicates where the next record can be read or written on a file connected
for direct access. nr is an integer variable that is assigned the value n + 1,
where n is the record number of the last record read or written on the file
connected for direct access. If the file is connected but no records were
read or written since the connection, nr is assigned the value 1. If the file is
not connected for direct access or if the position of the file cannot be
determined because of a previous error, nr becomes undefined.

Because record numbers can be greater than 2**31-1, you may
choose to make the scalar variable specified with the NEXTREC= specifier
of type INTEGER(8). This could be accomplished in many ways, two
examples include:

Chapter 11. Statements and attributes 389

v Explicitly declaring nr as INTEGER(8).
v Changing the default kind of integers with the -qintsize=8 compiler

option.

NUMBER= num
indicates the external unit identifier currently associated with the file. num
is an integer variable that is assigned the value of the external unit
identifier of the unit that is currently connected to the file. If there is no
unit connected to the file, num is assigned the value -1.

OPENED= od
indicates if a file or unit is connected. od is an integer variable that is
assigned the value true or false. For the inquire-by-file form of the
statement, the value true is assigned if the file specified by FILE= char_var
is connected to a unit. The value false is assigned if the file is not
connected to a unit. For the inquire-by-unit form of the statement, the
value true is assigned if the unit specified by UNIT= is connected to a file.
The value false is assigned if the unit is not connected to a file. For
preconnected files that have not been closed, the value is true both before
and after the first input/output operation.

PAD= pd
indicates the current PAD mode of the connection. pd is a scalar character
variable with the default value YES. pd is assigned the value NO if the
connection of the file specifies PAD=NO.

PAD= returns UNDEFINED when there is no connection, or when the
connection is for unformatted I/O. If you compile your application with -
qxlf90=oldpad, PAD= returns YES in these cases.

PENDING=scalar_default_logical_variable (Fortran 2003)
indicates whether or not previously pending asynchronous data transfers
are complete. A data transfer operation is previously pending if it is
pending at the begining of execution of the INQUIRE statement.
scalar_default_logical_variable is an integer variable that is assigned the value
true or false.

If an ID= specifier appears and the specified data transfer operation is
complete, then the variable specified in the PENDING= specifier is
assigned the value false and the INQUIRE statement performs the wait
operation for the specified data transfer.

If there is no ID= specifier and all data transfer operations for the specified
unit are complete, then the variable specified in the PENDING= specifier
is assigned the value false and the INQUIRE statement performs wait
operations for all previously pending data transfers for the specified unit.

PENDING= specifier will be assigned the value true in all other cases and
no wait operations will be performed. Previously pending data transfers
will remain pending after the execution of the INQUIRE statement.

POS=integer_var (Fortran 2003)
integer_var is an integer variable that indicates the value of the file position
for a file connected for stream access. integer_var is assigned the number of
the file storage unit immediately following the current position of a file
connected for stream access. If the file is positioned at its terminal position,
integer_var is assigned a value one greater than the highest-numbered
storage unit in the file. integer_var becomes undefined if the file is not

390 XL Fortran: Language Reference for Big Endian Distributions

connected for stream access or if the position of the file can not be
determined because of previous error conditions.

POSITION= pos
indicates the position of the file. pos is a scalar character variable that is
assigned the value REWIND if the file is connected by an OPEN statement
for positioning at its initial point, APPEND if the file is connected for
positioning before its endfile record or at its terminal point, ASIS if the file
is connected without changing its position, or UNDEFINED if there is no
connection or if the file is connected for direct access.

If the file has been repositioned to its initial point since it was opened, pos
is assigned the value REWIND. If the file has been repositioned just before
its endfile record since it was opened (or, if there is no endfile record, at its
terminal point), pos is assigned the value APPEND. If both of the above
are true and the file is empty, pos is assigned the value APPEND. If the file
is positioned after the endfile record, pos is assigned the value ASIS.

READ= rd
indicates if the file can be read. rd is a scalar character variable that is
assigned the value YES if the file can be read, NO if the file cannot be
read, and UNKNOWN if it cannot be determined if the file can be read.

READWRITE= rw
indicates if the file can be both read from and written to. rw is a scalar
character variable that is assigned the value YES if the file can be both
read from and written to, NO if the file cannot be both read from and
written to, and UNKNOWN if it cannot be determined if the file can be
both read from and written to.

RECL= rcl

indicates the value of the record length of a file connected for direct access,
or the value of the maximum record length of a file connected for
sequential access.

rcl is an integer variable that is assigned the value of the record length.

If the file is connected for formatted input/output, the length is the
number of characters for all records that contain character data. If the file
is connected for unformatted input/output, the length is the number of
bytes of data. If there is no connection, rcl becomes undefined.

If the file is connected for stream access, rcl becomes undefined.

ROUND= char_var (Fortran 2003)

assigns the value UP, DOWN, ZERO, PROCESSOR_DEPENDENT,
NEAREST or COMPATIBLE, (whichever is the rounding mode for the
current connection) to char_var. If there is no connection or the input is not
formatted, the returned value is UNDEFINED. char_var is a character
variable.

The rounding mode helps specify how decimal numbers are converted to
an internal representation, (that is, in binary) from a character
representation and vice versa during formatted input and output. The
rounding modes have the following functions:
v In the UP rounding mode the value from the conversion is the smallest

value that is greater than or equal to the original value.

Chapter 11. Statements and attributes 391

v In the DOWN rounding mode the value from the conversion is the
greatest value that is smaller than or equal to the original value.

v In the ZERO rounding mode the value from the conversion is the closest
value to the original value, and not greater in magnitude.

v In the NEAREST rounding mode the value from the conversion is the
closer of the two nearest representable values. If both values are equally
close then the even value will be chosen. In IEEE rounding conversions,
NEAREST corresponds to the ieee_nearest rounding mode as specified
by the IEEE standard.

v In the COMPATIBLE rounding mode the value from the conversion is
the closest of the two nearest representable values, or the value further
away from zero if halfway between.

v In the PROCESSOR_DEFINED rounding mode the value from the
conversion is processor dependent and may correspond to the other
modes. In XL Fortran, the PROCESSOR_DEFINED rounding mode will
be the rounding mode you choose in the floating-point control register. If
you do not set the floating-point control register explicitly, the default
rounding mode is NEAREST.

SEQUENTIAL= seq
indicates if the file is connected for sequential access. seq is a scalar
character variable that is assigned the value YES if the file can be accessed
sequentially, the value NO if the file cannot be accessed sequentially, or the
value UNKNOWN if access cannot be determined.

SIGN= char_var (Fortran 2003)
indicates the sign mode in effect for a connection for formatted
input/output. If char_var is assigned the value PLUS, the processor shall
produce a plus sign in any position that normally contains an optional plus
sign and suppresses plus signs in these positions if char_var is assigned the
value SUPPRESS. char_var can also be assigned the value
PROCESSOR_DEFINED which is the default sign mode and acts the same
as SUPPRESS. If there is no connection, or if the connection is not for
formatted input/output, char_var is assigned the value UNDEFINED.

SIZE=filesize
filesize is an integer variable that is assigned the file size in bytes.

STREAM=strm (Fortran 2003)
is a scalar default character variable that indicates whether the file is
connected for stream access. strm is assigned the value YES if the file can
be accessed using stream access, the value NO if the file cannot be
accessed using stream access, or the value UNKNOWN if access cannot be
determined.

TRANSFER= char_variable (IBM extension)
is an asynchronous I/O specifier that indicates whether synchronous
and/or asynchronous data transfer are permissible transfer methods for the
file.

char_variable is a scalar character variable. If char_variable is assigned the
value BOTH, then both synchronous and asynchronous data transfer are
permitted. If char_variable is assigned the value SYNCH, then only
synchronous data transfer is permitted. If char_variable is assigned the
value UNKNOWN, then the processor is unable to determine the
permissible transfer methods for this file.

392 XL Fortran: Language Reference for Big Endian Distributions

UNFORMATTED= unf
indicates if the file can be connected for unformatted input/output. fmt is a
scalar character variable that is assigned the value YES if the file can be
connected for unformatted input/output, the value NO if the file cannot be
connected for unformatted input/output, or the value UNKNOWN if
formatting cannot be determined.

WRITE= wrt
indicates if the file can be written to. wrt is a scalar character variable that
is assigned the value YES if the file can be written to, NO if the file cannot
be written to, and UNKNOWN if it cannot be determined if the file can be
written to.

Rules

An INQUIRE statement can be executed before, while, or after a file is associated
with a unit. Any values assigned as the result of an INQUIRE statement are values
that are current at the time the statement is executed.

IBM extension

If the unit or file is connected, the values returned for the ACCESS=,
SEQUENTIAL=, STREAM=, DIRECT=, ACTION=, READ=, WRITE=,
READWRITE=, FORM=, FORMATTED=, UNFORMATTED=, BLANK=,
DELIM=, PAD=, RECL=, POSITION=, NEXTREC=, NUMBER=, NAME=,
NAMED=, DECIMAL=, ROUND= and SIGN= specifiers are properties of the
connection, and not of that file. Note that the EXIST= and OPENED= specifiers
return true in these situations.

If a unit or file is not connected or does not exist, the ACCESS=, ACTION=,
FORM=, BLANK=, DELIM=, POSITION= specifiers return the value
UNDEFINED, the DIRECT=, SEQUENTIAL=, STREAM=, FORMATTED=,
UNFORMATTED=, READ=, WRITE= and READWRITE= specifiers return the
value UNKNOWN, the RECL= and NEXTREC= specifier variables are not
defined, the PAD= specifier returns the value YES, and the OPENED specifier
returns the value false. The value returned by the SIZE= specifier is -1.

If a unit or file does not exist, the EXIST= and NAMED= specifiers return the
value false, the NUMBER= specifier returns the value -1, and the NAME=
specifier variable is not defined.

If a unit or file exists but is not connected, the EXIST= specifier returns the value
true. For the inquire-by-unit form of the statement, the NAMED= specifier returns
the value false, the NUMBER= specifier returns the unit number, and the
NAME= specifier variable is undefined. For the inquire-by-file form of the
statement, the NAMED= specifier returns the value true, the NUMBER= specifier
returns -1, and the NAME= specifier returns the file name.

End of IBM extension

The same variable name must not be specified for more than one specifier in the
same INQUIRE statement, and must not be associated with any other variable in
the list of specifiers.

Chapter 11. Statements and attributes 393

Examples
SUBROUTINE SUB(N)

CHARACTER(N) A(5)
INQUIRE (IOLENGTH=IOL) A(1) ! Inquire by output list
OPEN (7,RECL=IOL)

...
END SUBROUTINE

Related information
v “Conditions and IOSTAT values” on page 222
v Chapter 9, “XL Fortran Input/Output,” on page 211

INTEGER
Purpose

An INTEGER type declaration statement specifies the length and attributes of
objects and functions of type integer. Initial values can be assigned to objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

kind_selector

�� INTEGER
kind_selector ::

, attr_spec_list ::

entity_decl_list ��

394 XL Fortran: Language Reference for Big Endian Distributions

specifies the length of integer entities: 1, 2, 4 or 8. int_literal_constant cannot
specify a kind type parameter.

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds

entity_decl

a is an object name or function name. array_spec cannot be specified
for a function name with an implicit interface.

len
overrides the length as specified in kind_selector, and cannot specify

�� (int_constant_expr)
KIND =

(1)
* int_literal_constant

��

Notes:

1 IBM extension.

�� a
(1) (2) (array_spec)

* len
(3) (4)

(array_spec) * len

�

�
(5)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension.

2 IBM extension.

3 IBM extension.

4 IBM extension.

5 IBM extension.

Chapter 11. Statements and attributes 395

a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

initial_value
provides an initial value for the entity specified by the immediately
preceding name

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name

=> NULL()
provides the initial value for the pointer object

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit or if it appears in a named common block in a module or
submodule.

You can initialize pointers using => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

396 XL Fortran: Language Reference for Big Endian Distributions

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined.

If the entity you are declaring is a derived type component, and constant_expr or
NULL() is specified, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of constant_expr or
NULL() implies that a is a saved object, except for an object in a named common
block. The initialization of an object could affect the fundamental storage class of
an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
MODULE INT

INTEGER, DIMENSION(3) :: A,B,C
INTEGER :: X=234,Y=678

END MODULE INT

Related information
v “Integer” on page 35
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

INTENT
Purpose

The INTENT attribute specifies the intended use of dummy arguments.

Syntax

Chapter 11. Statements and attributes 397

dummy_arg_name
is the name of a dummy argument, which cannot be a dummy procedure

Rules

If you specify a nonpointer, nonallocatable dummy argument, the INTENT
attribute will have the following characteristics:
v INTENT(IN) specifies that the dummy argument must not be redefined or

become undefined during the execution of the subprogram.
v INTENT(OUT) specifies that the dummy argument must be defined before it is

referenced within the subprogram. Such a dummy argument might not become
undefined on invocation of the subprogram.

v INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If you specify a pointer dummy argument, the INTENT attribute will have the
following characteristics:
v INTENT(IN) specifies that during the execution of the procedure, the association

status of the pointer dummy argument cannot be changed, except if the target of
the pointer is deallocated. If the target of the pointer is deallocated, the
association status of the pointer dummy argument becomes undefined.
You cannot use an INTENT(IN) pointer dummy argument as a pointer object in
a pointer assignment statement. You cannot allocate, deallocate, or nullify an
INTENT(IN) pointer dummy argument
You cannot specify an INTENT(IN) pointer dummy argument as an actual
argument to a procedure if the associated dummy argument is a pointer with
INTENT(OUT) or INTENT(INOUT) attribute.

v INTENT(OUT) specifies that at the execution of the procedure, the association
status of the pointer dummy argument is undefined

v INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If you specify an allocatable dummy argument, the INTENT attribute will have the
following characteristics:
v INTENT(IN) specifies that during the execution of the procedure, the allocation

status of the dummy argument cannot be changed, and it must not be redefined
or become undefined.

v INTENT(OUT) specifies that at the execution of the procedure, if the associated
actual argument is allocated it will be deallocated.

v INTENT(INOUT) specifies that the dummy argument can both receive and
return data to the invoking subprogram.

If a dummy argument with INTENT(OUT) is a derived type with default
initialization, the dummy argument cannot be an assumed-size array.

�� INTENT (IN) dummy_arg_name_list
OUT ::
INOUT

��

398 XL Fortran: Language Reference for Big Endian Distributions

If you do not specify the INTENT attribute for a pointer or allocatable dummy
argument, its use is subject to the limitations and restrictions of the associated
actual argument.

An actual argument that becomes associated with a dummy argument with an
intent of OUT or INOUT must be definable. Hence, a dummy argument with an
intent of IN, or an actual argument that is a constant, a subobject of a constant, or
an expression, cannot be passed as an actual argument to a subprogram expecting
an argument with an intent of OUT or INOUT.

An actual argument that is an array section with a vector subscript cannot be
associated with a dummy array that is defined or redefined (that is, with an intent
of OUT or INOUT).

Table 42. Attributes compatible with the INTENT attribute

ALLOCATABLE �1� CONTIGUOUS �2� TARGET

ASYNCHRONOUS OPTIONAL VALUE �1�

DIMENSION POINTER VOLATILE

Note:
�1� Fortran 2003
�2� Fortran 2008

You must not specify the VALUE attribute for a dummy argument with an intent
of OUT or INOUT

The %VAL built-in function, used for interlanguage calls, can only be used
for an actual argument that corresponds to a dummy argument with an intent of
IN, or has no intent specified. This constraint does not apply to the %REF built-in
function.

Examples
PROGRAM MAIN

DATA R,S /12.34,56.78/
CALL SUB(R+S,R,S)

END PROGRAM

SUBROUTINE SUB (A,B,C)
INTENT(IN) A
INTENT(OUT) B
INTENT(INOUT) C
C=C+A+ABS(A) ! Valid references to A and C

! Valid redefinition of C
B=C**2 ! Valid redefinition of B

END SUBROUTINE

Related information
v “Intent of dummy arguments” on page 195
v “Argument association” on page 192
v “%VAL and %REF (IBM extension)” on page 194, for details on interlanguage

calls
v “Dummy arguments” on page 191

Chapter 11. Statements and attributes 399

INTERFACE
Purpose

The INTERFACE statement is the first statement of an interface block, which can
specify an explicit interface for an external or dummy procedure.

Syntax

generic_spec
is

defined_operator
is a defined unary operator, defined binary operator, or extended intrinsic
operator

dtio_generic_spec

Rules

If generic_spec is present, the interface block is generic. If generic_spec and
ABSTRACT is absent, the interface block is specific. An interface block introduced

�� INTERFACE
generic_spec

(1)
ABSTRACT INTERFACE

��

Notes:

1 Fortran 2003

�� generic_name
OPERATOR (defined_operator)
ASSIGNMENT (=)

(1)
dtio_generic_spec

��

Notes:

1 Fortran 2003

�� READ (FORMATTED)
READ (UNFORMATTED)
WRITE (FORMATTED)
WRITE (UNFORMATTED)

��

400 XL Fortran: Language Reference for Big Endian Distributions

by ABSTRACT INTERFACE is an abstract interface block. generic_name specifies a
single name to reference all procedures in the interface block. At most, one specific
procedure is invoked each time there is a procedure reference with a generic name.

An interface body in a generic or specific interface block specifies the EXTERNAL
attribute and an explicit specific interface for an external procedure or a dummy
procedure. If the name of the declared procedure is that of a dummy argument in
the subprogram containing the interface body, the procedure is a dummy
procedure; otherwise, it is an external procedure.

If a generic_spec appears in an INTERFACE statement, it must match the
generic_spec in the corresponding END INTERFACE statement.

If the generic_spec in an INTERFACE statement is a generic_name, the generic_spec of
the corresponding END INTERFACE statement must be the same generic_name.

An INTERFACE statement without a generic_spec can match any END
INTERFACE statement, with or without a generic_spec.

A specific procedure must not have more than one explicit interface in a given
scoping unit.

You can always reference a procedure through its specific interface, if accessible. If
a generic interface exists for a procedure, the procedure can also be referenced
through the generic interface.

If generic_spec is OPERATOR(defined_operator), the interface block can define a
defined operator or extend an intrinsic operator.

If generic_spec is ASSIGNMENT(=), the interface block can extend intrinsic
assignment.

If generic_spec is dtio_generic_spec, the interface block defines derived type
input/output procedures. User-defined derived type input/output procedures
allow your application to override the default handling of derived type objects and
values in data transfer input/output statements. The subroutines in this interface
block must have interfaces described in “User-defined derived-type Input/Output
procedure interfaces (Fortran 2003)” on page 218.

Examples
INTERFACE ! Nongeneric interface block

FUNCTION VOL(RDS,HGT)
REAL VOL, RDS, HGT

END FUNCTION VOL
FUNCTION AREA (RDS)

REAL AREA, RDS
END FUNCTION AREA

END INTERFACE

INTERFACE OPERATOR (.DETERMINANT.) ! Defined operator interface
FUNCTION DETERMINANT(X)

INTENT(IN) X
REAL X(50,50), DETERMINANT

END FUNCTION
END INTERFACE

INTERFACE ASSIGNMENT(=) ! Defined assignment interface
SUBROUTINE BIT_TO_NUMERIC (N,B)

Chapter 11. Statements and attributes 401

INTEGER, INTENT(OUT) :: N
LOGICAL, INTENT(IN) :: B(:)

END SUBROUTINE
END INTERFACE

Related information
v “Explicit interface” on page 161
v “Extended intrinsic and defined operations” on page 111
v “Defined operators” on page 168
v “Defined assignment” on page 169
v “User-defined derived-type Input/Output procedure interfaces (Fortran 2003)”

on page 218
v “FUNCTION” on page 373
v “SUBROUTINE” on page 462
v “PROCEDURE” on page 428
v “Procedure references” on page 183
v “Unambiguous generic procedure references” on page 165, for details about the

rules on how any two procedures with the same generic name must differ

INTRINSIC
Purpose

The INTRINSIC attribute identifies a name as an intrinsic procedure and allows
you to use specific names of intrinsic procedures as actual arguments.

Syntax

name is the name of an intrinsic procedure

Rules

If you use a specific intrinsic procedure name as an actual argument in a scoping
unit, it must have the INTRINSIC attribute. Generic names can have the
INTRINSIC attribute, but you cannot pass them as arguments unless they are also
specific names.

A generic or specific procedure that has the INTRINSIC attribute keeps its generic
or specific properties.

A generic intrinsic procedure that has the INTRINSIC attribute can also be the
name of a generic interface block. The generic interface block defines extensions to
the generic intrinsic procedure.

Table 43. Attributes compatible with the INTRINSIC attribute

PRIVATE PUBLIC

�� INTRINSIC name_list
::

��

402 XL Fortran: Language Reference for Big Endian Distributions

Examples
PROGRAM MAIN

INTRINSIC SIN, ABS
INTERFACE ABS

LOGICAL FUNCTION MYABS(ARG)
LOGICAL ARG

END FUNCTION
END INTERFACE

LOGICAL LANS,LVAR
REAL(8) DANS,DVAR
DANS = ABS(DVAR) ! Calls the DABS intrinsic procedure
LANS = ABS(LVAR) ! Calls the MYABS external procedure

! Pass intrinsic procedure name to subroutine
CALL DOIT(0.5,SIN,X) ! Passes the SIN specific intrinsic

END PROGRAM

SUBROUTINE DOIT(RIN,OPER,RESULT)
INTRINSIC :: MATMUL
INTRINSIC COS
RESULT = OPER(RIN)

END SUBROUTINE

Related information
v Generic and specific intrinsic procedures are listed in Chapter 14, “Intrinsic

procedures,” on page 559. See this section to find out if a specific intrinsic name
can be used as an actual argument.

v “Generic interface blocks” on page 165

LOGICAL
Purpose

A LOGICAL type declaration statement specifies the length and attributes of
objects and functions of type logical. Initial values can be assigned to objects.

Syntax

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

�� LOGICAL
kind_selector ::

, attr_spec_list ::

entity_decl_list ��

Chapter 11. Statements and attributes 403

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

kind_selector

Specifies the length of logical entities: 1, 2, 4 or 8.
int_literal_constant cannot specify a kind type parameter.

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds

entity_decl

�� (int_constant_expr)
KIND =

(1)
* int_literal_constant

��

Notes:

1 IBM extension.

�� a
(1) (2) (array_spec)

* len
(3)

(array_spec) * len

�

�
(4)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension.

2 IBM extension.

3 IBM extension

4 IBM extension.

404 XL Fortran: Language Reference for Big Endian Distributions

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

len
overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

initial_value
provides an initial value for the entity specified by the immediately
preceding name.

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name.

=> NULL()
provides the initial value for the pointer object.

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a pointer, a function result, an object in blank
common, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit or if it appears in a named common block in a module F2008 or
submodule F2008 .

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of

Chapter 11. Statements and attributes 405

a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined.

If the entity you are declaring is a derived type component, and constant_expr or
NULL() is specified, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of constant_expr or
NULL() implies that a is a saved object, except for an object in a named common
block. The initialization of an object could affect the fundamental storage class of
an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
LOGICAL, ALLOCATABLE :: L(:,:)
LOGICAL :: Z=.TRUE.

Related information
v “Logical” on page 41
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

406 XL Fortran: Language Reference for Big Endian Distributions

MODULE
Purpose

The MODULE statement is the first statement of a module program unit, which
contains specifications and definitions that can be made accessible to other
program units.

Syntax

Rules

The module name is a global entity that is referenced by the USE statement in
other program units to access the public entities of the module. A user-defined
module must not have the same name as any other program unit, external
procedure, common block, binding labels of global entities in the program, nor can
it be the same as any local name in the module.

If the END statement that completes the module specifies a module name, the
name must be the same as that specified in the MODULE statement.

Examples
MODULE MM

CONTAINS
REAL FUNCTION SUM(CARG)

COMPLEX CARG
SUM_FNC(CARG) = IMAG(CARG) + REAL(CARG)
SUM = SUM_FNC(CARG)
RETURN

ENTRY AVERAGE(CARG)
AVERAGE = SUM_FNC(CARG) / 2.0

END FUNCTION SUM
SUBROUTINE SHOW_SUM(SARG)

COMPLEX SARG
REAL SUM_TMP

10 FORMAT(’SUM:’,E10.3,’ REAL:’,E10.3,’ IMAG’,E10.3)
SUM_TMP = SUM(CARG=SARG)
WRITE(10,10) SUM_TMP, SARG

END SUBROUTINE SHOW_SUM
END MODULE MM

Related information
v “Modules” on page 175
v “USE” on page 478
v “Use association” on page 156
v “END” on page 345, for details on the END MODULE statement
v “PRIVATE” on page 426
v “PROTECTED (Fortran 2003)” on page 432
v “PUBLIC” on page 434

�� MODULE module_name ��

Chapter 11. Statements and attributes 407

MODULE PROCEDURE (Fortran 2008)
Purpose

A MODULE PROCEDURE statement is the first statement of a separate module
subprogram.

Syntax

Rules

The procedure_name must be declared to be a separate module procedure in the
containing program unit, the ancestor module, or an ancestor submodule.

Examples

The following example shows how a MODULE PROCEDURE statement is used
as the first statement of a separate module subprogram.
MODULE m

INTERFACE
MODULE SUBROUTINE sub(arg)

INTEGER :: arg
END SUBROUTINE

END INTERFACE
END MODULE

SUBMODULE (m) n
CONTAINS

MODULE PROCEDURE sub ! MODULE PROCEDURE statement
arg = 1

END PROCEDURE
END SUBMODULE

Related information
v “Separate module procedures (Fortran 2008)” on page 185
v “Separate module subprograms (Fortran 2008)” on page 186
v “END” on page 345

NAMELIST
Purpose

The NAMELIST statement specifies one or more lists of names for use in READ,
WRITE, and PRINT statements.

Syntax

�� MODULE PROCEDURE procedure_name ��

408 XL Fortran: Language Reference for Big Endian Distributions

Nname is a namelist group name

variable_name
Must not be an assumed-size array, or a pointee. If variable_name is a
variable for a type that has an ultimate component that is a pointer, or an
allocatable object, it must be processed by a user-defined derived-type I/O
procedure.

Rules

The list of names belonging to a namelist group name ends with the appearance of
another namelist group name or the end of the NAMELIST statement.

variable_name must either be accessed via use or host association, or have its type
and type parameters specified by previous specification statements in the same
scoping unit or by the implicit typing rules. If typed implicitly, any appearance of
the object in a subsequent type declaration statement must confirm the implied
type and type parameters. A derived-type object must not appear as a list item if
any component ultimately contained within the object is not accessible within the
scoping unit containing the namelist input/output statement on which its
containing namelist group name is specified; unless it is processed by a
user-defined derived-type input/output procedure.

variable_name can belong to one or more namelist lists. If the namelist group name
has the PUBLIC attribute, no item in the list can have the PRIVATE attribute or
private components.

Nname can be specified in more than one NAMELIST statement in the scoping
unit, and more than once in each NAMELIST statement. The variable_name_list
following each successive appearance of the same Nname in a scoping unit is
treated as the continuation of the list for that Nname.

A namelist name can appear only in input/output statements. The rules for
input/output conversion of namelist data are the same as the rules for data
conversion.

Examples
DIMENSION X(5), Y(10)
NAMELIST /NAME1/ I,J,K
NAMELIST /NAME2/ A,B,C /NAME3/ X,Y
WRITE (10, NAME1)
PRINT NAME2

Related information
v “Namelist formatting” on page 270
v Setting Run-Time Options in the XL Fortran Compiler Reference

�� �

,

NAMELIST / Nname / variable_name_list ��

Chapter 11. Statements and attributes 409

NULLIFY
Purpose

The NULLIFY statement causes pointers to become disassociated.

Syntax

pointer_object
is a pointer variable name or structure component

Rules

A pointer_object must be definable and have the POINTER attribute.

A pointer_object must not depend on the value, bounds, or association status of
another pointer_object in the same NULLIFY statement.

Tip:

Always initialize a pointer with the NULLIFY statement, pointer assignment,
default initialization or explicit initialization.

Examples
TYPE T

INTEGER CELL
TYPE(T), POINTER :: NEXT

ENDTYPE T
TYPE(T) HEAD, TAIL
TARGET :: TAIL
HEAD%NEXT => TAIL
NULLIFY (TAIL%NEXT)
END

Related information
v “Data pointer assignment” on page 127
v “Pointer association” on page 157

OPEN
Purpose

The OPEN statement can be used to connect an existing external file to a unit,
create an external file that is preconnected, create an external file and connect it to
a unit, or change certain specifiers of a connection between an external file and a
unit.

Syntax

�� NULLIFY (pointer_object_list) ��

410 XL Fortran: Language Reference for Big Endian Distributions

open_list
is a list that must contain either one unit specifier ([UNIT=u]) F2008 or
one NEWUNIT= specifier F2008 . The list can optionally contain one of
each of the other valid specifiers. When the list contains more than one
specifier, use a comma (,) as the separator. The valid specifiers are as
follows:

[UNIT=] u
is a unit specifier in which u must be an external unit identifier whose
value is not an asterisk. An external unit identifier refers to an external file
that is represented by an integer expression. The integer expression has
one of the following values:
v A value in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
open_list.

ACCESS= char_expr
specifies the access method for the connection of the file. char_expr is a
scalar character expression whose value, when any trailing blanks are
removed, is either SEQUENTIAL, DIRECT or STREAM. If ACCESS= is
DIRECT, RECL= must be specified. If ACCESS= is STREAM,
RECL= must not be specified .

SEQUENTIAL is the default, for which RECL= is optional

ACTION= char_expr
specifies the allowed input/output operations. char_expr is a scalar
character expression whose value evaluates to READ, WRITE or
READWRITE. If READ is specified, WRITE, PRINT and ENDFILE
statements cannot refer to this connection. If WRITE is specified, READ
statements cannot refer to this connection. The value READWRITE permits
any input/output statement to refer to this connection. If the ACTION=
specifier is omitted, the default value depends on the actual file
permissions:
v If the STATUS= specifier has the value OLD or UNKNOWN and the

file already exists:
– The file is opened with READWRITE

– If the above is not possible, the file is opened with READ

– If neither of the above is possible, the file is opened with WRITE.
v If the STATUS= specifier has the value NEW, REPLACE, SCRATCH or

UNKNOWN and the file does not exist:
– The file is opened with READWRITE

– If the above is not possible, the file is opened with WRITE.

ASYNCH= char_expr (IBM extension)
is an asynchronous I/O specifier that indicates whether an explicitly
connected unit is to be used for asynchronous I/O.

char_expr is a scalar character expression whose value is either YES or NO.
YES specifies that asynchronous data transfer statements are permitted for

�� OPEN (open_list) ��

Chapter 11. Statements and attributes 411

this connection. NO specifies that asynchronous data transfer statements
are not permitted for this connection. The value specified will be in the set
of transfer methods permitted for the file. If this specifier is omitted, the
default value is NO.

Preconnected units are connected with an ASYNCH= value of NO.

The ASYNCH= value of an implicitly connected unit is determined by the
first data transfer statement performed on the unit. If the first statement
performs an asynchronous data transfer and the file being implicitly
connected permits asynchronous data transfers, the ASYNCH= value is
YES. Otherwise, the ASYNCH= value is NO.

ASYNCHRONOUS=char_expr (fortran 2003)
specifies whether or not asynchronous I/O on the unit is allowed.

char_expr is a scalar character expression whose value is either YES or NO.
If char_expr is the value YES asynchronous I/O on the unit is allowed. If
char_expr is the value NO asynchronous I/O on the unit is not allowed. If
ASYNCHRONOUS= is not present, the default value is NO.

An ASYNCH= specifier and an
ASYNCHRONOUS= specifier should not appear on the same
OPEN statement, the second one is ignored.

BLANK= char_expr
controls the default interpretation of blanks when you are using a format
specification. char_expr is a scalar character expression whose value, when
any trailing blanks are removed, is either NULL or ZERO. If BLANK= is
specified, you must use FORM='FORMATTED'. If BLANK= is not
specified and you specify FORM='FORMATTED', NULL is the default.

DECIMAL= char_expr (Fortran 2003)
specifies the default decimal edit mode for the corresponding unit. char_expr
is a scalar character expression whose value must evaluate to either
POINT or COMMA. If DECIMAL= is not specified, the decimal point
mode is in effect by default.

DELIM= char_expr
specifies what delimiter, if any, is used to delimit character constants
written with list-directed or namelist formatting. char_expr is a scalar
character expression whose value must evaluate to APOSTROPHE,
QUOTE, or NONE. If the value is APOSTROPHE, apostrophes delimit
character constants and all apostrophes within character constants are
doubled. If the value is QUOTE, double quotation marks delimit character
constants and all double quotation marks within character constants are
doubled. If the value is NONE, character constants are not delimited and
no characters are doubled. The default value is NONE. The DELIM=
specifier is permitted only for files being connected for formatted
input/output, although it is ignored during input of a formatted record.

ENCODING= char_expr (Fortran 2003)
specifies the encoding form of the file. char_expr is a scalar character
expression whose value, when any trailing blanks are removed, is
DEFAULT. The ENCODING= specifier must only appear in formatted I/O
statements. If omitted, the default value is DEFAULT.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable

412 XL Fortran: Language Reference for Big Endian Distributions

statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

FILE= char_expr

is a file specifier that specifies the name of the file to be connected to the
specified unit.

char_expr is a scalar character expression whose value, when any trailing
blanks are removed, is a valid Linux operating system file name. If the file
specifier is omitted and is required, the unit becomes implicitly connected
(by default) to fort.u, where u is the unit specified with any leading zeros
removed. Use the UNIT_VARS run-time option to allow alternative files
names to be used for files that are implicitly connected.

Note: A valid Linux operating system file name must have a full path
name of total length ≤1023 characters, with each file name ≤255 characters
long (although the full path name need not be specified).

FORM= char_expr
specifies whether the file is connected for formatted or unformatted
input/output. char_expr is a scalar character expression whose value, when
any trailing blanks are removed, is either FORMATTED or
UNFORMATTED. If you connect the file for sequential access,
FORMATTED is the default. If you connect the file for direct access

or stream access , UNFORMATTED is the default.

IOMSG= iomsg_variable (Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
An input/output status specifier for the status of the input/output
operation. ios is a scalar integer variable. When the input/output statement
containing this specifier finishes execution, ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs

NEWUNIT= var (Fortran 2008)
an input/output specifier that specifies the NEWUNIT value for the
connection. var is a scalar default integer variable. The NEWUNIT value is
a negative number that is less than -2 and is unequal to the unit number of
any currently connected file. If you specify NEWUNIT= specifier in the
OPEN statement, you must also specify the STATUS= specifier with value
SCRATCH or specify the FILE= specifier.

PAD= char_expr
specifies if input records are padded with blanks. char_expr is a scalar
character expression that must evaluate to YES or NO. If the value is YES,
a formatted input record is padded with blanks if an input list is specified
and the format specification requires more data from a record than the
record contains. If NO is specified, the input list and format specification

Chapter 11. Statements and attributes 413

must not require more characters from a record than the record contains.
The default value is YES. The PAD= specifier is permitted only for files
being connected for formatted input/output, although it is ignored during
output of a formatted record.

If the -qxlf77 compiler option specifies the noblankpad suboption
and the file is being connected for formatted direct input/output, the
default value is NO when the PAD= specifier is omitted.

POSITION= char_expr
specifies the file position for a file connected for sequential or stream
access. A file that did not exist previously is positioned at its initial point.
char_expr is a scalar character expression whose value, when any trailing
blanks are removed, is either ASIS, REWIND, or APPEND. REWIND
positions the file at its initial point. APPEND positions the file before the
endfile record or, if there is no endfile record, at the terminal point. ASIS
leaves the position unchanged. The default value is ASIS except under the
following conditions:
v The first input/output statement (other than the INQUIRE statement)

referring to the unit after the OPEN statement is a WRITE statement,
and either:
– The STATUS= specifier is UNKNOWN and the -qposition compiler

option specifies appendunknown, or
– The STATUS= specifier is OLD and the -qposition compiler option

specifies appendold.

In such cases, the default value for the POSITION= specifier is APPEND
at the time the WRITE statement is executed.

RECL= integer_expr

specifies the length of each record in a file being connected for direct
access or the maximum length of a record in a file being connected for
sequential access. integer_expr is an integer expression whose value must be
positive. This specifier must be present when a file is being connected for
direct access. For formatted input/output, the length is the number of
characters for all records that contain character data. For unformatted
input/output, the length is the number of bytes required for the internal
form of the data. The length of an unformatted sequential record does not
count the four-byte fields surrounding the data.

If RECL= is omitted when a file is being connected for sequential access in 32-bit,
the length is 2**31–1, minus the record terminator. For a formatted sequential file
in 32-bit, the default record length is 2**31-2. For an unformatted file that can be
accessed in 32-bit, the default record length is 2**31-9.

For a file that cannot be accessed randomly in 32-bit, the default length is 2**15
(32,768).

If RECL= is omitted when a file is being connected for sequential access in 64-bit,
the length is 2**63–1, minus the record terminator. For a formatted sequential file
in 64-bit, the default record length is 2**63-2 For an unformatted file in 64-bit, the
default record length is 2**63-17 when the UWIDTH run-time option is set to 64.

414 XL Fortran: Language Reference for Big Endian Distributions

ROUND= char_expr (Fortran 2003)

states the current value of the I/O rounding mode for formatted input and
output. The ROUND= can be changed by other statements. If omitted,
then the processor can choose the rounding mode. char_expr evaluates to
either UP, DOWN, ZERO, NEAREST, COMPATIBLE or
PROCESSOR_DEFINED

The rounding mode helps specify how decimal numbers are converted to
an internal representation, (that is, in binary) from a character
representation and vice versa during formatted input and output. The
rounding modes have the following functions:
v In the UP rounding mode the value from the conversion is the smallest

value that is greater than or equal to the original value.
v In the DOWN rounding mode the value from the conversion is the

greatest value that is smaller than or equal to the original value.
v In the ZERO rounding mode the value from the conversion is the closest

value to the original value, and not greater in magnitude.
v In the NEAREST rounding mode the value from the conversion is the

closer of the two nearest representable values. If both values are equally
close then the even value will be chosen. In IEEE rounding conversions,
NEAREST corresponds to the ieee_nearest rounding mode as specified
by the IEEE standard.

v In the COMPATIBLE rounding mode the value from the conversion is
the closest of the two nearest representable values, or the value further
away from zero if halfway between.

v In the PROCESSOR_DEFINED rounding mode the value from the
conversion is processor-dependent and may correspond to the other
modes. In XL Fortran, the PROCESSOR_DEFINED rounding mode will
be the rounding mode you choose in the floating-point control register. If
you do not set the floating-point control register explicitly, the default
rounding mode is NEAREST.

SIGN= char_expr (Fortran 2003)
indicates the sign mode in effect for a connection for formatted
input/output. If char_expr is assigned the value PLUS, the processor shall
produce a plus sign in any position that normally contains an optional plus
sign and suppresses plus signs in these positions if char_expr is assigned
the value SUPPRESS. char_expr can also be assigned the value
PROCESSOR_DEFINED which is the default sign mode and acts the same
as SUPPRESS. If there is no connection, or if the connection is not for
formatted input/output, char_expr is assigned the value UNDEFINED. The
sign mode may be temporarily changed in a single data transfer statement.
When the statement terminates, the sign mode resumes its previous value.

STATUS= char_expr
specifies the status of the file when it is opened. char_expr is a scalar
character expression whose value, when any trailing blanks are removed, is
one of the following:
v OLD, to connect an existing file to a unit. If OLD is specified, the file

must exist. If the file does not exist, an error condition will occur.
v NEW, to create a new file, connect it to a unit, and change the status to

OLD. If NEW is specified, the file must not exist. If the file already
exists, an error condition will occur.

Chapter 11. Statements and attributes 415

v SCRATCH, to create and connect a new file that will be deleted when it
is disconnected. SCRATCH must not be specified with a named file
(that is, FILE=char_expr must be omitted).

v REPLACE. If the file does not already exist, the file is created and the
status is changed to OLD. If the file exists, the file is deleted, a new file
is created with the same name, and the status is changed to OLD.

v UNKNOWN, to connect an existing file, or to create and connect a new
file. If the file exists, it is connected as OLD. If the file does not exist, it
is connected as NEW.

UNKNOWN is the default.

Rules

If a unit is connected to a file that exists, an OPEN statement for that unit can be
performed. If the FILE= specifier is not included in the OPEN statement, the file to
be connected to the unit is the same as the file to which the unit is connected.

F2008 If an OPEN statement containing a NEWUNIT= specifier is executed
successfully, the variable specified by NEWUNIT= is assigned with a new
NEWUNIT value. However, if an error occurs during the execution of the OPEN
statement, the variable specified by NEWUNIT= keeps its original value. F2008

If the file to be connected to the unit is not the same as the file to which the unit is
connected, the effect is as if a CLOSE statement without a STATUS= specifier had
been executed for the unit immediately prior to the execution of the OPEN
statement.

If the file to be connected to the unit is the same as the file to which the unit is
connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers
can have a value different from the one currently in effect. Execution of the OPEN
statement causes any new value for the BLANK=, DELIM= or PAD= specifiers to
be in effect, but does not cause any change in any of the unspecified specifiers or
the position of the file. Any ERR= and IOSTAT= specifiers from OPEN statements
previously executed have no effect on the current OPEN statement. If you specify
the STATUS= specifier it must have the value OLD. To specify the same file as the
one currently connected to the unit, you can specify the same file name, omit the
FILE= specifier, or specify a file symbolically linked to the same file.

If a file is connected to a unit, an OPEN statement on that file and a different unit
cannot be performed.

If the STATUS= specifier has the value OLD, NEW or REPLACE, the
FILE= specifier is optional.

Unit 0 cannot be specified to connect to a file other than the preconnected file, the
standard error device, although you can change the values for the BLANK=,
DELIM= and PAD= specifiers.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

If IOSTAT= and ERR= are not specified,
v The program stops if a severe error is encountered

416 XL Fortran: Language Reference for Big Endian Distributions

v The program continues to the next statement if a recoverable error is
encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

Examples

F2008

Example 1: write 'hello world' to file 'hello'
INTEGER unit_number
OPEN(newunit = unit_number, file = ’hello’)
WRITE(unit_number, *) ’hello world’
CLOSE(unit_number)

F2008

Example 2:
! Open a new file with name fname

CHARACTER*20 FNAME
FNAME = ’INPUT.DAT’
OPEN(UNIT=8,FILE=FNAME,STATUS=’NEW’,FORM=’FORMATTED’)

OPEN (4,FILE="myfile")
OPEN (4,FILE="myfile", PAD="NO") ! Changing PAD= value to NO

! Connects unit 2 to a tape device for unformatted, sequential
! write-only access:

OPEN (2, FILE="/dev/rmt0",ACTION="WRITE",POSITION="REWIND", &
& FORM="UNFORMATTED",ACCESS="SEQUENTIAL",RECL=32767)

Related information
v “Units” on page 214
v Item 3 under “Compatibility across standards” on page 1007
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Setting Run-Time Options in the XL Fortran Compiler Reference

v -qposition option in the XL Fortran Compiler Reference

v -qxlf77 option in the XL Fortran Compiler Reference

v “CLOSE” on page 311
v “READ” on page 435
v “WRITE” on page 490

OPTIONAL
Purpose

The OPTIONAL attribute specifies that a dummy argument need not be associated
with an actual argument in a reference to the procedure.

Syntax

Chapter 11. Statements and attributes 417

Rules

A procedure that has an optional dummy argument must have an explicit interface
in any scope in which the procedure is referenced.

Use the PRESENT intrinsic function to determine if an actual argument has been
associated with an optional dummy argument. Avoid referencing an optional
dummy argument without first verifying that the dummy argument is present.

A dummy argument is considered present in a subprogram according to the rules
described in the section: “Restrictions on optional dummy arguments not present”
on page 196.

An optional dummy argument that is not present may be used as an actual
argument corresponding to an optional dummy argument, which is then also
considered not to be associated with an actual argument. An optional dummy
argument that is not present is subject to the restrictions specified in the section:
“Restrictions on optional dummy arguments not present” on page 196

The OPTIONAL attribute cannot be specified for dummy arguments in an
interface body that specifies an explicit interface for a defined operator or defined
assignment.

Table 44. Attributes compatible with the OPTIONAL attribute

ALLOCATABLE �1� EXTERNAL TARGET

ASYNCHRONOUS INTENT VALUE �1�

CONTIGUOUS �2� POINTER VOLATILE

DIMENSION

Note:
�1� Fortran 2003
�2� Fortran 2008

Notes:

1. Fortran 2008.

Examples
SUBROUTINE SUB (X,Y)

INTERFACE
SUBROUTINE SUB2 (A,B)

OPTIONAL :: B
END SUBROUTINE

END INTERFACE
OPTIONAL :: Y
IF (PRESENT(Y)) THEN ! Reference to Y conditional

X = X + Y ! on its presence
ENDIF
CALL SUB2(X,Y)

END SUBROUTINE

SUBROUTINE SUB2 (A,B)

�� OPTIONAL dummy_arg_name_list
::

��

418 XL Fortran: Language Reference for Big Endian Distributions

OPTIONAL :: B ! B and Y are argument associated,
IF (PRESENT(B)) THEN ! even if Y is not present, in

B = B * A ! which case, B is also not present
PRINT*, B

ELSE
A = A**2
PRINT*, A

ENDIF
END SUBROUTINE

Related information
v “Optional dummy arguments” on page 195
v “Interface concepts” on page 160
v “PRESENT(A)” on page 671
v “Dummy arguments” on page 191

PARAMETER
Purpose

The PARAMETER attribute allows you to specify names for constants.

Syntax

constant_expr
A constant expression

Rules

A named constant must have its type, shape, and parameters specified in a
previous specification statement in the same scoping unit or be declared implicitly.
If a named constant is implicitly typed, its appearance in any subsequent type
declaration statement or attribute specification statement must confirm the implied
type and any parameter values.

You can define constant_name only once with a PARAMETER attribute in a scoping
unit.

A named constant that is specified in the constant expression must have been
previously defined (possibly in the same PARAMETER or type declaration
statement, if not in a previous statement) or made accessible through use or host
association.

The constant expression is assigned to the named constant using the rules for
intrinsic assignment. If the named constant is of type character and it has inherited
length, it takes on the length of the constant expression.

�� �

,

PARAMETER (constant_name = constant_expr) ��

Chapter 11. Statements and attributes 419

Table 45. Attributes compatible with the PARAMETER attribute

DIMENSION PRIVATE PUBLIC

Examples
REAL, PARAMETER :: TWO=2.0

COMPLEX XCONST
REAL RPART,IPART
PARAMETER (RPART=1.1,IPART=2.2)
PARAMETER (XCONST = (RPART,IPART+3.3))

CHARACTER*2, PARAMETER :: BB=’ ’
...

END

Related information
v “Constant expressions” on page 100
v “Data objects” on page 17

PAUSE
Purpose

The PAUSE statement temporarily suspends the execution of a program and prints
the keyword PAUSE and, if specified, a character constant or digit string to unit 0.

Syntax

char_constant
is a scalar character constant that is not a Hollerith constant

digit_string
is a string of one to five digits

Rules

After execution of a PAUSE statement, processing continues when you
press the Enter key. If unit 5 is not connected to the terminal, the PAUSE statement
does not suspend execution.

The PAUSE statement has been deleted in Fortran 95.

Examples
PAUSE ’Ensure backup tape is in tape drive’
PAUSE 10 ! Output: PAUSE 10

Related information
v “Deleted features” on page 1010

�� PAUSE
char_constant
digit_string

��

420 XL Fortran: Language Reference for Big Endian Distributions

POINTER (Fortran 90)
Purpose

The POINTER attribute designates objects as pointer variables.

The term pointer refers to objects with the Fortran 90 POINTER attribute. The
integer POINTER statement provides details on what was documented in previous
versions of XL Fortran as the POINTER statement; these pointers are now referred
to as integer pointers.

Syntax

deferred_shape_spec
is a colon (:), where each colon represents a dimension

Rules

object_name refers to a data object or function result. If object_name is declared
elsewhere in the scoping unit with the DIMENSION attribute, the array
specification must be a deferred_shape_spec_list.

object_name must not appear in an integer POINTER, NAMELIST, or
EQUIVALENCE statement. If object_name is a component of a derived-type
definition, any variables declared with that type cannot be specified in an
EQUIVALENCE or NAMELIST statement.

Pointer variables can appear in common blocks and block data program units.

To ensure that Fortran 90 pointers are thread-specific, do not specify either
the SAVE or STATIC attribute for the pointer. These attributes are either specified
explicitly by the user, or implicitly through the use of the -qsave compiler option.
Note, however, that if a non-static pointer is used in a pointer assignment
statement where the target is static, all references to the pointer are, in fact,
references to the static, shared target.

An object having a component with the POINTER attribute can itself have the
TARGET, INTENT, or ALLOCATABLE attibutes, although it cannot appear in a
data transfer statement.

TS You can specify the POINTER attribute for assumed-rank entities.
TS

Table 46. Attributes compatible with the POINTER attribute

AUTOMATIC �3� INTENT PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

�� POINTER
::

�

,

object_name
(deferred_shape_spec_list)

��

Chapter 11. Statements and attributes 421

Table 46. Attributes compatible with the POINTER attribute (continued)

CONTIGUOUS �2� PRIVATE STATIC �3�

DIMENSION PROTECTED �1� VOLATILE

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

These attributes apply only to the pointer itself, not to any associated targets,
except for the DIMENSION attribute, which applies to associated targets.

Examples

Example1:
INTEGER, POINTER :: PTR(:)
INTEGER, TARGET :: TARG(5)
PTR => TARG ! PTR is associated with TARG and is

! assigned an array specification of (5)

PTR(1) = 5 ! TARG(1) has value of 5
PRINT *, FUNC()
CONTAINS

REAL FUNCTION FUNC()
POINTER :: FUNC ! Function result is a pointer

.

.

.
END FUNCTION

END

Example 2: Fortran 90 pointers and threadsafing
FUNCTION MYFUNC(ARG) ! MYPTR is thread-specific.
INTEGER, POINTER :: MYPTR ! every thread that invokes

! ’MYFUNC’ will allocate a
ALLOCATE(MYPTR) ! new piece of storage that
MYPTR = ARG ! is only accessible within

! that thread.
ANYVAR = MYPTR
END FUNCTION

Related information
v “Data pointer assignment” on page 127
v “TARGET” on page 465
v “ALLOCATED(X)” on page 572
v “DEALLOCATE” on page 328
v “Pointer association” on page 157
v “Deferred-shape arrays” on page 78
v “Interoperability of procedures” on page 846

422 XL Fortran: Language Reference for Big Endian Distributions

POINTER (integer) (IBM extension)
Purpose

The integer POINTER statement specifies that the value of the variable int_pointer
is to be used as the address for any reference to pointee.

The name of this statement has been changed from POINTER to integer POINTER
to distinguish it from the Fortran 90 POINTER statement.

Syntax

int_pointer
is the name of an integer pointer variable

pointee is a variable name or array declarator

Rules

The compiler does not allocate storage for the pointee. Storage is associated with
the pointee at execution time by the assignment of the address of a block of
storage to the pointer. The pointee can become associated with either static or
dynamic storage. A reference to a pointee requires that the associated pointer be
defined.

An integer pointer is a scalar variable of type INTEGER(4) in 32-bit mode and
type INTEGER(8) in 64-bit mode that cannot have a type explicitly assigned to it.
You can use integer pointers in any expression or statement in which a variable of
the same type as the integer pointer can be used. You can assign any data type to a
pointee, but you cannot assign a storage class or initial value to a pointee.

An actual array that appears as a pointee in an integer POINTER statement is
called a pointee array. You can dimension a pointee array in a type declaration
statement, a DIMENSION statement, or in the integer POINTER statement itself.

If you specify the -qddim compiler option, a pointee array that appears in a main
program can also have an adjustable array specification. In main programs and
subprograms, the dimension size is evaluated when the pointee is referenced
(dynamic dimensioning).

If you do not specify the -qddim compiler option, a pointee array that appears in a
subprogram can have an adjustable array specification, and the dimension size is
evaluated on entrance to the subprogram, not when the pointee is evaluated.

The following constraints apply to the definition and use of pointees and integer
pointers:
v A pointee cannot be zero-sized.
v A pointee can be scalar, an assumed-sized array or an explicit-shape array.

�� �

,

POINTER (int_pointer , pointee) ��

Chapter 11. Statements and attributes 423

v A pointee cannot appear in a COMMON, DATA, NAMELIST, or
EQUIVALENCE statement.

v A pointee cannot have the following attributes: EXTERNAL, ALLOCATABLE,
POINTER, TARGET, INTRINSIC, INTENT, OPTIONAL, SAVE, STATIC,
AUTOMATIC, or PARAMETER.

v A pointee cannot be a dummy argument and therefore cannot appear in a
FUNCTION, SUBROUTINE, or ENTRY statement.

v A pointee cannot be an automatic object, though a pointee can have nonconstant
bounds or lengths.

v A pointee cannot be a generic interface block name.
v A pointee that is of derived type must be of sequence derived type.
v A function value cannot be a pointee.
v An integer pointer cannot be pointed to by another pointer. (A pointer cannot be

a pointee.)
v An integer pointer cannot have the following attributes:

– ALLOCATABLE

– DIMENSION

– EXTERNAL

– INTRINSIC

– PARAMETER

– POINTER

– TARGET

v An integer pointer cannot appear as a NAMELIST group name.
v An integer pointer cannot be a procedure.

Examples
INTEGER A,B
POINTER (P,I)
IF (A<>0) THEN

P=LOC(A)
ELSE

P=LOC(B)
ENDIF
I=0 ! Assigns 0 to either A or B, depending on A’s value
END

Related information
v “Integer pointer association (IBM extension)” on page 158
v “LOC(X) (IBM extension)” on page 640
v -qddim option in the XL Fortran Compiler Reference

PRINT
Purpose

The PRINT statement is a data transfer output statement.

Syntax

424 XL Fortran: Language Reference for Big Endian Distributions

name is a namelist group name

output_item
is an output list item. An output list specifies the data to be transferred. An
output list item can be:
v A variable. An array is treated as if all of its elements were specified in

the order they are arranged in storage.
A pointer must be associated with a target, and an allocatable object
must be allocated. A derived-type object cannot have any ultimate
component that is inaccessible to this statement. The evaluation of
output_item cannot result in a derived-type object that contains a pointer.
The structure components of a structure in a formatted statement are
treated as if they appear in the order of the derived-type definition; in
an unformatted statement, the structure components are treated as a
single value in their internal representation (including padding).

v An expression.
v An implied-DO list, as described under “Implied-DO List” on page 426.

An expression that is an output_item cannot have a value that is a
procedure pointer.

format is a format specifier that specifies the format to be used in the output
operation. format is a format identifier that can be:
v The statement label of a FORMAT statement. The FORMAT statement

must be in the same scoping unit.
v The name of a scalar INTEGER(4) or INTEGER(8) variable that was

assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.
Fortran 95 does not permit assigning of a statement label.

v A character constant. It cannot be a Hollerith constant. It must begin
with a left parenthesis and end with a right parenthesis. Only the format
codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede the left parenthesis, or follow
the right parenthesis.

v A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes listed under “FORMAT” on page 371 can be used between the
parentheses. Blank characters can precede the left parenthesis, or follow
the right parenthesis.

v An array of noncharacter intrinsic type.
v Any character expression, except one involving concatenation of an

operand that specifies inherited length, unless the operand is the name
of a constant.

v An asterisk, specifying list-directed formatting.
v A namelist specifier that specifies a previously defined namelist.

Specifying the –qport=typestmt compiler option enables the TYPE statement which
has identical functionality to the PRINT statement.

�� PRINT name
format

, output_item_list

��

Chapter 11. Statements and attributes 425

Examples
PRINT 10, A,B,C

10 FORMAT (E4.2,G3.2E1,B3)

Related information
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Chapter 10, “Input/Output formatting,” on page 235
v See the XL Fortran Compiler Reference for more information on -qport=typestmt.
v “Deleted features” on page 1010

Implied-DO List

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_expr1, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and the
values of the DO variable are established from arith_expr1, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

PRIVATE
Purpose

The PRIVATE attribute specifies that a module entity is not accessible outside the
module through use association.

Syntax

access_id
is a generic specification or the name of a variable, procedure, derived
type, constant, or namelist group

�� (do_object_list , do_variable = arith_expr1, arith_expr2 �

�)
, arith_expr3

��

�� PRIVATE
access_id_list

::

��

426 XL Fortran: Language Reference for Big Endian Distributions

Rules

The PRIVATE attribute can appear only in the scope of a module.

Although multiple PRIVATE statements can appear in a module, you can only
include one statement that omits an access_id_list. A PRIVATE statement without
an access_id_list sets the default accessibility to private for all potentially accessible
entities in the module. If the module contains such a statement, it must not include
a PUBLIC statement without an access_id_list. If the module does not contain a
PRIVATE statement without an access_id_list, the default accessibility is public.
Entities whose accessibility is not explicitly specified have default accessibility.

A procedure that has a generic identifier that is public is accessible through that
identifier, even if its specific identifier is private. If a module procedure contains a
private dummy argument or function result whose type has private accessibility,
the module procedure must be declared to have private accessibility and must not
have a generic identifier that has public accessibility. The accessibility of a derived
type does not affect, and is not affected by, the accessibility of its components or
procedures.

A namelist group must be private if it contains any object that is private or
contains private components. A subprogram must be private if any of its
arguments are of a derived type that is private. A function must be private if its
result variable is of a derived type that is private.

Table 47. Attributes compatible with the PRIVATE attribute

ALLOCATABLE �1� INTRINSIC SAVE

ASYNCHRONOUS PARAMETER STATIC �3�

CONTIGUOUS �2� POINTER TARGET

DIMENSION PROTECTED �1� VOLATILE

EXTERNAL

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples
MODULE MC

PUBLIC ! Default accessibility declared as public
INTERFACE GEN

MODULE PROCEDURE SUB1, SUB2
END INTERFACE
PRIVATE SUB1 ! SUB1 declared as private
CONTAINS

SUBROUTINE SUB1(I)
INTEGER I
I = I + 1

END SUBROUTINE SUB1
SUBROUTINE SUB2(I,J)

I = I + J
END SUBROUTINE

END MODULE MC

PROGRAM ABC
USE MC
K = 5
CALL GEN(K) ! SUB1 referenced because GEN has public

Chapter 11. Statements and attributes 427

! accessibility and appropriate argument
! is passed

CALL SUB2(K,4)
PRINT *, K ! Value printed is 10

END PROGRAM

Related information
v Chapter 4, “Derived types,” on page 47
v “Modules” on page 175
v “PROTECTED (Fortran 2003)” on page 432
v “PUBLIC” on page 434

PROCEDURE
Purpose

A PROCEDURE statement that appears within a generic interface adds the
specified procedures to the generic interface.

Syntax

Rules

A MODULE PROCEDURE statement can appear anywhere among the interface
bodies in an interface block that has a generic specification.

A PROCEDURE statement can only appear in an interface block that has a generic
specification.

When MODULE is not specified, procedure_name_list must refer to an accessible
procedure pointer, external procedure, dummy procedure, or module procedure
that has an explicit interface. When MODULE is specified for PROCEDURE,
procedure_name_list must refer to a module procedure that is accessible in the
current scope.

A procedure_name must not specify a procedure that is specified previously in any
PROCEDURE statement in any accessible interface with the same generic
identifier.

�� PROCEDURE
MODULE (1)

::

procedure_name_list ��

Notes:

1 Fortran 2008

428 XL Fortran: Language Reference for Big Endian Distributions

Examples

The following example shows how to declare and use a PROCEDURE statement
in a generic interface:
MODULE m

CONTAINS
SUBROUTINE s1(iarg)

iarg=1
PRINT *, "In s1"

END SUBROUTINE
SUBROUTINE s2(rarg)

rarg=1.1
END SUBROUTINE

END MODULE

USE m
INTERFACE ss

SUBROUTINE ss1(iarg,jarg)
END SUBROUTINE
MODULE PROCEDURE s1, s2

END INTERFACE
CALL ss(n) ! Calls subroutine s1 from m
CALL ss(i,j) ! Calls subroutine ss1
END
SUBROUTINE SS1(iarg,jarg)

PRINT *, "In ss1"
END SUBROUTINE ss1

Related information
v “Interface blocks” on page 162
v “INTERFACE” on page 400
v “Modules” on page 175

PROCEDURE declaration (Fortran 2003)
Purpose

A PROCEDURE declaration statement declares a dummy procedure, an external
procedure, or a procedure pointer. It specifies the EXTERNAL attribute for these
entities.

Syntax

procedure_interface
A declaration type specification or the name of a procedure that has an
explicit interface.

procedure_attribute_list
A list of attributes from the following list:
v BIND

�� PROCEDURE ()
procedure_interface ::

, procedure_attribute_list ::

�

� procedure_entity_name
=> null_init

��

Chapter 11. Statements and attributes 429

v INTENT(intent_spec)
v OPTIONAL

v POINTER

v PRIVATE

v PUBLIC

v SAVE

procedure_entity_name
is the name of the procedure or procedure pointer that is being declared.

null_init
is a reference to the NULL intrinsic function.

Rules

If procedure_interface is the name of a procedure or procedure pointer that has an
explicit interface, the declared procedures or procedure pointers have this explicit
interface. The procedure_interface must already be declared. The name of the
procedure_interface cannot be the same as a keyword that specifies an intrinsic type.
The procedure_interface can be an intrinsic procedure as long as the intrinsic
procedure can be passed as an actual argument. If the procedure_interface is an
elemental procedure, the procedure entity names must consist of external
procedures.

If procedure_interface is a declaration type specification, the declared procedures or
procedure pointers are functions with an implicit interface and the specified result
type. If these functions are external functions, the function definitions must specify
the same result type and type parameters.

If no procedure_interface is specified, the PROCEDURE declaration statement
specifies that the declared procedures or procedure pointers are either subroutines
or functions. If they are functions, the implicit type rule applies to the type of the
function.

If you specify procedure language binding using the BIND attribute,
procedure_interface must be the name of a procedure or procedure pointer that is
declared with procedure language binding.

If procedure language binding with NAME= is specified, the procedure entity name
must consist of only one procedure entity name. This procedure must not be a
dummy procedure or have the POINTER attribute.

If OPTIONAL is specified, the declared procedures or procedure pointers must be
dummy procedures or procedure pointers.

You can only specify PUBLIC or PRIVATE if the statement appears in the
specification part of a module.

If INTENT, SAVE, or null_init is specified, the declared entities must have the
POINTER attribute.

If null_init is used, it specifies that the initial association status of the
corresponding procedure pointer is disassociated. It also implies the SAVE
attribute, which can be reaffirmed by explicitly using the SAVE attribute in the
procedure declaration statement or by a SAVE statement.

430 XL Fortran: Language Reference for Big Endian Distributions

For procedure pointer declarations, you must specify the POINTER attribute.

Examples

Example 1

The following example shows an external procedure declaration.
CONTAINS
SUBROUTINE XXX(PSI)

PROCEDURE (REAL) :: PSI
REAL Y1
Y1 = PSI()

END SUBROUTINE
END

Example 2

The following example shows a procedure pointer declaration and its use.
PROGRAM PROC_PTR_EXAMPLE

REAL :: R1
INTEGER :: I1
INTERFACE

SUBROUTINE SUB(X)
REAL, INTENT(IN) :: X

END SUBROUTINE SUB
FUNCTION REAL_FUNC(Y)

REAL, INTENT(IN) :: Y
REAL, REAL_FUNC

END FUNCTION REAL_FUNC
END INTERFACE
! with explicit interface
PROCEDURE(SUB), POINTER :: PTR_TO_SUB
! with explicit interface
PROCEDURE(REAL_FUNC), POINTER :: PTR_TO_REAL_FUNC => NULL()
! with implicit interface
PROCEDURE(INTEGER), POINTER :: PTR_TO_INT
PTR_TO_SUB => SUB
PTR_TO_REAL_FUNC => REAL_FUNC
CALL PTR_TO_SUB(1.0)
R1 = PTR_TO_REAL_FUNC(2.0)
I1 = PTR_TO_INT(M, N)

END PROGRAM PROC_PTR_EXAMPLE

Related information
v “BIND (Fortran 2003)” on page 295
v Chapter 14, “Intrinsic procedures,” on page 559
v Chapter 15, “Hardware-specific intrinsic procedures (IBM extension),” on page

715
v “Program units, procedures, and subprograms” on page 159
v “Intrinsic procedures” on page 189
v “INTERFACE” on page 400
v “Procedure pointer assignment (Fortran 2003)” on page 130

Chapter 11. Statements and attributes 431

PROGRAM
Purpose

The PROGRAM statement specifies that a program unit is a main program, the
program unit that receives control from the system when the executable program is
invoked at run time.

Syntax

name is the name of the main program in which this statement appears

Rules

The PROGRAM statement is optional.

If specified, the PROGRAM statement must be the first statement of the main
program.

If a program name is specified in the corresponding END statement, it must match
name.

The program name is global to the executable program. This name must not be the
same as the name of any common block, external procedure, or any other program
unit in that executable program, or as any name that is local to the main program.

The name has no type, and it must not appear in any type declaration or
specification statements. You cannot refer to a main program from a subprogram or
from itself.

Examples
PROGRAM DISPLAY_NUMBER_2

INTEGER A
A = 2
PRINT *, A

END PROGRAM DISPLAY_NUMBER_2

Related information
v “END” on page 345
v “Main program” on page 174

PROTECTED (Fortran 2003)
Purpose

The PROTECTED attribute allows greater control over the modification of module
entities. A module procedure can only modify a protected module entity or its
subobjects if the same module defines both the procedure and the entity.

�� PROGRAM name ��

432 XL Fortran: Language Reference for Big Endian Distributions

Syntax

The PROTECTED attribute must only appear in the specification part of the
module.

entity A named variable not in a common block.

Rules

If you specify that an object declared by an EQUIVALENCE statement has the
PROTECTED attribute, all objects specified in that EQUIVALENCE statement
must have the PROTECTED attribute.

A nonpointer object with the PROTECTED attribute accessed through use
association, is not definable.

You must not specify the PROTECTED attribute for integer pointers.

A pointer object with the PROTECTED attribute accessed through use association,
must not appear as any of the following:
v As a pointer object in a NULLIFY statement or POINTER assignment statement
v As an allocatable object in an ALLOCATE or DEALLOCATE statement.
v As an actual argument in reference to a procedure, if the associated dummy

argument is a pointer with the INTENT(INOUT) or INTENT(OUT) attribute.

Table 48. Attributes compatible with the PROTECTED attribute

ALLOCATABLE �1� INTENT SAVE

ASYNCHRONOUS OPTIONAL STATIC �3�

AUTOMATIC �3� POINTER TARGET

CONTIGUOUS �2� PRIVATE VOLATILE

DIMENSION PUBLIC

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples

In the following example, the values of both age and val can only be modified by
subroutines in the module in which they are declared:

module mod1
integer, protected :: val
integer :: age
protected :: age
contains

subroutine set_val(arg)
integer arg
val = arg

�� PROTECTED entity_declaration_list
::

��

Chapter 11. Statements and attributes 433

end subroutine
subroutine set_age(arg)

integer arg
age = arg

end subroutine
end module
program dt_init01

use mod1
implicit none
integer :: value, his_age
call set_val(88)
call set_age(38)
value = val
his_age = age
print *, value, his_age

end program

Related information
v “Modules” on page 175
v “PRIVATE” on page 426
v “PUBLIC”

PUBLIC
Purpose

The PUBLIC attribute specifies that a module entity can be accessed by other
program units through use association.

Syntax

access_id
is a generic specification or the name of a variable, procedure, derived
type, constant, or namelist group

Rules

The PUBLIC attribute can appear only in the scope of a module.

Although multiple PUBLIC statements can appear in a module, only one statement
that omits an access_id_list is permitted. A PUBLIC statement without an
access_id_list sets the default accessibility to public for all potentially accessible
entities in the module. If the module contains such a statement, it cannot also
include a PRIVATE statement without an access_id_list. If the module does not
contain a PRIVATE statement without an access_id_list, the default accessibility is
public. Entities whose accessibility is not explicitly specified have default
accessibility.

A procedure that has a generic identifier that is public is accessible through that
identifier, even if its specific identifier is private. If a module procedure contains a

�� PUBLIC
access_id_list

::

��

434 XL Fortran: Language Reference for Big Endian Distributions

private dummy argument or function result whose type has private accessibility,
the module procedure must be declared to have private accessibility and must not
have a generic identifier that has public accessibility.

Although an entity with public accessibility cannot have the STATIC
attribute, public entities in a module are unaffected by IMPLICIT STATIC
statements in the module.

Table 49. Attributes compatible with the PUBLIC attribute

ALLOCATABLE �1� EXTERNAL PROTECTED �1�

ASYNCHRONOUS INTRINSIC SAVE

CONTIGUOUS �2� PARAMETER TARGET

DIMENSION POINTER VOLATILE

Note:
�1� Fortran 2003
�2� Fortran 2008

Examples
MODULE MC

PRIVATE ! Default accessibility declared as private
PUBLIC GEN ! GEN declared as public
INTERFACE GEN

MODULE PROCEDURE SUB1
END INTERFACE
CONTAINS

SUBROUTINE SUB1(I)
INTEGER I
I = I + 1

END SUBROUTINE SUB1
END MODULE MC
PROGRAM ABC

USE MC
K = 5
CALL GEN(K) ! SUB1 referenced because GEN has public

! accessibility and appropriate argument
! is passed

PRINT *, K ! Value printed is 6
END PROGRAM

Related information
v “PRIVATE” on page 426
v “PROTECTED (Fortran 2003)” on page 432
v “Modules” on page 175

READ
Purpose

The READ statement is the data transfer input statement.

Syntax

Chapter 11. Statements and attributes 435

format A format identifier that must not be a Hollerith constant. See FMT=format
for more information.

name A namelist group name.

input_item
An input list item. An input list specifies the data to be transferred. An
input list item can be:
v A variable name, but not for an assumed-size array. An array is treated

as if all of its elements were specified in the order they are arranged in
storage.
A pointer must be associated with a definable target, and an allocatable
object must be allocated. A derived-type object cannot have any ultimate
component that is outside the scoping unit of this statement. The
evaluation of input_item cannot result in a derived-type object that
contains a pointer. The structure components of a structure in a
formatted statement are treated as if they appear in the order of the
derived-type definition; in an unformatted statement, the structure
components are treated as a single value in their internal representation
(including padding).

v An implied-DO list, as described under “Implied-DO List” on page 443.

An input_item must not be a procedure pointer.

io_control
is a list that must contain one unit specifier (UNIT=) and can also contain
one of each of the other valid specifiers described below.

[UNIT=] u
is a unit specifier that specifies the unit to be used in the input operation. u
is an external unit identifier or internal file identifier.

An external unit identifier refers to an external file. It is one of the
following:
v An integer expression whose value can be in the range 1 through

2147483647
v An asterisk, which identifies external unit 5 and is preconnected

to standard input
v F2008 A NEWUNIT value F2008

An internal file identifier refers to an internal file. It is the name of a
character variable that cannot be an array section with a vector subscript.

If the optional characters UNIT= are omitted, u must be the first item in
io_control_list. If the optional characters UNIT= are specified, either the
optional characters FMT= or the optional characters NML= must also be
present.

�� READ name
format

, input_item_list
(io_control_list)

input_item_list

��

436 XL Fortran: Language Reference for Big Endian Distributions

[FMT=] format
is a format specifier that specifies the format to be used in the input
operation. format is a format identifier that can be:
v The statement label of a FORMAT statement. The FORMAT statement

must be in the same scoping unit.
v The name of a scalar INTEGER(4) or INTEGER(8) variable that was

assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.
Fortran 95 does not permit assigning of a statement label.

v A character constant. It must begin with a left parenthesis and end with
a right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. Blank characters can
precede the left parenthesis, or follow the right parenthesis.

v A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes listed under “FORMAT” on page 371 can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis. If format is an array element, the format identifier
must not exceed the length of the array element.

v An array of noncharacter intrinsic type. The data must be a valid format
identifier as described under character array.

v Any character expression, except one involving concatenation of an
operand that specifies inherited length, unless the operand is the name
of a constant.

v An asterisk, specifying list-directed formatting.
v A namelist specifier that specifies a previously-defined namelist.

If the optional characters FMT= are omitted, format must be the second
item in io_control_list and the first item must be the unit specifier with the
optional characters UNIT= omitted. Both NML= and FMT= cannot be
specified in the same input statement.

ADVANCE= char_expr
is an advance specifier that determines whether nonadvancing input occurs
for this statement. char_expr is a scalar character expression that must
evaluate to YES or NO. If NO is specified, nonadvancing input occurs. If
YES is specified, advancing, formatted sequential or stream input occurs.
The default value is YES. ADVANCE= can be specified only in a formatted
sequential or formatted stream READ statement with an explicit format
specification that does not specify an internal file unit specifier.

ASYNCH= char_expr (IBM extension)
is an asynchronous I/O specifier that indicates whether an explicitly
connected unit is to be used for asynchronous I/O.

char_expr is a scalar character expression whose value is either YES or NO.
YES specifies that asynchronous data transfer statements are permitted for
this connection. NO specifies that asynchronous data transfer statements
are not permitted for this connection. The value specified will be in the set
of transfer methods permitted for the file. If this specifier is omitted, the
default value is NO.

Preconnected units are connected with an ASYNCH= value of NO.

The ASYNCH= value of an implicitly connected unit is determined by the
first data transfer statement performed on the unit. If the first statement

Chapter 11. Statements and attributes 437

performs an asynchronous data transfer and the file being implicitly
connected permits asynchronous data transfers, the ASYNCH= value is
YES. Otherwise, the ASYNCH= value is NO.

ASYNCHRONOUS=char_expr (Fortran 2003)
allows execution to continue without waiting for the data transfer to
complete. char_expr is a scalar character expression that must evaluate to
YES or NO. ASYNCHRONOUS=YES must not appear unless UNIT=
specifies a file unit number. If ID= appears, an ASYNCHRONOUS=YES
must also appear.

A statement and the I/O operation are synchronous if
ASYNCHRONOUS=NO or if both ASYNCHRONOUS= and ID= are
absent. For ASYNCHRONOUS=YES or if ID= appears, asynchronous I/O
is permitted only for external files opened with ASYNCHRONOUS=YES
in the OPEN statement.

If a variable is used in an asynchronous data transfer statement as an item
in an I/O list, a group object in a namelist or as a SIZE= specifier, the base
object of the data_ref is implicitly given the ASYNCHRONOUS attribute in
the scoping unit of the data transfer statement. For asynchronous
nonadvancing input, the storage units specified in the SIZE= specifier
become defined with the count of the characters transferred when the
corresponding wait operation is executed. For asynchronous output, a
pending I/O storage sequence affector shall not be redefined, become
undefined, or have its pointer association status changed. For
asynchronous input, a pending I/O storage sequence affector shall not be
referenced, become defined, become undefined, become associated with a
dummy argument that has the VALUE attribute, or have its pointer
association status changed.

When an error, end-of-file or end-of-record condition occurs for a
previously executed asynchronous data transfer statement , a wait
operation is performed for all pending data transfer operations on that
unit. When a condition occurs during a subsequent statement, any actions
specified by IOSTAT=, IOMSG=, ERR=, END=, and EOR= specifiers for
that statement are taken.

A wait operation is performed by a WAIT, CLOSE, or file positioning
statement.

END= stmt_label
is an end-of-file specifier that specifies a statement label at which the
program is to continue if an endfile record is encountered and no error
occurs. An external file is positioned after the endfile record; the IOSTAT=
specifier, if present, is assigned a negative value; and the NUM= specifier,
if present, is assigned an integer value. If an error occurs and the statement
contains the SIZE= specifier, the specified variable becomes defined with
an integer value. Coding the END= specifier suppresses the error message
for end-of-file. This specifier can be specified for a unit connected for either
sequential or direct access.

EOR= stmt_label
is an end-of-record specifier. If the specifier is present, an end-of-record
condition occurs, and no error condition occurs during execution of the
statement. If PAD= exists, the following also occur:
1. If the PAD= specifier has the value YES, the record is padded with

blanks to satisfy the input list item and the corresponding data edit
descriptor that requires more characters than the record contains.

438 XL Fortran: Language Reference for Big Endian Distributions

2. Execution of the READ statement terminates.
3. The file specified in the READ statement is positioned after the current

record.
4. If the IOSTAT= specifier is present, the specified variable becomes

defined with a negative value different from an end-of-file value.
5. If the SIZE= specifier is present, the specified variable becomes defined

with an integer value.
6. Execution continues with the statement containing the statement label

specified by the EOR= specifier.
7. End-of-record messages are suppressed.

BLANK= char_expr (Fortran 2003)
controls the default interpretation of blanks when you are using a format
specification. char_expr is a scalar character expression whose value, when
any trailing blanks are removed, is either NULL or ZERO. If BLANK= is
specified, you must use FORM='FORMATTED'. If BLANK= is not
specified and you specify FORM='FORMATTED', NULL is the default.

DECIMAL= char_expr (Fortran 2003)
temporarily changes the default decimal edit mode for the duration of an
I/O statement. char_expr is a scalar character expression whose value must
evaluate to either POINT, or COMMA. After each READ statement, the
mode defaults to whatever decimal mode was specified (or assumed) on
the OPEN statement for that unit.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement to which control is to transfer in the case of an error. Coding the
ERR= specifier suppresses error messages.

ID= integer_variable (IBM extension)
indicates that the data transfer is to be done asynchronously. The
integer_variable is an integer variable. If no error is encountered, the
integer_variable is defined with a value after executing the asynchronous
data transfer statement. This value must be used in the matching WAIT
statement.

A child data transfer statement must not contain the ID= specifier.

Asynchronous data transfer must either be direct unformatted, sequential
unformatted or stream unformatted. Asynchronous I/O to internal files is
prohibited. Asynchronous I/O to raw character devices (for example, to
tapes or raw logical volumes) is prohibited. The integer_variable must not
be associated with any entity in the data transfer I/O list, or with a
do_variable of an io_implied_do in the data transfer I/O list. If the
integer_variable is an array element reference, its subscript values must not
be affected by the data transfer, the io_implied_do processing, or the
definition or evaluation of any other specifier in the io_control_spec.

IOMSG= iomsg_variable (Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.

Chapter 11. Statements and attributes 439

v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is an integer variable. Coding the IOSTAT=
specifier suppresses error messages. When the statement finishes execution,
ios is defined with:
v A zero value if no error condition, end-of-file condition, or end-of-record

condition occurs.
v A positive value if an error occurs.
v A negative value if an end-of-file condition is encountered and no error

occurs.
v A negative value that is different from the end-of-file value if an

end-of-record condition occurs and no error condition or end-of-file
condition occurs.

PAD= char_expr (Fortran 2003)
specifies if input records are padded with blanks. char_expr is a scalar
character expression that must evaluate to YES or NO. If the value is YES,
a formatted input record is padded with blanks if an input list is specified
and the format specification requires more data from a record than the
record contains. If NO is specified, the input list and format specification
must not require more characters from a record than the record contains.
The default value is YES. The PAD= specifier is permitted only for files
being connected for formatted input/output, although it is ignored during
output of a formatted record.

If the -qxlf77 compiler option specifies the noblankpad suboption
and the file is being connected for formatted direct input/output, the
default value is NO when the PAD= specifier is omitted.

[NML=] name
is a namelist specifier that specifies a previously-defined namelist. If the
optional characters NML=are not specified, the namelist name must appear
as the second parameter in the list and the first item must be the unit
specifier with UNIT= omitted. If both NML=and UNIT=are specified, all
the parameters can appear in any order. The NML= specifier is an
alternative to FMT=; both NML= and FMT= cannot be specified in the
same input statement.

NUM= integer_variable (IBM extension)
is a number specifier that specifies the number of bytes of data transmitted
between the I/O list and the file. integer_variable is an integer variable. The
NUM= specifier is only permitted for unformatted output. Coding the
NUM parameter suppresses the indication of an error that would occur if
the number of bytes represented by the output list is greater than the
number of bytes that can be written into the record. In this case,
integer_variable is set to a value that is the maximum length record that can
be written. Data from remaining output list items is not written into
subsequent records.

POS=integer_expr (Fortarn 2003)
is an integer expression greater than 0. POS= specifies the file position of
the file storage unit to be read in a file connected for stream access. You
must not use this specifier for a file that cannot be positioned or in a child
data transfer statement.

440 XL Fortran: Language Reference for Big Endian Distributions

REC= integer_expr
is a record specifier that specifies the number of the record to be read.

If the control information list contains a REC= specifier, the
statement is a direct access input/output statement. You must not use this
specifier in a child data transfer statement.

integer_expr is an integer expression whose value is positive. A record
specifier is not valid if list-directed or namelist formatting is used and if
the unit specifier specifies an internal file. The END= specifier can
appear concurrently. The record specifier represents the relative
position of a record within a file. The relative position number of the first
record is 1. You must not specify REC= in data transfer statements that
specify a unit connected for stream access, or use the POS= specifier.

ROUND= char-expr (Fortran 2003)

temporarily changes the current value of the I/O rounding mode for the
duration of this I/O statement. If omitted, then the rounding mode is
unchanged. char-expr evaluates to either UP, DOWN, ZERO, NEAREST,
COMPATIBLE or PROCESSOR_DEFINED

The rounding mode helps specify how decimal numbers are converted to
an internal representation, (that is, in binary) from a character
representation and vice versa during formatted input and output. The
rounding modes have the following functions:
v In the UP rounding mode the value from the conversion is the smallest

value that is greater than or equal to the original value.
v In the DOWN rounding mode the value from the conversion is the

greatest value that is smaller than or equal to the original value.
v In the ZERO rounding mode the value from the conversion is the closest

value to the original value, and not greater in magnitude.
v In the NEAREST rounding mode the value from the conversion is the

closer of the two nearest representable values. If both values are equally
close then the even value will be chosen. In IEEE rounding conversions,
NEAREST corresponds to the ieee_nearest rounding mode as specified
by the IEEE standard.

v In the COMPATIBLE rounding mode the value from the conversion is
the closest of the two nearest representable values, or the value further
away from zero if halfway between.

v In the PROCESSOR_DEFINED rounding mode the value from the
conversion is processor dependent and may correspond to the other
modes. In XL Fortran, the PROCESSOR_DEFINED rounding mode will
be the rounding mode you choose in the floating-point control register. If
you do not set the floating-point control register explicitly, the default
rounding mode is NEAREST.

SIZE= count
A character count specifier that determines how many characters are
transferred by data edit descriptors during execution of the current input
statement. count is an integer variable. Blanks that are inserted as padding
are not included in the count.

Rules

Any statement label specified by the ERR=, EOR= and END= specifiers must refer
to a branch target statement that appears in the same scoping unit as the READ
statement.

Chapter 11. Statements and attributes 441

If either the EOR= specifier or the SIZE= specifier is present, the ADVANCE=
specifier must also be present and must have the value NO.

If a NUM= specifier is present, neither a format specifier nor a namelist
specifier can be present.

Variables specified for the IOSTAT=, SIZE= and NUM= specifiers must not be
associated with any input list item, namelist list item, or the DO variable of an
implied-DO list. If such a specifier variable is an array element, its subscript values
must not be affected by the data transfer, any implied-DO processing, or the
definition or evaluation of any other specifier.

A READ statement without io_control_list specified specifies the same unit as a
READ statement with io_control_list specified in which the external unit identifier
is an asterisk.

If the ERR= and IOSTAT= specifiers are set and an error is encountered during a
synchronous data transfer, transfer is made to the statement specified by the ERR=
specifier and a positive integer value is assigned to ios.

If the ERR= or IOSTAT= specifiers are set and an error is encountered during an
asynchronous data transfer, execution of the matching WAIT statement is not
required.

If the END= or IOSTAT= specifiers are set and an end-of-file condition is
encountered during an asynchronous data transfer, execution of the matching
WAIT statement is not required.

If a conversion error is encountered and the CNVERR run-time option is set to
NO, ERR= is not branched to, although IOSTAT= may be set.

If IOSTAT= and ERR= are not specified,
v The program stops if a severe error is encountered.
v The program continues to the next statement if a recoverable error is

encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

v The program continues to the next statement when a conversion error is
encountered if the ERR_RECOVERY run-time option is set to YES. If the
CNVERR run-time option is set to YES, conversion errors are treated as
recoverable errors; if CNVERR=NO, they are treated as conversion errors.

Examples
INTEGER A(100)
CHARACTER*4 B
READ *, A(LBOUND(A,1):UBOUND(A,1))
READ (7,FMT=’(A3)’,ADVANCE=’NO’,EOR=100) B

...
100 PRINT *, ’end of record reached’
END

Related information
v “Asynchronous Input/Output” on page 216

442 XL Fortran: Language Reference for Big Endian Distributions

v Implementation details of XL Fortran Input/Output in the XL Fortran Optimization
and Programming Guide

v “Conditions and IOSTAT values” on page 222
v “WRITE” on page 490
v “WAIT (Fortran 2003)” on page 486
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Setting Run-Time Options in the XL Fortran Compiler Reference

v “Deleted features” on page 1010

Implied-DO List

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_expr1, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and the
values of the DO variable are established from arith_expr1, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

The DO variable or an associated data item must not appear as an input list item
in the do_object_list, but can be read in the same READ statement outside of the
implied-DO list.

REAL
Purpose

A REAL type declaration statement specifies the length and attributes of objects
and functions of type real. Initial values can be assigned to objects.

Syntax

�� (do_object_list , do_variable = arith_expr1, arith_expr2 �

�)
, arith_expr3

��

�� REAL
kind_selector ::

, attr_spec_list ::

entity_decl_list ��

Chapter 11. Statements and attributes 443

where:

attr_spec
is any of the following:

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

kind_selector

specifies the length of real entities: 4, 8 or 16 . int_literal_constant
cannot specify a kind type parameter.

attr_spec
For detailed information on rules about a particular attribute, refer to the
statement of the same name.

intent_spec
is either IN, OUT, or INOUT

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds

entity_decl

�� (int_constant_expr)
KIND =

(1)
* int_literal_constant

��

Notes:

1 IBM extension.

444 XL Fortran: Language Reference for Big Endian Distributions

a is an object name or function name. array_spec cannot be specified
for a function name with an implicit interface.

len (IBM extension)
overrides the length as specified in kind_selector, and cannot specify
a kind type parameter. The entity length must be an integer literal
constant that represents one of the permissible length
specifications.

initial_value (IBM extension)
provides an initial value for the entity specified by the immediately
preceding name.

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name

=> NULL()
provides the initial value for the pointer object

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

�� a
(1) (2) (array_spec)

* len
(3) (4)

(array_spec) * len

�

�
(5)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension.

2 IBM extension.

3 IBM extension.

4 IBM extension.

5 IBM extension.

Chapter 11. Statements and attributes 445

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, an allocatable object, a function result, an object in a blank common
block, an integer pointer, an external name, an intrinsic name, or an automatic
object. Nor can an object be initialized if it has the AUTOMATIC attribute. The
object may be initialized if it appears in a named common block in a block data
program unit.

The object also may be initialized if it appears in a named common block
in a module or submodule.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined.

If the entity you are declaring is a derived type component, and constant_expr or
NULL() is specified, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of constant_expr or
NULL() implies that a is a saved object, except for an object in a named common
block. The initialization of an object could affect the fundamental storage class of
an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

446 XL Fortran: Language Reference for Big Endian Distributions

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Examples
REAL(8), POINTER :: RPTR
REAL(8), TARGET :: RTAR

Related information
v “Real” on page 36
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values

RECORD (IBM extension)
Purpose

The RECORD statement is a special form of type declaration statement. Unlike
other type declaration statements, attributes for entities declared on the RECORD
statement cannot be specified on the statement itself.

Syntax

record_stmt:

�� �

,

RECORD / type_name / record_obj_dcl_list
::

��

record_obj_dcl:

�� record_object_name
(-array_spec-)

��

�� �

,

RECORD / type_name / record_obj_dcl_list
::

��

Chapter 11. Statements and attributes 447

record_obj_dcl:

where type_name must be the name of a derived type that is accessible in the
scoping unit.

Rules

Entities can not be initialized in a RECORD statement.

A record_stmt declares an entity to be of the derived type, specified by the
type_name that most immediately precedes it.

The RECORD keyword must not appear as the type_spec of an IMPLICIT or
FUNCTION statement.

A derived type with the BIND attribute must not be specified in a RECORD
statement.

Examples

In the following example, a RECORD statement is used to declare a derived type
variable.

STRUCTURE /S/
INTEGER I

END STRUCTURE
STRUCTURE /DT/

INTEGER I
END STRUCTURE
RECORD/DT/REC1,REC2,/S/REC3,REC4

Related information
v For further information on record structures and derived types, see Chapter 4,

“Derived types,” on page 47

RETURN
Purpose

The RETURN statement:
v In a function subprogram, ends the execution of the subprogram and returns

control to the referencing statement. The value of the function is available to the
referencing procedure.

v In a subroutine subprogram, ends the subprogram and transfers control to the
first executable statement after the procedure reference or to an alternate return
point, if one is specified.

v In the main program, ends execution of the executable program.

�� record_object_name
(-array_spec-)

��

448 XL Fortran: Language Reference for Big Endian Distributions

Syntax

arith_expr
A scalar integer, real, or complex expression. If the value of the expression
is noninteger, it is converted to INTEGER(4) before use. arith_expr must
not be a Hollerith constant.

Rules

arith_expr can be specified in a subroutine subprogram only, and it specifies an
alternate return point. Letting m be the value of arith_expr, if 1 ≤ m ≤ the number of
asterisks in the SUBROUTINE or ENTRY statement, the mth asterisk in the
dummy argument list is selected. Control then returns to the invoking procedure at
the statement whose statement label is specified as the mth alternate return
specifier in the CALL statement. For example, if the value of m is 5, control returns
to the statement whose statement label is specified as the fifth alternate return
specifier in the CALL statement.

If arith_expr is omitted or if its value (m) is not in the range 1 through the number
of asterisks in the SUBROUTINE or ENTRY statement, a normal return is
executed. Control returns to the invoking procedure at the statement following the
CALL statement.

Executing a RETURN statement terminates the association between the dummy
arguments of the subprogram and the actual arguments supplied to that instance
of the subprogram. All entities local to the subprogram become undefined, except
as noted under “Events causing undefinition” on page 22.

A subprogram can contain more than one RETURN statement, but it does not
require one. An END statement in a function or subroutine subprogram has the
same effect as a RETURN statement.

Examples
CALL SUB(A,B)
CONTAINS

SUBROUTINE SUB(A,B)
INTEGER :: A,B
IF (A.LT.B)

RETURN ! Control returns to the calling procedure
ELSE

...
END IF

END SUBROUTINE
END

Related information
v “Asterisks as dummy arguments” on page 203

�� RETURN
(1)

arith_expr

��

Notes:

1 Real or complex expressions are an IBM extension.

Chapter 11. Statements and attributes 449

v “Actual argument specification” on page 190 for a description of alternate return
points

v “Events causing undefinition” on page 22

REWIND
Purpose

The REWIND statement positions an external file connected for sequential access
at the beginning of the first record of the file. For stream access, the
REWIND statement positions a file at its initial point.

Execution of a REWIND statement performs a wait operation for any
pending asynchronous data transfer operations for the specified unit.

Syntax

u An external unit identifier that must not be an asterisk or a Hollerith
constant.

position_list
A list that must contain one unit specifier ([UNIT=]u) and can also contain
one of each of the other valid specifiers. The valid specifiers are:

[UNIT=] u
A unit specifier in which u must be an external unit identifier whose value
is not an asterisk. An external unit identifier refers to an external file that is
represented by an integer expression. The integer expression has one of the
following values:
v A value in the range 1 through 2147483647
v F2008 A NEWUNIT value F2008

If the optional characters UNIT= are omitted, u must be the first item in
position_list.

ERR= stmt_label
An error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

IOMSG= iomsg_variable (Fortran 2003)
An input/output status specifier that specifies the message returned by the
input/output operation. iomsg_variable is a scalar default character variable.
It must not be a use-associated nonpointer protected variable. When the
input/output statement containing this specifier finishes execution,
iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

�� REWIND u
(position_list)

��

450 XL Fortran: Language Reference for Big Endian Distributions

IOSTAT= ios
An input/output status specifier for the status of the input/output
operation. ios is a scalar integer variable. When the REWIND statement
finishes executing, ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

Rules

If the unit is not connected, an implicit OPEN specifying sequential access is
performed to a default file named fort.n, where n is the value of u with leading
zeros removed. If the external file connected to the specified unit does not exist,
the REWIND statement has no effect. If it exists, an end-of-file marker is created, if
necessary, and the file is positioned at the beginning of the first record. If the file is
already positioned at its initial point, the REWIND statement has no effect. The
REWIND statement causes a subsequent READ or WRITE statement referring to u
to read data from or write data to the first record of the external file associated
with u.

If the ERR= and IOSTAT= specifiers are set and an error is encountered, transfer is
made to the statement specified by the ERR= specifier and a positive integer value
is assigned to ios.

If IOSTAT= and ERR= are not specified,
v the program stops if a severe error is encountered.
v the program continues to the next statement if a recoverable error is encountered

and the ERR_RECOVERY run-time option is set to YES. If the option is set to
NO, the program stops.

Examples
REWIND (9, IOSTAT=IOSS)

Related information
v “Conditions and IOSTAT values” on page 222
v Chapter 9, “XL Fortran Input/Output,” on page 211
v Setting Run-Time Options in the XL Fortran Compiler Reference

SAVE
Purpose

The SAVE attribute specifies the names of objects and named common blocks
whose definition status you want to retain after control returns from the
subprogram where you define the variables and named common blocks.

Syntax

Chapter 11. Statements and attributes 451

Rules

A SAVE statement without a list is treated as though it contains the names of all
common items and local variables in the scoping unit. A common block name
having the SAVE attribute has the effect of specifying all the entities in that named
common block.

Within a function or subroutine subprogram, a variable whose name you specify
with the SAVE attribute does not become undefined as a result of a RETURN or
END statement in the subprogram.

object_name cannot be the name of a dummy argument, pointee, procedure,
automatic object, or common block entity.

If a local entity specified with the SAVE attribute (and not in a common block) is
in a defined state at the time that a RETURN or END statement is encountered in
a subprogram, that entity is defined with the same value at the next reference of
that subprogram. Saved objects are shared by all instances of the subprogram.

F2008 You can also specify the SAVE attribute in a BLOCK construct. F2008

IBM extension

XL Fortran permits function results to have the SAVE attribute. To indicate that a
function result is to have the SAVE attribute, the function result name must be
explicitly specified with the SAVE attribute. That is, a SAVE statement without a
list does not provide the SAVE attribute for the function result.

Variables declared as SAVE are shared amongst threads. To thread-safe an
application that contains shared variables, you must either serialize access to the
static data using locks, or make the data thread-specific. One method of making
the data thread-specific is to move the static data into a named COMMON block
that has been declared THREADLOCAL. The Pthreads library module provides
mutexes to allow you to serialize access to the data using locks. See Pthreads
library module in the XL Fortran Optimization and Programming Guide for more
information. The lock_name attribute on the CRITICAL directive also provides the
ability to serialize access to data. See CRITICAL/END CRITICAL in the XL
Fortran Optimization and Programming Guide for more information. The
THREADLOCAL directive ensures that common blocks are local to each thread.
See THREADLOCAL in the XL Fortran Optimization and Programming Guide for
more information.

End of IBM extension

Table 50. Attributes compatible with the SAVE attribute

ALLOCATABLE �1� POINTER STATIC �3�

ASYNCHRONOUS PRIVATE TARGET

��

�

SAVE
,

object_name
:: / common_block_name /

��

452 XL Fortran: Language Reference for Big Endian Distributions

Table 50. Attributes compatible with the SAVE attribute (continued)

CONTIGUOUS �2� PROTECTED �1� VOLATILE

DIMENSION PUBLIC

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples
LOGICAL :: CALLED=.FALSE.
CALL SUB(CALLED)
CALLED=.TRUE.
CALL SUB(CALLED)
CONTAINS

SUBROUTINE SUB(CALLED)
INTEGER, SAVE :: J
LOGICAL :: CALLED
IF (CALLED.EQV..FALSE.) THEN

J=2
ELSE

J=J+1
ENDIF
PRINT *, J ! Output on first call is 2

! Output on second call is 3
END SUBROUTINE

END

Related information
v “COMMON” on page 313
v THREADLOCAL in the XL Fortran Optimization and Programming Guide
v “Definition status of variables” on page 19
v “Storage classes for variables (IBM extension)” on page 26
v Item 2 under Appendix A,“Compatibility across standards” on page 1007

SELECT CASE
Purpose

The SELECT CASE statement is the first statement of a CASE construct. It
provides a concise syntax for selecting, at most, one of a number of statement
blocks for execution.

Syntax

case_construct_name
A name that identifies the CASE construct

case_expr
A scalar expression of type integer, character or logical

�� SELECT CASE (case_expr)
case_construct_name :

��

Chapter 11. Statements and attributes 453

Rules

When a SELECT CASE statement is executed, the case_expr is evaluated. The
resulting value is called the case index, which is used for evaluating control flow
within the case construct.

If the case_construct_name is specified, it must appear on the END CASE statement
and optionally on any CASE statements within the construct.

The case_expr must not be a typeless constant or a BYTE data object.

Examples
ZERO: SELECT CASE(N) ! start of CASE construct ZERO

CASE DEFAULT ZERO
OTHER: SELECT CASE(N) ! start of CASE construct OTHER

CASE(:-1)
SIGNUM = -1

CASE(1:) OTHER
SIGNUM = 1

END SELECT OTHER
CASE (0)

SIGNUM = 0

END SELECT ZERO

Related information
v “CASE construct” on page 143
v “CASE” on page 303
v “END (Construct)” on page 346, for details on the END SELECT statement

SELECT TYPE (Fortran 2003)
Purpose

The SELECT TYPE statement is the first statement in a SELECT TYPE construct.
The construct can have any number of statement blocks, only one of which is
selected for execution. The selection is based on the dynamic type and the KIND
TYPE parameters of an expression, which you specify in the selector, the type and
the corresponding KIND TYPE parameters of each type guard statement.

Syntax

select_construct_name
A name that identifies the SELECT TYPE construct.

associate_name
A name that is associated with the selector when executing the SELECT
TYPE statement.

selector An expression, evaluated when executing the SELECT TYPE statement.
The result must be polymorphic.

�� SELECT TYPE (selector)
select_construct_name : associate_name =>

��

454 XL Fortran: Language Reference for Big Endian Distributions

Rules

If the selector is not a named variable, associate_name must appear. If the selector is
not a definable variable or is a variable that has a vector subscript, associate_name
must not appear in a variable definition context.

The selector must be polymorphic.

If the select_construct_name is specified, it must appear on the END SELECT
statement and optionally on any type guard statements within the construct.

Related information
v “SELECT TYPE construct (Fortran 2003)” on page 145
v “Type Guard (Fortran 2003)” on page 477
v “END (Construct)” on page 346, for details on the END SELECT statement

SEQUENCE
Purpose

The SEQUENCE statement specifies that the order of the components in a
derived-type definition establishes the storage sequence for objects of that type.
Such a type becomes a sequence derived type.

Syntax

Rules

The SEQUENCE statement can be specified only once in a derived-type definition.

If a component of a sequence derived type is of derived type, that derived type
must also be a sequence derived type.

The size of a sequence derived type is equal to the number of bytes of
storage needed to hold all of the components of that derived type.

Use of sequence derived types can lead to misaligned data, which can adversely
affect the performance of a program.

If a derived type definition has procedures or the BIND attribute, the
SEQUENCE statement cannot be specified. Also, SEQUENCE cannot be specified
for an extended type.

Examples
TYPE PERSON

SEQUENCE
CHARACTER*1 GENDER ! Offset 0
INTEGER(4) AGE ! Offset 1
CHARACTER(30) NAME ! Offset 5

END TYPE PERSON

�� SEQUENCE ��

Chapter 11. Statements and attributes 455

Related information
v Chapter 4, “Derived types,” on page 47
v “Derived Type” on page 330
v “END TYPE” on page 350

Statement Function
Purpose

A statement function defines a function in a single statement.

Syntax

name is the name of the statement function. It must not be supplied as a
procedure argument and cannot be the target of a procedure pointer.

dummy_argument
can only appear once in the dummy argument list of any statement
function. The dummy arguments have the scope of the statement function
statement, and the same types and type parameters as the entities of the
same names in the scoping unit containing the statement function.

Rules

A statement function is local to the scoping unit in which it is defined. It must not
be defined in the scope of a module F2008 or submodule F2008 .

name determines the data type of the value returned from the statement function. If
the data type of name does not match that of the scalar expression, the value of the
scalar expression is converted to the type of name in accordance with the rules for
assignment statements.

The names of the function and all the dummy arguments must be specified,
explicitly or implicitly, to be scalar data objects.

The scalar expression can be composed of constants, references to variables,
references to functions and function dummy procedures, and intrinsic operations.
If the expression contains a reference to a function or function dummy procedure,
the reference must not require an explicit interface, the function must not require
an explicit interface or be a transformational intrinsic, and the result must be
scalar. If an argument to a function or function dummy procedure is array-valued,
it must be an array name.

With XL Fortran, the scalar expression can also reference a structure
constructor.

The scalar expression can reference another statement function that is either:
v Declared previously in the same scoping unit, or
v Declared in the host scoping unit.

�� name () = scalar_expression
dummy_argument_list

��

456 XL Fortran: Language Reference for Big Endian Distributions

Named constants and arrays whose elements are referenced in the expression must
be declared earlier in the scoping unit or be made accessible by use or host
association.

Variables that are referenced in the expression must be either:
v Dummy arguments of the statement function, or
v Accessible in the scoping unit

If an entity in the expression is typed by the implicit typing rules, its type must
agree with the type and type parameters given in any subsequent type declaration
statement.

An external function reference in the scalar expression must not cause any dummy
arguments of the statement function to become undefined or redefined.

If the statement function is defined in an internal subprogram and if it has the
same name as an accessible entity from the host, precede the statement function
definition with an explicit declaration of the statement function name. For example,
use a type declaration statement.

The length specification for a statement function of type character or a statement
function dummy argument of type character must be a constant specification
expression.

Examples
PARAMETER (PI = 3.14159)
REAL AREA,CIRCUM,R,RADIUS
AREA(R) = PI * (R**2) ! Define statement functions
CIRCUM(R) = 2 * PI * R ! AREA and CIRCUM

! Reference the statement functions
PRINT *,’The area is: ’,AREA(RADIUS)
PRINT *,’The circumference is: ’,CIRCUM(RADIUS)

Related information
v “Dummy arguments” on page 191
v “Function reference” on page 183
v “Determining Type” on page 17, for information on how the type of the

statement function is determined

STATIC (IBM extension)
Purpose

The STATIC attribute specifies that a variable has a storage class of static; that is,
the variable remains in memory for the duration of the program and its value is
retained between calls to the procedure.

Syntax

Chapter 11. Statements and attributes 457

stat_variable
is a variable name or an array declarator that can specify an
explicit_shape_spec_list or a deferred_shape_spec_list.

initial_value
provides an initial value for the variable specified by the immediately
preceding name. Initialization occurs as described in “DATA” on page 325.

Rules

If stat_variable is a result variable, it must not be of type character or of derived
type. Dummy arguments, automatic objects and pointees must not have the
STATIC attribute. A variable that is explicitly declared with the STATIC attribute
cannot be a common block item.

A variable must not have the STATIC attribute specified more than once in the
same scoping unit.

Local variables have a default storage class of automatic. See the -qsave option in
the XL Fortran Compiler Reference for details on the default settings with regard to
the invocation commands.

Variables declared as STATIC are shared amongst threads. To thread-safe an
application that contains shared variables, you must either serialize access to the
static data using locks, or make the data thread-specific. One method of making
the data thread-specific is to move the static data into a COMMON block that has
been declared THREADLOCAL. The Pthreads library module provides mutexes to
allow you to serialize access to the data using locks. See Pthreads library module
in the XL Fortran Optimization and Programming Guide for more information. The
lock_name attribute on the CRITICAL directive also provides the ability to serialize
access to data. See CRITICAL/END CRITICAL in the XL Fortran Optimization and
Programming Guide for more information. The THREADLOCAL directive ensures
that common blocks are local to each thread. See THREADLOCAL in the XL
Fortran Optimization and Programming Guide for more information.

Table 51. Attributes compatible with the STATIC attribute

ALLOCATABLE �1� POINTER SAVE

ASYNCHRONOUS PRIVATE TARGET

CONTIGUOUS �2� PROTECTED �1� VOLATILE

DIMENSION

Note:
�1� Fortran 2003
�2� Fortran 2008

�� �

,

STATIC stat_variable
:: / initial_value_list /

��

458 XL Fortran: Language Reference for Big Endian Distributions

Examples
LOGICAL :: CALLED=.FALSE.
CALL SUB(CALLED)
CALLED=.TRUE.
CALL SUB(CALLED)
CONTAINS

SUBROUTINE SUB(CALLED)
INTEGER, STATIC :: J
LOGICAL :: CALLED
IF (CALLED.EQV..FALSE.) THEN

J=2
ELSE

J=J+1
ENDIF
PRINT *, J ! Output on first call is 2

! Output on second call is 3
END SUBROUTINE

END

Related information
v “Storage classes for variables (IBM extension)” on page 26
v “COMMON” on page 313
v THREADLOCAL in the XL Fortran Optimization and Programming Guide

STOP
Purpose

The STOP statement initiates normal termination, which terminates the execution
of the program. If a stop_code is specified, the keyword "STOP" followed by the
stop_code is printed to ERROR_UNIT.

Syntax

F2008

scalar_char_constant_expr
is a scalar character constant expression

scalar_int_constant_expr
is a scalar integer constant expression

F2008

�� STOP
stop_code

��

where stop_code is:

��
(1)

scalar_char_constant_expr
(2)

scalar_int_constant_expr

��

Notes:

1 Fortran 2008

2 Fortran 2008

Chapter 11. Statements and attributes 459

Rules

When a STOP statement is executed, a system return code is supplied and
a message is printed to ERROR_UNIT, depending on whether the stop_code is
specified:
v If the stop_code is scalar_char_constant_expr, the system return code is 0. The

keyword "STOP" followed by the stop_code is printed.
v If the stop_code is scalar_int_constant_expr, XL Fortran sets the system return code

to MOD (stop_code, 256). The keyword "STOP" followed by the stop_code is
printed.

v If nothing is specified, the system return code is 0. No error message is printed.

The system return code is available in the Korn shell command variable $?.

If you compile your program with -qxlf2003=stopexcept, floating-point
exceptions that are signaling are displayed when the STOP statement is reached.

A STOP statement cannot terminate the range of a DO or DO WHILE construct.

Examples

The following example shows how the STOP statement works when different
kinds of stop_code are specified.
INTEGER :: matrix(10, 10)
INTEGER :: op
INTEGER :: result_matrix(10, 10)
INTEGER, PARAMETER :: init_error = 10
INTEGER, PARAMETER :: process = 20
CHARACTER(LEN = 10), PARAMETER :: message = "Terminated"

matrix = 10
result_matrix = 10

! If the initialization is wrong, the message "STOP 11" is printed.
! The system return code is 11.

IF (ANY(result_matrix .NE. 10)) STOP init_error + 1

! If the initialization is wrong, the message "STOP 12" is printed.
! The system return code is 12.

IF (ANY(matrix .NE. 10)) STOP 12

op = WHICH_OP()

IF (op .LT. 1) THEN
! If OP is less than 1, the message "STOP Program Terminated" is printed.
! The system return code is 0.
STOP "Program " // message

ELSE IF (OP .EQ. 1) THEN
result_matrix = result_matrix + matrix

! The message "STOP 21" is printed.
! The system return code is 21.

STOP PROCESS + 1
ELSE IF (OP .EQ. 2) THEN

result_matrix = result_matrix - matrix

460 XL Fortran: Language Reference for Big Endian Distributions

! The message "STOP 22" is printed.
! The system return code is 22.

STOP process + 2
ELSE

! No message is printed.
! The system return code is 0.
STOP

END IF

Related information
v F2008 ERROR STOP F2008

SUBMODULE (Fortran 2008)
Purpose

The SUBMODULE statement is the first statement of a submodule program unit.

Syntax

submodule_name
Name of the submodule.

ancestor_module_name
Name of a nonintrinsic module.

parent_submodule_name
Name of a descendant submodule of the ancestor_module.

Rules

A submodule name cannot be accessed by use association; that is, it cannot be
referred to by the USE statement.

A submodule cannot have the same name as any other program unit, external
procedure, common block, or entity with a binding label in the program. In
addition, the submodule name cannot be the same as any local name in the
submodule. The name of a submodule can be the same as the name of another
submodule if they do not have the same ancestor module.

If the END statement that completes the submodule specifies a submodule name,
the name must be the same as the one that the SUBMODULE statement specifies.

Examples
MODULE mod

...
END MODULE

�� SUBMODULE (parent_identifier) submodule_name ��

parent_identifier

�� ancestor_module_name
: parent_submodule_name

��

Chapter 11. Statements and attributes 461

SUBMODULE (mod) mod1 ! parent_submodule_name is not specified
...

END SUBMODULE

SUBMODULE (mod) mod2 ! parent_submodule_name is not specified
...

END SUBMODULE

SUBMODULE (mod:mod1) mod3 ! parent_submodule_name is specified
...

END SUBMODULE

Related statements
v “END” on page 345
v “MODULE” on page 407
v “USE” on page 478
v “PRIVATE” on page 426
v “PROTECTED (Fortran 2003)” on page 432
v “PUBLIC” on page 434

Related information
v “Modules” on page 175
v “Submodules (Fortran 2008)” on page 178
v “Use association” on page 156

SUBROUTINE
Purpose

The SUBROUTINE statement is the first statement of a subroutine subprogram.

Syntax

prefix is one of the following:
v ELEMENTAL

�� � SUBROUTINE name
prefix ()

dummy_argument_list

�

�
(1)

BIND (C)
, NAME = binding_label

��

Notes:

1 Fortran 2003

462 XL Fortran: Language Reference for Big Endian Distributions

v F2008 IMPURE F2008

v F2008 MODULE F2008

v PURE

v RECURSIVE

Note: type_spec is not permitted as a prefix in a subroutine.

name The name of the subroutine subprogram.

binding_label A scalar character constant expression.

Rules

At most one of each kind of prefix can be specified. You cannot specify both the
RECURSIVE and ELEMENTAL prefix specifiers. F2008 You cannot specify both
the PURE and IMPURE prefix specifiers. F2008

The subroutine name cannot appear in any other statement in the scope of the
subroutine, unless recursion has been specified.

The RECURSIVE keyword must be specified if, directly or indirectly,
v The subroutine invokes itself.
v The subroutine invokes a procedure defined by an ENTRY statement in the

same subprogram.
v An entry procedure in the same subprogram invokes itself.
v An entry procedure in the same subprogram invokes another entry procedure in

the same subprogram.
v An entry procedure in the same subprogram invokes the subprogram defined by

the SUBROUTINE statement.

If the RECURSIVE keyword is specified, the procedure interface is explicit within
the subprogram.

Using the PURE or ELEMENTAL prefix indicates that the subroutine may be
invoked by the compiler in any order as it is free of side effects. For elemental
procedures, the keyword ELEMENTAL must be specified. If the ELEMENTAL
keyword is specified, the RECURSIVE keyword cannot be specified.

You can also call external procedures recursively when you specify the
-qrecur compiler option, although XL Fortran disregards this option if the
SUBROUTINE statement specifies the RECURSIVE keyword.

The BIND keyword implicitly or explicitly defines a binding label by
which a procedure is accessed from the C programming language. A dummy
argument cannot be zero-sized. A dummy argument for a procedure with the
BIND attribute must have interoperable types and type parameters, and cannot
have the ALLOCATABLE or POINTER attribute.

The BIND attribute must not be specified for an internal procedure. If the
SUBROUTINE statement appears as part of an interface body that describes a
dummy procedure, the NAME= specifier must not appear. An elemental procedure
cannot have the BIND attribute.

Chapter 11. Statements and attributes 463

F2008

You can specify the MODULE prefix specifier for the SUBROUTINE statement of
a module subprogram or of a nonabstract interface body that is declared in the
scoping unit of a module or submodule. See Example 2.
v When you specify the MODULE prefix specifier for the SUBROUTINE

statement of a module subprogram, the module subprogram is a separate
module procedure.

v When you specify the MODULE prefix specifier for the SUBROUTINE
statement of a nonabstract interface body, the interface body is a module
procedure interface body.

F2008

Example 1
RECURSIVE SUBROUTINE SUB(X,Y)

INTEGER X,Y
IF (X.LT.Y) THEN

RETURN
ELSE

CALL SUB(X,Y+1)
END IF

END SUBROUTINE SUB

Example 2 (Fortran 2008)
MODULE m

! The MODULE prefix specifier is specified for the SUBROUTINE
! statement of a module procedure interface body.
INTERFACE

MODULE SUBROUTINE sub(arg)
INTEGER :: arg

END SUBROUTINE
END INTERFACE

END MODULE

SUBMODULE (m) n

CONTAINS
! The MODULE prefix specifier is specified for the SUBROUTINE
! statement of a separate module procedure.
MODULE SUBROUTINE sub(arg)

INTEGER :: arg
arg = 1

END SUBROUTINE
END SUBMODULE

Related information
v “Function and subroutine subprograms” on page 181
v “Dummy arguments” on page 191
v “Recursion” on page 205
v “CALL” on page 300
v “ENTRY” on page 353
v “Statement Function” on page 456
v “BIND (Fortran 2003)” on page 295
v “RETURN” on page 448
v “Definition status of variables” on page 19
v “Pure procedures” on page 206

464 XL Fortran: Language Reference for Big Endian Distributions

v -qrecur option in the XL Fortran Compiler Reference

v “Interoperability of procedures” on page 846
v “Modules” on page 175
v “Submodules (Fortran 2008)” on page 178
v “Separate module procedures (Fortran 2008)” on page 185

TARGET
Purpose

The TARGET statement specifies the TARGET attribute of an entity. An object
with the TARGET attribute may have a pointer associated with it.

Syntax

Rules
v If a data object has the TARGET attribute, then all of the data object's

nonpointer subobjects will also have the TARGET attribute.
v A data object that does not have the TARGET attribute cannot be associated

with an accessible pointer.
v A target cannot appear in an EQUIVALENCE statement.
v A target cannot be an integer pointer or a pointee.

Table 52. Attributes compatible with the TARGET attribute

ALLOCATABLE �1� INTENT SAVE

ASYNCHRONOUS OPTIONAL STATIC �3�

AUTOMATIC �3� PRIVATE VALUE �1�

DIMENSION PROTECTED �1� VOLATILE

CONTIGUOUS �2� PUBLIC

Notes:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples
REAL, POINTER :: A,B
REAL, TARGET :: C = 3.14
B => C
A => B ! A points to C

Related information
v “POINTER (Fortran 90)” on page 421
v “ALLOCATED(X)” on page 572

�� �

,

TARGET variable_name
:: (array_spec)

��

Chapter 11. Statements and attributes 465

v “DEALLOCATE” on page 328
v “Data pointer assignment” on page 127
v “Pointer association” on page 157

TYPE
Purpose

A TYPE type declaration statement specifies the type, type parameters, and
attributes of objects and functions of derived type. Initial values can be assigned to
objects.

F2008 The TYPE type declaration statement can declare entities of both derived
type and intrinsic type. F2008

Syntax

where:

F2008 intrinsic_type_spec F2008

is the name of an intrinsic data type. For more information, see Chapter 3,
“Intrinsic data types,” on page 35.

derived_type_spec
is the name of an extensible derived type. For more information, see “Type
Declaration” on page 470.

The derived type must not be abstract.

:: is the double colon separator. It is required if attributes are specified, =
constant_expr is used, or =>NULL() appears as part of any entity_decl.

attr_spec
is any of the following attributes. For detailed information on rules about a
particular attribute, refer to the statement of the same name.

ALLOCATABLE �1� INTRINSIC PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �2� PARAMETER STATIC �2�

BIND �1� POINTER TARGET

DIMENSION (array_spec) PRIVATE VALUE �1�

EXTERNAL PROTECTED �1� VOLATILE

��
(1)

TYPE (intrinsic_type_spec)
derived_type_spec ::

, attr_spec_list ::

�

� entity_decl_list ��

Notes:

1 Fortran 2008

466 XL Fortran: Language Reference for Big Endian Distributions

INTENT (intent_spec)

Note:
�1� Fortran 2003
�2� IBM extension

where:

array_spec
is a list of dimension bounds.

intent_spec
is one of IN, OUT, or INOUT.

entity_decl

where:

a is an object name or function name. array_spec cannot be specified
for a function with an implicit interface.

initial_value
provides an initial value for the entity specified by the immediately
preceding name. Initialization occurs as described in “DATA” on
page 325.

constant_expr
provides a constant expression for the entity specified by the
immediately preceding name.

=> NULL()
provides the initial value for a pointer object.

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

�� a
(array_spec) (1)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension.

Chapter 11. Statements and attributes 467

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

Once a derived type has been defined, you can use it to define your data items
using the TYPE type declaration statement. When an entity is explicitly declared to
be of a derived type, that derived type must have been previously defined in the
scoping unit or is accessible by use or host association.

The data object becomes an object of derived type or a structure. Each structure
component is a subobject of the object of derived type.

If you specify the DIMENSION attribute, you are creating an array whose
elements have a data type of that derived type.

Other than in specification statements, you can use objects of derived type as
actual and dummy arguments, and they can also appear as items in input/output
lists (unless the object has a component with the POINTER attribute), assignment
statements, structure constructors, and the right side of a statement function
definition. If a structure component is not accessible, a derived-type object cannot
be used in an input/output list or as a structure constructor.

Objects of nonsequence derived type cannot be used as data items in
EQUIVALENCE and COMMON statements. Objects of nonsequence data types
cannot be integer pointees.

A nonsequence derived-type dummy argument must specify a derived type that is
accessible through use or host association to ensure that the same derived-type
definition defines both the actual and dummy arguments.

The type declaration statement overrides the implicit type rules in effect.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, allocatable object, function result, object in a blank common block,
integer pointer, external name, intrinsic name, or automatic object. Nor can an
object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module or submodule
.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of an array_spec can be a nonconstant expression if the
specification expression appears in an interface body or in the specification part of
a subprogram. Any object being declared that uses this nonconstant expression and
is not a dummy argument or a pointee is called an automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined.

468 XL Fortran: Language Reference for Big Endian Distributions

If the entity you are declaring is a derived type component, and constant_expr or
NULL() is specified, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of constant_expr or
NULL() implies that a is a saved object, except for an object in a named common
block. The initialization of an object could affect the fundamental storage class of
an object.

An array_spec specified in the entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCTABLE or POINTER
attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function. The derived type can be specified on the
FUNCTION statement, provided the derived type is defined within the body of
the function or is accessible via host or use association.

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

Example 1

The following code defines a derived type people using the TYPE type declaration
statement.
TYPE people

INTEGER age
CHARACTER*20 name

END TYPE people

The following statement declares an entity named smith of the derived type
people:
TYPE(people) :: smith = people(25,’John Smith’)

F2008

Example 2

This example demonstrates the usage of the TYPE() type specifier to declare
entities of intrinsic type.
TYPE(INTEGER) :: i
TYPE(INTEGER(KIND=2)) :: i2
TYPE(INTEGER(4)) :: i4

TYPE(CHARACTER(*)) :: cstar
TYPE(CHARACTER*2) :: c2
TYPE(CHARACTER(LEN=4,KIND=1)) :: c4
TYPE(CHARACTER(7)) :: c7

TYPE derived(l)

Chapter 11. Statements and attributes 469

TYPE(INTEGER), LEN :: l
TYPE(CHARACTER*l) :: cl
TYPE(COMPLEX), DIMENSION (l) :: cp

END TYPE derived

F2008

Related information
v Chapter 3, “Intrinsic data types,” on page 35
v Chapter 4, “Derived types,” on page 47
v “Derived Type” on page 330
v “Constant expressions” on page 100
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26

Type Declaration
Purpose

A type declaration statement specifies the type, length, and attributes of objects
and functions. You can assign initial values to objects.

A declaration type specification (declaration_type_spec) is used in a
nonexecutable statement.

470 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Parameters
v intrinsic_type_spec is any of the following types:

BYTE �1� INTEGER [kind_selector]

CHARACTER [char_selector] LOGICAL [kind_selector]

COMPLEX [kind_selector] REAL [kind_selector]

DOUBLE COMPLEX VECTOR (vector_type_spec) �1�

DOUBLE PRECISION

�1� IBM extension

kind_selector

represents one of the permissible length specifications for its associated
type. int_literal_constant cannot specify a kind type parameter.

Type Declaration Statement (type_declaration_stmt)

�� declaration_type_spec
::
, attr_spec_list ::

entity_decl_list ��

where declaration_type_spec is as follows:

�� intrinsic_type_spec
(1)

TYPE (intrinsic_type_spec)
TYPE (derived_type_spec)

(2)
TYPE (*)

(3)
CLASS (derived_type_spec)

(4)
CLASS (*)

��

Notes:

1 Fortran 2008

2 TS29113

3 Fortran 2003

4 Fortran 2003

Chapter 11. Statements and attributes 471

vector_type_spec
must specify PIXEL, REAL of kind 4 or 8, or INTEGER or UNSIGNED of
kind 1, 2, 4, or 8.

char_selector

specifies the character length . In XL Fortran, this is the number of
characters between 0 and 256 MB. Values exceeding 256 MB are set to 256
MB, while negative values result in a length of zero. If not specified, the
default length is 1. The kind type parameter, if specified, must be 1, which
specifies the ASCII character representation.

int_constant_expr
is a scalar integer constant expression that must evaluate to 1

char_length
is either a scalar integer literal constant (which cannot specify a
kind type parameter) or a type_param_value enclosed in parentheses

v derived_type_spec is used to specify a particular derived type and type
parameters.

type_param_spec
is used to list type parameter values in the derived_type_spec.

�� (int_constant_expr)
KIND =

(1)
* int_literal_constant

��

Notes:

1 IBM extension.

�� (LEN = type_param_value , KIND = int_constant_expr)
type_param_value , int_constant_expr

KIND =
KIND = int_constant_expr

, LEN = type_param_value
type_param_value

LEN =
* char_length

,

��

�� type_name
(type_param_spec_list)

��

where type_param_spec is:

��
keyword =

type_param_value ��

472 XL Fortran: Language Reference for Big Endian Distributions

keyword
is a name of the parameter of the derived type listed in the derived type
definition statement. Each parameter name cannot appear more than once
in a type_param_spec_list. When used with the CLASS keyword,
the type must be extensible. If used with the TYPE keyword, the type must
not be abstract.

type_param_value
is a colon (:), an asterisk (*), or an integer scalar expression. For a kind
type parameter, the corresponding type_param_value must be an integer
constant expression.

Within a derived_type_spec, the type_param_value of an integer expression for
a length type parameter must be a specification expression. A colon that
specifies a deferred length type parameter, can only be used for a length
parameter of an entity that has either a POINTER or ALLOCATABLE
attribute. In this case, the value of a deferred type parameter is determined
during program execution through either an ALLOCATE statement, an
intrinsic assignment or a pointer assignment statement. An asterisk as a
type_param_value specifies an assumed length type parameter. A
derived_type_spec with an assumed length type parameter specifies a
dummy argument, and the value of the assumed type parameter is that of
the corresponding actual argument.

Note: type_param_value is also used in type_spec that appears in SELECT
TYPE constructs, ALLOCATE statements, or array constructors. In
type_spec, a type_param_value that specifies a value for a length type
parameter is not required to be a specification expression.

v attr_spec is any of the following attributes. For detailed rules about a particular
attribute, refer to the statement of the same name.

ALLOCATABLE �1� PARAMETER

ASYNCHRONOUS POINTER

AUTOMATIC �2� PRIVATE

BIND (C[, NAME=binding_label]) �1� PROTECTED �1�

CONTIGUOUS �3� PUBLIC

DIMENSION (array_spec) SAVE

EXTERNAL STATIC �2�

INTENT (intent_spec) TARGET

INTRINSIC VALUE �1�

OPTIONAL VOLATILE

Notes:
�1� Fortran 2003
�2� IBM extension
�3� Fortran 2008

intent_spec
is either IN, OUT, or INOUT

* is the asterisk indicator. An entity declared with TS TYPE (*)
TS or CLASS(*) is unlimited polymorphic. An unlimited

polymorphic entity is not declared to have a type, and is not considered to
have the same declared type as any other entity, including another

Chapter 11. Statements and attributes 473

unlimited polymorphic entity. TS TYPE (*) is used to declare
assumed-type objects to interoperate with C functions. TS

:: is the double colon separator. Use the double colon separator when you
specify attributes, =constant_expr, or => NULL().

array_spec
is a list of dimension bounds.

entity_decl

a is an object name or function name. array_spec cannot be specified for a
function with an implicit interface.

char_length (IBM extension)
overrides the length as specified in kind_selector and char_selector, and is
only permitted in statements where the length can be specified with the
initial keyword. A character entity can specify char_length, as defined
above. A noncharacter entity can only specify an integer literal constant
that represents one of the permissible length specifications for its
associated type.

initial_value (IBM extension)
provides an initial value for the entity specified by the immediately
preceding name.

constant_expr
provides a constant expression for the entity specified by the immediately
preceding name.

=> NULL()
provides the initial value for the pointer object.

Rules

Within the context of a derived type definition:
v If => appears in a component initialization, the POINTER attribute must appear

in the attr_spec_list.
v If = appears in a component initialization, the POINTER attribute cannot appear

in the component attr_spec_list.
v The compiler will evaluate constant_expr within the scoping unit of the type

definition.

If => appears for a variable, the object must have the POINTER attribute.

�� a
* char_length (array_spec)

(array_spec) * char_length

�

�
(1)

/ initial_value_list /
= constant_expr
=> NULL()

��

Notes:

1 IBM extension

474 XL Fortran: Language Reference for Big Endian Distributions

If constant_expr appears for a variable, the object cannot have the POINTER
attribute.

Entities in type declaration statements are constrained by the rules of any
attributes specified for the entities, as detailed in the corresponding attribute
statements.

The type declaration statement overrides the implicit type rules in effect. You can
use a type declaration statement that confirms the type of an intrinsic function. The
appearance of a generic or specific intrinsic function name in a type declaration
statement does not cause the name to lose its intrinsic property.

An object cannot be initialized in a type declaration statement if it is a dummy
argument, allocatable object, function result, object in a blank common block,
integer pointer, external name, intrinsic name, or automatic object. Nor can an
object be initialized if it has the AUTOMATIC attribute. The object may be
initialized if it appears in a named common block in a block data program unit

or if it appears in a named common block in a module or submodule
.

In Fortran 95, a pointer can be initialized. Pointers can only be initialized by the
use of => NULL().

The specification expression of a type_param_value or an array_spec can be a
nonconstant expression if the specification expression appears in an interface body
or in the specification part of a subprogram. Any object being declared that uses
this nonconstant expression and is not a dummy argument or a pointee is called an
automatic object.

An attribute cannot be repeated in a given type declaration statement, nor can an
entity be explicitly given the same attribute more than once in a scoping unit.

constant_expr must be specified if the statement contains the PARAMETER
attribute. If the entity you are declaring is a variable, and constant_expr or NULL()
is specified, the variable is initially defined.

If the entity you are declaring is a derived type component, and constant_expr or
NULL() is specified, the derived type has default initialization.

a becomes defined with the value determined by constant_expr, in accordance with
the rules for intrinsic assignment. If the entity is an array, its shape must be
specified either in the type declaration statement or in a previous specification
statement in the same scoping unit. A variable or variable subobject cannot be
initialized more than once. If a is a variable, the presence of constant_expr or
NULL() implies that a is a saved object, except for an object in a named common
block. The initialization of an object could affect the fundamental storage class of
an object.

An array_spec specified in an entity_decl takes precedence over the array_spec in the
DIMENSION attribute.

An array function result that does not have the ALLOCATABLE or
POINTER attribute must have an explicit-shape array specification.

If the entity declared is a function, it must not have an accessible explicit interface
unless it is an intrinsic function.

Chapter 11. Statements and attributes 475

If T or F, defined previously as the name of a constant, appears in a type
declaration statement, it is no longer an abbreviated logical constant but the name
of the named constant.

The optional comma after char_length in a CHARACTER type declaration
statement is permitted only if no double colon separator (::) appears in the
statement.

If the CHARACTER type declaration statement specifies a length of a
colon, the length type parameter is a deferred type parameter. An entity or
component with a deferred type parameter must specify the ALLOCATABLE or
POINTER attribute. A deferred type parameter is a length type parameter whose
value can change during the execution of the program.

If the CHARACTER type declaration statement is in the scope of a module,
F2008 submodule F2008 , block data program unit, or main program, and you

specify the length of the entity as an inherited length, the entity must be the name
of a named character constant. The character constant assumes the length of its
corresponding expression defined by the PARAMETER attribute.

If the CHARACTER type declaration statement is in the scope of a procedure and
the length of the entity is inherited, the entity name must be the name of a dummy
argument or a named character constant. If the statement is in the scope of an
external function, it can also be the function or entry name in a FUNCTION or
ENTRY statement in the same program unit. If the entity name is the name of a
dummy argument, the dummy argument assumes the length of the associated
actual argument for each reference to the procedure. If the entity name is the name
of a character constant, the character constant assumes the length of its
corresponding expression defined by the PARAMETER attribute. If the entity
name is a function or entry name, the entity assumes the length specified in the
calling scoping unit.

The length of a character function can be a specification expression (which must be
a constant expression if the function type is not declared in an interface block) or it
is a colon, or an asterisk, indicating the length of a dummy procedure name. The
length cannot be an asterisk if the function is an internal or module function, if it
is recursive, or if it returns array or pointer values.

Examples
CHARACTER(KIND=1,LEN=6) APPLES /’APPLES’/
CHARACTER*7, TARGET :: ORANGES = ’ORANGES’
CALL TEST(APPLES)

SUBROUTINE TEST(VARBL)
CHARACTER*(*), OPTIONAL :: VARBL ! VARBL inherits a length of 6

COMPLEX, DIMENSION (2,3) :: ABC(3) ! ABC has 3 (not 6) array elements
REAL, POINTER :: XCONST

TYPE PEOPLE ! Defining derived type PEOPLE
INTEGER AGE
CHARACTER*20 NAME

END TYPE PEOPLE
TYPE(PEOPLE) :: SMITH = PEOPLE(25,’John Smith’)

END SUBROUTINE

476 XL Fortran: Language Reference for Big Endian Distributions

The following example illustrates the use of derived types parameters in a
declaration with a derived type. See the examples in “Derived Type” on page 330
for the type definitions themselves.
! Use of the types declared in the example in section Derived type.
TYPE(MULTIDIM(8,3)) :: LOCATION = MULTIDIM(8,3)([1.1_8,2.2_8,3.3_8])
TYPE(NAMED_MULTI(8,3,12)) :: MY_SPOT

= NAMED_MULTI(8,3,12)([REAL(8):: 1.1,2.2,3.3],"You are here")

! "PEOPLE" can be defined using type parameters:
TYPE PEOPLE (AGE_KIND, NAME_LEN)

INTEGER, KIND :: AGE_KIND
INTEGER, LEN :: NAME_LEN
INTEGER(AGE_KIND) :: AGE
CHARACTER(NAME_LEN) :: NAME

END TYPE PEOPLE

! Use integer(2) for age, character(20) for name:
TYPE (PEOPLE(2,20)) :: SMITH = PEOPLE(2,20)(25,’John Smith’)

! Use integer(1) for age, deferred length for name:
TYPE (PEOPLE(1,:)), ALLOCATABLE :: JDOE
! Actually allocate JDOE with a name of length 8 using implicit allocation:
JDOE = PEOPLE(1,8)(22, "John Doe")
! Explicitly deallocate and reallocate JDOE with a different length:
DEALLOCATE(JDOE)
ALLOCATE(PEOPLE(1,15) :: JDOE)

The following example illustrates the declaration of a vector.
VECTOR (REAL(4)) :: vector_object

Related information
v “Constant expressions” on page 100
v TYPE
v “Determining Type” on page 17, for details on the implicit typing rules
v “Array declarators” on page 74
v “Automatic objects” on page 18
v “Storage classes for variables (IBM extension)” on page 26
v “DATA” on page 325, for details on initial values
v “Polymorphic entities (Fortran 2003)” on page 18
v “CLASS (Fortran 2003)” on page 309

Type Guard (Fortran 2003)
Purpose

A type guard statement initiates a type guard statement block in a SELECT TYPE
construct. A SELECT TYPE construct can have any number of statement blocks,
only one of which is selected for execution. The selection is based on the dynamic
type and the kind type parameters of an expression — the selector — in a SELECT
TYPE statement, the type and the corresponding kind type parameters of each
type guard statement.

Chapter 11. Statements and attributes 477

Syntax

type_spec
must be an extensible derived type or intrinsic type. The length type
parameters must be assumed.

select_construct_name
is a name that identifies the SELECT TYPE construct

Rules

If the selector of the SELECT TYPE statement is not unlimited polymorphic, the
type_spec must specify an extension of the declared type of the selector.

For a single SELECT TYPE construct, the same type and kind type parameter
values must not be specified in more than one TYPE IS type guard statement and
must not be specified in more than one CLASS IS type guard statement.

The CLASS DEFAULT type guard statement can only occur once in a SELECT
TYPE construct.

If the select_construct_name is specified, it must match the name specified on the
SELECT TYPE and END SELECT statements.

Related information

v “SELECT TYPE construct (Fortran 2003)” on page 145
v “SELECT TYPE (Fortran 2003)” on page 454
v “END (Construct)” on page 346, for details on the END SELECT statement

USE
Purpose

The USE statement is a module reference that provides local access to the public
entities of a module.

Syntax

�� TYPE IS (type_spec)
CLASS IS (type_spec)
CLASS DEFAULT

select_construct_name
��

�� USE module_name
(1) , rename_list

:: , ONLY :
, INTRINSIC only_list

NON_INTRINSIC

��

Notes:

1 Fortran 2003 standard

478 XL Fortran: Language Reference for Big Endian Distributions

rename is
v the assignment of a local name to an accessible data entity: local-name

=> use-name

v renaming a use-defined operator to a local-defined operator:
OPERATOR(local-defined-operator) => OPERATOR(use-defined-operator)

only is a rename, a generic specification, or the name of a variable, procedure,
derived type, named constant, or namelist group

Rules

The USE statement can only appear prior to all other statements in
specification_part. Multiple USE statements may appear within a scoping unit.

At the time the file containing the USE statement is being compiled, the
specified module must precede the USE statement in the file or the module must
have been already compiled in another file. Each referenced entity must be the
name of a public entity in the module.

Entities in the scoping unit become use-associated with the module entities, and the
local entities have the attributes of the corresponding module entities.

Fortran 2003

By default, either an intrinsic module or a non-intrinsic module with the specified
name is accessed. If both an intrinsic module and a non-intrinsic module have this
name, the non-intrinsic module is accessed. If you specify INTRINSIC or
NON_INTRINSIC, only an intrinsic module or only a non-intrinsic module can be
accessed.

When you rename an operator in a rename-list or an only-list, the use-defined-operator
is identified by the local-defined-operator for the scoping unit that contains the USE
statement. That operator must be a public entity that is not a generic binding
within the module you specify in the USE statement.

End of Fortran 2003

In addition to the PRIVATE attribute, the ONLY clause of the USE statement
provides further constraint on which module entities can be accessed. If the ONLY
clause is specified, only entities named in the only_list are accessible. If no list
follows the keyword, no module entities are accessible. If the ONLY clause is
absent, all public entities are accessible.

If a scoping unit contains multiple USE statements, all specifying the same
module, and one of the statements does not include the ONLY clause, all public
entities are accessible. If each USE statement includes the ONLY clause, only those
entities named in one or more of the only_lists are accessible.

You can rename an accessible entity for local use. A module entity can be accessed
by more than one local name. If no renaming is specified, the name of the
use-associated entity becomes the local name. The local name of a use-associated
entity cannot be redeclared. However, if the USE statement appears in the scoping
unit of a module, the local name can appear in a PUBLIC or PRIVATE statement.

Chapter 11. Statements and attributes 479

If multiple generic interfaces that are accessible to a scoping unit have the same
local name, operator, or assignment, they are treated as a single generic interface.
In such a case, one of the generic interfaces can contain an interface body to an
accessible procedure with the same name. Otherwise, any two different
use-associated entities can only have the same name if the name is not used to
refer to an entity in the scoping unit. If a use-associated entity and host entity
share the same name, the host entity becomes inaccessible through host association
by that name.

The accessed entities have the attributes specified in the module, except that an
entity may have a different accessibility attribute or it can have the VOLATILE
attribute in the local scoping unit even if the associated module entity does not.

A module must not reference itself, either directly or indirectly. For example,
module X cannot reference module Y if module Y references module X.

Consider the situation where a module (for example, module B) has access through
use association to the public entities of another module (for example, module A).
The accessibility of module B's local entities (which includes those entities that are
use-associated with entities from module A) to other program units is determined
by the PRIVATE and PUBLIC attributes, or, if absent, through the default
accessibility of module B. Of course, other program units can access the public
entities of module A directly.

Examples
MODULE A

REAL :: X=5.0
END MODULE A
MODULE B

USE A
PRIVATE :: X ! X cannot be accessed through module B
REAL :: C=80, D=50

END MODULE B
PROGRAM TEST

INTEGER :: TX=7
CALL SUB
CONTAINS

SUBROUTINE SUB
USE B, ONLY : C
USE B, T1 => C
USE B, TX => C ! C is given another local name
USE A
PRINT *, TX ! Value written is 80 because use-associated

! entity overrides host entity
END SUBROUTINE

END

Example: Renaming a defined operator (Fortran 2003)
module temp
type real_num
real :: x
end type

interface operator (.add.)
module procedure real_add
end interface

contains
funtion real_add(a,b)
type(real_num) :: real_add

480 XL Fortran: Language Reference for Big Endian Distributions

type(real_num), intent(in) :: a,b
real_add%x = a%x+b%x
end function real_add

end module

program main
use temp , operator(.plus.) => operator(.add.)
type(real_num) :: a,b,c
c=a.plus.b
end program

Example: Invalid because operator has a private attribute
module temp
type real_num
real :: x
end type

interface operator (.add.)
module procedure real_add
end interface

private :: operator(.add.) !operator is given the private attribute

contains
function real_add(a,b)
type(real_num) :: real_add
type(real_num), intent(in) :: a,b
real_add%x = a%x+b%x
end function real_add

contains

end module

program main
!operator cannot be renamed because it has a private attribute.
use temp , operator(.plus.) => operator(.add.)
type(real_num) :: a,b,c
c=a.plus.b
end program

The following example is invalid:
Module mod1

use, intrinsic :: ieee_exceptions
end Module

Module mod2
use, non_intrinsic :: ieee_exceptions

end Module

Program invalid_example
use mod1
use mod2

! ERROR: a scoping unit must not access an
! intrinsic module and a non-intrinsic module
! with the same name.

end program

Related information
v “Modules” on page 175
v “PRIVATE” on page 426
v “VOLATILE” on page 484

Chapter 11. Statements and attributes 481

v “PUBLIC” on page 434
v “Order of statements and execution sequence” on page 14

VALUE (Fortran 2003)
Purpose

The VALUE attribute specifies an argument association between a dummy and an
actual argument. This association allows you to pass the dummy argument with
the value of the actual argument. This Fortran 2003 pass by value implementation
provides a standard conforming option to the %VAL built-in function.

An actual argument and the associated dummy argument can change
independently. Changes to the value or definition status of the dummy argument
do not affect the actual argument. A dummy argument with the VALUE attribute
becomes associated with a temporary variable with an initial value identical to the
value of the actual argument.

Syntax

Rules

You must specify the VALUE attribute for dummy arguments only.

You must not use the %VAL or %REF built-in functions to reference a dummy
argument with the VALUE attribute, or the associated actual argument.

A referenced procedure that has a dummy argument with the VALUE attribute
must have an explicit interface.

A dummy argument with the VALUE attribute can be of character type .

You must not specify the VALUE attribute for the following items:
v Arrays
v Dummy procedures
v Polymorphic items
v TS Assumed-rank objects TS

Table 53. Attributes compatible with the VALUE attribute

INTENT(IN) OPTIONAL TARGET

If a dummy argument has both the VALUE and TARGET attributes, any pointers
associated with that dummy argument become undefined after the execution of the
procedure.

�� VALUE dummy_argument_name_list
::

��

482 XL Fortran: Language Reference for Big Endian Distributions

Examples
Program validexm1

integer :: x = 10, y = 20
print *, ’before calling: ’, x, y
call intersub(x, y)
print *, ’after calling: ’, x, y

contains
subroutine intersub(x,y)

integer, value :: x
integer y
x = x + y
y = x*y
print *, ’in subroutine after changing: ’, x, y

end subroutine
end program validexm1

Expected output:
before calling: 10 20
in subroutine after changing: 30 600
after calling: 10 600

Related information

For more information, see the %VAL built-in function.

VECTOR (IBM extension)
Purpose

A VECTOR type declaration statement specifies that one or more entities have a
vector type.

Syntax

You can declare a vector using VECTOR(type_spec) as part of a type declaration
statement. The type declaration statement contains the complete syntax for
declaring a vector data type. In a VECTOR(type_spec), type_spec must specify
PIXEL, REAL of kind 4 or 8, or INTEGER or UNSIGNED of kind 1, 2, 4, or 8.

VIRTUAL (IBM extension)
Purpose

The VIRTUAL statement specifies the name and dimensions of an array. It is an
alternative form of the DIMENSION statement, although there is no VIRTUAL
attribute.

Syntax

�� VIRTUAL array_declarator_list ��

Chapter 11. Statements and attributes 483

array_declarator_list
is a list of array declarators that specifies the rank or rank and shape of an
array.

Rules

You can specify arrays with a maximum of 20 dimensions

Only one array specification for an array name can appear in a scoping unit.

Examples
VIRTUAL A(10), ARRAY(5,5,5), LIST(10,100)
VIRTUAL ARRAY2(1:5,1:5,1:5), LIST2(I,M) ! adjustable array
VIRTUAL B(0:24), C(-4:2), DATA(0:9,-5:4,10)
VIRTUAL ARRAY (M*N*J,*) ! assumed-size array

Related information
v Chapter 5, “Array concepts,” on page 73
v “DIMENSION” on page 332

VOLATILE
Purpose

The VOLATILE attribute is used to designate a data object as being mapped to
memory that can be accessed by independent input/output processes and
independent, asynchronously interrupting processes. Code that manipulates
volatile data objects is not optimized.

Syntax

Rules

If an array name is declared volatile, each element of the array is considered
volatile. If a common block is declared volatile, each variable in the common block
is considered volatile. An element of a common block can be declared volatile
without affecting the status of the other elements in the common block.

If a common block is declared in multiple scopes, and if it (or one or more of its
elements) is declared volatile in one of those scopes, you must specify the
VOLATILE attribute in each scope where you require the common block (or one or
more of its elements) to be considered volatile.

If a derived type name is declared volatile, all variables declared with that type are
considered volatile. If an object of derived type is declared volatile, all of its
components are considered volatile. If a component of a derived type is itself
derived, the component does not inherit the volatile attribute from its type. A

�� �

,

VOLATILE variable_name
:: / common_block_name /

derived_type_name

��

484 XL Fortran: Language Reference for Big Endian Distributions

derived type name that is declared volatile must have had the VOLATILE attribute
prior to any use of the type name in a type declaration statement.

If a pointer is declared volatile, the storage of the pointer itself is considered
volatile. The VOLATILE attribute has no effect on any associated pointer targets.

If you declare an object to be volatile and then use it in an EQUIVALENCE
statement, all of the objects that are associated with the volatile object through
equivalence association are considered volatile.

Any data object that is shared across threads and is stored and read by multiple
threads must be declared as VOLATILE. If, however, your program only uses the
automatic or directive-based parallelization facilities of the compiler, variables that
have the SHARED attribute need not be declared VOLATILE.

If the actual argument associated with a dummy argument is a variable that is
declared volatile, you must declare the dummy argument volatile if you require
the dummy argument to be considered volatile. If a dummy argument is declared
volatile, and you require the associated actual argument to be considered volatile,
you must declare the actual argument as volatile.

Declaring a statement function as volatile has no effect on the statement function.

Within a function subprogram, the function result variable can be declared volatile.
Any entry result variables will be considered volatile. An ENTRY name must not
be specified with the VOLATILE attribute.

F2008 An object can have the VOLATILE attribute inside a BLOCK construct,
regardless of whether the object has the VOLATILE attribute outside the BLOCK
construct. F2008

Fortran 2003

Using -qxlf2003=volatile

If an actual argument is an array section or an assumed-shape array, and the
corresponding dummy argument has the VOLATILE attribute, that dummy
argument shall be an assumed-shape array.

If an actual argument is a pointer array, and the corresponding dummy argument
has the VOLATILE attribute, that dummy argument shall be an assumed-shape
array or a pointer array.

If the actual argument is an array section having a vector subscript, the dummy
argument is not definable and shall not have the VOLATILE attribute.

Host associated entities are known by the same name and have the same attributes
as in the host, except that an accessed entity may have the VOLATILE attribute
even if the host entity does not.

In an internal or module procedure, if a variable that is accessible via host
association is specified in a VOLATILE statement, that host variable is given the
VOLATILE attribute in the local scope.

Chapter 11. Statements and attributes 485

A use associated entity may have the VOLATILE attribute in the local scoping unit
even if the associated module entity does not.

End of Fortran 2003

Table 54. Attributes compatible with the VOLATILE attribute

ALLOCATABLE �1� INTENT PUBLIC

ASYNCHRONOUS OPTIONAL SAVE

AUTOMATIC �3� POINTER STATIC �3�

CONTIGUOUS �2� PRIVATE TARGET

DIMENSION PROTECTED �1�

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Examples
FUNCTION TEST ()

REAL ONE, TWO, THREE
COMMON /BLOCK1/A, B, C
...
VOLATILE /BLOCK1/, ONE, TEST

! Common block elements A, B and C are considered volatile
! since common block BLOCK1 is declared volatile.

...
EQUIVALENCE (ONE, TWO), (TWO, THREE)

! Variables TWO and THREE are volatile as they are equivalenced
! with variable ONE which is declared volatile.

END FUNCTION

Related information
v “Direct access” on page 213

WAIT (Fortran 2003)
Purpose

The WAIT statement may be used to wait for an asynchronous data transfer to
complete or it may be used to detect the completion status of an asynchronous
data transfer statement.

Syntax

wait_list
is a list that must contain one ID= specifier and at most one of each of the
other valid specifiers. The valid specifiers are:

ASYNCHRONOUS=char_expr (Fortran 2003)
allows execution to continue without waiting for the data transfer to
complete. char_expr is a scalar character expression that must evaluate to
YES or NO.

�� WAIT (wait_list) ��

486 XL Fortran: Language Reference for Big Endian Distributions

If a DONE= specifier appears, an ID= specifier must also appear. If the
ID= specifier appears, a wait operation for the specified data transfer
operation is performed. If there is no ID= specifier then wait operations for
all pending data transfers for the specified unit are performed. Execution
of a file positioning statement performs a wait operation for all pending
asynchronous data transfer operations for the specified unit.

DONE= logical_variable
specifies whether or not the asynchronous I/O statement is complete. If the
DONE= specifier is present, the logical_variable is set to true if the
asynchronous I/O is complete and is set to false if it is not complete. If the
returned value is false, then one or more WAIT statements must be
executed until either the DONE= specifier is not present, or its returned
value is true. A WAIT statement without the DONE= specifier, or a WAIT
statement that sets the logical_variable value to true, is the matching WAIT
statement to the data transfer statement identified by the same ID= value.

END= stmt_label
is an end-of-file specifier that specifies a statement label at which the
program is to continue if an endfile record is encountered and no error
occurs. If an external file is positioned after the endfile record, the
IOSTAT= specifier, if present, is assigned a negative value, and the NUM=
specifier, if present, is assigned an integer value. Coding the END=
specifier suppresses the error message for end-of-file. This specifier can be
specified for a unit connected for either sequential or direct access.

The stmt_label defined for the END= specifier of the asynchronous data
transfer statement need not be identical to the stmt_label defined for the
END= specifier of the matching WAIT statement.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in case of
an error. Coding the ERR= specifier suppresses error messages.

The stmt_label defined for the ERR= specifier of the asynchronous data
transfer statement need not be identical to the stmt_label defined for the
ERR= specifier of the matching WAIT statement.

ID= integer_expr
indicates the data transfer with which this WAIT statement is identified.
The integer_expr is an integer expression of type INTEGER(4) or default
integer. To initiate an asynchronous data transfer, the ID= specifier is used
on a READ or WRITE statement.

IOMSG= iomsg_variable
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character
variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios

is an input/output status specifier that specifies the status of the
input/output operation. ios is an integer variable. When the input/output
statement containing this specifier finishes execution, ios is defined with:

Chapter 11. Statements and attributes 487

v A zero value if no error condition occurs.
v A positive value if an error occurs.
v A negative value if an end-of-file condition is encountered and no error

occurs.

The ios defined for the IOSTAT= specifier of the asynchronous data
transfer statement is not required to be identical to the ios defined for the
IOSTAT= specifier of the matching WAIT statement.

Rules

The matching WAIT statement must be in the same scoping unit as the
corresponding asynchronous data transfer statement. Within the instance of that
scoping unit, the program must not execute a RETURN, END, or STOP statement
before the matching WAIT statement is executed.

Related information
v “Asynchronous Input/Output” on page 216
v Implementation details of XL Fortran Input/Output in the XL Fortran Optimization

and Programming Guide

WHERE
Purpose

The WHERE statement masks the evaluation of expressions and assignments of
values in array assignment statements. It does this according to the value of a
logical array expression. The WHERE statement can be the initial statement of the
WHERE construct.

Syntax

mask_expr
is a logical array expression

where_construct_name
is a name that identifies the W HERE construct

Rules

If a where_assignment_statement is present, the WHERE statement is not the first
statement of a WHERE construct. If a where_assignment_statement is absent, the
WHERE statement is the first statement of the WHERE construct, and is referred
to as a WHERE construct statement. An END WHERE statement must follow. See
“WHERE construct” on page 118 for more information.

If the WHERE statement is not the first statement of a WHERE construct, you can
use it as the terminal statement of a DO or DO WHILE construct.

�� WHERE (mask_expr)
where_construct_name : where_assignment_statement

��

488 XL Fortran: Language Reference for Big Endian Distributions

You can nest WHERE statements within a WHERE construct. A
where_assignment_statement that is a defined assignment must be an elemental
defined assignment.

In each where_assignment_statement, the mask_expr and the variable being defined
must be arrays of the same shape. Each mask_expr in a WHERE construct must
have the same shape.

A WHERE statement that is part of a where_body_construct must not be a branch
target statement.

The execution of a function reference in the mask_expr of a WHERE statement can
affect entities in the where_assignment_statement.

See “Interpreting masked array assignments” on page 120 for information on
interpreting mask expressions.

If a where_construct_name appears on a WHERE construct statement, it must also
appear on the corresponding END WHERE statement. A construct name is
optional on any masked ELSEWHERE and ELSEWHERE statements in the
WHERE construct.

A where_construct_name can only appear on a WHERE construct statement.

Examples
REAL, DIMENSION(10) :: A,B,C

! In the following WHERE statement, the LOG of an element of A
! is assigned to the corresponding element of B only if that
! element of A is a positive value.

WHERE (A>0.0) B = LOG(A)

...
END

The following example shows an elemental defined assignment in a WHERE
statement:
INTERFACE ASSIGNMENT(=)

ELEMENTAL SUBROUTINE MY_ASSIGNMENT(X, Y)
LOGICAL, INTENT(OUT) :: X
REAL, INTENT(IN) :: Y

END SUBROUTINE MY_ASSIGNMENT
END INTERFACE

INTEGER A(10)
REAL C(10)
LOGICAL L_ARR(10)

C = (/ -10., 15.2, 25.5, -37.8, 274.8, 1.1, -37.8, -36.2, 140.1, 127.4 /)
A = (/ 1, 2, 7, 8, 3, 4, 9, 10, 5, 6 /)
L_ARR = .FALSE.

WHERE (A < 5) L_ARR = C

! DATA IN ARRAY L_ARR AT THIS POINT:
!
! L_ARR = F, T, F, F, T, T, F, F, F, F

END

Chapter 11. Statements and attributes 489

ELEMENTAL SUBROUTINE MY_ASSIGNMENT(X, Y)
LOGICAL, INTENT(OUT) :: X
REAL, INTENT(IN) :: Y

IF (Y < 0.0) THEN
X = .FALSE.

ELSE
X = .TRUE.

ENDIF
END SUBROUTINE MY_ASSIGNMENT

Related information
v “WHERE construct” on page 118
v “ELSEWHERE” on page 343
v “END (Construct)” on page 346, for details on the END WHERE statement

WRITE
Purpose

The WRITE statement is a data transfer output statement.

Syntax

output_item
is an output list item. An output list specifies the data to be transferred. An
output list item can be:
v A variable name. An array is treated as if all of its elements were

specified in the order in which they are arranged in storage.
A pointer must be associated with a target, and an allocatable object
must be allocated. A derived-type object cannot have any ultimate
component that is outside the scoping unit of this statement. The
evaluation of output_item cannot result in a derived-type object that
contains a pointer. The structure components of a structure in a
formatted statement are treated as if they appear in the order of the
derived-type definition; in an unformatted statement, the structure
components are treated as a single value in their internal representation
(including padding).

v An expression
v An implied-DO list, as described under “Implied-DO List” on page 496

An output_item must not be a procedure pointer.

io_control
is a list that must contain one unit specifier (UNIT=), and can also contain
one of each of the other valid specifiers:

[UNIT=] u
is a unit specifier that specifies the unit to be used in the output operation.
u is an external unit identifier or internal file identifier.

�� WRITE (io_control_list)
output_item_list

��

490 XL Fortran: Language Reference for Big Endian Distributions

An external unit identifier refers to an external file. It is one of the
following:
v An integer expression whose value is in the range 1 through 2147483647
v An asterisk, which identifies external unit 6 and is preconnected

to standard output
v F2008 A NEWUNIT value F2008

An internal file identifier refers to an internal file. It is the name of a
character variable, which cannot be an array section with a vector
subscript.

If the optional characters UNIT= are omitted, u must be the first item in
io_control_list. If UNIT= is specified, FMT= must also be specified.

[FMT=] format
is a format specifier that specifies the format to be used in the output
operation. format is a format identifier that can be:
v The statement label of a FORMAT statement. The FORMAT statement

must be in the same scoping unit.
v The name of a scalar INTEGER(4) or INTEGER(8) variable that was

assigned the statement label of a FORMAT statement. The FORMAT
statement must be in the same scoping unit.
Fortran 95 does not permit assigning of a statement label.

v A character constant enclosed in parentheses. Only the format codes
listed under “FORMAT” on page 371 can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis.

v A character variable that contains character data whose leftmost
character positions constitute a valid format. A valid format begins with
a left parenthesis and ends with a right parenthesis. Only the format
codes described in the FORMAT statement can be used between the
parentheses. Blank characters can precede the left parenthesis or follow
the right parenthesis. If format is an array element, the format identifier
must not exceed the length of the array element.

v An array of noncharacter intrinsic type. The data must be a valid format
identifier as described under character array.

v Any character expression, except one involving concatenation of an
operand that specifies inherited length, unless the operand is the name
of a constant.

v An asterisk, specifying list-directed formatting.
v A namelist specifier that specifies the name of a namelist list that you

have previously defined.

If the optional characters FMT= are omitted, format must be the second
item in io_control_list, and the first item must be the unit specifier with
UNIT= omitted. NML= and FMT= cannot both be specified in the same
output statement.

ASYNCH= char_expr (IBM extension)
is an asynchronous I/O specifier that indicates whether an explicitly
connected unit is to be used for asynchronous I/O.

char_expr is a scalar character expression whose value is either YES or NO.
YES specifies that asynchronous data transfer statements are permitted for
this connection. NO specifies that asynchronous data transfer statements

Chapter 11. Statements and attributes 491

are not permitted for this connection. The value specified will be in the set
of transfer methods permitted for the file. If this specifier is omitted, the
default value is NO.

Preconnected units are connected with an ASYNCH= value of NO.

The ASYNCH= value of an implicitly connected unit is determined by the
first data transfer statement performed on the unit. If the first statement
performs an asynchronous data transfer and the file being implicitly
connected permits asynchronous data transfers, the ASYNCH= value is
YES. Otherwise, the ASYNCH= value is NO.

ASYNCHRONOUS=char_expr (Fortran 2003)
allows execution to continue without waiting for the data transfer to
complete. char_expr is a scalar character expression that must evaluate to
YES or NO. ASYNCHRONOUS=YES must not appear unless UNIT=
specifies a file unit number. If ID= appears, an ASYNCHRONOUS=YES
must also appear.

A statement and the I/O operation are synchronous if
ASYNCHRONOUS=NO or if both ASYNCHRONOUS= and ID= are
absent. For ASYNCHRONOUS=YES or if ID= appears, asynchronous I/O
is permitted only for external files opened with ASYNCHRONOUS=YES
in the OPEN statement.

If a variable is used in an asynchronous data transfer statement as an item
in an I/O list, a group object in a namelist or as a SIZE= specifier, the base
object of the data_ref is implicitly given the ASYNCHRONOUS attribute in
the scoping unit of the data transfer statement. For asynchronous
nonadvancing input, the storage units specified in the SIZE= specifier
become defined with the count of the characters transferred when the
corresponding wait operation is executed. For asynchronous output, a
pending I/O storage sequence affector shall not be redefined, become
undefined, or have its pointer association status changed. For
asynchronous input, a pending I/O storage sequence affector shall not be
referenced, become defined, become undefined, become associated with a
dummy argument that has the VALUE attribute, or have its pointer
association status changed.

When an error, end-of-file or end-of-record condition occurs for a
previously executed asynchronous data transfer statement , a wait
operation is performed for all pending data transfer operations on that
unit. When a condition occurs during a subsequent statement, any actions
specified by IOSTAT=, IOMSG=, ERR=, END=, and EOR= specifiers for
that statement are taken.

A wait operation is performed by a WAIT, CLOSE, or file positioning
statement.

DECIMAL= char_expr(Fortran 2003)
temporarily changes the default decimal edit mode for the duration of an
I/O statement. char_expr is a scalar character expression whose value must
evaluate to either POINT, or COMMA. After each WRITE statement, the
mode defaults to whatever decimal mode was specified (or assumed) on
the OPEN statement for that unit.

POS=integer_expr(Fortran 2003)
integer_expr is an integer expression greater than 0. POS= specifies the file
position of the file storage unit to be written in a file connected for stream
access. You must not use POS= for a file that cannot be positioned.

492 XL Fortran: Language Reference for Big Endian Distributions

REC= integer_expr
is a record specifier that specifies the number of the record to be written in
a file connected for direct access. The REC= specifier is only permitted for
direct output. integer_expr is an integer expression whose value is positive.
A record specifier is not valid if formatting is list-directed or if the unit
specifier specifies an internal file. The record specifier represents the
relative position of a record within a file. The relative position number of
the first record is 1. You must not specify REC= in data transfer statements
that specify a unit connected for stream access, or use the POS= specifier.

ROUND= char-expr(Fortran 2003)

temporarily changes the current value of the I/O rounding mode for the
duration of this I/O statement. If omitted, then the rounding mode is
unchanged. char-expr evaluates to either UP, DOWN, ZERO, NEAREST,
COMPATIBLE or PROCESSOR_DEFINED

The rounding mode helps specify how decimal numbers are converted to
an internal representation, (that is, in binary) from a character
representation and vice versa during formatted input and output. The
rounding modes have the following functions:
v In the UP rounding mode the value from the conversion is the smallest

value that is greater than or equal to the original value.
v In the DOWN rounding mode the value from the conversion is the

greatest value that is smaller than or equal to the original value.
v In the ZERO rounding mode the value from the conversion is the closest

value to the original value, and not greater in magnitude.
v In the NEAREST rounding mode the value from the conversion is the

closer of the two nearest representable values. If both values are equally
close then the even value will be chosen. In IEEE rounding conversions,
NEAREST corresponds to the ieee_nearest rounding mode as specified
by the IEEE standard.

v In the COMPATIBLE rounding mode the value from the conversion is
the closest of the two nearest representable values, or the value further
away from zero if halfway between.

v In the PROCESSOR_DEFINED rounding mode the value from the
conversion is processor dependent and may correspond to the other
modes. In the PROCESSOR_DEFINED rounding mode the value from
the conversion is processor dependent and may correspond to the other
modes. In XL Fortran, the PROCESSOR_DEFINED rounding mode will
be the rounding mode you choose in the floating-point control register. If
you do not set the floating-point control register explicitly, the default
rounding mode is NEAREST.

SIGN= char_expr(Fortran 2003)
indicates the sign mode in effect for a connection for formatted
input/output. If char_expr is assigned the value PLUS, the processor shall
produce a plus sign in any position that normally contains an optional plus
sign and suppresses plus signs in these positions if char_expr is assigned
the value SUPPRESS. char_expr can also be assigned the value
PROCESSOR_DEFINED which is the default sign mode and acts the same
as SUPPRESS. If there is no connection, or if the connection is not for
formatted input/output, char_expr is assigned the value UNDEFINED.

IOMSG= iomsg_variable(Fortran 2003)
is an input/output status specifier that specifies the message returned by
the input/output operation. iomsg_variable is a scalar default character

Chapter 11. Statements and attributes 493

variable. It must not be a use-associated nonpointer protected variable.
When the input/output statement containing this specifier finishes
execution, iomsg_variable is defined as follows:
v If an error, end-of-file, or end-of-record condition occurs, the variable is

assigned an explanatory message as if by assignment.
v If no such condition occurs, the value of the variable is unchanged.

IOSTAT= ios
is an input/output status specifier that specifies the status of the
input/output operation. ios is an integer variable. Coding the IOSTAT=
specifier suppresses error messages. When the statement finishes execution,
ios is defined with:
v A zero value if no error condition occurs
v A positive value if an error occurs.

ID= integer_variable(IBM extension)
indicates that the data transfer is to be done asynchronously. The
integer_variable is an integer variable. If no error is encountered, the
integer_variable is defined with a value after executing the asynchronous
data transfer statement. This value must be used in the matching WAIT
statement.

Asynchronous data transfer must either be direct unformatted, sequential
unformatted, or stream unformatted. Asynchronous I/O to internal files is
prohibited. Asynchronous I/O to raw character devices (for example, tapes
or raw logical volumes) is prohibited. The integer_variable must not be
associated with any entity in the data transfer I/O list, or with a do_variable
of an io_implied_do in the data transfer I/O list. If the integer_variable is an
array element reference, its subscript values must not be affected by the
data transfer, the io_implied_do processing, or the definition or evaluation of
any other specifier in the io_control_spec.

DELIM= char_expr(Fortran 2003)
specifies what delimiter, if any, is used to delimit character constants
written with list-directed or namelist formatting. char_expr is a scalar
character expression whose value must evaluate to APOSTROPHE,
QUOTE, or NONE. If the value is APOSTROPHE, apostrophes delimit
character constants and all apostrophes within character constants are
doubled. If the value is QUOTE, double quotation marks delimit character
constants and all double quotation marks within character constants are
doubled. If the value is NONE, character constants are not delimited and
no characters are doubled. The default value is NONE. The DELIM=
specifier is permitted only for files being connected for formatted
input/output, although it is ignored during input of a formatted record.

ERR= stmt_label
is an error specifier that specifies the statement label of an executable
statement in the same scoping unit to which control is to transfer in the
case of an error. Coding the ERR= specifier suppresses error messages.

NUM= integer_variable(IBM extension)
is a number specifier that specifies the number of bytes of data transmitted
between the I/O list and the file. integer_variable is an integer variable. The
NUM= specifier is only permitted for unformatted output. Coding the
NUM parameter suppresses the indication of an error that would occur if
the number of bytes represented by the output list is greater than the
number of bytes that can be written into the record. In this case,
integer_variable is set to a value that is the maximum length record that can

494 XL Fortran: Language Reference for Big Endian Distributions

be written. Data from remaining output list items is not written into
subsequent records. In the portion of the program that executes between
the asynchronous data transfer statement and the matching WAIT
statement, the integer_variable in the NUM= specifier or any variable
associated with it must not be referenced, become defined, or become
undefined.

[NML=] name
is a namelist specifier that specifies the name of a namelist list that you
have previously defined. If the optional characters NML= are not specified,
the namelist name must appear as the second parameter in the list, and the
first item must be the unit specifier with UNIT= omitted. If both NML=
and UNIT= are specified, all the parameters can appear in any order. The
NML= specifier is an alternative to FMT=. Both NML= and FMT= cannot
be specified in the same output statement.

ADVANCE= char_expr
is an advance specifier that determines whether nonadvancing output
occurs for this statement. char_expr is a character expression that must
evaluate to YES or NO. If NO is specified, nonadvancing output occurs. If
YES is specified, advancing, formatted sequential or formatted stream
output occurs. The default value is YES. ADVANCE= can be specified only
in a formatted sequential WRITE statement with an explicit format
specification that does not specify an internal file unit specifier.

Rules

If a NUM= specifier is present, neither a format specifier nor a namelist
specifier can be present.

Variables specified for the IOSTAT= and NUM= specifiers must not be associated
with any output list item, namelist list item, or DO variable of an implied-DO list.
If such a specifier variable is an array element, its subscript values must not be
affected by the data transfer, any implied-DO processing, or the definition or
evaluation of any other specifier.

If the ERR= and IOSTAT= specifiers are set and an error is encountered during a
synchronous data transfer, transfer is made to the statement specified by the ERR=
specifier and a positive integer value is assigned to ios.

IBM extension

If the ERR= or IOSTAT= specifiers are set and an error is encountered during an
asynchronous data transfer, execution of the matching WAIT statement is not
required.

If a conversion error is encountered and the CNVERR run-time option is set to
NO, ERR= is not branched to, although IOSTAT= may be set.

If IOSTAT= and ERR= are not specified,
v The program stops if a severe error is encountered.
v The program continues to the next statement if a recoverable error is

encountered and the ERR_RECOVERY run-time option is set to YES. If the
option is set to NO, the program stops.

v The program continues to the next statement when a conversion error is
encountered if the ERR_RECOVERY run-time option is set to YES. If the

Chapter 11. Statements and attributes 495

CNVERR run-time option is set to YES, conversion errors are treated as
recoverable errors; when CNVERR=NO, they are treated as conversion errors.

End of IBM extension

PRINT format has the same effect as WRITE(*,format).

Examples
WRITE (6,FMT=’(10F8.2)’) (LOG(A(I)),I=1,N+9,K),G

Related information
v “Asynchronous Input/Output” on page 216
v Implementation details of XL Fortran Input/Output in the XL Fortran Optimization

and Programming Guide

v “Conditions and IOSTAT values” on page 222
v Chapter 9, “XL Fortran Input/Output,” on page 211
v “READ” on page 435
v “WAIT (Fortran 2003)” on page 486
v Setting Run-Time Options in the XL Fortran Compiler Reference

v “Deleted features” on page 1010

Implied-DO List

do_object
is an output list item

do_variable
is a named scalar variable of type integer or real

arith_expr1, arith_expr2, and arith_expr3
are scalar numeric expressions

The range of an implied-DO list is the list do_object_list. The iteration count and
values of the DO variable are established from arith_expr1, arith_expr2, and
arith_expr3, the same as for a DO statement. When the implied-DO list is executed,
the items in the do_object_list are specified once for each iteration of the
implied-DO list, with the appropriate substitution of values for any occurrence of
the DO variable.

�� (do_object_list , do_variable = arith_expr1, arith_expr2 �

�)
, arith_expr3

��

496 XL Fortran: Language Reference for Big Endian Distributions

Chapter 12. Directives (IBM extension)

This section provides an alphabetical reference to non-SMP directives that apply to
all platforms. For a complete listing and description of SMP and thread-safe
directives, see the detailed directive descriptions in the XL Fortran Optimization and
Programming Guide. For a detailed description of directives exclusive to the
PowerPC® platform, see Chapter 13, “Hardware-specific directives,” on page 537.
This section contains the following contents:

Comment and noncomment form directives
XL Fortran directives belong to one of two groups: comment form directives and
noncomment form directives.

Comment form directives
This section describes the format of comment form directives. The non-SMP
comment form directives are as follows:
v COLLAPSE

v SNAPSHOT

v SOURCEFORM

v SUBSCRIPTORDER

Additional comment form directives can be found in “Directives and optimization”
on page 500.

Format

trigger_head
is one of !, *, C, or c for fixed source form and ! for free source form.

trigger_constant
is IBM* by default.

Rules

By default, if you use the -qsmp compiler option, the
-qdirective=IBM*:SMP$:$OMP:IBMP:IBMT option will be on. If you specify the
-qsmp=omp option this will be as if you set the option -qdirective=$OMP on by
default. You can specify an alternate or additional trigger_constant with the
-qdirective compiler option. See the -qdirective compiler option in the XL Fortran
Compiler Reference for more details.

The compiler treats all comment form directives, with the exception of those using
the default trigger_constant, as comments, unless you define the appropriate
trigger_constant using the -qdirective compiler option. As a result, code containing
these directives is portable to non-SMP environments.

�� trigger_head trigger_constant directive ��

© Copyright IBM Corp. 1996, 2014 497

XL Fortran supports the OpenMP specification, as understood and interpreted by
IBM. To ensure the greatest portability of code, we recommend that you use these
directives whenever possible. You should use them with the OpenMP
trigger_constant, $OMP; but you should not use this trigger_constant with any other
directive.

XL Fortran also includes the trigger_constants IBMP and IBMT. The compiler
recognizes IBMP if you compile using the -qsmp compiler option. You should use
IBMP with the SCHEDULE directive, and IBM extensions to OpenMP directives.
The compiler recognizes IBMT if you compile using the -qthreaded compiler
option. IBMT is the default for the xlf_r, xlf90_r, xlf95_r, xlf2003_r, or xlf2008_r
invocation commands; we recommend its use with the THREADLOCAL directive.

XL Fortran directives include directives that are common to other vendors. If you
use these directives in your code, you can enable whichever trigger_constant that
vendor has selected. Specifying the trigger constant by using the -qdirective
compiler option will enable the trigger_constant the vendor has selected. Refer to
the -qdirective compiler option in the XL Fortran Compiler Reference for details on
specifying alternative trigger_constants.

The trigger_head follows the rules of comment lines either in Fortran 90 free source
form or fixed source form. If the trigger_head is !, it does not have to be in column
1. There must be no blanks between the trigger_head and the trigger_constant.

You can specify the directive_trigger (defined as the trigger_head combined with the
trigger_constant, !IBM* for example) and any directive keywords in uppercase,
lowercase, or mixed case.

You can specify inline comments on directive lines.
!IBM* INDEPENDENT, NEW(i) !This is a comment

A directive cannot follow another statement or another directive on the same line.

All comment form directives can be continued. You cannot embed a directive
within a continued statement, nor can you embed a statement within a continued
directive.

You must specify the directive_trigger on all continuation lines. However, the
directive_trigger on a continuation line need not be identical to the directive_trigger
that is used in the continued line. For example:
!IBM* INDEPENDENT &
!TRIGGER& , REDUCTION (X) &
!IBM*& , NEW (I)

The above is equivalent to:
!IBM* INDEPENDENT, REDUCTION (X), NEW (I)

provided both IBM* and TRIGGER are active trigger_constants.

For more information, see “Lines and source formats” on page 8.

You can specify a directive as a free source form or fixed source form comment,
depending on the current source form.

498 XL Fortran: Language Reference for Big Endian Distributions

Fixed source form rules

If the trigger_head is one of C, c, or *, it must be in column 1.

The maximum length of the trigger_constant in fixed source form is 4 for directives
that are continued on one or more lines. This rule applies to the continued lines
only, not to the initial line. Otherwise, the maximum length of the trigger_constant
is 15. We recommend that initial line triggers have a maximum length of 4. The
maximum allowable length of 15 is permitted for the purposes of backwards
compatibility.

If the trigger_constant has a length of 4 or less, the first line of a comment directive
must have either white space or a zero in column 6. Otherwise, the character in
column 6 is part of the trigger_constant.

The directive_trigger of a continuation line of a comment directive must appear in
columns 1-5. Column 6 of a continuation line must have a character that is neither
white space nor a zero.

For more information, see “Fixed source form” on page 9.

Free source form rules

The trigger_head is !. The maximum length of the trigger_constant is 15.

An ampersand (&) at the end of a line indicates that the directive will continue.
When you continue a directive line, a directive_trigger must appear at the beginning
of all continuation lines. If you are beginning a continuation line with an
ampersand, the directive_trigger must precede the ampersand. For example:
!IBM* INDEPENDENT &
!IBM*& , REDUCTION (X) &
!IBM*& , NEW (I)

For more information, see “Free source form” on page 11.

Noncomment form directives
This section describes the format of noncomment form directives, which include
the following directives:
v EJECT

v INCLUDE

v #LINE

v @PROCESS

Format

Rules

The compiler always recognizes noncomment form directives.

Noncomment form directives cannot be continued.

�� directive ��

Chapter 12. Directives (IBM extension) 499

Additional statements cannot be included on the same line as a directive.

Source format rules concerning white space apply to directive lines.

Directives and optimization
The following directives are comment form directives useful for optimizing
programs. See Optimizing your applications in the XL Fortran Optimization and
Programming Guide and the compiler options that affect performance.

Assertive directives
Assertive directives gather information about source code that is otherwise
unavailable to the compiler. Providing this information can increase performance.

ASSERT CNCALL

EXECUTION_FREQUENCY EXPECTED_VALUE

INDEPENDENT MEM_DELAY

PERMUTATION

Directives for Loop Optimization
The following directives provide different methods for loop optimization:

BLOCK_LOOP LOOPID

STREAM_UNROLL UNROLL

UNROLL_AND_FUSE

Detailed directive descriptions

ALIGN
Purpose

You can use the ALIGN directive to specify the alignment of variables in memory.
This can improve performance when the alignment allows the use of the vector
facilities.

Syntax

alignment_boundary
The alignment boundary in bytes. It must be a constant scalar integer
expression whose value is a power of 2, in the range 1 - 1, 048, 576.

var_list
A comma-separated list of variable names to align on the specified
boundary.

�� ALIGN (alignment_boundary , var_list) ��

500 XL Fortran: Language Reference for Big Endian Distributions

Rules

You can use the ALIGN directive only in the specification part of a compilation
unit. In addition, the directive must be in the same scoping unit in which var is
declared.

The ALIGN directive can only specify the alignment of variables. Therefore, the
ALIGN directive must not be specified in derived type declarations.

You must not specify the same variable name in multiple ALIGN directives.

The ALIGN directive must not be specified for the following objects:
v Subobjects
v Use-associated variables
v Host-associated variables
v Record structures
v Common block names and objects
v Dummy arguments
v Named constants
v Variables that have VECTOR types
v Variables that are part of an equivalence group

The ALIGN directive has precedence over the -qalign option.

Examples

Example 1:

In the following example, the optimizer can use SIMD instructions to do the array
add operation:
REAL x(4), y(4), z(4)
!IBM* ALIGN(16, x, y, z)
! Code to initialize x and y
z = x + y
END

Example 2:

In the following example, specifying the alignment of an allocatable variable
determines the alignment of the target data.
REAL, ALLOCATABLE :: x(:)
!IBM* ALIGN(16, x)
ALLOCATE(x(20))
PRINT *, MOD(LOC(x(1)), 16) ! Prints 0
END

Related information
v -qalign option in the XL Fortran Compiler Reference

ASSERT
Purpose

The ASSERT directive provides the compiler with the characteristics of DO loops
that can assist in optimizing source code.

Chapter 12. Directives (IBM extension) 501

Syntax

assertion
ITERCNT(n), MINITERCNT(n), MAXITERCNT(n), or NODEPS. All
assertions are not mutually exclusive. You can use at most one of each
assertion for the same DO loop. n must be a positive, scalar, integer
constant expression.

ITERCNT(n)
specifies the expected number of iterations (n) for a given DO
loop.

MINITERCNT(n)
specifies the expected minimum number of iterations (n) for a
given DO loop.

MAXITERCNT(n)
specifies the expected maximum number of iterations (n) for a
given DO loop.

NODEPS
specifies that no loop-carried dependencies exist within a given
DO loop.

NODEPS takes effect only when you specify the -qhot or -qsmp
compiler options.

Rules

The first noncomment line (not including other directives) following the ASSERT
directive must be a DO loop. This line cannot be an infinite DO or DO WHILE
loop. The ASSERT directive applies only to the DO loop immediately following
the directive, and not to any nested DO loops.

ITERCNT, MINITERCNT, and MAXITERCNT are not required to be accurate.
The values only affect performance, never correctness. Specify the values following
the rule MINITERCNT <= ITERCNT <= MAXITERCNT. Otherwise, messages are
issued to indicate that the values are inconsistent and the inconsistent value is
ignored. The assert directives ITERCNT, MINITERCNT, and MAXITERCNT take
priority over the options specified with -qassert={itercnt, minitercnt, maxitercnt}
for the given loop.

When NODEPS is specified, the user is explicitly declaring to the compiler that no
loop-carried dependencies exist within the DO loop or any procedures invoked
from within the DO loop. A loop-carried dependency involves two iterations
within a DO loop interfering with one another. Interference occurs in the following
situations:
v Two operations that define, undefine, or redefine the same atomic object (data

that has no subobjects) interfere.
v Definition, undefinition, or redefinition of an atomic object interferes with any

use of the value of the object.

�� ASSERT (assertion_list) ��

502 XL Fortran: Language Reference for Big Endian Distributions

v Any operation that causes the association status of a pointer to become defined
or undefined interferes with any reference to the pointer or any other operation
that causes the association status to become defined or undefined.

v Transfer of control outside the DO loop or execution of an EXIT, STOP, or
PAUSE statement interferes with all other iterations.

v Any two input/output (I/O) operations associated with the same file or external
unit interfere with each other. The exceptions to this rule are:
– If the two I/O operations are two INQUIRE statements; or
– If the two I/O operations are accessing distinct areas of a stream

access file; or
– If the two I/O operations are accessing distinct records of a direct access file.

v A change in the allocation status of an allocatable object between iterations
causes interference.

It is possible for two complementary ASSERT directives to apply to any given DO
loop. However, an ASSERT directive cannot be followed by a contradicting
ASSERT directive for a given DO loop:

!IBM* ASSERT (ITERCNT(10))
!IBM* INDEPENDENT, REDUCTION (A)
!IBM* ASSERT (ITERCNT(20)) ! invalid

DO I = 1, N
A(I) = A(I) * I

END DO

In the example above, the ASSERT(ITERCNT(20)) directive contradicts the
ASSERT(ITERCNT(10)) directive and is invalid.

The ASSERT directive overrides the -qassert compiler option for the DO loop on
which the ASSERT directive is specified.

Examples

Example 1:
! An example of the ASSERT directive with NODEPS.
PROGRAM EX1

INTEGER A(100)
!IBM* ASSERT (NODEPS)

DO I = 1, 100
A(I) = A(I) * FNC1(I)

END DO
END PROGRAM EX1

FUNCTION FNC1(I)
FNC1 = I * I

END FUNCTION FNC1

Example 2:
! An example of the ASSERT directive with NODEPS and ITERCNT.
SUBROUTINE SUB2 (N)

INTEGER A(N)
!IBM* ASSERT (NODEPS,ITERCNT(100))

DO I = 1, N
A(I) = A(I) * FNC2(I)

END DO
END SUBROUTINE SUB2

FUNCTION FNC2 (I)
FNC2 = I * I

END FUNCTION FNC2

Chapter 12. Directives (IBM extension) 503

Example 3:
! An example of the ASSERT directive with ITERCNT, MINITERCNT, and MAXITERCNT.
!IBM* ASSERT (ITERCNT(10), MINITERCNT(5))
DO I = 1, N

A(I) = A(I) * I
!IBM* ASSERT (ITERCNT(100))
!IBM* ASSERT (MINITERCNT(5), MAXITERCNT(100))

DO J = 1, M
B(J) = A(I) + B(J)

END DO
END DO

Related information
v -qassert option in the XL Fortran Compiler Reference
v -qdirective in the XL Fortran Compiler Reference
v “Loop parallelization” on page 368

BLOCK_LOOP
Purpose

The BLOCK_LOOP directive allows you to exert greater control over
optimizations on a specific DO loop inside a loop nest. Using a technique called
blocking, the BLOCK_LOOP directive separates large iteration count DO loops
into smaller iteration groups. Execution of these smaller groups can increase the
efficiency of cache space use and augment performance.

Applying BLOCK_LOOP to a loop with dependencies, or a loop with alternate
entry or exit points will produce unexpected results.

The BLOCK_LOOP directive takes effect only when the -qhot, -qipa, or -qsmp
compiler option is specified.

Syntax

n is a positive integer expression as the size of the iteration group.

name a unique identifier in the same scoping unit as BLOCK_LOOP, that you
can create using the LOOPID directive.

If you do not specify name, blocking occurs on the first DO loop immediately
following the BLOCK_LOOP directive.

Rules

For loop blocking to occur, a BLOCK_LOOP directive must immediately precede a
DO loop.

You must not specify the BLOCK_LOOP directive more than once.

You must not specify the BLOCK_LOOP directive for a DO WHILE loop or an
infinite DO loop.

�� BLOCK_LOOP (n)
, name_list

��

504 XL Fortran: Language Reference for Big Endian Distributions

Examples
! Loop Tiling for Multi-level Memory Heirarchy

INTEGER :: M, N, i, j, k
M = 1000
N = 1000

!IBM* BLOCK_LOOP(L3_cache_size, L3_cache_block)
do i = 1, N

!IBM* LOOPID(L3_cache_block)
!IBM* BLOCK_LOOP(L2_cache_size, L2_cache_block)

do j = 1, N

!IBM* LOOPID(L2_cache_block)
do k = 1, M

do l = 1, M
.
.
.

end do
end do

end do
end do

end

! The compiler generated code would be equivalent to:

do index1 = 1, M, L3_cache_size
do i = 1, N

do index2 = index1, min(index1 + L3_cache_size, M), L2_cache_size
do j = 1, N

do k = index2, min(index2 + L2_cache_size, M)
do l = 1, M

.

.

.
end do

end do
end do

end do
end do

end do

Related information
v For additional methods of optimizing loops, see the STREAM UNROLL and the

UNROLL and UNROLL_AND_FUSE directives.

CNCALL
Purpose

When the CNCALL directive is placed before a DO loop, you are explicitly
declaring to the compiler that no loop-carried dependencies exist within any
procedure called from the DO loop.

This directive only takes effect if you specify the -qsmp or -qhot compiler option.

Chapter 12. Directives (IBM extension) 505

Syntax

Rules

The first noncomment line (not including other directives) that is following the
CNCALL directive must be a DO loop. This line cannot be an infinite DO or DO
WHILE loop. The CNCALL directive applies only to the DO loop that is
immediately following the directive and not to any nested DO loops.

When specifying the CNCALL directive, you are explicitly declaring to the
compiler that no procedures invoked within the DO loop have any loop-carried
dependencies. If the DO loop invokes a procedure, separate iterations of the loop
must be able to concurrently call that procedure. The CNCALL directive does not
assert that other operations in the loop do not have dependencies, it is only an
assertion about procedure references.

A loop-carried dependency occurs when two iterations within a DO loop interfere
with one another. See the ASSERT directive for the definition of interference.

Examples
! An example of CNCALL where the procedure invoked has
! no loop-carried dependency but the code within the
! DO loop itself has a loop-carried dependency.

PROGRAM EX3
INTEGER A(100)

!IBM* CNCALL
DO I = 1, N

A(I) = A(I) * FNC3(I)
A(I) = A(I) + A(I-1) ! This has loop-carried dependency

END DO
END PROGRAM EX3

FUNCTION FNC3 (I)
FNC3 = I * I

END FUNCTION FNC3

Related information
v “INDEPENDENT” on page 515
v -qdirective in the XL Fortran Compiler Reference

v -qhot in the XL Fortran Compiler Reference

v -qsmp compiler option in the XL Fortran Compiler Reference

v “DO” on page 333
v “Loop parallelization” on page 368

COLLAPSE
Purpose

The COLLAPSE directive reduces an entire array dimension to a single element by
specifying that only the element in the lower bound of an array dimension is
accessible. If you do not specify a lower bound, the default lower bound is one.

�� CNCALL ��

506 XL Fortran: Language Reference for Big Endian Distributions

Used with discretion, the COLLAPSE directive can facilitate an increase in
performance by reducing repetitive memory access associated with
multiple-dimension arrays.

Syntax

where collapse_array is:

where expression_list is a comma separated list of expression.

array name
is the array name.

expression
is a constant scalar integer expression. You may only specify positive
integer values.

Rules

The COLLAPSE directive must contain at least one array.

The COLLAPSE directive applies only to the scoping unit in which it is specified.
The declarations of arrays contained in a COLLAPSE directive must appear in the
same scoping unit as the directive. An array that is accessible in a scoping unit by
use or host association must not be specified in a COLLAPSE directive in that
scoping unit.

The lowest value you can specify in expression_list is one. The highest value must
not be greater than the number of dimensions in the corresponding array.

A single scoping unit can contain multiple COLLAPSE declarations, though you
can only specify an array once for a particular scoping unit.

You can not specify an array in both a COLLAPSE directive and an
EQUIVALENCE statement.

You can not use the COLLAPSE directive with arrays that are components of
derived types.

If you apply both the COLLAPSE and SUBSCRIPTORDER directives to an array,
you must specify the SUBSCRIPTORDER directive first.

The COLLAPSE directive applies to:
v Assumed-shape arrays in which all lower bounds must be constant expressions.
v Explicit-shape arrays in which all lower bounds must be constant expressions.

�� COLLAPSE (collapse_array_list) ��

�� array_name (expression_list) ��

Chapter 12. Directives (IBM extension) 507

Examples

Example 1: In the following example, the COLLAPSE directive is applied to the
explicit-shape arrays A and B. Referencing A(m,2:100,2:100) and B(m,2:100,2:100) in
the inner loops, become A(m,1,1) and B(m,1,1).
!IBM* COLLAPSE(A(2,3),B(2,3))

REAL*8 A(5,100,100), B(5,100,100), c(5,100,100)

DO I=1,100
DO J=1,100
DO M=1,5

A(M,J,I) = SIN(C(M,J,I))
B(M,J,I) = COS(C(M,J,I))

END DO
DO M=1,5
DO N=1,M

C(M,J,I) = C(M,J,I) + A(N,J,I)*B(6-N,J,I)
END DO
END DO
END DO
END DO
END

Related information

For more information on the SUBSCRIPTORDER directive, see
“SUBSCRIPTORDER” on page 531

EJECT
Purpose

EJECT directs the compiler to start a new full page of the source listing. If there
has been no source listing requested, the compiler will ignore this directive.

Syntax

Rules

The EJECT compiler directive can have an inline comment and a label. However, if
you specify a statement label, the compiler discards it. Therefore, you must not
reference any label on an EJECT directive. An example of using the directive
would be placing it before a DO loop that you do not want split across pages in
the listing. If you send the source listing to a printer, the EJECT directive provides
a page break.

EXECUTION_FREQUENCY (IBM extension)
Purpose

The EXECUTION_FREQUENCY directive marks source code that you expect will
be executed very frequently or very infrequently.

�� EJECT ��

508 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Rules

The EXECUTION_FREQUENCY directive is a hint to the optimizer and only takes
effect if optimization is selected.

EXECUTION_FREQUENCY is most effective within an execution control construct
such as IF, SELECT CASE, and SELECT TYPE, and for labeled branch target
statements.

EXECUTION_FREQUENCY should be the first statement within a control
construct. If there are multiple EXECUTION_FREQUENCY directives in the same
branch, only the first EXECUTION_FREQUENCY directive to have effect is used,
the rest are ignored.

Examples
! An example of EXECUTION_FREQUENCY in an IF statement
integer function get_grade(student_id)

integer student_id
if (is_valid(student_id)) then

! get_grade is most often called with
! valid student_id’s.
!IBM* EXECUTION_FREQUENCY(VERY_HIGH)
!...

else
! We have an error.

endif
end function

EXPECTED_VALUE
Purpose

Specifies the value that a dummy argument is most likely to have at run time. The
compiler can use this information to perform certain optimizations, such as
procedure cloning and inlining.

Syntax

argument
The name of the dummy argument for which you want to provide the
expected value. The dummy argument must be a scalar of REAL,
INTEGER, LOGICAL, or BYTE type. It must not have the ALLOCATABLE
or POINTER attribute.

�� EXECUTION_FREQUENCY (very_low)
(very_high)

��

�� EXPECTED_VALUE (argument , value) ��

Chapter 12. Directives (IBM extension) 509

value A constant expression representing the value that the dummy argument is
most likely to take at run time.

Rules

Use the EXPECTED_VALUE directive only in the specification part of a procedure.
Do not use more than one EXPECTED_VALUE directive for a dummy argument.

Examples

In the following example, the EXPECTED_VALUE directives indicate to the
compiler that the most likely value is 1 for a, and 0 for b.
integer function func(a, b)

integer a, b
!IBM* EXPECTED_VALUE(a, 1)
!IBM* EXPECTED_VALUE(b, 0)
...

end function func

FUNCTRACE_XLF_CATCH
Purpose

The FUNCTRACE_XLF_CATCH directive specifies that the procedure whose
declaration immediately follows the directive is a catch tracing subroutine.

Syntax

Rules

The catch tracing procedure must have the same characteristics as the following
interface:
subroutine routine_name(procedure_name, file_name, line_number, id)

use, intrinsic :: iso_c_binding
character(*), intent(in) :: procedure_name
character(*), intent(in) :: file_name
integer(c_int), intent(in) :: line_number
type(c_ptr), intent(inout) :: id

end subroutine

Related information

“FUNCTRACE_XLF_ENTER” on page 511

“FUNCTRACE_XLF_EXIT” on page 511

See the XL Fortran Compiler Reference for details about the -qfunctrace_xlf_catch
compiler option.

See the XL Fortran Compiler Reference for details about the -qfunctrace compiler
option.

�� FUNCTRACE_XLF_CATCH ��

510 XL Fortran: Language Reference for Big Endian Distributions

For detailed information about how to implement procedure tracing routines in
your code, as well as detailed examples and a list of rules for using them, see
Tracing procedures in your code in the XL Fortran Optimization and Programming
Guide.

FUNCTRACE_XLF_ENTER
Purpose

The FUNCTRACE_XLF_ENTER directive specifies that the procedure whose
declaration immediately follows the directive is an entry tracing subroutine.

Syntax

Rules

The entry tracing procedure must have the same characteristics as the following
interface:
subroutine routine_name(procedure_name, file_name, line_number, id)

use, intrinsic :: iso_c_binding
character(*), intent(in) :: procedure_name
character(*), intent(in) :: file_name
integer(c_int), intent(in) :: line_number
type(c_ptr), intent(inout) :: id

end subroutine

Related information

“FUNCTRACE_XLF_CATCH” on page 510

“FUNCTRACE_XLF_EXIT”

See the XL Fortran Compiler Reference for details about the -qfunctrace_xlf_enter
compiler option.

See the XL Fortran Compiler Reference for details about the -qfunctrace compiler
option.

For detailed information about how to implement procedure tracing routines in
your code, as well as detailed examples and a list of rules for using them, see
Tracing procedures in your code in the XL Fortran Optimization and Programming
Guide.

FUNCTRACE_XLF_EXIT
Purpose

The FUNCTRACE_XLF_EXIT directive specifies that the procedure whose
declaration immediately follows the directive is an exit tracing subroutine.

�� FUNCTRACE_XLF_ENTER ��

Chapter 12. Directives (IBM extension) 511

Syntax

Rules

The exit tracing procedure must have the same characteristics as the following
interface:
subroutine routine_name(procedure_name, file_name, line_number, id)

use, intrinsic :: iso_c_binding
character(*), intent(in) :: procedure_name
character(*), intent(in) :: file_name
integer(c_int), intent(in) :: line_number
type(c_ptr), intent(inout) :: id

end subroutine

Related information

“FUNCTRACE_XLF_CATCH” on page 510

“FUNCTRACE_XLF_ENTER” on page 511

See the XL Fortran Compiler Reference for details about the -qfunctrace_xlf_exit
compiler option.

See the XL Fortran Compiler Reference for details about the -qfunctrace compiler
option.

For detailed information about how to implement procedure tracing routines in
your code, as well as detailed examples and a list of rules for using them, see
Tracing procedures in your code in the XL Fortran Optimization and Programming
Guide.

IGNORE_TKR (IBM extension)
Purpose

The IGNORE_TKR directive allows the compiler to ignore the type, kind, and
rank of dummy arguments when checking the interfaces of specific procedure calls,
and when checking and resolving generic interfaces.

IGNORE_TKR allows you to port code from other Fortran compilers that support
the IGNORE_TKR directive.

Syntax

where dummy_args_list is a comma separated list of dummy argument names.

�� FUNCTRACE_XLF_EXIT ��

�� IGNORE_TKR
(dummy_args_list)

��

512 XL Fortran: Language Reference for Big Endian Distributions

Rules

Dummy arguments that are allocatable, Fortran 90 pointers, assumed-shape arrays,
or polymorphic must not be specified in the IGNORE_TKR directive.

IIGNORE_TKR may only appear in the body of an interface block and may
specify dummy argument names only. IGNORE_TKR may appear before or after
the declarations of the dummy arguments it specifies.

If dummy argument names are specified, IGNORE_TKR applies only those
particular dummy arguments. If no dummy argument names are specified
IGNORE_TKR applies to all dummy arguments except those that are allocatable
objects, Fortran 90 pointers, assumed-shape arrays, or polymorphic entities.

Examples
interface

subroutine sub1(a, b)
integer(4) :: a
integer(4) :: b
!ibm* ignore_tkr b

end subroutine
end interface

! valid calls
call sub1(1, ’abc’) ! type ignored
call sub1(1, 2_8) ! kind ignored
call sub1(1, (/ 2 /)) ! rank ignored

INCLUDE
Purpose

The INCLUDE compiler directive inserts a specified statement or a group of
statements into a program unit.

Syntax

name, char_literal_constant (delimiters are optional)
specifies filename, the name of an include file

You are not required to specify the full path of the wanted file, but must
specify the file suffix if one exists.

name must contain only characters allowable in the XL Fortran character
set. See “Characters” on page 5 for the character set supported by XL
Fortran.

char_literal_constant is a character literal constant.

n is the value the compiler uses to decide whether to include the file during
compilation. It can be any number from 1 through 255, and cannot specify
a kind type parameter. If you specify n, the compiler includes the file only

�� INCLUDE char_literal_constant
(name) n

��

Chapter 12. Directives (IBM extension) 513

if the number appears as a suboption in the -qci (conditional include)
compiler option. If you do not specify n, the compiler always includes the
file.

Conditional include allows you to selectively activate INCLUDE directives within
Fortran source during compilation. Specify the files to include using the -qci
compiler option.

In fixed source form, the INCLUDE compiler directive must start after column 6,
and can have a label.

You can add an inline comment to the INCLUDE line.

Rules

An included file can contain any complete Fortran source statements and compiler
directives, including other INCLUDE compiler directives. Recursive INCLUDE
compiler directives are not allowed. An END statement can be part of the included
group. The first and last included lines must not be continuation lines. The
statements in the include file are processed with the source form of the including
file.

If the SOURCEFORM directive appears in an include file, the source form reverts
to that of the including file once processing of the include file is complete. After
the inclusion of all groups, the resulting Fortran program must follow all of the
Fortran rules for statement order.

For an INCLUDE compiler directive with the left and right parentheses syntax, XL
Fortran translates the file name to lowercase unless the -qmixed compiler option is
on.

The file system locates the specified filename as follows:
v If the first nonblank character of filename is /, filename specifies an absolute file

name.
v If the first nonblank character is not /, the operating system searches directories

in order of decreasing priority:
– If you specify any -I compiler option, filename is searched for in the directories

specified.
– If the operating system cannot find filename then it searches:

- the current directory for file filename.
- the resident directory of the compiling source file for file filename.
- directory /usr/include for file filename.

Examples
INCLUDE ’/u/userid/dc101’ ! full absolute file name specified
INCLUDE ’/u/userid/dc102.inc’ ! INCLUDE file name has an extension
INCLUDE ’userid/dc103’ ! relative path name specified

INCLUDE (ABCdef) ! includes file abcdef

INCLUDE ’../Abc’ ! includes file Abc from parent directory
! of directory being searched

Related information
-qci Option in the XL Fortran Compiler Reference

514 XL Fortran: Language Reference for Big Endian Distributions

INDEPENDENT
Purpose

The INDEPENDENT directive, if used, must precede a DO loop, FORALL
statement, or FORALL construct. It specifies that each operation in the FORALL
statement or FORALL construct, can be executed in any order without affecting
the semantics of the program. It also specifies that each iteration of the DO loop,
can be executed in any order without affecting the semantics of the program.

Type

This directive only takes effect if you specify the -qsmp or -qhot compiler option.

Syntax

Rules

The first noncomment line (not including other directives) following the
INDEPENDENT directive must be a DO loop, FORALL statement, or the first
statement of a FORALL construct. This line cannot be an infinite DO or DO
WHILE loop. The INDEPENDENT directive applies only to the DO loop that is
immediately following the directive and not to any nested DO loops.

An INDEPENDENT directive can have at most one NEW clause and at most one
REDUCTION clause.

If the directive applies to a DO loop, no iteration of the loop can interfere with any
other iteration. Interference occurs in the following situations:
v Two operations that define, undefine, or redefine the same atomic object (data

that has no subobjects) interfere, unless the parent object appears in the NEW
clause or REDUCTION clause. You must define nested DO loop index variables
in the NEW clause.

v Definition, undefinition, or redefinition of an atomic object interferes with any
use of the value of the object. The exception is if the parent object appeared in
the NEW clause or REDUCTION clause.

v Any operation that causes the association status of a pointer to become defined
or undefined interferes with any reference to the pointer or any other operation
that causes the association status to become defined or undefined.

v Transfer of control outside the DO loop or execution of an EXIT, STOP, or
PAUSE statement interferes with all other iterations.

v If any two I/O operations associated with the same file or external unit interfere
with each other. The exceptions to this rule are:
– If the two I/O operations are two INQUIRE statements; or

�� �INDEPENDENT
, NEW (named_variable_list)
, REDUCTION (named_variable_list)

��

Chapter 12. Directives (IBM extension) 515

– If the two I/O operations are accessing distinct areas of a stream
access file; or

– If the two I/O operations are accessing distinct records of a direct access file.
v A change in the allocation status of an allocatable object between iterations

causes interference.

If the NEW clause is specified, the directive must apply to a DO loop. The NEW
clause modifies the directive and any surrounding INDEPENDENT directives by
accepting any assertions made by such directive(s) as true. It does this even if the
variables specified in the NEW clause are modified by each iteration of the loop.
Variables specified in the NEW clause behave as if they are private to the body of
the DO loop. That is, the program is unaffected if these variables (and any
variables associated with them) were to become undefined both before and after
each iteration of the loop.

Any variable you specify in the NEW clause or REDUCTION clause must not:
v Be a dummy argument
v Be a pointee
v Be use-associated or host-associated
v Be a common block variable
v Have either the SAVE or STATIC attribute
v Have either the POINTER or TARGET attribute
v Appear in an EQUIVALENCE statement

For FORALL, no combination of index values affected by the INDEPENDENT
directive assigns to an atomic storage unit that is required by another combination.
If a DO loop, FORALL statement, or FORALL construct all have the same body
and each is preceded by an INDEPENDENT directive, they behave the same way.

The REDUCTION clause asserts that updates to named variables will occur within
REDUCTION statements in the INDEPENDENT loop. Furthermore, the
intermediate values of the REDUCTION variables are not used within the parallel
section, other than in the updates themselves. Thus, the value of the REDUCTION
variable after the construct is the result of a reduction tree.

If you specify the REDUCTION clause, the directive must apply to a DO loop.
The only reference to a REDUCTION variable in an INDEPENDENT DO loop
must be within a reduction statement.

A REDUCTION variable must be of intrinsic type, but must not be of type
character. A REDUCTION variable must not be an allocatable array.

A REDUCTION variable must not occur in:
v A NEW clause in the same INDEPENDENT directive
v A NEW or REDUCTION clause in an INDEPENDENT directive in the body of

the following DO loop
v A FIRSTPRIVATE, PRIVATE or LASTPRIVATE clause in a PARALLEL DO

directive in the body of the following DO loop
v A PRIVATE clause in a PARALLEL SECTIONS directive in the body of the

following DO loop

A REDUCTION statement can have one of the following forms:

516 XL Fortran: Language Reference for Big Endian Distributions

where:

reduction_var_ref
is a variable or subobject of a variable that appears in a REDUCTION
clause

reduction_op
is one of: +, -, *, .AND., .OR., .EQV., .NEQV., or .XOR.

reduction_function
is one of: MAX, MIN, IAND, IOR, or IEOR

The following rules apply to REDUCTION statements:
1. A REDUCTION statement is an assignment statement that occurs in the range

of an INDEPENDENT DO loop. A variable in the REDUCTION clause must
only occur in a REDUCTION statement within the INDEPENDENT DO loop.

2. The two reduction_var_refs that appear in a REDUCTION statement must be
lexically identical.

3. The syntax of the INDEPENDENT directive does not allow you to designate
an array element or array section as a REDUCTION variable in the
REDUCTION clause. Although such a subobject may occur in a REDUCTION
statement, it is the entire array that is treated as a REDUCTION variable.

4. You cannot use the following form of the REDUCTION statement:

Examples

Example 1:
INTEGER A(10),B(10,12),F

!IBM* INDEPENDENT ! The NEW clause cannot be
FORALL (I=1:9:2) A(I)=A(I+1) ! specified before a FORALL

!IBM* INDEPENDENT, NEW(J)
DO M=1,10

J=F(M) ! ’J’ is used as a scratch
A(M)=J*J ! variable in the loop

!IBM* INDEPENDENT, NEW(N)
DO N=1,12 ! The first executable statement

�� reduction_var_ref = expr reduction_op reduction_var_ref ��

�� reduction_var_ref = reduction_var_ref reduction_op expr ��

�� reduction_var_ref = reduction_function (expr, reduction_var_ref) ��

�� reduction_var_ref = reduction_function (reduction_var_ref, expr) ��

�� reduction_var_ref = expr - reduction_var_ref ��

Chapter 12. Directives (IBM extension) 517

B(M,N)=M+N*N ! following the INDEPENDENT must
END DO ! be either a DO or FORALL

END DO
END

Example 2:
X=0

!IBM* INDEPENDENT, REDUCTION(X)
DO J = 1, M

X = X + J**2
END DO

Example 3:
INTEGER A(100), B(100, 100)

!IBM* INDEPENDENT, REDUCTION(A), NEW(J) ! Example showing an array used
DO I=1,100 ! for a reduction variable

DO J=1, 100
A(I)=A(I)+B(J, I)

END DO
END DO

Related information
v “Loop parallelization” on page 368
v “DO construct” on page 136
v “FORALL” on page 366
v -qdirective in the XL Fortran Compiler Reference

v -qhot in the XL Fortran Compiler Reference

v -qsmp compiler option in the XL Fortran Compiler Reference

#LINE
Purpose

The #line directive associates code that is created by cpp or any other Fortran
source code generator with input code created by the programmer. Because the
preprocessor may cause lines of code to be inserted or deleted, the #line directive
can be useful in error reporting and debugging because it identifies which lines in
the original source caused the preprocessor to generate the corresponding lines in
the intermediate file.

Syntax

The #line directive is a noncomment directive and follows the syntax rules for this
type of directive.

line_number
is a positive, unsigned integer literal constant without a KIND parameter.
You must specify line_number.

filename
is a character literal constant, with no kind type parameter. The filename
may specify a full or relative path. The filename as specified will be

�� #line line_number
filename

��

518 XL Fortran: Language Reference for Big Endian Distributions

recorded for use later. If you specify a relative path, when you debug the
program the debugger will use its directory search list to resolve the
filename.

Rules

The #line directive follows the same rules as other noncomment directives, with
the following exceptions:
v You cannot have inline comments on the same line as the #line directive.
v White space is optional between the # character and line in free source form.
v White space may not be embedded between the characters of the word line in

fixed or free source forms.
v The #line directive can start anywhere on the line in fixed source form.

The #line directive indicates the origin of all code following the directive in the
current file. Another #line directive will override a previous one.

If you supply a filename, the subsequent code in the current file will be as if it
originated from that filename. If you omit the filename, and no previous #line
directive with a specified filename exists in the current file, the code in the current
file is treated as if it originated from the current file at the line number specified. If
a previous #line directive with a specified filename does exist in the current file, the
filename from the previous directive is used.

line_number indicates the position, in the appropriate file, of the line of code
following the directive. Subsequent lines in that file are assumed to have a one to
one correspondence with subsequent lines in the source file until another #line
directive is specified or the file ends.

When XL Fortran invokes cpp for a file, the preprocessor will emit #line directives
unless you also specify the -d option.

Examples

The file test.F contains:
! File test.F, Line 1
#include "test.h"
PRINT*, "test.F Line 3"
...
PRINT*, "test.F Line 6"
#include "test.h"
PRINT*, "test.F Line 8"
END

The file test.h contains:
! File test.h line 1
RRINT*,1 ! Syntax Error
PRINT*,2

After the C preprocessor processes the file test.F with the default options:
#line 1 "test.F"
! File test.F, Line 1
#line 1 "test.h"
! File test.h Line 1
RRINT*,1 ! Syntax Error
PRINT*,2
#line 3 "test.F"

Chapter 12. Directives (IBM extension) 519

PRINT*, "test.F Line 3"
...
#line 6
PRINT*, "test.F Line 6"
#line 1 "test.h"
! File test.h Line 1
RRINT*,1 ! Syntax Error
PRINT*,2
#line 8 "test.F"
PRINT*, "test.F Line 8"
END

The compiler displays the following messages after it processes the file that is
created by the C preprocessor:
2 2 |RRINT*,1
!Syntax error

......a................
a - "test.h", line 2.6: 1515-019 (S) Syntax is incorrect.

4 2 |RRINT*,1 !Syntax error
......a................

a - "test.h", line 2.6: 1515-019 (S) Syntax is incorrect.

Related information
v -d option in the XL Fortran Compiler Reference

v Passing Fortran Files through the C Preprocessor in the XL Fortran Compiler Reference

LOOPID
Purpose

The LOOPID directive allows you to assign a unique identifier to loop within a
scoping unit. You can use the identifier to direct loop transformations. The
–qreport compiler option can use the identifier you create to provide reports on
loop transformations.

Syntax

name is an identifier that must be unique within the scoping unit.

Rules

The LOOPID directive must immediately precede a BLOCK_LOOP directive or
DO construct.

You must not specify a LOOPID directive more than once for a given loop.

You must not specify a LOOPID directive for DO constructs without control
statements, DO WHILE constructs, or an infinite DO.

Related information
v For additional methods of optimizing loops, see the BLOCK_LOOP, STREAM

UNROLL, UNROLL and the UNROLL_AND_FUSE directives.

�� LOOPID (name) ��

520 XL Fortran: Language Reference for Big Endian Distributions

MEM_DELAY
Purpose

The MEM_DELAY directive specifies how many delay cycles there will be for
specific loads, these specific loads are delinquent loads with a long memory access
latency due to cache misses.

When you specify which load is delinquent the compiler may take that information
and carry out optimizations such as data prefetch.

Syntax

delinquent_variable
Any data item that can legally be passed by reference to a subprogram.

cycles 32-bit literal integer value or equivalent PARAMETER.

Rules

The MEM_DELAY directive is placed immediately before a statement which
contains a specified memory reference.

cycles must be a compile time constant, typically either L1 miss latency or L2 miss
latency.

Examples
program mem1
integer::i,n
integer::a(20),b(400)

n=20
do i=1,n
!IBM* mem_delay(b(n*i),10)
a(i)=b(n*i)
end do;
end

NEW
Purpose

Use the NEW directive to specify which variables should be local in a PARALLEL
DO loop or a PARALLEL SECTIONS construct. This directive performs the same
function as the PRIVATE clause of the PARALLEL DO directive and PARALLEL
SECTIONS directive.

Class

The NEW directive only takes effect if you specify the -qsmp compiler option.

�� MEM_DELAY (delinquent_variable , cycles) ��

Chapter 12. Directives (IBM extension) 521

Syntax

Rules

The NEW directive must immediately follow either a PARALLEL DO directive or
a PARALLEL SECTIONS directive.

If you specify the NEW directive, you must specify the corresponding PARALLEL
DO or PARALLEL SECTIONS directive with no clauses.

If the NEW directive follows the PARALLEL DO directive, the first noncomment
line (not including other directives) following the NEW directive must be a DO
loop. This line cannot be an infinite DO or DO WHILE loop.

A variable name in the named_variable_list of the NEW directive has the same
restrictions as a variable name appearing in the PRIVATE clause of the PARALLEL
DO directive or a PRIVATE clause of the PARALLEL SECTIONS directive. See
the sections on the directive and the construct in the XL Fortran Optimization and
Programming Guide.

Examples
INTEGER A(10), C(10)
REAL B(10)
INTEGER FUNC(100)
!SMP$ PARALLEL DO
!SMP$ NEW I, TMP

DO I = 1, 10
TMP = A(I) + COS(B(I))
C(I) = TMP + FUNC(I)

END DO

NOFUNCTRACE
Purpose

The NOFUNCTRACE directive disables tracing for the procedure or module
whose declaration immediately follows the directive.

Syntax

Rules

The NOFUNCTRACE directive must appear directly before the declaration of a
procedure or a module. If the directive appears before a procedure declaration, it
applies to the procedure and all its internal procedures. If the directive appears
before a module declaration, it applies to all procedures in the module. The
NOFUNCTRACE directive can appear immediately before internal procedure
declarations.

�� NEW named_variable_list ��

�� NOFUNCTRACE ��

522 XL Fortran: Language Reference for Big Endian Distributions

Examples

The following example illustrates the use of the NOFUNCTRACE directive when
you compile with -qfunctrace:
! None of the procedures in module m will be traced
!IBM* NOFUNCTRACE
MODULE M
CONTAINS

SUBROUTINE modsub1
CALL internal1

CONTAINS
SUBROUTINE internal1
END SUBROUTINE internal1

END SUBROUTINE modsub1
END MODULE M

MODULE n
CONTAINS

! modsub2 and its internal procedure internal3 will be traced.
! internal procedure internal2 will not be traced.
SUBROUTINE modsub2

CALL internal2
CALL internal3

CONTAINS
!IBM* NOFUNCTRACE
SUBROUTINE internal2
END SUBROUTINE internal2

SUBROUTINE internal3
END SUBROUTINE internal3

END SUBROUTINE modsub2

! modsub3 and its internal procedure internal4 will not be traced.
!IBM* NOFUNCTRACE
SUBROUTINE modsub3

CALL internal4
CONTAINS

SUBROUTINE internal4
END SUBROUTINE internal4

END SUBROUTINE modsub3
END MODULE n

! The program and its internal procedure internal5 will not be traced.
!IBM* NOFUNCTRACE
PROGRAM nofunctrace

USE m
USE n
CALL modsub1
CALL modsub2
CALL modsub3
CALL internal5

CONTAINS
SUBROUTINE internal5
END SUBROUTINE internal5

END PROGRAM nofunctrace

Related information

See the XL Fortran Compiler Reference for details about the -qfunctrace compiler
option.

Chapter 12. Directives (IBM extension) 523

NOSIMD
Purpose

The NOSIMD directive prohibits the compiler from automatically generating
Vector Multimedia Extension (VMX) or Vector Scalar Extension (VSX) instructions
in the loop immediately following the directive, or in the FORALL construct.

Syntax

Rules

The first noncomment line (not including other directives) following the NOSIMD
directive must be a DO loop, FORALL statement, or a FORALL construct. This
line cannot be an infinite DO or DO WHILE loop. The NOSIMD directive applies
only to the DO loop, FORALL statement, or the FORALL construct that is
immediately following the directive and does not apply to any nested DO loops,
nested FORALL statement or construct, or nested DO loops generated by the
compiler for array language.

You can use the NOSIMD directive together with loop optimization and SMP
directives.

Examples
SUBROUTINE VEC (A, B)

REAL*8 A(200), B(200)
!IBM* NOSIMD
FORALL (N = 1:200), B(N) = B(N) / A(N)

END SUBROUTINE

Related information

Refer to the compiler option for information on controlling Vector support for an
entire application.

NOVECTOR
Purpose

The NOVECTOR directive prohibits the compiler from auto-vectorizing the loop
immediately following the directive. Auto-vectorization involves converting certain
operations performed in a loop and on successive array elements into a call to a
routine that computes several results simultaneously.

Syntax

�� NOSIMD ��

�� NOVECTOR ��

524 XL Fortran: Language Reference for Big Endian Distributions

Rules

The first noncomment line (not including other directives) following the
NOVECTOR directive must be a DO loop, FORALL statement, or a FORALL
construct. This line cannot be an infinite DO or DO WHILE loop. The
NOVECTOR directive applies only to the DO loop, FORALL statement or the
FORALL construct that is immediately following the directive and does not apply
to any nested DO loops, or nested FORALL construct or statement.

You can use the NOVECTOR directive together with loop optimization and SMP
directives.

Examples
SUBROUTINE VEC (A, B)

REAL*8 A(200), B(200)
!IBM* NOVECTOR
DO N = 1, 200

B(N) = B(N) / A(N)
END DO

END SUBROUTINE

Related information

Refer to the -qhot=vector compiler option for information on controlling
auto-vectorization for an entire application.

PERMUTATION
Purpose

The PERMUTATION directive specifies that the elements of each array that is
listed in the integer_array_name_list have no repeated values. This directive is useful
when you use array elements as subscripts for other array references.

The PERMUTATION directive only takes effect if you specify the -qsmp or -qhot
compiler option.

Syntax

integer_array_name
is an integer array with no repeated values.

Rules

The first noncomment line (not including other directives) that is following the
PERMUTATION directive must be a DO loop. This line cannot be an infinite DO
or DO WHILE loop. The PERMUTATION directive applies only to the DO loop
that is immediately following the directive, and not to any nested DO loops.

Examples
PROGRAM EX3

INTEGER A(100), B(100)
!IBM* PERMUTATION (A)

�� PERMUTATION (integer_array_name_list) ��

Chapter 12. Directives (IBM extension) 525

DO I = 1, 100
A(I) = I
B(A(I)) = B(A(I)) + A(I)

END DO
END PROGRAM EX3

Related information
v -qhot option in the XL Fortran Compiler Reference

v -qsmp compiler option in the XL Fortran Compiler Reference

v DO

@PROCESS
Purpose

The @PROCESS directive allows you to specify at the source level that a compiler
option affects only an individual compilation unit. The directive can override
options that you include in the configuration file, in the default settings, or on the
command line. Refer to the XL Fortran Compiler Reference for information on
limitations or restrictions for specifying a particular compiler option at the source
level.

Syntax

option is the name of a compiler option, without -q

suboption
is a suboption of a compiler option

Rules

In fixed source form, the @PROCESS directive can start in column 1 or after
column 6. In free source form, the @PROCESS directive can start in any column.

You cannot place a statement label or inline comment on the same line as an
@PROCESS compiler directive.

By default, any option settings you designate with the @PROCESS compiler
directive are effective only for the compilation unit in which the statement appears.
If the file has more than one compilation unit, the option returns to the original
setting before compilation of the next unit. Trigger constants you specify using the
DIRECTIVE option are in effect until the end of the file, or until processing
NODIRECTIVE.

The @PROCESS compiler directive must appear before the first statement of a
compilation unit. The only exceptions are for SOURCE and NOSOURCE compiler

�� �

,

@PROCESS option
(suboption_list)

��

526 XL Fortran: Language Reference for Big Endian Distributions

options, which you can specify in @PROCESS directives anywhere within the
compilation unit.

Related information

See Compiler Option Details in the XL Fortran Compiler Reference for details on
compiler options.

SNAPSHOT
Purpose

You can use the SNAPSHOT directive to specify a safe location where a
breakpoint can be set with a debug program, and provide a set of variables that
must remain visible to the debug program.

There can be a small reduction in performance at the point where the SNAPSHOT
directive is set, because the variables must be kept in memory for the debug
program to access. Variables made visible by the SNAPSHOT directive are
read-only. Undefined behavior will occur if these variables are modified through
the debugger. Use with discretion.

At high optimization levels, the SNAPSHOT directive does not consistently
preserve the contents of variables with a static storage class.

Syntax

named_variable
is a named variable that must be accessible in the current scope.

Rules

To use the SNAPSHOT directive, you must specify the -qdbg compiler option at
compilation.

Examples

Example 1: In the following example, the SNAPSHOT directive is used to monitor
the value of private variables.

INTEGER :: IDX
INTEGER :: OMP_GET_NUM_THREADS, OMP_GET_THREAD_NUM
INTEGER, ALLOCATABLE :: ARR(:)

! ...

!$OMP PARALLEL, PRIVATE(IDX)
!$OMP MASTER

ALLOCATE(ARR(OMP_GET_NUM_THREADS()))
!$OMP END MASTER
!$OMP BARRIER

IDX = OMP_GET_THREAD_NUM() + 1

!IBM* SNAPSHOT(IDX) ! The PRIVATE variable IDX is made visible

�� SNAPSHOT (named_variable_list) ��

Chapter 12. Directives (IBM extension) 527

! to the debugger.
ARR(IDX) = 2*IDX + 1

!$OMP END PARALLEL

Example 2: In the following example, the SNAPSHOT directive is used to monitor
the intermediate values in debugging the program.

SUBROUTINE SHUFFLE(NTH, XDAT)
INTEGER, INTENT(IN) :: NTH
REAL, INTENT(INOUT) :: XDAT(:)
INTEGER :: I_TH, IDX, PART(1), I, J, LB, UB
INTEGER :: OMP_GET_THREAD_NUM
INTEGER(8) :: Y=1
REAL :: TEMP

CALL OMP_SET_NUM_THREADS(NTH)
PART = UBOUND(XDAT)/NTH

!$OMP PARALLEL, PRIVATE(NUM_TH, I, J, LB, UB, IDX, TEMP), SHARED(XDAT)
NUM_TH = OMP_GET_THREAD_NUM() + 1
LB = (NUM_TH - 1)*PART(1) + 1
UB = NUM_TH*PART(1)

DO I=LB, UB
!$OMP CRITICAL

Y = MOD(65539_8*y, 2_8**31)
IDX = INT(REAL(Y)/REAL(2_8**31)*(UB - LB) + LB)

!SMP$ SNAPSHOT(i, y, idx, num_th, lb, ub)

!$OMP END CRITICAL
TEMP = XDAT(I)
XDAT(I) = XDAT(IDX)
XDAT(IDX) = TEMP

ENDDO

!SMP$ SNAPSHOT(TEMP) ! The user can examine the value
! of the TEMP variable

!$OMP END PARALLEL
END

Related information

See the XL Fortran Compiler Reference for details on the -g or -qdbg compiler option.

SOURCEFORM
Purpose

The SOURCEFORM compiler directive indicates that all subsequent lines are to be
processed in the specified source form until the end of the file is reached or until
an @PROCESS directive or another SOURCEFORM directive specifies a different
source form.

Syntax

�� SOURCEFORM (source) ��

528 XL Fortran: Language Reference for Big Endian Distributions

source is one of the following: FIXED, FIXED(right_margin), FREE(F90),
FREE(IBM), or FREE. FREE defaults to FREE(F90).

right_margin
is an unsigned integer specifying the column position of the right
margin. The default is 72. The maximum is 132.

Rules

The SOURCEFORM directive can appear anywhere within a file. An include file is
compiled with the source form of the including file. If the SOURCEFORM
directive appears in an include file, the source form reverts to that of the including
file once processing of the include file is complete.

The SOURCEFORM directive cannot specify a label.

Tip

Examples
@PROCESS DIRECTIVE(CONVERT*)

PROGRAM MAIN ! Main program not yet converted
A=1; B=2
INCLUDE ’freeform.f’
PRINT *, RESULT ! Reverts to fixed form
END

where file freeform.f contains:
!CONVERT* SOURCEFORM(FREE(F90))
RESULT = A + B

STREAM_UNROLL
Purpose

The STREAM_UNROLL directive instructs the compiler to apply the combined
functionality of software prefetch and loop unrolling to DO loops with a large
iteration count. Stream unrolling functionality optimizes DO loops to use multiple
streams. You can specify the STREAM_UNROLL directive for both inner and
outer DO loops, and the compiler will use an optimal number of streams to
perform stream unrolling where applicable. Applying the STREAM_UNROLL
directive to a loop with dependencies will produce unexpected results.

To modify your existing files to Fortran 90 free source form where include files exist:

1. Convert your include files to Fortran 90 free source form: add a SOURCEFORM
directive to the top of each include file. For example:

!CONVERT*SOURCEFORM (FREE(F90))

Define your own trigger_constant for this conversion process.

2. Once all the include files are converted, convert the .f files. Add the same
SOURCEFORM directive to the top of each file, or ensure that the .f file is compiled
with -qfree=f90.

3. Once all files have been converted, you can disable the processing of the directives
with the -qnodirective compiler option. Ensure that -qfree=f90 is used at compile
time. You can also delete any unnecessary SOURCEFORM directives.

Chapter 12. Directives (IBM extension) 529

Syntax

unroll_factor
The unroll_factor must be a positive scalar integer constant expression. An
unroll_factor of 1 disables loop unrolling. If you do not specify an
unroll_factor, the compiler determines the optimal number to perform
stream unrolling.

Rules

You must specify one of the following compiler options to enable loop unrolling:
v –O3 or higher optimization level
v -qhot compiler option
v -qsmp compiler option

Note that if the -qstrict option is in effect, no stream unrolling will occur. If you
want to enable stream unrolling with the -qhot option alone, you must also specify
-qstrict=none.

The STREAM_UNROLL directive must immediately precede a DO loop.

You must not specify the STREAM_UNROLL directive more than once, or
combine the directive with UNROLL, NOUNROLL, UNROLL_AND_FUSE, or
NOUNROLL_AND_FUSE directives for the same DO construct.

You must not specify the STREAM_UNROLL directive for a DO WHILE loop or
an infinite DO loop.

Examples

The following is an example of how STREAM_UNROLL can increase
performance.

integer, dimension(1000) :: a, b, c
integer i, m, n

!IBM* stream_unroll(4)
do i =1, n

a(i) = b(i) + c(i)
enddo
end

An unroll factor reduces the number of iterations from n to n/4, as follows:
m = n/4
do i =1, n/4

a(i) = b(i) + c(i)
a(i+m) = b(i+m) + c(i+m)
a(i+2*m) = b(i+2*m) + c(i+2*m)
a(i+3*m) = b(i+3*m) + c(i+3*m)

enddo

The increased number of read and store operations are distributed among a
number of streams determined by the compiler, reducing computation time and
boosting performance.

�� STREAM_UNROLL
(unroll_factor)

��

530 XL Fortran: Language Reference for Big Endian Distributions

Related information
v For further information on using prefetch techniques in XL Fortran see the

PREFETCH directive set.
v For additional methods on optimizing loops, see the BLOCK_LOOP, LOOPID,

UNROLL and the UNROLL_AND FUSE directives.

SUBSCRIPTORDER
Purpose

The SUBSCRIPTORDER directive rearranges the subscripts of an array. This
results in a new array shape, since the directive changes the order of array
dimensions in the declaration. All references to the array are correspondingly
rearranged to match the new array shape.

Used with discretion, the SUBSCRIPTORDER directive may improve performance
by increasing the number of cache hits and the amount of data prefetching. You
may have to experiment with this directive until you find the arrangement that
yields the most performance benefits. You may find SUBSCRIPTORDER
especially useful when porting code originally intended for a non-cached hardware
architecture.

In a cached hardware architecture, such as the PowerPC, an entire cache line of
data is often loaded into the processor in order to access each data element.
Changing the storage arrangement can be used to ensure that consecutively
accessed elements are stored contiguously. This may result in a performance
improvement, as there are more element accesses for each cache line referenced.
Additionally, contiguous arrays which are consecutively accessed may help to
better exploit the processor's prefetching facility.

Syntax

where subscriptorder_array is:

array name
is the name of an array.

subscriptorder_number
is an integer constant.

�� �

,

SUBSCRIPTORDER (subscriptorder_array) ��

�� �

,

array_name (subscriptorder_number) ��

Chapter 12. Directives (IBM extension) 531

Rules

The SUBSCRIPTORDER directive must appear in a scoping unit preceding all
declarations (after all USE statements) and references to the arrays in the
subscriptorder_array list. The directive only applies to that scoping unit and must
contain at least one array. If multiple scoping units share an array, then you must
apply the SUBSCRIPTORDER directive to each of the applicable scoping units
with identical subscript arrangements. Examples of methods of array sharing
between scoping units include COMMON statements, USE statements, and
subroutine arguments.

The lowest subscript number in a subscriptorder_number list must be 1. The highest
number must be equal to the number of dimensions in the corresponding array.
Every integer number between these two limits, including the limits, signifies a
subscript number prior to rearrangement and must be included exactly once in the
list.

You must not apply a SUBSCRIPTORDER directive multiple times to a particular
array in a scoping unit.

You must maintain array shape conformance in passing arrays as actual arguments
to elemental procedures, if one of the arrays appears in a SUBSCRIPTORDER
directive. You must also adjust the actual arguments of the SHAPE, SIZE,
LBOUND, and UBOUND inquiry intrinsic procedures and of most
transformational intrinsic procedures.

You must manually modify data in input data files and in explicit initializations for
arrays that appear in the SUBSCRIPTORDER directive.

On arrays to which the COLLAPSE directive is also applied, the COLLAPSE
directive always refers to the pre-subscriptorder dimension numbers.

You must not rearrange the last dimension of an assumed-size array.

Examples

Example 1: In the following example, the SUBSCRIPTORDER directive is applied
to an explicit-shape array and swaps the subscripts in every reference to the array,
without affecting the program output.
!IBM* SUBSCRIPTORDER(A(2,1))

INTEGER COUNT/1/, A(3,2)

DO J = 1, 3
DO K = 1, 2

! Inefficient coding: innermost index is accessing rightmost
! dimension. The subscriptorder directive compensates by
! swapping the subscripts in the array’s declaration and
! access statements.
!

A(J,K) = COUNT
PRINT*, J, K, A(J,K)

COUNT = COUNT + 1
END DO

END DO

Without the directive above, the array shape is (3,2) and the array elements would
be stored in the following order:

532 XL Fortran: Language Reference for Big Endian Distributions

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

With the directive, the array shape is (2,3) and the array elements are stored in the
following order:
A(1,1) A(2,1) A(1,2) A(2,2) A(1,3) A(2,3)

Related information

For more information on the COLLAPSE directive, see “COLLAPSE” on page 506

UNROLL
Purpose

The UNROLL directive instructs the compiler to attempt loop unrolling where
applicable. Loop unrolling replicates the body of the DO loop to reduce the
number of iterations required to complete the loop.

You can control loop unrolling for an entire file using the -qunroll compiler option.
Specifying the directive for a particular DO loop always overrides the compiler
option.

Syntax

unroll_factor
The unroll_factor must be a positive scalar integer constant expression. An
unroll_factor of 1 disables loop unrolling. If you do not specify an
unroll_factor, loop unrolling is compiler determined.

Rules

You must specify one of the following compiler options to enable loop unrolling:
v –O3 or higher optimization level
v -qhot compiler option
v -qsmp compiler option

The UNROLL directive must immediately precede a DO loop.

You must not specify the UNROLL directive more than once, or combine the
directive with NOUNROLL, STREAM_UNROLL, UNROLL_AND_FUSE, or
NOUNROLL_AND_FUSE directives for the same DO construct.

You must not specify the UNROLL directive for a DO WHILE loop or an infinite
DO loop.

Examples

Example 1: In this example, the UNROLL(2) directive is used to tell the compiler
that the body of the loop can be replicated so that the work of two iterations is

�� UNROLL
(unroll_factor)

NOUNROLL

��

Chapter 12. Directives (IBM extension) 533

performed in a single iteration. Instead of performing 1000 iterations, if the
compiler unrolls the loop, it will only perform 500 iterations.
!IBM* UNROLL(2)

DO I = 1, 1000
A(I) = I

END DO

If the compiler chooses to unroll the previous loop, the compiler translates the loop
so that it is essentially equivalent to the following:

DO I = 1, 1000, 2
A(I) = I
A(I+1) = I + 1

END DO

Example 2: In the first DO loop, UNROLL(3) is used. If unrolling is performed,
the compiler will unroll the loop so that the work of three iterations is done in a
single iteration. In the second DO loop, the compiler determines how to unroll the
loop for maximum performance.

PROGRAM GOODUNROLL

INTEGER I, X(1000)
REAL A, B, C, TEMP, Y(1000)

!IBM* UNROLL(3)
DO I = 1, 1000

X(I) = X(I) + 1
END DO

!IBM* UNROLL
DO I = 1, 1000

A = -I
B = I + 1
C = I + 2
TEMP = SQRT(B*B - 4*A*C)
Y(I) = (-B + TEMP) / (2*A)

END DO
END PROGRAM GOODUNROLL

Related information
v For additional methods of optimizing loops, see the BLOCK_LOOP, LOOPID,

STREAM UNROLL and the UNROLL_AND_FUSE directives.

UNROLL_AND_FUSE
Purpose

The UNROLL_AND_FUSE directive instructs the compiler to attempt a loop
unroll and fuse where applicable. Loop unrolling replicates the body of multiple
DO loops and combines the necessary iterations into a single unrolled loop. Using
a fused loop can minimize the required number of loop iterations, while reducing
the frequency of cache misses. Applying the UNROLL_AND_FUSE directive to a
loop with dependencies will produce unexpected results.

534 XL Fortran: Language Reference for Big Endian Distributions

Syntax

unroll_factor
The unroll_factor must be a positive scalar integer constant expression. An
unroll_factor of 1 disables loop unrolling. If you do not specify an
unroll_factor, loop unrolling is compiler determined.

Rules

You must specify one of the following compiler options to enable loop unrolling:
v –O3 or higher optimization level
v -qhot compiler option
v -qsmp compiler option

Note that if the -qstrict option is in effect, no loop unrolling will occur. If you want
to enable loop unrolling with the -qhot option alone, you must also specify
-qnostrict.

The UNROLL_AND_FUSE directive must immediately precede a DO loop.

You must not specify the UNROLL_AND_FUSE directive for the innermost DO
loop.

You must not specify the UNROLL_AND_FUSE directive more than once, or
combine the directive with NOUNROLL_AND_FUSE, NOUNROLL, UNROLL, or
STREAM_UNROLL directives for the same DO construct.

You must not specify the UNROLL_AND_FUSE directive for a DO WHILE loop
or an infinite DO loop.

Examples

Example 1: In the following example, the UNROLL_AND_FUSE directive
replicates and fuses the body of the loop. This reduces the number of cache misses
for Array B.

INTEGER, DIMENSION(1000, 1000) :: A, B, C
!IBM* UNROLL_AND_FUSE(2)

DO I = 1, 1000
DO J = 1, 1000

A(J,I) = B(I,J) * C(J,I)
END DO

END DO
END

The DO loop below shows a possible result of applying the UNROLL_AND_FUSE
directive.

�� UNROLL_AND_FUSE
(unroll_factor)

NOUNROLL_AND_FUSE

��

Chapter 12. Directives (IBM extension) 535

DO I = 1, 1000, 2
DO J = 1, 1000

A(J,I) = B(I,J) * C(J,I)
A(J,I+1) = B(I+1, J) * C(J, I+1)

END DO
END DO

Example 2: The following example uses multiple UNROLL_AND_FUSE directives:
INTEGER, DIMENSION(1000, 1000) :: A, B, C, D, H

!IBM* UNROLL_AND_FUSE(4)
DO I = 1, 1000

!IBM* UNROLL_AND_FUSE(2)
DO J = 1, 1000

DO k = 1, 1000
A(J,I) = B(I,J) * C(J,I) + D(J,K)*H(I,K)

END DO
END DO

END DO
END

Related information
v For additional methods of optimizing loops, see the BLOCK_LOOP, LOOPID,

STREAM UNROLL and the UNROLL directives.

536 XL Fortran: Language Reference for Big Endian Distributions

Chapter 13. Hardware-specific directives

This section provides an alphabetical reference to hardware-specific compiler
directives. Unless otherwise noted, a directive will function on any supported
hardware. This section contains the following categories:

Cache control

CACHE_ZERO
Purpose

The CACHE_ZERO directive invokes the machine instruction, data cache block set
to zero (dcbz). This instruction sets the data cache block corresponding to the
variables you specify to zero. Use this directive with discretion.

Syntax

cv_var is a variable associated with the cache block that is set to zero. The variable
must be a data object with a determinable storage address. The variable
cannot be a procedure name, subroutine name, module name,

F2008 submodule name F2008 , function name, constant, label,
zero-sized string, or an array with vector subscripts.

Examples

In the following example, assume that array ARRA has already been loaded into a
cache block that you want to set to zero. The data in the cache block is then set to
zero.

real(4) :: arrA(2**5)
!
!IBM* CACHE_ZERO(arrA(1)) ! set data in cache block to zero

DCBF
Purpose

The DCBF directive copies a modified cache block to main memory and
invalidates the copy in the data cache. If the cache block containing variable is in
the data cache and is modified, it is copied to main memory.

Syntax

�� CACHE_ZERO (cv_var_list) ��

© Copyright IBM Corp. 1996, 2014 537

variable
any data item that can be passed by reference to a subprogram, except for
a named constant, zero-length array, or an array section with vector
subscript.

DCBFL
Purpose

The DCBFL directive flushes the cache line at the specified prefetch variable from
the L1 data cache only and ensures that the latest version of the target storage
block is still in L2 but no longer in L1.

Syntax

variable
any data item that can be passed by reference to a subprogram, except for
a named constant, zero-length array, or an array section with vector
subscript.

DCBFLP
Purpose

The DCBFLP directive flushes the cache line at the address from the primary data
cache of a single processor.

Syntax

variable
any data item that can be passed by reference to a subprogram, except for
a named constant, zero-length array, or an array section with vector
subscript.

DCBST
Purpose

The DCBST directive copies a modified cache block to main memory. If the cache
block containing variable is in the data cache and is modified, it is copied to main
memory.

�� DCBF (variable) ��

�� DCBFL (variable) ��

�� DCBFLP (variable) ��

538 XL Fortran: Language Reference for Big Endian Distributions

Syntax

variable
any data item that can be passed by reference to a subprogram, except for
a named constant, zero-length array, or an array section with vector
subscript.

EIEIO
Purpose

Enforce In-order Execution of Input/Output (EIEIO).

The EIEIO directive allows you to specify that all I/O storage access instructions
preceding the directive complete before any I/O access instruction subsequent to
the directive can begin. Use EIEIO when managing shared data instruction where
the execution order of load/store access is significant.

EIEIO can provide the necessary functionality for controlling I/O stores without
the cost to performance that can occur with other synchronization instructions.

Syntax

ISYNC
Purpose

The ISYNC directive enables you to discard any prefetched instructions after all
preceding instructions complete. Subsequent instructions are fetched or refetched
from storage and execute in the context of previous instructions. The directive only
affects the processor that executes ISYNC.

Syntax

LIGHT_SYNC
Purpose

The LIGHT_SYNC directive ensures that all stores prior to LIGHT_SYNC
complete before any new instructions can be executed on the processor that
executed the LIGHT_SYNC directive. This allows you to synchronize between

�� DCBST (variable) ��

�� EIEIO ��

�� ISYNC ��

Chapter 13. Hardware-specific directives 539

multiple processors with minimal performance impact, as LIGHT_SYNC does not
wait for confirmation from each processor.

Syntax

PREFETCH
The PREFETCH directive instructs the compiler to load specific data from main
memory into the cache before the data is referenced. Some prefetching can be done
automatically by hardware, but because compiler-assisted software prefetching can
use information directly from your source code, specifying the directive can
significantly reduce the number of cache misses.

Rules

When you prefetch a variable, the memory block that includes the variable address
is loaded into the cache. A memory block is equal to the size of a cache line.
Because the variable you are loading into the cache may appear anywhere within
the memory block, you may not be able to prefetch all the elements of an array.

These directives may appear anywhere in your source code where executable
constructs may appear.

These directives can add run-time overhead to your program. Therefore you
should use the directives only where necessary.

To maximize the effectiveness of the prefetch directives, it is recommended that
you specify the LIGHT_SYNC directive after a single prefetch or at the end of a
series of prefetches.

Related information

For information on applying prefetch techniques to loops with a large iteration
count, see the STREAM_UNROLL directive.

DCBTSTT
Purpose

The DCBTSTT directive fetches the block of memory that contains the specified
address into the data cache. Store transient touch provides a hint describing a
block that the program might perform a store access to. This directive is valid only
on POWER7 processors or higher.

Syntax

�� LIGHT_SYNC ��

540 XL Fortran: Language Reference for Big Endian Distributions

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. This variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-sized array, or array with a vector subscript.

DCBTT
Purpose

The DCBTT directive loads the block of memory that contains the specified
address into the L1 data cache. This directive is valid only on POWER7 processors
or higher.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. This variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-sized array, or array with a vector subscript.

DEFAULT_PREFETCH_DEPTH
Purpose

The DEFAULT_PREFETCH_DEPTH directive defines a prefetch depth for
hardware-detected and software-defined streams. This directive takes effect in one
of the following cases:
v When 0 is specified for the prefetch depth
v When __dcbt or __dcbtst with TH=1010 is not used

Syntax

Note: The directive is valid only when -qarch is set to target POWER8™

processors.

�� DCBTSTT (prefetch_variable) ��

�� DCBTT (prefetch_variable) ��

�� DEFAULT_PREFETCH_DEPTH (prefetch_depth) ��

Chapter 13. Hardware-specific directives 541

prefetch_depth

Must be a scalar and of type integer with a value from 0 to 7. It is a
relative value with the defined levels as follows:

Table 55. Urgency

Integer
value Urgency

0 default

1 not urgent

2 the least urgent

3 less urgent

4 medium

5 urgent

6 more urgent

7 the most urgent

DEPTH_ATTAINMENT_URGENCY
Purpose

The DEPTH_ATTAINMENT_URGENCY directive sets the urgency of reaching the
prefetch depth for hardware-detected streams.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.

urgency

Must be a scalar and of type integer with a value from 0 to 7. It is a
relative value with the defined levels as follows:

Table 56. Urgency

Integer
value Urgency

0 Default

1 Not urgent

2 The least urgent

3 Less urgent

4 Medium

5 Urgent

6 More urgent

7 The most urgent

�� DEPTH_ATTAINMENT_URGENCY (urgency) ��

542 XL Fortran: Language Reference for Big Endian Distributions

HARDWARE_TRANSIENT_ENABLE
Purpose

The HARDWARE_TRANSIENT_ENABLE directive enables or disables the
transient attribute for hardware-detected streams.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.
If you want the Data Stream Control Register (DSCR) to apply the transient
attribute to streams, set at least two of the four enabling built-in functions. Set one
function to choose a type of access (load or store), and set another one to choose a
type of prefetching (software-defined or hardware-detected).

flag A scalar logical expression. The value .FALSE. disables the transient
attribute for hardware-detected streams. The value .TRUE. enables the
transient attribute for hardware-detected streams.

HARDWARE_UNIT_COUNT_ENABLE
Purpose

The HARDWARE_UNIT_COUNT_ENABLE directive enables or disables the unit
count for hardware-detected streams. The unit count is a scalar and of type integer
with a value from 0 to 1023, which indicates the number of cache lines.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.

flag A scalar logical expression. The value .TRUE. enables the unit count for
hardware-detected streams. The value .FALSE. disables the unit count for
hardware-detected streams.

LOAD_STREAM_DISABLE
Purpose

The LOAD_STREAM_DISABLE directive disables hardware detection and the
initiation of loading streams.

Syntax

�� HARDWARE_TRANSIENT_ENABLE (flag) ��

�� HARDWARE_UNIT_COUNT_ENABLE (flag) ��

Chapter 13. Hardware-specific directives 543

Note: The directive is valid only when -qarch is set to target POWER8 processors.

flag A scalar logical expression. The value .FALSE. disables the hardware
detection and the initiation of loading streams. The value .TRUE. enables
the hardware detection and the initiation of loading streams.

LOAD_TRANSIENT_ENABLE
Purpose

The LOAD_TRANSIENT_ENABLE directive enables or disables the transient
attribute for load streams.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.
If you want the Data Stream Control Register (DSCR) to apply the transient
attribute to streams, set at least two of the four enabling built-in functions. Set one
function to choose a type of access (load or store), and set another one to choose a
type of prefetching (software-defined or hardware-detected).

flag A scalar logical expression. The value .TRUE. enables the transient attribute
for load streams. The value .FALSE. disables the transient attribute for load
streams.

PARTIAL_DCBT
Purpose

The PARTIAL_DCBT directive loads half of the cache line that contains the
specified address into the L3 data cache. This directive is valid only on POWER7
processors or higher.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. This variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule

�� LOAD_STREAM_DISABLE (flag) ��

�� LOAD_TRANSIENT_ENABLE (flag) ��

�� PARTIAL_DCBT (prefetch_variable) ��

544 XL Fortran: Language Reference for Big Endian Distributions

name F2008 , function name, literal constant, label, zero-sized string,
zero-sized array, or array with a vector subscript.

PREFETCH_BY_LOAD
Purpose

The PREFETCH_BY_LOAD directive prefetches data into the cache by way of a
load instruction. PREFETCH_BY_LOAD enables hardware-assisted prefetching.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, constant, label, zero-sized string, or an array
with a vector subscript.

PREFETCH_BY_STREAM
Purpose

The PREFETCH_BY_STREAM prefetch technique uses the processor to recognize
sequential access to adjacent cache lines and then requests anticipated lines from
deeper levels of the memory hierarchy. When repeated references to main memory
are made, this technique establishes a path or stream, which increases the depth of
the prefetch until enough lines are loaded into the cache. To fetch data from
decremental memory addresses, use the PREFETCH_BY_STREAM_BACKWARD
directive. To fetch data from incremental memory addresses, use the
PREFETCH_BY_STREAM_FORWARD directive. The use of this streamed prefetch
to load data from main memory into the cache can reduce or eliminate load
latency.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,

�� PREFETCH_BY_LOAD (prefetch_variable_list) ��

�� PREFETCH_BY_STREAM_BACKWARD (prefetch_variable) ��

�� PREFETCH_BY_STREAM_FORWARD (prefetch_variable) ��

Chapter 13. Hardware-specific directives 545

including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, constant, label, zero-sized string, or an array
with a vector subscript.

PREFETCH_FOR_LOAD
Purpose

The PREFETCH_FOR_LOAD directive prefetches data into the cache for reading
by way of a cache prefetch instruction.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, constant, label, zero-sized string, or an array
with a vector subscript.

PREFETCH_FOR_STORE
Purpose

The PREFETCH_FOR_STORE directive prefetches data into the cache for writing
by way of a cache prefetch instruction.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, constant, label, zero-sized string, or an array
with a vector subscript.

PREFETCH_GET_DSCR_REGISTER
Purpose

The PREFETCH_GET_DSCR_REGISTER intrinsic procedure returns the current
value of the Data Stream Control Register (DSCR). The DSCR is made accessible
for controlling data stream prefetch and the speed of the ramp.

�� PREFETCH_FOR_LOAD (prefetch_variable_list) ��

�� PREFETCH_FOR_STORE (prefetch_variable_list) ��

546 XL Fortran: Language Reference for Big Endian Distributions

Note: The intrinsic procedure is valid only when -qarch is set to target POWER8
processors.

Class

Function

Argument type and attributes

None

Result type and attributes

The result is of type INTEGER (8).

PREFETCH_SET_DSCR_REGISTER(VALUE)
Purpose

The PREFETCH_SET_DSCR_REGISTER intrinsic procedure sets the Data Stream
Control Register (DSCR) value to the input value. The DSCR is made accessible for
controlling data stream prefetch and the speed of the ramp.

Note: The intrinsic procedure is valid only when -qarch is set to target POWER8
processors.

Class

Subroutine

Argument type and attributes

VALUE
An INTENT(IN) INTEGER (8).

Result type and attributes

None

PROTECTED_STORE_STREAM_SET
Purpose

The PROTECTED_STORE_STREAM_SET_FORWARD directive establishes a
limited-length protected store stream that begins with the cache line at the
specified prefetch variable and fetches from increasing memory addresses. The
PROTECTED_STORE_STREAM_SET_BACKWARD directive fetches from
decreasing memory addresses.

Syntax

�� PROTECTED_STORE_STREAM_SET_FORWARD (prefetch_variable , stream_ID) ��

Chapter 13. Hardware-specific directives 547

Note: Valid for POWER6® processors only.

Note: Valid for POWER6 processors only.

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-length array, or array with a vector subscript.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER6 processors, it can be any number from 0 to 15.

PROTECTED_STREAM_COUNT
Purpose

The PROTECTED_STREAM_COUNT directive sets the number of cache lines for
the specified limited-length stream.

Syntax

Note: Valid only when -qarch is set to target POWER5 processors or higher.

unit_count
is the number of cache lines for the limited-length protected stream. It
must be scalar and of type integer. It can be any number from 0 to 1023.
For a stream that is larger than 1024 cache lines, use the
PROTECTED_UNLIMITED_STREAM directives instead of the
PROTECTED_STREAM directives.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER5 processors, it can be any number from 0 to 7, for POWER6
processors any number from 0 to 15, and for POWER7 and POWER8
processors any number from 0 to 11.

PROTECTED_STREAM_COUNT_DEPTH
Purpose

The PROTECTED_STREAM_COUNT_DEPTH directive sets the number of cache
lines and the prefetch depth for the specified limited-length stream.

�� PROTECTED_STORE_STREAM_SET_BACKWARD (prefetch_variable , stream_id) ��

�� PROTECTED_STREAM_COUNT (unit_count , stream_id) ��

548 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Note: Valid only when -qarch is set to target POWER6 processors or higher.

unit_count
is the number of cache lines for the limited-length protected stream. It
must be scalar and of type integer. It can be any number from 0 to 1023.
For a stream that is larger than 1024 cache lines, use the
PROTECTED_UNLIMITED_STREAM directives instead of the
PROTECTED_STREAM directives.

prefetch_depth

can be specified by either an integer variable or a numeric literal ranging
from 0 to 7. It is a relative value with the levels defined qualitatively as
follows:

Table 57. Prefetch depth

Integer value Depth

0 default

1 none

2 shallowest

3 shallow

4 medium

5 deep

6 deeper

7 deepest

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER6 processors, it can be any number from 0 to 15, and for
POWER7 and POWER8 processors any number from 0 to 11.

PROTECTED_STREAM_GO
Purpose

The PROTECTED_STREAM_GO directive starts to prefetch all limited-length
streams.

Syntax

Note: Valid only when -qarch is set to target POWER5 processors or higher.

�� PROTECTED_STREAM_COUNT_DEPTH (unit_count , prefetch_depth , stream_id) ��

�� PROTECTED_STREAM_GO ��

Chapter 13. Hardware-specific directives 549

PROTECTED_STREAM_SET
Purpose

The PROTECTED_STREAM_SET_FORWARD directive establishes a
limited-length protected stream that begins with the cache line at the specified
prefetch variable and fetches from increasing memory addresses. The
PROTECTED_STREAM_SET_BACKWARD directive fetches from decreasing
memory addresses.

Syntax

Note: Valid for POWER5 processors or higher.

Note: Valid for POWER5 processors or higher.

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-length array, or array with a vector subscript.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER5 processors, it can be any number from 0 to 7, for POWER6
processors any number from 0 to 15, and for POWER7 and POWER8
processors any number from 0 to 11.

PROTECTED_STREAM_STRIDE
Purpose

The PROTECTED_STREAM_STRIDE directive sets the distance between each
element of the specified prefetch stream. This directive is valid only on POWER7
processors or higher.

Syntax

address_offset
is the word-offset of the first unit of the stream to be prefetched, that is,

�� PROTECTED_STREAM_SET_FORWARD (prefetch_variable , stream_ID) ��

�� PROTECTED_STREAM_SET_BACKWARD (prefetch_variable , stream_id) ��

�� PROTECTED_STREAM_STRIDE (address_offset, stride, stream_id) ��

550 XL Fortran: Language Reference for Big Endian Distributions

the number of words away from the start of a cache line that the address
of the first unit is. This variable must be scalar and of type integer. Here is
an example of how to acquire address_offset:

i8 = LOC(variable_name)

address_offset = ISHFT(IAND(i8,127_8),-2)

i8 is of type INTEGER(8) and address_offset is of type INTEGER(4) and
variable_name can be of any type.

stride is the distance in bytes between each element of the prefetch stream in
word size. This variable must be scalar and of type integer and should be
in the range of 0 to 262143.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER7 and POWER8 processors it can be any number from 0 to 11.

PROTECTED_STREAM_STOP
Purpose

The PROTECTED_STREAM_STOP directive stops prefetching the specified
protected stream.

Syntax

Note: Valid only when -qarch is set to target POWER5 processors or higher.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER5 processors, it can be any number from 0 to 7, for POWER6
processors any number from 0 to 15, and for POWER7 and POWER8
processors any number from 0 to 11.

PROTECTED_STREAM_STOP_ALL
Purpose

The PROTECTED_STREAM_STOP_ALL directive stops prefetching all protected
streams.

Syntax

Note: Valid only when -qarch is set to target POWER5 processors or higher.

�� PROTECTED_STREAM_STOP (stream_id) ��

�� PROTECTED_STREAM_STOP_ALL ��

Chapter 13. Hardware-specific directives 551

PROTECTED_UNLIMITED_STORE_STREAM_SET
Purpose

The PROTECTED_UNLIMITED_STORE_STREAM_SET_FORWARD directive
establishes an unlimited-length protected store stream that begins with the cache
line at the specified prefetch variable and fetches from increasing memory
addresses. The PROTECTED_UNLIMITED_STORE_STREAM_SET_BACKWARD
directive fetches from decreasing memory addresses.

Syntax

Note: Valid for POWER6 processors only.

Note: Valid for POWER6 processors only.

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-length array, or array with a vector subscript.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER6 processors, it can be any number from 0 to 15.

PROTECTED_UNLIMITED_STREAM_SET
Purpose

The PROTECTED_UNLIMITED_STREAM_SET_FORWARD directive establishes
an unlimited-length protected stream that begins with the cache line at the
specified prefetch variable and fetches from increasing memory addresses. The
PROTECTED_UNLIMITED_STREAM_SET_BACKWARD directive fetches from
decreasing memory addresses.

Syntax

Note: Valid for POWER5 processors or higher.

�� PROTECTED_UNLIMITED_STORE_STREAM_SET_FORWARD (prefetch_variable , stream_id) ��

�� PROTECTED_UNLIMITED_STORE_STREAM_SET_BACKWARD (prefetch_variable , stream_id) ��

�� PROTECTED_UNLIMITED_STREAM_SET_FORWARD (prefetch_variable , stream_id) ��

552 XL Fortran: Language Reference for Big Endian Distributions

Note: Valid for POWER5 processors or higher.

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-length array, or array with a vector subscript.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER5 processors, it can be any number from 0 to 7, for POWER6
processors any number from 0 to 15, and for POWER7 and POWER8
processors any number from 0 to 11.

PROTECTED_UNLIMITED_STREAM_SET_GO
Purpose

The PROTECTED_UNLIMITED_STREAM_SET_GO_FORWARD directive
establishes an unlimited-length protected stream that begins with the cache line at
the specified prefetch variable. This directive fetches the data from increasing
memory addresses. The
PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD directive fetches
from decreasing memory addresses.

Syntax

prefetch_variable
is a variable to be prefetched. The variable must be a data object with a
determinable storage address. The variable can be of any data type,
including intrinsic and derived data types. The variable cannot be a
procedure name, subroutine name, module name, F2008 submodule
name F2008 , function name, literal constant, label, zero-sized string,
zero-length array, or array with a vector subscript.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For PowerPC 970 and POWER5 processors, it can be any number from 0 to
7. For POWER6 processors, it can be any number from 0 to 15. For
POWER7 processors or higher, it can be any number from 0 to 11.

�� PROTECTED_UNLIMITED_STREAM_SET_BACKWARD (prefetch_variable , stream_id) ��

�� PROTECTED_UNLIMITED_STREAM_SET_GO_FORWARD (prefetch_variable , stream_id) ��

�� PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD (prefetch_variable , stream_id) ��

Chapter 13. Hardware-specific directives 553

SET_PREFETCH_UNIT_COUNT
Purpose

The SET_PREFETCH_UNIT_COUNT directive sets the number of units in data
stream.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.

count The number of cache lines. Must be a scalar of type integer with a value
from 0 to 1023.

SOFTWARE_TRANSIENT_ENABLE
Purpose

The SOFTWARE_TRANSIENT_ENABLE directive enables or disables the
transient attribute for software-defined streams.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.
If you want the Data Stream Control Register (DSCR) to apply the transient
attribute to streams, set at least two of the four enabling built-in functions. Set one
function to choose a type of access (load or store), and set another one to choose a
type of prefetching (software-defined or hardware-detected).

flag A scalar logical expression. The value .TRUE. enables the transient attribute
for software-defined streams. The value .FALSE. disables the transient
attribute for software-defined streams.

SOFTWARE_UNIT_COUNT_ENABLE
Purpose

The SOFTWARE_UNIT_COUNT_ENABLE directive enables or disables the unit
count for software-defined streams. The unit count is a scalar and of type integer.
It has a value from 0 to 1023, which indicates the number of cache lines.

Syntax

�� SET_PREFETCH_UNIT_COUNT (count) ��

�� SOFTWARE_TRANSIENT_ENABLE (flag) ��

554 XL Fortran: Language Reference for Big Endian Distributions

Note: The directive is valid only when -qarch is set to target POWER8 processors.

flag A scalar logical expression. The value .TRUE. enables the unit count for
software-defined streams. The value .FALSE. disables the unit count for
software-defined streams.

STORE_TRANSIENT_ENABLE
Purpose

The STORE_TRANSIENT_ENABLE directive enables or disables the transient
attribute for store streams.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.
If you want the Data Stream Control Register (DSCR) to apply the transient
attribute to streams, set at least two of the four enabling built-in functions. Set one
function to choose a type of access (load or store), and set another one to choose a
type of prefetching (software-defined or hardware-detected).

flag A scalar logical expression. The value .TRUE. enables the transient attribute
for store streams. The value .FALSE. disables the transient attribute for
store streams.

STRIDE_N_STREAM_ENABLE
Purpose

The STRIDE_N_STREAM_ENABLE directive enables the hardware detection and
initiation of loading and storing streams that have a stride greater than a single
cache block. Such loading streams are detected only when the value of Load
Stream Disable (LSD) bit is 0. Such storing streams are detected only when the
value of Store Stream Enable (SSE) bit is 1.

Syntax

Note: The directive is valid only when -qarch is set to target POWER8 processors.

flag A scalar logical expression. The value .TRUE. enables the hardware
detection and initiation of loading and storing streams that have a stride
greater than a single cache block. The value .FALSE. disables it.

�� SOFTWARE_UNIT_COUNT_ENABLE (flag) ��

�� STORE_TRANSIENT_ENABLE (flag) ��

�� STRIDE_N_STREAM_ENABLE (flag) ��

Chapter 13. Hardware-specific directives 555

TRANSIENT_PROTECTED_STREAM_COUNT_DEPTH
Purpose

The TRANSIENT_PROTECTED_STREAM_COUNT_DEPTH directive sets the
number of cache lines and the prefetch depth for the specified limited-length
prefetch stream. This directive is valid only on POWER7 processors or higher.

Syntax

unit_count
is the number of cache lines to be prefetched. This must be scalar and of
type integer and should be in the range of 0 to 1023.

prefetch_depth
sets the depth of prefetching as described above. This must be scalar and
of type integer and should be in the range of 0 to 7.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER7 and POWER8 processors it can be any number from 0 to 11.

TRANSIENT_UNLIMITED_PROTECTED_STREAM_DEPTH
Purpose

The TRANSIENT_UNLIMITED_PROTECTED_STREAM_DEPTH directive sets
the prefetch depth for the specified unlimited-length prefetch stream. This directive
is valid only on POWER7 processors or higher.

Syntax

prefetch_depth
sets the depth of prefetching as described above. This must be scalar and
of type integer and should be in the range of 0 to 7.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER7 and POWER8 processors it can be any number from 0 to 11.

UNLIMITED_PROTECTED_STREAM_DEPTH
Purpose

The UNLIMITED_PROTECTED_STREAM_DEPTH directive sets the prefetch
depth for the specified unlimited-length prefetch stream. This directive is valid on
POWER6 processors or higher.

�� TRANSIENT_PROTECTED_STREAM_COUNT_DEPTH (unit_count, prefetch_depth, stream_id) ��

�� TRANSIENT_UNLIMITED_PROTECTED_STREAM_DEPTH (prefetch_depth, stream_id) ��

556 XL Fortran: Language Reference for Big Endian Distributions

Syntax

unit_count
is the number of cache lines to be prefetched. This must be scalar and of
type integer and should be in the range of 0 to 1023.

prefetch_depth
sets the depth of prefetching as described above. This must be scalar and
of type integer and should be in the range of 0 to 7.

stream_id
is the ID for the prefetched stream. It must be scalar and of type integer.
For POWER6 processors it can be any number from 0 to 15, and for
POWER7 and POWER8 processors any number from 0 to 11.

Examples
Examples

Example 1: This example shows valid uses of the PREFETCH_BY_LOAD,
PREFETCH_FOR_LOAD, and PREFETCH_FOR_STORE directives.

For this example, assume that the size of the cache line is 64 bytes and that none
of the declared data items exist in the cache at the beginning of the program. The
rationale for using the directives is as follows:
v All elements of array ARRA will be assigned; therefore, you can use the

PREFETCH_FOR_STORE directive to bring the first 16 and second 16 elements
of the array into the cache before they are referenced.

v Because all elements of array ARRC will be read, you can use the
PREFETCH_FOR_LOAD directive to bring the first 16 and second 16 elements
of the array into the cache before they are referenced. (Assume that the elements
have been initialized first.)

v Each iteration of the loop will use variables A, B, C, TEMP, I, K and array
element ARRB(I*32); you can use the PREFETCH_BY_LOAD directive to load
the variables and the array into the cache. (Because of the size of the cache line,
you will fetch 16 elements of ARRB, starting at element ARRB(I*32)).

PROGRAM GOODPREFETCH

REAL*4 A, B, C, TEMP
REAL*4 ARRA(2**5), ARRB(2**10), ARRC(2**5)
INTEGER(4) I, K

! Bring ARRA into cache for writing.
!IBM* PREFETCH_FOR_STORE (ARRA(1), ARRA(2**4+1))

! Bring ARRC into cache for reading.
!IBM* PREFETCH_FOR_LOAD (ARRC(1), ARRC(2**4+1))

! Bring all variables into the cache.
!IBM* PREFETCH_BY_LOAD (A, B, C, TEMP, I , K)

! A subroutine is called to allow clock cycles to pass so that the
! data is loaded into the cache before the data is referenced.

CALL FOO()

�� UNLIMITED_PROTECTED_STREAM_DEPTH (unit_count, prefetch_depth, stream_id) ��

Chapter 13. Hardware-specific directives 557

K = 32
DO I = 1, 2 ** 5

! Bring ARRB(I*K) into the cache
!IBM* PREFETCH_BY_LOAD (ARRB(I*K))

A = -I
B = I + 1
C = I + 2
TEMP = SQRT(B*B - 4*A*C)
ARRA(I) = ARRC(I) + (-B + TEMP) / (2*A)
ARRB(I*K) = (-B - TEMP) / (2*A)

END DO
END PROGRAM GOODPREFETCH

Example 2: In this example, assume that the total cache line's size is 256 bytes, and
that none of the declared data items are initially stored in the cache or register. All
elements of array ARRA and ARRC will then be read into the cache.

PROGRAM PREFETCH_STREAM

REAL*4 A, B, C, TEMP
REAL*4 ARRA(2**5), ARRC(2**5), ARRB(2**10)
INTEGER*4 I, K

! All elements of ARRA and ARRC are read into the cache.
!IBM* PREFETCH_BY_STREAM_FORWARD(ARRA(1))
! You can substitute PREFETCH_BY_STREAM_BACKWARD (ARRC(2**5)) to read all
! elements of ARRA and ARRC into the cache.

K = 32
DO I = 1, 2**5

A = -i
B = i + 1
C = i + 2
TEMP = SQRT(B*B -4*A*C)
ARRA(I) = ARRC(I) + (-B + TEMP) / (2*A)
ARRB(I*K) = (-B -TEMP) / (2*A)

END DO
END PROGRAM PREFETCH_STREAM

558 XL Fortran: Language Reference for Big Endian Distributions

Chapter 14. Intrinsic procedures

Fortran defines a number of procedures, called intrinsic procedures, that are
available to any program. This section provides an alphabetical reference to these
procedures.

Classes of intrinsic procedures
There are five classes of intrinsic procedures: inquiry functions, elemental
procedures, system inquiry functions, transformational functions, and subroutines.

Inquiry intrinsic functions
The result of an inquiry function depends on the properties of its principal
argument, not on the value of the argument. The value of the argument does not
have to be defined.

ALLOCATED LEN RANK�4�

ASSOCIATED LOC �3� SAME_TYPE_AS �1�

BIT_SIZE MAXEXPONENT SHAPE

COMMAND_ARGUMENT_COUNT �1� MINEXPONENT SIZE

DIGITS NEW_LINE �1� SIZEOF �3�

EPSILON NUM_PARTHDS �3� TINY

EXTENDS_TYPE_OF �1� NUM_USRTHDS �3� UBOUND

IS_CONTIGUOUS �2� PRECISION

HUGE PRESENT

KIND RADIX

LBOUND RANGE

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension
�4� Technical Specification

Elemental intrinsic procedures
Some intrinsic functions and one intrinsic subroutine (MVBITS) are elemental. That
is, they can be specified for scalar arguments, but also accept arguments that are
arrays.

If all arguments are scalar, the result is a scalar.

If any argument is an array, all INTENT(OUT) and INTENT(INOUT) arguments
must be arrays of the same shape, and the remaining arguments must be
conformable with them.

© Copyright IBM Corp. 1996, 2014 559

The shape of the result is the shape of the argument with the greatest rank. The
elements of the result are the same as if the function was applied individually to
the corresponding elements of each argument.

ABS �3� FLOOR MAX

ACHAR FRACTION MERGE

ACOS GAMMA�2� MERGE_BITS�2�

ACOSD HFIX�2� MIN

ACOSH�2� HYPOT�3� MOD

ADJUSTL IACHAR MODULO

ADJUSTR IAND MVBITS

AIMAG IBCLR NEAREST

AINT IBM2GCCLDBL�3� NINT

ASIN IBM2GCCLDBL_CMPLX�3� NOT

ASIND �3� IBSET POPCNT�2�

ASINH�2� ICHAR POPCNTB

ATAN IEOR POPPAR�1�

ATAND �3� ILEN�3� QCMPLX�3�

ATAN2 INDEX QEXT �3�

ATAN2D�3� INT REAL

BTEST INT2�3� RRSPACING

CEILING IOR RSHIFT

CHAR ISHFT SCALE

CMPLX ISHFTC SCAN

CONJG IS_IOSTAT_END�1� SET_EXPONENT

COS IS_IOSTAT_EOR�2� SHIFTA�2�

COSD�3� LEADZ�2� SHIFTL�2�

COSH LEN_TRIM SHIFTR�2�

CVMGx�3� LGAMMA�3� SIGN

DBLE LGE SIN

DCMPLX�3� LGT SIND �3�

DIM LLE SINH

DPROD LLT SPACING

DSHIFTL�2� LOG SQRT

DSHIFTR�2� LOG_GAMMA�2� TAN

ERF�2� LOG10 TAND�3�

ERFC�2� LOGICAL TANH

ERFC_SCALED�2� LSHIFT�3� TRAILZ �2�

EXP MASKL�2� VERIFY

EXPONENT MASKR�2�

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

560 XL Fortran: Language Reference for Big Endian Distributions

System inquiry intrinsic functions (IBM extension)
The system inquiry functions may be used in specification expressions. They cannot
be used in constant expressions, nor can they be passed as actual arguments.
v NUMBER_OF_PROCESSORS
v PROCESSORS_SHAPE

Transformational intrinsic functions
All other intrinsic functions are classified as transformational functions. They
generally accept array arguments and return array results that depend on the
values of elements in the argument arrays.

ALL MAXVAL SELECTED_INT_KIND

ANY MINLOC SELECTED_REAL_KIND

COUNT MINVAL SPREAD

CSHIFT NULL SUM

DOT_PRODUCT PACK TRANSFER

EOSHIFT PRODUCT TRANSPOSE

FINDLOC�1� REPEAT TRIM

MATMUL RESHAPE UNPACK

MAXLOC SELECTED_CHAR_KIND
�2�

Note:
�1� Fortran 2008
�2� Fortran 2003

For background information on arrays, see Chapter 5, “Array concepts,” on page
73.

Intrinsic subroutines
Some intrinsic procedures are subroutines. They perform various tasks.

ALIGNX �3� MOVE_ALLOC �1�

ABORT �3� MVBITS

CPU_TIME RANDOM_NUMBER

DATE_AND_TIME RANDOM_SEED

EXECUTE_COMMAND_LINE �2� SIGNAL �3�

GETENV SRAND �3�

GET_COMMAND �1� SYSTEM �3�

GET_COMMAND_ARGUMENT �1� SYSTEM_CLOCK

GET_ENVIRONMENT_VARIABLE �1�

Note:
�1� Fortran 2003
�2� Fortran 2008
�3� IBM extension

Chapter 14. Intrinsic procedures 561

Data representation models

Integer bit model
The following model shows how the processor represents each bit of a nonnegative
scalar integer object:

j is the integer value

s is the number of bits

wk is binary digit w located at position k

IBM extension

XL Fortran implements the following s parameters for the XL Fortran integer kind
type parameters:

Integer Kind Parameter s Parameter

1 8

2 16

4 32

8 64

End of IBM extension

The following intrinsic functions use this model:

BTEST IBSET ISHFTC

IAND IEOR MVBITS

IBCLR IOR NOT

IBITS ISHFT

Integer data model

i is the integer value

s is the sign (±1)

q is the number of digits (positive integer)

wk is a nonnegative digit < r

∑
q

k = 1

i s= x
1rwk

k
x

−

562 XL Fortran: Language Reference for Big Endian Distributions

r is the radix

IBM extension

XL Fortran implements this model with the following r and q parameters:

Integer Kind Parameter r Parameter q Parameter

1 2 7

2 2 15

4 2 31

8 2 63

End of IBM extension

The following intrinsic functions use this model:

DIGITS RADIX RANGE

HUGE

Real data model

x is the real value

s is the sign (±1)

b is an integer > 1

e is an integer, where emin ≤ e ≤ emax

p is an integer > 1

fk is a nonnegative integer < b (f1 ≠ 0)

Note: If x=0, then e=0 and all fk=0.

IBM extension

XL Fortran implements this model with the following parameters:

Real Kind parameter b Parameter p Parameter
emin

Parameter
emax

Parameter

4 2 24 -125 128

8 2 53 -1021 1024

16 2 106 -1021 1024

p

0 or

k = 1

x =
s bx x

e bfk
kx

Chapter 14. Intrinsic procedures 563

End of IBM extension

The following intrinsic functions use this model:

DIGITS MINEXPONENT RRSPACING

EPSILON NEAREST SCALE

EXPONENT PRECISION SET_EXPONENT

FRACTION RADIX SPACING

HUGE RANGE TINY

MAXEXPONENT

Detailed descriptions of intrinsic procedures
The following is an alphabetical list of all generic names for intrinsic procedures.

For each procedure, several items of information are listed.

Note:

1. The argument names listed in the title can be used as the names for keyword
arguments when calling the procedure.

2. For those procedures with specific names, a table lists each specific name along
with information about the specific function:
v When a function return type or argument type is shown in lowercase, that

indicates that the type is specified as shown, but the compiler may actually
substitute a call to a different specific name depending on the settings of the
-qintsize, -qrealsize, and -qautodbl options.
For example, references to SINH are replaced by references to DSINH when
-qrealsize=8 is in effect, and references to DSINH are replaced by references
to QSINH.

v The column labeled “Pass as Arg?” indicates whether or not you can pass
that specific name as an actual argument to a procedure. Only the specific
name of an intrinsic procedure may be passed as an actual argument, and
only for some specific names. A specific name passed this way may only be
referenced with scalar arguments.

3. The index contains entries for each specific name, if you know the specific
name but not the generic one.

ABORT() (IBM extension)
Purpose

Terminates the program abnormally, unless the signal SIGABRT is being caught
and the signal handler does not return. It truncates all open output files to the
current position of the file pointer, closes all open files, and then calls the abort()
system routine. This results in a SIGABRT signal sent to the current process.

The ABORT intrinsic overrides blocking or ignoring the SIGABRT signal; it will
not return.

Class

Subroutine

564 XL Fortran: Language Reference for Big Endian Distributions

Examples

The following is an example of a statement using the ABORT subroutine.
IF (ERROR_CONDITION) CALL ABORT

ABS(A)
Purpose

Absolute value.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER, REAL, or COMPLEX

Result type and attributes

The same as A, except that if A is complex, the result is real.

Result value
v If A is of type integer or real, the result is |A|
v If A is of type complex with value (x,y), the result approximates

Examples

ABS ((3.0, 4.0)) has the value 5.0.

Specific Name Argument Type Result Type Pass As Arg?

IABS any integer �1� �2� same as argument yes

ABS default real default real yes

DABS double precision real double precision real yes

QABS �1� REAL(16) REAL(16) yes

CABS default complex default real yes

CDABS �1� double complex double precision real yes

ZABS �1� double complex double precision real yes

CQABS �1� COMPLEX(16) REAL(16) yes

Note:
�1� IBM extension
�2� the ability to specify a nondefault integer argument.

ACHAR(I, KIND)
Purpose

Returns the character in a specified position of the ASCII collating sequence. It is
the inverse of the IACHAR function.

x y+
2 2√

Chapter 14. Intrinsic procedures 565

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Character of length one.
v If KIND is present, the kind type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default character
type.

Result value
v If I has a value in the range 0 ≤ I ≤ 127, the result is the character in position I

of the ASCII collating sequence, provided that the character corresponding to I is
representable.

v If I is outside the allowed value range, the result is undefined.

Examples

ACHAR (88) has the value 'X'.

ACOS(X)
Purpose

Arccosine (inverse cosine) function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or COMPLEX. F2008 If it’s a REAL, its value
must satisfy the inequality |X| ≤ 1.

Result type and attributes

Same as X.

Result value

If X is of type real, the result value is as follows:
v It is expressed in radians, and approximates arccos(X).
v It is in the range 0 ≤ ACOS(X) ≤ π.

F2008

If X is of type complex, the real part of the result value is as follows:

566 XL Fortran: Language Reference for Big Endian Distributions

v It is expressed in radians.
v It is in the range 0 ≤ REAL(ACOS(X)) ≤ π.

F2008

Examples

ACOS(1.0) has the value 0.0.

F2008 ACOS((0.540302, 0.000000)) has the value (1.000000, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

ACOS default real default real yes

DACOS double precision real double precision real yes

QACOS �1� REAL(16) REAL(16) yes

QARCOS �1� REAL(16) REAL(16) yes

Note:

1. IBM extension.

ACOSD(X) (IBM extension)
Purpose

Arccosine (inverse cosine) function. Result in degrees.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL. Its value must satisfy the inequality |X| ≤ 1.

Result type and attributes

Same as X.

Result value
v It is expressed in degrees and approximates arccos(X).
v It is in the range 0° ≤ ACOSD(X) ≤ 180°.

Examples

ACOSD (0.5) has the value 60.0°.

Specific Name Argument Type Result Type Pass As Arg?

ACOSD default real default real yes

DACOSD double precision real double precision real yes

QACOSD REAL(16) REAL(16) yes

Chapter 14. Intrinsic procedures 567

ACOSH(X) (Fortran 2008)
Purpose

Inverse hyperbolic cosine function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

Result type and attributes

Same as X.

Result value

The result value approximates the inverse hyperbolic cosine of X.

If X is of type complex, the imaginary part of the result value is as follows:
v It is expressed in radians.
v It is in the range 0 ≤ AIMAG(ACOSH(X)) ≤ π.

Examples

ACOSH(1.5430806) has the value 1.0, approximately.

ACOSH((1.5430806, 0.000000)) has the value (1.000000, 0.000000), approximately.

ADJUSTL(STRING)
Purpose

Adjust to the left, removing leading blanks and inserting trailing blanks.

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER

Result type and attributes

Character of the same length and kind type parameter as STRING.

Result value

The value of the result is the same as STRING except that any leading blanks have
been deleted and the same number of trailing blanks have been inserted.

568 XL Fortran: Language Reference for Big Endian Distributions

Examples

ADJUSTL ('�WORD') has the value 'WORD�'.

ADJUSTR(STRING)
Purpose

Adjust to the right, removing trailing blanks and inserting leading blanks.

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER

Result type and attributes

Character of the same length and kind type parameter as STRING.

Result value

The value of the result is the same as STRING except that any trailing blanks have
been deleted and the same number of leading blanks have been inserted.

Examples

ADJUSTR ('WORD�') has the value '�WORD'.

AIMAG(Z), IMAG(Z)
Purpose

Imaginary part of a complex number.

Class

Elemental function

Argument type and attributes

Z An INTENT(IN) COMPLEX

Result type and attributes

Real with the same kind type parameter as Z.

Result value

If Z has the value (x,y), the result has the value y.

Examples

AIMAG ((2.0, 3.0)) has the value 3.0.

Chapter 14. Intrinsic procedures 569

Specific Name Argument Type Result Type Pass As Arg?

AIMAG default complex default real yes

DIMAG �1� double complex double precision real yes

QIMAG �1� COMPLEX(16) REAL(16) yes

Note:

1. IBM extension.

F2008 In Fortran 2008, you can use designator%IM to access the imaginary part of
complex numbers directly; for instance, Z%IM has the same value as AIMAG(Z).
For more information about complex part designators, see Complex. F2008

AINT(A, KIND)
Purpose

Truncates to a whole number.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) REAL

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v The result type is real.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of A.

Result value
v If |A| < 1, the result is zero.
v If |A| ≥ 1, the result has a value equal to the integer whose magnitude is the

largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A.

Examples
AINT(3.555) = 3.0
AINT(-3.555) = -3.0

Specific Name Argument Type Result Type Pass As Arg?

AINT default real default real yes

DINT double precision real double precision real yes

QINT �1� REAL(16) REAL(16) yes

Note:

1. IBM extension.

570 XL Fortran: Language Reference for Big Endian Distributions

ALIGNX(K,M) (IBM extension)
Purpose

The ALIGNX built-in subroutine enables you to assert the alignment of a variable
at a certain point in the program flow. Specifically, at the call point to ALIGNX,
you can assert that the remainder from dividing the address of the second
argument by the value of the first argument is zero. In case the second argument is
a Fortran 90 pointer, the assertion refers to the address of the target. In case the
second argument is an integer pointer, the assertion refers to the address of the
pointee. Should you give the compiler incorrect alignment, the resulting program
may not run correctly if alignment-sensitive instructions are either executed (such
as VMX operations) or inserted by the optimizer.

Class

Subroutine

Argument type and attributes

K An INTENT(IN) INTEGER(4). The actual argument corresponding to K must
be a positive constant expression with a value that is a power of two.

M A variable of any type. When the actual argument corresponding to M is a
Fortran 90 pointer, the pointer must be associated.

Examples
INTEGER*4 B(200)

DO N=1, 200
CALL ALIGNX(4, B(N)) !ASSERTS THAT AT THIS POINT,
B(N) = N !B(N) IS 4-BYTE ALIGNED

END DO
END

SUBROUTINE VEC(A, B, C)
INTEGER A(200), B(200), C(200)
CALL ALIGNX(16, A(1))
CALL ALIGNX(16, B(1))
CALL ALIGNX(16, C(1))
DO N = 1, 200

C(N) = A(N) + B(N)
END DO

END SUBROUTINE

ALL(MASK, DIM)
Purpose

Determines if all values in an entire array, or in each vector along a single
dimension, are true.

Class

Transformational function

Argument type and attributes

MASK
An INTENT(IN) LOGICAL array

Chapter 14. Intrinsic procedures 571

DIM (optional)
An INTENT(IN) scalar INTEGER. Its value must be in the range
1 ≤ DIM ≤ rank(MASK). The corresponding actual argument must not be
an optional dummy argument.

Result value

The result is a logical array with the same type parameters as MASK. The rank of
the result is rank(MASK)-1 if the DIM is specified; otherwise the result is a scaler
of type logical.

The shape of the result is (s1, s2, ..., s(DIM-1), s(DIM+1), ..., sn), where n is the rank of
MASK.

Each element in the result array is .TRUE. only if all the elements given by
MASK(m1, m2, ..., m(DIM-1), :, m(DIM+1), ..., mn), are true. When the result is a scalar,
either because DIM is not specified or because MASK is of rank one, it is .TRUE.
only if all elements of MASK are true, or MASK has size zero.

Examples
! A is the array | 4 3 6 |, and B is the array | 3 5 2 |
! | 2 4 1 | | 7 8 4 |

! Is every element in A less than the
! corresponding one in B?

RES = ALL(A .LT. B) ! result RES is false

! Are all elements in each column of A less than the
! corresponding column of B?

RES = ALL(A .LT. B, DIM = 1) ! result RES is (f,t,f)

! Same question, but for each row of A and B.
RES = ALL(A .LT. B, DIM = 2) ! result RES is (f,t)

ALLOCATED(X)
Purpose

Indicates whether or not an allocatable object is allocated.

Class

Inquiry function

Argument type and attributes

X can be one of the following:

ARRAY
An allocatable array whose allocation status you want to know.

SCALAR
An allocatable scalar whose allocation status you want to know.

Result type and attributes

Default logical scalar.

572 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result corresponds to the allocation status of ARRAY or SCALAR: .TRUE. if it
is allocated, .FALSE. if it is not allocated, or undefined if its allocation status is
undefined. If you are compiling with the -qxlf90=autodealloc compiler option
there is no undefined allocation status.

Examples
INTEGER, ALLOCATABLE, DIMENSION(:) :: A
PRINT *, ALLOCATED(A) ! A is not allocated yet.
ALLOCATE (A(1000))
PRINT *, ALLOCATED(A) ! A is now allocated.
END

Related information

“Allocatable arrays” on page 79, “ALLOCATE” on page 285, “Allocation status” on
page 26.

ANINT(A, KIND)
Purpose

Nearest whole number.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) REAL

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v The result type is real.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of A.

Result value
v If A > 0, ANINT(A) = AINT(A + 0.5)
v If A ≤ 0, ANINT(A) = AINT(A - 0.5)

Note: The addition and subtraction of 0.5 are done in round-to-zero mode.

Examples
ANINT(3.555) = 4.0
ANINT(-3.555) = -4.0

Specific Name Argument Type Result Type Pass As Arg?

ANINT default real default real yes

DNINT double precision real double precision real yes

QNINT �1� REAL(16) REAL(16) yes

Chapter 14. Intrinsic procedures 573

Note:

1. IBM extension.

ANY(MASK, DIM)
Purpose

Determines if any of the values in an entire array, or in each vector along a single
dimension, are true.

Class

Transformational function

Argument type and attributes

MASK
An INTENT(IN) LOGICAL array

DIM (optional)
An INTENT(IN) INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(MASK). The corresponding actual argument must not be
an optional dummy argument.

Result value

The result is a logical array of the same type parameters as MASK. The rank of the
result is rank(MASK)-1 if the DIM is specified; otherwise the result is a scalar of
type logical.

The shape of the result is (s1, s2, ..., s(DIM -1), s(DIM+1), ..., sn), where n is the rank of
MASK.

Each element in the result array is .TRUE. if any of the elements given by
MASK(m1, m2, ..., m(DIM-1), :, m(DIM+1), ..., mn) are true. When the result is a scalar,
either because DIM is not specified or because MASK is of rank one, it is .TRUE. if
any of the elements of MASK are true.

Examples
! A is the array | 9 -6 7 |, and B is the array | 2 7 8 |
! | 3 -1 5 | | 5 6 9 |

! Is any element in A greater than or equal to the
! corresponding element in B?

RES = ANY(A .GE. B) ! result RES is true

! For each column in A, is there any element in the column
! greater than or equal to the corresponding element in B?

RES = ANY(A .GE. B, DIM = 1) ! result RES is (t,f,f)

! Same question, but for each row of A and B.
RES = ANY(A .GE. B, DIM = 2) ! result RES is (t,f)

ASIN(X)
Purpose

Arcsine (inverse sine) function.

574 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or COMPLEX. F2008 . Its value must satisfy the
inequality |X| ≤ 1,

Result type and attributes

Same as X.

Result value

If X is of type real, the result value is as follows:
v It is expressed in radians, and approximates arcsin(X).
v It is in the range -π/2 ≤ ASIN(X) ≤ π/2.

F2008

If X is of type complex, the real part of the result value is as follows:
v It is expressed in radians.
v It is in the range -π/2 ≤ REAL(ASIN(X)) ≤ π/2.

F2008

Examples

ASIN(1.0) approximates π/2.

F2008 ASIN((0.841471, 0.000000)) has the value (1.000000, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

ASIN default real default real yes

DASIN double precision real double precision real yes

QASIN �1� REAL(16) REAL(16) yes

QARSIN �1� REAL(16) REAL(16) yes

Note:

1. IBM extension.

ASIND(X) (IBM extension)
Purpose

Arcsine (inverse sine) function. Result in degrees.

Class

Elemental function

Chapter 14. Intrinsic procedures 575

Argument type and attributes

X An INTENT(IN) REAL. Its value must satisfy the inequality |X| ≤ 1.

Result type and attributes

Same as X.

Result value
v It is expressed in degrees, and approximates arcsin(X).
v It is in the range -90° ≤ ASIND(X) ≤ 90°.

Examples

ASIND (0.5) has the value 30.0°.

Specific Name Argument Type Result Type Pass As Arg?

ASIND default real default real yes

DASIND double precision real double precision real yes

QASIND REAL(16) REAL(16) yes

ASINH(X) (Fortran 2008)
Purpose

Inverse hyperbolic sine function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

Result type and attributes

Same as X.

Result value

The result value approximates the inverse hyperbolic cosine of X.

If X is of type complex, the imaginary part of the result value is as follows:
v It is expressed in radians.
v It is in the range 0 ≤ AIMAG(ASINH(X)) ≤ π.

Examples

ASINH(1.1752012) has the value 1.0, approximately.

ASINH((1.175201, 0.000000)) has the value (1.000000, 0.000000), approximately.

576 XL Fortran: Language Reference for Big Endian Distributions

ASSOCIATED(POINTER, TARGET)
Purpose

Returns the association status of its pointer argument, or indicates whether the
pointer is associated with the target.

Class

Inquiry function

Argument type and attributes

POINTER
A pointer of any type whose association status you want to test. Its
association status must not be undefined.

TARGET (optional)
A pointer or target of any type that might or might not be associated with
POINTER. The association status must not be undefined.

Result type and attributes

Default logical scalar.

Result value

If only the POINTER argument is specified, the result is .TRUE. if it is associated
with any target and .FALSE. otherwise. If TARGET is also specified, the procedure
tests whether POINTER is associated with TARGET, or with the same object that
TARGET is associated with (if TARGET is also pointer).

If a POINTER and a TARGET of a different shape are associated, this intrinsic will
return .FALSE..

If TARGET is present, then the result is .FALSE. if one of the following occurs:
v POINTER is associated with a zero-sized array.
v TARGET is associated with a zero-sized array.
v TARGET is a zero-sized array.

Objects with different types or shapes cannot be associated with each other.

Arrays with the same type and shape but different bounds can be associated with
each other.

Examples
REAL, POINTER, DIMENSION(:,:) :: A
REAL, TARGET, DIMENSION(5,10) :: B, C

NULLIFY (A)
PRINT *, ASSOCIATED (A) ! False, not associated yet

A => B
PRINT *, ASSOCIATED (A) ! True, because A is

! associated with B

PRINT *, ASSOCIATED (A,C) ! False, A is not
! associated with C

END

Chapter 14. Intrinsic procedures 577

ATAN(X)
Purpose

Arctangent (inverse tangent) function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or COMPLEX. F2008

Result type and attributes

Same as X.

Result value

If X is of type real, the result value is as follows:
v It is expressed in radians and approximates arctan(X).
v It is in the range -π/2 ≤ ATAN(X) ≤ π/2.

F2008

If X is of type complex, the real part of the result value is as follows:
v It is expressed in radians.
v It is in the range -π/2 ≤ REAL(ATAN(X)) ≤ π/2.

F2008

Examples

ATAN(1.0) approximates π/4.

F2008 ATAN((1.557408, 0.000000)) has the value (1.000000, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

ATAN default real default real yes

DATAN double precision real double precision real yes

QATAN �1� REAL(16) REAL(16) yes

Note:

1. IBM extension.

Related functions
v F2008 ATAN(Y, X) F2008

578 XL Fortran: Language Reference for Big Endian Distributions

ATAN(Y, X) (Fortran 2008)
Purpose

Arctangent (inverse tangent) function.

Class

Elemental function

Argument type and attributes

Y An INTENT(IN) REAL

X An INTENT(IN) argument of the same type and kind type parameter as Y.
If Y has the value zero, X must not have the value zero.

Result type and attributes

Same as X.

Result value

The result is the same as the result of “ATAN2(Y, X).”

Related functions
v “ATAN(X)” on page 578

ATAN2(Y, X)
Purpose

Arctangent (inverse tangent) function. The result is the principal value of the
nonzero complex number (X, Y) formed by the real arguments Y and X.

Class

Elemental function

Argument type and attributes

Y An INTENT(IN) REAL

X An INTENT(IN) argument of the same type and kind type parameter as Y.
If Y has the value zero, X must not have the value zero.

Result type and attributes

Same as X.

Result value
v It is expressed in radians and has a value equal to the principal value of the

argument of the complex number (X, Y).
v It is in the range -π < ATAN2(Y, X) ≤ π.
v If X ≠ 0, the result approximates arctan(Y/X).
v If Y > 0, the result is positive.
v If Y < 0, the result is negative.
v If X = 0, the absolute value of the result is π/2.

Chapter 14. Intrinsic procedures 579

The -qxlf2003=signdzerointr option controls whether you get Fortran 2003
behavior. See qxlf2003 in the XL Fortran Compiler Reference

v If Y = 0 and X < 0, the result is π.
v If Y = 0 and X > 0, the result is zero.

v If Y = 0 and X < 0, the result is π if Y is positive real zero and -π if Y is
negative real zero.

v If Y = 0 and X > 0, the result is Y.

Examples

ATAN2 (1.5574077, 1.0) has the value 1.0.

Given that:
Y = | 1 1 | X = | -1 1 |

| -1 -1 | | -1 1 |

the value of ATAN2(Y,X) is approximately:
ATAN2 (Y, X) = | 3π/4 π/4 |

| -3π/4 -π/4 |

Specific Name Argument Type Result Type Pass As Arg?

ATAN2 default real default real yes

DATAN2 double precision real double precision real yes

QATAN2 �1� REAL(16) REAL(16) yes

ATAN2D(Y, X) (IBM extension)
Purpose

Arctangent (inverse tangent) function. The result is the principal value of the
nonzero complex number (X, Y) formed by the real arguments Y and X.

Class

Elemental function

Argument type and attributes

Y An INTENT(IN) REAL

X An INTENT(IN) argument of the same type and kind type parameter as Y.
If Y has the value zero, X must not have the value zero.

Result type and attributes

Same as X.

Result value
v It is expressed in degrees and has a value equal to the principal value of the

argument of the complex number (X, Y).
v It is in the range -180° < ATAN2D(Y,X) ≤ 180°.

580 XL Fortran: Language Reference for Big Endian Distributions

v If X≠0, the result approximates arctan(Y/X).
v If Y>0, the result is positive.
v If Y<0, the result is negative.
v If Y=0 and X>0, the result is zero.
v If Y=0 and X<0, the result is 180°.
v If X=0, the absolute value of the result is 90°.

Examples

ATAN2D (1.5574077, 1.0) has the value 57.295780181° (approximately).

Given that:
Y = | 1.0 1.0 | X = | -1.0 1.0 |

| -1.0 -1.0 | | -1.0 1.0 |

then the value of ATAN2D(Y,X) is:
ATAN2D(Y,X) = | 135.0000000° 45.00000000° |

| -135.0000000° -45.00000000° |

Specific Name Argument Type Result Type Pass As Arg?

ATAN2D default real default real yes

DATAN2D double precision real double precision real yes

QATAN2D REAL(16) REAL(16) yes

ATAND(X) (IBM extension)
Purpose

Arctangent (inverse tangent) function. Result in degrees.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value
v It is expressed in degrees and approximates arctan(X).
v It is in the range -90° ≤ ATAND(X) ≤ 90°.

Examples

ATAND (1.0) has the value 45.0°.

Specific Name Argument Type Result Type Pass As Arg?

ATAND default real default real yes

DATAND double precision real double precision real yes

QATAND REAL(16) REAL(16) yes

Chapter 14. Intrinsic procedures 581

ATANH(X) (Fortran 2008)
Purpose

Inverse hyperbolic tangent function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

Result type and attributes

Same as X.

Result value

The result value approximates the inverse hyperbolic tangent of X.

If X is of type complex, the imaginary part of the result value is as follows:
v It is expressed in radians.
v It is in the range -π/2 ≤ AIMAG(ATANH(X)) ≤ π/2.

Examples

ATANH(0.76159416) has the value 1.0, approximately.

ATANH((0.761594, 0.000000)) has the value (1.000000, 0.000000), approximately.

BTEST(I, POS)
Purpose

Tests a bit of an integer value.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

POS An INTENT(IN) INTEGER. Its value must be nonnegative and be less than
BIT_SIZE(I).

Result type and attributes

The result is of type default logical.

582 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result has the value .TRUE. if bit POS of I has the value 1 and the value
.FALSE. if bit POS of I has the value 0.

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

BTEST (8, 3) has the value .TRUE..
If A has the value

| 1 2 |
| 3 4 |

the value of BTEST (A, 2) is
| false false |
| false true |

and the value of BTEST (2, A) is
| true false |
| false false |

See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

BTEST �1� any integer default logical yes

Note:

1. IBM extension.

BIT_SIZE(I)
Purpose

Returns the number of bits in an integer type. Because only the type of the
argument is examined, the argument need not be defined.

Class

Inquiry function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Scalar integer with the same kind type parameter as I.

Result value

The result is the number of bits in the integer data type of the argument:

Chapter 14. Intrinsic procedures 583

type bits
----------- ------
integer(1) 8
integer(2) 16
integer(4) 32
integer(8) 64

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

BIT_SIZE (1_4) has the value 32, because the integer type with kind 4 (that is, a
four-byte integer) contains 32 bits.

CEILING(A, KIND)
Purpose

Returns the least integer greater than or equal to its argument.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) REAL

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the KIND type parameter is that of the default integer type.

Result value

The result has a value equal to the least integer greater than or equal to A.

The result is undefined if the result cannot be represented as an integer of the
specified KIND.

Examples
CEILING(-3.7) has the value -3.
CEILING(3.7) has the value 4.

CEILING(1000.1, KIND=2) has the value 1001, with a kind
type parameter of two.

CHAR(I, KIND)
Purpose

Returns the character in the given position of the collating sequence associated
with the specified kind type parameter. It is the inverse of the function ICHAR.

584 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER. Its value must be in the range
0 ≤ I ≤ 127.

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Character of length one.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of the default character type.

Result value
v The result is the character in position I of the collating sequence associated with

the specified kind type parameter.
v ICHAR (CHAR (I, KIND (C))) must have the value I for 0 ≤ I ≤ 127 and

CHAR (ICHAR (C), KIND (C)) must have the value C for any representable
character.

Examples

CHAR (88) has the value 'X'.

Specific Name Argument Type Result Type Pass As Arg?

CHAR any integer default character yes �1�

Notes:

1. IBM extension: the ability to specify a non-default integer argument.

XL Fortran supports only the ASCII collating sequence.

CMPLX(X, Y, KIND)
Purpose

Convert to complex type.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER, REAL, COMPLEX, BINARY, OCTAL, or hexadecimal
CONSTANT.

Y (optional)
An INTENT(IN) INTEGER, REAL, COMPLEX, BINARY, OCTAL, or hexadecimal
CONSTANT. It must not be present if X is a COMPLEX.

Chapter 14. Intrinsic procedures 585

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type complex.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of the default real type.

Result value
v If Y is absent and X is not complex, it is as if Y were present with the value zero.
v If Y is absent and X is complex, it is as if Y were present with the value

AIMAG(X).
v CMPLX(X, Y, KIND) has the complex value whose real part is REAL(X, KIND)

and whose imaginary part is REAL(Y, KIND).

Examples

CMPLX (-3) has the value (-3.0, 0.0).

Specific Name Argument Type Result Type Pass As Arg?

CMPLX �1� default real default complex no

Note:

1. IBM extension.

Related information

“DCMPLX(X, Y) (IBM extension)” on page 596, “QCMPLX(X, Y) (IBM extension)”
on page 674.

COMMAND_ARGUMENT_COUNT() (Fortran 2003)
Purpose

Returns the number of command line arguments for the command that invoked
the program.

Class

Inquiry function

Result type and attributes

Default integer scalar

Result value

The result value is the number of command arguments, not counting the command
name. If there are no command arguments, the result value is 0.

586 XL Fortran: Language Reference for Big Endian Distributions

Examples
integer cmd_count
cmd_count = COMMAND_ARGUMENT_COUNT()
print*, cmd_count
end

The following is sample output generated by the above program:
$ a.out
0
$ a.out aa
1
$ a.out aa bb
2

CONJG(Z)
Purpose

Conjugate of a complex number.

Class

Elemental function

Argument type and attributes

Z An INTENT(IN) COMPLEX

Result type and attributes

Same as Z.

Result value

Given Z has the value (x, y), the result has the value (x, -y).

Examples

CONJG ((2.0, 3.0)) has the value (2.0, -3.0).

Specific Name Argument Type Result Type Pass As Arg?

CONJG default complex default complex yes

DCONJG �1� double complex double complex yes

QCONJG �1� COMPLEX(16) COMPLEX(16) yes

Note:

1. IBM extension.

COS(X)
Purpose

Cosine function.

Class

Elemental function

Chapter 14. Intrinsic procedures 587

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

Result type and attributes

Same as X.

Result value
v It has a value that approximates cos(X).
v If X is of type real, X is regarded as a value in radians.
v If X is of type complex, the real and imaginary parts of X are regarded as values

in radians.

Examples

COS (1.0) has the value 0.54030231 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

COS default real default real yes

DCOS double precision real double precision real yes

QCOS �1� REAL(16) REAL(16) yes

CCOS �2a� default complex default complex yes

CDCOS �1� �2b� double complex double complex yes

ZCOS �1� �2b� double complex double complex yes

CQCOS �1� �2b� COMPLEX(16) COMPLEX(16) yes

Note:

1. IBM extension.
2. Given that X is a complex number in the form a + bi, where i = (-1)½ :

a. abs(b) must be less than or equal to 88.7228; a is any real value.
b. abs(b) must be less than or equal to 709.7827; a is any real value.

COSD(X) (IBM extension)
Purpose

Cosine function. Argument in degrees.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

588 XL Fortran: Language Reference for Big Endian Distributions

Result value

It approximates cos(X), where X has a value in degrees.

Examples

COSD (45.0°) has the value 0.7071067691.

Specific Name Argument Type Result Type Pass As Arg?

COSD default real default real yes

DCOSD double precision real double precision real yes

QCOSD REAL(16) REAL(16) yes

COSH(X)
Purpose

Hyperbolic cosine function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or COMPLEX. F2008

Result type and attributes

Same as X.

Result value

The result value approximates cosh(X).

F2008 If X is of type complex, its imaginary part is considered a value in
radians. F2008

Examples

COSH(1.0) has the value 1.5430806, approximately.

F2008 COSH((1.000000, 0.000000)) has the value (1.543081, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

COSH default real default real yes

DCOSH double precision real double precision real yes

QCOSH �1� REAL(16) REAL(16) yes

Note:

1. IBM extension.

Chapter 14. Intrinsic procedures 589

COUNT(MASK, DIM, KIND)
Purpose

Counts the number of true array elements in an entire logical array, or in each
vector along a single dimension. Typically, the logical array is one that is used as a
mask in another intrinsic.

Class

Transformational function

Argument type and attributes

MASK
An INTENT(IN) LOGICAL array

DIM (optional)
An INTENT(IN) INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(MASK). The corresponding actual argument must not be
an optional dummy argument.

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result value

If DIM is present, the result is an integer array of rank rank(MASK)-1. If DIM is
missing, or if MASK has a rank of one, the result is a scalar of type integer.

If KIND is present, the kind of the result is that specified by the value of
KIND; otherwise, the KIND type parameter is that of default integer type.

Each element of the resulting array (R(s1, s2, ..., s(DIM-1), s(DIM+1), ..., sn)) equals the
number of elements that are true in MASK along the corresponding dimension (s1,
s2, ..., s(DIM-1), :, s(DIM+1), ..., sn).

If MASK is a zero-sized array, the result equals zero.

Examples
! A is the array | T F F |, and B is the array | F F T |
! | F T T | | T T T |

! How many corresponding elements in A and B
! are equivalent?

RES = COUNT(A .EQV. B) ! result RES is 3

! How many corresponding elements are equivalent
! in each column?

RES = COUNT(A .EQV. B, DIM=1) ! result RES is (0,2,1)

! Same question, but for each row.
RES = COUNT(A .EQV. B, DIM=2) ! result RES is (1,2)

590 XL Fortran: Language Reference for Big Endian Distributions

CPU_TIME(TIME) (Fortran 95)
Purpose

Returns the CPU time, in seconds, taken by the current process and, possibly, all
the child processes in all of the threads. A call to CPU_TIME will give the
processor time taken by the process from the start of the program. The time
measured only accounts for the amount of time that the program is actually
running, and not the time that a program is suspended or waiting.

Class

Subroutine

Argument type and attributes

TIME An INTENT(OUT) REAL scalar. It is assigned an approximation to the
processor time. The time is measured in seconds. The time returned by
CPU_TIME is dependent upon the setting of the XLFRTEOPTS
environment variable or run-time option cpu_time_type. The valid settings
for cpu_time_type are:

usertime
The user time for the current process.

systime
The system time for the current process.

alltime
The sum of the user and system time for the current process

total_usertime
The total user time for the current process. The total user time is
the sum of the user time for the current process and the total user
times for its child processes, if any.

total_systime
The total system time for the current process. The total system time
is the sum of the system time for the current process and the total
system times for its child processes, if any.

total_alltime
The total user and system time for the current process. The total
user and system time is the sum of the user and system time for
the current process and the total user and system times for their
child processes, if any.

This is the default measure of time for CPU_TIME if you have not
set the cpu_time_type run-time option.

You can set the cpu_time_type run-time option using the setrteopts procedure.
Each change to the cpu_time_type setting will affect all subsequent calls to
CPU_TIME.

Examples

Example 1:
! The default value for cpu_time_type is used
REAL T1, T2
... ! First chunk of code to be timed
CALL CPU_TIME(T1)

Chapter 14. Intrinsic procedures 591

... ! Second chunk of code to be timed
CALL CPU_TIME(T2)
print *, ’Time taken for first chunk of code: ’, T1, ’seconds.’
print *, ’Time taken for both chunks of code: ’, T2, ’seconds.’
print *, ’Time for second chunk of code was ’, T2-T1, ’seconds.’

If you want to set the cpu_time_type run-time option to usertime, you would type
the following command from a ksh or bsh command line:
export XLFRTEOPTS=cpu_time_type=usertime

Example 2:
! Use setrteopts to set the cpu_time_type run-time option as many times
! as you need to
CALL setrteopts (’cpu_time_type=alltime’)
CALL stallingloop
CALL CPU_TIME(T1)
print *, ’The sum of the user and system time is’, T1, ’seconds’.
CALL setrteopts (’cpu_time_type=usertime’)
CALL stallingloop
CALL CPU_TIME(T2)
print *, ’The total user time from the start of the program is’, T2, ’seconds’.

Related information
v See the description of the XLFRTEOPTS environment variable in the XL Fortran

Compiler Reference for more information.

CSHIFT(ARRAY, SHIFT, DIM)
Purpose

Shifts the elements of all vectors along a given dimension of an array. The shift is
circular; that is, elements shifted off one end are inserted again at the other end.

Class

Transformational function

Argument type and attributes

ARRAY
An array of any type.

SHIFT

v An INTENT(IN) INTEGER scalar, if ARRAY has a rank of one
v An INTENT(IN) INTEGER scalar or an INTEGER expression of rank

rank(ARRAY)-1, if ARRAY does not have a rank of one.

DIM (optional)
An INTENT(IN) INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(ARRAY). If absent, it defaults to 1.

Result value

The result is an array with the same shape, data type, and type parameters as
ARRAY.

If SHIFT is a scalar, the same shift is applied to each vector. Otherwise, each vector
ARRAY (s1, s2, ..., s(DIM-1), :, s(DIM+1), ..., sn) is shifted according to the corresponding
value in SHIFT (s1, s2, ..., s(DIM-1), s(DIM+1), ..., sn)

592 XL Fortran: Language Reference for Big Endian Distributions

The absolute value of SHIFT determines the amount of shift. The sign of SHIFT
determines the direction of the shift:

Positive SHIFT
moves each element of the vector toward the beginning of the vector.

Negative SHIFT
moves each element of the vector toward the end of the vector.

Zero SHIFT
does no shifting. The value of the vector remains unchanged.

Examples
! A is the array | A D G |
! | B E H |
! | C F I |

! Shift the first column down one, the second column
! up one, and leave the third column unchanged.

RES = CSHIFT (A, SHIFT = (/-1,1,0/), DIM = 1)
! The result is | C E G |
! | A F H |
! | B D I |

! Do the same shifts as before, but on the rows
! instead of the columns.

RES = CSHIFT (A, SHIFT = (/-1,1,0/), DIM = 2)
! The result is | G A D |
! | E H B |
! | C F I |

CVMGx(TSOURCE, FSOURCE, MASK) (IBM extension)
Purpose

The conditional vector merge functions (CVMGM, CVMGN, CVMGP, CVMGT,
and CVMGZ) enable you to port existing code that contains these functions.

Calling them is very similar to calling
MERGE (TSOURCE, FSOURCE, arith_expr .op. 0)
or
MERGE (TSOURCE, FSOURCE, logical_expr .op. .TRUE.)

Because the MERGE intrinsic is part of the Fortran 90 language, we recommend
that you use it instead of these functions for any new programs.

Class

Elemental function

Argument type and attributes

TSOURCE
A scalar or array expression of type LOGICAL, INTEGER, or REAL and
any kind except 1.

FSOURCE
A scalar or array expression with the same type and kind type parameters
as TSOURCE.

MASK
A scalar or array expression of type INTEGER or REAL (for CVMGM,

Chapter 14. Intrinsic procedures 593

CVMGN, CVMGP, and CVMGZ) or LOGICAL (for CVMGT), and any
kind except 1. If it is an array, it must conform in shape to TSOURCE and
FSOURCE.

If only one of TSOURCE and FSOURCE is typeless, the typeless argument
acquires the type of the other argument. If both TSOURCE and FSOURCE are
typeless, both arguments acquire the type of MASK. If MASK is also typeless,
both TSOURCE and FSOURCE are treated as default integers. If MASK is
typeless, it is treated as a default logical for the CVMGT function and as a default
integer for the other CVMGx functions.

Result type and attributes

Same as TSOURCE and FSOURCE.

Result value

The function result is the value of either the first argument or second argument,
depending on the result of the test performed on the third argument. If the
arguments are arrays, the test is performed for each element of the MASK array,
and the result may contain some elements from TSOURCE and some elements
from FSOURCE.

Table 58. Result values for CVMGx intrinsic procedures

Explanation Function Return Value Generic Name

Test for positive or
zero

TSOURCE if MASK≥0
FSOURCE if MASK<0

CVMGP

Test for negative TSOURCE if MASK<0
FSOURCE if MASK≥0

CVMGM

Test for zero TSOURCE if MASK=0
FSOURCE if MASK≠0

CVMGZ

Test for nonzero TSOURCE if MASK≠0
FSOURCE if MASK=0

CVMGN

Test for true TSOURCE if MASK= .true.
FSOURCE if MASK= .false.

CVMGT

DATE_AND_TIME(DATE, TIME, ZONE, VALUES)
Purpose

Returns data from the real-time clock and the date in a form compatible with the
representations defined in ISO 8601:1988.

Class

Subroutine

Argument type and attributes

DATE (optional)
An INTENT(OUT) CHARACTER scalar that has a length of at least eight. Its
leftmost eight characters are set to a value of the form CCYYMMDD,
where CC is the century, YY is the year within the century, MM is the
month within the year, and DD is the day within the month. If no date is
available, these characters are set to blank.

594 XL Fortran: Language Reference for Big Endian Distributions

TIME (optional)
An INTENT(OUT) CHARACTER scalar that has a length of at least ten. Its
leftmost ten characters are set to a value of the form hhmmss.sss, where hh
is the hour of the day, mm is the minutes of the hour, and ss.sss is the
seconds and milliseconds of the minute. If no clock is available, they are
set to blank.

ZONE (optional)

An INTENT(OUT) CHARACTER scalar that has a length of at least five. Its
leftmost five characters are set to a value of the form ±hhmm, where hh
and mm are the time difference with respect to Coordinated Universal
Time (UTC) in hours and the parts of an hour expressed in minutes,
respectively. If no clock is available, they are set to blank.

The value of ZONE may be incorrect if you have not set the time
zone on your hardware correctly. You can manually set the TZ
environment variable to ensure the time zone is correct.

VALUES (optional)
An INTENT(OUT) INTEGER of rank one. Its size must be at least eight. The
values returned in VALUES are as follows:

VALUES(1)
is the year (for example, 1998), or -HUGE (0) if no date is available.

VALUES(2)
is the month of the year, or -HUGE (0) if no date is available.

VALUES(3)
is the day of the month, or -HUGE (0) if no date is available.

VALUES(4)
is the time difference with respect to Coordinated Universal Time
(UTC) in minutes, or -HUGE (0) if this information is not available.

VALUES(5)
is the hour of the day, in the range 0 to 23, or -HUGE (0) if there is
no clock.

VALUES(6)
is the minutes of the hour, in the range 0 to 59, or -HUGE (0) if
there is no clock.

VALUES(7)
is the seconds of the minute, in the range 0 to 60, or -HUGE (0) if
there is no clock.

VALUES (8)
is the milliseconds of the second, in the range 0 to 999, or -HUGE
(0) if there is no clock.

Examples

The following program:
INTEGER DATE_TIME (8)
CHARACTER (LEN = 10) BIG_BEN (3)
CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), &

BIG_BEN (3), DATE_TIME)

Chapter 14. Intrinsic procedures 595

if executed in Geneva, Switzerland on 1985 April 12 at 15:27:35.5, would have
assigned the value 19850412 to BIG_BEN(1), the value 152735.500 to BIG_BEN(2),
the value +0100 to BIG_BEN(3), and the following values to DATE_TIME: 1985, 4,
12, 60, 15, 27, 35, 500.

Note that UTC is defined by CCIR Recommendation 460-2 (also known as
Greenwich Mean Time).

DBLE(A)
Purpose

Convert to double precision real type.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER, REAL, COMPLEX, or boz-literal CONSTANT

Result type and attributes

Double precision real.

Result value
v If A is of type double precision real, DBLE(A) = A.
v If A is of type integer or real, the result has as much precision of the significant

part of A as a double precision real datum can contain.
v If A is of type complex, the result has as much precision of the significant part of

the real part of A as a double precision real datum can contain.

Examples

DBLE (-3) has the value -3.0D0.

Specific
Name Argument Type Result Type Pass As Arg?

DFLOAT any integer double precision real no

DBLE default real double precision real no

DBLEQ REAL(16) REAL(8) no

DCMPLX(X, Y) (IBM extension)
Purpose

Convert to double complex type.

596 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER, REAL, or COMPLEX

Y (optional)
An INTENT(IN) INTEGER or REAL. It must not be present if X is of type
complex.

Result type and attributes

It is of type double complex.

Result value
v If Y is absent and X is not complex, it is as if Y were present with the value of

zero.
v If Y is absent and X is complex, it is as if Y were present with the value

AIMAG(X).
v DCMPLX(X, Y) has the complex value whose real part is REAL(X, KIND=8) and

whose imaginary part is REAL(Y, KIND=8).

Examples

DCMPLX (-3) has the value (-3.0D0, 0.0D0).

Specific Name Argument Type Result Type Pass As Arg?

DCMPLX double precision real double complex no

Related information

“CMPLX(X, Y, KIND)” on page 585, “QCMPLX(X, Y) (IBM extension)” on page
674.

DIGITS(X)
Purpose

Returns the number of significant digits for numbers whose type and kind type
parameter are the same as the argument.

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) INTEGER or REAL. The actual argument corresponding to X
can be scalar or array valued.

Result type and attributes

Default integer scalar.

Chapter 14. Intrinsic procedures 597

Result value
v If X is of type integer, the number of the significant digits of X is:

type bits
----------- ------
integer(1) 7
integer(2) 15
integer(4) 31
integer(8) 63

v If X is of type real, the number of significant bits of X is:
type bits

---------- ------
real(4) 24
real(8) 53
real(16) 106

Examples

DIGITS (X) = 63, where X is of type integer(8) (see “Data representation
models” on page 562).

DIM(X, Y)
Purpose

The difference X-Y if it is positive; otherwise zero.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER or REAL

Y An INTENT(IN) argument of the same type and kind type parameter as X.

Result type and attributes

Same as X.

Result value
v If X > Y, the value of the result is X - Y.
v If X ≤ Y, the value of the result is zero.

Examples

DIM (-3.0, 2.0) has the value 0.0. DIM (-3.0, -4.0) has the value 1.0.

Specific Name Argument Type Result Type Pass As Arg?

IDIM any integer �1� same as argument yes

DIM default real default real yes

DDIM double precision real double precision real yes

QDIM �2� REAL(16) REAL(16) yes

598 XL Fortran: Language Reference for Big Endian Distributions

Note:

1. IBM extension: the ability to specify a nondefault integer argument.
2. IBM extension.

DOT_PRODUCT(VECTOR_A, VECTOR_B)
Purpose

Computes the dot product on two vectors.

Class

Transformational function

Argument type and attributes

VECTOR_A
An INTENT(IN) NUMERIC or LOGICAL vector

VECTOR_B
The same type and size as VECTOR_A.

Result value

The result is a scalar whose data type depends on the data type of the two vectors,
according to the rules in Table 16 on page 105 and Table 17 on page 109.

If either vector is a zero-sized array, the result equals zero when it has a numeric
data type, and false when it is of type logical.

If VECTOR_A is of type integer or real, the result value equals SUM(VECTOR_A
* VECTOR_B).

If VECTOR_A is of type complex, the result equals SUM(CONJG(VECTOR_A) *
VECTOR_B).

If VECTOR_A is of type logical, the result equals ANY(VECTOR_A .AND.
VECTOR_B).

Examples
! A is (/ 3, 1, -5 /), and B is (/ 6, 2, 7 /).

RES = DOT_PRODUCT (A, B)
! calculated as
! ((3*6) + (1*2) + (-5*7))
! = (18 + 2 + (-35))
! = -15

DPROD(X, Y)
Purpose

Double precision real product.

Class

Elemental function

Chapter 14. Intrinsic procedures 599

Argument type and attributes

X An INTENT(IN) REAL

Y An INTENT(IN) REAL

Result type and attributes

Double precision real.

Result value

The result has a value equal to the product of X and Y.

Examples

DPROD (-3.0, 2.0) has the value -6.0D0.

Specific Name Argument Type Result Type Pass As Arg?

DPROD default real double precision real yes

QPROD �1� double precision real REAL(16) yes

Note:

1. IBM extension.

DSHIFTL(I, J, SHIFT) (Fortran 2008)
Purpose

Performs a combined shift to the left.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER or boz-literal CONSTANT

J An INTENT(IN) INTEGER or boz-literal CONSTANT

If both I and J are of type INTEGER, they must be the same kind. I and J
must not both be boz-literal CONSTANT.

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to BIT_SIZE(I) when I is an INTEGER. Otherwise, it must be less than
or equal to BIT_SIZE(J).

Result type and attributes

Same as I when I is of type integer. Otherwise, same as J.

Result value
v If I or J is a boz-literal constant, it is first converted as if by the intrinsic function

INT to type integer with the kind type parameter of the other. The rightmost
SHIFT bits of the result value are equal to the leftmost SHIFT bits of J, and other

600 XL Fortran: Language Reference for Big Endian Distributions

bits of the result value are equal to the rightmost bits of I, which is equal to IOR
(SHIFTL (I, SHIFT), SHIFTR (J, BIT SIZE (J)-SHIFT)).

v No vacated bits.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Example

DSHIFTL (5, 2**15, 10) has the result 5120.

DSHIFTR(I, J, SHIFT) (Fortran 2008)
Purpose

Performs a combined shift to the right.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER or boz-literal CONSTANT

J An INTENT(IN) INTEGER or boz-literal CONSTANT

If both I and J are of type INTEGER, they must be the same kind. I and J
must not both be boz-literal CONSTANT.

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to BIT_SIZE(I) when I is an INTEGER. Otherwise, it must be less than
or equal to BIT_SIZE(J).

Result type and attributes

Same as I when I is of type integer. Otherwise, same as J.

Result value
v If I or J is a boz-literal constant, it is first converted as if by the intrinsic function

INT to type integer with the kind type parameter of the other. The leftmost
SHIFT bits of the result value are equal to the rightmost SHIFT bits of I, and
other bits of the result value are equal to the leftmost bits of J, which is equal to
IOR (SHIFTL (I, BIT SIZE (I)-SHIFT), SHIFTR (J, SHIFT)).

v No vacated bits.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Example

DSHIFTR (-50, -128, 30) has the result -197.

EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)
Purpose

Shifts the elements of all vectors along a given dimension of an array. The shift is
end-off; that is, elements shifted off one end are lost, and copies of boundary
elements are shifted in at the other end.

Chapter 14. Intrinsic procedures 601

Class

Transformational function

Argument type and attributes

ARRAY
An array of any type.

SHIFT

v An INTENT(IN) INTEGER scalar, if ARRAY has a rank of 1
v Otherwise, an INTENT(IN) INTEGER scalar or an INTENT(IN) expression of

rank rank(ARRAY)-1

BOUNDARY (optional)
The same type and type parameters as ARRAY. If ARRAY has a rank of 1,
BOUNDARY must be scalar. Otherwise, BOUNDARY is a scalar or an
expression of rank=rank(ARRAY)-1, and of shape (d1, d2..., dDIM-1,
dDIM+1..., dn).

DIM (optional)
An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(ARRAY).

Result value

The result is an array with the same shape, data type, and type parameters as
ARRAY.

The absolute value of SHIFT determines the amount of shift. The sign of SHIFT
determines the direction of the shift:

Positive SHIFT
moves each element of the vector toward the beginning of the vector. If an
element is taken off the beginning of a vector, its value is replaced by the
corresponding value from BOUNDARY at the end of the vector.

Negative SHIFT
moves each element of the vector toward the end of the vector. If an
element is taken off the end of a vector, its value is replaced by the
corresponding value from boundary at the beginning of the vector.

Zero SHIFT
does no shifting. The value of the vector remains unchanged.

Result value

If BOUNDARY is a scalar value, this value is used in all shifts.

If BOUNDARY is an array of values, the values of the array elements of
BOUNDARY with subscripts (s1, s2, ..., s(DIM-1), s(DIM+1), ..., sn) are used for that
dimension.

If BOUNDARY is not specified, the following default values are used, depending
on the data type of ARRAY:

character
'�' (one blank)

602 XL Fortran: Language Reference for Big Endian Distributions

logical
false

integer
0

real 0.0

complex
(0.0, 0.0)

Examples
! A is | 1.1 4.4 7.7 |,
SHIFT is S=(/0, -1, 1/),
! | 2.2 5.5 8.8 |
! | 3.3 6.6 9.9 |
! and BOUNDARY is the array B=(/-0.1, -0.2, -0.3/).

! Leave the first column alone, shift the second
! column down one, and shift the third column up one.
RES = EOSHIFT (A, SHIFT = S, BOUNDARY = B, DIM = 1)
! The result is | 1.1 -0.2 8.8 |
! | 2.2 4.4 9.9 |
! | 3.3 5.5 -0.3 |

! Do the same shifts as before, but on the
! rows instead of the columns.
RES = EOSHIFT (A, SHIFT = S, BOUNDARY = B, DIM = 2)
! The result is | 1.1 4.4 7.7 |
! | -0.2 2.2 5.5 |
! | 6.6 9.9 -0.3 |

EPSILON(X)
Purpose

Returns a positive model number that is almost negligible compared to unity in
the model representing numbers of the same type and kind type parameter as the
argument.

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) REAL. The corresponding actual argument can be scalar or
array valued.

Result type and attributes

Scalar of the same type and kind type parameter as X.

Result value

The result is
2.0ei01 - DIGITS(X)

where ei is the exponent indicator (E, D, or Q) depending on the type of X:

Chapter 14. Intrinsic procedures 603

type EPSILON(X)
---- ----------
real(4) 02E0 ** (-23)
real(8) 02D0 ** (-52)
real(16) 02Q0 ** (-105)

Examples

EPSILON (X) = 1.1920929E-07 for X of type real(4). See “Real data
model” on page 563.

ERF(X) (Fortran 2008)
Purpose

Error function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value
v The result value approximates erf(X).
v The result is in the range -1 ≤ ERF(X) ≤ 1.

Examples

ERF (1.0) has the value 0.8427007794 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

ERF default real default real yes

DERF�1� double precision real double precision real yes

QERF�1� REAL(16) REAL(16) yes

Note:
v �1� IBM extension

2

e dtt−

√
erf(x)

2
=

π 0∫
x

604 XL Fortran: Language Reference for Big Endian Distributions

ERFC(X) (Fortran 2008)
Purpose

Complementary error function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value
v The result has a value equal to 1-ERF(X).
v The result is in the range 0 ≤ ERFC(X) ≤ 2.

Examples

ERFC (1.0) has the value 0.1572992057 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

ERFC default real default real yes

DERFC�1� double precision real double precision real yes

QERFC�1� REAL(16) REAL(16) yes

Note:
v �1� IBM extension

ERFC_SCALED(X) (Fortran 2008)
Purpose

Scaled complementary error function.

Class

Elemental function

�
erfc(x)=1 erf(x)=

2

x
e t dt2

Chapter 14. Intrinsic procedures 605

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result value approximates erfc_scaled(X).

Examples

ERFC_SCALED (1.0) has the value 0.4275836 (approximately).

Related information
v “EXP(X)” on page 608
v “ERFC(X) (Fortran 2008)” on page 605

EXECUTE_COMMAND_LINE(COMMAND, WAIT, EXITSTAT,
CMDSTAT, CMDMSG) (Fortran 2008)

Purpose

Passes a command to the operating system for execution.

Class

Subroutine

Argument type and attributes

COMMAND
An INTENT(IN) CHARACTER scalar. It specifies the command line to be
executed.

WAIT (optional)
An INTENT(IN) LOGICAL scalar. It determines whether COMMAND is executed
synchronously or asynchronously.
v If WAIT is set to .TRUE., COMMAND is executed synchronously.
v If WAIT is set to .FALSE., COMMAND is executed asynchronously if that is

supported, and synchronously otherwise.
v If WAIT is not present, XL Fortran treats it as present with the value

.TRUE.. Then COMMAND is executed synchronously.

Note: In the current release, XL Fortran supports only synchronous
execution.

EXITSTAT (optional)
An INTENT(OUT) INTEGER scalar. If XL Fortran executes COMMAND
synchronously, EXITSTAT is assigned the value of the system return code
returned by the executed command when this argument is present.
Otherwise, EXITSTAT remains unchanged.

CMDSTAT (optional)
An INTENT(OUT) INTEGER scalar. If CMDSTAT is present, it is assigned a value
indicating the status of the command execution as follows:

606 XL Fortran: Language Reference for Big Endian Distributions

v If command-line execution is not supported, CMDSTAT is assigned the
value of -1.

v If no error occurs during the execution of COMMAND, and the value of WAIT
is .FALSE., but asynchronous execution is not supported, CMDSTAT is
assigned the value of -2.

v If an error occurs, CMDSTAT is assigned the value of 1.
v In all other cases, CMDSTAT is assigned the value of 0.

Note: If a condition occurs that would assign a nonzero value to CMDSTAT,
but the CMDSTAT argument is not present, error termination is initiated.

CMDMSG (optional)
An INTENT(OUT) CHARACTER scalar. If an error occurs during the execution of
COMMAND, CMDMSG is assigned the value of an explanatory message when this
argument is present. Otherwise, CMDMSG remains unchanged.

Examples
CALL EXECUTE_COMMAND_LINE(’rm -rf script’)
OPEN(1, FILE = ’script’)
CALL EXECUTE_COMMAND_LINE(’date | awk \’{printf \" %s \", $1}\’ >> script.out’)

! Execute the ’cmd’ command synchronously
CHARACTER(LEN = 10) :: cmd = "du -s -m"
CALL EXECUTE_COMMAND_LINE(cmd, .TRUE.)

! Assign ’exit’ the value of the system return code
INTEGER :: exit = 0
CALL EXECUTE_COMMAND_LINE(’/bin/mv mod1.mod mod2.mod’, .TRUE., EXIT)

! Assign ’exit’ the value of the system return code
! Assign ’cmdstat’ the value of the status of the command execution
INTEGER :: exit, cmdstat = 0
CALL EXECUTE_COMMAND_LINE(’echo running on = \’hostname\’’, .TRUE., exit, cmdstat)

! If an error occurs, ’message’ is assigned the value of
! an explanatory message.

IMPLICIT NONE

CHARACTER(200) :: message = ""
INTEGER :: exit_s = 0, cmd_s = 0

CALL EXECUTE_COMMAND_LINE("mv f.1 f.2", EXITSTAT = exit_s,
CMDSTAT = cmd_s, CMDMSG = message)

IF (cmd_s .NE. 0) THEN
IF (cmd_s .EQ. -1) THEN

PRINT *, "command execution not supported on this system"
STOP 1

END IF

PRINT *, message
STOP 2

END IF

IF (exit_s .NE. 0) THEN
STOP 3

END IF

END

Chapter 14. Intrinsic procedures 607

EXP(X)
Purpose

Exponential.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

Result type and attributes

Same as X.

Result value
v The result approximates ex.
v If X is of type complex, its real and imaginary parts are regarded as values in

radians.

Examples

EXP (1.0) has the value 2.7182818 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

EXP �1� default real default real yes

DEXP �2� double precision real double precision real yes

QEXP �2� �3� REAL(16) REAL(16) yes

CEXP �4a� default complex default complex yes

CDEXP �4b� �3� double complex double complex yes

ZEXP �4b� �3� double complex double complex yes

CQEXP �4b� �3� COMPLEX(16) COMPLEX(16) yes

Note:

1. X must be less than or equal to 88.7228.
2. X must be less than or equal to 709.7827.
3. IBM extension.
4. When X is a complex number in the form a + bi, where i = (-1) ½:

a. a must be less than or equal to 88.7228; b is any real value.
b. a must be less than or equal to 709.7827; b is any real value.

EXPONENT(X)
Purpose

Returns the exponent part of the argument when represented as a model number.

608 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Default integer.

Result value
v If X ≠ 0, the result is the exponent of X (which is always within the range of a

default integer).
v If X = 0, the exponent of X is zero.

Examples

EXPONENT (10.2) = 4. See “Real data model” on page 563

EXTENDS_TYPE_OF(A, MOLD) (Fortran 2003)
Purpose

Inquires whether the dynamic type of A is an extension type of the dynamic type
of MOLD.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) argument of extensible type. If the actual argument
corresponding to A is a pointer, the pointer must not have an undefined
association status.

MOLD
An INTENT(IN) argument of extensible type. If the actual argument
corresponding to MOLD is a pointer, the pointer must not have an
undefined association status.

Result type and attributes

Default logical scalar

Result value
v If MOLD is unlimited polymorphic and is a disassociated pointer or an

allocatable argument that is deallocated, the result is true.
v Otherwise, if A is unlimited polymorphic and is either a disassociated pointer or

an allocatable argument that is deallocated, the result is false.
v Otherwise, if the dynamic type of A is an extension type of the dynamic type of

MOLD, the result is true.
v Otherwise, the result is false.

Chapter 14. Intrinsic procedures 609

Note: The result depends only on the dynamic types of A and MOLD. Differences
in type parameters are ignored.

FINDLOC(ARRAY, VALUE, DIM, MASK, KIND, BACK) or
FINDLOC(ARRAY, VALUE, MASK, KIND, BACK) (Fortran 2008)

Purpose

Locates the first or the last element of an array along a dimension that equals the
target value corresponding to the true values of the mask. FINDLOC returns the
subscript of the element using positive integers.

Class

Transformational function

Argument type and attributes

ARRAY
An array of type integer, real, complex, logical, character, or byte.

VALUE
A scalar of the same type as ARRAY.

DIM (optional)
An integer scalar. Its value must be in the range 1 ≤ DIM ≤ n, where n is the
rank of ARRAY. The corresponding actual argument cannot be an optional
dummy argument.

MASK (optional)
An array of type logical and of the same shape as ARRAY. If it is absent, the
default mask evaluation is .TRUE., which means that the entire array is
evaluated.

KIND (optional)
An integer scalar. The actual argument corresponding to KIND must be a
constant expression.

BACK (optional)
A logical scalar. It controls the direction in which ARRAY is searched. If it is
.FALSE. or absent, the array is searched from the beginning. If it is .TRUE., the
array is searched from the end.

Result type and attributes
v If KIND is present, the KIND type parameter is that specified by KIND; otherwise,

the KIND type parameter is that of default integer type.
v If DIM is absent, the result is an integer array of rank one with the size equal to

the rank of ARRAY.
v If DIM is absent, and if there is no matching value because the DIM is zero-sized,

or the mask array has all .FALSE. values, or there is no element in the ARRAY
equal to the VALUE argument, the return value is a one-dimensional array whose
elements are zero.

v If DIM is present, the result is an integer array of rank rank(ARRAY) -1, and the
shape is (s1, ..., sDIM-1, sDIM+1, ..., sn), where n is the rank of ARRAY.

Restriction: FINDLOC cannot be passed as an actual argument.

610 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result indicates the subscript of the location of the masked element of ARRAY
whose value matches VALUE. If ARRAY is of type character, the comparison is done
using the ASCII collating sequence.

If more than one element equals VALUE, and BACK is absent or has the value
.FALSE., the result indicates the location of the first element in array element order.
If BACK is present with the value .TRUE., the result indicates the location of the last
element in array element order.

If DIM is specified, the result indicates the location of the masked element of ARRAY
whose value matches VALUE along each vector of the dimension. Example 3
demonstrates the results according to different value of DIM in a 2-rank array.

Examples

Example 1:
PRINT *, FINDLOC([4,9,-2,9], VALUE=9)

It prints | 2 | because the array is searched from the beginning and the second
element is the first one that is of target value.
PRINT *, FINDLOC([4,9,-2,9], VALUE=9, BACK=.TRUE.)

It prints | 4 | because BACK has the value .TRUE. and the fourth element is the last
one that is of target value.

Example 2:
INTEGER :: A(-2:0,5:8) ! The lower bound of A does not affect the result.
LOGICAL :: M(-5:-3,-1:2) ! A and M can have different lower bounds.
A = RESHAPE((/3,2,7,8,5,1,-4,1,0,5,3,5/), (/3,4/))
M = RESHAPE((/.FALSE., .TRUE., .FALSE., .TRUE., .FALSE., .TRUE., .TRUE.,

.TRUE., .TRUE., .TRUE., .TRUE., .TRUE./), (/3,4/))
!A has the value |3 8 -4 5|, and M has the value |.FALSE. .TRUE. .TRUE. .TRUE.|.
! |2 5 1 3| |.TRUE. .FALSE. .TRUE. .TRUE.|
! |7 1 0 5| |.FALSE. .TRUE. .TRUE. .TRUE.|

To find the first element of value 5 using mask M:
PRINT *, FINDLOC(A, 5, MASK=M)

It prints | 1 4 | because the target value, 5, is at A(1, 4). A(2, 2), which also has
target value, is not evaluated because of mask M. Although A(3,4) is also of target
value, it is not the first in column-major order.

To find the last element of value 5 using mask M:
PRINT *, FINDLOC(A, 5, MASK=M, BACK=.TRUE.)

It prints | 3 4 | because the target value, 5, is at A(3, 4). Although there are other
instances of target value, A(3, 4) is the last in column-major order.

Example 3:
INTEGER :: B(2,3)
B = RESHAPE((/6,4,-2,3,4,5/),(/2,3/))
!B has the value |6 -2 4|.
! |4 3 5|

To find the first element of value 4 in each column of B, specify DIM = 1:

Chapter 14. Intrinsic procedures 611

PRINT *, FINDLOC(B, VALUE=4, DIM=1)

It prints | 2 0 1|. These numbers are the corresponding row locations of the first
element that is of the target value, 4, in each column. The found elements are at
B(2, 1) and B(1, 3). There is no matching value in the second column, so 0 is in the
second place.

To find the first element of value 4 in each row of B, specify DIM = 2:
PRINT *, FINDLOC(B, VALUE=4, DIM=2)

It prints | 3 1|. These numbers are the corresponding column locations of the first
element that is of target value in each row. The found elements are at B(1, 3) and
B(2, 1).

FLOOR(A, KIND)
Purpose

Returns the greatest integer less than or equal to its argument.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) REAL

KIND (optional)
An INTENT(IN) scalar INTEGER. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes

It is of type integer.

If KIND is present, the kind type parameter is that specified by KIND; otherwise,
the KIND type parameter is that of the default integer type.

Result value

The result has a value equal to the greatest integer less than or equal to A.

The result is undefined if the result cannot be represented as an integer of the
specified KIND.

Examples
FLOOR(-3.7) has the value -4.
FLOOR(3.7) has the value 3.

FLOOR(1000.1, KIND=2) has the value 1000, with a kind type parameter of two.

FRACTION(X)
Purpose

Returns the fractional part of the model representation of the argument value.

612 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result is:
X * (2.0-EXPONENT(X))

Examples

FRACTION(10.2) =2-4 * 10.2 approximately equal to 0.6375

GAMMA(X) (Fortran 2008)
Purpose

Gamma function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result has a value that approximates Γ(X).

Examples

GAMMA(1.0) has the value 1.0.

GAMMA(10.0) has the value 362880.0, approximately.

u e du1 u− −

0

x∫
∞

(x) =Γ

Chapter 14. Intrinsic procedures 613

Specific Name Argument Type Result Type Pass As Arg?

GAMMA �1� default real default real yes

DGAMMA �2��4� double precision real double precision real yes

QGAMMA �3��4� REAL(16) REAL(16) yes

Notes:
v X must satisfy the inequality:

�1� -2.0**23 < X ≤ 35.0401, except for nonpositive integral values
�2� -2.0**52 < X ≤ 171.6243, except for nonpositive integral values
�3� -2.0**105 < X ≤ 171.6243, except for nonpositive integral values

v �4� IBM extension

GET_COMMAND(COMMAND, LENGTH, STATUS) (Fortran 2003)
Purpose

Returns the command that invoked the program.

Class

Subroutine

Argument type and attributes

COMMAND (optional)
An INTENT(OUT) CHARACTER scalar. It is the command that invoked the
program, or a string of blanks if the command is unknown.

LENGTH (optional)
An INTENT(OUT) INTEGER scalar. It is the significant length of the command
that invoked the program, or 0 if the length of the command is unknown.
This length includes significant trailing blanks of each argument. It does
not include any truncation or padding that occurs when the command is
assigned to the COMMAND argument.

STATUS (optional)
An INTENT(OUT) INTEGER scalar. It is a status value.

STATUS has one of the following values:
v 1 if the command retrieval fails
v -1 if the COMMAND argument is present and has a length less than the

significant length of the command
v 0 otherwise

Examples
integer len, status
character(7) :: cmd
call GET_COMMAND(cmd, len, status)
print*, cmd
print*, len
print*, status
end

The following code is sample output the above program generates:
$ a.out
a.out (followed by two spaces)
5
0

614 XL Fortran: Language Reference for Big Endian Distributions

$ a.out aa
a.out a
8
-1

GET_COMMAND_ARGUMENT(NUMBER, VALUE, LENGTH,
STATUS) (Fortran 2003)

Purpose

Returns a command line argument of the command that invoked the program.

Class

Subroutine

Argument type and attributes

NUMBER
An INTENT(IN) INTEGER scalar. It is an integer that identifies the argument
number. 0 represents the command name. The numbers from 1 to the
argument count represent the command's arguments.

VALUE (optional)
An INTENT(OUT) CHARACTER scalar. It is assigned the value of the argument,
or a string of blanks if the value is unknown.

LENGTH (optional)
An INTENT(OUT) INTEGER scalar. It is assigned the significant length of the
argument, or 0 if the length of the argument is unknown. This length
includes significant trailing blanks. It does not include any truncation or
padding that occurs when the argument is assigned to the VALUE
argument.

STATUS (optional)
An INTENT(OUT) INTEGER scalar. It is assigned a status value.

It has one of the following values:
v 1 if the argument retrieval fails
v -1 if the VALUE argument is present and has a length less than the

significant length of the command argument
v 0 otherwise

Examples
integer num, len, status
character*7 value
num = 0
call GET_COMMAND_ARGUMENT(num, value, len, status)
print*, value
print*, len
print*, status

See the following sample output generated by the above program:
$ a.out aa bb
a.out (followed by two spaces)
5
0

Chapter 14. Intrinsic procedures 615

GET_ENVIRONMENT_VARIABLE(NAME, VALUE, LENGTH,
STATUS, TRIM_NAME) (Fortran 2003)

Purpose

Returns the value of the specified environment variable.

Class

Subroutine

Argument type and attributes

NAME
An INTENT(IN) CHARACTER scalar. It is a character string that identifies the
name of the operating-system environment variable. The string is
case-significant.

VALUE (optional)
An INTENT(OUT) CHARACTER scalar. It is assigned the value of the
environment variable, or a string of blanks if the environment variable has
no value or does not exist.

LENGTH (optional)
An INTENT(OUT) INTEGER scalar. It is assigned the significant length of the
value, or 0 if the environment variable has no value or does not exist.

STATUS (optional)
An INTENT(OUT) INTEGER scalar. It is assigned a status value.

STATUS has one of the following values:
v 0, if either the environment variable exists and its value is successfully

assigned to VALUE or the environment variable exists but has no value
v 1, if the environment variable does not exist
v -1, if the length of the VALUE argument is less than the significant

length of the value of the environment variable
v 3, if other error conditions occur

TRIM_NAME (optional)
An INTENT(IN) LOGICAL scalar. TRIM_NAME is a logical value that
specifies whether to trim trailing blanks in NAME. By default, trailing
blanks in NAME are trimmed. If TRIM_NAME exists and has the value
.FALSE., trailing blanks in NAME are considered significant.

Examples
integer num, len, status
character*15 value
call GET_ENVIRONMENT_VARIABLE(’HOME’, value, len, status)
print*, value
print*, len
print*, status

The following is sample output generated by the above program:
$ a.out
/home/xlfuser (followed by two spaces)
13
0

616 XL Fortran: Language Reference for Big Endian Distributions

GETENV(NAME, VALUE) (IBM extension)
Purpose

Returns the value of the specified environment variable.

Note: This is an IBM extension. It is recommended that you use the
GET_ENVIRONMENT_VARIABLE intrinsic procedure for portability.

Class

Subroutine

Argument type and attributes

NAME
An INTENT(IN) CHARACTER scalar. Its value is a character string that
identifies the name of the operating-system environment variable. The
string is case-significant.

VALUE
An INTENT(OUT) CHARACTER scalar. It holds the value of the environment
variable when the subroutine returns.

Result value

The result is returned in the VALUE argument, not as a function result variable.

If the environment variable specified in the NAME argument does not exist, the
VALUE argument contains blanks.

Examples
CHARACTER (LEN=16) ENVDATA
CALL GETENV(’HOME’, VALUE=ENVDATA)

! Print the value.
PRINT *, ENVDATA

! Show how it is blank-padded on the right.
WRITE(*, ’(Z32)’) ENVDATA
END

The following is sample output generated by the above program:
/home/mark
2F686F6D652F6D61726B202020202020

HFIX(A) (IBM extension)
Purpose

Convert from REAL(4) to INTEGER(2).

This procedure is a specific function, not a generic function.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) REAL(4)

Chapter 14. Intrinsic procedures 617

Result type and attributes

An INTEGER(2) scalar or array.

Result value
v If |A| < 1, HFIX (A) has the value 0.
v If |A| ≥ 1, HFIX (A) is the integer whose magnitude is the largest integer that

does not exceed the magnitude of A and whose sign is the same as the sign of
A.

v The result is undefined if the result cannot be represented in an INTEGER(2).

Examples

HFIX (-3.7) has the value -3.

Specific Name Argument Type Result Type Pass As Arg?

HFIX REAL(4) INTEGER(2) no

HYPOT(X, Y) (Fortran 2008)
Purpose

Calculates the Euclidean distance between two values.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Y An INTENT(IN) argument of the same type and kind type parameter as X.

Result type and attributes

Same as X.

Result value

The result value is equal to sqrt(x2 + y2), approximately.

Example

HYPOT(3.0, 4.0) has the value 5.0.

HUGE(X)
Purpose

Returns the largest number in the model representing numbers of the same type
and kind type parameter as the argument.

Class

Inquiry function

618 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

X An INTENT(IN) INTEGER or REAL

Result type and attributes

Scalar of the same type and kind type parameter as X.

Result value
v If X is of any integer type, the result is:

2DIGITS(X) - 1

v If X is of any real type, the result is:
(1.0 - 2.0-DIGITS(X)) *(2.0MAXEXPONENT(X))

Examples

HUGE (X) = (1D0 - 2D0**-53) * (2D0**1024) for X of type real(8).

HUGE (X) = (2**63) - 1 for X of type integer(8).

See “Data representation models” on page 562.

IACHAR(C, KIND)
Purpose

Returns the position of a character in the ASCII collating sequence.

Class

Elemental function

Argument type and attributes

C An INTENT(IN) character of length one.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer.
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value
v If C is in the collating sequence defined by the codes specified in ISO 646:1983

(International Reference Version), the result is the position of C in that sequence
and satisfies the inequality (0 ≤ IACHAR (C) ≤ 127). An undefined value is
returned if C is not in the ASCII collating sequence.

Chapter 14. Intrinsic procedures 619

v The results are consistent with the LGE, LGT, LLE, and LLT lexical comparison
functions. For example, LLE (C, D) is true, so IACHAR (C) .LE. IACHAR (D) is
true too.

Examples

IACHAR ('X') has the value 88.

IAND(I, J)
Purpose

Performs a bitwise AND on two integers.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

J An INTENT(IN) INTEGER with the same kind type parameter as I.

Result type and attributes

Same as I.

Result value

The result has the value obtained by combining I and J bit-by-bit according to the
following table:
ith bit ith bit ith bit
of I of J of IAND(I,J)

1 1 1
1 0 0
0 1 0
0 0 0

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

IAND (1, 3) has the value 1. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IAND �1� any integer same as argument yes

AND �1� any integer same as argument yes

Note:
�1� IBM extension

IBCLR(I, POS)
Purpose

Clears one bit to zero.

620 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

POS An INTENT(IN) INTEGER. Its value must be nonnegative and less than
BIT_SIZE (I).

Result type and attributes

Same as I.

Result value

The result has the value of the sequence of bits of I, except that bit POS of I is set
to zero.

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

IBCLR (14, 1) has the result 12.

If V has the value (/1, 2, 3, 4/), the value of IBCLR (POS = V, I = 31) is (/29, 27,
23, 15/).

See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IBCLR �1� any integer same as argument yes

Note:
�1� IBM extension

IBITS(I, POS, LEN)
Purpose

Extracts a sequence of bits.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

POS An INTENT(IN) INTEGER. Its value must be nonnegative and POS + LEN
must be less than or equal to BIT_SIZE (I).

LEN An INTENT(IN) INTEGER. Its value must be nonnegative.

Result type and attributes

Same as I.

Chapter 14. Intrinsic procedures 621

Result value

The result has the value of the sequence of LEN bits in I beginning at bit POS,
right-adjusted and with all other bits zero.

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

IBITS (14, 1, 3) has the value 7. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IBITS �1� any integer same as argument yes

Note:
�1� IBM extension

IBM2GCCLDBL(A) (IBM extension)
Purpose

Converts IBM-style long double data types to GCC long doubles.

Class

Elemental function.

Argument type and attributes

A An INTENT(IN) REAL(16)

Result type and attributes

Same as A.

Result value

The result has the REAL(16) value in A, converted to a REAL(16) value compatible
with GCC's glibc library.

Examples

Specific Name Argument Type Result Type Pass As Arg?

IBM2GCCLDBL�1� REAL(16) same as argument yes

Note:

1. IBM extension.

IBM2GCCLDBL_CMPLX(A)
Purpose

Converts IBM-style long double data types to GCC long doubles.

622 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function.

Argument type and attributes

A An INTENT(IN) COMPLEX(16) .

Result type and attributes

Same as A.

Result value

This result has the COMPLEX(16) value in A, converted to a COMPLEX(16) value
compatible with GCC's glibc library.

Examples

Specific Name Argument Type Result Type Pass As Arg?

IBM2GCCLDBL_CMPLX�1� COMPLEX(16) same as argument yes

Note:

1. IBM extension.

IBSET(I, POS)
Purpose

Sets one bit to one.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

POS An INTENT(IN) INTEGER. Its value must be nonnegative and less than
BIT_SIZE (I).

Result type and attributes

Same as I.

Result value

The result has the value of the sequence of bits of I, except that bit POS of I is set
to one.

The bits are numbered from 0 to BIT_SIZE(I)-1, from right to left.

Examples

IBSET (12, 1) has the value 14.

Chapter 14. Intrinsic procedures 623

If V has the value (/1, 2, 3, 4/), the value of IBSET (POS = V, I = 0) is (/2, 4, 8,
16/).

See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IBSET �1� any integer same as I yes

Note:
�1� IBM extension

ICHAR(C, KIND)
Purpose

Returns the position of a character in the collating sequence associated with the
kind type parameter of the character.

Class

Elemental function

Argument type and attributes

C An INTENT(IN) CHARACTER of length one. Its value must be that of a
representable character.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer.
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value
v The result is the position of C in the collating sequence associated with the kind

type parameter of C and is in the range 0 ≤ ICHAR (C) ≤ 127.
v For any representable characters C and D, C .LE. D is true if and only if ICHAR

(C) .LE. ICHAR (D) is true and C .EQ. D is true if and only if ICHAR (C) .EQ.
ICHAR (D) is true.

Examples

ICHAR ('X') has the value 88 in the ASCII collating sequence.

Specific Name Argument Type Result Type Pass As Arg?

ICHAR default character default integer yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.
�2� XL Fortran supports only the ASCII collating sequence.

624 XL Fortran: Language Reference for Big Endian Distributions

IEOR(I, J)
Purpose

Performs an exclusive OR.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

J An INTENT(IN) INTEGER with the same kind type parameter as I.

Result type and attributes

Same as I.

Result value

The result has the value obtained by combining I and J bit-by-bit according to the
following truth table:
ith bit ith bit ith bit
of I of J of IEOR(I,J)

1 1 0
1 0 1
0 1 1
0 0 0

The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

IEOR (1, 3) has the value 2. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IEOR �1� any integer same as argument yes

XOR �1� any integer same as argument yes

Note:
�1� IBM extension

ILEN(I) (IBM extension)
Purpose

Returns one less than the length, in bits, of the twos complement representation of
an integer.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Chapter 14. Intrinsic procedures 625

Result type and attributes

Same as I.

Result value
v If I is negative, ILEN(I)=CEILING(LOG2(-I))
v If I is nonnegative, ILEN(I)=CEILING(LOG2(I+1))

Examples
I=ILEN(4) ! 3
J=ILEN(-4) ! 2

IMAG(Z) (IBM extension)
Purpose

Identical to AIMAG.

Related information

“AIMAG(Z), IMAG(Z)” on page 569.

INDEX(STRING, SUBSTRING, BACK, KIND)
Purpose

Returns the starting position of a substring within a string.

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER

SUBSTRING
An INTENT(IN) CHARACTER with the same kind type parameter as STRING.

BACK (optional)
An INTENT(IN) LOGICAL

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer.
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value
v Case (i): If BACK is absent or present with the value .FALSE., the result is the

minimum positive value of I such that STRING (I : I + LEN (SUBSTRING) -
1) = SUBSTRING or zero if there is no such value. Zero is returned if LEN
(STRING) < LEN (SUBSTRING). One is returned if LEN (SUBSTRING) = 0.

626 XL Fortran: Language Reference for Big Endian Distributions

v Case (ii): If BACK is present with the value .TRUE., the result is the maximum
value of I less than or equal to LEN (STRING) - LEN (SUBSTRING) + 1, such
that STRING (I : I + LEN (SUBSTRING) - 1) = SUBSTRING or zero if there is
no such value. Zero is returned if LEN (STRING) < LEN (SUBSTRING) and
LEN (STRING) + 1 is returned if LEN (SUBSTRING) = 0.

Examples

INDEX ('FORTRAN', 'R') has the value 3.

INDEX ('FORTRAN', 'R', BACK = .TRUE.) has the value 5.

Specific Name Argument Type Result Type Pass As Arg?

INDEX default character default integer yes �1�

Note:
�1� When this specific name is passed as an argument, the procedure can only be
referenced without the BACK and KIND optional argument.

INT(A, KIND)
Purpose

Convert to integer type.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER, REAL, COMPLEX, or boz-literal CONSTANT

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Integer.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of the default integer type.

Result value
v Case (i): If A is of type integer, INT (A) = A.
v Case (ii): If A is of type real, there are two cases: if |A| < 1, INT (A) has the

value 0; if |A| ≥ 1, INT (A) is the integer whose magnitude is the largest
integer that does not exceed the magnitude of A and whose sign is the same as
the sign of A.

v Case (iii): If A is of type complex, INT (A) is the value obtained by applying the
case (ii) rule to the real part of A.

v Case (iv): If A is a boz-literal constant, it is treated as an integer with a
kind-param that specifies the representation method with the largest decimal
exponent range supported by the processor. If -qxlf2003=nobozlitargs is
specified the boz-literal is treated as a real.

v The result is undefined if it cannot be represented in the specified integer type.

Chapter 14. Intrinsic procedures 627

Examples

INT (-3.7) has the value -3.

Specific Name Argument Type Result Type Pass As Arg?

INT default real default integer no

IDINT double precision real default integer no

IFIX default real default integer no

IQINT �1� REAL(16) default integer no

Note:
�1� IBM extension

Related information

For information on alternative behavior for INT when porting programs to XL
Fortran, see the -qport compiler option in the XL Fortran Compiler Reference.

INT2(A) (IBM extension)
Purpose

Converts a real or integer value into a two byte integer.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER or REAL

INT2 cannot be passed as an actual argument of another function call.

Result type and attributes

INTEGER(2) scalar

Result value

If A is of type integer, INT2(A) = A.

If A is of type real, there are two possibilities:
v If |A| < 1, INT2(A) has the value 0
v If |A| >= 1, INT2(A) is the integer whose magnitude is the largest integer that

does not exceed the magnitude of A, and whose sign is the same as the sign of
A.

In both cases, truncation may occur.

Examples

The following is an example of the INT2 function.

628 XL Fortran: Language Reference for Big Endian Distributions

REAL*4 :: R4
REAL*8 :: R8
INTEGER*4 :: I4
INTEGER*8 :: I8

R4 = 8.8; R8 = 18.9
I4 = 4; I8 = 8
PRINT *, INT2(R4), INT2(R8), INT2(I4), INT2(I8)
PRINT *, INT2(2.3), INT2(6)
PRINT *, INT2(65535.78), INT2(65536.89)
END

The following is sample output generated by the program above:
8 18 4 8
2 6
-1 0 ! The results indicate that truncation has occurred, since

! only the last two bytes were saved.

IOR(I, J)
Purpose

Performs an inclusive OR.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

J An INTENT(IN) INTEGER with the same kind type parameter as I.

Result type and attributes

Same as I.

Result value

The result has the value obtained by combining I and J bit-by-bit according to the
following truth table:
ith bit ith bit ith bit
of I of J of IOR(I,J)

1 1 1
1 0 1
0 1 1
0 0 0

The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

IOR (1, 3) has the value 3. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

IOR �1� any integer same as argument yes

OR �1� any integer same as argument yes

Chapter 14. Intrinsic procedures 629

Specific Name Argument Type Result Type Pass As Arg?

Note:
�1� IBM extension

IS_CONTIGUOUS(ARRAY) (Fortran 2008)
Purpose

Tests contiguity of an array.

Class

Inquiry function

Argument type and attributes

ARRAY
An INTENT(IN) argument of any type. The actual argument
corresponding to ARRAY must be an array TS or an assumed-rank
object TS of any type. If the actual argument is a pointer, it must be
associated.

Result type and attributes

Default logical scalar

Result value

Returns .TRUE. if ARRAY is contiguous TS or has rank zero TS .
Otherwise, returns .FALSE.

Examples
INTEGER, POINTER :: ap(:)
INTEGER, TARGET :: targ(10)
ap => targ(1:10:2)
PRINT *, IS_CONTIGUOUS(ap) ! IS_CONTIGUOUS(ap) returns the .FALSE. value.

IS_IOSTAT_END(I) (Fortran 2003)
Purpose

Checks for an end-of-file condition.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Default logical scalar.

630 XL Fortran: Language Reference for Big Endian Distributions

Result value

Returns .TRUE. if the argument matches the value of the IOSTAT= specifier when
an end-of-file condition has occurred. Otherwise, IS_IOSTAT_END returns
.FALSE..

Examples

The following is an example of IS_IOSTAT_END:
program a

integer :: ios = 0, x

open(1, file=’dat.dat’, action=’read’)

do while(.not. is_iostat_end(ios))

read(1,*,iostat=ios) x
write(6,*) "ios = ", ios
write(6,*) "x = ", x

enddo
end program a

IS_IOSTAT_EOR(I) (Fortran 2003)
Purpose

Checks for an end-of-record condition.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Default logical scalar

Result value

Returns .TRUE. if the argument matches the value of the IOSTAT= specifier when
an end-of-record condition has occurred. Otherwise, IS_IOSTAT_EOR returns
.FALSE..

ISHFT(I, SHIFT)
Purpose

Performs a logical shift.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Chapter 14. Intrinsic procedures 631

SHIFT
An INTENT(IN) INTEGER. The absolute value of SHIFT must be less than or
equal to BIT_SIZE (I).

Result type and attributes

Same as I.

Result value
v The result has the value obtained by shifting the bits of I by SHIFT positions.
v If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift is to the

right; and, if SHIFT is zero, no shift is performed.
v Bits shifted out from the left or from the right, as appropriate, are lost.
v Vacated bits are filled with zeros.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

ISHFT (3, 1) has the result 6. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

ISHFT �1� any integer same as argument yes

Note:
�1� IBM extension

ISHFTC(I, SHIFT, SIZE)
Purpose

Performs a circular shift of the rightmost bits; that is, bits shifted off one end are
inserted again at the other end.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. The absolute value of SHIFT must be less than or
equal to SIZE.

SIZE (optional)
An INTENT(IN) INTEGER. The value of SIZE must be positive and must not
exceed BIT_SIZE (I). If SIZE is absent, it is as if it were present with the
value of BIT_SIZE (I).

Result type and attributes

Same as I.

632 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result has the value obtained by shifting the SIZE rightmost bits of I circularly
by SHIFT positions. If SHIFT is positive, the shift is to the left; if SHIFT is
negative, the shift is to the right; and, if SHIFT is zero, no shift is performed. No
bits are lost. The unshifted bits are unaltered.

The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

ISHFTC (3, 2, 3) has the value 5. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

ISHFTC �1� any integer same as argument yes �2�

Note:
�1� IBM extension
�2� When this specific name is passed as an argument, the procedure can only be
referenced with all three arguments.

KIND(X)
Purpose

Returns the value of the kind type parameter of X.

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) argument of any intrinsic type

Result type and attributes

Default integer scalar.

Result value

The result has a value equal to the kind type parameter value of X.

Kind type parameters supported by XL Fortran are defined in Chapter 3, “Intrinsic
data types,” on page 35.

Examples

KIND (0.0) has the kind type parameter value of the default real type.

LBOUND(ARRAY, DIM, KIND)
Purpose

Returns the lower bound of each dimension in an array, or the lower bound of a
specified dimension.

Chapter 14. Intrinsic procedures 633

Class

Inquiry function

Argument type and attributes

ARRAY
The array whose lower bounds you want to determine. The bounds of the
array must be defined; that is, the corresponding actual argument cannot
be a disassociated pointer or an allocatable array that is not allocated.

DIM (optional)
An INTEGER scalar. Its value must be in the range 1 ≤ DIM ≤
RANK(ARRAY). The corresponding actual argument must not be an
optional dummy argument. TS The DIM argument cannot be present
if ARRAY is an assumed-rank object that is associated with a scalar.

TS

KIND (optional)
An INTEGER scalar. The actual argument corresponding to KIND must be a
constant expression.

Result type and attributes
v The result is of type integer.
v If KIND is present, the kind type parameter is that specified by the

value of KIND; otherwise, the kind type parameter is that of the default integer
type.

v If DIM is present, the result is a scalar. If DIM is not present, the result is a
one-dimensional array with one element for each dimension in ARRAY.

v TS If ARRAY is an assumed-rank object that is associated with a scalar, the
result is a zero-sized array. TS

Result value

Each element in the result corresponds to a dimension of array.
v If ARRAY is a whole array or array structure component, LBOUND(ARRAY,

DIM) is equal to the lower bound for subscript DIM of ARRAY.
The only exception is for a dimension that is zero-sized and ARRAY is not an
assumed-size array of rank DIM, in such a case, the corresponding element in
the result is one regardless of the value declared for the lower bound.

v If ARRAY is an array section or expression that is not a whole array or array
structure component, each element has the value one.

Examples
REAL A(1:10, -4:5, 4:-5)

RES=LBOUND(A)
! The result is (/ 1, -4, 1 /).

RES=LBOUND(A(:,:,:))
RES=LBOUND(A(4:10,-4:1,:))

! The result in both cases is (/ 1, 1, 1 /)
! because the arguments are array sections.

634 XL Fortran: Language Reference for Big Endian Distributions

LEADZ(I) (Fortran 2008)
Purpose

Returns the number of leading zero bits in the binary representation of an integer.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Same as I.

Result value

The result is the count of zero bits to the left of the leftmost one bit for I. If I has
the value zero, the result is BIT_SIZE(I).

Examples
I = LEADZ(0_4) ! I=32
J = LEADZ(4_4) ! J=29
K = LEADZ(-1) ! K=0
M = LEADZ(0_8) ! M=64
N = LEADZ(1_8) ! N=63

Related information
v “BIT_SIZE(I)” on page 583
v “TRAILZ(I) (Fortran 2008)” on page 708

LEN(STRING, KIND)
Purpose

Returns the length of a character entity. The argument to this function need not be
defined.

Class

Inquiry function

Argument type and attributes

STRING
An INTENT(IN) character. The corresponding actual argument can be scalar
or array valued. If the actual argument is a deallocated allocatable or a
pointer that is not associated, its length type parameter must not be
deferred.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Chapter 14. Intrinsic procedures 635

Result type and attributes
v It is of type scalar integer.
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value

The result has a value equal to the number of characters in STRING if it is scalar
or in an element of STRING if it is array valued.

Examples

If C is declared by the statement
CHARACTER (11) C(100)

LEN (C) has the value 11.

Specific Name Argument Type Result Type Pass As Arg?

LEN default character default integer yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LEN_TRIM(STRING, KIND)
Purpose

Returns the length of the character argument without counting trailing blank
characters.

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer.
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value

The result has a value equal to the number of characters remaining after any
trailing blanks in STRING are removed. If the argument contains no nonblank
characters, the result is zero.

636 XL Fortran: Language Reference for Big Endian Distributions

Examples

LEN_TRIM ('�A�B�') has the value 4. LEN_TRIM ('��') has the value 0.

LGAMMA(X) (IBM extension)
Purpose

Log of gamma function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result has a value equal to logeΓ(X).

Examples

LGAMMA(1.0) has the value 0.0.

LGAMMA(10.0) has the value 12.80182743, approximately.

Related functions
v F2008 LOG_GAMMA(X) F2008

LGE(STRING_A, STRING_B)
Purpose

Test whether a string is lexically greater than or equal to another string, based on
the ASCII collating sequence.

Class

Elemental function

Argument type and attributes

STRING_A
An INTENT(IN) CHARACTER

STRING_B
An INTENT(IN) CHARACTER

Result type and attributes

Default logical.

Chapter 14. Intrinsic procedures 637

Result value
v If the strings are of unequal length, the comparison is made as if the shorter

string were extended on the right with blanks to the length of the longer string.
v If either string contains a character not in the ASCII character set, the result is

undefined.
v The result is true if the strings are equal or if STRING_A follows STRING_B in

the ASCII collating sequence; otherwise, the result is false. Note that the result is
true if both STRING_A and STRING_B are of zero length.

Examples

LGE ('ONE', 'TWO') has the value .FALSE..

Specific Name Argument Type Result Type Pass As Arg?

LGE default character default logical yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LGT(STRING_A, STRING_B)
Purpose

Test whether a string is lexically greater than another string, based on the ASCII
collating sequence.

Class

Elemental function

Argument type and attributes

STRING_A
An INTENT(IN) CHARACTER

STRING_B
An INTENT(IN) CHARACTER

Result type and attributes

Default logical.

Result value
v If the strings are of unequal length, the comparison is made as if the shorter

string were extended on the right with blanks to the length of the longer string.
v If either string contains a character not in the ASCII character set, the result is

undefined.
v The result is true if STRING_A follows STRING_B in the ASCII collating

sequence; otherwise, the result is false. Note that the result is false if both
STRING_A and STRING_B are of zero length.

Examples

LGT ('ONE', 'TWO') has the value .FALSE..

638 XL Fortran: Language Reference for Big Endian Distributions

Specific Name Argument Type Result Type Pass As Arg?

LGT default character default logical yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LLE(STRING_A, STRING_B)
Purpose

Test whether a string is lexically less than or equal to another string, based on the
ASCII collating sequence.

Class

Elemental function

Argument type and attributes

STRING_A
An INTENT(IN) CHARACTER

STRING_B
An INTENT(IN) CHARACTER

Result type and attributes

Default logical.

Result value
v If the strings are of unequal length, the comparison is made as if the shorter

string were extended on the right with blanks to the length of the longer string.
v If either string contains a character not in the ASCII character set, the result is

undefined.
v The result is true if the strings are equal or if STRING_A precedes STRING_B in

the ASCII collating sequence; otherwise, the result is false. Note that the result is
true if both STRING_A and STRING_B are of zero length.

Examples

LLE ('ONE', 'TWO') has the value .TRUE..

Specific Name Argument Type Result Type Pass As Arg?

LLE default character default logical yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LLT(STRING_A, STRING_B)
Purpose

Test whether a string is lexically less than another string, based on the ASCII
collating sequence.

Chapter 14. Intrinsic procedures 639

Class

Elemental function

Argument type and attributes

STRING_A
An INTENT(IN) CHARACTER

STRING_B
An INTENT(IN) CHARACTER

Result type and attributes

Default logical.

Result value
v If the strings are of unequal length, the comparison is made as if the shorter

string were extended on the right with blanks to the length of the longer string.
v If either string contains a character not in the ASCII character set, the result is

undefined.
v The result is true if STRING_A precedes STRING_B in the ASCII collating

sequence; otherwise, the result is false. Note that the result is false if both
STRING_A and STRING_B are of zero length.

Examples

LLT ('ONE', 'TWO') has the value .TRUE..

Specific Name Argument Type Result Type Pass As Arg?

LLT default character default logical yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LOC(X) (IBM extension)
Purpose

Returns the address of X that can then be used to define an integer POINTER.

Class

Inquiry function

Argument type and attributes

X The data object whose address you want to find. The corresponding actual
argument must not be an undefined or disassociated pointer or a
parameter. F2008 If the actual argument is an array, it must be
contiguous. F2008 If the actual argument is a zero-sized array, it must be
storage associated with a non-zero-sized storage sequence. If the actual
argument is an array section, the storage of the array section must be
contiguous.

640 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is of type INTEGER(4) in 32-bit mode and of type INTEGER(8) in 64-bit
mode.

Result value

The result is the address of the data object, or, if X is a pointer, the address of the
associated target. The result is undefined if the argument is not valid.

Examples
INTEGER A,B
POINTER (P,I)

P=LOC(A)
P=LOC(B)
END

LOG(X)
Purpose

Natural logarithm.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX

v If X is REAL, its value must be greater than zero.
v If X is COMPLEX, its value must not be zero.

Result type and attributes

Same as X.

Result value
v It has a value approximating logeX.
v For complex arguments, LOG ((a,b)) approximates LOG (ABS((a,b))) +

ATAN2((b,a)).

The -qxlf2003=signdzerointr option controls whether you get Fortran 2003
behavior. See qxlf2003 in the XL Fortran Compiler Reference

v

If the argument type is complex, the result is the principal value of the
imaginary part ω in the range -π < ω ≤ π. If the real part of the argument is less
than zero and its imaginary part is zero, the imaginary part of the result
approximates π.

v

If the argument type is complex, the result is the principal value of the
imaginary part ω in the range -π < ω ≤ π. If the real part of the argument is less
than zero and its imaginary part is zero, the imaginary part of the result

Chapter 14. Intrinsic procedures 641

approximates π if the imaginary part of X is positive real zero. If the imaginary
part of X is negative real zero, the imaginary part of the result approximates -π

Examples

LOG (10.0) has the value 2.3025851 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

ALOG default real default real yes

DLOG double precision real double precision real yes

QLOG REAL(16) REAL(16) yes �1�

CLOG default complex default complex yes

CDLOG double complex double complex yes �1�

ZLOG double complex double complex yes �1�

CQLOG COMPLEX(16) COMPLEX(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

LOG_GAMMA(X) (Fortran 2008)
Purpose

Logarithm of the absolute value of the GAMMA function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL. Its value must be greater than 0.

Result type and attributes

Same as X.

Result value

The result value approximates the natural logarithm of the absolute value of the
GAMMA function of X, namely LOG(ABS(GAMMA(X))).

Examples

LOG_GAMMA(1.0) has the value 0.0, approximately.

Specific Name Argument Type Result Type Pass As Arg?

LGAMMA default real default real no

LGAMMA double precision real double precision real no

loge loge u e du1 u− −

0

x∫
∞

(x) =Γ

642 XL Fortran: Language Reference for Big Endian Distributions

Specific Name Argument Type Result Type Pass As Arg?

ALGAMA �1� �2� default real default real yes

DLGAMA �1� �3� double precision real double precision real yes

QLGAMA �1� �4� REAL(16) REAL(16) yes

Notes:

v �1� IBM extension

v X must satisfy the inequality:
�2� 0 < X ≤ 4.0850E36
�3� 2.3561D-304 ≤ X ≤ 21014

�4� 2.3561Q-304 ≤ X ≤ 21014

Related functions
v GAMMA(X)
v LGAMMA(X)

LOG10(X)
Purpose

Common logarithm.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL. The value of X must be greater than zero.

Result type and attributes

Same as X.

Result value

The result has a value equal to log10X.

Examples

LOG10 (10.0) has the value 1.0.

Specific Name Argument Type Result Type Pass As Arg?

ALOG10 default real default real yes

DLOG10 double precision real double precision real yes

QLOG10 REAL(16) REAL(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

Chapter 14. Intrinsic procedures 643

LOGICAL(L, KIND)
Purpose

Converts between objects of type logical with different kind type parameter values.

Class

Elemental function

Argument type and attributes

L An INTENT(IN) LOGICAL

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Logical.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of the default logical type.

Result value

The value is that of L.

Examples

LOGICAL (L .OR. .NOT. L) has the value .TRUE. and is of type default logical,
regardless of the kind type parameter of the logical variable L.

LSHIFT(I, SHIFT) (IBM extension)
Purpose

Performs a logical shift to the left. It is identical to “SHIFTL(I, SHIFT) (Fortran
2008)” on page 691.

Note: You are encouraged to use the standard intrinsic procedure rather than the
equivalent IBM extension.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative and less than or
equal to BIT_SIZE(I).

Result type and attributes

Same as I.

644 XL Fortran: Language Reference for Big Endian Distributions

Result value
v The result has the value obtained by shifting the bits of I by SHIFT positions to

the left.
v Vacated bits are filled with zeros.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

LSHIFT (3, 1) has the result 6.

LSHIFT (3, 2) has the result 12.

Specific Name Argument Type Result Type Pass As Arg?

LSHIFT any integer same as argument yes

MASKL(I, KIND) (Fortran 2008)
Purpose

Performs a left-justified mask.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to the number of bits for the kind of the result.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes

The result is an integer. In the presence of KIND argument, its kind is specified by
the value of KIND. Otherwise, its kind is of default integer type.

Result value

The leftmost I bits set to 1 and the other bits set to 0.

Example

MASKL (1) has the result -2147483648.

MASKR(I, KIND) (Fortran 2008)
Purpose

Performs a right-justified mask.

Class

Elemental function

Chapter 14. Intrinsic procedures 645

Argument type and attributes

I An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to the number of bits for the kind of the result.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes

The result is an integer. In the presence of KIND argument, its kind is specified by
the value of KIND. Otherwise, its kind is of default integer type.

Result value

The rightmost I bits set to 1 and the other bits set to 0.

Example

MASKR (3) has the result 7.

MATMUL(MATRIX_A, MATRIX_B, MINDIM)
Purpose

Performs a matrix multiplication.

Class

Transformational function

Argument type and attributes

MATRIX_A
An NUMERIC or LOGICAL array with a rank of one or two.

MATRIX_B
An NUMERIC or LOGICAL array with a rank of one or two. It can be a
different NUMERIC type than MATRIX_A, but you cannot use one NUMERIC
matrix and one LOGICAL matrix.

MINDIM (optional)
An integer that determines whether to do the matrix multiplication using
the Winograd variation of the Strassen algorithm, which may be faster for
large matrices. The algorithm recursively splits the operand matrices into
four roughly equal parts, until any submatrix extent is less than MINDIM.

Note: Strassen's method is not stable for certain row or column scalings of
the input matrices. Therefore, for MATRIX_A and MATRIX_B with
divergent exponent values, Strassen's method may give inaccurate results.

The significance of the value of MINDIM is:

<=0 does not use the Strassen algorithm at all. This is the default.

1 is reserved for future use.

>1 recursively applies the Strassen algorithm as long as the smallest
extent of all dimensions in the argument arrays is greater than or
equal to this value. To achieve optimal performance you should

646 XL Fortran: Language Reference for Big Endian Distributions

experiment with the value of MINDIM as the optimal value
depends on your machine configuration, available memory, and
the size, type, and kind type of the arrays.

By default, MATMUL employs the conventional O(N**3) method of matrix
multiplication.

If you link the libpthreads.a library, the Winograd variation of the
O(N**2.81) Strassen method is employed under these conditions:
1. MATRIX_A and MATRIX_B are both integer, real, or complex and

have the same kind.
2. The program can allocate the needed temporary storage, enough to

hold approximately (2/3)*(N**2) elements for square matrices of extent
N.

3. The MINDIM argument is less than or equal to the smallest of all
extents of MATRIX_A and MATRIX_B.

At least one of the arguments must be of rank two. The size of the first or only
dimension of MATRIX_B must be equal to the last or only dimension of
MATRIX_A.

Result value

The result is an array. If one of the arguments is of rank one, the result has a rank
of one. If both arguments are of rank two, the result has a rank of two.

The data type of the result depends on the data type of the arguments, according
to the rules in Table 16 on page 105 and Table 17 on page 109.

If MATRIX_A and MATRIX_B have a numeric data type, the array elements of the
result are:

Value of Element (i,j) = SUM((row i of MATRIX_A) * (column j of MATRIX_B))

If MATRIX_A and MATRIX_B are of type logical, the array elements of the result
are:

Value of Element (i,j) = ANY((row i of MATRIX_A) .AND. (column j of
MATRIX_B))

Examples
! A is the array | 1 2 3 |, B is the array | 7 10 |
! | 4 5 6 | | 8 11 |
! | 9 12 |

RES = MATMUL(A, B)
! The result is | 50 68 |
! | 122 167 |

! HUGE_ARRAY and GIGANTIC_ARRAY in this example are
! large arrays of real or complex type, so the operation
! might be faster with the Strassen algorithm.

RES = MATMUL(HUGE_ARRAY, GIGANTIC_ARRAY, MINDIM=196)

Chapter 14. Intrinsic procedures 647

Related information

The numerical stability of Strassen's method for matrix multiplication is discussed
in:
v “Exploiting Fast Matrix Multiplication Within the Level 3 BLAS”, Nicholas J.

Higham, ACM Transactions on Mathematical Software, Vol. 16, No. 4, December
1990.

v “GEMMW: A portable level 3 BLAS Winograd variant of Strassen's
matrix-matrix multiply algorithm”, Douglas, C. C., Heroux, M., Slishman, G.,
and Smith, R. M., Journal of Computational Physics, Vol. 110, No. 1, January 1994,
pages 1-10.

MAX(A1, A2, A3, ...)
Purpose

Maximum value.

Class

Elemental function

Argument type and attributes

All the arguments must have the same type, either integer, real or character, and
they all must have the same kind type parameter.

Result type and attributes

If the arguments are of the type character, the result is of type character, and the
length of the result is the length of the longest argument. Otherwise the result type
is the same as that of the arguments. (Some specific functions return results of a
particular type.)

Result value

The value of the result is that of the largest argument. For character arguments, the
comparison is done using the ASCII collating sequence. If the length of the selected
argument is shorter than that of the longest argument, the result is extended to the
length of the longest argument by inserting blank characters on the right.

Examples

MAX (-9.0, 7.0, 2.0) has the value 7.0.

MAX ("Z", "BB") has the value "Z".

Specific Name Argument Type Result Type Pass As Arg?

AMAX0 any integer �1� default real no

AMAX1 default real default real no

DMAX1 double precision real double precision real no

QMAX1 REAL(16) REAL(16) no

648 XL Fortran: Language Reference for Big Endian Distributions

Specific Name Argument Type Result Type Pass As Arg?

MAX0 any integer �1� same as argument no

MAX1 any real �2� default integer no

Note:
�1� IBM extension: the ability to specify a nondefault integer argument.
�2� IBM extension: the ability to specify a nondefault real argument.

MAXEXPONENT(X)
Purpose

Returns the maximum exponent in the model representing numbers of the same
type and kind type parameter as the argument.

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) REAL. It can be scalar or array valued.

Result type and attributes

Default integer scalar.

Result value

See the following result:
type MAXEXPONENT

---------- -----------
real(4) 128
real(8) 1024
real(16) 1024

Examples

MAXEXPONENT(X) = 128 for X of type real(4).

See “Real data model” on page 563.

MAXLOC(ARRAY, DIM, MASK, KIND, BACK) or
MAXLOC(ARRAY, MASK, KIND, BACK)

Purpose

Locates the first element F2008 or the last element F2008 of an array along a
dimension that has the maximum value of all elements corresponding to the true
values of the mask. MAXLOC will return the index referable to the position of the
element using a positive integer.

Chapter 14. Intrinsic procedures 649

Class

Transformational function

Argument type and attributes

ARRAY
An INTEGER, REAL, or CHARACTER array

DIM An INTEGER scalar. Its value must be in the range 1≤DIM≤n, where n is the
rank of ARRAY.

MASK (optional)
An argument of type LOGICAL and conforms to ARRAY in shape. If it is
absent, the default mask evaluation is .TRUE.; that is, the entire array is
evaluated.

KIND (optional)
An INTEGER scalar. The actual argument corresponding to KIND must be a
constant expression.

F2008 BACK (optional)
A scalar of type LOGICAL and controls the direction in which ARRAY is
searched. If it is .FALSE. or absent, the array is searched from the front. If
it is .TRUE., the array is searched from the end. F2008

Result type and attributes
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

v If DIM is absent, the result is an integer array of rank one with a size equal to
the rank of ARRAY. If DIM is present, the result is an integer array of rank
rank(ARRAY)-1, and the shape is (s1, ..., sDIM-1, sDIM+1, ..., sn), where n is the rank
of ARRAY.

v If there is no maximum value, perhaps because the array is zero-sized or the
mask array has all .FALSE. values or there is no DIM argument, the return value
is a zero-sized one-dimensional entity. If DIM is present, the result shape
depends on the rank of ARRAY.

Result value

The result indicates the subscript of the location of the maximum masked element
of ARRAY. If ARRAY is of type character, the comparison is done using the ASCII
collating sequence. F2008 If more than one element is equal to this maximum
value and BACK is absent or has the value .FALSE., the function finds the location
of the first element in array element order. If BACK is present with the value
.TRUE., the function finds the location of the last element in array element order.

F2008 If DIM is specified, the result indicates the location of the maximum
masked element along each vector of the dimension.

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar of type logical

650 XL Fortran: Language Reference for Big Endian Distributions

Examples
! A is the array | 4 9 8 -7 |
! | 2 1 -1 5 |
! | 9 5 -1 9 |
! | -7 5 5 -7 |

To find the first largest element of A:
RES = MAXLOC(A)

The result is | 3 1 | because the maximum value, 9, is located at A(3, 1). Although
there are other instances of the maximum value present, A(3, 1) is the first in
column-major order.

F2008 To find the last largest element of A:
RES = MAXLOC(A, BACK = .TRUE.)

The result is | 3 4 | because the maximum value, 9, is located at A(3, 4). Although
there are other instances of the maximum value present, A(3, 4) is the last in
column-major order. F2008

To find the first largest element that is less than 7 in each column of A:
RES = MAXLOC(A, DIM = 1, MASK = A .LT. 7)

The result is | 1 3 4 2 | because these are the corresponding row locations of the
first largest value that is less than 7 in each column (the values being 4, 5, 5, 5).

F2008 To find the last largest element that is less than 7 in each column of A:
RES = MAXLOC(A, DIM = 1, MASK = A .LT. 7, BACK = .TRUE.)

The result is | 1 4 4 2 | because these are the corresponding row locations of the
last largest value that is less than 7 in each column (the values being 4, 5, 5, 5).

F2008

Regardless of the defined upper and lower bounds of the array, MAXLOC will
determine the lower bound index as '1'. Both MAXLOC and MINLOC index using
positive integers. To find the actual index:

INTEGER B(-100:100)
! Maxloc views the bounds as (1:201)
! If the largest element is located at index ’-49’

I = MAXLOC(B)
! Will return the index ’52’
! To return the exact index for the largest element, insert:

INDEX = LBOUND(B) - 1 + I
! Which is: INDEX = (-100) - 1 + 52 = (-49)

PRINT*, B(INDEX)

MAXVAL(ARRAY, DIM, MASK) or MAXVAL(ARRAY, MASK)
Purpose

Returns the maximum value of the elements in the array along a dimension
corresponding to the true elements of MASK.

Class

Transformational function

Chapter 14. Intrinsic procedures 651

Argument type and attributes

ARRAY
An INTEGER, REAL, or CHARACTER array.

DIM (optional)
An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(ARRAY).

MASK (optional)
A LOGICAL array that conforms to ARRAY in shape. If it is absent, the
entire array is evaluated.

Result value

The result is an array of rank rank(ARRAY)-1, with the same data type as ARRAY.
If DIM is missing or if ARRAY is of rank one, the result is a scalar. If ARRAY is of
type character, the length of the result is the same as that of ARRAY.

If DIM is specified, each element of the result value contains the maximum value
of all the elements that satisfy the condition specified by MASK along each vector
of the dimension DIM. The array element subscripts in the result are (s1, s2, ...,
s(DIM-1), s(DIM+1), ..., sn), where n is the rank of ARRAY and DIM is the dimension
specified by DIM.

If DIM is not specified, the function returns the maximum value of all applicable
elements.

If ARRAY is of type character, all comparisons are done using the ASCII collating
sequence.

If ARRAY is zero-sized or the mask array has all .FALSE. values, then:
v if ARRAY is of type integer or real, the result value is the negative number of

the largest magnitude, of the same type and kind type as ARRAY.
v if ARRAY is of type character, each character of the result has the value of

CHAR(0).

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar of type logical

Examples
! A is the array | -41 33 25 |
! | 12 -61 11 |

! What is the largest value in the entire array?
RES = MAXVAL(A)

! The result is 33

! What is the largest value in each column?
RES = MAXVAL(A, DIM=1)

! The result is | 12 33 25 |

! What is the largest value in each row?
RES = MAXVAL(A, DIM=2)

652 XL Fortran: Language Reference for Big Endian Distributions

! The result is | 33 12 |

! What is the largest value in each row, considering only
! elements that are less than 30?

RES = MAXVAL(A, DIM=2, MASK = A .LT. 30)
! The result is | 25 12 |

MERGE(TSOURCE, FSOURCE, MASK)
Purpose

Selects between two values, or corresponding elements in two arrays. A logical
mask determines whether to take each result element from the first or second
argument.

Class

Elemental function

Argument type and attributes

TSOURCE
The source array to use when the corresponding element in the mask is
true. It is an expression of any data type.

FSOURCE
The source array to use when the corresponding element in the mask is
false. It must have the same data type and type parameters as tsource. It
must conform in shape to tsource.

MASK
A logical expression that conforms to TSOURCE and FSOURCE in shape.

Result value

The result has the same shape, data type, and type parameters as TSOURCE and
FSOURCE.

For each element in the result, the value of the corresponding element in MASK
determines whether the value is taken from TSOURCE (if true) or FSOURCE (if
false).

Examples
! TSOURCE is | A D G |, FSOURCE is | a d g |,
! | B E H | | b e h |
! | C F I | | c f i |
!
! and MASK is the array | T T T |
! | F F F |
! | F F F |

! Take the top row of TSOURCE, and the remaining elements
! from FSOURCE.

RES = MERGE(TSOURCE, FSOURCE, MASK)
! The result is | A D G |
! | b e h |
! | c f i |

! Evaluate IF (X .GT. Y) THEN
! RES=6
! ELSE

Chapter 14. Intrinsic procedures 653

! RES=12
! END IF
! in a more concise form.

RES = MERGE(6, 12, X .GT. Y)

MERGE_BITS(I, J, MASK) (Fortran 2008)
Purpose

Merges bits under mask.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER or boz-literal CONSTANT

J An INTENT(IN) INTEGER or boz-literal CONSTANT.

If both I and J are of type INTEGER they must have the same kind type
parameter. I and J must not both be boz-literal CONSTANT.

MASK
An argument of type integer or a boz-literal constant. If MASK is of type
integer, its kind must be the same as each other argument of type integer.

Result type and attributes

Same as I if I is of type integer. Otherwise, same as J.

Result value

If any argument is a boz-literal constant, it is first converted to the type and kind
type parameter of the result. The result has the value of IOR (IAND (I,
MASK),IAND (J, NOT (MASK))).

Example

MERGE_BITS (5, 10, 41) has the result 3.

MIN(A1, A2, A3, ...)
Purpose

Minimum value.

Class

Elemental function

Argument type and attributes

All the arguments must have the same type, either integer, real, or character and
they all must have the same kind type parameter.

654 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

If the arguments are of the type character, the result is of type character, and the
length of the result is the length of the longest argument. Otherwise, the result is
the same as that of the arguments. (Some specific functions return results of a
particular type.)

Result value

The value of the result is that of the smallest argument. For character arguments,
the comparison is done using the ASCII collating sequence. If the length of the
selected argument is shorter than that of the longest argument, the result is
extended to the length of the longest argument by inserting blank characters on the
right.

Examples

MIN (-9.0, 7.0, 2.0) has the value -9.0

MIN ("A", "YY") has the value "A"

Specific Name Argument Type Result Type Pass As Arg?

AMIN0 any integer �1� default real no

AMIN1 default real default real no

DMIN1 double precision real double precision real no

QMIN1 REAL(16) REAL(16) no

MIN0 any integer �1� same as argument no

MIN1 any real �1� default integer no

Note: �1� A non-default argument is an IBM extension.

MINEXPONENT(X)
Purpose

Returns the minimum (most negative) exponent in the model representing the
numbers of the same type and kind type parameter as the argument.

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) REAL. The actual argument corresponding to X can be scalar
or array valued.

Result type and attributes

Default integer scalar.

Result value

See the following result:

Chapter 14. Intrinsic procedures 655

type MINEXPONENT
---------- -----------

real(4) - 125
real(8) -1021
real(16) -968

Examples

MINEXPONENT(X) = -125 for X of type real(4).

See “Real data model” on page 563.

MINLOC(ARRAY, DIM, MASK, KIND, BACK) or MINLOC(ARRAY,
MASK, KIND, BACK)

Purpose

Locates the first element, F2008 or the last element if BACK is .TRUE., F2008

of an array along a dimension that has the minimum value of all elements
corresponding to the true values of the mask. MINLOC will return the index
referable to the position of the element using a positive integer.

Class

Transformational function

Argument type and attributes

ARRAY
An INTEGER, REAL, or CHARACTER array.

DIM An INTEGER scalar. Its value must be in the range 1≤DIM≤n, where n is the
rank of ARRAY.

MASK (optional)
An argument of type LOGICAL and conforms to ARRAY in shape. If it is
absent, the default mask evaluation is .TRUE.; that is, the entire array is
evaluated.

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

F2008 BACK (optional)
A scalar of type LOGICAL and controls the direction in which ARRAY is
searched. If it is .FALSE. or absent, the array is searched from the front. If
it is .TRUE., the array is searched from the end. F2008

Result type and attributes
v If KIND is present, the KIND type parameter is that specified by the

value of KIND; otherwise, the KIND type parameter is that of default integer
type.

v If DIM is absent, the result is an integer array of rank one with a size equal to
the rank of ARRAY. If DIM is present, the result is an integer array of rank
rank(ARRAY)-1, and the shape is (s1, ..., sDIM-1, sDIM+1, ..., sn), where n is the rank
of ARRAY.

656 XL Fortran: Language Reference for Big Endian Distributions

v If there is no minimum value, perhaps because the array is zero-sized or the
mask array has all .FALSE. values or there is no DIM argument, the return value
is a zero-sized one-dimensional entity. If DIM is present, the result shape
depends on the rank of ARRAY.

Result value

The result indicates the subscript of the location of the minimum masked element
of ARRAY. If ARRAY is of type character, the comparison is done using the ASCII
collating sequence. F2008 If more than one element is equal to this minimum
value and BACK is absent or has the value .FALSE., the function finds the location
of the first element in array element order. If BACK is present with the value
.TRUE., the function finds the location of the last element in array element order.

F2008 If DIM is specified, the result indicates the location of the minimum
masked element along each vector of the dimension.

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar or type logical

Examples
! A is the array | 4 9 8 -7 |
! | 2 1 -1 5 |
! | 9 5 -1 9 |
! | -7 5 5 -7 |

To find the first smallest element of A:
RES = MINLOC(A)

The result is | 4 1 | because the minimum value, -7, is located at A(4, 1). Although
there are other instances of the minimum value present, A(4, 1) is the first in
column-major order.

F2008 To find the last smallest element of A:
RES = MINLOC(A, BACK = .TRUE.)

The result is | 4 4 | because the minimum value, -7, is located at A(4, 4). Although
there are other instances of the minimum value present, A(4, 4) is the last in
column-major order. F2008

To find the first smallest element that is not equal to -7 in each row of A:
RES = MINLOC(A, DIM = 2, MASK = A .NE. -7)

The result is | 1 3 3 2 | because these are the corresponding column locations of
the first smallest value that is not equal to -7 in each row (the values being 4, -1,
-1, 5).

F2008 To find the last smallest element that is not equal to -7 in each row of A:
RES = MINLOC(A, DIM = 2, MASK = A .NE. -7, BACK = .TRUE.)

Chapter 14. Intrinsic procedures 657

The result is | 1 3 3 3 | because these are the corresponding column locations of
the last smallest value that is not equal to -7 in each row (the values being 4, -1, -1,
5). F2008

Regardless of the defined upper and lower bounds of the array, MINLOC will
determine the lower bound index as '1'. Both MAXLOC and MINLOC index using
positive integers. To find an actual index:

INTEGER B(-100:100)
! Minloc views the bounds as (1:201)
! If the smallest element is located at index ’-49’

I = MINLOC(B)
! Will return the index ’52’
! To return the exact index for the smallest element, insert:

INDEX = LBOUND(B) - 1 + I
! Which is: INDEX = (-100) - 1 + 52 = (-49)

PRINT*, B(INDEX)

MINVAL(ARRAY, DIM, MASK) or MINVAL(ARRAY, MASK)
Purpose

Returns the minimum value of the elements in the array along a dimension
corresponding to the true elements of MASK.

Class

Transformational function

Argument type and attributes

ARRAY
An INTEGER, REAL, or CHARACTER array.

DIM (optional)
An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(ARRAY).

MASK (optional)
An array or scalar of type LOGICAL that conforms to ARRAY in shape. If it
is absent, the entire array is evaluated.

Result value

The result is an array of rank rank(ARRAY)-1, with the same data type as ARRAY.
If DIM is missing or if ARRAY is of rank one, the result is a scalar. If ARRAY is of
type character, the length of the result is the same as that of ARRAY.

If DIM is specified, each element of the result value contains the minimum value
of all the elements that satisfy the condition specified by MASK along each vector
of the dimension DIM. The array element subscripts in the result are (s1, s2, ...,
s(DIM-1), s(DIM+1), ..., sn), where n is the rank of ARRAY and DIM is the dimension
specified by DIM.

If DIM is not specified, the function returns the minimum value of all applicable
elements.

If ARRAY is of type character, all comparisons are done using the ASCII collating
sequence.

658 XL Fortran: Language Reference for Big Endian Distributions

If ARRAY is zero-sized or the mask array has all .FALSE. values, then:
v If ARRAY is of type integer or real, the result value is the positive number of

the largest magnitude, of the same type and kind type as ARRAY.
v If ARRAY is of type character, each character of the result has the value of

CHAR(127).

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar of type logical

Examples
! A is the array | -41 33 25 |
! | 12 -61 11 |

! What is the smallest element in A?
RES = MINVAL(A)

! The result is -61

! What is the smallest element in each column of A?
RES = MINVAL(A, DIM=1)

! The result is | -41 -61 11 |

! What is the smallest element in each row of A?
RES = MINVAL(A, DIM=2)

! The result is | -41 -61 |

! What is the smallest element in each row of A,
! considering only those elements that are
! greater than zero?

RES = MINVAL(A, DIM=2, MASK = A .GT.0)
! The result is | 25 11 |

MOD(A, P)
Purpose

Remainder function.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER or REAL

P

An INTENT(IN) argument of the same type and kind type parameter as A.

The kind type parameters can be different if the compiler option
–qport=mod is specified.

Result type and attributes

Same as A.

Chapter 14. Intrinsic procedures 659

Result value
v If P ≠ 0, the value of the result is A - INT(A/P) * P.
v If P = 0, the result is undefined.

Examples
MOD (3.0, 2.0) has the value 1.0.
MOD (8, 5) has the value 3.
MOD (-8, 5) has the value -3.
MOD (8, -5) has the value 3.
MOD (-8, -5) has the value -3.

Specific Name Argument Type Result Type Pass As Arg?

MOD default integer default integer yes

AMOD default real default real yes

DMOD double precision real double precision real yes

QMOD REAL(16) REAL(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

Related information

For information on alternative behavior for MOD when porting programs to XL
Fortran, see the -qport compiler option in the XL Fortran Compiler Reference.

MODULO(A, P)
Purpose

Modulo function.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER or REAL

P An INTENT(IN) argument of the same type and kind type parameter as A.

Result type and attributes

Same as A.

Result value
v Case (i): A is of type integer. If P ≠ 0, MODULO (A, P) has the value R such that

A = Q * P + R, where Q is an integer.
If P > 0, the inequalities 0 ≤ R < P hold.
If P < 0, P < R ≤ 0 hold.
If P = 0, the result is undefined.

v Case (ii): A is of type real. If P ≠ 0, the value of the result is A - FLOOR (A / P) *
P.
If P = 0, the result is undefined.

660 XL Fortran: Language Reference for Big Endian Distributions

Examples
MODULO (8, 5) has the value 3.
MODULO (-8, 5) has the value 2.
MODULO (8, -5) has the value -2.
MODULO (-8, -5) has the value -3.

MOVE_ALLOC(FROM, TO) (Fortran 2003)
Purpose

Allows you to move allocation status, dynamic type, type parameter values,
bounds information, and values from one object to another.

Class

subroutine

Argument type and attributes

FROM
An INTENT(INOUT) argument. The corresponding actual argument must be
an allocatable object. The actual argument can be a scalar or an array.

TO An INTENT(INOUT) argument. The corresponding actual argument must be
an allocatable object. It must be type-compatible and have the same rank
as FROM. It must be polymorphic if FROM is polymorphic. Each
nondeferred parameter of the declared type of the actual argument
associated with TO must have the same value as the corresponding
parameter of the declared type of the actual argument associated with
FROM.

Result value

If FROM is deallocated, the allocation status of TO is deallocated.

If FROM is allocated, TO is allocated with the same dynamic type, type
parameters, array bounds, and value as those of FROM.

If TO has the TARGET attribute, any pointer associated with FROM is
correspondingly associated with TO.

If TO does not have the TARGET attribute, the association status of any pointer
that was associated with FROM when you call MOVE_ALLOC becomes
undefined.

MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
Purpose

Copies a sequence of bits from one data object to another.

Class

Elemental subroutine

Chapter 14. Intrinsic procedures 661

Argument type and attributes

FROM
An INTENT(IN) INTEGER

FROMPOS
An INTENT(IN) INTEGER. Its value must be nonnegative. FROMPOS + LEN
must be less than or equal to BIT_SIZE (FROM).

LEN An INTENT(IN) INTEGER. Its value must be nonnegative.

TO An INTENT(INOUT) INTEGER variable with the same kind type parameter
value as FROM and may be the same variable as FROM. TO is set by
copying the sequence of bits of length LEN, starting at position FROMPOS
of FROM to position TOPOS of TO. No other bits of TO are altered. On
return, the LEN bits of TO starting at TOPOS are equal to the value that
the LEN bits of FROM starting at FROMPOS had on entry.

The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

TOPOS
An INTENT(IN) INTEGER. Its value must be nonnegative. TOPOS + LEN
must be less than or equal to BIT_SIZE (TO).

Examples

If TO has the initial value 6, the value of TO is 5 after the statement
CALL MVBITS (7, 2, 2, TO, 0)

See “Integer bit model” on page 562.

NEAREST(X,S)
Purpose

Returns the nearest different processor-representable number in the direction
indicated by the sign of S (toward positive or negative infinity).

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

S An INTENT(IN) REAL. Its value cannot be zero.

Result type and attributes

Same as X.

Result value

The result is the machine number different from and nearest to X in the direction
of the infinity with the same sign as S.

662 XL Fortran: Language Reference for Big Endian Distributions

Examples

NEAREST (3.0, 2.0) = 3.0 + 2.0(-22). See “Real data model” on page 563.

NEW_LINE(A) (Fortran 2003)
Purpose

The NEW_LINE intrinsic returns a new line character.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) character. The actual argument corresponding to A can be
scalar or array.

Result type and attributes

Character scalar of length one.

Result value

The result is the same as ACHAR(10).

Examples

The following example uses the NEW_LINE intrinsic in list-directed output:
character(1) c
print *, ’The first sentence.’, NEW_LINE(c), ’The second sentence.’

Expected Output:
The first sentence.
The second sentence.

The following example passes a character literal constant to the NEW_LINE
intrinsic:
character(100) line
line = ’IBM’ // NEW_LINE(’Fortran’) // ’XL Fortran Compiler’

Expected Output:
IBM
XL Fortran Compiler

NINT(A, KIND)
Purpose

Nearest integer.

Class

Elemental function

Chapter 14. Intrinsic procedures 663

Argument type and attributes

A An INTENT(IN) REAL

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Integer.
v If KIND is present, the kind type parameter is that specified by KIND;

otherwise, the kind type parameter is that of the default integer type.

Result value
v If A > 0, NINT (A) has the value INT (A + 0.5).
v If A ≤ 0, NINT (A) has the value INT (A - 0.5).
v The result is undefined if its value cannot be represented in the specified integer

type.

Examples

NINT (2.789) has the value 3. NINT (2.123) has the value 2.

Specific Name Argument Type Result Type Pass As Arg?

NINT default real default integer yes

IDNINT double precision real default integer yes

IQNINT REAL(16) default integer yes �1�

Note:
�1� IBM extension

NOT(I)
Purpose

Performs a bitwise complement of integer.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Same as I.

Result value

The result has the value obtained by complementing I bit-by-bit according to the
following table:

664 XL Fortran: Language Reference for Big Endian Distributions

ith bit ith bit
of I of NOT (I)

1 0
0 1

The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

If I is represented by the string of bits 01010101, NOT (I) has the string of bits
10101010. See “Integer bit model” on page 562.

Specific Name Argument Type Result Type Pass As Arg?

NOT any integer same as argument yes �1�

Note:
�1� IBM extension

NULL(MOLD)
Purpose

This function returns a pointer or designates a deallocated allocatable component
of a structure constructor. The association status of the pointer is disassociated.

You must use the function without the MOLD argument in any of the following:
v initialization of an object in a declaration
v default initialization of a component
v in a DATA statement
v in a STATIC statement

You can use the function with or without the MOLD argument in any of the
following:
v in the PARAMETER attribute
v on the right side of a pointer assignment
v in a structure constructor
v as an actual argument

Class

Transformational function.

Argument type and attributes

MOLD (optional)
An INTENT(IN) argument. The corresponding actual argument must be a
pointer or allocatable. The actual argument can be of any type or can be a
procedure pointer. The association status of the pointer can be undefined,
disassociated, or associated. If the actual argument has an association
status of associated, the target may be undefined. If the actual argument is
allocatable, its allocation status can be allocated or deallocated.

Chapter 14. Intrinsic procedures 665

Result type and attributes

If MOLD is present, the result's characteristics are the same as those of MOLD. If
MOLD has deferred type parameters, those type parameters of the result are
deferred. If MOLD is not present, the entity's type, type parameter and rank are
determined as follows:
v same as the pointer that appears on the left hand side, for a pointer assignment
v same as the object, when initializing an object in a declaration
v same as the component, in a default initialization for a component
v same as the corresponding component, in a structure constructor
v same as the corresponding dummy argument, as an actual argument
v same as the corresponding pointer object, in a DATA statement
v same as the corresponding pointer object, in a STATIC statement

Result value

The result is a pointer with disassociated association status or an unallocated
allocatable entity.

Examples
! Using NULL() as an actual argument.
INTERFACE

SUBROUTINE FOO(I, PR)
INTEGER I
REAL, POINTER:: PR

END SUBROUTINE FOO
END INTERFACE

CALL FOO(5, NULL())

NUM_PARTHDS() (IBM extension)
Purpose

Returns the number of parallel Fortran threads the run time should create during
execution of a program. This value is set by using the PARTHDS run-time option.
If the user does not set the PARTHDS run-time option, the run time will set a
default value for PARTHDS. In doing so, the run time may consider the following
when setting the option:
v The number of processors on the machine
v The value specified in the run-time option USRTHDS

Class

Inquiry function

Result value

Default scalar integer

If the compiler option -qsmp has not been specified, then NUM_PARTHDS will
always return a value of 1.

666 XL Fortran: Language Reference for Big Endian Distributions

Examples
I = NUM_PARTHDS()
IF (I == 1) THEN

CALL SINGLE_THREAD_ROUTINE()
ELSE

CALL MULTI_THREAD_ROUTINE()

Specific Name Result Type Pass As Arg?

NUM_PARTHDS default scalar integer no

Related information

See the parthds and XLSMPOPTS runtime options in the XL Fortran Optimization
and Programming Guide.

NUM_USRTHDS() (IBM extension)
Purpose

Returns the number of threads that will be explicitly created by the user during
execution of the program. This value is set by using the USRTHDS run-time
option.

Class

Inquiry function

Result value

Default scalar integer

If the value has not been explicitly set using the USRTHDS run-time option, the
default value is 0.

Specific Name Result Type Pass As Arg?

NUM_USRTHDS default scalar integer no

Related information

See the usrthds and the XLSMPOPTS runtime options in the XL Fortran
Optimization and Programming Guide.

NUMBER_OF_PROCESSORS(DIM) (IBM extension)
Purpose

Returns a scalar of type default integer whose value is always 1. This intrinsic
ensures compatibility with programs written for High Performance Fortran (HPF)
environments.

Class

System inquiry function

Chapter 14. Intrinsic procedures 667

Argument type and attributes

DIM (optional)
An INTENT(IN) INTEGER scalar that has a value of 1 (the rank of the
processor array).

Result type and attributes

Default scalar integer which always has a value of 1.

Examples
I = NUMBER_OF_PROCESSORS() ! 1
J = NUMBER_OF_PROCESSORS(DIM=1) ! 1

PACK(ARRAY, MASK, VECTOR)
Purpose

Takes some or all elements from an array and packs them into a one-dimensional
array, under the control of a mask.

Class

Transformational function

Argument type and attributes

ARRAY
The source array, whose elements become part of the result. The
corresponding actual argument can have any data type.

MASK
An argument of type LOGICAL that conforms with ARRAY. It determines
which elements are taken from the source array. If it is a scalar, its value
applies to all elements in ARRAY.

VECTOR (optional)
A padding array whose elements are used to fill out the result if there are
not enough elements selected by the mask. It is a one-dimensional array
that has the same data type and type parameters as ARRAY and at least as
many elements as there are true values in MASK. If MASK is a scalar
with a value of .TRUE., VECTOR must have at least as many elements as
there are array elements in ARRAY.

Result value

The result is always a one-dimensional array with the same data type and type
parameters as ARRAY.

The size of the result depends on the optional arguments:
v If VECTOR is specified, the size of the resultant array equals the size of

VECTOR.
v Otherwise, it equals the number of true array elements in MASK, or the number

of elements in ARRAY if MASK is a scalar with a value of .TRUE..

The array elements in ARRAY are taken in array element order to form the result.
If the corresponding array element in MASK is .TRUE., the element from ARRAY
is placed at the end of the result.

668 XL Fortran: Language Reference for Big Endian Distributions

If any elements remain empty in the result (because VECTOR is present, and has
more elements than there are .TRUE. values in mask), the remaining elements in
the result are set to the corresponding values from VECTOR.

Examples
! A is the array | 0 7 0 |
! | 1 0 3 |
! | 4 0 0 |

! Take only the non-zero elements of this sparse array.
! If there are less than six, fill in -1 for the rest.
RES = PACK(A, MASK= A .NE. 0, VECTOR=(/-1,-1,-1,-1,-1,-1/)
! The result is (/ 1, 4, 7, 3, -1, -1 /).

! Elements 1, 4, 7, and 3 are taken in order from A
! because the value of MASK is true only for these
! elements. The -1s are added to the result from VECTOR
! because the length (6) of VECTOR exceeds the number
! of .TRUE. values (4) in MASK.

POPCNT(I) (Fortran 2008)
Purpose

Population count

Counts the number of set bits in a data object.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

The argument can also be of type BYTE, LOGICAL, or REAL. If the
type of the argument is REAL, it must not be REAL(16).

Result type and attributes

Default integer

Result value

The number of bits set to 1 in the sequence of bits of I

Examples

The following table shows the functionality of the POPCNT function.

Integer Bit Representation POPCNT

0 0000 0

1 0001 1

2 0010 1

3 0011 2

4 0100 1

Chapter 14. Intrinsic procedures 669

Related information

Data representation models

POPPAR(I) (Fortran 2008)
Purpose

Population parity

Determines the parity for a data object.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

The argument can also be of type BYTE, LOGICAL, or REAL. If the
type of the argument is REAL, it must not be REAL(16).

Result type and attributes

Default integer

Result value
v Returns 1 if I includes an odd number of bits set to 1.
v Returns 0 if I includes an even number of bits set to 1.

Examples

The following table shows the functionality of the POPPAR function.

Integer Bit Representation POPPAR

0 0000 0

1 0001 1

2 0010 1

3 0011 0

4 0100 1

Related information

Data representation models

PRECISION(X)
Purpose

Returns the decimal precision in the model representing real numbers with the
same kind type parameter as the argument.

670 XL Fortran: Language Reference for Big Endian Distributions

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX. The actual argument corresponding to X
can be scalar or array valued.

Result type and attributes

Default integer scalar.

Result value

The result is:
INT((DIGITS(X) - 1) * LOG10(2))

Therefore,
Type Precision

-------------------- ---------
real(4) , complex(4) 6
real(8) , complex(8) 15
real(16) , complex(16) 31

Examples

PRECISION (X) = INT((24 - 1) * LOG10(2.)) = INT(6.92 ...) = 6 for X of
type real(4). See “Real data model” on page 563.

PRESENT(A)
Purpose

Determine whether an optional argument is present. If it is not present, you may
only pass it as an optional argument to another procedure or pass it as an
argument to PRESENT.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) argument. The actual argument corresponding to A is an
optional dummy argument that is accessible in the procedure in which the
PRESENT function reference appears.

Result type and attributes

Default logical scalar.

Result value

The result is .TRUE. if the actual argument is present (that is, if it was passed to
the current procedure in the specified dummy argument), and .FALSE. otherwise.

Chapter 14. Intrinsic procedures 671

Examples
SUBROUTINE SUB (X, Y)

REAL, OPTIONAL :: Y
IF (PRESENT (Y)) THEN

! In this section, we can use y like any other variable.
X = X + Y
PRINT *, SQRT(Y)

ELSE
! In this section, we cannot define or reference y.

X = X + 5
! We can pass it to another procedure, but only if
! sub2 declares the corresponding argument as optional.

CALL SUB2 (Z, Y)
ENDIF

END SUBROUTINE SUB

Related information

“OPTIONAL” on page 417

PROCESSORS_SHAPE() (IBM extension)
Purpose

Returns a zero-sized array. This intrinsic ensures compatibility with programs
written for High Performance Fortran (HPF) environments.

Class

System inquiry function

Result type and attributes

Default integer array of rank one, whose size is equal to the rank of the processor
array. In a uniprocessor environment, the result is a zero-sized vector.

Result value

The value of the result is the shape of the processor array.

Examples
I=PROCESSORS_SHAPE()
! Zero-sized vector of type default integer

PRODUCT(ARRAY, DIM, MASK) or PRODUCT(ARRAY, MASK)
Purpose

Multiplies together all elements in an entire array, or selected elements from all
vectors in a specified dimension of an array.

Class

Transformational function

Argument type and attributes

ARRAY
An array with a numeric data type.

672 XL Fortran: Language Reference for Big Endian Distributions

DIM (optional)
An INTEGER scalar (a specified dimension of ARRAY). Its value must be in
the range 1 ≤ DIM ≤ rank(ARRAY).

MASK (optional)
A LOGICAL expression that conforms with ARRAY in shape. If MASK is a
scalar, the scalar value applies to all elements in ARRAY.

Result value

If DIM is present, the result is an array of rank rank(ARRAY)-1 and the same data
type and kind type parameter as ARRAY. If DIM is missing, or if MASK has a rank
of one, the result is a scalar.

The result is calculated by one of the following methods:

Method 1:
If only ARRAY is specified, the result is the product of all its array
elements. If ARRAY is a zero-sized array, the result is equal to one.

Method 2:
If ARRAY and MASK are both specified, the result is the product of those
array elements of ARRAY that have a corresponding true array element in
MASK. If MASK has no elements with a value of .TRUE., the result is
equal to one.

Method 3:
If DIM is also specified and ARRAY has a rank of one, the result is a scalar
equal to the product of all elements of ARRAY that have a corresponding
.TRUE. array element in MASK.

If DIM is also specified and ARRAY has rank greater than one, the result is
a new array in which dimension DIM has been eliminated. Each new array
element is the product of elements from a corresponding vector within
ARRAY. The index values of that vector, in all dimensions except DIM,
match those of the output element. The output element is the product of
those vector elements that have a corresponding .TRUE. array element in
MASK.

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar of type logical

Examples
v Method 1:

! Multiply all elements in an array.
RES = PRODUCT((/2, 3, 4/))

! The result is 24 because (2 * 3 * 4) = 24.

! Do the same for a two-dimensional array A, where
! A is the array | 2 3 4 |
! | 4 5 6 |

RES = PRODUCT(A)
! The result is 2880. All elements are multiplied.

v Method 2:

Chapter 14. Intrinsic procedures 673

! A is the array (/ -3, -7, -5, 2, 3 /)
! Multiply all elements of the array that are > -5.

RES = PRODUCT(A, MASK = A .GT. -5)
! The result is -18 because (-3 * 2 * 3) = -18.

v Method 3:
! A is the array | -2 5 7 |
! | 3 -4 3 |
! Find the product of each column in A.

RES = PRODUCT(A, DIM = 1)
! The result is | -6 -20 21 | because (-2 * 3) = -6
! (5 * -4) = -20
! (7 * 3) = 21

! Find the product of each row in A.
RES = PRODUCT(A, DIM = 2)

! The result is | -70 -36 |
! because (-2 * 5 * 7) = -70
! (3 * -4 * 3) = -36

! Find the product of each row in A, considering
! only those elements greater than zero.

RES = PRODUCT(A, DIM = 2, MASK = A .GT. 0)
! The result is | 35 9 | because (5 * 7) = 35
! (3 * 3) = 9

QCMPLX(X, Y) (IBM extension)
Purpose

Convert to extended complex type.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER, REAL, or COMPLEX

Y (optional)
An INTENT(IN) INTEGER or REAL. It must not be present if X is of type
COMPLEX.

Result type and attributes

It is of type extended complex.

Result value
v If Y is absent and X is not complex, it is as if Y were present with the value of

zero.
v If Y is absent and X is complex, it is as if Y were present with the value

AIMAG(X) and X were present with the value REAL(X).
v QCMPLX(X, Y) has the complex value whose real part is REAL(X, KIND=16)

and whose imaginary part is REAL(Y, KIND=16).

Examples

QCMPLX (-3) has the value (-3.0Q0, 0.0Q0).

674 XL Fortran: Language Reference for Big Endian Distributions

Specific Name Argument Type Result Type Pass As Arg?

QCMPLX REAL(16) COMPLEX(16) no

Related information

“CMPLX(X, Y, KIND)” on page 585, “DCMPLX(X, Y) (IBM extension)” on page
596.

QEXT(A) (IBM extension)
Purpose

Convert to extended precision real type.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER or REAL

Result type and attributes

Extended precision real.

Result value
v If A is of type extended precision real, QEXT(A) = A.
v If A is of type integer or real, the result is the exact extended precision

representation of A.

Examples

QEXT (-3) has the value -3.0Q0.

Specific Name Argument Type Result Type Pass As Arg?

QFLOAT any integer REAL(16) no

QEXT default real REAL(16) no

QEXTD double precision real REAL(16) no

RADIX(X)
Purpose

Returns the base of the model representing numbers of the same type and kind
type parameter as the argument.

Class

Inquiry function

Chapter 14. Intrinsic procedures 675

Argument type and attributes

X An INTENT(IN) INTEGER or REAL. The actual argument corresponding to X
can be scalar or array valued.

Result type and attributes

Default integer scalar.

Result value

The result is the base of the model representing numbers of the same kind and
type as X. The result is always 2. See the models under “Data
representation models” on page 562.

RAND() (IBM extension)
Purpose

Not recommended. Generates uniform random numbers, positive real numbers
greater than or equal to 0.0 and less than 1.0. Instead, use the standards
conforming RANDOM_NUMBER(HARVEST) intrinsic subroutine.

Class

None (does not correspond to any of the defined categories).

Result type and attributes

A REAL(4) scalar

Related information

“SRAND(SEED) (IBM extension)” on page 701 can be used to specify a seed value
for the random number sequence.

If the function result is assigned to an array, all array elements receive the same
value.

Examples

See the following example of a program using the RAND function.
DO I = 1, 5

R = RAND()
PRINT *, R

ENDDO
END

See the sample output generated by the above program:
0.2251586914
0.8285522461
0.6456298828
0.2496948242
0.2215576172

This function only has a specific name.

676 XL Fortran: Language Reference for Big Endian Distributions

RANDOM_NUMBER(HARVEST)
Purpose

Returns one pseudo-random number or an array of pseudo-random numbers from
the uniform distribution over the range 0 ≤ x < 1.

If you link the libpthreads.a library, a parallel implementation of random number
generation is employed which improves performance on SMP machines. The
number of threads used can be controlled by the intrinthds=num run-time option.

Class

Subroutine

Argument type and attributes

HARVEST
An INTENT(OUT) REAL. The actual argument corresponding to HARVEST
can be a scalar or an array variable. It is set to pseudo-random numbers
from the uniform distribution in the interval 0 ≤ x < 1.

Examples
REAL X, Y (10, 10)
! Initialize X with a pseudo-random number
CALL RANDOM_NUMBER (HARVEST = X)
CALL RANDOM_NUMBER (Y)
! X and Y contain uniformly distributed random numbers

RANDOM_SEED(SIZE, PUT, GET, GENERATOR)
Purpose

Restarts or queries the pseudo-random number generator used by
RANDOM_NUMBER.

Class

Subroutine

Argument type and attributes

There must either be exactly one or no arguments present.

SIZE (optional)
An INTENT(OUT) INTEGER scalar. It is set to the number of default type
integers (N) that are needed to hold the value of the seed, which is an
8-byte variable.

PUT (optional)
An INTENT(IN) INTEGER array of rank one and size ≥ N. The seed for the
current generator is transferred from it.

GET (optional)
An INTENT(OUT) INTEGER array of rank one and size ≥ N. The seed for the
current generator is transferred to it.

Chapter 14. Intrinsic procedures 677

GENERATOR (optional)
An INTENT(IN) INTEGER scalar. Its value determines the random number
generator to be used subsequently. The value must be either 1 or 2.

Random_seed allows the user to toggle between two random number
generators. Generator 1 is the default. Each generator maintains a private seed and
normally resumes its cycle after the last number it generated. A valid seed must be
a whole number in the range 1.0 to 2147483647.0 (2.0**31-1) for Generator 1 and in
the range 1.0 to 281474976710656.0 (2.0**48) for Generator 2.

Generator 1 uses the multiplicative congruential method, with
S(I+1) = (16807.0 * S(I)) mod (2.0**31-1)

and
X(I+1) = S(I+1) / (2.0**31-1)

Generator 1 cycles after 2**31-2 random numbers.

Generator 2 also uses the multiplicative congruential method, with
S(I+1) = (44,485,709,377,909.0 * S(I))

mod (2.0**48)

and
X(I+1) = S(I+1) / (2.0**48)

Generator 2 cycles after (2**48) random numbers. Although generator 1 is the
default (for reasons of backwards compatibility) the use of generator 2 is
recommended for new programs since it typically runs faster than generator 1 and
has a longer period.

If no argument is present, the seed of the current generator is set to the default
value 1d0.

Examples
CALL RANDOM_SEED

! Current generator sets its seed to 1d0
CALL RANDOM_SEED (SIZE = K)

! Sets K = 64 / BIT_SIZE(0)
CALL RANDOM_SEED (PUT = SEED (1 : K))

! Transfer seed to current generator
CALL RANDOM_SEED (GET = OLD (1 : K))

! Transfer seed from current generator

RANGE(X)
Purpose

Returns the decimal exponent range in the model representing integer or real
numbers with the same kind type parameter as the argument.

Class

Inquiry function

678 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

X An INTENT(IN) INTEGER, REAL, or COMPLEX. The actual argument
corresponding to X can be scalar or array valued.

Result type and attributes

Default integer scalar.

Result value
1. For an integer argument, the result is:

INT(LOG10(HUGE(X)))

2. For a real or complex argument, the result is:
INT(MIN(LOG10(HUGE(X)), -LOG10(TINY(X))))

Thus:
Type RANGE

integer(1) 2
integer(2) 4
integer(4) 9
integer(8) 18
real(4) , complex(4) 37
real(8) , complex(8) 307
real(16) , complex(16) 291

Examples

X is of type real(4):
HUGE(X) = 0.34E+39
TINY(X) = 0.11E-37
RANGE(X) = 37

See “Data representation models” on page 562.

RANK(A) (Technical Specification)
Purpose

Returns the rank of a data object, such as an assumed-rank object.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) argument. The corresponding actual argument can be an
array or a scalar of any type.

Result type and attributes

Default integer scalar.

Chapter 14. Intrinsic procedures 679

Result value

The result is the rank of A.

Examples
REAL :: a(10, 20)
PRINT *, RANK(a)
END

The output is as follows:
2

REAL(A, KIND)
Purpose

Convert to real type.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER, REAL, COMPLEX or boz-literal CONSTANT

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v Real.
v Case (i): If A is of type integer or real and KIND is present, the kind type

parameter is that specified by KIND. If A is of type integer or real and KIND is
not present, the kind type parameter is the kind type parameter of the default
real type.

v Case (ii): If A is of type complex and KIND is present, the kind type parameter
is that specified by KIND. If A is of type complex and KIND is not present, the
kind type parameter is the kind type parameter of A.

v Case (iii): If A is a boz-literal constant and KIND is present, the kind type
parameter is that specified by KIND. If A is a boz-literal constant and KIND is
not present, the kind type parameter is that of default real type. If
-qxlf2003=nobozlitargs is specified the boz-literal constant is treated as an
integer.

Result value
v Case (i): If A is of type integer or real, the result is equal to a kind-dependent

approximation to A.
v Case (ii): If A is of type complex, the result is equal to a kind-dependent

approximation to the real part of A.
v Case (iii): If A is a boz-literal constant, the value of the result is equal to the value

that a variable of the same type and kind type parameters as the result would
have if its value were the bit pattern specified by the boz-literal constant.

680 XL Fortran: Language Reference for Big Endian Distributions

Examples

REAL (-3) has the value -3.0. REAL ((3.2, 2.1)) has the value 3.2.

Specific Name Argument Type Result Type Pass As Arg?

REAL default integer default real no

FLOAT any integer �1� default real no

SNGL double precision real default real no

SNGLQ REAL(16) default real no �2�

DREAL double complex double precision real no �2�

QREAL COMPLEX(16) REAL(16) no �2�

Note:
�1� IBM extension: the ability to specify a nondefault integer argument.
�2� IBM extension: the inability to pass the name as an argument.

F2008 In Fortran 2008, you can use designator%RE to access the real part of
complex numbers directly; for instance, A%RE has the same value as REAL(A). For
more information about complex part designators, see Complex. F2008

REPEAT(STRING, NCOPIES)
Purpose

Concatenate several copies of a string.

Class

Transformational function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER scalar.

NCOPIES
An INTENT(IN) INTEGER scalar. Its value must not be negative.

Result type and attributes

Character scalar with a length equal to NCOPIES * LENGTH(STRING), with the
same kind type parameter as STRING.

Result value

The value of the result is the concatenation of NCOPIES copies of STRING.

Examples

REPEAT ('H', 2) has the value 'HH'. REPEAT ('XYZ', 0) has the value of a
zero-length string.

Chapter 14. Intrinsic procedures 681

RESHAPE(SOURCE, SHAPE, PAD, ORDER)
Purpose

Constructs an array of a specified shape from the elements of a given array.

Class

Transformational function

Argument type and attributes

SOURCE
An array of any type, which supplies the elements for the result array.

SHAPE
An INTEGER array of up to 20 elements, with rank one and of a constant
size. It defines the shape of the result array. All elements are either positive
integers or zero.

PAD (optional)
An array of the same data type and type parameters as SOURCE. It is used
to fill in extra values if SOURCE is reshaped into a larger array. If it is
absent or is a zero-sized array, you can only make SOURCE into another
array of the same size or smaller.

ORDER (optional)
An INTEGER array of rank one with a constant size. Its elements must be a
permutation of (1, 2, ..., SIZE(SHAPE)). You can use it to insert elements in
the result in an order of dimensions other than the normal (1, 2, ...,
rank(RESULT)).

Result value

The result is an array with shape SHAPE. It has the same data type and type
parameters as SOURCE.

The array elements of SOURCE are placed into the result in the order of
dimensions as specified by ORDER, or in the usual order for array elements if
ORDER is not specified.

The array elements of SOURCE are followed by the array elements of PAD in
array element order, and followed by additional copies of PAD until all of the
elements of the result are set.

Examples
! Turn a rank-1 array into a 3x4 array of the
! same size.
RES= RESHAPE((/A,B,C,D,E,F,G,H,I,J,K,L/), (/3,4/)
! The result is | A D G J |
! | B E H K |
! | C F I L |

! Turn a rank-1 array into a larger 3x5 array.
! Keep repeating -1 and -2 values for any
! elements not filled by the source array.
! Fill the rows first, then the columns.
RES= RESHAPE((/1,2,3,4,5,6/), (/3,5/), &

682 XL Fortran: Language Reference for Big Endian Distributions

(/-1,-2/), (/2,1/))
! The result is | 1 2 3 4 5 |
! | 6 -1 -2 -1 -2 |
! | -1 -2 -1 -2 -1 |

Related information

“SHAPE(SOURCE, KIND)” on page 690.

RRSPACING(X)
Purpose

Returns the reciprocal of the relative spacing of the model numbers near the
argument value.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result is:
ABS(FRACTION(X)) * FLOAT(RADIX(X))DIGITS(X)

Examples

RRSPACING (-3.0) = 0.75 * 224. See “Real data model” on page 563.

RSHIFT(I, SHIFT) (IBM extension)
Purpose

Performs an arithmetic shift to the right. It is identical to “SHIFTA(I, SHIFT)
(Fortran 2008)” on page 691.

Note: You are encouraged to use the standard intrinsic procedure rather than the
equivalent IBM extension.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative and less than or
equal to BIT_SIZE(I).

Chapter 14. Intrinsic procedures 683

Result type and attributes

Same as I.

Result value
v The result has the value obtained by shifting the bits of I by SHIFT positions to

the right.
v Vacated bits are filled with the sign bit.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Examples

RSHIFT (3, 1) has the result 1.

RSHIFT (3, 2) has the result 0.

RSHIFT (-1, 32) has the result -1.

Specific Name Argument Type Result Type Pass As Arg?

RSHIFT any integer same as argument yes

SAME_TYPE_AS(A,B) (Fortran 2003)
Purpose

Inquires whether the dynamic type of A is the same as the dynamic type of B.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) argument. The corresponding actual argument must be of
extensible type. If the actual argument is a pointer, it must not have an
undefined association status.

B An INTENT(IN) argument. The corresponding actual argument must be of
extensible type. If the actual argument is a pointer, it must not have an
undefined association status.

Result type and attributes

Default logical scalar

Result value

The result is true if the dynamic type of A is the same as the dynamic type of B.

Note: The result depends only on the dynamic types of A and B. Differences in
type parameters are ignored.

Related information
v “Extensible derived types (Fortran 2003)” on page 56

684 XL Fortran: Language Reference for Big Endian Distributions

SCALE(X,I)
Purpose

Returns the scaled value: X * 2.0I

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

I An INTENT(IN) INTEGER

Result type and attributes

Same as X.

Result value

The result is determined from the following value:

X * 2.0I

Examples

SCALE (4.0, 3) = 4.0 * (23) = 32.0. See “Real data model” on page 563.

SCAN(STRING, SET, BACK, KIND)
Purpose

Scan a string for any one of the characters in a set of characters.

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) character.

SET An INTENT(IN) character with the same kind type parameter as STRING.

BACK (optional)
An INTENT(IN) logical.

KIND (optional)
An INTENT(IN) integer. The actual argument corresponding to KIND must
be a constant expression.

Result type and attributes
v An integer.

Chapter 14. Intrinsic procedures 685

v If KIND is present, the KIND type parameter is that specified by the
value of KIND; otherwise, the KIND type parameter is that of default integer
type.

Result value
v Case (i): If BACK is absent or is present with the value .FALSE. and if STRING

contains at least one character that is in SET, the value of the result is the
position of the leftmost character of STRING that is in SET.

v Case (ii): If BACK is present with the value .TRUE. and if STRING contains at
least one character that is in SET, the value of the result is the position of the
rightmost character of STRING that is in SET.

v Case (iii): The value of the result is zero if no character of STRING is in SET or if
the length of STRING or SET is zero.

Examples
v Case (i): SCAN ('FORTRAN', 'TR') has the value 3.
v Case (ii): SCAN ('FORTRAN', 'TR', BACK = .TRUE.) has the value 5.
v Case (iii): SCAN ('FORTRAN', 'BCD') has the value 0.

SELECTED_CHAR_KIND(NAME) (Fortran 2003)
Purpose

Returns a value of the kind type parameter of a character data type.

Class

Transformational function

Argument type and attributes

NAME
An INTENT(IN) CHARACTER scalar

Result type and attributes

Default integer scalar.

Result value
v If you specify NAME as ASCII, SELECTED_CHAR_KIND returns the kind type

parameter of the ASCII character type.
v If you specify NAME as DEFAULT, SELECTED_CHAR_KIND returns the kind

type parameter of the default character type
v Otherwise, SELECTED_CHAR_KIND returns -1.

Related information

Kind type parameters supported by XL Fortran are defined in “Type declaration:
type parameters and specifiers” on page 15.

686 XL Fortran: Language Reference for Big Endian Distributions

SELECTED_INT_KIND(R)
Purpose

Returns a value of the kind type parameter of an integer data type that represents
all integer values n with -10R < n < 10R.

Class

Transformational function

Argument type and attributes

R An INTENT(IN) INTEGER

Result type and attributes

Default integer scalar.

Result value
v The result has a value equal to the value of the kind type parameter of an

integer data type that represents all values n in the range values n with
-10R < n < 10R, or if no such kind type parameter is available, the result is -1.

v If more than one kind type parameter meets the criteria, the value returned is
the one with the smallest decimal exponent range.

Examples

SELECTED_INT_KIND (9) has the value 4, signifying that an INTEGER
with kind type 4 can represent all values from 10-9 to 109.

Related information

Kind type parameters supported by XL Fortran are defined in “Type declaration:
type parameters and specifiers” on page 15.

SELECTED_REAL_KIND(P, R, RADIX)
Purpose

Returns a value of the kind type parameter of a real data type with decimal
precision of at least P digits, a decimal exponent range of at least R, F2008 and a
radix of RADIX. F2008

Class

Transformational function

Argument type and attributes

At least one argument must be present.

P (optional)
An INTENT(IN) INTEGER scalar

R (optional)
An INTENT(IN) INTEGER scalar

Chapter 14. Intrinsic procedures 687

F2008 RADIX (optional)
An INTENT(IN) INTEGER scalar F2008

Result type and attributes

Default integer scalar.

Result value

If P or R is not specified, SELECTED_REAL_KIND behaves as if you specified P
or R with value 0. If RADIX is not specified, the radix of the selected kind can be
any supported value.

The result is the value of the kind type parameter of a real data type that satisfies
the following conditions:
v It has decimal precision, as returned by the PRECISION function, of at least P

digits.
v It has a decimal exponent range, as returned by theRANGE function, of at least

R.
v F2008 It has a radix, as returned by the RADIX function, of RADIX. F2008

If no such kind type parameter is available, the result has different values
depending on different conditions as follows:
v If F2008 the radix is available F2008 , the precision is not available, and the

exponent range is available, the result is -1.
v If F2008 the radix is available F2008 , the exponent range is not available,

and the precision is available, the result is -2.
v If F2008 the radix is available F2008 , and neither the precision nor the

exponent range is available, the result is -3.
v If F2008 the radix is available F2008 , and both the precision and exponent

range are available separately but not together, the result is -4.
v F2008 If the radix is not available, the result is -5. F2008

If more than one kind type parameter value meets the criteria, the value returned
is the one with the smallest decimal precision. However, if several values have the
same smallest decimal precision, the smallest value is returned.

F2008 Currently, the XL Fortran compiler only supports RADIX=2. F2008

Examples

The following example shows the usage of the SELECTED_REAL_KIND intrinsic
procedure.
PROGRAM a

INTEGER :: i

i = SELECTED_REAL_KIND(6, 70)
PRINT *, ’SELECTREALKIND(6, 70) = ’, i

END PROGRAM a

The output of this program is as follows:
SELECTREALKIND(6, 70) = 8

SELECTED_REAL_KIND (6, 70) has the value 8.

688 XL Fortran: Language Reference for Big Endian Distributions

F2008

The following example shows the usage of the SELECTED_REAL_KIND intrinsic
procedure with the RADIX argument.
PROGRAM a

INTEGER :: i

i = SELECTED_REAL_KIND(20, 140, 2)
PRINT *, ’SELECTREALKIND(20, 140, 2) = ’, i

END PROGRAM a

The output of this program is as follows:
SELECTREALKIND(20, 140, 2) = 16

F2008

Related information
v PRECISION(X)
v RANGE(X)
v “RADIX(X)” on page 675
v Kind type parameters supported by XL Fortran are defined in “Type declaration:

type parameters and specifiers” on page 15.

SET_EXPONENT(X,I)
Purpose

Returns the number whose fractional part is the fractional part of the model
representation of X, and whose exponent part is I.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

I An INTENT(IN) INTEGER

Result type and attributes

Same as X.

Result value

IBM extension

If X = 0 the result is zero.

Otherwise, the result is:
FRACTION(X) * 2.0I

End of IBM extension

Example

Chapter 14. Intrinsic procedures 689

IBM extension

SET_EXPONENT (10.5, 1) = 0.65625 * 2.01 = 1.3125

See “Real data model” on page 563.

End of IBM extension

SHAPE(SOURCE, KIND)
Purpose

Returns the shape of an array or scalar.

Class

Inquiry function

Argument type and attributes

SOURCE
An INTENT(IN) argument. The corresponding actual argument can be an
array or scalar of any data type. The actual argument must not be a
disassociated pointer, allocatable object that is not allocated, or
assumed-size array.

KIND (optional)
An INTEGER scalar. The actual argument corresponding to KIND must be a
constant expression.

Result type and attributes
v The result is an array of rank one whose size is RANK(SOURCE).
v It is of type integer
v If KIND is present, the KIND type parameter is that specified by the value of

KIND; otherwise, the KIND type parameter is that of default integer type.

Result value

The extent of each dimension in SOURCE is returned in the corresponding
element of the result array.

TS If ARRAY is an assumed-rank object that is associated with an
assumed-size array, the result has a value equal to [(SIZE(ARRAY, I, KIND), I=1,
RANK(ARRAY))]. If KIND is omitted from SHAPE, KIND is also omitted from
SIZE. TS

Related information

“RESHAPE(SOURCE, SHAPE, PAD, ORDER)” on page 682.

Examples
! A is the array | 7 6 3 1 |
! | 2 4 0 9 |
! | 5 7 6 8 |
!

690 XL Fortran: Language Reference for Big Endian Distributions

RES = SHAPE(A)
! The result is | 3 4 | because A is a rank-2 array
! with 3 elements in each column and 4 elements in
! each row.

SHIFTA(I, SHIFT) (Fortran 2008)
Purpose

Performs an arithmetic shift to the right. It is identical to “RSHIFT(I, SHIFT) (IBM
extension)” on page 683.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to BIT_SIZE(I).

Result type and attributes

Same as I.

Result value
v The result has the value that is obtained by shifting the bits of I by SHIFT

positions to the right.
v Vacated bits are filled with the sign bit, leftmost bit of I.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Example

SHIFTA (-68, 4) has the result -4.

SHIFTL(I, SHIFT) (Fortran 2008)
Purpose

Performs a shift to the left. It is identical to “LSHIFT(I, SHIFT) (IBM extension)” on
page 644.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to BIT_SIZE(I).

Chapter 14. Intrinsic procedures 691

Result type and attributes

Same as I.

Result value
v The result has the value that is obtained by shifting the bits of I by SHIFT

positions to the left, the same as ISHFT(I, SHIFT).
v Vacated bits are filled with zero.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Example

SHIFTL (-8, 2) has the result -32.

SHIFTR(I, SHIFT) (Fortran 2008)
Purpose

Performs a logical shift to the right.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

SHIFT
An INTENT(IN) INTEGER. Its value must be non-negative, and less than or
equal to BIT_SIZE(I).

Result type and attributes

Same as I.

Result value
v The result has the value that is obtained by shifting the bits of I by SHIFT

positions to the right, the same as “ISHFT(I, SHIFT)” on page 631.
v Vacated bits are filled with zero.
v The bits are numbered 0 to BIT_SIZE(I)-1, from right to left.

Example

SHIFTR (12, 1) has the result 6.

SIGN(A, B)
Purpose

Returns the absolute value of A times the sign of B. If A is non-zero, you can use
the result to determine whether B is negative or non-negative, as the sign of the
result is the same as the sign of B.

692 XL Fortran: Language Reference for Big Endian Distributions

Note that if you have declared B as REAL(4) or REAL(8), and B has a negative
zero value, the sign of the result depends on whether you have specified the
-qxlf90=signedzero compiler option.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) INTEGER or REAL

B An argument of the same type and kind type parameter as A.

Result type and attributes

Same as A.

Result value

The result is sgn*|A|, where:
v sgn = -1, if either of the following is true:

– B < 0
– B is a REAL(4) or REAL(8) number with a value of negative 0, and

you have specified the -qxlf90=signedzero option
v sgn = 1, otherwise.

Fortran 95 allows a processor to distinguish between a positive and a negative real
zero, whereas Fortran 90 did not. Using the -qxlf90=signedzero option allows you
to specify the Fortran 95 behavior (except in the case of REAL(16) numbers), which
is consistent with the IEEE standard for binary floating-point arithmetic.
-qxlf90=signedzero is the default for the xlf95, xlf95_r, f2003, and f2008 invocation
commands.

Examples

SIGN (-3.0, 2.0) has the value 3.0.

Specific Name Argument Type Result Type Pass As Arg?

SIGN default real default real yes

ISIGN any integer �1� same as argument yes

DSIGN double precision real double precision real yes

QSIGN REAL(16) REAL(16) yes �2�

Note:
�1� IBM extension: the ability to specify a nondefault integer argument.
�2� IBM extension: the ability to pass the name as an argument.

Related information

See -qxlf90 in the XL Fortran Compiler Reference.

Chapter 14. Intrinsic procedures 693

SIGNAL(I, PROC) (IBM extension)
Purpose

The SIGNAL procedure allows a program to specify a procedure to be invoked
upon receipt of a specific operating-system signal.

Class

Subroutine

Argument type and attributes

I An INTENT(IN) INTEGER. It specifies the value of the signal to be acted
upon. Available signal values are defined in the C include file signal.h; a
subset of signal values is defined in the Fortran include file fexcp.h.

PROC An INTENT(IN) argument that specifies the user-defined procedure to be
invoked when the process receives the specified signal specified by
argument I.

Examples
INCLUDE ’fexcp.h’
INTEGER SIGUSR1
EXTERNAL USRINT

! Set exception handler to produce the traceback code.
! The SIGTRAP is defined in the include file fexcp.h.
! xl__trce is a procedure in the XL Fortran
! run-time library. It generates the traceback code.

CALL SIGNAL(SIGTRAP, XL__TRCE)
...

! Use user-defined procedure USRINT to handle the signal
! SIGUSR1.

CALL SIGNAL(SIGUSR1, USRINT)
...

Related information

The -qsigtrap option in the XL Fortran Compiler Reference allows you to set a
handler for SIGTRAP signals through a compiler option.

SIN(X)
Purpose

Sine function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX. If X is REAL, it is regarded as a value in
radians. If X is COMPLEX, its real and imaginary parts are regarded as values
in radians.

Result type and attributes

Same as X.

694 XL Fortran: Language Reference for Big Endian Distributions

Result value

It approximates sin(X).

Examples

SIN (1.0) has the value 0.84147098 (approximately).

Specific Name Argument Type Result Type Pass As Arg?

SIN default real default real yes

DSIN double precision real double precision real yes

QSIN REAL(16) REAL(16) yes �1�

CSIN �2a� default complex default complex yes

CDSIN �2b� double complex double complex yes �1�

ZSIN �2b� double complex double complex yes �1�

CQSIN �2b� COMPLEX(16) COMPLEX(16) yes �1�

Notes:
�1� IBM extension: the ability to pass the name as an argument.
Given that X is a complex number in the form a + bi, where i = (-1)½:
�2a� abs(b) must be less than or equal to 88.7228; a is any real value.
�2b� abs(b) must be less than or equal to 709.7827; a is any real value.

SIND(X) (IBM extension)
Purpose

Sine function. Argument in degrees.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

It approximates sin(X), where X has a value in degrees.

Examples

SIND (90.0) has the value 1.0.

Specific Name Argument Type Result Type Pass As Arg?

SIND default real default real yes

DSIND double precision real double precision real yes

QSIND REAL(16) REAL(16) yes

Chapter 14. Intrinsic procedures 695

SINH(X)
Purpose

Hyperbolic sine function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or type complex. F2008

Result type and attributes

Same as X.

Result value

The result value approximates sinh(X).

F2008 If X is of type complex, its imaginary part is considered a value in
radians. F2008

Examples

SINH(1.0) has the value 1.1752012, approximately.

F2008 SINH((1.000000, 0.000000)) has the value (1.175201, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

SINH �1� default real default real yes

DSINH �2� double precision real double precision real yes

QSINH �2� �3� REAL(16) REAL(16) yes

Note:
�1� abs(X) must be less than or equal to 89.4159.
�2� abs(X) must be less than or equal to 709.7827.
�3� IBM extension

SIZE(ARRAY, DIM, KIND)
Purpose

Returns the extent of an array along a specified dimension or the total number of
elements in the array.

Class

Inquiry function

Argument type and attributes

ARRAY
An array of any data type TS or an assumed-rank object TS .

696 XL Fortran: Language Reference for Big Endian Distributions

The corresponding actual argument must not be a scalar, disassociated
pointer, or allocatable array that is not allocated. The actual argument can
be an assumed-size array if DIM is present and has a value that is less
than the rank of ARRAY.

DIM (optional)
An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ RANK(ARRAY). TS It must not be present if ARRAY is
an assumed-rank object that is associated with a scalar. TS

Fortran 2003

KIND (optional)
An INTENT(IN) INTEGER scalar. Its value must be specified by a constant
expression.

End of Fortran 2003

Result type and attributes
v It is of type scalar integer.

Fortran 2003

v If KIND is present, the KIND type parameter is that specified by the value of
KIND; otherwise, the KIND type parameter is that of default integer type.

End of Fortran 2003

Result value

The result equals the extent of ARRAY along dimension DIM; or, if DIM is not
specified, it is the total number of array elements in ARRAY.

TS

v If ARRAY is an assumed-rank object that is associated with a scalar, the result is
1.

v If ARRAY is an assumed-rank object that is associated with an assumed-size
array, and
– If DIM is present and equal to the rank of ARRAY, the result is -1.
– If DIM is not present, the result is a negative value that is equal to

PRODUCT([(SIZE(ARRAY, I, KIND), I=1, RANK(ARRAY))]).

TS

Examples
! A is the array | 1 -4 7 -10 |
! | 2 5 -8 11 |
! | 3 6 9 -12 |

RES = SIZE(A)
! The result is 12 because there are 12 elements in A.

RES = SIZE(A, DIM = 1)
! The result is 3 because there are 3 rows in A.

RES = SIZE(A, DIM = 2)
! The result is 4 because there are 4 columns in A.

Chapter 14. Intrinsic procedures 697

SIZEOF(A) (IBM extension)
Purpose

Returns the size of an argument in bytes.

Class

Inquiry function

Argument type and attributes

A An INTENT(IN) argument. The corresponding actual argument cannot be an
assumed-size array.

Result type and attributes

Default integer scalar.

Result value

The size of the argument in bytes.

The size of a derived object or record structure containing an allocatable or Fortran
90 pointer component includes only the size of the deallocated object or
unassociated pointer component, even if the component is allocated or associated.

Restriction: SIZEOF must not be passed as an argument to a subprogram.

Examples

The following example assumes that –qintsize=4.
INTEGER ARRAY(10)
INTEGER*8, PARAMETER :: p = 8
STRUCTURE /STR/

INTEGER I
COMPLEX C

END STRUCTURE
RECORD /STR/ R
CHARACTER*10 C
TYPE DTYPE

INTEGER ARRAY(10)
END TYPE
TYPE (DTYPE) DOBJ
PRINT *, SIZEOF(ARRAY), SIZEOF (ARRAY(3)), SIZEOF(P) ! Array, array

! element ref,
! named constant

PRINT *, SIZEOF (R), SIZEOF(R.C) ! record structure
! entity, record
! structure
! component

PRINT *, SIZEOF (C(2:5)), SIZEOF(C) ! character
! substring,
! character
! variable

PRINT *, SIZEOF (DOBJ), SIZEOF(DOBJ%ARRAY) ! derived type
! object, structure
! component

698 XL Fortran: Language Reference for Big Endian Distributions

See the following sample output generated by the program above:
40 4 8
16 8
4 10
40 40

Related information

See the XL Fortran Compiler Reference for details about the -qintsize compiler
option.

SPACING(X)
Purpose

Returns the absolute spacing of the model numbers near the argument value.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

If X is not 0, the result is:

2.0EXPONENT(X) - DIGITS(X)

If X is 0, the result is the same as that of TINY(X).

Examples

IBM extension

SPACING (3.0) = 2.02 - 24 = 2.0(-22) See “Real data model” on page 563.

End of IBM extension

SPREAD(SOURCE, DIM, NCOPIES)
Purpose

Replicates an array in an additional dimension by making copies of existing
elements along that dimension.

Class

Transformational function

Chapter 14. Intrinsic procedures 699

Argument type and attributes

SOURCE
An INTENT(IN) argument. The corresponding actual argument can be an
array or scalar of any data type. The rank of SOURCE has a maximum
value of 19.

DIM An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(SOURCE)+1. Unlike most other array intrinsic functions,
SPREAD requires the DIM argument.

NCOPIES
An INTEGER scalar. It becomes the extent of the extra dimension added to
the result.

Result type and attributes

The result is an array of rank rank(SOURCE)+1 and with the same type and type
parameters as source.

Result value

If SOURCE is a scalar, the result is a one-dimensional array with NCOPIES
elements, each with value SOURCE.

If SOURCE is an array, the result is an array of rank rank(SOURCE) + 1. Along
dimension DIM, each array element of the result is equal to the corresponding
array element in SOURCE.

If NCOPIES is less than or equal to zero, the result is a zero-sized array.

Examples
! A is the array (/ -4.7, 6.1, 0.3 /)

RES = SPREAD(A, DIM = 1, NCOPIES = 3)
! The result is | -4.7 6.1 0.3 |
! | -4.7 6.1 0.3 |
! | -4.7 6.1 0.3 |
! DIM=1 extends each column. Each element in RES(:,1)
! becomes a copy of A(1), each element in RES(:,2) becomes
! a copy of A(2), and so on.

RES = SPREAD(A, DIM = 2, NCOPIES = 3)
! The result is | -4.7 -4.7 -4.7 |
! | 6.1 6.1 6.1 |
! | 0.3 0.3 0.3 |
! DIM=2 extends each row. Each element in RES(1,:)
! becomes a copy of A(1), each element in RES(2,:)
! becomes a copy of A(2), and so on.

RES = SPREAD(A, DIM = 2, NCOPIES = 0)
! The result is (/ /) (a zero-sized array).

SQRT(X)
Purpose

Square root.

700 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL or COMPLEX. Unless X is COMPLEX, its value must be
greater than or equal to zero.

Result type and attributes

Same as X.

Result value
v It has a value equal to the square root of X.

The -qxlf2003=signdzerointr option controls whether you get Fortran 2003
behavior. See qxlf2003 in the XL Fortran Compiler Reference

v If the result type is complex, its value is the principal value with the real part
greater than or equal to zero. If the real part is zero, the imaginary part is
greater than or equal to zero.

Fortran 2003

v If the result type is complex, its value is the principal value with the real part
greater than or equal to zero. If the real part of the result is zero, the imaginary
part has the same sign as the imaginary part of X.

End of Fortran 2003

Examples

SQRT (4.0) has the value 2.0.

Specific Name Argument Type Result Type Pass As Arg?

SQRT default real default real yes

DSQRT double precision real double precision real yes

QSQRT REAL(16) REAL(16) yes �1�

CSQRT �2� default complex default complex yes

CDSQRT �2� double complex double complex yes �1�

ZSQRT �2� COMPLEX(8) COMPLEX(8) yes �1�

CQSQRT �2� COMPLEX(16) COMPLEX(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.
�2� Given that X is a complex number in the form a + bi, where i = (-1)½, abs(X) +
abs(a) must be less than or equal to 1.797693 * 10308

SRAND(SEED) (IBM extension)
Purpose

Provides the seed value used by the random number generator function RAND.
This intrinsic subroutine is not recommended. Use the standards conforming
RANDOM_NUMBER(HARVEST) intrinsic subroutine.

Chapter 14. Intrinsic procedures 701

Class

Subroutine

Argument type and attributes

SEED

v An INTENT(IN) REAL(4) scalar when used to provide a seed value for the
RAND function

v An INTENT(IN) INTEGER(4) scalar when used to provide a seed value for
the IRAND service and utility function.

Examples

See the following example of a program using the SRAND subroutine.
CALL SRAND(0.5)
DO I = 1, 5

R = RAND()
PRINT *,R

ENDDO
END

See the following sample output generated by the above program:
0.3984375000
0.4048461914
0.1644897461
0.1281738281E-01
0.2313232422E-01

SUM(ARRAY, DIM, MASK) or SUM(ARRAY, MASK)
Purpose

Calculates the sum of selected elements in an array.

Class

Transformational function

Argument type and attributes

ARRAY
An NUMERIC array whose elements you want to sum.

DIM (optional)
An INTEGER scalar. Its value must be in the range
1 ≤ DIM ≤ rank(ARRAY).

MASK (optional)
A logical expression. If it is an array, it must conform with ARRAY in
shape. If MASK is a scalar, the scalar value applies to all elements in
ARRAY.

Result value

If DIM is present, the result is an array of rank rank(ARRAY)-1, with the same data
type and kind type parameter as ARRAY. If DIM is missing, or if MASK has a rank
of one, the result is a scalar.

702 XL Fortran: Language Reference for Big Endian Distributions

The result is calculated by one of the following methods:

Method 1:
If only ARRAY is specified, the result equals the sum of all the array
elements of ARRAY. If ARRAY is a zero-sized array, the result equals zero.

Method 2:
If ARRAY and MASK are both specified, the result equals the sum of the
array elements of ARRAY that have a corresponding array element in
MASK with a value of .TRUE.. If MASK has no elements with a value of
.TRUE., the result is equal to zero.

Method 3:
If DIM is also specified, the result value equals the sum of the array
elements of ARRAY along dimension DIM that have a corresponding true
array element in MASK.

Because both DIM and MASK are optional, various combinations of arguments
are possible. When the -qintlog option is specified with two arguments, the second
argument refers to one of the following:
v MASK if it is an array of type integer, logical, byte or typeless
v DIM if it is a scalar of type integer, byte or typeless
v MASK if it is a scalar of type logical

Examples

Method 1:
! Sum all the elements in an array.

RES = SUM((/2, 3, 4 /))
! The result is 9 because (2+3+4) = 9

Method 2:
! A is the array (/ -3, -7, -5, 2, 3 /)
! Sum all elements that are greater than -5.

RES = SUM(A, MASK = A .GT. -5)
! The result is 2 because (-3 + 2 + 3) = 2

Method 3:
! B is the array | 4 2 3 |
! | 7 8 5 |

! Sum the elements in each column.
RES = SUM(B, DIM = 1)

! The result is | 11 10 8 | because (4 + 7) = 11
! (2 + 8) = 10
! (3 + 5) = 8

! Sum the elements in each row.
RES = SUM(B, DIM = 2)

! The result is | 9 20 | because (4 + 2 + 3) = 9
! (7 + 8 + 5) = 20

! Sum the elements in each row, considering only
! those elements greater than two.

RES = SUM(B, DIM = 2, MASK = B .GT. 2)
! The result is | 7 20 | because (4 + 3) = 7
! (7 + 8 + 5) = 20

Chapter 14. Intrinsic procedures 703

SYSTEM(CMD, RESULT) (IBM extension)
Purpose

Passes a command to the operating system for execution. The current process
pauses until the command is completed and control is returned from the operating
system. An added, optional argument to the subroutine will allow recovery of any
return code information from the operating system.

Class

Subroutine

Argument type and attributes

CMD An INTENT(IN) CHARACTER scalar. It specifies the command to execute and
any command-line arguments.

RESULT (optional)
An INTENT(OUT) INTEGER(4) scalar. If the argument is not an INTEGER(4)
variable, the compiler generates an (S) level error message. The format of
the information returned in RESULT is the same as the format returned
from the wait system call.

Examples
INTEGER ULIMIT
CHARACTER(32) CMD
...

! Check the system ulimit.
CMD = ’ulimit > ./fort.99’
CALL SYSTEM(CMD)
READ(99, *) ULIMIT
IF (ULIMIT .LT. 2097151) THEN

...

INTEGER RC
RC=99
CALL SYSTEM("/bin/test 1 -EQ 2",RC)
IF (IAND(RC,’ff’z) .EQ. 0) then

RC = IAND(ISHFT(RC,-8), ’ff’z)
ELSE

RC = -1
ENDIF

SYSTEM_CLOCK(COUNT, COUNT_RATE, COUNT_MAX)
Purpose

Returns numeric data from a real-time clock.

Class

Subroutine

Argument type and attributes

COUNT (optional)
An INTENT(OUT) INTEGER. The initial value of COUNT depends on the
current value of the processor clock in a range from 0 to COUNT_MAX.
COUNT increments by one for each clock count until it reaches the value
of COUNT_MAX. At the next clock count after COUNT_MAX, the value of
COUNT resets to zero.

704 XL Fortran: Language Reference for Big Endian Distributions

COUNT_RATE (optional)
An INTENT(OUT) INTEGER or REAL scalar. When using the default centisecond
resolution, COUNT_RATE refers to the number of processor clock counts
per second or to zero if there is no clock.

If you specify a microsecond resolution using –qsclk=micro, the
value of COUNT_RATE is 1 000 000 clock counts per second.

COUNT_MAX (optional)
An INTENT(OUT) INTEGER scalar. When using the default centisecond
resolution, COUNT_MAX is the maximum number of clock counts for a
given processor clock.

If you specify a microsecond resolution using -qsclk=micro and
COUNT_MAX is of type INTEGER(4), the value of COUNT_MAX is 1 799
999 999 clock counts, or about 30 minutes.

If you specify a microsecond resolution using -qsclk=micro and
COUNT_MAX is of type INTEGER(8), the value of COUNT_MAX is 86
399 999 999 clock counts, or about 24 hours.

Examples

In the following example, the clock is a 24-hour clock. After the call to
SYSTEM_CLOCK, the COUNT contains the day time expressed in clock ticks per
second. The number of ticks per second is available in the COUNT_RATE. The
COUNT_RATE value is implementation dependent.

INTEGER, DIMENSION(8) :: IV
TIME_SYNC: DO
CALL DATE_AND_TIME(VALUES=IV)
IHR = IV(5)
IMIN = IV(6)
ISEC = IV(7)
CALL SYSTEM_CLOCK(COUNT=IC, COUNT_RATE=IR, COUNT_MAX=IM)
CALL DATE_AND_TIME(VALUES=IV)

IF ((IHR == IV(5)) .AND. (IMIN == IV(6)) .AND. &
(ISEC == IV(7))) EXIT TIME_SYNC

END DO TIME_SYNC

IDAY_SEC = 3600*IHR + IMIN*60 + ISEC
IDAY_TICKS = IDAY_SEC * IR

IF (IDAY_TICKS /= IC) THEN
STOP ’clock error’

ENDIF
END

TAN(X)
Purpose

Tangent function.

Class

Elemental function

Chapter 14. Intrinsic procedures 705

Argument type and attributes

X An INTENT(IN) REAL F2008 or type complex. F2008

Result type and attributes

Same as X.

Result value

The result value approximates tan(X).
v If X is of type real, it is considered a value in radians.
v F2008 If X is of type complex, its real part is considered a value in radians.

F2008

Examples

TAN(1.0) has the value 1.5574077, approximately.

F2008 TAN((1.000000, 0.000000)) has the value (1.557408, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

TAN default real default real yes

DTAN double precision real double precision real yes

QTAN REAL(16) REAL(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

TAND(X) (IBM extension)
Purpose

Tangent function. Argument in degrees.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

Same as X.

Result value

The result approximates tan(X), where X has a value in degrees.

Examples

TAND (45.0) has the value 1.0.

706 XL Fortran: Language Reference for Big Endian Distributions

Specific Name Argument Type Result Type Pass As Arg?

TAND default real default real yes

DTAND double precision real double precision real yes

QTAND REAL(16) REAL(16) yes

TANH(X)
Purpose

Hyperbolic tangent function.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL F2008 or type complex. F2008

Result type and attributes

Same as X.

Result value

The result value approximates tanh(X).

F2008 If X is of type complex, its imaginary part is considered a value in
radians. F2008

Examples

TANH(1.0) has the value 0.76159416, approximately.

F2008 TANH((1.000000, 0.000000)) has the value (0.761594, 0.000000),
approximately. F2008

Specific Name Argument Type Result Type Pass As Arg?

TANH default real default real yes

DTANH double precision real double precision real yes

QTANH REAL(16) REAL(16) yes �1�

Note:
�1� IBM extension: the ability to pass the name as an argument.

TINY(X)
Purpose

Returns the smallest positive number in the model representing numbers of the
same type and kind type parameter as the argument.

Chapter 14. Intrinsic procedures 707

Class

Inquiry function

Argument type and attributes

X An INTENT(IN) real. The corresponding actual argument can be scalar or
array.

Result type and attributes

Scalar with the same type and kind type parameter as X.

Result value

The result is:
2.0(MINEXPONENT(X)-1) for real X

Examples

TINY (X) = float(2)(-126) = 1.17549351e-38. See “Real data model” on page
563.

TRAILZ(I) (Fortran 2008)
Purpose

Returns the number of trailing zero bits in the binary representation of an integer.

Class

Elemental function

Argument type and attributes

I An INTENT(IN) INTEGER

Result type and attributes

Same as I.

Result value

The result is the count of zero bits to the right of the rightmost one bit for I. If I
has the value zero, the result is BIT_SIZE(I).

Examples
I = TRAILZ(0_4) ! I=32
J = TRAILZ(4_4) ! J=2
K = TRAILZ(-1) ! K=0
M = TRAILZ(0_8) ! M=64
N = TRAILZ(1_8) ! N=0

708 XL Fortran: Language Reference for Big Endian Distributions

Related information
v “BIT_SIZE(I)” on page 583
v “LEADZ(I) (Fortran 2008)” on page 635

TRANSFER(SOURCE, MOLD, SIZE)
Purpose

Returns a result with a physical representation identical to that of SOURCE but
interpreted with the type and type parameters of MOLD.

It performs a low-level conversion between types without any sign extension,
rounding, blank padding, or other alteration that may occur using other methods
of conversion.

Class

Transformational function

Argument type and attributes

SOURCE
The data entity whose bitwise value you want to transfer to a different
type. It may be of any type, and may be a scalar or an array.

MOLD
A data entity that has the type characteristics you want for the result. If the
actual argument corresponding to MOLD is a variable, the value does not
need to be defined. The actual argument can be of any type, and can be a
scalar or an array. Its value is not used, only its type characteristics are
used.

SIZE (optional)
The number of elements for the output result. It must be a scalar integer.
The corresponding actual argument must not be an optional dummy
argument.

Result type and attributes

The same type and type parameters as MOLD.

If MOLD is a scalar and SIZE is absent, the result is a scalar.

If MOLD is array valued and SIZE is absent, the result is array valued and of rank
one, with the smallest size that is physically large enough to hold SOURCE.

If SIZE is present, the result is array valued of rank one and size SIZE.

Result value

The physical representation of the result is the same as SOURCE, truncated if the
result is smaller or with an undefined trailing portion if the result is larger.

Because the physical representation is unchanged, it is possible to undo the results
of TRANSFER as long as the result is not truncated:

REAL(4) X /3.141/
DOUBLE PRECISION I, J(6) /1,2,3,4,5,6/

Chapter 14. Intrinsic procedures 709

! Because x is transferred to a larger representation
! and then back, its value is unchanged.

X = TRANSFER(TRANSFER(X, I), X)

! j is transferred into a real(4) array large enough to
! hold all its elements, then back into an array of
! its original size, so its value is unchanged too.

J = TRANSFER(TRANSFER(J, X), J, SIZE=SIZE(J))

Examples

TRANSFER (1082130432, 0.0) is 4.0.

TRANSFER ((/1.1,2.2,3.3/), (/(0.0,0.0)/)) is a complex rank-one array of length
two whose first element has the value (1.1, 2.2) and whose second element has a
real part with the value 3.3. The imaginary part of the second element is
undefined.

TRANSFER ((/1.1,2.2,3.3/), (/(0.0,0.0)/), 1) has the value (/(1.1,2.2)/).

TRANSPOSE(MATRIX)
Purpose

Transposes a two-dimensional array, turning each column into a row and each row
into a column.

Class

Transformational function

Argument type and attributes

MATRIX
An array of any data type, with a rank of two.

Result value

The result is a two-dimensional array of the same data type and type parameters
as MATRIX.

The shape of the result is (n,m) where the shape of MATRIX is (m,n). For example,
if the shape of MATRIX is (2,3), the shape of the result is (3,2).

Each element (i,j) in the result has the value MATRIX (j,i) for i in the range 1-n and
j in the range 1-m.

Result type and attributes

A two-dimensional array of the same data type and type parameters as MATRIX.

Examples
! A is the array | 0 -5 8 -7 |
! | 2 4 -1 1 |
! | 7 5 6 -6 |
! Transpose the columns and rows of A.

RES = TRANSPOSE(A)

710 XL Fortran: Language Reference for Big Endian Distributions

! The result is | 0 2 7 |
! | -5 4 5 |
! | 8 -1 6 |
! | -7 1 -6 |

TRIM(STRING)
Purpose

Returns the argument with trailing blank characters removed.

Class

Transformational function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER scalar

Result type and attributes

Character with the same kind type parameter value as STRING and with a length
that is the length of STRING less the number of trailing blanks in STRING.

Result value
v The value of the result is the same as STRING, except trailing blanks are

removed.
v If STRING contains no nonblank characters, the result has zero length.

Examples

TRIM ('�A�B��') has the value '�A�B'.

UBOUND(ARRAY, DIM, KIND)
Purpose

Returns the upper bound of each dimension in an array, or the upper bound of a
specified dimension.

Class

Inquiry function

Argument type and attributes

ARRAY
The array whose upper bounds you want to determine. The bounds of the
array must be defined; that is, the corresponding actual argument cannot
be a disassociated pointer or an allocatable array that is not allocated, and
if its size is assumed, you can only examine one dimension. If ARRAY is
an assumed-size array, DIM shall be present with a value less than the
rank of ARRAY.

DIM (optional)
An INTEGER scalar. Its value must be in the range 1 ≤ DIM ≤
RANK(ARRAY). The corresponding actual argument must not be an

Chapter 14. Intrinsic procedures 711

optional dummy argument. TS The DIM argument cannot be present
if ARRAY is an assumed-rank object that is associated with a scalar.

TS

KIND (optional)
An INTEGER scalar. The actual argument corresponding to KIND must be a
constant expression.

Result type and attributes
v The result is of type integer
v If KIND is present, the kind type parameter is that specified by the

value of KIND; otherwise, the kind type parameter is that of the default integer
type.

v If DIM is present, the result is a scalar. If it is not present, the result is a
one-dimensional array with one element for each dimension in ARRAY.

v TS If ARRAY is an assumed-rank object that is associated with a scalar, the
result is a zero-sized array. TS

v TS If ARRAY is an assumed-rank object that is associated with an
assumed-size array, the result of UBOUND(ARRAY, RANK(ARRAY), KIND)
equalsLBOUND(ARRAY, RANK(ARRAY), KIND) minus two. In this context, if
KIND is omitted for UBOUND(ARRAY, RANK(ARRAY), KIND), it is also
omitted for the corresponding LBOUND(ARRAY, RANK(ARRAY), KIND).

TS

Result value

Each element in the result corresponds to a dimension of ARRAY. If ARRAY is a
whole array or array structure component, these values are equal to the upper
bounds. If ARRAY is an array section or expression that is not a whole array or
array structure component, the values represent the number of elements in each
dimension, which may be different than the declared upper bounds of the original
array. If a dimension is zero-sized, the corresponding element in the result is zero,
regardless of the value of the upper bound.

Examples
! This array illustrates the way UBOUND works with
! different ranges for dimensions.

REAL A(1:10, -4:5, 4:-5)

RES=UBOUND(A)
! The result is (/ 10, 5, 0 /).

RES=UBOUND(A(:,:,:))
! The result is (/ 10, 10, 0 /) because the argument
! is an array section.

RES=UBOUND(A(4:10,-4:1,:))
! The result is (/ 7, 6, 0 /), because for an array section,
! it is the number of elements in the corresponding dimensions.

UNPACK(VECTOR, MASK, FIELD)
Purpose

Takes some or all elements from a one-dimensional array and rearranges them into
another, possibly larger, array.

712 XL Fortran: Language Reference for Big Endian Distributions

Class

Transformational function

Argument type and attributes

VECTOR
A one-dimensional array of any data type. There must be at least as many
elements in VECTOR as there are .TRUE. values in MASK.

MASK
A LOGICAL array. It determines where the elements of VECTOR are placed
when they are unpacked.

FIELD An argument that has the same shape as the mask argument, and the same
data type and type parameters as VECTOR. Its elements are inserted into
the result array wherever the corresponding MASK element has the value
.FALSE..

Result value

The elements of the result are filled in array-element order: if the corresponding
element in MASK is .TRUE., the result element is filled by the next element of
VECTOR; otherwise, it is filled by the corresponding element of FIELD.

Result type and attributes

An array with the same shape as MASK and the same data type and type
parameters as VECTOR.

Examples
! VECTOR is the array (/ 5, 6, 7, 8 /),
! MASK is | F T T |, FIELD is | -1 -4 -7 |
! | T F F | | -2 -5 -8 |
! | F F T | | -3 -6 -9 |

! Turn the one-dimensional vector into a two-dimensional
! array. The elements of VECTOR are placed into the .TRUE.
! positions in MASK, and the remaining elements are
! made up of negative values from FIELD.

RES = UNPACK(VECTOR, MASK, FIELD)
! The result is | -1 6 7 |
! | 5 -5 -8 |
! | -3 -6 8 |

! Do the same transformation, but using all zeros for the
! replacement values of FIELD.

RES = UNPACK(VECTOR, MASK, FIELD = 0)
! The result is | 0 6 7 |
! | 5 0 0 |
! | 0 0 8 |

VERIFY(STRING, SET, BACK, KIND)
Purpose

Verify that a set of characters contains all the characters in a string by identifying
the position of the first character in a string of characters that does not appear in a
given set of characters.

Chapter 14. Intrinsic procedures 713

Class

Elemental function

Argument type and attributes

STRING
An INTENT(IN) CHARACTER

SET An INTENT(IN) CHARACTER with the same kind type parameter as STRING.

BACK (optional)
An INTENT(IN) LOGICAL

KIND (optional)
An INTENT(IN) INTEGER scalar. The actual argument corresponding to
KIND must be a constant expression.

Result type and attributes
v It is of type integer
v If KIND is present, the KIND type parameter is that specified by the value of

KIND; otherwise, the KIND type parameter is that of default integer type.

Result value
v Case (i): If BACK is absent or present with the value .FALSE. and if STRING

contains at least one character that is not in SET, the value of the result is the
position of the leftmost character of STRING that is not in SET.

v Case (ii): If BACK is present with the value .TRUE. and if STRING contains at
least one character that is not in SET, the value of the result is the position of the
rightmost character of STRING that is not in SET.

v Case (iii): The value of the result is zero if each character in STRING is in SET or
if STRING has zero length.

Examples
v Case (i): VERIFY ('ABBA', 'A') has the value 2.
v Case (ii): VERIFY ('ABBA', 'A', BACK = .TRUE.) has the value 3.
v Case (iii): VERIFY ('ABBA', 'AB') has the value 0.

714 XL Fortran: Language Reference for Big Endian Distributions

Chapter 15. Hardware-specific intrinsic procedures (IBM
extension)

This section provides an alphabetical reference to the hardware-specific intrinsic
functions. Many of these intrinsics provide access to hardware instructions that
may not strictly conform to all IEEE floating-point semantic rules depending on
their usage. You should exercise caution if strict IEEE floating-point conformance is
important to your application. Unless otherwise noted, an intrinsic procedure will
function on any supported hardware.

Cryptography procedures

Advanced Encryption Standard procedures

VCIPHER(STATE_ARRAY, ROUND_KEY)
Purpose

Performs one round of the AES cipher operation, as defined in Federal Information
Processing Standards Publication 197 (FIPS-197), on intermediate state
STATE_ARRAY using a given ROUND_KEY.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

STATE_ARRAY
An INTENT(IN) UNSIGNED(1) vector.

ROUND_KEY
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

Returns the resulting intermediate state.

VCIPHERLAST(STATE_ARRAY, ROUND_KEY)
Purpose

Performs the final round of the AES cipher operation, as defined in Federal
Information Processing Standards Publication 197 (FIPS-197), on intermediate state
STATE_ARRAY using a given ROUND_KEY.

This function requires the POWER8 architecture.

© Copyright IBM Corp. 1996, 2014 715

Class

Elemental function

Argument type and attributes

STATE_ARRAY
An INTENT(IN) UNSIGNED(1) vector.

ROUND_KEY
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

Returns the resulting final state.

VNCIPHER(STATE_ARRAY, ROUND_KEY)
Purpose

Performs one round of the AES inverse cipher operation, as defined in Federal
Information Processing Standards Publication 197 (FIPS-197), on intermediate state
STATE_ARRAY using a given ROUND_KEY.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

STATE_ARRAY
An INTENT(IN) UNSIGNED(1) vector.

ROUND_KEY
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

Returns the resulting intermediate state.

VNCIPHERLAST (STATE_ARRAY, ROUND_KEY)
Purpose

Performs the final round of the AES inverse cipher operation, as defined in Federal
Information Processing Standards Publication 197 (FIPS-197), on intermediate state
STATE_ARRAY using a given ROUND_KEY.

This function requires the POWER8 architecture.

716 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

STATE_ARRAY
An INTENT(IN) UNSIGNED(1) vector.

ROUND_KEY
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

Returns the resulting final state.

VSBOX(STATE_ARRAY)
Purpose

Performs the SubBytes operation, as defined in Federal Information Processing
Standards Publication 197 (FIPS-197), on a given STATE_ARRAY.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

STATE_ARRAY
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

Returns the result of the operation.

Secure Hash Algorithm procedures

VSHASIGMAD(X, TYPE, MASK)
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

This function requires the POWER8 architecture.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 717

Class

Elemental function

Argument type and attributes

X An INTENT(IN) UNSIGNED(8) vector.

TYPE An INTENT(IN) integer. The corresponding actual argument must be a
constant expression with a value of 0 or 1. The TYPE selects the function
type, which can be either lowercase sigma or uppercase sigma.

MASK
An INTENT(IN) integer. The corresponding actual argument must be a
constant expression with a value in the range 0 to 15 inclusive. The MASK
selects the function subtype, which can be either sigma-0 or sigma-1.

Result type and attributes

An UNSIGNED(8) vector.

Result value

For each element i (i=0,1) of X, element i of the returned value is the following
result SHA-512 function:
v The result SHA-512 function is sigma0(X(i)), if TYPE is 0 and bit 2*i of MASK

is 0.
v The result SHA-512 function is sigma1(X(i)), if TYPE is 0 and bit 2*i of MASK

is 1.
v The result SHA-512 function is Sigma0(X(i)), if TYPE is nonzero and bit 2*i of

MASK is 0.
v The result SHA-512 function is Sigma1(X(i)), if TYPE is nonzero and bit 2*i of

MASK is 1.

VSHASIGMAW(X, TYPE, MASK)
Purpose

Provides support for Federal Information Processing Standards Publication
FIPS-180-3, which is a specification for Secure Hash Standard.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) UNSIGNED(4) vector.

TYPE An INTENT(IN) integer. The corresponding actual argument must be a
constant expression with a value of 0 or 1. The TYPE selects the function
type, which can be either lowercase sigma or uppercase sigma.

MASK
An INTENT(IN) integer. The corresponding actual argument must be a
constant expression with a value in the range 0 to 15, inclusive. The MASK
selects the function subtype, which can be either sigma-0 or sigma-1.

718 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

An UNSIGNED(4) vector.

Result value

For each element i (i=0,1,2,3) of X, element i of the returned value is the following
result SHA-256 function:
v The result SHA-256 function is sigma0(x(i)), if TYPE is 0 and bit i of MASK is

0.
v The result SHA-256 function is sigma1(x(i)), if TYPE is 0 and bit i of MASK is

1.
v The result SHA-256 function is Sigma0(x(i)), if TYPE is nonzero and bit i of

MASK is 0.
v The result SHA-256 function is Sigma1(x(i)), if TYPE is nonzero and bit i of

MASK is 1.

Miscellaneous procedures

VPERMXOR(A, B, MASK)
Purpose

Applies a permute and exclusive-OR operation on two byte vectors.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) UNSIGNED(1) vector.

B An INTENT(IN) UNSIGNED(1) vector.

MASK
An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

For each i (0 <= i < 16), let indexA be bits 0 - 3 and indexB be bits 4 - 7 of byte
element i of MASK.

Byte element i of the result is set to the exclusive-OR of byte elements indexA of A
and indexB of B.

VPMSUMB(A, B)
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 719

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) UNSIGNED(1) vector.

B An INTENT(IN) UNSIGNED(1) vector.

Result type and attributes

An UNSIGNED(1) vector.

Result value

For each i (0 <= i < 16), let prod(i) be the result of polynomial multiplication of
byte elements i of A and B.

For each i (0 <= i < 8), each halfword element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 15 are set to prod(2*i) (xor) prod(2*i+1).

VPMSUMD(A, B)
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) UNSIGNED(8) vector.

B An INTENT(IN) UNSIGNED(8) vector.

Result type and attributes

An UNSIGNED(8) vector.

Result value

For each i (0 <= i < 2), let prod(i) be the result of polynomial multiplication of
doubleword elements i of A and B.

Bit 0 of the result is set to 0.

Bits 1 - 127 of the result are set to prod(0) (xor) prod(1).

720 XL Fortran: Language Reference for Big Endian Distributions

VPMSUMH(A, B)
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) UNSIGNED(2) vector.

B An INTENT(IN) UNSIGNED(2) vector.

Result type and attributes

An UNSIGNED(2) vector.

Result value

For each i (0 <= i < 8), let prod(i) be the result of polynomial multiplication of
halfword elements i of A and B.

For each i (0 <= i < 4), each word element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 31 are set to prod(2*i) (xor) prod(2*i+1).

VPMSUMW(A, B)
Purpose

Performs the exclusive-OR operation on each even-odd pair of the
polynomial-multiplication result of corresponding elements.

This function requires the POWER8 architecture.

Class

Elemental function

Argument type and attributes

A An INTENT(IN) UNSIGNED(4) vector.

B An INTENT(IN) UNSIGNED(4) vector.

Result type and attributes

An UNSIGNED(4) vector.

Result value

For each i (0 <= i < 4), let prod(i) be the result of polynomial multiplication of
word elements i of A and B.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 721

For each i (0 <= i < 2), each doubleword element i of the result is set as follows:
v Bit 0 is set to 0.
v Bits 1 - 63 are set to prod(2*i) (xor) prod(2*i+1).

BPERMD(MASK, SOURCE)
Purpose

Bit Permute Doubleword

Returns the result of a bit permutation operation.

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
compilation mode.

Class

Function

Argument type and attributes

MASK
An INTENT(IN) INTEGER(8)

SOURCE
An INTENT(IN) INTEGER(8)

Result type and attributes

The result is an INTEGER(8).

Result value

Eight bits are returned, each corresponding to a bit within SOURCE, and were
selected by a byte of MASK. If byte i of MASK is less than 64, the permuted bit i is
set to the bit of source specified by byte i of MASK; otherwise the permuted bit i is
set to 0. The permuted bits are placed in the least-significant byte of the result
value and the remaining bits are filled with 0s.

Examples

If byte 2 of MASK has a value of 53, which is less than 64, the 53rd bit within
SOURCE is copied into the second bit of RES. However; if byte 4 of MASK has a
value of 68, which is greater than 64, 0 is copied into the fourth bit of RES.

INTEGER(8) :: MASK, SOURCE, RES
RES = BPERMD(MASK, SOURCE)
END

CMPB(X,Y)
Purpose

Compare Bytes

Compares each of the eight bytes of X with the corresponding byte of Y.

722 XL Fortran: Language Reference for Big Endian Distributions

Valid only when -qarch is set to pwr6, pwr6e, or pwr7.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER(8)

Y An INTENT(IN) INTEGER(8)

Result type and attributes

The result is an INTEGER(8).

Result value

If byte i of X and byte i of Y are equal, 0xFF is placed in the corresponding byte of
the result; otherwise, 0x00 is placed in the corresponding byte of the result.

Examples

.
INTEGER(8) :: X, Y, RES
X = 11259375 ! X = 0xABCDEF
Y = 11268045 ! Y = 0xABEFCD
RES = CMPB (X, Y) ! RES = 0xFF0000
END

DIVDE(X,Y)
Purpose

Divide Doubleword Extended

Returns the result of a doubleword extended division.

Valid only when -qarch is set to target POWER7 processors or higher in 64-bit
compilation mode.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER(8)

Y An INTENT(IN) INTEGER(8)

Result type and attributes

The result is an INTEGER(8).

Result value

The result has a value equal to X/Y.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 723

Note: If the result of the division is larger than 32 bits or if the divisor is 0, the
return value of the function is undefined.

DIVWE(X,Y)
Purpose

Divide Word Extended

The result of a word extended division.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) INTEGER(4)

Y An INTENT(IN) INTEGER(4)

Result type and attributes

The result is an INTEGER(4).

Result value

The result has a value equal to X/Y.

Note: If the divisor is 0, the return value of the function is undefined.

FCFI(I)
Purpose

Floating-point Conversion from Integer

Converts an integer value in a floating-point variable into a floating-point value.

This intrinsic is valid on any 64-bit PowerPC architecture.

Note: FCFI is another name for FCFID. For details, see “FCFID(I)” on page 725.

Class

Function

Argument type and attributes

I An INTENT(IN) REAL(8)

Result type and attributes

The result is a REAL(8).

724 XL Fortran: Language Reference for Big Endian Distributions

Result value

The double-precision floating-point value of I.

Examples
...
REAL*8 :: R8, RES
INTEGER*8 :: I8
EQUIVALENCE(R8, I8)

I8 = 89
RES = FCFI(R8) ! RES = 89.0
...

FCFID(I)
Purpose

Floating-point Conversion from signed Integer Double word

Converts a 64-bit signed integer stored in a double into a double-precision
floating-point value.

Note: FCFID(I) is another name for “FCFI(I)” on page 724. This intrinsic is valid
on any 64-bit PowerPC architecture.

Class

Function

Argument type and attributes

I An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as I.

FCFUD(I)
Purpose

Floating-point Conversion from Unsigned integer Double word

Converts a 64-bit unsigned integer stored in a double into a double-precision
floating-point value.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Function

Argument type and attributes

I An INTENT(IN) REAL(8)

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 725

Result type and attributes

The result is of the same type as I.

FCTID(X)
Purpose

Floating-point Convert to Integer

Converts a floating–point operand into a 64-bit, signed fixed–point integer using
the current rounding mode.

This intrinsic is valid on any 64-bit PowerPC architecture.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a fixed-point integer, inside a floating-point result.

Examples
use, intrinsic :: ieee_arithmetic
real(8) :: x, y
integer(8) :: i
equivalence (y, i)
x = 1234.5678D0
if (ieee_support_datatype(x)) then

call ieee_set_rounding_mode(ieee_nearest)
y = fctid(x)
print *, i
call ieee_set_rounding_mode(ieee_up)
y = fctid(x)
print *, i
call ieee_set_rounding_mode(ieee_down)
y = fctid(x)
print *, i
call ieee_set_rounding_mode(ieee_to_zero)
y = fctid(x)
print *, i

endif
end

The following is sample output generated by the above program:
1235
1235
1234
1234

726 XL Fortran: Language Reference for Big Endian Distributions

FCTIDZ(X)
Purpose

Floating-point Convert to Integer Round to Zero

Converts a floating-point operand into a 64-bit signed fixed–point integer and
rounds to zero.

This intrinsic is valid on any 64-bit PowerPC architecture.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a fixed-point integer, inside a floating-point result, rounded to zero.

FCTIW(X)
Purpose

Floating-point Convert to Integer

Converts a floating–point operand into a 32–bit, signed fixed–point integer using
the current rounding mode.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a fixed-point integer, inside a floating-point result.

FCTIWZ(X)
Purpose

Floating-point Convert to Integer Round to Zero

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 727

Converts a floating-point operand into a 32–bit signed fixed–point integer and
rounds to zero.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a fixed-point integer, inside a floating-point result, rounded to zero.

FCTUDZ(X)
Purpose

Floating-point Conversion to Unsigned integer Double word with rounding
towards Zero

Converts a floating-point value to unsigned integer double word and rounds to
zero.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is an unsigned fixed-point integer, inside a floating-point result, rounded
to zero.

FCTUWZ(X)
Purpose

Floating-point conversion to unsigned integer word with rounding to zero.

Converts a floating-point number into a 32-bit unsigned integer and rounds to
zero. This function is intended for use with the STFI intrinsic subroutine.

728 XL Fortran: Language Reference for Big Endian Distributions

The function requires an architecture level of POWER7 or higher.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of type REAL(8).

Result value

The result is a REAL(8) value. The low-order 32 bits of the result contain the result
from converting X to a non-negative INTEGER(4) that is rounded to zero. The
high-order 32 bits of the result contain an undefined value.

Example

The following example demonstrates the usage of this function.
IMPLICIT NONE
REAL(8) x, result
INTEGER(4) y
x = -1.5D0
result = FCTUWZ(x)
CALL SFTI(y, result)
PRINT *, y ! prints 0

x= 1.5D0
result = FCTUWZ(x)
CALL SFTI(y, result)
PRINT *, y ! prints 1
END

FMADD(A, X, Y)
Purpose

Floating-point Multiply and Add

Returns the result of a floating-point multiply-add.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8).

X An INTENT(IN) argument of the same type and kind type parameter as A.

Y An INTENT(IN) argument of the same type and kind type parameter as A.

Result type and attributes

The result is of the same type as A, X, and Y.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 729

Result value

The result has a value equal to A*X + Y.

Examples
REAL(4) :: A, B, C, RES1
REAL(8) :: D, E, F, RES2

RES1 = FMADD(A, B, C)
RES2 = FMADD(D, E, F)
END

FMSUB(A, X, Y)
Purpose

Floating-point Multiply and Subtract

Returns the result of a floating-point multiply–subtract.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8).

X An INTENT(IN) argument of the same type and kind type parameter as A.

Y An INTENT(IN) argument of the same type and kind type parameter as A.

Result type and attributes

The result is of the same type as A, X, and Y.

Result value

The result has a value equal to A*X – Y.

FNABS(X)
Purpose

Returns the negative floating-point value –|X| .

Class

Function

Argument type and attributes

X An INTENT(IN) REAL

Result type and attributes

The result is of the same type as X.

730 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is a negative floating-point value of X, –|X|.

Examples

The absolute contents of variables A and D are negated.
REAL(4) :: A, RES1
REAL(8) :: D, RES2

RES1 = FNABS(A)
RES2 = FNABS(D)

FNMADD(A, X, Y)
Purpose

Floating-point Negative Multiply and Add

Returns the result of a floating-point negative multiply-add.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8).

X An INTENT(IN) argument of the same type and kind type parameter as A.

Y An INTENT(IN) argument of the same type and kind type parameter as A.

Result type and attributes

The result is of the same type as X.

Result value

The result has a value equal to –(A*X + Y).

FNMSUB(A, X, Y)
Purpose

Floating-point Negative Multiply and Subtract

Returns the result of a floating-point negative multiply–subtract.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(8)

X An INTENT(IN) argument of the same type and kind type parameter as A.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 731

Y An INTENT(IN) argument of the same type and kind type parameter as A.

Result type and attributes

The result is of the same type as A, X, and Y.

Result value

The result has a value equal to –(A*X – Y).

Examples

The result of FNMSUB is of type REAL(4). It is converted to REAL(8) and then
assigned to RES.

REAL(4) :: A, B, C
REAL(8) :: RES

RES = FNMSUB(A, B, C)
END

FRE(X)
Purpose

Floating-point Reciprocal Estimate

Returns an estimate of a floating-point reciprocal operation.

Valid on a POWER5 processor or higher.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a double precision estimate of 1/X.

FRES(X)
Purpose

Floating-point Reciprocal Estimate Single

Returns an estimate of a floating-point reciprocal operation

Valid on any PowerPC with extended graphics opcodes. See Tuning for your
target architecture and the Instruction groups for a supported architecture table
in the XL Fortran Optimization and Programming Guide.

732 XL Fortran: Language Reference for Big Endian Distributions

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(4)

Result type and attributes

The result is of the same type as X.

Result value

The result is a single precision estimate of 1/X.

FRIC(A)
Purpose

Floating-point Rounding to Integer with Current rounding mode

Rounds a double-precision floating-point value to integer with the current
rounding mode.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as A.

FRIM(A)
Purpose

Floating-point Round to Integer Minus

Valid on a POWER5+ processor or higher.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8)

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 733

Result type and attributes

The result is of the same type as A.

Result value

The result has a value equal to the greatest integer less than or equal to A.

FRIN(A)
Purpose

Floating-point Round to Integer Nearest

Valid on a POWER5+ processor or higher.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8)

Result type and attributes

The result is of the same type as A.

Result value

If A > 0, FRIN(A) has the value FRIM(A + 0.5).

If A <= 0, FRIN(A) has the value FRIM(A - 0.5).

FRIP(A)
Purpose

Floating-point Round to Integer Plus

Valid on a POWER5+ processor or higher.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8)

Result type and attributes

The result is of the same type as A.

Result value

The result has a value equal to the least integer greater than or equal to A.

734 XL Fortran: Language Reference for Big Endian Distributions

FRIZ(A)
Purpose

Floating-point Round to Integer Zero

Valid on a POWER5+ processor or higher.

Class

Function

Argument type and attributes

A An INTENT(IN) REAL(4) or REAL(8)

Result type and attributes

The result is of the same type as A.

Result value

If A > 0, FRIZ(A) has the value FRIM(A).

If A <= 0, FRIZ(A) has the value FRIP(A).

FRSQRTE(X)
Purpose

Floating-point Square Root Reciprocal Estimate

Returns the result of a reciprocal square root operation

Valid on any PowerPC with extended graphics opcodes. See Tuning for your
target architecture and the Instruction groups for a supported architecture table
in the XL Fortran Optimization and Programming Guide.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(8)

Result type and attributes

The result is of the same type as X.

Result value

The result is a double precision estimate of the reciprocal of the square root of X.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 735

FRSQRTES(X)
Purpose

Floating-point Square Root Reciprocal Estimate Single

Returns the result of a reciprocal square root operation.

Valid on a POWER5 processor or higher.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(4)

Result type and attributes

The result is of the same type as X.

Result value

The result is a single precision estimate of the reciprocal of the square root of X.

FSEL(X,Y,Z)
Purpose

Floating-point Selection

Returns the result of a floating-point selection operation. This result is determined
by comparing the value of X with zero.

Valid on any PowerPC with extended graphics opcodes. See Tuning for your
target architecture and the Instruction groups for a supported architecture table
in the XL Fortran Optimization and Programming Guide.

Class

Function

Argument type and attributes

X An INTENT(IN) REAL(4) or REAL(8)

Y An INTENT(IN) argument of the same type and kind type parameter as X.

Z An INTENT(IN) argument of the same type and kind type parameter as X.

Result type and attributes

The result is of the same type as X, Y and Z.

Result value
v If the value of X is greater than or equal to zero, then the value of Y is returned.

736 XL Fortran: Language Reference for Big Endian Distributions

v If the value of X is smaller than zero or is a NaN, then the value of Z is
returned.

A zero value is considered unsigned. That is, both +0 and -0 are equal to zero.

MTFSF(MASK, R)
Purpose

Move to floating-point status and control register (FPSCR) fields

The contents of R are placed into the FPSCR under control of the field mask
specified in MASK.

Class

Subroutine

Argument type and attributes

MASK
An INTENT(IN) INTEGER(4). The actual argument corresponding to MASK
must be a constant expression with a value in the range 0 - 7.

R An INTENT(IN) REAL(8).

MTFSFI(BF, I)
Purpose

Move to floating-point status and control register (FPSCR) Fields Immediate

The value of I is placed into FPSCR field specified in BF.

Class

Subroutine

Argument type and attributes

BF An INTENT(IN) INTEGER(4). The actual argument corresponding to BF must
be a constant expression with a value in the range 0 - 7.

I An INTENT(IN) INTEGER(4). The actual argument corresponding to I must
be a constant expression with a value in the range 0 - 15.

MULHY(RA, RB)
Purpose

Returns the high-order 32 or 64-bits of the 64-bit or 128-bit products of the
operands RA and RB.

32-bit integers may be used in any compilation mode.

64-bit integers may only be used in 64-bit mode.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 737

Class

Function

Argument type and attributes

RA An INTENT(IN) INTEGER(4) or INTEGER(8).

RB An INTENT(IN) argument of the same type and kind type parameter as RA.

Result type and attributes

The result is of the same type as RA, RB.

Result value

The high-order 32 or 64-bit product of the operands RA and RB

POPCNTB(I)
Purpose

Population count.

Counts the number of set bits of each byte in I.

Class

Elemental function.

Argument type and attributes

I An INTENT(IN) INTEGER(4) in 32-bit mode.

An INTENT(IN) INTEGER(4) or INTEGER(8) in 64–bit mode.

Result type and attributes

The result is an INTEGER(4) in 32–bit mode.

The result is an INTEGER(8) in 64–bit mode.

Result value

The number of bits set to on in that byte, in the position of the byte.

Examples
INTEGER I
I = x’010300ff’
WRITE(*, ’(z8.8)’) POPCNTB(I)
END

Expected output:
01020008

Related information

Data representation models

738 XL Fortran: Language Reference for Big Endian Distributions

ROTATELI(RS, IS, SHIFT, MASK)
Purpose

Rotate Left Immediate then MASK Insert

Rotates the value of RS left by the number of bits specified in SHIFT. The function
then inserts RS into IS under bit mask, MASK.

Class

Function

Argument type and attributes

RS An INTENT(IN) INTEGER.

IS An INTENT(IN) INTEGER.

SHIFT
An INTENT(IN) INTEGER. For 4-byte RS values, the SHIFT value is
truncated to the last five bits. For 8-byte RS values, the SHIFT value is
truncated to the last six bits.

MASK
An INTENT(IN) INTEGER.

Result type and attributes

The result is of the same type as RS.

Result value

Rotates RS left the number of bits specified by SHIFT, and inserts the result into IS
under the bit mask, MASK.

ROTATELM(RS, SHIFT, MASK)
Purpose

Rotate Left AND with Mask

Rotates the value of RS left by the number of bits specified in SHIFT. The rotated
data is ANDed with the MASK and then returned as a result.

Class

Function

Argument type and attributes

RS An INTENT(IN) INTEGER.

SHIFT
An INTENT(IN) INTEGER. For 4-byte RS values, the SHIFT value is
truncated to the last five bits. For 8-byte RS values, the SHIFT value is
truncated to the last six bits.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 739

MASK
An INTENT(IN) INTEGER.

Result type and attributes

The result is of the same type as RS.

Result value

The rotated data ANDed with MASK.

SETFSB0(BT)
Purpose

Move 0 to floating-point status and control register (FPSCR) bit.

Bit BT of FPSCR is set to 0.

Class

Subroutine

Argument type and attributes

BT An INTENT(IN) INTEGER(4). The actual argument corresponding to BT must
be a constant expression with a value in the range 0 - 31.

SETFSB1(BT)
Purpose

Move 1 to FPSCR bit.

Bit BT of FPSCR is set to 1.

Class

Subroutine

Argument type and attributes

BT An INTENT(IN) INTEGER(4). The actual argument corresponding to BT must
be a constant expression with a value in the range 0 - 31.

SFTI(M, Y)
Purpose

Store Floating–point to Integer

The contents of the low order 32–bits of Y are stored without conversion into M.

Class

Subroutine

740 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

M An INTENT(INOUT) INTEGER(4).

Y An INTENT(IN) REAL(8).

Examples
...
integer*4 :: m
real*8 :: x

x = z"00000000abcd0001"
call sfti(m, x) ! m = z"abcd0001"
..

SWDIV(X,Y)
Purpose

Software floating-point division.

This function returns the result of a floating-point division and can increase
performance over the normal divide operator where your application performs
division repeatedly within a loop.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL(4) or REAL(8).

Y An INTENT(IN) argument of the same type and kind type parameter as X.

Result type and attributes

The result is of the same type as X and Y.

Result value

The result has a value equal to X/Y.

If programs are compiled with the -qarch=pwr6 option (or earlier) and run on a
POWER6 processor (or earlier):
v For REAL(4) arguments, the result is bitwise identical to IEEE division.
v For REAL(8) arguments with -qstrict=ieeefp or -qstrict=exceptions in effect, the

result is bitwise identical to IEEE division.
v For REAL(8) arguments with -qstrict=noieeefp or -qstrict=noexceptions in

effect, the result can differ slightly from the IEEE result.

If programs are compiled with the -qarch=pwr7 option and run on a POWER7 or
POWER7+™ processor:
v With -qstrict=ieeefp or -qstrict=exceptions in effect, the result is bitwise

identical to IEEE division.
v With -qstrict=noieeefp or -qstrict=noexceptions in effect, the result can differ

slightly from the IEEE result.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 741

Examples

The following example uses software division algorithms: if compiled with the
-qarch=pwr5 option and run on a POWER5 processor.
INTEGER, PARAMETER :: N=500
REAL(4), DIMENSION(N) :: A, B, DIVRES1
REAL(8), DIMENSION(N) :: E, F, DIVRES2

DO I=1, N
DIVRES1(I)= SWDIV(A(I), B(I))
DIVRES2(I)= SWDIV(E(I), F(I))

END DO
END

SWDIV_NOCHK(X,Y)
Purpose

Software floating-point division with checking for invalid arguments.

This function returns the result of a floating-point division and can increase
performance over the normal divide operator or the SWDIV intrinsic function
where your application performs division repeatedly within a loop, and arguments
are within the permitted range.

Class

Elemental function

Argument type and attributes

X An INTENT(IN) REAL(4) or REAL(8).

Y An INTENT(IN) argument of the same type and kind type parameter as X.

For correct operation, REAL(4) arguments must satisfy the following
conditions:
v 2**(-125) <= |Y| <= 2**124
v If X is not zero, then:

2**(-102) <= |X| < Inf
2**(-124) <= |X/Y| <= 2**126

For correct operation, REAL(8) arguments must satisfy the following
conditions:
v 2**(-1021) <= |Y| <= 2**1020
v If X is not zero, then:

2**(-969) <= |X| < Inf
2**(-1020) <= |X/Y| <= 2**1022

Result type and attributes

The result is of the same type as X and Y.

Result value

The result has a value equal to X/Y.

742 XL Fortran: Language Reference for Big Endian Distributions

If programs are compiled with the -qarch=pwr6 option (or earlier) and run on a
POWER6 processor (or earlier):
v For REAL(4) arguments, the result is bitwise identical to IEEE division.
v For REAL(8) arguments with -qstrict=ieeefp or -qstrict=exceptions in effect, the

result is bitwise identical to IEEE division.
v For REAL(8) arguments with -qstrict=noieeefp or -qstrict=noexceptions in

effect, the result can differ slightly from the IEEE result.

If programs are compiled with the -qarch=pwr7 option and run on a POWER7 or
POWER7+ processor:
v With -qstrict=ieeefp or -qstrict=exceptions in effect, the result is bitwise

identical to IEEE division.
v With -qstrict=noieeefp or -qstrict=noexceptions in effect, the result can differ

slightly from the IEEE result.

TRAP(A, B, TO)
Purpose

Operand A is compared with operand B. This comparison results in five conditions
which are ANDed with TO. If the result is not 0, the system trap handler is
invoked.

Both operands A and B must be either of type INTEGER(4) or INTEGER(8).

8–byte integers are valid only in 64-bit mode.

Class

Subroutine

Argument type and attributes

A An INTENT(IN) INTEGER.

B An INTENT(IN) INTEGER.

TO An INTENT(IN) INTEGER(4). The actual argument corresponding to TO
must be a constant expression with a value in the range 0 - 31.

Chapter 15. Hardware-specific intrinsic procedures (IBM extension) 743

744 XL Fortran: Language Reference for Big Endian Distributions

Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module
(IBM extension)

The TRANSACTIONAL_MEMORY intrinsic module is used for parallel
programming. This module provides functions that allow you to designate a block
of instructions or statements to be treated atomically. Such an atomic block is
called a transaction. When a thread executes a transaction, all of the memory
operations within the transaction occur simultaneously from the perspective of
other threads.

For some kinds of parallel programs, a transaction implementation can be more
efficient than other implementation methods, such as locks. You can use these
intrinsic procedures to mark the beginning and end of transactions, and to
diagnose the reasons for failure.

The transactional state is entered following a successful call to TM_BEGIN or
TM_SIMPLE_BEGIN, and ended by TM_END, TM_ABORT, TM_NAMED_ABORT, or by
transaction failure.

Transaction failure occurs when any of the following conditions is met:
v Memory that is accessed in the transactional state is accessed by another thread

before the transaction completes.
v The architecture-defined footprint for memory accesses within a transaction is

exceeded.
v The architecture-defined nesting limit for nested transactions is exceeded.

Transactions can be nested. You can use TM_BEGIN or TM_SIMPLE_BEGIN in the
transactional state. Within an outermost transaction initiated with TM_BEGIN, nested
transactions must be initiated with TM_SIMPLE_BEGIN, or by TM_BEGIN using the
same buffer of the outermost containing transaction.

A nested transaction is subsumed into the containing transaction. Therefore, a
failure of the nested transaction is treated as a failure of all containing transactions,
and the nested transaction completes only when all contain transactions complete.

Note: This module must be used only when -qarch is set to target POWER8
processors.

Type

The TRANSACTIONAL_MEMORY module provides the following derived type:

TM_BUFF_TYPE
An opaque derived type that is used to store transaction status.

Named constant

The TRANSACTIONAL_MEMORY module provides the following named
constant:

TM_SUCCESS
An integer constant that is returned by the transaction begin and end
functions. If TM_SUCCESS is returned by TM_BEGIN or TM_SIMPLE_BEGIN, it

© Copyright IBM Corp. 1996, 2014 745

indicates that the transaction was started successfully. If TM_SUCCESS is
returned by TM_END, it indicates that the thread was in the transactional
state when TM_END was called. TM_SUCCESS has kind 4 in 32-bit mode and
kind 8 in 64-bit mode.

Procedures

The TRANSACTIONAL_MEMORY module provides the following procedures:
v “Transaction begin and end functions”
v “Transaction abort functions” on page 747
v “Transaction inquiry functions” on page 748

Transaction begin and end functions

TM_SIMPLE_BEGIN()
Purpose

Marks the beginning of a transaction.

This function requires the POWER8 architecture.

Class

Function

Result type and attributes
v INTEGER(4) in 32-bit mode
v INTEGER(8) in 64-bit mode

Result value

Returns TM_SUCCESS from the TRANSACTIONAL_MEMORY module if the
transaction is started successfully.

Note: The transaction status of transactions started using TM_SIMPLE_BEGIN cannot
be queried using the transaction inquiry functions.

TM_BEGIN(TM_BUFF)
Purpose

Marks the beginning of a transaction.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(OUT) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

746 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes
v INTEGER(4) in 32-bit mode
v INTEGER(8) in 64-bit mode

Result value

Returns TM_SUCCESS from the TRANSACTIONAL_MEMORY module if the
transaction is started successfully.

The transaction status is stored in the TM_BUFF argument. This status can be
queried by using the transaction inquiry functions.

TM_END()
Purpose

Marks the end of a transaction.

This function requires the POWER8 architecture.

Class

Function

Result type and attributes
v INTEGER(4) in 32-bit mode
v INTEGER(8) in 64-bit mode

Result value

Returns TM_SUCCESS from the TRANSACTIONAL_MEMORY module if the thread
was in the transactional state when TM_END started.

Transaction abort functions

TM_ABORT()
Purpose

Aborts a transaction with failure code 0.

This function requires the POWER8 architecture.

Class

Subroutine

TM_NAMED_ABORT(CODE)
Purpose

Aborts a transaction with failure code code.

This function requires the POWER8 architecture.

Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module (IBM extension) 747

Class

Subroutine

Argument type and attributes

code INTENT(IN) integer. The value of the corresponding actual argument must
be between 0 and 255, inclusive.

Transaction inquiry functions

TM_IS_USER_ABORT(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of a user request.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes

Default logical

Result value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted by the user; otherwise, .FALSE. is returned.

TM_IS_NAMED_USER_ABORT(TM_BUFF, CODE)
Purpose

Queries whether the transaction was aborted because of a user request and gets
the failure code that is provided by the user.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

code INTENT(OUT) integer.

748 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

Default logical

Result value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted by the user; otherwise, .FALSE. is returned. code is assigned the failure
code provided by the user when the transaction was aborted, or 0 if the user did
not provide a failure code.

TM_IS_ILLEGAL(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of the attempt to do
something illegal.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes

Default logical

Result value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted because of the attempt to do something illegal, such as an instruction
not permitted in transactional mode. Otherwise, .FALSE. is returned.

TM_IS_FOOTPRINT_EXCEEDED(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of exceeding the maximum
number of cache lines.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module (IBM extension) 749

Result type and attributes

Default logical

Result value

Returns .TRUE. if the transaction was aborted because of exceeding the maximum
number of cache lines; otherwise, .FALSE. is returned.

TM_NESTING_DEPTH(TM_BUFF)
Purpose

Gets the current nesting depth, or if not in transactional mode, the depth at which
the most recent transaction was aborted.

This function requires the POWER8 architecture.

Class

Function

Result type and attributes

Default integer

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result value

Returns the current nesting depth of the transaction whose status is stored in the
TM_BUFF argument, or if not in transactional mode, the depth at which the
transaction was aborted. If the transaction was completed successfully, 0 is
returned.

TM_IS_NESTED_TOO_DEEP(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of trying to exceed the
maximum nesting depth.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

750 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

Default logical

Result value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted because of trying to exceed the maximum nesting depth; otherwise,
.FALSE. is returned.

TM_IS_CONFLICT(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of a conflict.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes

Default logical

Return value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted because of a conflict; otherwise, .FALSE. is returned.

TM_IS_FAILURE_PERSISTENT(TM_BUFF)
Purpose

Queries whether the transaction was aborted because of a persistent reason.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes

Default logical

Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module (IBM extension) 751

Result value

Returns .TRUE. if the transaction whose status is stored in the TM_BUFF argument
was aborted because of a persistent reason; otherwise, .FALSE. is returned.

TM_FAILURE_ADDRESS()
Purpose

Gets the code address at which the most recent transaction was aborted.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes
v INTEGER(4) in 32-bit mode.
v INTEGER(8) in 64-bit mode.

Result value

Returns the address at which the transaction whose status is stored in the
TM_BUFF argument was aborted.

TM_FAILURE_CODE(TM_BUFF)
Purpose

Gets the raw failure code for the transaction.

This function requires the POWER8 architecture.

Class

Function

Argument type and attributes

TM_BUFF
INTENT(IN) argument of type TM_BUFF_TYPE from the
TRANSACTIONAL_MEMORY module.

Result type and attributes

INTEGER(8)

752 XL Fortran: Language Reference for Big Endian Distributions

Result value

Returns the contents of the TEXASR register stored in the TM_BUFF argument.
You can consult the hardware specification for the information about how to
interpret the return value.

Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module (IBM extension) 753

754 XL Fortran: Language Reference for Big Endian Distributions

Chapter 17. Vector intrinsic procedures (IBM extension)

Individual elements of vectors can be accessed by using storage association, the
TRANSFER intrinsic, or the Vector Multimedia eXtension (VMX) and the Vector
Scalar eXtension (VSX) intrinsic functions. This section provides an alphabetic
reference to the VMX and the VSX intrinsic functions. These intrinsics allow you to
manipulate vectors.

Note:

v You must specify appropriate compiler options for your architecture when you
use the intrinsic functions.

v Intrinsic functions that use or result in the INTEGER(8), UNSIGNED(8), or
REAL(8) vector types require an architecture that supports the VSX instruction
set extensions, such as POWER7. When you use these types, you must specify
an appropriate -qarch suboption, such as-qarch=pwr7.

VEC_ABS(ARG1)

Purpose

Returns a vector containing the absolute values of the contents of the given vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(1), INTEGER(2), INTEGER(4), UNSIGNED(1), UNSIGNED(2),
UNSIGNED(4), REAL(4), or REAL(8) vector

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the absolute value of the corresponding
element of ARG1. For integer vectors, the arithmetic is modular.

VEC_ABSS(ARG1)
Purpose

Returns a vector containing the saturated absolute values of the contents of the
given vector.

Class

Elemental function

© Copyright IBM Corp. 1996, 2014 755

Argument type and attributes

ARG1
An INTENT(IN) integer vector whose elements are of kind 1, 2, or 4

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the saturated absolute value of the
corresponding element of ARG1.

VEC_ADD(ARG1, ARG2)

Purpose

Returns a vector containing the sums of each set of corresponding elements of the
given vectors.

Note: For INTEGER(8) vectors, this function emulates the operation.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the sum of the corresponding elements
of ARG1 and ARG2. For integer vectors and unsigned vectors, the arithmetic is
modular.

VEC_ADD_U128 (ARG1, ARG2)
Purpose

Adds unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

756 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a and b be the 128-bit integers that are storage-associated with ARG1 and
ARG2, respectively.

The result value is a + b.

VEC_ADDC_U128 (ARG1, ARG2)
Purpose

Gets the carry bit of the 128-bit addition of two quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a and b be the 128-bit integers that are storage-associated with ARG1 and
ARG2, respectively.

The result value is the carry out of a + b.

Chapter 17. Vector intrinsic procedures (IBM extension) 757

VEC_ADDE_U128 (ARG1, ARG2, ARG3)
Purpose

Adds unsigned quadword values with carry bit from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG3
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a, b, c be the 128-bit integers that are storage-associated with ARG1, ARG2, and
ARG3, respectively.

The result value is a + b + iand(c, 1).

VEC_ADDEC_U128 (ARG1, ARG2, ARG3)
Purpose

Gets the carry bit of the 128-bit addition of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

758 XL Fortran: Language Reference for Big Endian Distributions

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG3
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a, b, c be the 128-bit integers that are storage-associated with ARG1, ARG2, and
ARG3, respectively.

The result value is the carry out of a + b + iand(c, 1).

VEC_ADDC(ARG1, ARG2)
Purpose

Returns a vector containing the carry produced by adding each set of
corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) UNSIGNED(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the carry produced by adding the
corresponding elements of ARG1 and ARG2 (1 if there is a carry, 0 otherwise).

VEC_ADDS(ARG1, ARG2)
Purpose

Returns a vector containing the saturated sums of each set of corresponding
elements of the given vectors.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 759

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1, 2 or 4

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the saturated sum of the corresponding
elements of ARG1 and ARG2.

VEC_ALL_EQ(ARG1, ARG2)
Purpose

Tests whether all sets of corresponding elements of the given vectors are equal.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is equal to the corresponding element of
ARG2. Otherwise, the result is 0.

VEC_ALL_GE(ARG1, ARG2)
Purpose

Tests whether all elements of the first argument are greater than or equal to the
corresponding elements of the second argument.

Class

Elemental function

760 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if all elements of ARG1 are greater than or equal to the corresponding
elements of ARG2. Otherwise, the result is 0.

VEC_ALL_GT(ARG1, ARG2)
Purpose

Tests whether all elements of the first argument are greater than the corresponding
elements of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if all elements of ARG1 are greater than the corresponding elements
of ARG2. Otherwise, the result is 0.

VEC_ALL_IN(ARG1, ARG2)
Purpose

Tests whether each element of a given vector is within a given range.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 761

Argument type and attributes

ARG1
An INTENT(IN) REAL(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if all elements of ARG1 have values less than or equal to the value of
the corresponding element of ARG2, and greater than or equal to the negative of the
value of the corresponding element of ARG2. Otherwise, the result is 0.

VEC_ALL_LE(ARG1, ARG2)
Purpose

Tests whether all elements of the first argument are less than or equal to the
corresponding elements of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if all elements of ARG1 are less than or equal to the corresponding
elements of ARG2. Otherwise, the result is 0.

VEC_ALL_LT(ARG1, ARG2)
Purpose

Tests whether all elements of the first argument are less than the corresponding
elements of the second argument.

Class

Elemental function

762 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if all elements of ARG1 are less than the corresponding elements of
ARG2. Otherwise, the result is 0.

VEC_ALL_NAN(ARG1)
Purpose

Tests whether each element of the given vector is a NaN.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is a NaN. Otherwise, the result is 0.

VEC_ALL_NE(ARG1, ARG2)
Purpose

Tests whether all sets of corresponding elements of the given vectors are not equal.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Chapter 17. Vector intrinsic procedures (IBM extension) 763

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is not equal to the corresponding element of
ARG2. Otherwise, the result is 0.

VEC_ALL_NGE(ARG1, ARG2)
Purpose

Tests whether each element of the first argument is not greater than or equal to the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is not greater than or equal to the
corresponding element of ARG2. Otherwise, the result is 0.

VEC_ALL_NGT(ARG1, ARG2)
Purpose

Tests whether each element of the first argument is not greater than the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

764 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is not greater than the corresponding
element of ARG2. Otherwise, the result is 0.

VEC_ALL_NLE(ARG1, ARG2)
Purpose

Tests whether each element of the first argument is not less than or equal to the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is not less than or equal to the
corresponding element of ARG2. Otherwise, the result is 0.

VEC_ALL_NLT(ARG1, ARG2)
Purpose

Tests whether each element of the first argument is not less than the corresponding
element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Chapter 17. Vector intrinsic procedures (IBM extension) 765

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is not less than the corresponding element of
ARG2. Otherwise, the result is 0.

VEC_ALL_NUMERIC(ARG1)
Purpose

Tests whether each element of the given vector is numeric (not a NaN).

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if each element of ARG1 is numeric (not a NaN). Otherwise, the result
is 0.

VEC_AND(ARG1, ARG2)

Purpose

Performs a bitwise AND of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

766 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is the bitwise AND of ARG1 and ARG2.

VEC_ANDC(ARG1, ARG2)

Purpose

Performs a bitwise AND of the first argument and the bitwise complement of the
second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the bitwise AND of ARG1 with the bitwise complement of ARG2.

VEC_ANY_EQ(ARG1, ARG2)
Purpose

Tests whether any set of corresponding elements of the given vectors are equal.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is equal to the corresponding element of
ARG2. Otherwise, the result is 0.

Chapter 17. Vector intrinsic procedures (IBM extension) 767

VEC_ANY_GE(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is greater than or equal to the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is greater than or equal to the corresponding
element of ARG2. Otherwise, the result is 0.

VEC_ANY_GT(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is greater than the corresponding
element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is greater than the corresponding element of
ARG2. Otherwise, the result is 0.

768 XL Fortran: Language Reference for Big Endian Distributions

VEC_ANY_LE(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is less than or equal to the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is less than or equal to the corresponding
element of ARG2. Otherwise, the result is 0.

VEC_ANY_LT(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is less than the corresponding
element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is less than the corresponding element of
ARG2. Otherwise, the result is 0.

Chapter 17. Vector intrinsic procedures (IBM extension) 769

VEC_ANY_NAN(ARG1)
Purpose

Tests whether any element of the given vector is a NaN.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is a NaN. Otherwise, the result is 0.

VEC_ANY_NE(ARG1, ARG2)
Purpose

Tests whether any set of corresponding elements of the given vectors are not equal.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is not equal to the corresponding element of
ARG2. Otherwise, the result is 0.

VEC_ANY_NGE(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is not greater than or equal to the
corresponding element of the second argument.

770 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is not greater than or equal to the
corresponding element of ARG2. Otherwise, the result is 0.

VEC_ANY_NGT(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is not greater than the
corresponding element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is not greater than the corresponding element
of ARG2. Otherwise, the result is 0.

VEC_ANY_NLE(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is not less than or equal to the
corresponding element of the second argument.

Chapter 17. Vector intrinsic procedures (IBM extension) 771

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is not less than or equal to the corresponding
element of ARG2. Otherwise, the result is 0.

VEC_ANY_NLT(ARG1, ARG2)
Purpose

Tests whether any element of the first argument is not less than the corresponding
element of the second argument.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is not less than the corresponding element of
ARG2. Otherwise, the result is 0.

VEC_ANY_NUMERIC(ARG1)
Purpose

Tests whether any element of the given vector is numeric (not a NaN).

Class

Elemental function

772 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if any element of ARG1 is numeric (not a NaN). Otherwise, the result
is 0.

VEC_ANY_OUT(ARG1, ARG2)
Purpose

Tests whether the value of any element of a given vector is outside of a given
range.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4).

Result value

The result is 1 if the value of any element of ARG1 is greater than the value of the
corresponding element of ARG2 or less than the negative of the value of the
corresponding element of ARG2. Otherwise, the result is 0.

VEC_AVG(ARG1, ARG2)
Purpose

Returns a vector containing the average of each set of corresponding elements of
the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1, 2 or 4

Chapter 17. Vector intrinsic procedures (IBM extension) 773

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

The value of each element of the result is the average of the values of the
corresponding elements of ARG1 and ARG2.

VEC_BPERM (ARG1, ARG2)
Purpose

Gathers up to 16-bit values from a quadword in the specified order.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a, b be the 128-bit integers that are storage-associated with ARG1 and ARG2,
respectively.

For each i (0 <= i < 16), let index denote the byte value of the ith element of b.

If index is greater than or equal to 128, bit 48+i of the result is set to 0.

If index is smaller than 128, bit 48+i of the result is set to the value of the indexth
bit of input a.

774 XL Fortran: Language Reference for Big Endian Distributions

VEC_CEIL(ARG1)

Purpose

Returns a vector containing the smallest representable floating-point integral values
greater than or equal to the values of the corresponding elements of the given
vector.

Note: VEC_CEIL is another name for VEC_ROUNDP. For details, see
“VEC_ROUNDP(ARG1)” on page 814.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the smallest representable floating-point
integral value greater than or equal to the value of the corresponding element of
ARG1.

VEC_CMPB(ARG1, ARG2)
Purpose

Performs a bounds comparison of each set of corresponding elements of the given
vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is an INTEGER(4) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 775

Result value

Each element of the result has the value 0 if the value of the corresponding
element of ARG1 is less than or equal to the value of the corresponding element of
ARG2 and greater than or equal to the negative of the value of the corresponding
element of ARG2. Otherwise:
v If an element of ARG2 is greater than or equal to zero, then the value of the

corresponding element of the result is 0 if the absolute value of the
corresponding element of ARG1 is equal to the value of the corresponding
element of ARG2, negative if it is greater than the value of the corresponding
element of ARG2, and positive if it is less than the value of the corresponding
element of ARG2.

v If an element of ARG2 is less than zero, then the value of the element of the result
is positive if the value of the corresponding element of ARG1 is less than or equal
to the value of the element of ARG2, and negative otherwise.

VEC_CMPEQ(ARG1, ARG2)

Purpose

Returns a vector containing the results of comparing each set of corresponding
elements of the given vectors for equality.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The following table lists the result types for VEC_CMPEQ().

Table 59. Result types for VEC_CMPEQ()

ARG1 Result type

VECTOR(INTEGER(1)) UNSIGNED(1)

VECTOR(UNSIGNED(1))

VECTOR(INTEGER(2)) UNSIGNED(2)

VECTOR(UNSIGNED(2))

VECTOR(INTEGER(4)) UNSIGNED(4)

VECTOR(UNSIGNED(4))

VECTOR(REAL(4))

VECTOR(INTEGER(8)) UNSIGNED(8)

VECTOR(UNSIGNED(8))

VECTOR(REAL(8))

776 XL Fortran: Language Reference for Big Endian Distributions

Result value

For each element of the result, the value of each bit is 1 if the corresponding
elements of ARG1 and ARG2 are equal. Otherwise, the value of each bit is 0.

VEC_CMPGE(ARG1, ARG2)
Purpose

Returns a vector containing the results of a greater-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(INTEGER(8)), VECTOR(UNSIGNED(8)), or real vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

The result is an UNSIGNED(4) vector if ARG1 is a REAL(4) vector.

The result is an UNSIGNED(8) vector if ARG1 is an INTEGER(8), UNSIGNED(8), or
REAL(8) vector.

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of ARG1 is greater than or equal to the value of the
corresponding element of ARG2. Otherwise, the value of each bit is 0.

VEC_CMPGT(ARG1, ARG2)

Purpose

Returns a vector containing the results of a greater-than comparison between each
set of corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Chapter 17. Vector intrinsic procedures (IBM extension) 777

Result type and attributes

The following table lists the result types for VEC_CMPGT().

Table 60. Result types for VEC_CMPGT()

ARG1 Result type

VECTOR(INTEGER(1)) VECTOR(UNSIGNED(1))

VECTOR(UNSIGNED(1))

VECTOR(INTEGER(2)) VECTOR(UNSIGNED(2))

VECTOR(UNSIGNED(2))

VECTOR(INTEGER(4)) VECTOR(UNSIGNED(4))

VECTOR(UNSIGNED(4))

VECTOR(REAL(4))

VECTOR(INTEGER(8)) VECTOR(UNSIGNED(8))

VECTOR(UNSIGNED(8))

VECTOR(REAL(8))

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of ARG1 is greater than the value of the corresponding
element of ARG2. Otherwise, the value of each bit is 0.

VEC_CMPLE(ARG1, ARG2)
Purpose

Returns a vector containing the results of a less-than-or-equal-to comparison
between each set of corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(INTEGER(8)), VECTOR(UNSIGNED(8)), or real vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

The result is an UNSIGNED(4) vector if ARG1 is a REAL(4) vector.

The result is an UNSIGNED(8) vector if ARG1 is an INTEGER(8), UNSIGNED(8), or
REAL(8) vector.

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of ARG1 is less than or equal to the value of the

778 XL Fortran: Language Reference for Big Endian Distributions

corresponding element of ARG2. Otherwise, the value of each bit is 0.

VEC_CMPLT(ARG1, ARG2)

Purpose

Returns a vector containing the results of a less-than comparison between each set
of corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The following table lists the result types for VEC_CMPLT().

Table 61. Result types for VEC_CMPLT()

ARG1 Result type

VECTOR(INTEGER(1)) VECTOR(UNSIGNED(1))

VECTOR(UNSIGNED(1))

VECTOR(INTEGER(2)) VECTOR(UNSIGNED(2))

VECTOR(UNSIGNED(2))

VECTOR(INTEGER(4)) VECTOR(UNSIGNED(4))

VECTOR(UNSIGNED(4))

VECTOR(REAL(4))

VECTOR(INTEGER(8)) VECTOR(UNSIGNED(8))

VECTOR(UNSIGNED(8))

VECTOR(REAL(8))

Result value

For each element of the result, the value of each bit is 1 if the value of the
corresponding element of ARG1 is less than the value of the corresponding element
of ARG2. Otherwise, the value of each bit is 0.

VEC_CNTLZ(ARG1)
Purpose

Computes the count of leading zero bits of each element of the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Chapter 17. Vector intrinsic procedures (IBM extension) 779

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

Result type and attributes

The result is an unsigned vector of the same kind as ARG1.

Result value

Each element of the result is set to the number of leading zeros of the
corresponding element of ARG1.

VEC_CONVERT(V, MOLD)
Purpose

Converts a vector to a vector of a given type.

Class

Pure function

Argument type and attributes

V An INTENT(IN) vector

MOLD
An INTENT(IN) vector. If it is a variable, it need not be defined

Result type and attributes

The result is a vector of the same type as MOLD.

Result value

The result is as if it were on the left-hand side of an intrinsic assignment with V on
the right-hand side.

VEC_CPSGN(ARG1, ARG2)

Purpose

Returns a vector by copying the sign of the elements in vector ARG1 to the sign of
the corresponding elements in vector ARG2.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Class

Elemental function

780 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

VEC_CTD(ARG1, ARG2)
Purpose

Converts an integer vector into a REAL(8) vector.

Result value

For each element of the result, converts the corresponding element of ARG1 to
REAL(8), and divides the result by 2 to the power of ARG2.

Note: The second and fourth elements of ARG1 are not used when ARG1 is an
INTEGER(4) or UNSIGNED(4) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 4 or 8

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
with a value in the range 0 - 31 inclusive

Result type and attributes

The result is a REAL(8) vector.

VEC_CTF(ARG1, ARG2)
Purpose

Converts an integer vector into a REAL(4) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 4 or 8

Chapter 17. Vector intrinsic procedures (IBM extension) 781

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range 0 and 31 inclusive

Result type and attributes

The result is a REAL(4) vector.

Result value

The value of each element of the result is the closest floating-point estimate of the
value of the corresponding element of ARG1 divided by 2 to the power of ARG2.

Note: The second and fourth elements of the result vector are undefined when the
elements of ARG1 are of kind 8.

VEC_CTS(ARG1, ARG2)
Purpose

Converts a real vector into an INTEGER(4) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range 0 to 31 inclusive.

Result type and attributes

The result is an INTEGER(4) vector.

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of ARG1 by 2 to the power of ARG2.

Note: The second and fourth elements of the result vector are undefined when
ARG1 is a REAL(8) vector.

VEC_CTSL(ARG1, ARG2)
Purpose

Converts a real vector into an INTEGER(8) vector.

782 XL Fortran: Language Reference for Big Endian Distributions

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of ARG1 by 2 to the power of ARG2 and
converting the result into an integer.

Note: This function does not use the second and fourth elements of ARG1 when
ARG1 is a REAL(4) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
with a value in the range 0 - 31 inclusive.

Result type and attributes

The result is an INTEGER(8) vector.

VEC_CTU(ARG1, ARG2)
Purpose

Converts a real vector into an UNSIGNED(4) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range 0 to 31 inclusive.

Result type and attributes

The result is an UNSIGNED(4) vector.

Result value

The value of each element of the result is the saturated value obtained by
multiplying the corresponding element of ARG1 by 2 to the power of ARG2.

Note: The second and fourth elements of the result vector are undefined when
ARG1 is a REAL(8) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 783

VEC_CTUL(ARG1, ARG2)
Purpose

Converts a real vector into an UNSIGNED(8) vector.

Result value

The value of each element of the result is the saturated value that is obtained by
multiplying the corresponding element of ARG1 by 2 to the power of ARG2.

Note: The second and fourth elements of the result vector are undefined when
ARG1 is a REAL(8) vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector.

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
with a value in the range 0 - 31 inclusive.

Result type and attributes

The result is an UNSIGNED(8) vector.

VEC_CVF(ARG1)
Purpose

Converts a REAL(4) vector into a REAL(8) vector, and vice versa.

Result Value

When ARG1 is a REAL(4) vector, each element of the result is equal to the
corresponding element of ARG1, converted to REAL(8). The second and fourth
elements of ARG1 are not used.

When ARG1 is a REAL(8) vector, the first and third elements of the result are equal
to the corresponding elements of ARG1, converted to REAL(4). The values of the
second and fourth elements of the result vector are undefined.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

784 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is a REAL(8) vector if ARG1 is a REAL(4) vector, or a REAL(4) vector if
ARG1 is a REAL(8) vector.

VEC_DIV(ARG1, ARG2)
Purpose

Divides the elements in vector ARG1 by the corresponding elements in vector ARG2
and then assigns the result to the corresponding elements in the result vector.

Note: For integer and unsigned vectors, this function emulates the operation. This
function requires the POWER7 or higher architecture.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

VEC_DSS(ARG1)
Purpose

Stops the specified data stream read.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) integer and must be specified by a constant expression whose
value is within the range of 0 through 3 inclusive.

Stops the data stream read specified by ARG1.

VEC_DSSALL
Purpose

Stops all data stream reads.

Chapter 17. Vector intrinsic procedures (IBM extension) 785

Class

Subroutine

VEC_DST(ARG1, ARG2, ARG3)
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by ARG3 is read beginning at the address of ARG1 using
the control word ARG2. Use of this intrinsic indicates that the specified data stream
is relatively persistent in nature.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer.

ARG3
An INTENT(IN) integer and must be specified by a constant expression whose
value is within the range of 0 through 3 inclusive.

VEC_DSTST(ARG1, ARG2, ARG3)
Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by ARG3 is read beginning at the address of ARG1 using
the control word ARG2. Use of this intrinsic indicates that the specified data stream
is relatively persistent in nature.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

786 XL Fortran: Language Reference for Big Endian Distributions

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer.

ARG3
An INTENT(IN) integer and must be specified by a constant expression whose
value is within the range of 0 through 3 inclusive.

VEC_DSTSTT(ARG1, ARG2, ARG3)
Purpose

Initiates the data read of a line into cache in a state most efficient for writing.

The data stream specified by ARG3 is read beginning at the address of ARG1 using
the control word ARG2. Use of this intrinsic indicates that the specified data stream
is relatively transient in nature.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer.

ARG3
An INTENT(IN) integer and must be specified by a constant expression whose
value is within the range of 0 through 3 inclusive.

VEC_DSTT(ARG1, ARG2, ARG3)
Purpose

Initiates the data read of a line into cache in a state most efficient for reading.

The data stream specified by ARG3 is read beginning at the address of ARG1 using
the control word ARG2. Use of this intrinsic indicates that the specified data stream
is relatively transient in nature.

Class

Subroutine

Chapter 17. Vector intrinsic procedures (IBM extension) 787

Argument type and attributes

ARG1
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer.

ARG3
An INTENT(IN) integer and must be specified by a constant expression whose
value is within the range of 0 through 3 inclusive.

VEC_EQV(ARG1, ARG2)
Purpose

Performs a bitwise equivalence operation on the input vectors.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

The result is of the same type as ARG1.

Result value

Each bit of the result is set to the result of the bitwise operation (ARG1 == ARG2) of
the corresponding bits of ARG1 and ARG2. For 0 <= i < 128, bit i of the result is set
to 1 only if bit i of ARG1 is equal to bit i of ARG2.

VEC_EXPTE(ARG1)
Purpose

Returns a vector containing estimates of 2 raised to the value of the corresponding
elements of the given vector.

788 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4) vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the estimated value of 2 raised to the value of
the corresponding element of ARG1.

VEC_EXTRACT(ARG1, ARG2)

Purpose

Returns the value of element ARG1 from the vector ARG2.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or real vector

ARG2
An INTENT(IN) integer

Result type and attributes

The result has the same type and kind as the elements of ARG1.

Result value

This function uses the modulo arithmetic on ARG2 to determine the element
number. For example, if ARG2 is out of range, the compiler uses ARG2 modulo the
number of elements in the vector to determine the element position.

VEC_FLOOR(ARG1)

Purpose

Returns a vector containing the largest representable floating-point integral values
less than or equal to the values of the corresponding elements of the given vector.

Note: VEC_FLOOR is another name for VEC_ROUNDM. For details, see
“VEC_ROUNDM(ARG1)” on page 814.

Chapter 17. Vector intrinsic procedures (IBM extension) 789

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the largest representable floating-point integral
value less than or equal to the value of the corresponding element of ARG1.

VEC_GBB(ARG1)
Purpose

Performs a gather-bits-by-bytes operation on the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(INTEGER(8)) or VECTOR(UNSIGNED(8)).

Result type and attributes

The result is of the same type as ARG1.

Result value

Each doubleword element of the result is set as follows: Let x(i) (0 <= i < 8)
denote the byte elements of the corresponding input doubleword element, with
x(7) the most significant byte. For each pair of i and j (0 <= i < 8, 0 <= j < 8), the
jth bit of the ith byte element of the result is set to the value of the ith bit of the
jth byte element of the input.

VEC_INSERT(ARG1, ARG2, ARG3)

Purpose

Returns a copy of the vector ARG2 with the value of its element ARG3 replaced by
ARG1.

790 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, REAL(4) or REAL(8)

ARG2
An INTENT(IN) vector whose elements have the same type as ARG1

ARG3
An INTENT(IN) integer

Result type and attributes

The result is of the same type as ARG2.

Result value

This function uses the modulo arithmetic on ARG3 to determine the element
number. For example, if ARG3 is out of range, the compiler uses ARG3 modulo the
number of elements in the vector to determine the element position.

VEC_LD(ARG1, ARG2)

Purpose

Loads a vector from the given memory address.

Class

Function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

Result type and attributes

If ARG2 is a vector, then the result is of the same type as ARG2. Otherwise, the result
is a vector containing elements of the same type as ARG2.

Result value

ARG1 is added to the address of ARG2, and the sum is truncated to a multiple of 16
bytes. The result is the content of the 16 bytes of memory starting at this address.

Chapter 17. Vector intrinsic procedures (IBM extension) 791

VEC_LDE(ARG1, ARG2)
Purpose

Loads an element from a given memory address into a vector.

Class

Function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable of type INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

Result type and attributes

The result is a vector containing elements of the same type as ARG2.

Result value

The effective address is the sum of ARG1 and the address of ARG2, truncated to a
multiple of the size in bytes of an element of the result vector. The contents of
memory at the effective address are loaded into the result vector at the byte offset
corresponding to the four least significant bits of the effective address. The
remaining portions of the result vector are undefined.

VEC_LDL(ARG1, ARG2)
Purpose

Loads a vector from a given memory address, and marks the data as Least
Recently Used.

Class

Function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

792 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

If ARG2 is a vector, then the result is of the same type as ARG2. Otherwise, the result
is a vector containing elements of the same type as ARG2.

Result value

ARG1 is added to the address of ARG2, and the sum is truncated to a multiple of 16
bytes. The result is the contents of the 16 bytes of memory starting at this address.
This data is marked as Least Recently Used.

VEC_LOGE(ARG1)
Purpose

Returns a vector containing estimates of the base-2 logarithms of the corresponding
elements of the given vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4) vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the estimated value of the base-2 logarithm of
the corresponding element of ARG1.

VEC_LVSL(ARG1, ARG2)

Purpose

Returns a vector useful for aligning non-aligned data.

Class

Function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable of type INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

Result type and attributes

The result is an UNSIGNED(1) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 793

Result value

The first element of the result vector is the sum of ARG1 and the address of ARG2,
modulo 16. Each successive element contains the previous element's value plus 1.

VEC_LVSR(ARG1, ARG2)

Purpose

Returns a vector useful for aligning non-aligned data.

Class

Function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable of type INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

Result type and attributes

The result is an UNSIGNED(1) vector.

Result value

The effective address is the sum of ARG1 and the address of ARG2, modulo 16. The
first element of the result vector contains the value 16 minus the effective address.
Each successive element contains the previous element's value plus 1.

VEC_MADD(ARG1, ARG2, ARG3)

Purpose

Returns a vector containing the results of performing a fused multiply-add
operation for each corresponding set of elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

794 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the product of the values of the
corresponding elements of ARG1 and ARG2, added to the value of the corresponding
element of ARG3.

VEC_MADDS(ARG1, ARG2, ARG3)
Purpose

Returns a vector containing the results of performing a saturated
multiply-high-and-add operation for each corresponding set of elements of the
given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(2) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

For each element of the result, the value is produced in the following way: The
values of the corresponding elements of ARG1 and ARG2 are multiplied. The value of
the 17 most significant bits of this product is then added, using 16-bit-saturated
addition, to the value of the corresponding element of ARG3.

VEC_MAX(ARG1, ARG2)
Purpose

Returns a vector that contains the maximum value from each set of corresponding
elements of the given vectors.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 795

Argument type and attributes

ARG1
An INTENT(IN) integer vector, unsigned vector, or real vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

The value of each element of the result is the maximum of the values of the
corresponding elements of ARG1 and ARG2.

VEC_MERGEH(ARG1, ARG2)
Purpose

Merges the most significant halves of two vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

Assume that the elements of each vector are numbered beginning with 0. The
even-numbered elements of the result are taken, in order, from the high elements
of ARG1. The odd-numbered elements of the result are taken, in order, from the
high elements of ARG2.

VEC_MERGEL(ARG1, ARG2)
Purpose

Merges the least significant halves of two vectors.

Class

Elemental function

796 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

Assume that the elements of each vector are numbered beginning with 0. The
even-numbered elements of the result are taken, in order, from the low elements of
ARG1. The odd-numbered elements of the result are taken, in order, from the low
elements of ARG2.

VEC_MFVSCR
Purpose

Copies the contents of the Vector Status and Control Register into the result vector.

Class

Function

Result type and attributes

The result is an UNSIGNED(2) vector.

Result value

The high-order 16 bits of the VSCR are copied into the seventh element of the
result. The low-order 16 bits of the VSCR are copied into the eighth element of the
result. All other elements are set to zero.

VEC_MIN(ARG1, ARG2)
Purpose

Returns a vector that contains the minimum value from each set of corresponding
elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer vector, unsigned vector, or real vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Chapter 17. Vector intrinsic procedures (IBM extension) 797

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

The value of each element of the result is the minimum of the values of the
corresponding elements of ARG1 and ARG2.

VEC_MLADD(ARG1, ARG2, ARG3)
Purpose

Returns a vector containing the results of performing a saturated
multiply-low-and-add operation for each corresponding set of elements of the
given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(2) or UNSIGNED(2) vector

ARG2
An INTENT(IN) INTEGER(2) or UNSIGNED(2) vector

ARG3
An INTENT(IN) vector of the same type as ARG2

Result type and attributes

If ARG1, ARG2, and ARG3 are all unsigned vectors, then the result is an UNSIGNED(2)
vector. Otherwise, the result is an INTEGER(2) vector.

Result value

The value of each element of the result is the value of the least significant 16 bits
of the product of the values of the corresponding elements of ARG1 and ARG2,
added to the value of the corresponding element of ARG3.

The addition is performed using modular arithmetic.

VEC_MRADDS(ARG1, ARG2, ARG3)
Purpose

Returns a vector containing the results of performing a saturated
multiply-high-round-and-add operation for each corresponding set of elements of
the given vectors.

Class

Elemental function

798 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(2) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

For each element of the result, the value is produced in the following way: The
values of the corresponding elements of ARG1 and ARG2 are multiplied and rounded
such that the 15 least significant bits are 0. The value of the 17 most significant bits
of this rounded product is then added, using 16-bit-saturated addition, to the value
of the corresponding element of ARG3.

VEC_MSUB(ARG1, ARG2, ARG3)

Purpose

Returns a vector containing the results of performing a multiply-subtract operation
using the given vectors.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

This function multiplies each element in ARG1 by the corresponding element in
ARG2 and then subtracts the corresponding element in ARG3 from the result.

Chapter 17. Vector intrinsic procedures (IBM extension) 799

VEC_MSUM(ARG1, ARG2, ARG3)
Purpose

Returns a vector containing the results of performing a multiply-sum operation
using the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1 or 2

ARG2
An INTENT(IN) vector. If ARG1 is an INTEGER(1) vector, then ARG2 is an
UNSIGNED(1) vector. Otherwise, ARG2 is of the same type as ARG1.

ARG3
An INTENT(IN) vector. If ARG1 is an integer vector, then ARG3 is an INTEGER(4)
vector. If ARG1 is an unsigned vector, then ARG3 is an UNSIGNED(4) vector.

Result type and attributes

The result is a vector of the same type as ARG3.

Result value

Assume that the elements of each vector are numbered beginning with 0. If ARG1 is
an INTEGER(1) vector or an UNSIGNED(1) vector, then let m be 4. Otherwise, let m
be 2. For each element n of the result vector, the value is obtained in the following
way: For p = mn to mn+m-1, multiply element p of ARG1 by element p of ARG2.
Add the sum of these products to element n of ARG3. All additions are performed
using 32-bit modular arithmetic.

VEC_MSUMS(ARG1, ARG2, ARG3)
Purpose

Returns a vector containing the results of performing a saturated multiply-sum
operation using the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(2) or UNSIGNED(2) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector. If ARG1 is an integer vector, then ARG3 is an INTEGER(4)
vector. If ARG1 is an unsigned vector, then ARG3 is an UNSIGNED(4) vector.

800 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is a vector of the same type as ARG3.

Result value

Assume that the elements of each vector are numbered beginning with 0. For each
element n of the result vector, the value is obtained in the following way: For p =
2n to 2n+1, multiply element p of ARG1 by element p of ARG2. Add the sum of these
products to element n of ARG3. All additions are performed using 32-bit saturated
arithmetic.

VEC_MTVSCR(ARG1)
Purpose

Copies the given value into the Vector Status and Control Register.

The low-order 32 bits of ARG1 are copied into the VSCR.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(1), INTEGER(2), INTEGER(4), UNSIGNED(1), UNSIGNED(2),
UNSIGNED(4), or PIXEL vector

VEC_MUL(ARG1, ARG2)

Purpose

Returns a vector containing the results of performing a multiply operation using
the given vectors.

Note: For integer vectors, this function emulates the operation. This built-in
function is valid only when -qarch is set to target POWER7 processors or higher.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Chapter 17. Vector intrinsic procedures (IBM extension) 801

Result value

This function multiplies corresponding elements in the given vectors and then
assigns the result to corresponding elements in the result vector.

VEC_MULE(ARG1, ARG2)
Purpose

Returns a vector containing the results of multiplying every second set of
corresponding elements of the given vectors, beginning with the first element.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1 or 2

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

If ARG1 is an INTEGER(1) vector, then the result is an INTEGER(2) vector. If ARG1 is an
INTEGER(2) vector, then the result is an INTEGER(4) vector. If ARG1 is an
UNSIGNED(1) vector, then the result is an UNSIGNED(2) vector. If ARG1 is an
UNSIGNED(2) vector, then the result is an UNSIGNED(4) vector.

Result value

Assume that the elements of each vector are numbered beginning with 0. For each
element n of the result vector, the value is the product of the value of element 2n of
ARG1 and the value of element 2n of ARG2.

VEC_MULO(ARG1, ARG2)
Purpose

Returns a vector containing the results of multiplying every second set of
corresponding elements of the given vectors, beginning with the second element.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1 or 2

ARG2
An INTENT(IN) vector of the same type as ARG1

802 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

If ARG1 is an INTEGER(1) vector, then the result is an INTEGER(2) vector. If ARG1 is an
INTEGER(2) vector, then the result is an INTEGER(4) vector. If ARG1 is an
UNSIGNED(1) vector, then the result is an UNSIGNED(2) vector. If ARG1 is an
UNSIGNED(2) vector, then the result is an UNSIGNED(4) vector.

Result value

Assume that the elements of each vector are numbered beginning with 0. For each
element n of the result vector, the value is the product of the value of element 2n+1
of ARG1 and the value of element 2n+1 of ARG2.

VEC_NABS(ARG1)

Purpose

Returns a vector containing the results of performing a negative-absolute operation
using the given vector.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is of the same type as ARG1.

Result value

This function computes the absolute value of each element in the given vector and
then assigns the negated value of the result to the corresponding elements in the
result vector.

VEC_NAND(ARG1, ARG2)
Purpose

Performs a bitwise negated-and operation on the input vectors.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 803

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) integer or unsigned vector.

Result type and attributes

The result is of the same type as ARG1.

Result value

Each bit of the result is set to the result of the bitwise operation NOT(IAND(ARG1,
ARG2)) of the corresponding bits of ARG1 and ARG2. For 0 <= i < 128, bit i of the
result is set to 0 only if the ith bit of ARG1 and ARG2 are 1.

VEC_NEG(ARG1)

Purpose

Returns a vector containing the negated value of the corresponding elements in the
given vector.

Note: For VECTOR(INTEGER(8)), this function emulates the operation. This built-in
function is valid only when -qarch is set to target POWER7 processors or higher.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or real vector

Result type and attributes

The result is of the same type as ARG1.

Result value

This function multiplies the value of each element in the given vector by -1.0 and
then assigns the result to the corresponding elements in the result vector.

VEC_NMADD(ARG1, ARG2, ARG3)

Purpose

Returns a vector containing the results of performing a negative multiply-add
operation on the given vectors.

This built-in function is valid only when -qarch is set to target POWER7
processors or higher.

804 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the product of the corresponding
elements of ARG1 and ARG2, added to the corresponding elements of ARG3, and then
multiplied by -1.0.

VEC_NMSUB(ARG1, ARG2, ARG3)

Purpose

Returns a vector containing the results of performing a negative multiply-subtract
operation on the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

The value of each element of the result is the product of the corresponding
elements of ARG1 and ARG2, subtracted from the corresponding element of ARG3.

Chapter 17. Vector intrinsic procedures (IBM extension) 805

VEC_NOR(ARG1, ARG2)

Purpose

Performs a bitwise NOR of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the bitwise NOR of ARG1 and ARG2.

VEC_OR(ARG1, ARG2)

Purpose

Performs a bitwise OR of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the bitwise OR of ARG1 and ARG2.

VEC_ORC(ARG1, ARG2)
Purpose

Performs a bitwise OR-with-complement operation of the input vectors.

806 XL Fortran: Language Reference for Big Endian Distributions

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

Result value

Each bit of the result is set to the result of the bitwise operation IOR(ARG1,
NOT(ARG2)) of the corresponding bits of ARG1 and ARG2. For 0 <= i < 128, bit i of
the result is set to 1 only if the ith bit of ARG1 is 1 or the ith bit of ARG2 is 0.

VEC_PACK(ARG1, ARG2)
Purpose

Packs information from each element of two vectors into the result vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

If ARG1 is an INTEGER(2) vector, the result is an INTEGER(1) vector.

If ARG1 is an INTEGER(4) vector, the result is an INTEGER(2) vector.

If ARG1 is an INTEGER(8) vector, the result is an INTEGER(4) vector.

If ARG1 is an UNSIGNED(2) vector, the result is an UNSIGNED(1) vector.

If ARG1 is an UNSIGNED(4) vector, the result is an UNSIGNED(2) vector.

If ARG1 is an UNSIGNED(8) vector, the result is an UNSIGNED(4) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 807

Result value

The value of each element of the result vector is taken from the low-order half of
the corresponding element of the result of concatenating ARG1 and ARG2.

VEC_PACKPX(ARG1, ARG2)
Purpose

Packs information from each element of two vectors into the result vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) UNSIGNED(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is a pixel vector.

Result value

The value of each element of the result vector is taken from the corresponding
element of the result of concatenating ARG1 and ARG2 in the following way: the least
significant bit of the high order byte is stored into the first bit of the result element;
the least significant 5 bits of each of the remaining bytes are stored into the
remaining portion of the result element.

VEC_PACKS(ARG1, ARG2)
Purpose

Packs information from each element of two vectors into the result vector, using
saturated values.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

808 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

If ARG1 is an INTEGER(2) vector, then the result is an INTEGER(1) vector.

If ARG1 is an INTEGER(4) vector, then the result is an INTEGER(2) vector.

If ARG1 is an INTEGER(8) vector, then the result is an INTEGER(4) vector.

If ARG1 is an UNSIGNED(2) vector, then the result is an UNSIGNED(1) vector.

If ARG1 is an UNSIGNED(4) vector, then the result is an UNSIGNED(2) vector.

If ARG1 is an UNSIGNED(8) vector, then the result is an UNSIGNED(4) vector.

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating ARG1 and ARG2.

VEC_PACKSU(ARG1, ARG2)
Purpose

Packs information from each element of two vectors into the result vector, using
saturated values.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) vector of the same type as ARG1.

Result type and attributes

If ARG1 is an INTEGER(2) vector or an UNSIGNED(2) vector, then the result is an
UNSIGNED(1) vector.

If ARG1 is an INTEGER(4) vector or an UNSIGNED(4) vector, then the result is an
UNSIGNED(2) vector.

If ARG1 is an INTEGER(8) vector or an UNSIGNED(8) vector, then the result is an
UNSIGNED(4) vector.

Result value

The value of each element of the result vector is the saturated value of the
corresponding element of the result of concatenating ARG1 and ARG2.

Chapter 17. Vector intrinsic procedures (IBM extension) 809

VEC_PERM(ARG1, ARG2, ARG3)

Purpose

Returns a vector that contains some elements of two vectors, in the order specified
by a third vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN), UNSIGNED(1) vector

Result type and attributes

The result is of the same type as ARG1.

Result value

Each byte of the result is selected by using the least significant 5 bits of the
corresponding byte of ARG3 as an index into the concatenated bytes of ARG1 and
ARG2.

VEC_PERMI(ARG1, ARG2, ARG3)
Purpose

Returns a vector by permuting and combining the two eight-byte-long vector
elements in ARG1 and ARG2 based on the value of ARG3.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(8), UNSIGNED(8), or REAL(8) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An integer constant expression with the value of 0, 1, 2, or 3

Result type and attributes

The result is of the same type as ARG1.

810 XL Fortran: Language Reference for Big Endian Distributions

Result value

The value of the result vector is based on the value of ARG3.

Table 62. The elements of the result vector

ARG3 First element of result Second element of result

0 First element of ARG1 First element of ARG2

1 First element of ARG1 Second element of ARG2

2 Second element of ARG1 First element of ARG2

3 Second element of ARG1 Second element of ARG2

VEC_POPCNT(ARG1)
Purpose

Computes the population count (number of set bits) in each element of the input.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

Result type and attributes

The result is an unsigned vector of the same kind as ARG1.

Result value

Each element of the result is set to the number of set bits in the corresponding
element of the input.

VEC_PROMOTE(ARG1, ARG2)

Purpose

Returns a vector with ARG1 in element position ARG2. The values of all the other
elements of the constructed vector are undefined.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4), REAL(8), or integer vector

Chapter 17. Vector intrinsic procedures (IBM extension) 811

ARG2
An INTENT(IN) integer

Result type and attributes

The type of the result is a vector whose elements are of the same type as ARG1.

Result value

The result is a vector with ARG1 in element position ARG2. This function uses
modulo arithmetic on ARG2 to determine the element number. For example, if ARG2
is out of range, the compiler uses ARG2 modulo the number of elements in the
vector to determine the element position. The other elements of the vector are
undefined.

VEC_RE(ARG1)

Purpose

Returns a vector containing estimates of the reciprocals of the corresponding
elements of the given vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the estimated value of the reciprocal of the
corresponding element of ARG1.

VEC_RL(ARG1, ARG2)
Purpose

Rotates each element of a vector left by a given number of bits.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

812 XL Fortran: Language Reference for Big Endian Distributions

ARG2
An INTENT(IN) unsigned vector containing elements of the same kind as the
elements of ARG1.

Result type and attributes

The result is of the same type as ARG1.

Result value

Each element of the result is obtained by rotating the corresponding element of
ARG1 left by the number of bits specified by the corresponding element of ARG2.

VEC_ROUND(ARG1)
Purpose

Returns a vector containing the rounded values of the corresponding elements of
the given vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

Each element of the result contains the value of the corresponding element of ARG1,
rounded to the nearest representable floating-point integer, using IEEE
round-to-nearest rounding.

Note: This function might not follow the strict operation definition of the
resolution of a tie during a round when you specify the
-qstrict=nooperationprecision compiler option.

VEC_ROUNDC(ARG1)
Purpose

Returns a vector by rounding every single-precision or double-precision
floating-point element in the given vector to integer.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 813

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is of the same type as ARG1.

VEC_ROUNDM(ARG1)
Returns a vector containing the largest representable floating-point integer values
less than or equal to the values of the corresponding elements of the given vector.

Note: VEC_ROUNDM is another name for VEC_FLOOR. For details, see
“VEC_FLOOR(ARG1)” on page 789.

VEC_ROUNDP(ARG1)
Returns a vector containing the smallest representable floating-point integer values
greater than or equal to the values of the corresponding elements of the given
vector.

Note: VEC_ROUNDP is another name for VEC_CEIL. For details, see
“VEC_CEIL(ARG1)” on page 775.

VEC_ROUNDZ(ARG1)
Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: VEC_ROUNDZ is another name for VEC_TRUNC. For details, see
“VEC_TRUNC(ARG1)” on page 832.

VEC_RSQRTE(ARG1)

Purpose

Returns a vector containing estimates of the reciprocal square roots of the
corresponding elements of the given vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

814 XL Fortran: Language Reference for Big Endian Distributions

Result value

Each element of the result contains the estimated value of the reciprocal square
root of the corresponding element of ARG1.

VEC_SEL(ARG1, ARG2, ARG3)

Purpose

Returns a vector containing the value of either ARG1 or ARG2 depending on the
value of ARG3.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) unsigned vector containing elements with the same kind as the
elements of ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

Each bit of the result vector has the value of the corresponding bit of ARG1 if the
corresponding bit of ARG3 is 0, or the value of the corresponding bit of ARG2
otherwise.

VEC_SL(ARG1, ARG2)
Purpose

Performs a left shift for each element of a vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) unsigned vector containing elements of the same kind as the
elements of ARG1.

Chapter 17. Vector intrinsic procedures (IBM extension) 815

Result type and attributes

The result is of the same type as ARG1.

Result value

Each element of the result vector is the result of left shifting the corresponding
element of ARG1 by the number of bits specified by the value of the corresponding
element of ARG2, modulo the number of bits in the element. The bits that are
shifted out are replaced by zeros.

VEC_SLD(ARG1, ARG2, ARG3)
Purpose

Left shifts two concatenated vectors by a given number of bytes.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) integer. It must be specified by a constant expression whose
value is within the range of 0 through 15 inclusive.

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the most significant 16 bytes obtained by concatenating ARG1 and
ARG2, and shifting left by the number of bytes specified by ARG3.

VEC_SLDW(ARG1, ARG2, ARG3)

Purpose

Shift Left Double by Word Immediate

Returns a vector by concatenating ARG1 and ARG2, and then left-shifting the result
vector by multiples of 4 bytes. ARG3 specifies the offset for the shifting operation.

816 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

ARG3
An INTENT(IN) integer constant expression with the value of 0, 1, 2, or 3

Result type and attributes

The result is of the same type as ARG1.

Result value

After left-shifting the concatenated ARG1 and ARG2 by multiples of 4 bytes specified
by ARG3, the function takes the four leftmost 4-byte values and forms the result
vector.

VEC_SLL(ARG1, ARG2)
Purpose

Left shifts a vector by a given number of bits.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))
v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(PIXEL)

ARG2
An INTENT(IN) UNSIGNED(1), UNSIGNED(2), or UNSIGNED(4) vector. Each byte of
ARG2 must contain the same value.

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the contents of ARG1, shifted left by the number of bits specified by
the three least significant bits of ARG2. The bits that are shifted out are replaced by
zeroes.

Chapter 17. Vector intrinsic procedures (IBM extension) 817

VEC_SLO(ARG1, ARG2)
Purpose

Left shifts a vector by a given number of bytes (octets).

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))
v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) unsigned vector whose elements are of kind 1 or 2

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the contents of ARG1, shifted left by the number of bytes specified by
bits 121 through 124 of ARG2. The bits that are shifted out are replaced by zeroes.

VEC_SPLAT(ARG1, ARG2)

Purpose

Returns a vector that has all of its elements set to a given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer. Its value must be specified by a constant expression
that is greater than or equal to 0, and less than the number of elements in ARG1.

Result type and attributes

The result is of the same type as ARG1.

818 XL Fortran: Language Reference for Big Endian Distributions

Result value

The value of each element of the result is the value of the element of ARG1 specified
by ARG2.

VEC_SPLATS(ARG1)

Purpose

Returns a vector of which the value of each element is set to ARG1.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) REAL(4), REAL(8), or integer vector

Result type and attributes

The result is a vector whose elements have the same type as ARG1.

VEC_SPLAT_S8(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

Result type and attributes

The result is an INTEGER(1) vector.

Result value

Each element of the result has the value of ARG1.

VEC_SPLAT_S16(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Chapter 17. Vector intrinsic procedures (IBM extension) 819

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

Result type and attributes

The result is an INTEGER(2) vector.

Result value

Each element of the result has the value of ARG1.

VEC_SPLAT_S32(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

Result type and attributes

The result is an INTEGER(4) vector.

Result value

Each element of the result has the value of ARG1.

VEC_SPLAT_U8(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

820 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is an UNSIGNED(1) vector.

Result value

The bit pattern of ARG1 is interpreted as an unsigned value. Each element of the
result is given this value.

VEC_SPLAT_U16(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

Result type and attributes

The result is an UNSIGNED(2) vector.

Result value

The bit pattern of ARG1 is interpreted as an unsigned value. Each element of the
result is given this value.

VEC_SPLAT_U32(ARG1)
Purpose

Returns a vector with all elements equal to the given value.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer. Its value must be specified by a constant expression
whose value is in the range -16 to 15 inclusive.

Result type and attributes

The result is an UNSIGNED(4) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 821

Result value

The bit pattern of ARG1 is interpreted as an unsigned value. Each element of the
result is given this value.

VEC_SQRT(ARG1)
Purpose

Returns a vector containing the square root of each element in the given vector.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is of the same type as ARG1.

VEC_SR(ARG1, ARG2)
Purpose

Performs a right shift for each element of a vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) unsigned vector containing elements of the same kind as the
elements of ARG1.

Result type and attributes

The result is of the same type as ARG1.

Result value

Each element of the result vector is the result of right shifting the corresponding
element of ARG1 by the number of bits specified by the value of the corresponding
element of ARG2, modulo the number of bits in the element. The bits that are
shifted out are replaced by zeros.

822 XL Fortran: Language Reference for Big Endian Distributions

VEC_SRA(ARG1, ARG2)
Purpose

Performs an algebraic right shift for each element of a vector.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector.

ARG2
An INTENT(IN) unsigned vector containing elements of the same kind as the
elements of ARG1.

Result type and attributes

The result is of the same type as ARG1.

Result value

Each element of the result vector is the result of algebraically right shifting the
corresponding element of ARG1 by the number of bits specified by the value of the
corresponding element of ARG2, modulo the number of bits in the element. The bits
that are shifted out are replaced by copies of the most significant bit of the element
of ARG1.

VEC_SRL(ARG1, ARG2)
Purpose

Right shifts a vector by a given number of bits.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))
v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(PIXEL)

ARG2
An INTENT(IN) UNSIGNED(1), UNSIGNED(2), or UNSIGNED(4) vector. Each byte of
ARG2 must contain the same value.

Result type and attributes

The result is of the same type as ARG1.

Chapter 17. Vector intrinsic procedures (IBM extension) 823

Result value

The result is the contents of ARG1, shifted right by the number of bits specified by
the 3 least significant bits of ARG2. The bits that are shifted out are replaced by
zeroes.

VEC_SRO(ARG1, ARG2)
Purpose

Right shifts a vector by a given number of bytes (octets).

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))
v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) unsigned vector whose elements are of kind 1 or 2

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the contents of ARG1, shifted right by the number of bytes specified by
bits 121 through 124 of ARG2. The bits that are shifted out are replaced by zeroes.

VEC_ST(ARG1, ARG2, ARG3)

Purpose

Stores a vector to memory at the given address.

ARG2 is added to the address of ARG3, and the sum is truncated to a multiple of 16
bytes. The value of ARG1 is then stored into this memory address.

Class

Pure subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))

824 XL Fortran: Language Reference for Big Endian Distributions

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer

ARG3
is INTENT(OUT). It must be a vector or be of type integer or real as follows:

Case (i)
If ARG3 is a vector, it must be of the same type as ARG1.

Case (ii)
If ARG3 is not a vector, and ARG1 is an integer vector or an unsigned
vector, then ARG3 must be of type integer with the same kind type
parameter as the elements of ARG1.

Case (iii)
If ARG3 is not a vector, and ARG1 is a real vector, then ARG3 must be of
the same type and kind as the elements of ARG1.

Case (iv)
If ARG3 is not a vector, and ARG1 is a pixel vector, then ARG3 must be of
type INTEGER(2).

VEC_STE(ARG1, ARG2, ARG3)
Purpose

Stores a vector element into memory at the given address.

The effective address is the sum of ARG2 and the address of ARG3, truncated to a
multiple of the size in bytes of an element of the result vector. The value of the
element of ARG1 at the byte offset that corresponds to the four least significant bits
of the effective address is stored into memory at the effective address.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer vector

ARG3
is INTENT(OUT). If ARG1 is a pixel vector, then ARG3 must be of type INTEGER(2).
If ARG1 is an unsigned vector, then ARG3 must be of type integer and must have
the same kind as the elements of ARG1. Otherwise, ARG3 must have the same
type and kind as the elements of ARG1.

Chapter 17. Vector intrinsic procedures (IBM extension) 825

VEC_STL(ARG1, ARG2, ARG3)
Purpose

Stores a vector into memory at the given address, and marks the data as Least
Recently Used.

ARG2 is added to the address of ARG3, and the sum is truncated to a multiple of 16
bytes. The value of ARG1 is then stored into this memory address. The data is
marked as Least Recently Used.

Class

Subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), or VECTOR(INTEGER(4))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
An INTENT(IN) integer vector

ARG3
is INTENT(OUT). It must be a vector or be of type integer or real as follows:

Case (i)
If ARG3 is a vector, it must be of the same type as ARG1.

Case (ii)
If ARG3 is not a vector, and ARG1 is an integer vector or an unsigned
vector, then ARG3 must be of type integer with the same kind type
parameter as the elements of ARG1.

Case (iii)
If ARG3 is not a vector, and ARG1 is a real vector, then ARG3 must be of
the same type and kind as the elements of ARG1.

Case (iv)
If ARG3 is not a vector, and ARG1 is a pixel vector, then ARG3 must be of
type INTEGER(2).

VEC_SUB(ARG1, ARG2)

Purpose

Returns a vector containing the result of subtracting each element of ARG2 from the
corresponding element of ARG1.

Note: For INTEGER(8) and UNSIGNED(8) vectors, this function emulates the
operation.

826 XL Fortran: Language Reference for Big Endian Distributions

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer, unsigned, or real vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the result of subtracting the value of the
corresponding element of ARG2 from the value of the corresponding element of
ARG1. The arithmetic is modular for integer vectors.

VEC_SUB_U128 (ARG1, ARG2)
Purpose

Subtracts unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a and b be the 128-bit integers that are storage-associated with ARG1 and
ARG2, respectively.

The result value is a - b.

Chapter 17. Vector intrinsic procedures (IBM extension) 827

VEC_SUBC_U128 (ARG1, ARG2)
Purpose

Gets the carry bit of the 128-bit subtraction of two quadword values.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a and b be the 128-bit integers that are storage-associated with ARG1 and
ARG2, respectively.

The result value is the carry out of a - b.

VEC_SUBE_U128 (ARG1, ARG2, ARG3)
Purpose

Subtracts unsigned quadword values with carry bit from previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

828 XL Fortran: Language Reference for Big Endian Distributions

ARG3
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a, b, c be the 128-bit integers that are storage-associated with ARG1, ARG2, and
ARG3, respectively.

The result value is a - b - iand(c, 1) .

VEC_SUBEC_U128 (ARG1, ARG2, ARG3)
Purpose

Gets the carry bit of the 128-bit subtraction of two quadword values with carry bit
from the previous operation.

The function operates on vectors as 128-bit unsigned integers.

This built-in function is valid only when -qarch is set to target POWER8
processors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG2
An INTENT(IN) VECTOR(UNSIGNED(1))

ARG3
An INTENT(IN) VECTOR(UNSIGNED(1))

Result type and attributes

Same as ARG1.

Result value

Let a, b, c be the 128-bit integers that are storage-associated with ARG1, ARG2, and
ARG3, respectively.

The result value is the carry out of a - b - iand(c, 1).

Chapter 17. Vector intrinsic procedures (IBM extension) 829

VEC_SUBC(ARG1, ARG2)
Purpose

Returns a vector containing the carry produced by subtracting each set of
corresponding elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) UNSIGNED(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the value of the carry produced by
subtracting the value of the corresponding element of ARG2 from the value of the
corresponding element of ARG1. The value is 0 if a borrow occurred, or 1 if no
borrow occurred.

VEC_SUBS(ARG1, ARG2)
Purpose

Returns a vector containing the saturated differences of each set of corresponding
elements of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) integer or unsigned vector whose elements are of kind 1, 2, 4

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The value of each element of the result is the saturated result of subtracting the
value of the corresponding element of ARG2 from the value of the corresponding
element of ARG1.

830 XL Fortran: Language Reference for Big Endian Distributions

VEC_SUM2S(ARG1, ARG2)
Purpose

Returns a vector containing the results of performing a sum across 1/2 vector
operation on the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is of the same type as ARG1.

Result value

The first and third element of the result are 0. The second element of the result
contains the saturated sum of the first and second elements of ARG1 and the second
element of ARG2. The fourth element of the result contains the saturated sum of the
third and fourth elements of ARG1 and the fourth element of ARG2.

VEC_SUM4S(ARG1, ARG2)
Purpose

Returns a vector containing the results of performing a sum across 1/4 vector
operation on the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(1), INTEGER(2), or UNSIGNED(1) vector

ARG2
An INTENT(IN) vector. If ARG1 is an integer vector, then ARG2 is an INTEGER(4)
vector. If ARG1 is an unsigned vector, then ARG2 is an UNSIGNED(4) vector.

Result type and attributes

The result is a vector of the same type as ARG2.

Result value

Assume that the elements of each vector are numbered beginning with 0. If ARG1 is
an INTEGER(1) vector or an UNSIGNED(1) vector, then let m be 4. Otherwise, let m

Chapter 17. Vector intrinsic procedures (IBM extension) 831

be 2. For each element n of the result vector, the value is obtained by adding
elements mn through mn+m-1 of ARG1 and element n of ARG2 using saturated
addition.

VEC_SUMS(ARG1, ARG2)
Purpose

Returns a vector containing the results of performing a sum across vector
operation on the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(4) vector

ARG2
An INTENT(IN) vector of the same type as ARG1

Result type and attributes

The result is a vector of the same type as ARG1.

Result value

The first three elements of the result are 0. The fourth element is the saturated sum
of all the elements of ARG1 and the fourth element of ARG2.

VEC_TRUNC(ARG1)

Purpose

Returns a vector containing the truncated values of the corresponding elements of
the given vector.

Note: VEC_TRUNC is another name for VEC_ROUNDZ. For details, see
“VEC_ROUNDZ(ARG1)” on page 814.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) real vector

Result type and attributes

The result is a vector of the same type as ARG1.

832 XL Fortran: Language Reference for Big Endian Distributions

Result value

Each element of the result contains the value of the corresponding element of ARG1,
truncated to an integral value.

VEC_UNPACKH(ARG1)
Purpose

Unpacks the most significant half of a vector into a vector with larger elements.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) INTEGER(1), INTEGER(2), INTEGER(4), or PIXEL vector.

Result type and attributes

If ARG1 is an INTEGER(1) vector, the result is an INTEGER(2) vector.

If ARG1 is an INTEGER(2) vector, the result is an INTEGER(4) vector.

If ARG1 is an INTEGER(4) vector, the result is an INTEGER(8) vector.

If ARG1 is a pixel vector, then the result is an UNSIGNED(4) vector.

Result value

If ARG1 is an integer vector, the value of each element of the result is the value of
the corresponding element of the most significant half of ARG1.

If ARG1 is a pixel vector, the value of each element of the result is taken from the
corresponding element of the most significant half of ARG1 as follows: all bits in the
first byte of the element of the result are set to the value of the first bit of the
element of ARG1; the least significant 5 bits of the second byte of the element of the
result are set to the value of the next 5 bits in the element of ARG1; the least
significant 5 bits of the third byte of the element of the result are set to the value of
the next 5 bits in the element of ARG1; the least significant 5 bits of the fourth byte
of the element of the result are set to the value of the next 5 bits in the element of
ARG1.

VEC_UNPACKL(ARG1)
Purpose

Unpacks the least significant ("low") half of a vector into a vector with larger
elements.

Class

Elemental function

Chapter 17. Vector intrinsic procedures (IBM extension) 833

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v INTEGER(1)

v INTEGER(2)

v INTEGER(4)

v PIXEL

Result type and attributes

If ARG1 is an INTEGER(1) vector, then the result is an INTEGER(2) vector.

If ARG1 is an INTEGER(2) vector, then the result is an INTEGER(4) vector.

If ARG1 is an INTEGER(4) vector, then the result is an INTEGER(8) vector.

If ARG1 is a pixel vector, then the result is an UNSIGNED(4) vector.

Result value

If ARG1 is an integer vector, then the value of each element of the result is the value
of the corresponding element of the least significant half of ARG1. If ARG1 is a pixel
vector, then the value of each element of the result is taken from the corresponding
element of the least significant half of ARG1 as follows: all bits in the first byte of
the element of the result are set to the value of the first bit of the element of ARG1;
the least significant 5 bits of the second byte of the element of the result are set to
the value of the next 5 bits in the element of ARG1; the least significant 5 bits of the
third byte of the element of the result are set to the value of the next 5 bits in the
element of ARG1; the least significant 5 bits of the fourth byte of the element of the
result are set to the value of the next 5 bits in the element of ARG1.

VEC_XL(ARG1, ARG2)

Purpose

Loads a 16-byte vector from the memory address specified by the displacement
ARG1 and the pointer ARG2.

Note: This function requires the POWER7® or higher architecture.

Class

Pure function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v REAL(4) or REAL(8)

v INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8)

v Vector

834 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

If ARG2 is a vector, the result is of the same type as ARG2; otherwise, the result is a
vector of the ARG2 type.

Result value

VEC_XL adds the displacement provided by ARG1 to the address provided by ARG2
to obtain the effective address for the load operation. It does not truncate the
effective address to a multiple of 16 bytes.

This function loads the result from a specific number of elements at the effective
address for the load operation. The number and the size of elements vary based on
the data type of argument ARG2. For details about the function result value, see the
following table.

Table 63. Function result value

Data type of ARG2 Function result value

INTEGER(1) Loads the result from 16 one-byte elements.

INTEGER(2) Loads the result from 8 two-byte elements.

INTEGER(4) or REAL(4) Loads the result from four 4-byte elements.

INTEGER(8) or REAL(8) Loads the result from two 8-byte elements.

VECTOR Loads the result from corresponding elements.

The order of elements in the function result is different on little-endian systems.

VEC_XL_BE(ARG1, ARG2)
Purpose

Loads a 16-byte vector from the memory address specified by the displacement
ARG1 and the pointer ARG2.

Note: This function requires the POWER7® or higher architecture.

Class

Pure function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v REAL(4) or REAL(8)

v INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8)

v Vector

Result type and attributes

If ARG2 is a vector, the result is of the same type as ARG2; otherwise, the result is a
vector of ARG2 type.

Chapter 17. Vector intrinsic procedures (IBM extension) 835

Result value

VEC_XL_BE adds the displacement provided by ARG1 to the address provided by
ARG2 to obtain the effective address for the load operation. It does not truncate the
effective address to a multiple of 16 bytes.

This function loads the result from a specific number of elements at the effective
address for the load operation function. The number and the size of elements vary
based on the data type of argument ARG2. For details about the function result
value, see the following table.

Table 64. Function result value

Data type of ARG2 Function result value

INTEGER(1) Loads the result from 16 one-byte elements.

INTEGER(2) Loads the result from 8 two-byte elements.

INTEGER(4) or REAL(4) Loads the result from four 4-byte elements.

INTEGER(8) or REAL(8) Loads the result from two 8-byte elements.

VECTOR Loads the result from corresponding elements.

The order of elements in the function result is big-endian, even when the function
is called on little-endian systems.

VEC_XLD2(ARG1, ARG2)
Purpose

Loads a 16-byte vector from two 8-byte elements at the memory address specified
by the displacement ARG1 and the pointer ARG2.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Pure function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v REAL(4) or REAL(8)

v INTEGER(1), INTEGER(2), INTEGER(4), or INTEGER(8)

v Vector

Result type and attributes

If ARG2 is a vector, the result is of the same type as ARG2; otherwise the result is a
vector of the ARG2 type.

836 XL Fortran: Language Reference for Big Endian Distributions

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the affected address to a multiple of 16
bytes.

VEC_XLDS(ARG1, ARG2)
Purpose

Loads an 8-byte element from the memory address specified by the displacement
ARG1 and the pointer ARG2 and then splats it onto a vector.

Class

Pure function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v REAL(8) or INTEGER(8)

v VECTOR(INTEGER(8)), VECTOR(UNSIGNED(8)), or VECTOR(REAL(8))

Result type and attributes

The following table describes the result types of the function.

Table 65. Result types for VEC_XLDS

ARG1 type ARG2 type Result type

integer VECTOR(REAL(8)) VECTOR(REAL(8))

REAL(8)

REAL(8) VECTOR(INTEGER(8))

INTEGER(8)

VECTOR(INTEGER(8))

VECTOR(UNSIGNED(8)) VECTOR(UNSIGNED(8))

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the affected address to a multiple of 16
bytes.

VEC_XLW4(ARG1, ARG2)
Purpose

Loads a 16-byte vector from four 4-byte elements at the memory address specified
by the displacement ARG1 and the pointer ARG2.

Chapter 17. Vector intrinsic procedures (IBM extension) 837

Note: This function requires the POWER7 or higher architecture. It only differs in
semantics from VEC_XLD2 on a little endian machine.

Class

Pure function

Argument type and attributes

ARG1
An INTENT(IN) integer

ARG2
An INTENT(IN) variable. The variable can be any of the following types:
v INTEGER(1), INTEGER(2), INTEGER(4), or REAL(4)

v VECTOR(INTEGER(1)) or VECTOR(INTEGER(2))

v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), or VECTOR(UNSIGNED(4))

v VECTOR(REAL(4))

v VECTOR(PIXEL)

Result type and attributes

If ARG2 is a vector, the result is of the same type as ARG2; otherwise the result is a
vector of the ARG2 type.

Result value

This function adds the displacement and the pointer R-value to obtain the address
for the load operation. It does not truncate the affected address to a multiple of 16
bytes.

VEC_XOR(ARG1, ARG2)

Purpose

Performs a bitwise XOR of the given vectors.

Class

Elemental function

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer or unsigned vector

Result type and attributes

The result is of the same type as ARG1.

Result value

The result is the bitwise XOR of ARG1 and ARG2.

838 XL Fortran: Language Reference for Big Endian Distributions

VEC_XST(ARG1, ARG2, ARG3)

Purpose

Stores the elements of the 16-byte vector ARG1 to the effective address obtained by
adding the displacement provided in ARG2 with the address provided by ARG3. The
effective address is not truncated to a multiple of 16 bytes.

The order of vector elements stored to the effective address may be different on
little-endian systems.

Note: This function requires the POWER7® or higher architecture.

Class

Pure subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector.

ARG2
An INTENT(IN) integer

ARG3
An INTENT(OUT) variable. The variable must be a vector or of type integer or
real as follows:
v If ARG3 is a vector, ARG3 must be of the same type as ARG1.
v If ARG3 is not a vector, and ARG1 is an integer vector or an unsigned vector,

ARG3 must be of integer type with the same kind type parameter as the
elements of ARG1.

v If ARG3 is not a vector and ARG1 is a real vector, ARG3 must be of the same
type and kind as the elements of ARG1.

v If ARG3 is not a vector and ARG1 is a pixel vector, ARG3 must be of type
INTEGER(2).

VEC_XST_BE(ARG1, ARG2, ARG3)

Purpose

Stores the elements of the 16-byte vector ARG1 in big-endian element order to the
effective address obtained by adding the displacement provided in ARG2 with the
address provided by ARG3. The effective address is not truncated to a multiple of 16
bytes.

Note: This function requires the POWER7® or higher architecture.

Class

Pure subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector.

Chapter 17. Vector intrinsic procedures (IBM extension) 839

ARG2
An INTENT(IN) integer

ARG3
An INTENT(OUT) variable. The variable must be a vector or of type integer or
real as follows:
v If ARG3 is a vector, ARG3 must be of the same type as ARG1.
v If ARG3 is not a vector, and ARG1 is an integer vector or an unsigned vector,

ARG2 must be of integer type with the same kind type parameter as the
elements of ARG1.

v If ARG3 is not a vector and ARG1 is a real vector, ARG3 must be of the same
type and kind as the elements of ARG1.

v If ARG3 is not a vector and ARG1 is a pixel vector, ARG3 must be of type
INTEGER(2).

VEC_XSTD2(ARG1, ARG2, ARG3)
Purpose

Puts a 16-byte vector ARG3 as two 8-byte elements to the memory address specified
by the displacement ARG2 and the pointer ARG1.

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the affected address to a multiple of 16
bytes.

Valid only when -qarch is set to target POWER7 processors or higher.

Class

Pure subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector

ARG2
An INTENT(IN) integer

ARG3
An INTENT(OUT) vector of the same type as ARG1

VEC_XSTW4(ARG1, ARG2, ARG3)
Purpose

Puts a 16-byte vector ARG3 as four 4-byte elements to the memory address specified
by the displacement ARG1 and the pointer ARG2.

This function adds the displacement and the pointer R-value to obtain the address
for the store operation. It does not truncate the affected address to a multiple of 16
bytes.

Valid only when -qarch is set to target POWER7 processors or higher.

840 XL Fortran: Language Reference for Big Endian Distributions

Class

Pure subroutine

Argument type and attributes

ARG1
An INTENT(IN) vector of any of the following types:
v VECTOR(INTEGER(1)), VECTOR(INTEGER(2)), VECTOR(INTEGER(4))
v VECTOR(UNSIGNED(1)), VECTOR(UNSIGNED(2)), VECTOR(UNSIGNED(4))
v VECTOR(REAL(4))

v VECTOR(PIXEL)

ARG2
INTENT(IN) integer

ARG3
INTENT(OUT) vector of the same type as ARG1

Chapter 17. Vector intrinsic procedures (IBM extension) 841

842 XL Fortran: Language Reference for Big Endian Distributions

Chapter 18. Language interoperability features

XL Fortran provides a standardized mechanism for interoperating with C based on
the Fortran 2003 Standard. An entity is said to be interoperable if equivalent
declarations of it can be made in the two languages. XL Fortran enforces
interoperability for types, variables, and procedures. Interoperability with the C
programming language allows portable access to many libraries and the low-level
facilities provided by C and allows the portable use of Fortran libraries by
programs written in C. Details of this implementation are discussed in this section.

Interoperability of types

Intrinsic types
XL Fortran provides the ISO_C_BINDING intrinsic module that contains named
constants holding kind type parameter values for intrinsic types. Their names are
shown together with the corresponding C types in Table 66 on page 856. Only
those intrinsic types listed in the table are interoperable; other intrinsic types are
not.

Derived types
XL Fortran provides the ability to define derived types that correspond to C struct
types. A Fortran derived type with the BIND attribute is interoperable with a C
struct type if all of the following conditions are met:
v The Fortran derived type definition is given the BIND(C) attribute explicitly.
v The Fortran derived type and C struct type have the same number of

components.
v The components of the Fortran derived type have types and type parameters

that are interoperable with the types of the corresponding components of the C
struct type, and cannot have the POINTER or ALLOCATABLE attribute.

v The components of the Fortran derived type and of the C struct type are
declared in the same relative positions in their relative type definitions.

For example, the C type myctype, declared below, is interoperable with the Fortran
type myftype, declared below.
typedef struct {

int m, n;
float r;

} myctype;

USE, INTRINSIC :: ISO_C_BINDING
TYPE, BIND(C) :: MYFTYPE

INTEGER(C_INT) :: I, J
REAL(C_FLOAT) :: S

END TYPE MYFTYPE

Note that the names of the corresponding components of the derived type and the
C struct type need not be the same; the names are not significant in determining
whether the Fortran derived type and C struct type are interoperable.

There is no Fortran type that is interoperable with a C struct type that contains a
bit field or that contains a flexible array member. There is no Fortran type that is
interoperable with a C union type.

© Copyright IBM Corp. 1996, 2014 843

Interoperability of variables
A Fortran module variable that has the BIND attribute may interoperate with a C
variable with external linkage.

There need not be an associated C entity for a module variable with the BIND
attribute.

A scalar Fortran variable is interoperable if its type and type parameters are
interoperable and it has neither the POINTER nor the ALLOCATABLE attributes.
An interoperable scalar Fortran variable is interoperable with a scalar C variable if
its type and type parameters are interoperable with the type of the C variable.

A Fortran array variable is interoperable, if its type and type parameters are
interoperable, it is of explicit shape or assumed size, it is not zero-sized, and it
does not have the POINTER or ALLOCATABLE attributes.

A Fortran array is interoperable with a C array, if its size is nonzero and
v Its rank is equal to one and an element of the array is interoperable with an

element of the C array
v Its rank is greater than one and the base types of the two arrays are equivalent

and each of the dimensions correspond.

Because C uses row-major arrays and Fortran uses column-major arrays, a C
array's dimensions must be the reverse of a Fortran array's dimensions.

Interoperable variables in asynchronous communication
(Technical Specification)

Asynchronous communication for a Fortran variable can occur when procedures
that are defined by means other than Fortran are called. You must specify the
ASYNCHRONOUS attribute for the variables that are used for the asynchronous
communication. For example, you must mark a variable with the
ASYNCHRONOUS attribute if the variable is used in a nonblocking Message
Passing Interface (MPI) call.

For the variables in asynchronous communication, the asynchrony is initiated by
the execution of an asynchronous communication initiation procedure, and the
asynchrony is completed by the execution of an asynchronous communication
completion procedure. Between the execution of the initiation and completion
procedures, a pending communication affector exists. The variable that participates
in the asynchronous communication is a pending communication affector. Any
variable whose part is associated with the pending communication affector or with
a part of the pending communication affector is also a pending communication
affector.

Asynchronous communication is either input communication or output
communication.

Restrictions:

v For input communication, a pending communication affector cannot be
referenced, become defined, become undefined, become associated with a
dummy argument that has the VALUE attribute, or have its pointer association
status changed.

v For output communication, a pending communication affector cannot be
redefined, become undefined, or have its pointer association status changed.

844 XL Fortran: Language Reference for Big Endian Distributions

Note: To avoid unnecessary reduction in performance and to limit the scope in
which a variable has the ASYNCHRONOUS attribute, you can use the BLOCK
construct to surround the asynchronous communication initiation and completion
procedures and specify the ASYNCHRONOUS attribute for the communication
affector within the BLOCK construct. See the following example for details.
PROGRAM sum2arrays

IMPLICIT NONE
INCLUDE ’mpif.h’

INTEGER :: mpierr, i
INTEGER :: status(MPI_STATUS_SIZE)
INTEGER, PARAMETER :: DIM = 100
INTEGER, PARAMETER :: TAG_SEND_ARR = 10, TAG_RES_READY = 11
REAL :: arraya(DIM)
REAL :: arrayb(DIM)
INTEGER :: reqs(2)
REAL :: partialSum1 = 0, partialSum2=0

! initialization
CALL MPI_INIT (mpierr)

! Assume there are two tasks in the world communicator:
! Task 0: to compute the sum of arrayb and the sum of square of arrayb
! Task 1: to compute the sum of arraya
IF (rank .eq. 0) THEN

arraya = [(real(i), i=1, DIM, 1)]
BLOCK

ASYNCHRONOUS :: arraya
CALL MPI_ISEND(arraya, DIM, MPI_REAL, 1, TAG_SEND_ARR,

MPI_COMM_WORLD, reqs(1), mpierr)

! While waiting for the arraya to be sent, you
! can do some calculations for arrayb.
arrayb = [(real(i+1*2), i=1, DIM, 1)]
partialSum1 = SUM(arrayb)

CALL MPI_WAIT(reqs(1), status, mpierr)

! Now arraya has been sent. You can modify it.
arraya = arrayb**2
PRINT *, "Sum(b**2) = ", SUM(arraya)

END BLOCK

! Get the sum calculated by task 1.
CALL MPI_RECV(partialSum2, 1, MPI_REAL, 1, TAG_RES_READY,

MPI_COMM_WORLD, status, mpierr)

! The final result is computed by adding the two
! values that are computed by task 0 and task 1.
PRINT *, "Sum(a) + Sum(b) = ", partialSum1 + partialSum2

END IF

CALL MPI_FINALIZE(mpierr)
END

Related information
v “ASYNCHRONOUS” on page 290

Interoperability of common blocks
A C variable with external linkage can interoperate with a common block that has
the BIND attribute.

Chapter 18. Language interoperability features 845

If a common block has the BIND attribute, it must have the BIND attribute and
the same binding label in each scoping unit in which it is declared. A C variable
with external linkage interoperates with a common block with the BIND attribute
if:
v The C variable is of a struct type and the variables that are members of the

common block are interoperable with corresponding components of the struct
type, or

v The common block contains a single variable, and the variable is interoperable
with the C variable.

There need not be an associated C entity for a common block with the BIND
attribute.

Interoperability of procedures
A Fortran procedure is interoperable if its interface is interoperable. A Fortran
procedure interface is interoperable if it has the BIND attribute. A Fortran
procedure interface is interoperable with a C function prototype if:
v The interface has the BIND(C) attribute.
v The interface describes a function whose result variable is a scalar that is

interoperable with the result of the prototype, or the interface describes a
subroutine, and the prototype has a result type of void.

v The number of dummy arguments of the interface is equal to the number of
formal parameters of the prototype.

v Any dummy argument with the VALUE attribute is interoperable with the
corresponding formal parameter of the prototype.

v Any dummy argument without the VALUE attribute corresponds to a formal
parameter of the prototype that is of a pointer type, and satisfies one of the
following conditions:
– The dummy argument is interoperable with an entity of the referenced type

of the formal parameter.
– TS The dummy argument is of an assumed-type and is neither

assumed-shape nor assumed-rank. It corresponds to a formal parameter that
is a pointer to void. TS

– TS The dummy argument is allocatable, assumed-rank, or a pointer
without the CONTIGUOUS attribute, and it corresponds to a formal
parameter of the prototype that is a pointer to type CFI_cdesc_t. TS

v The prototype does not have variable arguments.

In the following example, the Fortran procedure interface:
INTERFACE

FUNCTION func(i, j, k, l, m) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_SHORT) :: func
INTEGER(C_INT), VALUE :: i
REAL(C_DOUBLE) :: j
INTEGER(C_INT) :: k, l(10)
TYPE(C_PTR), VALUE :: m

END FUNCTION func

END INTERFACE

is interoperable with the C function prototype:
short func(int i, double *j, int *k, int l[10], void *m);

846 XL Fortran: Language Reference for Big Endian Distributions

A C data pointer might correspond to a Fortran dummy argument of type C_ PTR
or to a Fortran scalar that does not have the VALUE attribute. In the example, the
C pointers j and k correspond to the Fortran scalars J and K. The C pointer m
corresponds to the Fortran dummy argument M of type C_ PTR.

Optional arguments (Technical Specification)
Procedures that have optional dummy arguments can interoperate with C
functions. You can specify the OPTIONAL attribute for a dummy argument in a
procedure interface that has the BIND(C) attribute.

With this feature, you can call Fortran procedures with optional dummy arguments
from C. You can also call a C function, with a corresponding interoperable Fortran
interface that has one or more optional dummy arguments, from Fortran. For
example, you can use the following subroutine interface:
INTERFACE

SUBROUTINE sub(arg) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), OPTIONAL :: arg

END SUBROUTINE
END INTERFACE

Restriction: An interoperable dummy argument cannot have both the OPTIONAL
and VALUE attributes.

Allocatable and pointer arguments (Technical Specification)
Procedures that have allocatable or pointer dummy arguments can interoperate
with C functions. You can specify the ALLOCATABLE or POINTER attributes for
a dummy argument in a procedure interface that has the BIND(C) attribute.

With this feature, you can perform the following tasks:
v Call Fortran procedures with allocatable and pointer dummy arguments from C.
v Pass Fortran objects with ALLOCATABLE or POINTER attributes to a C

function.
v Construct C descriptors to represent allocatable and pointer objects and pass

them back to Fortran.

Restrictions:

v You cannot specify the ALLOCATABLE or POINTER attributes for a
default-initialized dummy argument of a procedure that has the BIND(C)
attribute.

v If the allocatable or pointer dummy argument in an interoperable interface is of
type character, its character length must be deferred.

v A pointer dummy argument in an interoperable interface cannot have the
CONTIGUOUS attribute.

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “BIND (Fortran 2003)” on page 295
v “Character” on page 42
v “CONTIGUOUS (Fortran 2008)” on page 321
v “POINTER (Fortran 90)” on page 421

Chapter 18. Language interoperability features 847

Rules for allocatable and pointer arguments
The following rules apply when arguments for an interoperable procedure have
ALLOCATABLE or POINTER attributes.

Change of allocation or association status

The following rules apply to the change of allocation and association status:
v Within a C function, you can allocate or deallocate an allocatable object only by

calling the CFI_allocate and CFI_deallocate functions.
v You can associate a Fortran pointer with a target by calling the CFI_allocate

function.
v If you call the CFI_allocate or CFI_deallocate functions on a C descriptor, the

allocation status of the Fortran variable that the C descriptor describes and the
allocation status of any associated allocatable variable change accordingly.

Use of the C descriptor

If the address of a C descriptor is a formal parameter that corresponds to a Fortran
actual argument or a C actual argument that corresponds to a Fortran dummy
argument, obey the following rules:
v If the corresponding dummy argument of the C descriptor in the Fortran

interface has the INTENT(IN) attribute, you cannot make any changes to the
contents or location of the C descriptor, including establishment and update.

v If the corresponding dummy argument of the C descriptor in the Fortran
interface has both of the POINTER and INTENT(OUT) attributes, you can
access the base_addr member of the C descriptor only after you change the
value of it.

Argument association

The following rules apply to argument association:
v If a dummy argument in an interoperable interface is allocatable or is a pointer,

the corresponding C formal parameter is interpreted as the address of a C
descriptor.

v If the actual argument is an array and the dummy argument is allocatable or is a
pointer, the bounds of the dummy argument are assumed from the actual
argument.

v When a Fortran procedure with an allocatable dummy argument of
INTENT(OUT) attribute is called by a C function, and the actual argument in
the C function is the address of a C descriptor that describes an allocated
allocatable variable, the variable is deallocated on entry to the Fortran
procedure.

v When a C function is called by a Fortran procedure from an interface with an
allocatable dummy argument of INTENT(OUT) attribute, and the actual
argument in the reference to the C function is an allocated allocatable variable,
the variable is deallocated on invocation; in other words, the variable is
deallocated before the execution of the C function begins.

Lifetimes

Be watchful of the following rules about the lifetime of interoperable allocatable
and pointer arguments:

848 XL Fortran: Language Reference for Big Endian Distributions

v If the lifetime of a C descriptor for an allocatable object that was established by
C ends before the program exits, the object must be deallocated before the
lifetime of its C descriptor ended.

v If a Fortran pointer is associated with a C object, the association status of the
Fortran pointer becomes undefined when the lifetime of the C object ends.

v All the C descriptors and C pointers that are associated to any part of a Fortran
object become undefined, and any further use of the C descriptors and C
pointers becomes undefined behavior in any of the following circumstances:
– The Fortran object is deallocated.
– The execution of host instance of the Fortran object is completed.
– The association status of the Fortran object becomes undefined.

Value of the member fields of the C descriptor

The following rules apply to the value of the member fields of the C descriptor:
v If the C descriptor represents a deallocated allocatable variable or a disassociated

pointer, the value of the base_addr field is null pointer.
v If the C descriptor represents an array pointer or allocatable array, the

lower_bound value of each element in the dim member of the descriptor is
determined by argument association, allocation, or pointer association.

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “INTENT” on page 397
v “POINTER (Fortran 90)” on page 421

Example: Allocatable and pointer arguments
This example shows how to use allocatable array and array pointer arguments in
interoperable procedures to multiply the following matrixes. One procedure is
defined on the Fortran side and is called from the C side.
3, 5		1 0
6, 7	X	
-1, 2		2 1

On the Fortran side, the matrix_mult_fortran procedure that multiplies the
matrixes is defined as follows.
SOUBROUTINE matrix_mult_fortran(res, a, b) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING
REAL(C_DOUBLE), ALLOCATABLE, INTENT(OUT) :: res(:,:) !Allocatable array
REAL(C_DOUBLE), POINTER, INTENT(IN) :: a(:,:) !Array pointer
REAL(C_DOUBLE), POINTER, INTENT(IN) :: b(:,:) !Array pointer
INTEGER(8) :: ub1, ub2

ub1 = UBOUND(a,1) - LBOUND(a,1)+1
ub2 = UBOUND(b,2) - LBOUND(b,2)+1
ALLOCATE(res(ub1, ub2))
res = MATMUL(a, b)

END

On the C side, the matrix_mult_fortran procedure that is defined on the Fortran
side is first declared and called in the main function.
#include <stdio.h>
#include <assert.h>
#include "ISO_Fortran_binding.h"
// Prototype for the function that is defined on the Fortran side.
void matrix_mult_fortran(CFI_cdesc_t * res, CFI_cdesc_t * a, CFI_cdesc_t * b);

Chapter 18. Language interoperability features 849

// Function to print a Fortran array described by a CFI descriptor
void print2DFortranArrayOfDoubles(CFI_cdesc_t * d);

int main()
{

CFI_CDESC_T(2) a, b, res;
CFI_cdesc_t * desc_a = (CFI_cdesc_t *) &a;
CFI_cdesc_t * desc_b = (CFI_cdesc_t *) &b;
CFI_cdesc_t * desc_res = (CFI_cdesc_t *) &res;
// Because Fortran is column major and C is row major, the input matrixes
// defined on the C side are transposed.
double matrixa[2][3] = { {3, 6, -1}, {5, 7, 2} };
double matrixb[2][2] = { {1, 2}, {0, 1} };
const CFI_index_t a_extents[2] = { 3, 2 };
const CFI_index_t b_extents[2] = { 2, 2 };
int rc;
rc = CFI_establish(desc_a,

matrixa,
CFI_attribute_pointer,
CFI_type_double,
sizeof(double),
(CFI_rank_t)2,
a_extents);

// Make sure that the result is successful.
assert(CFI_SUCCESS == rc);

rc = CFI_establish(desc_b,
matrixb,
CFI_attribute_pointer,
CFI_type_double,
sizeof(double),
(CFI_rank_t)2,
b_extents);

assert(CFI_SUCCESS == rc);

rc = CFI_establish(desc_res,
NULL,
CFI_attribute_allocatable,
CFI_type_double,
sizeof(double),
(CFI_rank_t)2,
NULL);

assert(CFI_SUCCESS == rc);

// Call the Fortran procedure to multiply the matrix.
matrix_mult_fortran(desc_res, desc_a, desc_b);

assert(desc_res->base_addr);

// Call the C function to print the result.
print2DFortranArrayOfDoubles(desc_res);

rc = CFI_deallocate(desc_res);
assert(CFI_SUCCESS == rc);
return 0;

}

The print2DFortranArrayOfDoubles function that regulates the display of the
matrix is also defined on the C side.
void print2DFortranArrayOfDoubles(CFI_cdesc_t * d)
{

CFI_index_t extents[2];
CFI_index_t strides[2];
int i, j;
char * prow;

850 XL Fortran: Language Reference for Big Endian Distributions

prow = (char *)d -> base_addr;
extents[0] = d->dim[0].extent;
extents[1] = d->dim[1].extent;
strides[0] = d->dim[0].sm;
strides[1] = d->dim[1].sm;

// Print the values of the array one row at a time.
// Note: This is not cache friendly, because Fortran arrays are column major.

for(i = 0; i < extents[0]; i++)
{

char * tp = prow;
for(j = 0; j < extents[1]; j++)
{

printf("%f ", *(double *)tp);
tp += strides[1];

}
prow += strides[0];
printf("\n");

}
}

The output is as follows:
13.0 5.0
20.0 7.0
3.0 2.0

Allocatable and pointer arguments in parallel environments
When you use interoperable procedures with allocatable and pointer arguments in
parallel environments, pay attention to the following instances:
v When an actual argument is associated with an allocatable or pointer dummy

argument, XL Fortran might create temporary objects to convert a C descriptor
to an internal format or vice versa. These temporary copies might be created
locally, and each thread might have its own copy of the descriptor. Synchronize
read and write operations that affect descriptor fields before you proceed.

v When an allocatable or pointer entity is passed from a non-BIND(C) procedure
to a BIND(C) procedure to be allocated or to associate the pointer, the updates
to the descriptor for that entity will become visible to the non-BIND(C)
procedure only after the execution of the BIND(C) procedure is completed.
Similarly, when an allocatable or pointer dummy argument of a BIND(C)
procedure is passed to a non-BIND(C) procedure to be allocated or to associate
the pointer, the updates to the descriptor for that entity will become visible to
the BIND(C) procedure only after the execution of the non-BIND(C) procedure
is completed.

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “BIND (Fortran 2003)” on page 295
v “POINTER (Fortran 90)” on page 421

Assumed-type objects (Technical Specification)
To facilitate the interoperability with formal parameters of type void* in C
procedures, assumed-type objects are introduced in Fortran. Assumed-type objects
are entities that are declared with the TYPE(*) specifier. They are unlimited
polymorphic, and their dynamic types and type parameters are assumed from the
corresponding actual arugments. See the following example:
! example1f.f
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE

Chapter 18. Language interoperability features 851

INTEGER(C_SHORT) :: i_short
INTEGER(C_INT) :: i_int
INTEGER(C_LONG) :: i_long

INTERFACE
SUBROUTINE c_func(a, flag) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
TYPE(*) :: a
INTEGER(C_INT), VALUE :: flag
END SUBROUTINE c_func

END INTERFACE

i_short = 2
i_int = 4
i_long = 4

CALL c_func(i_short, 1)
CALL c_func(i_int, 2)
CALL c_func(i_long, 3)

END

// example1c.c
#include <stdio.h>
void c_func(void* a, int flag) {

if(flag == 1)
printf("Type is c_short %hd\n",*(short*)a);

else if(flag == 2)
printf("Type is c_int %d\n",*(int*)a);

else if(flag == 3)
printf("Type is c_long %ld\n",*(long*)a);

return;
}

The output of the example is as follows:
Type is c_short 2
Type is c_int 4
Type is c_long 4

In this example, function c_func is defined in the C program, and it is called by a
Fortran procedure. Variable a of type void* is a formal parameter of function
c_func in the C program. The corresponding dummy argument of a in the Fortran
procedure interface is specified by the TYPE(*) specifier, so the dummy argument
is of an assumed type. The dynamic type of variable a is determined by the actual
argument when function c_func is called. As shown, function c_func is called three
times with the actual parameters i_short, i_int, and i_long passed in, so the type
of variable a is deduced to c_short, c_int, and c_long accordingly.

Note: Fortran procedures cannot determine the actual types of their assumed-type
arguments.

Restrictions:

v An assumed-type object can neither be an explicit-shaped array nor have any of
the following attributes:
– ALLOCATABLE

– INTENT(OUT)

– POINTER

– VALUE

v An assumed-type variable name cannot be used in a designator or an expression
except in the following cases:

852 XL Fortran: Language Reference for Big Endian Distributions

– As an actual argument that corresponds to a dummy argument of an
assumed type

– As an actual argument that corresponds to the first dummy argument of any
of the following intrinsic procedures:
- C_LOC

- IS_CONTIGUOUS

- LBOUND

- PRESENT

- RANK

- SHAPE

- SIZE

- UBOUND

v An assumed-type actual argument that corresponds to an assumed-rank dummy
argument must be of assumed-shape or assumed-rank.

v An assumed-type dummy argument cannot correspond to an actual argument of
a derived type that has type parameters, type-bound procedures, or final
subroutines.

Assumed-rank objects (Technical Specification)
To facilitate the interoperability with C functions that accept arguments of arbitrary
rank including scalar arguments, assumed-rank objects are introduced in Fortran.
For the definition of assumed-rank objects, see “Assumed-rank objects (Technical
Specification)” on page 84.

Rules

If a C descriptor is for a nonallocatable nonpointer assumed-rank object, the
following rules apply:
v The attribute member of the C descriptor is CFI_attribute_other.
v The lower_bound member of each element of the dim member of the C descriptor

is zero.

The lower bound of every dimension of a nonallocatable nonpointer assumed-rank
object on the Fortran side is always one.

If a dummy argument in an interoperable interface is assumed-rank, the
corresponding C formal parameter is interpreted as the address of a C descriptor.

For an interoperable procedure with a Fortran interface that has an assumed-rank
dummy argument with the CONTIGUOUS attribute, the associated actual
argument can be noncontiguous.
v If the procedure is invoked from Fortran or the procedure is a Fortran

procedure, XL Fortran ensures that the assumed-rank dummy argument is
contiguous.

v If the procedure is invoked from C and the procedure is a C procedure, the C
procedure must handle the noncontiguous arguments that might be passed to it.

Restrictions:

v If a procedure has an assumed-rank dummy argument, the procedure must have
an explicit interface.

Chapter 18. Language interoperability features 853

v If an object is passed to a Fortran procedure as a nonallocatable nonpointer
assumed-rank dummy argument, the lifetime of the object cannot end before the
return from the procedure call.

v In the following situations, the C descriptor cannot be modified:
– Its address is a formal parameter that corresponds to a Fortran actual

argument and the corresponding dummy argument in the Fortran interface is
for a nonallocatable nonpointer assumed-rank object.

– Its address is a C actual argument that corresponds to a Fortran dummy
argument and the corresponding dummy argument in the Fortran interface is
for a nonallocatable nonpointer assumed-rank object.

Examples

This example calls the do_square() function from the Fortran side to calculate the
square of every second element of each array, such as scalar objects,
one-dimensional, and two-dimensional arrays.
PROGRAM mysquare

USE, INTRINSIC :: iso_c_binding
IMPLICIT NONE

INTERFACE
SUBROUTINE do_square(x) BIND(C)

IMPORT
INTEGER(C_INT), INTENT(INOUT) :: x(..)

END
END INTERFACE

INTEGER :: i
INTEGER(C_INT) :: v_scalar = -1
INTEGER(C_INT), TARGET :: v_1d(10) = [(i, i=1,10,1)]
INTEGER(C_INT), TARGET :: v_2d(10,3) = RESHAPE([(i, i=1,30,1)], [10,3])
INTEGER(C_INT), POINTER :: p_1d(:), p_2d(:,:)

PRINT *, "before value of scalar:", v_scalar
PRINT *, "before value of vector:", v_1d
PRINT *, "before value of 2D:", v_2d

! Square the scalar value.
CALL do_square(v_scalar)

! Square every second element of each array.
p_1d => v_1d(::2)
p_2d => v_2d(::2,::2)
CALL do_square(p_1d)
CALL do_square(p_2d)

PRINT *, "after value of scalar:", v_scalar
PRINT *, "after value of vector:", v_1d
PRINT *, "after value of 2D:", v_2d

END

The do_square() function is defined as follows on the C side:
#include <assert.h>
#include "ISO_Fortran_binding.h"

void do_square(CFI_cdesc_t * x)
{

assert(x->type == CFI_type_int);

switch (x->rank)

854 XL Fortran: Language Reference for Big Endian Distributions

{
case 0:

{
int v = *(int *)x->base_addr;
*(int *)x->base_addr = v * v;

}
break;

case 1:
{

char * p = (char *)x->base_addr;
int i;

char * tp = p;
for(i = 0; i < x->dim[0].extent; i++)
{

int v = *(int *)tp;
*(int *)tp = v * v;
tp += x->dim[0].sm; // Advance to the next element.

}
}
break;

case 2:
{

CFI_index_t extents[2];
CFI_index_t strides[2];
int i, j;
char * p = (char *)x->base_addr;

extents[0] = x->dim[0].extent;
extents[1] = x->dim[1].extent;
strides[0] = x->dim[0].sm;
strides[1] = x->dim[1].sm;

for(i = 0; i < extents[1]; i++)
{

char * tp = p;
for(j = 0; j < extents[0]; j++)
{

int v = *(int *)tp;
*(int *)tp = v * v;
tp += strides[0]; // Advance to the next element in dimension 1.

}
p += strides[1]; // Advance to the next element in dimension 2.

}
}
break;

default:
assert(0);
break;

}

return;
}

The output is as follows:
before value of scalar: -1
before value of vector: 1 2 3 4 5 6 7 8 9 10
before value of 2D: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
after value of scalar: 1
after value of vector: 1 2 9 4 25 6 49 8 81 10
after value of 2D: 1 2 9 4 25 6 49 8 81 10 11 12 13 14 15 16 17 18 19 20 441 22 529 24 625 26 729 28 841 30

Chapter 18. Language interoperability features 855

Related information
v “Assumed-rank objects (Technical Specification)” on page 84
v “RANK(A) (Technical Specification)” on page 679

The ISO_C_BINDING module
The ISO_C_BINDING module provides access to named constants that represent
kind type parameters of data representations compatible with C types, the derived
type C_PTR corresponding to any C data pointer type, the derived type
C_FUNPTR corresponding to any C function pointer type, and four procedures.

Constants for use as kind type parameters
Table 1 shows the interoperability between Fortran intrinsic types and C types. A
Fortran intrinsic type with particular kind type parameter values is interoperable
with a C type if the type and kind type parameter value are listed in the same row
as that C type; if the type is character, interoperability also requires that the length
type parameter be omitted or be specified by a constant expression whose value is
one. A combination of Fortran type and type parameters that is interoperable with
a C type listed in the table is also interoperable with any unqualified C type that is
compatible with the listed C type.

Table 66. Interoperable Fortran and C types

Fortran Type
Named Constant
(kind type parameter) Value C Type

INTEGER C_SIGNED_CHAR 1 signed char

C_SHORT 2 short

C_INT 4 int

C_LONG 4 (with -q32)
8 (with -q64)

long

C_LONG_LONG 8 long long

C_SIZE_T 4 (with -q32)
8 (with -q64)

size_t

C_INTPTR_T 4 (with -q32)
8 (with -q64)

intptr_t

C_INTMAX_T 8 intmax_t

C_INT8_T 1 int8_t

C_INT16_T 2 int16_t

C_INT32_T 4 int32_t

C_INT64_T 8 int64_t

C_INT_LEAST8_T 1 int_least8_t

C_INT_LEAST16_T 2 int_least16_t

C_INT_LEAST32_T 4 int_least32_t

C_INT_LEAST64_T 8 int_least64_t

C_INT_FAST8_T 1 int_fast8_t

C_INT_FAST8_T 4 int_fast8_t

C_INT_FAST16_T 4 int_fast16_t

856 XL Fortran: Language Reference for Big Endian Distributions

Table 66. Interoperable Fortran and C types (continued)

Fortran Type
Named Constant
(kind type parameter) Value C Type

C_INT_FAST32_T 4 int_fast32_t

C_INT_FAST64_T 8 int_fast64_t

REAL C_FLOAT 4 float

C_DOUBLE 8 double

C_LONG_DOUBLE 16 long double

C_FLOAT_COMPLEX 4 float _Complex

C_DOUBLE_COMPLEX 8 double _Complex

C_LONG_DOUBLE_COMPLEX 16 long double
_Complex

LOGICAL C_BOOL 1 _Bool

CHARACTER C_CHAR 1 char

For example, the type integer with a kind type parameter of C_SHORT is
interoperable with the C type short or any C type derived (via typedef) from short.

Note:

1. The named constants in the ISO_C_BINDING module are of type INTEGER(4).
2. In order for any Fortran COMPLEX entity to be interoperable with a

corresponding C _Complex entity appearing in C code compatible with gcc, the
Fortran code must be compiled with -qfloat=complexgcc.

3. Fortran REAL(C_LONG_DOUBLE) and
COMPLEX(C_LONG_DOUBLE_COMPLEX) entities are only interoperable
with the corresponding C types if the C code is compiled with an option that
enables 128-bit long doubles.

4. Fortran integer entities with kind type parameter values of C_LONG_LONG,
C_INT64_T, C_INT_LEAST64_T, C_INT_FAST64_T, and C_INTMAX_T are only
interoperable with the corresponding C types if the C compiler supports long
long int types (-qlonglong in the XL C/C++ compiler).

Character constants
The following character constants are provided for compatibility with some
commonly used C characters that are represented using escape sequences:

Table 67. Fortran named constants and C characters

Fortran Named Constant Definition C Character

C_NULL_CHAR null character '\0'

C_ALERT alert '\a'

C_BACKSPACE backspace '\b'

C_FORM_FEED form feed '\f'

C_NEW_LINE new line '\n'

C_CARRIAGE_RETURN carriage return '\r'

Chapter 18. Language interoperability features 857

Table 67. Fortran named constants and C characters (continued)

Fortran Named Constant Definition C Character

C_HORIZONTAL_TAB horizontal tab '\t'

C_VERTICAL_TAB vertical tab '\v'

Other constants
The constant C_NULL_PTR is of type C_PTR; it has the value of a C null data
pointer. The constant C_NULL_FUNPTR is of type C_FUNPTR; it has the value of
a C null function pointer.

Types
The type C_PTR is interoperable with any C data pointer type. The type
C_FUNPTR is interoperable with any C function pointer type. They are both
derived types with private components.

Procedures
A C procedure argument is often defined in terms of a C address. The
ISO_C_BINDING module provides the following procedures.

The C_ASSOCIATED function is provided so that Fortran programs can compare
C addresses. The C_F_POINTER subroutine provides a means of associating a
Fortran pointer with the target of a C pointer. The C_F_PROCPOINTER
subroutine provides a means of associating a Fortran procedure pointer with the
target of a C function pointer. The C_FUNLOC and C_LOC functions are provided
so that Fortran applications can determine the appropriate value to use with C
facilities. F2008 The C_SIZEOF function is provided so that Fortran programs
can get the size of data entities that are interoperable with C objects. F2008

C_ASSOCIATED(C_PTR_1[, C_PTR_2])
Purpose

Indicates the association status of C_PTR_1, or whether C_PTR_1 and C_ PTR_2
are associated with the same entity.

Class

Inquiry function

Argument type and attributes

C_PTR_1
Scalar of type C_PTR or C_FUNPTR.

C_PTR_2
An optional scalar of the same type as C_PTR_1.

Result type and attributes

Default logical

Result value
v If C_PTR_2 is absent, then the result is false if C_PTR_1 is a C null pointer;

otherwise, it has a value of true.

858 XL Fortran: Language Reference for Big Endian Distributions

v If C_PTR_2 is present, then the result is false if C_PTR_1 is a C null pointer.
Otherwise, the result is true if C_PTR_1 compares equal to C_PTR_2, and false
otherwise.

C_F_POINTER(CPTR, FPTR [, SHAPE])
Purpose

Associates a data pointer with the target of a C pointer and specifies its shape.

Class

Subroutine

Argument type and attributes

CPTR An INTENT(IN) argument; a scalar and of type C_PTR.

FPTR An INTENT(OUT) argument that is a pointer.

SHAPE
An optional INTENT(IN) argument of type integer and rank one. If
present, its size equals the rank of FPTR. SHAPE must be present if and
only if FPTR is an array.

Rules

If the value of CPTR is the C address of an interoperable data entity, then:
v FPTR has type and type parameters that are interoperable with the type of the

entity.
v FPTR becomes pointer associated with the target of CPTR.
v If FPTR is an array, its shape is specified by SHAPE, and each lower bound is 1.

Otherwise, the value of CPTR will be the result of a reference to C_LOC with a
noninteroperable argument X. X (or its target) cannot have been deallocated or
have become undefined due to the execution of a RETURN or END statement
since the reference to C_LOC. FPTR is a nonpolymorphic, scalar pointer with the
same type and type parameters as X. It becomes pointer-associated with X (or its
target if X is a pointer).

C_F_PROCPOINTER(CPTR, FPTR)
Purpose

Associates a procedure pointer with the target of a C function pointer.

Class

Subroutine

Argument type and attributes

CPTR An INTENT(IN) scalar of type C_FUNPTR. It must either be the C
address of an interoperable procedure or the result of module procedure
C_FUNLOC in the ISO_C_BINDING intrinsic module.

FPTR An INTENT(OUT) procedure pointer. If CPTR is the C address of an
interoperable procedure, the interface of FPTR must be interoperable with
the prototype that describes the target of CPTR; otherwise, the interface of
FPTR must have the same characteristics as the target of CPTR.

Chapter 18. Language interoperability features 859

Result

FPTR is a pointer associated with the target of CPTR.
Related information

“C_FUNLOC(X)”

C_FUNLOC(X)
Purpose

Returns the C address of X.

Class

Inquiry function

Argument type and attributes

X An interoperable procedure.

Result type and attributes

Scalar of type C_FUNPTR

Result value

A value of type C_FUNPTR that represents the C address of X.

C_LOC(X)
Purpose

Returns the address of X.

Class

Inquiry function

Argument type and attributes

X Must be one of the following:
v an interoperable, nonpointer, nonallocatable data variable with the

TARGET attribute.
v an allocated allocatable data variable with the TARGET attribute and

interoperable type and type parameters and not a zero-sized array.
v F2008 a contiguous array. F2008

v an associated scalar pointer with interoperable type and type
parameters.

v a nonallocatable, nonpointer, scalar variable that has the TARGET
attribute.

v an allocated, nonpolymorphic, allocatable scalar pointer that has the
TARGET attribute.

v an associated, nonpolymorphic, scalar pointer.

Result type and attributes

Scalar of type C_PTR

860 XL Fortran: Language Reference for Big Endian Distributions

Result value

A value of type C_PTR that represents the address of X.

C_SIZEOF(X) (Fortran 2008)
Purpose

Returns the size of X in bytes.

Class

Inquiry function

Argument type and attributes

X An interoperable data entity that is not an assumed-size array.

Result type and attributes

Scalar integer of kind C_SIZE_T

Result value
v If X is a scalar, the result value is the result of applying the sizeof operator (in C

language) to a C object. The type of that C object is interoperable with the type
and type parameter of X.

v If X is an array, the result value is the result of applying the sizeof operator (in C
language) to a C object, multiplied by the number of elements in X. The type of
that C object is interoperable with the type and type parameter of X.

The ISO_Fortran_binding.h header file (Technical Specification)
The ISO_Fortran_binding.h header file provides C type definitions, structures,
macros, and functions for creating, accessing, and manipulating certain Fortran
entities from C.

The header file defines a standard C structure, the C descriptor, that allows
interoperability with Fortran allocatable and pointers variables.

Rules

The ISO_Fortran_binding.h header file can be included in any order relative to
standard C headers.

The ISO_Fortran_binding.h header file can be included multiple times in the same
scope.

C source files that include ISO_Fortran_binding.h must not use any names that
start with CFI_ but are not defined in the ISO_Fortran_binding.h header file.

C source files that include ISO_Fortran_binding.h must not define any structure
names from the ISO_Fortran_binding.h header file as macro names.

A C descriptor can be initialized, updated, or copied only by calling the
CFI_allocate, CFI_deallocate, CFI_establish, CFI_section, CFI_select_part, and
CFI_setpointer functions.

Chapter 18. Language interoperability features 861

If the address of a C descriptor is a formal parameter that corresponds to a Fortran
actual argument, the following rules apply:
v If the corresponding dummy argument in the Fortran interface has the

INTENT(IN) attribute or the C descriptor is for a nonallocatable nonpointer
object, the C descriptor must not be modified.

v If the dummy argument in the Fortran interface that corresponds to the
base_addr member of the C descriptor has the POINTER and INTENT(OUT)
attributes, the base_addr member of the C descriptor must not be accessed
before it is given a value.

Accessing the ISO_Fortran_binding.h header file

The ISO_Fortran_binding.h header file is in /opt/ibm/xlf/15.1.0/include/
ISO_Fortran_binding.h.

To access the header file in your C program, you must compile your program with
the -I option. For example, to compile myprogram.c, enter:
xlf myprogram.f -I/opt/ibm/xlf/15.1.0/include

You should link using XL Fortran to ensure that the required libraries are linked in:
xlf2008 myprogram.o

Type definitions and structures
The ISO_Fortran_binding.h header file provides the following C type definitions
and structures.

CFI_attribute_t

A type that describes the attribute code of a C descriptor. The valid values are as
follows:

Table 68. Valid values for CFI_attribute_t

CFI_attribute_pointer CFI_attribute_allocatable CFI_attribute_other

CFI_index_t

A signed long integer type that can describe array subscripts.

CFI_rank_t

An unsigned integer type that can represent values in the range 0 to CFI_MAX_RANK
inclusive.

CFI_type_t

A type that describes the type of the object that is described by a C descriptor.

The valid values are as follows:

862 XL Fortran: Language Reference for Big Endian Distributions

Table 69. Valid values for CFI_type_t

CFI_type_signed_char
CFI_type_short
CFI_type_int
CFI_type_long
CFI_type_long_long
CFI_type_float
CFI_type_double
CFI_type_long_double
CFI_type_float_Complex
CFI_type_double_Complex
CFI_type_long_double_Complex
CFI_type_Bool
CFI_type_char
CFI_type_cptr
CFI_type_struct
CFI_type_other

CFI_type_size_t
CFI_type_int8_t
CFI_type_int16_t
CFI_type_int32_t
CFI_type_int64_t
CFI_type_int_least8_t
CFI_type_int_least16_t
CFI_type_int_least32_t
CFI_type_int_least64_t
CFI_type_int_fast8_t
CFI_type_int_fast16_t
CFI_type_int_fast32_t
CFI_type_int_fast64_t
CFI_type_intmax_t
CFI_type_intptr_t
CFI_type_ptrdiff_t

CFI_dim_t

A type definition that describes the lower bound, extent, and stride of an array
dimension. It contains the following structure members:

CFI_index_t lower_bound
The lower bound of the dimension that is described.

CFI_index_t extent
The number of elements in the dimension that is described.

CFI_index_t sm
The stride of the dimension that is described. The stride is the number of
bytes between the beginnings of successive elements along a dimension.

CFI_cdesc_t

A type definition that describes a C descriptor. It contains the following structure
members:

void *base_addr
The base address of the data object that is described. For deallocated
allocatable objects, base_addr is NULL.

size_t elem_len

v For scalars: The size in bytes of the data object that is described.
v For arrays: The size in bytes of one element of the array.

int version
The version number of the C descriptor. Currently, the only valid value is
available by using the CFI_VERSION macro.

CFI_attribute_t attribute
The attribute code of the C descriptor. For the valid values for attribute,
see Table 68 on page 862.

CFI_type_t type
The type code of the C descriptor. Describes the type of the object that is
described by the C descriptor. For the valid values for type, see Table 69.

CFI_rank_t rank
The rank of the object that is described by the C descriptor. Its value must

Chapter 18. Language interoperability features 863

be in the range 0 ≤ rank ≤ CFI_MAX_RANK. A value of 0 indicates that the
object is a scalar. Otherwise, the object is an array.

CFI_dim_t dim[]
An array of size rank that describes the lower bound, extent, and stride of
each dimension.

There is a reserved area between rank and dim. The size of the reserved area is 12
words in 32-bit mode and 9 words in 64-bit mode.

Macros
The ISO_Fortran_binding.h header file defines the following macros.

CFI_CDESC_T(rank)
The CFI_CDESC_T macro evaluates to an unqualified type of suitable size
and alignment to define a C descriptor of rank rank. Pointers to variables
that are declared using CFI_CDESC_T can be cast to CFI_cdesc_t *. For more
information, see “Examples.”

Variables that are declared using CFI_CDESC_T must not have an initializer.
They must be initialized using CFI_establish before they are used for the
first time.

CFI_MAX_RANK
The maximum rank that is supported in C descriptors. XL Fortran supports
a maximum rank of 20.

CFI_VERSION
The C descriptor version.

Macros for error indicators

The macros for error indicators are as follows:

Table 70. Macros for error indicators

CFI_SUCCESS
CFI_ERROR_BASE_ADDR_NULL
CFI_ERROR_BASE_ADDR_NOT_NULL
CFI_INVALID_ELEM_LEN
CFI_INVALID_RANK
CFI_INVALID_TYPE

CFI_INVALID_ATTRIBUTE
CFI_INVALID_EXTENT
CFI_INVALID_DESCRIPTOR
CFI_ERROR_MEM_ALLOCATION
CFI_ERROR_OUT_OF_BOUNDS

Examples

The following C code defines a as a C descriptor variable of rank 10, and it defines
the ca pointer to a. To establish the C descriptor, it passes pointer ca to
CFI_establish().
CFI_CDESC_T(10) a;
CFI_cdesc_t *ca = (CFI_cdesc_t *) &a;
CFI_establish(ca, NULL, CFI_attribute_allocatable, CFI_type_float, 0, 10, NULL);

Functions
The ISO_Fortran_binding.h header file defines these functions: CFI_address,
CFI_allocate, CFI_deallocate, CFI_establish, CFI_is_contiguous, CFI_section,
CFI_select_part, CFI_setpointer and __xlf_CFI_strerror.

864 XL Fortran: Language Reference for Big Endian Distributions

CFI_address
Purpose

Returns the address of the object that is described by a C descriptor.

C prototype
void *CFI_address(const CFI_cdesc_t *dv, const CFI_index_t subscripts[]);

Formal parameters

dv The address of the C descriptor that describes the object. The object must not
be a deallocated allocatable variable or an unassociated pointer.

subscripts
If the object is an array of rank r, subscripts is the address of an array that
contains at least r elements. The values of the elements in subscripts array
must be within the corresponding bounds of the object that are specified in the
C descriptor.

If the object is a scalar, subscripts is ignored.

Result value

If the object is an array of rank r, the result is the C address of the array element
whose subscripts are the first r elements of the array that is specified by
subscripts.

If the object is a scalar, the result is the C address of the object.

Examples

The following Fortran program passes array a to function print_fifth that is
defined on the C side by using a C descriptor:
USE ISO_C_BINDING
IMPLICIT NONE
INTERFACE

SUBROUTINE print_fifth(ca) BIND(C)
IMPORT C_INT
INTEGER(C_INT), ALLOCATABLE :: ca(:)

END SUBROUTINE
END INTERFACE
INTEGER i
INTEGER, ALLOCATABLE :: a(:)
ALLOCATE(a(5:14), SOURCE=[(i, i=1, 10)])
PRINT *, a
CALL print_fifth(a)
END

The address of the fifth element of the array can be calculated by adding the lower
bound of the C descriptor to the target subscript, 5, and subtracting 1:
#include <stdio.h>
#include "ISO_Fortran_binding.h"

void print_fifth(CFI_cdesc_t *ca)
{

CFI_index_t subscripts_a[1] = {ca->dim[0].lower_bound + 5 - 1};
int *fifth_a = (int *) CFI_address(ca, subscripts_a);
printf("%d\n", *fifth_a);

}

Chapter 18. Language interoperability features 865

The output is as follows:
1 2 3 4 5 6 7 8 9 10
5

CFI_allocate
Purpose

Allocates memory for an allocatable or pointer object that is described by C
descriptor dv. If the object is an array, the first dv->rank elements of lower_bounds
and upper_bounds specify lower bounds and upper bounds for the corresponding
dimension. If the object is of type character, elem_len is used to describe the
element length in the descriptor.

C prototype
int CFI_allocate(CFI_cdesc_t *dv,

const CFI_index_t lower_bounds[],
const CFI_index_t upper_bounds[],
size_t elem_len);

Formal parameters

dv The address of the C descriptor that describes the object to be allocated.

lower_bounds
The address of an array with at least dv->rank elements. If dv->rank is zero,
lower_bounds is ignored.

upper_bounds
The address of an array with at least dv->rank elements. If dv->rank is zero,
upper_bounds is ignored.

elem_len
If the object to be allocated is a character object, elem_len is the size of an
element of the object in bytes. Otherwise, elem_len is ignored.

Result value

If allocation is successful, CFI_SUCCESS is returned. If allocation is unsuccessful, dv
is not modified and the result is an error indicator. For more information about
error indicators, see Macros for error indicators.

Examples

In the following program, a main program that is written in Fortran allocates a
two-dimensional array by calling a C function to do the allocation. The code on the
Fortran side is as follows:
USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT
INTERFACE

SUBROUTINE ALLOCATE_IN_C(ca) BIND(C)
IMPORT C_INT
INTEGER(C_INT), ALLOCATABLE :: ca(:, :)

END SUBROUTINE
END INTERFACE
INTEGER(C_INT), ALLOCATABLE :: a(:, :)
CALL ALLOCATE_IN_C(a)
PRINT *, ALLOCATED(a)
IF (ALLOCATED(a)) THEN

PRINT *, LBOUND(a)
PRINT *, UBOUND(a)

ENDIF
END

866 XL Fortran: Language Reference for Big Endian Distributions

The code on the C side is as follows:
#include <stdlib.h>
#include <stdio.h>
#include "ISO_Fortran_binding.h"
void allocate_in_c(CFI_cdesc_t *ca)
{

int ind;
CFI_index_t lower_bounds[] = {1, 2};
CFI_index_t upper_bounds[] = {3, 4};
ind = CFI_allocate(ca, lower_bounds, upper_bounds, 0);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_allocate: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}
}

The output is as follows:
T
1 2
3 4

CFI_deallocate
Purpose

Deallocates memory for an object that is described by C descriptor dv, and sets
dv->base_addr to the null pointer.

C prototype
int CFI_deallocate(CFI_cdesc_t *dv);

Formal parameters

dv The address of the C descriptor that describes the object to be deallocated. If dv
describes an allocatable object, the object must have been allocated. If dv
describes a pointer object, the object must have been associated with a target
that satisfies the conditions for deallocation by using the Fortran
DEALLOCATE statement.

Result value

If allocation is successful, CFI_SUCCESS is returned. If allocation is unsuccessful, dv
is not modified and the result is an error indicator. For more information about
error indicators, see Macros for error indicators.

CFI_establish
Purpose

Establishes a C descriptor. Updates *dv to be an established C descriptor for a
nonallocatable nonpointer data object of known shape, a deallocated allocatable
object, or a data pointer.

Rules

If base_addr is not a null pointer, the C descriptor with address dv describes a
nonallocatable entity that is a scalar or a contiguous array. Otherwise, the C
descriptor with address dv describes a deallocated allocatable object or a
disassociated pointer, or the C descriptor with address dv has the attribute
CFI_attribute_other but does not describe a data object.

Chapter 18. Language interoperability features 867

If the value of attribute is CFI_attribute_pointer or CFI_attribute_other, the
lower bounds of the C descriptor with address dv are set to zero.

C prototype
int CFI_establish(CFI_cdesc_t *dv,

void *base_addr,
CFI_attribute_t attribute,
CFI_type_t type,
size_t elem_len,
CFI_rank_t rank,
const CFI_index_t extents[]);

Formal parameters

dv The address of a C object that is large enough to hold a C descriptor of the
rank that is specified by rank.

It must not have the same value as a C formal parameter that corresponds to a
Fortran actual argument. It must not be the address of a C descriptor that
describes an allocated allocatable object.

base_addr
A null pointer or the base address of the object to be described.

If base_addr is not a null pointer, it must be the address of a contiguous and
properly aligned storage sequence for an object of the type that is specified by
type.

If base_addr is the C address of a Fortran data object, type and elem_len must
be consistent with the type and type parameters of the Fortran data object.

attribute
An attribute code. For the valid values for attribute, see Table 68 on page 862.

If attribute is CFI_attribute_allocatable, base_addr must be a null pointer.

type
A type code. For the valid values for type, see Table 69 on page 863.

elem_len
If type is CFI_type_struct, CFI_type_other, or a Fortran character type,
elem_len must be greater than zero and equal to the storage size in bytes of an
element of the object to be described by the C descriptor with address dv.

Otherwise, elem_len is ignored.

rank
The rank of the object to be described by the C descriptor with address dv. Its
value must be in the range 0 ≤ rank ≤ CFI_MAX_RANK.

extents
If rank is greater than zero and base_addr is not a null pointer, the following
rules apply:
v extents is the address of an array with at least rank elements.
v extents describes the corresponding extents of the array to be described by

the C descriptor with address dv.

The extents that are specified by extents must not be negative.

If rank is zero, or base_addr is a null pointer, extents is ignored.

868 XL Fortran: Language Reference for Big Endian Distributions

Result value

If successful, the result is CFI_SUCCESS. If unsuccessful, the result is an error
indicator, and the C descriptor with address dv is not modified. For more
information about error indicators, see Macros for error indicators.

Examples

In the following C program, a C descriptor is created for an allocatable array of
rank 1, and the array is allocated with lower bound 2 and upper bound 4. Then,
the array is deallocated.
#include <stdlib.h>
#include <stdio.h>
#include "ISO_Fortran_binding.h"

int main()
{

int ind;
CFI_CDESC_T(1) a;
CFI_index_t lower_bounds[1] = {2};
CFI_index_t upper_bounds[1] = {4};
CFI_cdesc_t *ca = (CFI_cdesc_t *) &a;

ind = CFI_establish(ca, NULL, CFI_attribute_allocatable,
CFI_type_float, 0, 1, NULL);

if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_establish: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

ind = CFI_allocate(ca, lower_bounds, upper_bounds, 0);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_allocate: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

/* ... */

ind = CFI_deallocate(ca);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_deallocate: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

return 0;
}

The C program has the same function as the following Fortran program:
USE, INTRINSIC :: ISC_C_BINGDING, ONLY: C_FLOAT
USE XLF_POSIX_BINDINGS, ONLY: EXIT
IMPLICIT NONE
INTEGER ind
REAL(C_FLOAT), ALLOCATABLE :: a(:)

ALLOCATE(a(2:4), stat=ind)
IF (ind /= 0) CALL EXIT(ind)

! ...

Chapter 18. Language interoperability features 869

DEALLOCATE(a, stat=ind)
IF (ind /= 0) CALL EXIT(ind)
END

CFI_is_contiguous
Purpose

Tests the contiguity of an array that is described by a C descriptor.

An array is contiguous if the C descriptor that describes the array meets any of the
following conditions:
v The value of attribute is CFI_attribute_allocatable.
v The value of extent of the final dim element is -1.

C prototype
int CFI_is_contiguous(const CFI_cdesc_t *dv);

Formal parameters

dv The address of the C descriptor that describes the array.

Result value

If the array described by dv is contiguous, the result is 1. Otherwise, the result is 0.

CFI_section
Purpose

Updates the C descriptor with address result to describe a section of the array
that is described by the C descriptor with address source. The lower bounds in the
result C descriptor are not changed.

C prototype
int CFI_section(CFI_cdesc_t *result, const CFI_cdesc_t *source,

const CFI_index_t lower_bounds[],
const CFI_index_t upper_bounds[],
const CFI_index_t strides[]);

Formal parameters

result
The address of a C descriptor in which result->rank is equal to source->rank
minus the number of zero strides. result->attribute must be
CFI_attribute_other or CFI_attribute_pointer.

If result is a C formal parameter that corresponds to a Fortran actual
argument, the value of result->attribute must be CFI_attribute_pointer.

source
The address of a C descriptor that describes a nonallocatable nonpointer array,
an allocated allocatable array, or an associated array pointer. source->elem_len
and result->elem_len must have the same value. source->type and
result->type must have the same value.

lower_bounds
A null pointer, or the address of an array that specifies the subscripts of an
element in the C descriptor with address source. The element is the first
element of the array section in the Fortran array element order.

870 XL Fortran: Language Reference for Big Endian Distributions

If lower_bounds is a null pointer, the subscripts of the first element of the array
that is described by the C descriptor with address source are used. Otherwise,
lower_bounds must have at least source->rank elements.

upper_bounds
A null pointer, or the address of an array that specifies the subscripts of an
element in the C descriptor with address source. The element is the last
element of the array section in the Fortran array element order.

If upper_bounds is a null pointer, the C descriptor with address source must
not describe an assumed-size array, and the subscripts of the last element of
the array described by the C descriptor with address source are used.
Otherwise, upper_bounds must have at least source->rank elements.

strides
A null pointer, or the address of an array that specifies the strides of the array
section in units of elements of the C descriptor with address source.

If a stride is 0, the section subscript for the dimension is a subscript and the
corresponding elements of lower_bounds and upper_bounds must have the same
value. If strides is a null pointer, the stride for each dimension is 1.
Otherwise, strides must have at least source->rank elements.

Result value

If successful, the result is CFI_SUCCESS. If unsuccessful, the result is an error
indicator, and the C descriptor with address result is not modified. For more
information about error indicators, see Macros for error indicators.

Examples

Assume that source is the address of a C descriptor that corresponds to a Fortran
array, complex_array. complex_array is declared and allocated on the Fortran side
as follows:
COMPLEX, ALLOCATABLE :: complex_array(:)
ALLOCATE(complex_array(100))

The following C code establishes a C descriptor, csection, and updates it to
describe the array section complex_array(20:90:10).
#include <stdlib.h>
#include <stdio.h>
#include "ISO_Fortran_binding.h"

void complex_section(CFI_cdesc_t *source)
{

int ind;
CFI_index_t lower_bounds[] = {20 - 1};
CFI_index_t upper_bounds[] = {90 - 1};
CFI_index_t strides[] = {10};
CFI_CDESC_T(1) section;
CFI_cdesc_t *csection = (CFI_cdesc_t *) §ion;
ind = CFI_establish(csection, NULL, CFI_attribute_other,

CFI_type_float_Complex, 0, 1, NULL);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_establish: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

ind = CFI_section(csection, source, lower_bounds, upper_bounds, strides);
if (ind != CFI_SUCCESS)

Chapter 18. Language interoperability features 871

{
fprintf(stderr, "CFI_section: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}
}

CFI_select_part
Purpose

Updates the C descriptor with address result for an array section, each element of
which is a part of the corresponding element of an array that is described by the C
descriptor with address source. The part can be a component of a structure, a
substring, or the real or imaginary part of a complex value.

C prototype
int CFI_select_part(CFI_cdesc_t *result,

const CFI_cdesc_t *source,
size_t displacement,
size_t elem_len);

Formal parameters

result
The address of a C descriptor that describes the array section. result->type
specifies the type of the array section. result->attribute must be specified as
CFI_attribute_other or CFI_attribute_pointer.

If result is a C formal parameter that corresponds to a Fortran actual
argument, result->attribute must be specified as CFI_attribute_pointer.

result->rank must have the same value as source->rank.

source
The address of a C descriptor for a nonallocatable nonpointer array, an
allocated allocatable array, or an associated array pointer.

displacement
The value in bytes to be added to source->base_addr to define the base
address of the array section. The resulting base address must be appropriately
aligned for an object of the specified type. Its value must be in the range 0 ≤
displacement ≤ source->elem_len - 1.

elem_len
If result->type is a character type, elem_len is the storage size in bytes of an
element of the character object that is described by the C descriptor with
address result. Its value must be in the range 1 ≤ elem_len ≤
source->elem_len.

If result->type is not a character type, elem_len is ignored.

Result value

If successful, the result is CFI_SUCCESS. If unsuccessful, the result is an error
indicator, and the C descriptor with address result is not modified. For more
information about error indicators, see Macros for error indicators.

Examples

Assume that source is the address of a C descriptor that corresponds to an
allocatable Fortran array, complex_array. complex_array is declared and allocated
on the Fortran side as follows:

872 XL Fortran: Language Reference for Big Endian Distributions

COMPLEX, ALLOCATABLE :: complex_array(:)
ALLOCATE(complex_array(100))

The following C code establishes a C descriptor, cimag, and updates it to describe
the array section complex_array%im.
#include <stdlib.h>
#include <stdio.h>
#include "ISO_Fortran_binding.h"

void complex_select_imag(CFI_cdesc_t *source)
{

int ind;
CFI_CDESC_T(1) imag;
CFI_cdesc_t *cimag = (CFI_cdesc_t *) &imag;
ind = CFI_establish(cimag, NULL, CFI_attribute_pointer, CFI_type_float, 0, 1, NULL);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_establish: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

ind = CFI_select_part(cimag, source, sizeof(float), 0);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_select_part: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}
}

CFI_setpointer
Purpose

Updates a C descriptor for a Fortran pointer to be associated with a whole object
or to be disassociated.

If source is a null pointer or source describes a disassociated pointer, the C
descriptor with address result is updated to describe a disassociated pointer.
Otherwise, the C descriptor with address result is updated to describe the object
that is described by the C descriptor with address source; the only exception is
that if the rank is greater than zero and lower_bounds is not a null pointer, the
lower bounds are replaced by the values of lower_bounds.

C prototype
int CFI_setpointer(CFI_cdesc_t *result,

CFI_cdesc_t *source,
const CFI_index_t lower_bounds[]);

Formal parameters

result
The address of a C descriptor that describes a pointer.

source
A null pointer or the address of the C descriptor for a nonallocatable
nonpointer object, an allocated allocatable object, or a data pointer object.

If source is not a null pointer, the following rules apply:
v source->elem_len must have the same value as result->elem_len, and
v source->rank must have the same value as result->rank, and
v source->type must have the same value as result->type.

Chapter 18. Language interoperability features 873

lower_bounds
If source is a null pointer, or source->rank is zero, lower_bounds is ignored.
Otherwise, source is the address of an array with a least source->rank
elements. The elements of lower_bounds provide the lower bounds for each
corresponding dimension of the C descriptor with address result. The extents
and memory strides are copied from the C descriptor with address source.

Result value

If successful, the result is CFI_SUCCESS. If unsuccessful, the result is an error
indicator, and the C descriptor with address result is not modified. For more
information about error indicators, see Macros for error indicators.

Examples

In the following C program, function func takes a C descriptor pointer formal
parameter. If the C descriptor corresponds to an allocatable array actual argument,
every call to CFI_address must take the lower bound of each dimension into
account. To avoid this, function func creates a pointer C descriptor and associates
it with *target, and function func sets the lower bounds of each dimension to
zero.
void func(CFI_cdesc_t *target)
{

int ind;
CFI_index_t lower_bounds[CFI_MAX_RANK] = {0};
CFI_CDESC_T(CFI_MAX_RANK) p;
CFI_cdesc_t *cp = (CFI_cdesc_t *) &p;
ind = CFI_establish(cp, NULL, CFI_attribute_pointer, target->type,

target->elem_len, target->rank, NULL);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_establish: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

ind = CFI_setpointer(cp, target, lower_bounds);
if (ind != CFI_SUCCESS)
{

fprintf(stderr, "CFI_setpointer: %s\n", __xlf_CFI_strerror(ind));
exit(1);

}

/* You can begin to work with cp that has assumed zero
lower bounds regardless of the lower bounds in target. */

/* ... */
}

__xlf_CFI_strerror (IBM extension)
Purpose

Maps numeric error indicators into a message string.

C prototype
char *__xlf_CFI_strerror(int ind);

Formal parameters

ind
An error indicator. For more information, see Macros for error indicators.

874 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is a pointer to a message string that names the error that is specified by
ind.

Examples

__xlf_CFI_strerror(CFI_SUCCESS) returns the pointer to message string
"CFI_SUCCESS".

Binding labels
A binding label is a value of type default character that specifies the name by
which a variable, common block, or a procedure is known to the C compiler.

If a variable, common block, or non-dummy procedure has the BIND attribute
specified with a NAME= specifier, the binding label is the value of the expression
specified for the NAME= specifier. The case of letters in the binding label is
significant, but leading and trailing blanks are ignored. If the entity has the BIND
attribute specified without a NAME= specifier, the binding label is the same as the
name of the entity using lower case letters.

The binding label of a C entity with external linkage is the same as the name of
the C entity. A Fortran entity with the BIND attribute that has the same binding
label as a C entity with external linkage is associated with that entity.

A binding label cannot be the same as another binding label or a name used to
identify any global entity of the Fortran program, ignoring differences in case
except when -qmixed (or -U) is specified.

Chapter 18. Language interoperability features 875

876 XL Fortran: Language Reference for Big Endian Distributions

Chapter 19. The ISO_FORTRAN_ENV intrinsic module

The ISO_FORTRAN_ENV intrinsic module provides constants and functions
relating to the Fortran environment. The kind of the constants in this module, and
the value of the NUMERIC_STORAGE_SIZE constant assume a default integer
size of 4.

ISO_FORTRAN_ENV constants
This section presents the constants of the ISO_FORTRAN_ENV intrinsic module.

CHARACTER_KINDS (Fortran 2008)
Purpose

An array containing the kind type parameter values supported by XL Fortran for
entities of character type.

Type

Default integer array of rank 1 and size 1.

Value

[1]

CHARACTER_STORAGE_SIZE
Purpose

The size, expressed in bits, of the character storage unit.

Type

Default integer scalar.

Value

8

ERROR_UNIT
Purpose

Identifies the preconnected external unit used for error reporting.

Type

Default integer scalar.

Value

0

© Copyright IBM Corp. 1996, 2014 877

FILE_STORAGE_SIZE
Purpose

The size, expressed in bits, of the file storage unit.

Type

Default integer scalar.

Value

8

INT8 (Fortran 2008)
Purpose

The kind type parameter value for an 8-bit integer.

Type

Default integer scalar.

Value

1

INT16 (Fortran 2008)
Purpose

The kind type parameter value for a 16-bit integer.

Type

Default integer scalar.

Value

2

INT32 (Fortran 2008)
Purpose

The kind type parameter value for a 32-bit integer.

Type

Default integer scalar.

Value

4

878 XL Fortran: Language Reference for Big Endian Distributions

INT64 (Fortran 2008)
Purpose

The kind type parameter value for a 64-bit integer.

Type

Default integer scalar.

Value

8

INTEGER_KINDS (Fortran 2008)
Purpose

An array containing the kind type parameter values supported by XL Fortran for
entities of integer type.

Type

Default integer array of rank 1 and size 4.

Value

[INT8, INT16, INT32, INT64]

INPUT_UNIT
Purpose

Identifies the preconnected external unit used for input.

Type

Default integer scalar.

Value

5

IOSTAT_END
Purpose

Assigned to the variable specified in an IOSTAT= specifier if an end-of-file
condition occurs during execution of a READ statement. You must set the
IOSTAT_END=2003std runtime option to get this value for end-of-file conditions
on internal files. (See the IOSTAT_END runtime option in the XL Fortran Compiler
Reference for more information.)

Type

Default integer scalar.

Chapter 19. The ISO_FORTRAN_ENV intrinsic module 879

Value

-1

IOSTAT_EOR
Purpose

Assigned to the variable specified in an IOSTAT= specifier if an end-of-record
condition occurs during execution of a READ statement.

Type

Default integer scalar.

Value

-4

IOSTAT_INQUIRE_INTERNAL_UNIT (Fortran 2008)
Purpose

The IOSTAT value in user-defined derived type input/output when the INQUIRE
statement is used with a unit number that identifies an internal file.

Type

Default integer scalar.

Value

238

Example
MODULE m

IMPLICIT NONE
TYPE dt

INTEGER, ALLOCATABLE :: i
CONTAINS

PROCEDURE :: write_dt
GENERIC :: WRITE(formatted) => write_dt

END TYPE

CONTAINS
SUBROUTINE write_dt(dtv, unit, iotype, v_list, iostat, iomsg)

CLASS(dt), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER(*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER(*), INTENT(INOUT) :: iomsg
INQUIRE(unit, iostat = iostat)

END SUBROUTINE
END MODULE m

USE, INSTRINSIC :: ISO_FORTRAN_ENV
USE m

IMPLICIT NONE

880 XL Fortran: Language Reference for Big Endian Distributions

TYPE(dt) d
CHARACTER(10) :: internal_file
INTEGER :: iostat

WRITE(internal_file, *, iostat = iostat) d
PRINT *, (iostat == IOSTAT_INQUIRE_INTERNAL_UNIT) ! prints t

END

LOGICAL_KINDS (Fortran 2008)
Purpose

An array containing the kind type parameter values supported by XL Fortran for
entities of logical type.

Type

Default integer array of rank 1 and size 4.

Value

[INT8, INT16, INT32, INT64]

NUMERIC_STORAGE_SIZE
Purpose

The size, expressed in bits, of the numeric storage unit.

Type

Default integer scalar.

Value

32

OUTPUT_UNIT
Purpose

Identifies the preconnected external unit used for output.

Type

Default integer scalar.

Value

6

REAL32 (Fortran 2008)
Purpose

The kind type parameter value for a 32-bit real.

Chapter 19. The ISO_FORTRAN_ENV intrinsic module 881

Type

Default integer scalar.

Value

4

REAL64 (Fortran 2008)
Purpose

The kind type parameter value for a 64-bit real.

Type

Default integer scalar.

Value

8

REAL128 (Fortran 2008)
Purpose

The kind type parameter value for a 128-bit real.

Type

Default integer scalar.

Value

16

REAL_KINDS (Fortran 2008)
Purpose

An array containing the kind type parameter values supported by XL Fortran for
entities of real type.

Type

Default integer array of rank 1 and size 3.

Value

[REAL32, REAL64, REAL128]

ISO_FORTRAN_ENV functions
This section presents the functions of the ISO_FORTRAN_ENV intrinsic module.

882 XL Fortran: Language Reference for Big Endian Distributions

COMPILER_OPTIONS (Fortran 2008)
Class

Specification inquiry function.

Argument types and attributes

None.

Result type and attributes

Character scalar.

Result value

The result value contains the compiler options, configuration file, and environment
variables that are in effect when the current compilation unit is compiled. The
compiler options specified by @PROCESS directives are not included. The result is
formatted in the same way as the information obtained with the -qsaveopt option.

Example
USE, INTRINSIC :: ISO_FORTRAN_ENV
CHARACTER(*), PARAMETER :: options = COMPILER_OPTIONS()

WRITE(output_unit, *, delim = ’quote’) options
END

Output:
"@(#)opt f /opt/ibm/xlf/15.1.0/bin/xlf90 example.f
@(#)cfg -qxlf90=noautodealloc:nosignedzero:oldpad -qfree=f90
-qxlf2003=nopolymorphic:nobozlitargs:nostopexcept:novolatile:noautorealloc:oldnaninf
-bh:4"

Related information

-qsaveopt

COMPILER_VERSION (Fortran 2008)
Class

Specification inquiry function.

Argument types and attributes

None.

Result type and attributes

Character scalar.

Result value

The result value contains the name and version information of the compiler that
compiles the current compilation unit.

Chapter 19. The ISO_FORTRAN_ENV intrinsic module 883

Example
USE, INTRINSIC :: ISO_FORTRAN_ENV
CHARACTER(*), PARAMETER :: version = COMPILER_VERSION()

WRITE(output_unit, *, delim = ’quote’) version
END

Related information

-qversion

884 XL Fortran: Language Reference for Big Endian Distributions

Chapter 20. Floating-point control and inquiry procedures

XL Fortran provides several ways that allow you to query and control the
floating-point status and control register of the processor directly. These include:
v fpgets and fpsets subroutines
v Efficient floating-point control and inquiry procedures
v IEEE floating-point procedures, as specified in the Fortran 2003 standard

The fpgets and fpsets subroutines retrieve and set the status of floating-point
operations, respectively. Instead of calling operating system routines directly, these
subroutines use an array of logicals named fpstat to pass information back and
forth.

XL Fortran also provides procedures in the xlf_fp_util module that allow you to
control the floating-point status and control register of the processor directly. These
procedures are more efficient than the fpgets and fpsets subroutines; they are
mapped into inlined machine instructions that directly manipulate the
floating-point status and control register.

XL Fortran includes the IEEE_ARITHMETIC, IEEE_EXCEPTIONS, and
IEEE_FEATURES modules to take advantage of the Fortran 2003 standard rules for
the IEEE floating-point status semantics.

If you use the procedures in this chapter to set the floating-point status and control
register, you can specify the -qfloat=fenv option.

See the -qfloat=fenv option in the XL Fortran Compiler Reference for more
information.

fpgets fpsets
The fpgets and fpsets subroutines retrieve and set the status of the floating-point
operations, respectively. The include file /usr/include/fpdc.h contains the data
declarations (specification statements) for the two subroutines. The include file
/usr/include/fpdt.h contains the data initializations (data statements) and must
be included in a block data program unit.

fpgets retrieves the floating-point process status and stores the result in a logical
array called fpstat.

fpsets sets the floating-point status equal to the logical array fpstat.

This array contains logical values that can be used to specify floating-point
rounding modes. See fpgets and fpsets subroutines in the XL Fortran Optimization
and Programming Guide for examples and information on the elements of the fpstat
array.

Note: The XLF_FP_UTIL intrinsic module provides procedures for manipulating the
status of floating-point operations that are more efficient than the fpgets and
fpsets subroutines. For more information, see “Efficient floating-point control and
inquiry procedures” on page 886.

© Copyright IBM Corp. 1996, 2014 885

Examples
CALL fpgets(fpstat)
...
CALL fpsets(fpstat)
BLOCK DATA
INCLUDE ’fpdc.h’
INCLUDE ’fpdt.h’
END

Efficient floating-point control and inquiry procedures
XL Fortran provides several procedures that allow you to query and control the
floating-point status and control register of the processor directly. These procedures
are more efficient than the fpgets and fpsets subroutines because they are mapped
into inlined machine instructions that manipulate the floating-point status and
control register (fpscr) directly.

XL Fortran supplies the module xlf_fp_util, which contains the interfaces and
data type definitions for these procedures and the definitions for the named
constants that are needed by the procedures. This module enables type checking of
these procedures at compile time rather than at link time. You can use the
argument names listed in the examples as the names for keyword arguments when
calling a procedure. The following files are supplied for the xlf_fp_util module:

File name File type Locations

xlf_fp_util.mod module symbol file v install path/xlf/15.1.0/include

To use these procedures, you must add a USE XLF_FP_UTIL statement to your
source file. For more information on USE, see “USE” on page 478.

If there are name conflicts (for example if the accessing subprogram has an entity
with the same name as a module entity), use the ONLY clause or the renaming
features of the USE statement. For example,
USE XLF_FP_UTIL, NULL1 => get_fpscr, NULL2 => set_fpscr

When compiling with the -U option, you must code the names of these procedures
in all lowercase. We will show the names in lowercase here as a reminder.

The fpscr procedures are:
v “clr_fpscr_flags” on page 888
v “get_fpscr” on page 888
v “get_fpscr_flags” on page 888
v “get_round_mode” on page 889
v “set_fpscr” on page 890
v “set_fpscr_flags” on page 890
v “set_round_mode” on page 890

The following table lists the constants that are used with the fpscr procedures:

886 XL Fortran: Language Reference for Big Endian Distributions

Family Constant Description

IEEE Rounding
Modes

FP_RND_RN Round toward nearest (default)

FP_RND_RZ Round toward zero

FP_RND_RP Round toward plus infinity

FP_RND_RM Round toward minus infinity

FP_RND_MODE Used to obtain the rounding mode
from an FPSCR flags variable or value

IEEE Exception
Enable Flags �1�

TRP_INEXACT Enable inexact trap

TRP_DIV_BY_ZERO Enable divide-by-zero trap

TRP_UNDERFLOW Enable underflow trap

TRP_OVERFLOW Enable overflow trap

TRP_INVALID Enable invalid trap

FP_ENBL_SUMM Trap enable summary or enable all

IEEE Exception
Status Flags

FP_INVALID Invalid operation exception

FP_OVERFLOW Overflow exception

FP_UNDERFLOW Underflow exception

FP_DIV_BY_ZERO Divide-by-zero exception

FP_INEXACT Inexact exception

FP_ALL_IEEE_XCP All IEEE exceptions summary flags

FP_COMMON_IEEE_XCP All IEEE exceptions summary flags
excluding the FP_INEXACT exception

Machine Specific
Exception Details
Flags

FP_INV_SNAN Signaling NaN

FP_INV_ISI Infinity – Infinity

FP_INV_IDI Infinity / Infinity

FP_INV_ZDZ 0 / 0

FP_INV_IMZ Infinity * 0

FP_INV_CMP Unordered compare

FP_INV_SQRT Square root of negative number

FP_INV_CVI Conversion to integer error

FP_INV_VXSOFT Software request

Machine Specific
Exception
Summary Flags

FP_ANY_XCP Any exception summary flag

FP_ALL_XCP All exceptions summary flags

FP_COMMON_XCP All exceptions summary flags
excluding the FP_INEXACT exception

Notes:

v �1� In order to enable exception trapping, you must set the desired IEEE Exception
Enable Flags and,

– change the mode of the user process to allow floating-point exceptions to generate
traps with a call to fp_trap, or,

– compile your program with the appropriate –qflttrap suboption. For more
information on the -qflttrap compiler option and its suboptions, see the XL Fortran
Compiler Reference.

Chapter 20. Floating-point control and inquiry procedures 887

xlf_fp_util floating-point procedures
This section lists the efficient floating-point control and inquiry procedures in the
XLF_FP_UTIL intrinsic module.

clr_fpscr_flags
Type

The clr_fpscr_flags subroutine clears the floating-point status and control register
flags you specify in the MASK argument. Flags that you do not specify in MASK
remain unaffected. MASK must be of type INTEGER(FPSCR_KIND). You can
manipulate the MASK using the intrinsic procedures described in “Integer bit
model” on page 562.

For more information on the FPSCR constants, see FPSCR constants.

Examples
USE, INTRINSIC :: XLF_FP_UTIL
INTEGER(FPSCR_KIND) MASK

! Clear the overflow and underflow exception flags

MASK=(IOR(FP_OVERFLOW,FP_UNDERFLOW))
CALL clr_fpscr_flags(MASK)

For another example of the clr_fpscr_flags subroutine, see “get_fpscr_flags.”

get_fpscr
Type

The get_fpscr function returns the current value of the floating-point status and
control register (fpscr) of the processor.

Result type and attributes

INTEGER(FPSCR_KIND)

Result value

The current value of the floating-point status and control register (FPSCR) of the
processor.

Examples
USE, INTRINSIC :: XLF_FP_UTIL
INTEGER(FPSCR_KIND) FPSCR

FPSCR=get_fpscr()

get_fpscr_flags
Type

The get_fpscr_flags function returns the current state of the floating-point status
and control register flags you specify in the MASK argument. MASK must be of
type INTEGER(FPSCR_KIND). You can manipulate the MASK using the intrinsics
described in “Integer bit model” on page 562.

For more information on the FPSCR constants, see FPSCR constants.

888 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

An INTEGER(FPSCR_KIND)

Result value

The status of the FPSCR flags specified by the MASK argument. If a flag specified
in the MASK argument is on, the value for the flag will be returned in the return
value. The following example requests the status of the FP_DIV_BY_ZERO and
FP_INVALID flags.
v If both flags are on, the return value is IOR(FP_DIV_BY_ZERO, FP_INVALID).
v If only the FP_INVALID flag is on, the return value is FP_INVALID.
v If only the FP_DIV_BY_ZERO flag is on, the return value is FP_DIV_BY_ZERO.
v If neither flag is on, the return value is 0.

Examples
USE, INTRINSIC :: XLF_FP_UTIL

! ...

IF (get_fpscr_flags(IOR(FP_DIV_BY_ZERO,FP_INVALID)) .NE. 0) THEN
! Either Divide-by-zero or an invalid operation occurred.

! ...

! After processing the exception, the exception flags are
! cleared.
CALL clr_fpscr_flags(IOR(FP_DIV_BY_ZERO,FP_INVALID))

END IF

get_round_mode
Type

The get_round_mode function returns the current floating-point rounding mode.
The return value will be one of the constants FP_RND_RN, FP_RND_RZ,
FP_RND_RP or FP_RND_RM. For more information on the rounding mode
constants, see FPSCR constants.

Result type and attributes

An INTEGER(FPSCR_KIND)

Result value

One of the constants FP_RND_RN, FP_RND_RZ, FP_RND_RP or FP_RND_RM.

Examples
USE, INTRINSIC :: XLF_FP_UTIL
INTEGER(FPSCR_KIND) MODE

MODE=get_round_mode()
IF (MODE .EQ. FP_RND_RZ) THEN
! ...
END IF

Chapter 20. Floating-point control and inquiry procedures 889

set_fpscr
Type

The set_fpscr function sets the floating-point status and control register (fpscr) of
the processor to the value provided in the FPSCR argument, and returns the value
of the register before the change.

Argument type and attributes

An INTEGER(FPSCR_KIND)

Result type and attributes

An INTEGER(FPSCR_KIND).

Result value

The value of the register before it was set with set_fpscr.

Examples
USE, INTRINSIC :: XLF_FP_UTIL
INTEGER(FPSCR_KIND) FPSCR, OLD_FPSCR

FPSCR=get_fpscr()

! ... Some changes are made to FPSCR ...

OLD_FPSCR=set_fpscr(FPSCR) ! OLD_FPSCR is assigned the value of
! the register before it was
! set with set_fpscr

set_fpscr_flags
Type

The set_fpscr_flags subroutine allows you to set the floating-point status and
control register flags you specify in the MASK argument. Flags that you do not
specify in MASK remain unaffected. MASK must be of type
INTEGER(FPSCR_KIND). You can manipulate the MASK using the intrinsics
described in “Integer bit model” on page 562.

For more information on the FPSCR constants, see FPSCR constants.

Examples
USE XLF_FP_UTIL
INTEGER(FPSCR_KIND) SAVED_FPSCR

SAVED_FPSCR = get_fpscr() ! Saves the current value
! of the fpscr register.

CALL set_fpscr_flags(TRP_DIV_BY_ZERO) ! Enables trapping of
! ... ! divide-by-zero.
SAVED_FPSCR=set_fpscr(SAVED_FPSCR) ! Restores fpscr register.

set_round_mode
Type

The set_round_mode function sets the current floating-point rounding mode, and
returns the rounding mode before the change. You can set the mode to
FP_RND_RN, FP_RND_RZ, FP_RND_RP or FP_RND_RM. For more information

890 XL Fortran: Language Reference for Big Endian Distributions

on the rounding mode constants, see FPSCR constants.

Argument type and attributes

Integer of kind FPSCR_KIND

Result type and attributes

Integer of kind FPSCR_KIND

Result value

The rounding mode before the change.

Examples
USE XLF_FP_UTIL
INTEGER(FPSCR_KIND) MODE

MODE=set_round_mode(FP_RND_RZ) ! The rounding mode is set to
! round towards zero. MODE is

! ... ! assigned the previous rounding
! mode.

MODE=set_round_mode(MODE) ! The rounding mode is restored.

IEEE Modules and support (Fortran 2003)
XL Fortran offers support for IEEE floating–point functionality as specified in the
Fortran 2003 standard. The standard defines the IEEE_EXCEPTIONS module for
exceptions, the IEEE_ARITHMETIC module to support IEEE arithmetic, and
IEEE_FEATURES to specify the IEEE features supported by the compiler.

When using the IEEE_EXCEPTIONS, or IEEE_ARITHMETIC intrinsic modules,
the XL Fortran compiler enforces several Fortran 2003 rules regarding the scope of
changes to the floating-point status concerning rounding mode, halting mode, and
exception flags. This can impede the performance of programs that use these
modules, but do not utilize the new floating-point status semantics. For such
programs, the –qstrictieeemod compiler option is provided to relax the rules on
saving and restoring floating-point status.

Notes:

v XL Fortran Extended Precision floating–point numbers are not in the format
suggested by the IEEE standard. As a result, some parts of the modules do not
support REAL(16).

v On Linux, IEEE modules generate SIGFPE signals.

Compiling and exception handling
XL Fortran provides a number of options for strict compliance with the IEEE
standard.
v Use -qfloat=nomaf to ensure compatibility with the IEEE standard for

floating-point arithmetic (IEEE 754-1985).
v When compiling programs that change the rounding mode, use -qfloat=rrm.
v Use -qfloat=nans to detect signaling NaN values. Signaling NaN values can

only occur if specified in a program.

Chapter 20. Floating-point control and inquiry procedures 891

v Use the -qstrict=ieeefp compiler option for strict conformance to the IEEE
standard for floating-point arithmetic on programs compiled with an
optimization level of -O3 or higher, -qhot, -qipa, –qpdf, or -qsmp.

Related information
For more information on IEEE floating–point and specific explanations of the
compiler options listed above, see Implementation details of XL Fortran
floating-point processing in the XL Fortran Optimization and Programming Guide.

General rules for implementing IEEE modules
The IEEE_ARITHMETIC, IEEE_EXCEPTIONS, and IEEE_FEATURES modules are
intrinsic, though the types and procedures defined in these modules are not
intrinsic.

All functions contained in IEEE modules are pure.

All procedure names are generic and not specific.

The default value for all exception flags is quiet.

By default, exceptions do not cause halting.

Rounding mode defaults towards nearest.

IEEE derived data types and constants
The IEEE modules define the following derived types.

IEEE_FLAG_TYPE
Type

A derived data type defined by the IEEE_EXCEPTIONS module that identifies a
particular exception flag. The values for IEEE_FLAG_TYPE must be one of the
following named constants as defined in the IEEE_EXCEPTIONS module:

IEEE_OVERFLOW
Occurs when the result for an intrinsic real operation or an assignment has
an exponent too large to be represented. This exception also occurs when
the real or imaginary part of the result for an intrinsic complex operation
or assignment has an exponent too large to be represented.

When using REAL(4), an overflow occurs when the result value's unbiased
exponent is > 127 or < –126.

When using REAL(8), an overflow occurs when the result value's unbiased
exponent is > 1023 or < –1022.

IEEE_DIVIDE_BY_ZERO
Occurs when a real or complex division has a nonzero numerator and a
zero denominator.

IEEE_INVALID
Occurs when a real or complex operation or assignment is invalid.

IEEE_UNDERFLOW
Occurs when the result for an intrinsic real operation or assignment has an
absolute value too small to be represented by anything other than zero,
and loss of accuracy is detected. The exception also occurs when the real or
imaginary part of the result for an intrinsic complex operation or

892 XL Fortran: Language Reference for Big Endian Distributions

assignment has an absolute value that is too small to be represented by
anything other than zero, and loss of accuracy is detected.

For REAL(4), an underflow occurs when the result has an absolute value <
2-149.

For REAL(8), an underflow occurs when the result has an absolute value <
2-1074.

IEEE_INEXACT
Occurs when the result of a real or complex assignment or operation is not
exact.

The following constants are arrays of IEEE_FLAG_TYPE:

IEEE_USUAL
An array named constant containing IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, and IEEE_INVALID elements in order.

IEEE_ALL
An array named constant containing IEEE_USUAL, IEEE_UNDERFLOW,
and IEEE_INEXACT elements in order.

IEEE_STATUS_TYPE
Type

A derived data type defined in the IEEE_ARITHMETIC module that represents
the current floating-point status. The floating-point status encompasses the values
of all exception flags, halting, and rounding modes.

IEEE_CLASS_TYPE
Type

A derived data type defined in the IEEE_ARITHMETIC module that categorizes a
class of floating-point values. The values for IEEE_CLASS_TYPE must be one of
the following named constants as defined in the IEEE_ARITHMETIC module:

IEEE_SIGNALING_NAN IEEE_POSITIVE_ZERO

IEEE_QUIET_NAN IEEE_POSITIVE_DENORMAL

IEEE_NEGATIVE_INF IEEE_POSITIVE_NORMAL

IEEE_NEGATIVE_NORMAL IEEE_POSITIVE_INF

IEEE_NEGATIVE_DENORMAL IEEE_OTHER_VALUE

IEEE_NEGATIVE_ZERO

IEEE_ROUND_TYPE
Type

A derived data type defined in the IEEE_ARITHMETIC module that identifies a
particular rounding mode. The values for IEEE_ROUND_TYPE must be one of the
following named constants as defined in the IEEE_ARITHMETIC module:

IEEE_NEAREST
Rounds the exact result to the nearest representable value.

IEEE_TO_ZERO
Rounds the exact result to the next representable value, towards zero.

Chapter 20. Floating-point control and inquiry procedures 893

IEEE_UP
Rounds the exact result to the next representable value, towards positive
infinity.

IEEE_DOWN
Rounds the exact result to the next representable value, towards negative
infinity.

IEEE_OTHER
Indicates that the rounding mode does not conform to the IEEE standard.

IEEE_FEATURES_TYPE
Type

A derived data type defined in the IEEE_FEATURES module that identifies the
IEEE features to use. The values for IEEE_FEATURES_TYPE must be one of the
following named constants as defined in the IEEE_FEATURES module:

IEEE_DATATYPE IEEE_DATATYPE

IEEE_DENORMAL IEEE_INVALID_FLAG

IEEE_DIVIDE IEEE_NAN

IEEE_HALTING IEEE_ROUNDING

IEEE_INEXACT_FLAG IEEE_SQRT

IEEE_INF IEEE_UNDERFLOW_FLAG

IEEE Operators
The IEEE_ARITHMETIC module defines two sets of elemental operators for
comparing variables of IEEE_CLASS_TYPE or IEEE_ROUND_TYPE.

== Allows you to compare two IEEE_CLASS_TYPE or two
IEEE_ROUND_TYPE values. The operator returns true if the values are
identical or false if they differ.

/= Allows you to compare two IEEE_CLASS_TYPE or two
IEEE_ROUND_TYPE values. The operator returns true if the values differ
or false if they are identical.

IEEE procedures
To use the following IEEE procedures, you must add a USE IEEE_ARITHMETIC, USE
IEEE_EXCEPTIONS, or USE IEEE_FEATURES statement to your source file as required.
For more information on the USE statement, see “USE” on page 478.

Rules for using IEEE procedures

XL Fortran supports all the named constants in the IEEE_FEATURES module.

The IEEE_ARITHMETIC module behaves as if it contained a USE statement for
IEEE_EXCEPTIONS. All values that are public in IEEE_EXCEPTIONS remain
public in IEEE_ARITHMETIC.

When the IEEE_EXCEPTIONS or the IEEE_ARITHMETIC modules are accessible,
IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO are supported in the scoping
unit for all kinds of real and complex data. To determine the other exceptions
supported use the IEEE_SUPPORT_FLAG function. Use
IEEE_SUPPORT_HALTING to determine if halting is supported. Support of other

894 XL Fortran: Language Reference for Big Endian Distributions

exceptions is influenced by the accessibility of the named constants
IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UNDERFLOW_FLAG
of the IEEE_FEATURES module as follows:
v If a scoping unit has access to IEEE_UNDERFLOW_FLAG of IEEE_FEATURES,

the scoping unit supports underflow and returns true from
IEEE_SUPPORT_FLAG(IEEE_UNDERFLOW, X), for REAL(4) and REAL(8).

v If IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG is accessible, the scoping
unit supports the exception and returns true from the corresponding inquiry for
REAL(4) and REAL(8).

v If IEEE_HALTING is accessible, the scoping unit supports halting control and
returns true from IEEE_SUPPORT_HALTING(FLAG) for the flag.

If an exception flag signals on entry to a scoping unit that does not access
IEEE_EXCEPTIONS or IEEE_ARITHMETIC, the compiler ensures that the
exception flag is signaling on exit. If a flag is quiet on entry to such a scoping unit,
it can be signaling on exit.

Further IEEE support is available through the IEEE_ARITHMETIC module.
Support is influenced by the accessibility of named constants in the
IEEE_FEATURES module:
v If a scoping unit has access to IEEE_DATATYPE of IEEE_FEATURES, the

scoping unit supports IEEE arithmetic and returns true from
IEEE_SUPPORT_DATATYPE(X) for REAL(4) and REAL(8).

v If IEEE_DENORMAL, IEEE_DIVIDE, IEEE_INF, IEEE_NAN,
IEEE_ROUNDING, or IEEE_SQRT is accessible, the scoping unit supports the
feature and returns true from the corresponding inquiry function for REAL(4)
and REAL(8).

v For IEEE_ROUNDING, the scoping unit returns true for all the rounding modes
IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and IEEE_DOWN for REAL(4)
and REAL(8).

If the IEEE_EXCEPTIONS or IEEE_ARITHMETIC modules are accessed, and
IEEE_FEATURES is not, the supported subset of features is the same as if
IEEE_FEATURES was accessed.

IEEE_CLASS(X)
Type

An elemental IEEE class function. Returns the IEEE class of a floating-point value.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

The result is of type IEEE_CLASS_TYPE.

Chapter 20. Floating-point control and inquiry procedures 895

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) function must return with a value of true. If you
specify a data type of REAL(16), then IEEE_SUPPORT_DATATYPE will return
false, though the appropriate class type will still be returned.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE(IEEE_CLASS_TYPE) :: C
REAL :: X = -1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

C = IEEE_CLASS(X) ! C has class IEEE_NEGATIVE_NORMAL
ENDIF

IEEE_COPY_SIGN(X, Y)
Type

An elemental IEEE copy sign function. Returns the value of X with the sign of Y.

Module

IEEE_ARITHMETIC

Syntax

Where X and Y are of type real, though they may be of different kinds.

Result type and attributes

The result is of the same kind and type as X.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) must return
with a value of true.

For supported IEEE special values, such as NaN and infinity, IEEE_COPY_SIGN
returns the value of X with the sign of Y.

IEEE_COPY_SIGN ignores the –qxlf90=nosignedzero compiler option.

Note: XL Fortran REAL(16) numbers have no signed zero.

Examples

Example 1:
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X
DOUBLE PRECISION :: Y
X = 3.0
Y = -2.0
IF (IEEE_SUPPORT_DATATYPE(X) .AND. IEEE_SUPPORT_DATATYPE(Y)) THEN

X = IEEE_COPY_SIGN(X,Y) ! X has value -3.0
ENDIF

Example 2:

896 XL Fortran: Language Reference for Big Endian Distributions

USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X, Y
Y = 1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

X = IEEE_VALUE(X, IEEE_NEGATIVE_INF) ! X has value -inf
X = IEEE_COPY_SIGN(X,Y) ! X has value +inf

ENDIF

IEEE_GET_FLAG(FLAG, FLAG_VALUE)
Type

An elemental IEEE subroutine. Retrieves the status of the exception flag specified.
Sets FLAG_VALUE to true if the flag is signaling, or false otherwise.

Module

IEEE_ARITHMETIC

Syntax

Where FLAG is an INTENT(IN) argument of type IEEE_FLAG_TYPE specifying
the IEEE flag to obtain. FLAG_VALUE is an INTENT(OUT) default logical
argument that contains the value of FLAG.

Examples
USE, INTRINSIC:: IEEE_EXCEPTIONS
LOGICAL :: FLAG_VALUE
CALL IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG_VALUE)
IF (FLAG_VALUE) THEN

PRINT *, "Overflow flag is signaling."
ELSE

PRINT *, "Overflow flag is quiet."
ENDIF

IEEE_GET_HALTING_MODE(FLAG, HALTING)
Type

An elemental IEEE subroutine. Retrieves the halting mode for an exception and
sets HALTING to true if the exception specified by the flag will cause halting.

Module

IEEE_ARITHMETIC

Syntax

Where FLAG is an INTENT(IN) argument of type IEEE_FLAG_TYPE specifying
the IEEE flag. HALTING is an INTENT(OUT) default logical.

Examples
USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL HALTING
CALL IEEE_GET_HALTING_MODE(IEEE_OVERFLOW,HALTING)
IF (HALTING) THEN

PRINT *, "The program will halt on an overflow exception."
ENDIF

Chapter 20. Floating-point control and inquiry procedures 897

IEEE_GET_ROUNDING_MODE (ROUND_VALUE)
Type

An IEEE subroutine. Sets ROUND_VALUE to the current IEEE rounding mode.

Module

IEEE_ARITHMETIC

Syntax

Where ROUND_VALUE is an INTENT(OUT) scalar of type IEEE_ROUND_TYPE.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE(IEEE_ROUND_TYPE) ROUND_VALUE
CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE) ! Store the rounding mode
IF (ROUND_VALUE == IEEE_OTHER) THEN

PRINT *, "You are not using an IEEE rounding mode."
ENDIF

IEEE_GET_STATUS(STATUS_VALUE)
Type

An IEEE subroutine. Retrieves the current IEEE floating-point status.

Module

IEEE_ARITHMETIC

Syntax

Where STATUS_VALUE is an INTENT(OUT) scalar of type IEEE_STATUS_TYPE.

Rules

You can only use STATUS_VALUE in an IEEE_SET_STATUS invocation.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
...
CALL IEEE_GET_STATUS(STATUS_VALUE) ! Get status of all exception flags
CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Set all exception flags to quiet
... ! calculation involving exception handling
CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

IEEE_GET_UNDERFLOW_MODE(GRADUAL)
Type

An IEEE subroutine. Retrieves the underflow mode in operation.

Type

IEEE_ARITHMETIC

898 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Where GRADUAL is an INTENT(OUT) scalar of type default logical.

Rules

XL Fortran does not support underflow control. Only gradual underflow mode is
supported. IEEE_GET_UNDERFLOW_MODE always sets GRADUAL to true.

IEEE_IS_FINITE(X)
Type

An elemental IEEE function. Tests whether a value is finite. Returns true if
IEEE_CLASS(X) has one of the following values:
v IEEE_NEGATIVE_NORMAL

v IEEE_NEGATIVE_DENORMAL

v IEEE_NEGATIVE_ZERO

v IEEE_POSITIVE_ZERO

v IEEE_POSITIVE_DENORMAL

v IEEE_POSITIVE_NORMAL

It returns false otherwise.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

Where the result is of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X = 1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

PRINT *, IEEE_IS_FINITE(X) ! Prints true
ENDIF

IEEE_IS_NAN(X)
Type

An elemental IEEE function. Tests whether a value is IEEE Not-a-Number. Returns
true if IEEE_CLASS(X) has the value IEEE_SIGNALING_NAN or
IEEE_QUIET_NAN. It returns false otherwise.

Chapter 20. Floating-point control and inquiry procedures 899

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

Where the result is of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_NAN(X) must return with a
value of true.

Examples

Example 1:
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X = -1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

IF (IEEE_SUPPORT_SQRT(X)) THEN ! IEEE-compliant SQRT function
IF (IEEE_SUPPORT_NAN(X)) THEN

PRINT *, IEEE_IS_NAN(SQRT(X)) ! Prints true
ENDIF

ENDIF
ENDIF

Example 2:
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X = -1.0
IF (IEEE_SUPPORT_STANDARD(X)) THEN

PRINT *, IEEE_IS_NAN(SQRT(X)) ! Prints true
ENDIF

IEEE_IS_NEGATIVE(X)
Type

An elemental IEEE function. Tests whether a value is negative. Returns true if
IEEE_CLASS(X) has one of the following values:
v IEEE_NEGATIVE_NORMAL

v IEEE_NEGATIVE_DENORMAL

v IEEE_NEGATIVE_ZERO

v IEEE_NEGATIVE_INF

It returns false otherwise.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

900 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

Where the result is of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(1.0)) THEN

PRINT *, IEEE_IS_NEGATIVE(1.0) ! Prints false
ENDIF

IEEE_IS_NORMAL(X)
Type

An elemental IEEE function. Tests whether a value is normal. Returns true if
IEEE_CLASS(X) has one of the following values:
v IEEE_NEGATIVE_NORMAL

v IEEE_NEGATIVE_ZERO

v IEEE_POSITIVE_ZERO

v IEEE_POSITIVE_NORMAL

It returns false otherwise.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

Where the result is of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X = -1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

IF (IEEE_SUPPORT_SQRT(X)) THEN ! IEEE-compliant SQRT function
PRINT *, IEEE_IS_NORMAL(SQRT(X)) ! Prints false

ENDIF
ENDIF

Chapter 20. Floating-point control and inquiry procedures 901

IEEE_LOGB(X)
Type

An elemental IEEE function. Returns unbiased exponent in the IEEE floating-point
format. If the value of X is neither zero, infinity, or NaN, the result has the value
of the unbiased exponent of X, equal to EXPONENT(X)–1.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

Where the result is the same type and kind as X.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X is zero, the result is negative infinity.

If X is infinite, the result is positive infinity.

If X is NaN, the result is nan.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(1.1)) THEN

PRINT *, IEEE_LOGB(1.1) ! Prints 0.0
ENDIF

IEEE_NEXT_AFTER(X, Y)
Type

An elemental IEEE function. Returns the next machine-representable neighbor of X
in the direction towards Y.

Module

IEEE_ARITHMETIC

Syntax

Where X and Y are of type real.

Result type and attributes

Where the result is the same type and kind as X.

902 XL Fortran: Language Reference for Big Endian Distributions

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) must return
with a value of true.

If X and Y are equal the function returns X without signaling an exception. If X
and Y are not equal, the function returns the next machine-representable neighbor
of X in the direction towards Y.

The neighbors of zero, of either sign, are both nonzero.

IEEE_OVERFLOW and IEEE_INEXACT are signaled when X is finite but
IEEE_NEXT_AFTER(X, Y) is infinite.

IEEE_UNDERFLOW and IEEE_INEXACT are signaled when
IEEE_NEXT_AFTER(X, Y) is denormalized or zero.

If X or Y is a quiet NaN, the result is one of the input NaN values.

Examples

Example 1:
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X = 1.0, Y = 2.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

PRINT *, (IEEE_NEXT_AFTER(X,Y) == X + EPSILON(X)) ! Prints true
ENDIF

Example 2:
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL(4) :: X = 0.0, Y = 1.0
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

PRINT *, (IEEE_NEXT_AFTER(X,Y) == 2.0**(-149)) ! Prints true
ENDIF

IEEE_REM(X, Y)
Type

An elemental IEEE remainder function. The result value, regardless of the
rounding mode, is exactly X–Y*N, where N is the integer nearest to the exact value
X/Y; whenever |N - X/Y| = 1/2, N is even.

Module

IEEE_ARITHMETIC

Syntax

Where X and Y are of type real.

Result type and attributes

Where the result is of type real with the same kind as the argument with greater
precision.

Chapter 20. Floating-point control and inquiry procedures 903

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) must return
with a value of true.

If the result value is zero, the sign is the same as X.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(4.0)) THEN

PRINT *, IEEE_REM(4.0,3.0) ! Prints 1.0
PRINT *, IEEE_REM(3.0,2.0) ! Prints -1.0
PRINT *, IEEE_REM(5.0,2.0) ! Prints 1.0

ENDIF

IEEE_RINT(X)
Type

An elemental IEEE function. Rounds to an integer value according to the current
rounding mode.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real.

Result type and attributes

Where the result is the same type and kind as X.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If the result has the value zero, the sign is that of X.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(1.1)) THEN

CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)
PRINT *, IEEE_RINT(1.1) ! Prints 1.0
CALL IEEE_SET_ROUNDING_MODE(IEEE_UP)
PRINT *, IEEE_RINT(1.1) ! Prints 2.0

ENDIF

IEEE_SCALB(X, I)
Type

An elemental IEEE function. Returns X * 2I.

Module

IEEE_ARITHMETIC

904 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Where X is of type real and I is of type INTEGER.

Result type and attributes

Where the result is the same type and kind as X.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X * 2I is representable as a normal number, then the result is a normal number.

If X is finite and X * 2I is too large the IEEE_OVERFLOW exception occurs. The
result value is infinity with the sign of X.

If X * 2I is too small and there is a loss of accuracy, the IEEE_UNDERFLOW
exception occurs. The result is the nearest representable number with the sign of X.

If X is infinite, the result is the same as X with no exception signals.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(1.0)) THEN

PRINT *, IEEE_SCALB(1.0,2) ! Prints 4.0
ENDIF

IEEE_SELECTED_REAL_KIND([P, R, RADIX])
Type

A transformational IEEE function. Returns a value of the kind type parameter of an
IEEE real data type with decimal precision of at least P digits, a decimal exponent
range of at least R, F2008 and a radix of RADIX F2008 .

Module

IEEE_ARITHMETIC

Syntax

Where P, R, F2008 and RADIX F2008 are scalar optional arguments of type
integer. At least one argument must be present.

Rules

If P or R is not specified, SELECTED_REAL_KIND behaves as if you specified P
or R with value 0. If RADIX is not specified, the radix of the selected kind can be
any supported value.

The result is the value of the kind type parameter of an IEEE real data type that
satisfies the following conditions:
v It has decimal precision, as returned by the PRECISION function, of at least P

digits.

Chapter 20. Floating-point control and inquiry procedures 905

v It has a decimal exponent range, as returned by the RANGE function, of at least
R.

v F2008 It has a radix, as returned by the RADIX function, of RADIX. F2008

If no such kind type parameter is available, the result has different values
depending on different conditions as follows:
v If F2008 the radix is available F2008 , the precision is not available, and the

exponent range is available, the result is -1.
v If F2008 the radix is available F2008 , the exponent range is not available,

and the precision is available, the result is -2.
v If F2008 the radix is available F2008 , and neither the precision nor the

exponent range is available, the result is -3.
v If F2008 the radix is available F2008 , and both the precision and exponent

range are available separately but not together, the result is -4.
v F2008 If the radix is not available, the result is -5. F2008

If more than one kind type parameter value meets the criteria, the value returned
is the one with the smallest decimal precision. However, if several values have the
same smallest decimal precision, the smallest value is returned.

F2008 Currently, the XL Fortran compiler only supports RADIX=2. F2008

Examples

Example 1:
USE, INTRINSIC :: IEEE_ARITHMETIC

i = IEEE_SELECTED_REAL_KIND(P = 4, R = 32)
PRINT *, ’IEEESELECTREALKIND(4, 32) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 12, R = 307)
PRINT *, ’IEEESELECTREALKIND(12, 307) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 16, R = 291)
PRINT *, ’IEEESELECTREALKIND(16, 291) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 32, R = 291)
PRINT *, ’IEEESELECTREALKIND(32, 291) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 31, R = 308)
PRINT *, ’IEEESELECTREALKIND(31, 308) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 32, R = 308)
PRINT *, ’IEEESELECTREALKIND(32, 308) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 31, R = 292)
PRINT *, ’IEEESELECTREALKIND(31, 292) = ’, i

The output of this program is as follows:
IEEESELECTREALKIND(4, 32) = 4
IEEESELECTREALKIND(12, 307) = 8
IEEESELECTREALKIND(16, 291) = 16
IEEESELECTREALKIND(32, 291) = -1
IEEESELECTREALKIND(31, 308) = -2
IEEESELECTREALKIND(32, 308) = -3
IEEESELECTREALKIND(31, 292) = -4

F2008

Example 2:
USE, INTRINSIC :: IEEE_ARITHMETIC

i = IEEE_SELECTED_REAL_KIND(P = 4, R = 32, RADIX = 2)
PRINT *, ’IEEESELECTREALKIND(4, 32, 2) = ’, i

906 XL Fortran: Language Reference for Big Endian Distributions

i = IEEE_SELECTED_REAL_KIND(P = 32, R = 308, RADIX = 2)
PRINT *, ’IEEESELECTREALKIND(32, 308, 2) = ’, i
i = IEEE_SELECTED_REAL_KIND(P = 31, R = 292, RADIX = 32)
PRINT *, ’IEEESELECTREALKIND(31, 292, 32) = ’, i

The output of this program is as follows:
IEEESELECTREALKIND(4, 32, 2) = 4
IEEESELECTREALKIND(32, 308, 2) = -3
IEEESELECTREALKIND(31, 292, 32) = -5

F2008

IEEE_SET_FLAG(FLAG, FLAG_VALUE)
Type

An IEEE subroutine. Assigns a value to an IEEE exception flag.

Module

IEEE_EXCEPTIONS

Syntax

Where FLAG is an INTENT(IN) scalar or array argument of type
IEEE_FLAG_TYPE corresponding to the value of the flag to be set. FLAG_VALUE
is an INTENT(IN) scalar or array argument of type logical, corresponding to the
wanted status of the exception flag. The value of FLAG_VALUE should be
conformable with the value of FLAG.

Rules

If FLAG_VALUE is true, the exception flag specified by FLAG is set to signaling.
Otherwise, the flag is set to quiet.

Each element of FLAG must have a unique value.

Examples
USE, INTRINSIC :: IEEE_EXCEPTIONS
CALL IEEE_SET_FLAG(IEEE_OVERFLOW, .TRUE.)
! IEEE_OVERFLOW is now signaling

IEEE_SET_HALTING_MODE(FLAG, HALTING)
Type

An IEEE subroutine. Controls continuation or halting after an exception.

Module

IEEE_EXCEPTIONS

Syntax

Where FLAG is an INTENT(IN) scalar or array argument of type
IEEE_FLAG_TYPE corresponding to the exception flag for which holding applies.
HALTING is an INTENT(IN) scalar or array argument of type logical,
corresponding to the wanted halting status. By default exceptions will not cause

Chapter 20. Floating-point control and inquiry procedures 907

halting in XL Fortran. The value of HALTING should be conformable with the
value of FLAG.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If HALTING is true, the exception specified by FLAG will cause halting. Otherwise,
execution will continue after the exception.

Each element of FLAG must have a unique value.

Examples
@PROCESS FLOAT(NOFOLD)
USE, INTRINSIC :: IEEE_EXCEPTIONS
REAL :: X
CALL IEEE_SET_HALTING_MODE(IEEE_DIVIDE_BY_ZERO, .TRUE.)
X = 1.0 / 0.0
! Program will halt with a divide-by-zero exception

IEEE_SET_ROUNDING_MODE (ROUND_VALUE)
Type

An IEEE subroutine. Sets the current rounding mode.

Module

IEEE_ARITHMETIC

Syntax

Where ROUND_VALUE is an INTENT(IN) argument of type IEEE_ROUND_TYPE
specifying the rounding mode.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_ROUNDING
(ROUND_VALUE, X) must return with a value of true.

The compilation unit calling this program must be compiled with the -qfloat=rrm
compiler option.

All compilation units calling programs compiled with the -qfloat=rrm compiler
option must also be compiled with this option.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
IF (IEEE_SUPPORT_DATATYPE(1.1)) THEN

CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)
PRINT *, IEEE_RINT(1.1) ! Prints 1.0
CALL IEEE_SET_ROUNDING_MODE(IEEE_UP)
PRINT *, IEEE_RINT(1.1) ! Prints 2.0

ENDIF

908 XL Fortran: Language Reference for Big Endian Distributions

IEEE_SET_STATUS(STATUS_VALUE)
Type

An IEEE subroutine. Restores the value of the floating-point status.

Module

IEEE_ARITHMETIC

Syntax

Where STATUS_VALUE is an INTENT(IN) argument of type IEEE_STATUS_TYPE
specifying the floating-point status.

Rules

STATUS_VALUE must have been set previously by IEEE_GET_STATUS.

IEEE_SET_UNDERFLOW_MODE(GRADUAL)
Type

An IEEE subroutine. Sets the current underflow mode.

Module

IEEE_ARITHMETIC

Syntax

Where GRADUAL is a scalar argument of type default logical.

Rules

XL Fortran does not support underflow control. Only gradual underflow mode is
supported. Calling IEEE_SET_UNDERFLOW_MODE with GRADUAL set to false
has no effect.

IEEE_SUPPORT_DATATYPE or IEEE_SUPPORT_DATATYPE(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports IEEE arithmetic. Support means using an IEEE data format and
performing the binary operations of +, -, and * as in the IEEE standard whenever
the operands and result all have normal values.

Note: NaN and Infinity are not fully supported for REAL(16). Arithmetic
operations do not necessarily propagate these values.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Chapter 20. Floating-point control and inquiry procedures 909

Result type and attributes

The result is a scalar of type default logical.

Rules

If X is absent, the function returns a value of false.

If X is present and REAL(16), the function returns a value of false. Otherwise the
function returns true.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
...
CALL IEEE_GET_STATUS(STATUS_VALUE) ! Get status of all exception flags
CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Set all exception flags to quiet
... ! calculation involving exception handling
CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

IEEE_SUPPORT_DENORMAL or IEEE_SUPPORT_DENORMAL(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports denormalized numbers.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

The result has a value of true if the implementation supports arithmetic operations
and assignments with denormalized numbers for all arguments of type real where
X is absent, or for real variables of the same kind type parameter as X. Otherwise,
the result has a value of false.

IEEE_SUPPORT_DIVIDE or IEEE_SUPPORT_DIVIDE(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports division to the accuracy of the IEEE standard.

Module

IEEE_ARITHMETIC

910 XL Fortran: Language Reference for Big Endian Distributions

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

The result has a value of true if the implementation supports division with the
accuracy specified by the IEEE standard for all arguments of type real where X is
absent, or for real variables of the same kind type parameter as X. Otherwise, the
result has a value of false.

IEEE_SUPPORT_FLAG(FLAG) or IEEE_SUPPORT_FLAG(FLAG,
X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports an exception.

Module

IEEE_EXCEPTIONS

Syntax

Where FLAG is a scalar argument of IEEE_FLAG_TYPE. X is a scalar or array
valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

The result has a value of true if the implementation supports detection of the
exception specified for all arguments of type real where X is absent, or for real
variables of the same kind type parameter as X. Otherwise, the result has a value
of false.

If X is absent, the result has a value of false.

If X is present and of type REAL(16), the result has a value of false. Otherwise the
result has a value of true.

IEEE_SUPPORT_HALTING(FLAG)
Type

An inquiry IEEE function. Determines whether the current implementation
supports the ability to abort or continue execution after an exception occurs.
Support by the current implementation includes the ability to change the halting

Chapter 20. Floating-point control and inquiry procedures 911

mode using IEEE_SET_HALTING(FLAG).

Module

IEEE_EXCEPTIONS

Syntax

Where FLAG is an INTENT(IN) argument of IEEE_FLAG_TYPE.

Result type and attributes

The result is a scalar of type default logical.

Rules

The result returns with a value of true for all flags.

IEEE_SUPPORT_INF or IEEE_SUPPORT_INF(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports IEEE infinity behavior for unary and binary operation. Support indicates
that IEEE infinity behavior for unary and binary operations, including those
defined by intrinsic functions and by functions in intrinsic modules, complies with
the IEEE standard.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

The result has a value of true if the implementation supports IEEE positive and
negative infinities for all arguments of type real where X is absent, or for real
variables of the same kind type parameter as X. Otherwise, the result has a value
of false.

If X is of type REAL(16), the result has a value of false. Otherwise the result has a
value of true.

912 XL Fortran: Language Reference for Big Endian Distributions

IEEE_SUPPORT_IO or IEEE_SUPPORT_IO(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports IEEE base conversion rounding during formatted input/output. Support
refers to the ability to do IEEE base conversion during formatted input/output as
described in the IEEE standard for the modes IEEE_UP, IEEE_DOWN,
IEEE_ZERO, and IEEE_NEAREST for all arguments of type real where X is
absent, or for real variables of the same kind type parameter as X.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X is present and of type REAL(16), the result has a value of false. Otherwise, the
result returns a value of true.

IEEE_SUPPORT_NAN or IEEE_SUPPORT_NAN(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports the IEEE Not-a-Number facility. Support indicates that IEEE NaN
behavior for unary and binary operations, including those defined by intrinsic
functions and by functions in intrinsic modules, conforms to the IEEE standard.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X is absent, the result has a value of false.

Chapter 20. Floating-point control and inquiry procedures 913

If X is present and of type REAL(16), the result has a value of false. Otherwise the
result returns a value of true.

IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or
IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports a particular rounding mode for arguments of type real. Support indicates
the ability to change the rounding mode using IEEE_SET_ROUNDING_MODE.

Module

IEEE_ARITHMETIC

Syntax

Where ROUND_VALUE is a scalar argument of IEEE_ROUND_TYPE. X is a scalar
or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X is absent, the result has a value of true if the implementation supports the
rounding mode defined by ROUND_VALUE for all arguments of type real.
Otherwise, it has a value of false.

If X is present, the result returns a value of true if the implementation supports the
rounding mode defined by ROUND_VALUE for real variables of the same kind
type parameter as X. Otherwise, the result has a value of false.

If X is present and of type REAL(16), the result returns a value of false when
ROUND_VALUE has a value of IEEE_NEAREST. Otherwise the result returns a
value of true.

If ROUND_VALUE has a value of IEEE_OTHER the result has a value of false.

IEEE_SUPPORT_SQRT or IEEE_SUPPORT_SQRT(X)
Type

An inquiry IEEE function. Determines whether the current implementation
supports the SQRT as defined by the IEEE standard.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

914 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

The result is a scalar of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

If X is absent, the result returns a value of true if SQRT adheres to IEEE
conventions for all variables of type REAL. Otherwise, the result has a value of
false.

If X is present, the result returns a value of true if SQRT adheres to IEEE
conventions for all variables of type REAL with the same kind type parameter as
X. Otherwise, the result has a value of false.

If X is present and of type REAL(16), the result has a value of false. Otherwise the
result returns a value of true.

IEEE_SUPPORT_STANDARD or IEEE_SUPPORT_STANDARD(X)
Type

An inquiry IEEE function. Determines whether all facilities defined in the Fortran
2003 standard are supported.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or array valued argument of type real.

Result type and attributes

The result is a scalar of type default logical.

Rules

If X is absent, the result returns a value of false since XL Fortran supports
REAL(16).

If X is present, the result returns a value of true if the following functions also
return true:
v IEEE_SUPPORT_DATATYPE(X)

v IEEE_SUPPORT_DENORMAL(X)

v IEEE_SUPPORT_DIVIDE(X)

v IEEE_SUPPORT_FLAG(FLAG, X) for every valid flag.
v IEEE_SUPPORT_HALTING(FLAG) for every valid flag.
v IEEE_SUPPORT_INF(X)

v IEEE_SUPPORT_NAN(X)

v IEEE_SUPPORT_ROUNDING(ROUND_VALUE, X) for every valid
ROUND_VALUE

Chapter 20. Floating-point control and inquiry procedures 915

v IEEE_SUPPORT_SQRT(X)

Otherwise, the result returns a value of false.

IEEE_SUPPORT_UNDERFLOW_CONTROL() or
IEEE_SUPPORT_UNDERFLOW_CONTROL(X)
Type

An inquiry IEEE function. Determines if the ability to control underflow mode
during execution is supported.

Module

IEEE_ARITHMETIC

Syntax

Where X is a scalar or an array of type real.

Rules

XL Fortran does not support underflow mode control.
IEEE_SUPPORT_UNDERFLOW_CONTROL always returns false.

IEEE_UNORDERED(X, Y)
Type

An elemental IEEE unordered function.

Module

IEEE_ARITHMETIC

Syntax

Where X and Y are of type real.

Result type and attributes

The result is of type default logical.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) must return
with a value of true.

Unordered function returns with a value of true if X or Y is a NaN. Otherwise the
function returns with a value of false.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL X, Y
X = 0.0
Y = IEEE_VALUE(Y, IEEE_QUIET_NAN)
PRINT *, IEEE_UNORDERED(X,Y) ! Prints true
END

916 XL Fortran: Language Reference for Big Endian Distributions

IEEE_VALUE(X, CLASS)
Type

An elemental IEEE function. Generates an IEEE value as specified by CLASS.

Note: Implementation of this function is platform and compiler dependent due to
variances in NaN processing on differing platforms. A NaN value saved in a
binary file that is read on a different platform than the one that generated the
value will have unspecified results.

Module

IEEE_ARITHMETIC

Syntax

Where X is of type real. CLASS is of type IEEE_CLASS_TYPE.

Result type and attributes

The result is of the same type and kind as X.

Rules

To ensure compliance with the Fortran 2003 standard, the
IEEE_SUPPORT_DATATYPE(X) must return with a value of true.

IEEE_SUPPORT_NAN(X) must be true if the value of CLASS is
IEEE_SIGNALING_NAN or IEEE_QUIET_NAN.

IEEE_SUPPORT_INF(X) must be true if the value of CLASS is
IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF.

IEEE_SUPPORT_DENORMAL(X) must be true if the value of CLASS is
IEEE_NEGATIVE_DENORMAL or IEEE_POSITIVE_DENORMAL.

Multiple calls of IEEE_VALUE(X, CLASS) return the same result for a particular
value of X, if kind type parameter and CLASS remain the same.

If a compilation unit calls this program with a CLASS value of
IEEE_SIGNALING_NAN, the compilation unit must be compiled with the
–qfloat=nans compiler option.

CLASS may not have the value IEEE_OTHER_VALUE.

Examples
USE, INTRINSIC :: IEEE_ARITHMETIC
REAL :: X
IF (IEEE_SUPPORT_DATATYPE(X)) THEN

X = IEEE_VALUE(X, IEEE_NEGATIVE_INF)
PRINT *, X ! Prints -inf

END IF

Rules for floating-point status
An exception flag set to signaling remains signaling until set to quiet by either the
IEEE_SET_FLAG or IEEE_SET_STATUS subroutines.

Chapter 20. Floating-point control and inquiry procedures 917

The compiler ensures that a call from scoping units using the IEEE_EXCEPTIONS
or IEEE_ARITHMETIC intrinsic modules does not change the floating–point
status other than by setting exception flags to signaling.

If a flag is set to signaling on entry into a scoping unit that uses the
IEEE_EXCEPTIONS or IEEE_ARITHMETIC modules, the flag is set to quiet and
then restored to signaling when leaving that scoping unit.

In a scoping unit that uses the IEEE_EXCEPTIONS or IEEE_ARITHMETIC
modules, the rounding and halting modes do not change on entry. On return, the
rounding and halting modes are the same as on entry.

Evaluating a specification expression can cause an exception to signal.

Exception handlers must not use the IEEE_EXCEPTIONS or IEEE_ARITHMETIC
modules.

The following rules apply to format processing and intrinsic procedures:
v The status of a signaling flag, either signaling or quiet, does not change because

of an intermediate calculation that does not affect the result.
v If an intrinsic procedure executes normally, the values of the flags

IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, and IEEE_INVALID remain the
same on entry to the procedure.

v If a real or complex result is too large for the intrinsic to handle,
IEEE_OVERFLOW may signal.

v If a real or complex result is a NaN because of an invalid operation,
IEEE_INVALID may signal.

In a sequence of statements that has no invocations of IEEE_GET_FLAG,
IEEE_SET_FLAG, IEEE_GET_STATUS, IEEE_SET_HALTING, or
IEEE_SET_STATUS, the following applies. If the execution of an operation would
cause an exception to signal but after execution of the sequence no value of a
variable depends on the operation, whether the exception is signaling depends on
the optimization level. Optimization transformations may eliminate some code,
and thus IEEE exception flags signaled by the eliminated code will not signal.

An exception will not signal if this could arise only during execution of an
operation beyond those required or permitted by the standard.

For procedures defined by means other than Fortran, it is the responsibility of the
user to preserve floating–point status.

XL Fortran does not always detect floating-point exception conditions for extended
precision values. If you turn on floating-point exception trapping in programs that
use extended precision, XL Fortran may also generate signals in cases where an
exception does not really occur. See Detecting and trapping floating-point
exceptions in the XL Fortran Optimization and Programming Guide for more
information.

Fortran 2003 IEEE derived types, constants, and operators are incompatible with
the floating–point and inquiry procedures in xlf_fp_util, fpsets, and fpgets
procedures. A value obtained from an IEEE procedure cannot be used in non-IEEE
procedures. Within a single scoping unit, do not mix calls to the procedures in
xlf_fp_util, fpsets, and fpgets with calls to the IEEE procedures. These procedures

918 XL Fortran: Language Reference for Big Endian Distributions

may change the floating–point status when called from scoping units that use the
IEEE_EXCEPTIONS or IEEE_ARITHMETIC modules.

Examples
Example 1: In the following example, the main program calls procedure P which
uses the IEEE_ARITHMETIC module. The procedure changes the floating-point
status before returning. The example displays the changes to the floating-point
status before calling procedure P, on entry into the procedure, on exit from P, and
after returning from the procedure.
PROGRAM MAIN

USE, INTRINSIC :: IEEE_ARITHMETIC

INTERFACE
SUBROUTINE P()

USE IEEE_ARITHMETIC
END SUBROUTINE P

END INTERFACE

LOGICAL, DIMENSION(5) :: FLAG_VALUES
TYPE(IEEE_ROUND_TYPE) :: ROUND_VALUE

CALL IEEE_SET_FLAG(IEEE_OVERFLOW, .TRUE.)

CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, "MAIN: FLAGS ",FLAG_VALUES

CALL P()

CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, "MAIN: FLAGS ",FLAG_VALUES

CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE)
IF (ROUND_VALUE == IEEE_NEAREST) THEN

PRINT *, "MAIN: ROUNDING MODE: IEEE_NEAREST"
ENDIF

END PROGRAM MAIN

SUBROUTINE P()
USE IEEE_ARITHMETIC
LOGICAL, DIMENSION(5) :: FLAG_VALUES
TYPE(IEEE_ROUND_TYPE) :: ROUND_VALUE

CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, " P: FLAGS ON ENTRY: ",FLAG_VALUES

CALL IEEE_SET_ROUNDING_MODE(IEEE_TO_ZERO)
CALL IEEE_SET_FLAG(IEEE_UNDERFLOW, .TRUE.)

CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE)
IF (ROUND_VALUE == IEEE_TO_ZERO) THEN

PRINT *, " P: ROUNDING MODE ON EXIT: IEEE_TO_ZERO"
ENDIF
CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, " P: FLAGS ON EXIT: ",FLAG_VALUES

END SUBROUTINE P

When using the –qstrictieeemod compiler option to ensure compliance with rules
for IEEE arithmetic, exception flags set before calling P are cleared on entry to P.
Changes to the floating–point status occurring in P are undone when P returns,
with the exception that flags set in P remain set after P returns:

Chapter 20. Floating-point control and inquiry procedures 919

MAIN: FLAGS T F F F F
P: FLAGS ON ENTRY: F F F F F
P: ROUNDING MODE ON EXIT: IEEE_TO_ZERO
P: FLAGS ON EXIT: F F F T F

MAIN: FLAGS T F F T F
MAIN: ROUNDING MODE: IEEE_NEAREST

When the –qnostrictieeemod compiler option is in effect, exception flags which
were set before calling P remain set on entry to P. Changes to the floating-point
status occurring in P are propagated to the caller.
MAIN: FLAGS T F F F F

P: FLAGS ON ENTRY: T F F F F
P: ROUNDING MODE ON EXIT: IEEE_TO_ZERO
P: FLAGS ON EXIT: T F F T F

MAIN: FLAGS T F F T F

Example 2: In the following example, the main program calls procedure Q which
uses neither IEEE_ARITHMETIC nor IEEE_EXCEPTIONS. Procedure Q changes
the floating–point status before returning. The example displays the changes to the
floating–point status before calling Q, on entry into the procedure, on exit from Q,
and after returning from the procedure.
PROGRAM MAIN

USE, INTRINSIC :: IEEE_ARITHMETIC

LOGICAL, DIMENSION(5) :: FLAG_VALUES
TYPE(IEEE_ROUND_TYPE) :: ROUND_VALUE

CALL IEEE_SET_FLAG(IEEE_OVERFLOW, .TRUE.)

CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, "MAIN: FLAGS ",FLAG_VALUES

CALL Q()

CALL IEEE_GET_FLAG(IEEE_ALL, FLAG_VALUES)
PRINT *, "MAIN: FLAGS ",FLAG_VALUES

CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE)
IF (ROUND_VALUE == IEEE_NEAREST) THEN

PRINT *, "MAIN: ROUNDING MODE: IEEE_NEAREST"
ENDIF

END PROGRAM MAIN

SUBROUTINE Q()
USE XLF_FP_UTIL
INTERFACE

FUNCTION GET_FLAGS()
LOGICAL, DIMENSION(5) :: GET_FLAGS

END FUNCTION
END INTERFACE

LOGICAL, DIMENSION(5) :: FLAG_VALUES
INTEGER(FP_MODE_KIND) :: OLDMODE

FLAG_VALUES = GET_FLAGS()
PRINT *, " Q: FLAGS ON ENTRY: ", FLAG_VALUES

CALL CLR_FPSCR_FLAGS(FP_OVERFLOW)
OLDMODE = SET_ROUND_MODE(FP_RND_RZ)
CALL SET_FPSCR_FLAGS(TRP_OVERFLOW)
CALL SET_FPSCR_FLAGS(FP_UNDERFLOW)

IF (GET_ROUND_MODE() == FP_RND_RZ) THEN
PRINT *, " Q: ROUNDING MODE ON EXIT: TO_ZERO"

920 XL Fortran: Language Reference for Big Endian Distributions

ENDIF

FLAG_VALUES = GET_FLAGS()
PRINT *, " Q: FLAGS ON EXIT: ", FLAG_VALUES

END SUBROUTINE Q

! PRINT THE STATUS OF ALL EXCEPTION FLAGS
FUNCTION GET_FLAGS()

USE XLF_FP_UTIL
LOGICAL, DIMENSION(5) :: GET_FLAGS
INTEGER(FPSCR_KIND), DIMENSION(5) :: FLAGS
INTEGER I

FLAGS = (/ FP_OVERFLOW, FP_DIV_BY_ZERO, FP_INVALID, &
& FP_UNDERFLOW, FP_INEXACT /)
DO I=1,5

GET_FLAGS(I) = (GET_FPSCR_FLAGS(FLAGS(I)) /= 0)
END DO

END FUNCTION

When using the –qstrictieeemod compiler option to ensure compliance with rules
for IEEE arithmetic, exception flags set before Q remain set on entry into Q.
Changes to the floating–point status occurring in Q are undone when Q returns,
with the exception that flags set in Q remain set after Q returns:
MAIN: FLAGS T F F F F

Q: FLAGS ON ENTRY: T F F F F
Q: ROUNDING MODE ON EXIT: TO_ZERO
Q: FLAGS ON EXIT: F F F T F

MAIN: FLAGS T F F T F
MAIN: ROUNDING MODE: IEEE_NEAREST

When the –qnostrictieeemod option is in effect, exception flags set before calling Q
remain set on entry into Q. Changes to the floating-point status occurring in Q are
propagated to the caller.
MAIN: FLAGS T F F F F

Q: FLAGS ON ENTRY: T F F F F
Q: ROUNDING MODE ON EXIT: TO_ZERO
Q: FLAGS ON EXIT: F F F T F

MAIN: FLAGS F F F T F

Chapter 20. Floating-point control and inquiry procedures 921

922 XL Fortran: Language Reference for Big Endian Distributions

Chapter 21. Service and utility procedures (IBM extension)

XL Fortran provides utility services that are available to the Fortran programmer.
This section describes the rules for the general service and utility procedures, then
provides an alphabetical reference to these procedures.

General service and utility procedures
The general service and utility procedures belong to the xlfutility module. To
ensure that the functions are given the correct type and that naming conflicts are
avoided, use these procedures in one of the following two ways:
1. XL Fortran supplies the XLFUTILITY module, which contains the interfaces and

data type definitions for these procedures (and the derived-type definitions
required for the dtime_, etime_, idate_, and itime_ procedures). XL Fortran
flags arguments that are not compatible with the interface specification in type,
kind, and rank. These modules enable type checking of these procedures at
compile time rather than at link time. The argument names in the module
interface are taken from the examples defined below. The following files are
supplied for the xlfutility and xlfutility_extname modules:

File names File type Locations

v xlfutility.f

v xlfutility_extname.f

source file v /opt/ibm/xlf/15.1.0/samples/
modules

v xlfutility.mod

v xlfutility_extname.mod

module symbol file v /opt/ibm/xlf/15.1.0/include

You can use the precompiled module by adding a USE statement to your
source file (see “USE” on page 478 for details). As well, you can modify the
module source file and recompile it to suit your needs. Use the
xlfutility_extname files for procedures compiled with the -qextname option.
The source file xlfutility_extname.f has no underscores following procedure
names, while xlfutility.f includes underscores for some procedures names
(as listed in this section).
If there are name conflicts (for example if the accessing subprogram has an
entity with the same name as a module entity), use the ONLY clause or the
renaming features of the USE statement. For example,
USE XLFUTILITY, NULL1 => DTIME_, NULL2 => ETIME_

2. Because these procedures are not intrinsic procedures:
v You must declare their type to avoid potential problems with implicit typing.
v When compiling with the -U option, you must code the names of these

procedures in all lowercase to match the names in the XL Fortran libraries.
We will show the names in lowercase here as a reminder.

To avoid conflicts with names in the libc library, some procedure names end
with an underscore. When coding calls to these procedures, you can:
v Instead of typing the underscore, use the -qextname compiler option to add

it to the end of each name:
xlf -qextname calls_flush.f

© Copyright IBM Corp. 1996, 2014 923

This method is recommended for programs already written without the
underscore following the routine name. The XL Fortran library contains
additional entry points, such as fpgets_, so that calls to procedures that do
not use trailing underscores still resolve with -qextname.

v Depending on the way your program is structured and the particular
libraries and object files it uses, you may have difficulty using -qextname or
-brename. In this case, enter the underscores after the appropriate names in
the source file:
PRINT *, IRTC() ! No underscore in this name
CALL FLUSH_(10) ! But there is one in this name

If your program calls the following procedures, there are restrictions on the
common block and external procedure names that you can use:

XLF-Provided Function Name Common Block or External Procedure Name
You Cannot Use

mclock times

rand irand

List of service and utility procedures
This section lists the service and utility procedures available in the XLFUTILITY
module.

Any application that uses the interfaces for the procedures ctime_, gmtime_,
ltime_, or time_ uses the symbolic constant TIME_SIZE to specify the kind type
parameter of certain intrinsic data types. The XLFUTILITY module defines
TIME_SIZE.

TIME_SIZE is set to 4 for 32–bit and 64–bit applications.

Note: CHARACTER(n) means that you can specify any length for the variable.

alarm_(time, func)
Purpose

The alarm_ function sends an alarm signal (SIGALRM) after time seconds to
invoke the specified function, func. This function calls the operating system's alarm
system routine.

Class

Function

Argument type and attributes

time INTEGER(4), INTENT(IN)

func A function that returns a result of type INTEGER(4).

Result type and attributes

INTEGER(4)

924 XL Fortran: Language Reference for Big Endian Distributions

Result value

If a previous alarm request was made with time remaining, alarm_ returns the
remaining time for the previous request in seconds. Otherwise, alarm_ returns 0.

Examples
use, intrinsic :: xlfutility
integer result
integer foo
result = alarm_(100, foo) ! call on_alarm in 100 seconds
print *, result ! prints 0
call sleep_(3) ! sleep for 3 seconds
result = alarm_(10, foo) ! Cancel first alarm. Call on_alarm in 10 seconds
print *, result ! prints 97
end

integer function on_alarm()
on_alarm = 0

end function

bic_(X1, X2)
Purpose

The bic_ subroutine sets bit X1 of X2 to 0. For greater portability, it is
recommended that you use the IBCLR standard intrinsic procedure instead of this
procedure.

Class

Subroutine

Argument type and attributes

X1 INTEGER(4), INTENT(IN)

The range of X1 must be within 0 to 31, inclusive.

X2 INTEGER(4), INTENT(INOUT)

bis_(X1, X2)
Purpose

The bis_ subroutine sets bit X1 of X2 to 1. For greater portability, it is
recommended that you use the IBSET standard intrinsic procedure instead of this
procedure.

Class

Subroutine

Argument type and attributes

X1 INTEGER(4), INTENT(IN)

The range of X1 must be within 0 to 31, inclusive.

X2 INTEGER(4), INTENT(INOUT)

Chapter 21. Service and utility procedures (IBM extension) 925

bit_(X1, X2)
Purpose

The bit_ function returns the value .TRUE. if bit X1 of X2 equals 1. Otherwise, bit_
returns the value .FALSE.. For greater portability, it is recommended that you use
the BTEST standard intrinsic procedure instead of this procedure.

Class

Function

Argument type and attributes

X1 INTEGER(4), INTENT(IN)

The range of X1 must be within 0 to 31, inclusive.

X2 INTEGER(4), INTENT(IN)

Result type and attributes

LOGICAL(4)

Result value

This function returns .TRUE. if bit X1 of X2 equals 1. Otherwise this function
returns .FALSE..

clock_()
Purpose

The clock_ function returns the time in hh:mm:ss format. This function is different
from the operating system clock function.

Class

Function

Result type and attributes

CHARACTER(8)

Result value

The time in hh:mm:ss format.

ctime_(STR, TIME)
Purpose

The ctime_ subroutine converts the system time TIME to a 26-character ASCII
string and outputs the result into the first argument. This subroutine calls the
operating system's ctime_r system routine.

Class

Subroutine

926 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

STR CHARACTER(26), INTENT(OUT)

TIME INTEGER(KIND=TIME_SIZE), INTENT(IN)

date()
Purpose

The date function returns the current date in mm/dd/yy format.

Class

Function

Result type and attributes

CHARACTER(8)

Result value

The current date in mm/dd/yy format.

dtime_(dtime_struct)
Purpose

The dtime_ function sets the time accounting information for the user time and
system time in DTIME_STRUCT. The resolution for all timing is 1/100 of a second.
The output appears in units of seconds.

Class

Function

Argument type and attributes

dtime_struct
TYPE TB_TYPE

SEQUENCE
REAL(4) USRTIME
REAL(4) SYSTIME

END TYPE
TYPE (TB_TYPE) DTIME_STRUCT

Result type and attributes

REAL(4)

Result value

The returned value is the sum of the user time and the system time since the last
call to dtime_.

Chapter 21. Service and utility procedures (IBM extension) 927

etime_(etime_struct)
Purpose

The etime_ function sets the user-elapsed time and system-elapsed time in
ETIME_STRUCT since the start of the execution of a process. The resolution for all
timing is 1/100 of a second. The output appears in units of seconds.

Class

Function

Argument type and attributes

etime_struct
TYPE TB_TYPE

SEQUENCE
REAL(4) USRTIME
REAL(4) SYSTIME

END TYPE
TYPE (TB_TYPE) ETIME_STRUCT

Result type and attributes

REAL(4)

Result value

The returned value is the sum of the user-elapsed time and the system-elapsed
time.

exit_(exit_status)
Purpose

The exit_ subroutine stops execution of the process with exit status exit_status. This
subroutine calls the operating system's exit system routine.

Class

Subroutine

Argument type and attributes

exit_status
INTEGER(4)

fdate_(str)
Purpose

The fdate_ subroutine returns the date and time in a 26-character ASCII string. The
ASCII string is returned in argument STR.

Class

Subroutine

928 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

str CHARACTER(26)

fiosetup_(unit, command, argument)
Purpose

The fiosetup_ function sets up the requested I/O behavior for the logical unit
specified by UNIT. The request is specified by argument COMMAND. The
argument ARGUMENT is an argument to the COMMAND. The Fortran include
file 'fiosetup_.h' is supplied with the compiler to define symbolic constants for the
fiosetup_ arguments and error return codes.

Class

Function

Argument type and attributes

unit A logical unit that is currently connected to a file

INTEGER(4).

command
INTEGER(4).

IO_CMD_FLUSH_AFTER_WRITE (1). Specifies whether the buffers of the
specified UNIT be flushed after every WRITE statement.

IO_CMD_FLUSH_BEFORE_READ (2). Specifies whether the buffers of the
specified UNIT be flushed before every READ statement. This can be used
to refresh the data currently in the buffers.

argument
INTEGER(4).

IO_ARG_FLUSH_YES (1). Causes the buffers of the specified UNIT to be
flushed after every WRITE statement. This argument should be specified
with the commands IO_CMD_FLUSH_AFTER_WRITE and
IO_CMD_FLUSH_BEFORE_READ.

IO_ARG_FLUSH_NO (0) Instructs the I/O library to flush buffers at its
own discretion. Note the units connected to certain device types must be
flushed after each WRITE operation regardless of the
IO_CMD_FLUSH_AFTER_WRITE setting. Such devices include terminals
and pipes. This argument should be specified with the commands
IO_CMD_FLUSH_AFTER_WRITE and IO_CMD_FLUSH_BEFORE_READ.
This is the default setting for both commands.

Result type and attributes

INTEGER(4).

Result value

On successful completion, this function returns 0. Otherwise, this function returns
one of the following errors:

IO_ERR_NO_RTE (1000)
The run-time environment is not running.

Chapter 21. Service and utility procedures (IBM extension) 929

IO_ERR_BAD_UNIT (1001)
The specified UNIT is not connected.

IO_ERR_BAD_CMD (1002)
Invalid command.

IO_ERR_BAD_ARG (1003)
Invalid argument.

flush_(lunit)
Purpose

The flush_ subroutine flushes the contents of the input/output buffer for the
logical unit LUNIT. The value of LUNIT must be within the range 0 ≤ LUNIT ≤
2**31-1.

For greater portability, use the FLUSH statement instead of this procedure.

Class

Subroutine

Argument type and attributes

lunit INTEGER(4), INTENT(IN)

ftell_(lunit)
Purpose

The ftell_ function returns the offset of the current byte relative to the beginning of
the file associated with the specified logical unit UNIT.

The offset returned by the ftell_ function is the result of previously completed I/O
operations. No references to ftell_ on a unit with outstanding asynchronous data
transfer operations are allowed until the matching WAIT statements for all
outstanding asynchronous data transfer operations on the same unit are executed.

Class

Function

Argument type and attributes

lunit INTEGER(4), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

The offset returned by the ftell_ function is the absolute offset of the current byte
relative to the beginning of the file. This means that all bytes from the beginning of
the file to the current byte are counted, including the data of the records and
record terminators if they are present.

If the unit is not connected, the ftell_ function returns -1.

930 XL Fortran: Language Reference for Big Endian Distributions

ftell64_(lunit)
Purpose

The ftell64_ function returns the offset of the current byte relative to the beginning
of the file associated with the specified logical unit UNIT. The ftell64 function
allows you to query files larger than 2 gigabytes in large file enabled file systems.

The offset returned by the ftell_ function is the result of previously completed I/O
operations. No references to ftell64_ on a unit with outstanding asynchronous data
transfer operations are allowed until the matching WAIT statements for all
outstanding asynchronous data transfer operations on the same unit are executed.

Class

Function

Argument type and attributes

lunit INTEGER(4), INTENT(IN)

Result type and attributes

The offset returned by the ftell64_ function is the absolute offset of the current
byte relative to the beginning of the file. This means that all bytes from the
beginning of the file to the current byte are counted, including the data of the
records and record terminators if they are present.

ftell64_ returns INTEGER(8).

Result value

If the unit is not connected, the ftell64_ function returns -1.

getarg(i1,c1)
Purpose

The getarg subroutine returns a command line argument of the current process. I1
is an integer argument that specifies which command line argument to return. C1
is an argument of character type and will contain, upon return from getarg, the
command line argument. If I1 is equal to 0, the program name is returned.

For greater portability, use the GET_COMMAND_ARGUMENT intrinsic instead
of this procedure.

Class

Subroutine

Argument type and attributes

i1 INTEGER(4), INTENT(IN)

c1 CHARACTER(X), INTENT(OUT)

X is the maximum number of characters c1 can hold.

Chapter 21. Service and utility procedures (IBM extension) 931

getcwd_(name)
Purpose

The getcwd_ function retrieves the pathname NAME of the current working
directory where the maximum length is 1024 characters. This function calls the
operating system's getcwd system routine.

Class

Function

Argument type and attributes

name A character string of maximum length 1024

Result type and attributes

INTEGER(4)

Result value

On successful completion, this function returns 0. Otherwise, it returns a system
error code (errno).

getfd(lunit)
Purpose

Given a Fortran logical unit, the getfd function returns the underlying file
descriptor for that unit, or -1 if the unit is not connected.

Note: Because XL Fortran does its own I/O buffering, using this function may
require special care, as described in Mixed-language input and output in the XL
Fortran Optimization and Programming Guide.

Class

Function

Argument type and attributes

lunit INTEGER(4), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

This function returns the underlying file descriptor of the given logical unit, or –1
if the unit is not connected.

932 XL Fortran: Language Reference for Big Endian Distributions

getgid_()
Purpose

The getgid_ function returns the group id of a process, where GROUP_ID is the
requested real group id of the calling process. This function calls the operating
system's getgid system routine.

Class

Function

Result type and attributes

INTEGER(4)

Result value

The group id of a process.

getlog_(name)
Purpose

The getlog_ subroutine stores the user's login name in NAME. NAME has a
maximum length of 8 characters. If the user's login name is not found, NAME is
filled with blanks. This subroutine calls the operating system's getlogin_r system
routine.

Class

Subroutine

Argument type and attributes

name CHARACTER(8), INTENT(OUT)

getpid_()
Purpose

The getpid_ function returns the process id of the current process. This function
calls the operating system's getpid system routine.

Class

Function

Result type and attributes

INTEGER(4)

Result value

The process id of the current process.

Chapter 21. Service and utility procedures (IBM extension) 933

getuid_()
Purpose

The getuid_ function returns the real user id of the current process. This function
calls the operating system's getuid system routine.

Class

Function

Result type and attributes

INTEGER(4)

Result value

The real user id of the current process.

global_timef()
Purpose

The global_timef function returns the elapsed time since the first call to
global_timef was first executed among all running threads. For thread-specific
timing results, see the timef_delta function.

Class

Function

Result type and attributes

REAL(8)

Result value

This function returns in milliseconds, the global timing results from all running
threads. The first call to global_timef returns 0.0. The accuracy of an XL Fortran
timing function is operating system dependent.

gmtime_(stime, tarray)
Purpose

The gmtime_ subroutine converts the system time STIME into the array TARRAY.
The data is stored in TARRAY in the following order:
seconds (0 to 59)
minutes (0 to 59)
hours (0 to 23)
day of the month (1 to 31)
month of the year (0 to 11)
year (year = current year - 1900)
day of week (Sunday = 0)
day of year (0 to 365)
daylight saving time (0 or 1)

934 XL Fortran: Language Reference for Big Endian Distributions

Class

Subroutine

Argument type and attributes

stime INTEGER(KIND=TIME_SIZE), INTENT(IN)

tarray INTEGER(4), INTENT(OUT) :: tarray(9)

hostnm_(name)
Purpose

The hostnm_ function sets name to the machine's host name. This function calls the
operating system's gethostname system routine.

For greater portability, use the GET_ENVIRONMENT_VARIABLE intrinsic
instead of this procedure.

Class

Function

Argument type and attributes

name CHARACTER(X), INTENT(OUT)

X can be in the range of 1 to 63.

Result type and attributes

INTEGER(4).

Result value

The returned value is 0 if the host name is found, and -1 otherwise.

iargc()
Purpose

The iargc function returns an integer that represents the number of arguments
following the program name that have been entered on the command line at run
time.

For greater portability, use the COMMAND_ARGUMENT_COUNT intrinsic
instead of this procedure.

Class

Function

Result type and attributes

INTEGER(4)

Chapter 21. Service and utility procedures (IBM extension) 935

Result value

The number of arguments.

idate_(idate_struct)
Purpose

The idate_ subroutine returns the current date in a numerical format containing
the day, month and year.

Class

Subroutine

Argument type and attributes

idate_struct
TYPE IDATE_TYPE

SEQUENCE
INTEGER(4) IDAY
INTEGER(4) IMONTH
INTEGER(4) IYEAR

END TYPE
TYPE (IDATE_TYPE) IDATE_STRUCT

ierrno_()
Purpose

The ierrno_ function returns the error number (errno) of the last detected system
error.

Class

Function

Result type and attributes

INTEGER(4)

Result value

The error number of the last detected system error.

irand()
Purpose

The irand function generates a positive integer number greater than 0 and less
than or equal to 32768. The intrinsic subroutine “SRAND(SEED) (IBM extension)”
on page 701 is used to provide the seed value for the random number generator.

Class

Function

936 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

INTEGER(4)

Result value

A pseudo-random positive integer greater than 0 and less than or equal to 32768.

irtc()
Purpose

The irtc function returns the number of nanoseconds since the initial value of the
machine's real-time clock.

Class

Function

Result type and attributes

INTEGER(8)

Result value

The number of nanoseconds since the initial value of the machine's real-time clock.

itime_(itime_struct)
Purpose

The itime_ subroutine returns the current time in a numerical form containing
seconds, minutes, and hours in ITIME_STRUCT.

Class

Subroutine

Argument type and attributes

itime_struct
TYPE IAR

SEQUENCE
INTEGER(4) IHR
INTEGER(4) IMIN
INTEGER(4) ISEC

END TYPE
TYPE (IAR) ITIME_STRUCT

jdate()
Purpose

The jdate function returns the current Julian date in yyddd format.

Class

Function

Chapter 21. Service and utility procedures (IBM extension) 937

Result type and attributes

CHARACTER(8)

Result value

The current Julian date in yyddd format.

lenchr_(str)
Purpose

The lenchr_ function returns the length of the given character string.

Class

Function

Argument type and attributes

str CHARACTER(*), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

The length of the character string.

lnblnk_(str)
Purpose

The lnblnk_ function returns the index of the last non-blank character in the string
STR. If the string contains no non-blank characters, 0 is returned.

Class

Function

Argument type and attributes

str CHARACTER(*), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

The index of the last non-blank character in the string, or 0 if there are no
non-blank characters.

938 XL Fortran: Language Reference for Big Endian Distributions

ltime_(stime, tarray)
Purpose

The ltime_ subroutine dissects the system time STIME, which is in seconds, into
the array TARRAY containing the GMT where the dissected time is corrected for
the local time zone. The data is stored in TARRAY in the following order:
seconds (0 to 59)
minutes (0 to 59)
hours (0 to 23)
day of the month (1 to 31)
month of the year (0 to 11)
year (year = current year - 1900)
day of week (Sunday = 0)
day of year (0 to 365)
daylight saving time (0 or 1)

Class

Subroutine

Argument type and attributes

stime INTEGER(KIND=TIME_SIZE), INTENT(IN)

tarray INTEGER(4), INTENT(OUT):: tarry(9)

mclock()
Purpose

The mclock function returns time accounting information about the current process
and its child processes. The accuracy of an XL Fortran timing function is operating
system dependent.

Class

Function

Result type and attributes

INTEGER(4)

Result value

The returned value is the sum of the current process's user time and the user and
system time of all child processes. The unit of measure is one one-hundredth
(1/100) of a second.

qsort_(array, len, isize, compar)
Purpose

The qsort_ subroutine performs a parallel quicksort on a one-dimensional array
ARRAY whose length LEN is the number of elements in the array with each
element having a size of ISIZE, and a user-defined sorting order function
COMPAR to sort the elements of the array.

Chapter 21. Service and utility procedures (IBM extension) 939

Class

Subroutine

Argument type and attributes

array The array to be sorted. It can be of any type.

len The number of elements in the array. The argument is of type INTEGER(4).

isize The size of a single element of the array. The argument is of type
INTEGER(4).

compar
A user-defined comparison function used to sort the array.

Examples
INTEGER(4) FUNCTION COMPAR_UP(C1, C2)
INTEGER(4) C1, C2
IF (C1.LT.C2) COMPAR_UP = -1
IF (C1.EQ.C2) COMPAR_UP = 0
IF (C1.GT.C2) COMPAR_UP = 1
RETURN
END

SUBROUTINE FOO()
INTEGER(4) COMPAR_UP
EXTERNAL COMPAR_UP
INTEGER(4) ARRAY(8), LEN, ISIZE
DATA ARRAY/0, 3, 1, 2, 9, 5, 7, 4/
LEN = 6
ISIZE = 4
CALL qsort_(ARRAY(3:8), LEN, ISIZE, COMPAR_UP)! sorting ARRAY(3:8)
PRINT *, ARRAY ! result value is [0, 3, 1, 2, 4, 5, 7, 9]
RETURN

END

qsort_down(array, len, isize)
Purpose

The qsort_down subroutine performs a parallel quicksort on a one-dimensional
array ARRAY whose length LEN is the number of elements in the array with each
element having a size of ISIZE. The result is stored in array ARRAY in descending
order. As opposed to qsort_, the qsort_down subroutine does not require the
COMPAR function.

Class

Subroutine

Argument type and attributes

array The array to be sorted. It can be of any type.

len The number of elements in the array. The argument is of type INTEGER(4).

isize The size of a single element of the array. The argument is of type
INTEGER(4).

940 XL Fortran: Language Reference for Big Endian Distributions

Examples
SUBROUTINE FOO()

INTEGER(4) ARRAY(8), LEN, ISIZE
DATA ARRAY/0, 3, 1, 2, 9, 5, 7, 4/
LEN = 8
ISIZE = 4
CALL qsort_down(ARRAY, LEN, ISIZE)
PRINT *, ARRAY

! Result value is [9, 7, 5, 4, 3, 2, 1, 0]
RETURN
END

qsort_up(array, len, isize)
Purpose

The qsort_up subroutine performs a parallel quicksort on a one-dimensional,
contiguous array ARRAY whose length LEN is the number of elements in the array
with each element having a size of ISIZE. The result is stored in array ARRAY in
ascending order. As opposed to qsort_, the qsort_up subroutine does not require
the COMPAR function.

Class

Subroutine

Argument type and attributes

array The array to be sorted. It can be of any type.

len The number of elements in the array. The argument is of type INTEGER(4).

isize The size of a single element of the array. The argument is of type
INTEGER(4).

Examples
SUBROUTINE FOO()

INTEGER(4) ARRAY(8), LEN, ISIZE
DATA ARRAY/0, 3, 1, 2, 9, 5, 7, 4/
LEN = 8
ISIZE = 4
CALL qsort_up(ARRAY, LEN, ISIZE)
PRINT *, ARRAY

! Result value is [0, 1, 2, 3, 4, 5, 7, 9]
RETURN
END

rtc()
Purpose

The rtc function returns the number of seconds since the initial value of the
machine's real-time clock.

Class

Function

Result type and attributes

REAL(8)

Chapter 21. Service and utility procedures (IBM extension) 941

Result value

The number of seconds since the initial value of the machine's real-time clock.

setrteopts(c1)
Purpose

The setrteopts subroutine changes the setting of one or more of the run-time
options during the execution of a program. See Setting Run-Time Options in the XL
Fortran Compiler Reference for details about the run-time options.

Class

Subroutine

Argument type and attributes

c1 CHARACTER(X), INTENT(IN)

X is the length of the run-time option to be set.

sleep_(sec)
Purpose

The sleep_ subroutine suspends the execution of the current process for sec
seconds.

Class

Subroutine

Argument type and attributes

sec INTEGER(4), INTENT(IN)

time_()
Purpose

The time_ function returns the current time (GMT), in seconds, since the Epoch.
This function calls the operating system's time system routine.

Class

Function

Result type and attributes

INTEGER(KIND=TIME_SIZE).

Result value

The current time (GMT), in seconds.

942 XL Fortran: Language Reference for Big Endian Distributions

timef()
Purpose

The timef function returns the elapsed time in milliseconds since the first call to
timef. The accuracy of an XL Fortran timing function is operating system
dependent.

Class

Function

Result type and attributes

REAL(8)

Result value

The elapsed time in milliseconds since the first call to timef. The first call to timef
returns 0.0d0.

timef_delta(t)
Purpose

The timef_delta function returns the elapsed time in milliseconds since the last
instance timef_delta was called with its argument set to 0.0 within the same
thread. In order to get the correct elapsed time, you must determine which region
of a thread you want timed. This region must start with a call to timef_delta(T0),
where T0 is initialized (T0=0.0). The next call to timef_delta must use the first
call's return value as the input argument if the elapsed time is expected. The
accuracy of an XL Fortran timing function is operating system dependent.

Class

Function

Argument type and attributes

t REAL(8)

Result type and attributes

REAL(8)

Result value

Time elapsed in milliseconds.

umask_(cmask)
Purpose

The umask_ function sets the file mode creation mask to CMASK. This function
calls the operating system's umask system routine.

Chapter 21. Service and utility procedures (IBM extension) 943

Class

Function

Argument type and attributes

cmask INTEGER(4), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

The returned value is the previous value of the file mode creation mask.

usleep_(msec)
Purpose

The usleep_ function suspends the execution of the current process for an interval
of MSEC microseconds. This function calls the operating system's usleep system
routine. The accuracy of the result is, therefore, operating system dependent.

Class

Function

Argument type and attributes

msec INTEGER(4), INTENT(IN)

Result type and attributes

INTEGER(4)

Result value

The returned value is 0 if the function is successful, or an error number otherwise.

xl__trbk()
Purpose

The xl__trbk subroutine provides a traceback starting from the invocation point.
xl__trbk can be called from your code, although not from signal handlers. The
subroutine requires no parameters.

Class

Subroutine

The XLF_POSIX_BINDINGS module
The XLF_POSIX_BINDINGS module provides interfaces to many POSIX and XSI
functions and macros. You can consult your operating system documentation or
the Open Group Base Specifications for the exact meaning and semantics of these
functions and macros.

944 XL Fortran: Language Reference for Big Endian Distributions

The XLF_POSIX_BINDINGS module behaves as if it contained a USE statement for
the ISO_C_BINDING intrinsic module. All values that are public in the
ISO_C_BINDING module remain public in the XLF_POSIX_BINDINGS module.

Types
The XLF_POSIX_BINDINGS module contains the definition of type utsname.
Derived type utsname contains the following character components:

machine
Machine ID number.

nodename
Host name on the network.

release
Operating system release number.

sysname
Operating system name.

version
Operating system version number.

Named constants
The XLF_POSIX_BINDINGS module contains the definitions of the following
named constants.

Named constants as integer kinds

The following named constants can be used as integer kinds:

Table 71. Correspondence between XLF_POSIX_BINDINGS named constants and C type
definition

Named constant Value
Corresponding C type
definition

C_CLOCK_T 4 (with the -q32 option in
effect)

8 (with the -q64 option in
effect)

clock_t

C_GID_T 4 gid_t

C_MODE_T 4 mode_t

C_OFF_T 4 (with the -q32 option in
effect)

8 (with the -q64 option in
effect)

off_t

C_PID_T 4 pid_t

C_TIME_T 4 (with the -q32 option in
effect)

8 (with the -q64 option in
effect)

time_t

C_UID_T 4 uid_t

C_USECONDS_T 4 useconds_t

Chapter 21. Service and utility procedures (IBM extension) 945

Named constants corresponding to POSIX and XSI macros

The following named constants correspond to POSIX and XSI macros. The values
of the named constants correspond to a _POSIX_C_SOURCE level of 200809L and
an _XOPEN_SOURCE level of 700.

The named constants fall into the following categories:
v Based on errno.h

– Named constants corresponding to errno values
v Based on fcntl.h

– Named constants used with the chmod, mkdir, mkfifo, and umask functions
– Named constants based on fcntl.h

v Based on stdlib.h
– Named constants used with the exit function

v Based on unistd.h
– Named constants used with the sysconf function
– Named constants used with the access function
– Named constants used with the pathconf function
– Other constants

v Based on signal.h
– Named constants corresponding to signal names
– Other constants

v Based on time.h
v Based on limits.h
v Based on sys/wait.h

Named constants that are based on errno.h:

Table 72. Named constants corresponding to values returned by the errno function:

E2BIG
EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN
EALREADY
EBADF
EBADMSG
EBUSY
ECANCELED
ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDESTADDRREQ
EDOM
EDQUOT
EEXIST

EFAULT
EFBIG
EIDRM
EILSEQ
EINPROGRESS
EINTR
EINVAL
EIO
EISCONN
EISDIR
ELOOP
EMFILE
EMLINK
EMSGSIZE
EMULTIHOP
ENAMETOOLONG
ENETDOWN
ENETRESET
ENETUNREACH
ENFILE

ENOBUFS
ENODATA
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOLINK
ENOMEM
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSR
ENOSTR
ENOSYS
ENOTCONN
ENOTDIR
ENOTEMPTY
ENOTSOCK
ENOTSUP
ENOTTY

ENXIO
EOPNOTSUPP
EOVERFLOW
EPERM
EPIPE
EPROTONOSUPPORT
EPROTOTYPE
EPROTO
ERANGE
EROFS
ESPIPE
ESRCH
ESTALE
ETIMEDOUT
ETIME
ETXTBSY
EWOULDBLOCK
EXDEV

Named constants that are based on fcntl.h:

946 XL Fortran: Language Reference for Big Endian Distributions

Table 73. Named constants that are used with the chmod, mkdir, mkfifo, and umask functions

S_IRWXU
S_IRUSR
S_IWUSR
S_IXUSR
S_IRWXG
S_IRGRP

S_IWGRP
S_IXGRP
S_IRWXO
S_IROTH
S_IWOTH
S_IXOTH

Table 74. Named constants based on fcntl.h

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW
F_GETOWN
F_SETOWN
FD_CLOEXEC

F_RDLCK
F_UNLCK
F_WRLCK
O_CREAT
O_EXCL
O_NOCTTY
O_TRUNC
O_APPEND
O_DSYNC
O_NONBLOCK
O_RSYNC

O_SYNC
O_ACCMODE
O_RDONLY
O_RDWR
O_WRONLY
POSIX_FADV_NORMAL
POSIX_FADV_SEQUENTIAL
POSIX_FADV_RANDOM
POSIX_FADV_WILLNEED
POSIX_FADV_DONTNEED
POSIX_FADV_NOREUSE

S_IFMT
S_IFBLK
S_IFCHR
S_IFIFO
S_IFREG
S_IFDIR
S_IFLNK
S_IFSOCK
S_ISUID
S_ISGID
S_ISVTX

Named constants that are based on stdlib.h:

Table 75. Named constants used with the exit function

EXIT_FAILURE EXIT_SUCCESS

Named constants that are based on unistd.h:

Chapter 21. Service and utility procedures (IBM extension) 947

Table 76. Named constants used with the sysconf function

_SC_2_CHAR_TERM
_SC_2_C_BIND
_SC_2_C_DEV
_SC_2_FORT_DEV
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_PBS
_SC_2_PBS_ACCOUNTING
_SC_2_PBS_CHECKPOINT
_SC_2_PBS_LOCATE
_SC_2_PBS_MESSAGE
_SC_2_PBS_TRACK
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ADVISORY_INFO
_SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ARG_MAX
_SC_ASYNCHRONOUS_IO
_SC_ATEXIT_MAX
_SC_BARRIERS
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_CLOCK_SELECTION
_SC_COLL_WEIGHTS_MAX
_SC_CPUTIME
_SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPW_R_SIZE_MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_IPV6
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_MAPPED_FILES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION
_SC_MESSAGE_PASSING
_SC_MONOTONIC_CLOCK
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PAGE_SIZE
_SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING
_SC_RAW_SOCKETS
_SC_READER_WRITER_LOCKS
_SC_REALTIME_SIGNALS
_SC_REGEXP
_SC_RE_DUP_MAX

_SC_RTSIG_MAX
_SC_SAVED_IDS
_SC_SEMAPHORES
_SC_SEM_NSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SHARED_MEMORY_OBJECTS
_SC_SHELL
_SC_SIGQUEUE_MAX
_SC_SPAWN
_SC_SPIN_LOCKS
_SC_SPORADIC_SERVER
_SC_SS_REPL_MAX
_SC_STREAM_MAX
_SC_SYMLOOP_MAX
_SC_SYNCHRONIZED_IO
_SC_THREADS
_SC_THREAD_ATTR_STACKADDR
_SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_CPUTIME
_SC_THREAD_DESTRUCTOR_ITERATIONS
_SC_THREAD_KEYS_MAX
_SC_THREAD_PRIORITY_SCHEDULING
_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PROCESS_SHARED
_SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_SPORADIC_SERVER
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX
_SC_TIMEOUTS
_SC_TIMERS
_SC_TIMER_MAX
_SC_TRACE
_SC_TRACE_EVENT_FILTER
_SC_TRACE_EVENT_NAME_MAX
_SC_TRACE_INHERIT
_SC_TRACE_LOG
_SC_TRACE_NAME_MAX
_SC_TRACE_SYS_MAX
_SC_TRACE_USER_EVENT_MAX
_SC_TTY_NAME_MAX
_SC_TYPED_MEMORY_OBJECTS
_SC_TZNAME_MAX
_SC_V6_ILP32_OFF32
_SC_V6_ILP32_OFFBIG
_SC_V6_LP64_OFF64
_SC_V6_LPBIG_OFFBIG
_SC_VERSION
_SC_XBS5_ILP32_OFF32
_SC_XBS5_ILP32_OFFBIG
_SC_XBS5_LP64_OFF64
_SC_XBS5_LPBIG_OFFBIG
_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_I18N
_SC_XOPEN_LEGACY
_SC_XOPEN_REALTIME
_SC_XOPEN_REALTIME_THREADS
_SC_XOPEN_SHM
_SC_XOPEN_STREAMS
_SC_XOPEN_UNIX
_SC_XOPEN_VERSION

Table 77. Named constants used with the access function

F_OK R_OK W_OK X_OK

948 XL Fortran: Language Reference for Big Endian Distributions

Table 78. Named constants used with the pathconf function

_PC_CHOWN_RESTRICTED
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_VDISABLE
_PC_ASYNC_IO

_PC_SYNC_IO
_PC_PRIO_IO
_PC_FILESIZEBITS
_PC_SYMLINK_MAX
_PC_ALLOC_SIZE_MIN
_PC_REC_INCR_XFER_SIZE
_PC_REC_MAX_XFER_SIZE
_PC_REC_MIN_XFER_SIZE
_PC_REC_XFER_ALIGN
_PC_2_SYMLINKS

Table 79. Other constants

_POSIX_VERSION
_POSIX2_VERSION
_XOPEN_VERSION
_POSIX_ADVISORY_INFO
_POSIX_ASYNCHRONOUS_IO
_POSIX_BARRIERS
_POSIX_CHOWN_RESTRICTED
_POSIX_CLOCK_SELECTION
_POSIX_CPUTIME
_POSIX_FSYNC
_POSIX_IPV6
_POSIX_JOB_CONTROL
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_REGEXP
_POSIX_SAVED_IDS
_POSIX_SEMAPHORES
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SHELL
_POSIX_SPAWN
_POSIX_SPIN_LOCKS
_POSIX_SPORADIC_SERVER
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS

_POSIX_THREAD_SPORADIC_SERVER
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG
_POSIX_TYPED_MEMORY_OBJECTS
_POSIX_VDISABLE
_POSIX2_CHAR_TERM
_POSIX2_C_BIND
_POSIX2_C_DEV
_POSIX2_LOCALEDEF
_POSIX2_SW_DEV
_XOPEN_CRYPT
_XOPEN_ENH_I18N
_XOPEN_LEGACY
_XOPEN_REALTIME
_XOPEN_REALTIME_THREADS
_XOPEN_SHM
_CS_PATH
_XOPEN_UNIX
SEEK_CUR
SEEK_END
SEEK_SET

Named constants that are based on signal.h:

Chapter 21. Service and utility procedures (IBM extension) 949

Table 80. Named constants corresponding to signal names that can be specified in the kill,
killpg, raise, and signal functions

SIGABRT
SIGALRM
SIGBUS
SIGCHLD
SIGCONT
SIGFPE
SIGHUP

SIGILL
SIGINT
SIGKILL
SIGPIPE
SIGQUIT
SIGSEGV
SIGSTOP

SIGTERM
SIGTSTP
SIGTTIN
SIGTTOU
SIGUSR1
SIGUSR2
SIGPOLL

SIGPROF
SIGSYS
SIGTRAP
SIGURG
SIGVTALRM
SIGXCPU
SIGXFSZ

Table 81. Other constants

BUS_ADRALN
BUS_ADRERR
BUS_OBJERR
CLD_CONTINUED
CLD_DUMPED
CLD_EXITED
CLD_KILLED
CLD_STOPPED
CLD_TRAPPED
FPE_FLTDIV
FPE_FLTINV
FPE_FLTOVF
FPE_FLTRES
FPE_FLTSUB
FPE_FLTUND

FPE_INTDIV
FPE_INTOVF
ILL_BADSTK
ILL_COPROC
ILL_ILLADR
ILL_ILLOPC
ILL_ILLOPN
ILL_ILLTRP
ILL_PRVOPC
ILL_PRVREG
MINSIGSTKSZ
POLL_ERR
POLL_HUP
POLL_IN
POLL_MSG

POLL_OUT
POLL_PRI
SA_NOCLDSTOP
SA_NOCLDWAIT
SA_NODEFER
SA_ONSTACK
SA_RESETHAND
SA_RESTART
SA_SIGINFO
SEGV_ACCERR
SEGV_MAPERR
SIGEV_NONE
SIGEV_SIGNAL
SIGEV_THREAD
SIGSTKSZ

SIG_BLOCK
SIG_SETMASK
SIG_UNBLOCK
SI_ASYNCIO
SI_MESGQ
SI_QUEUE
SI_TIMER
SI_USER
SS_DISABLE
SS_ONSTACK
TRAP_BRKPT
TRAP_TRACE

Named constants that are based on time.h:

Table 82. Named constants based on time.h

CLOCKS_PER_SEC CLOCK_PROCESS_CPUTIME_ID CLOCK_THREAD_CPUTIME_ID

Named constants based on limits.h:NZERO

Note: You can get the values of other limits by calling the sysconf and pathconf
functions.

Named constants that are based on sys/wait.h:

Table 83. Named constants based on sys/wait.h

WCONTINUED WNOHANG WUNTRACED

Abstract interfaces
The XLF_POSIX_BINDINGS module defines the compar_iface abstract interface as
follows:
ABSTRACT INTERFACE

FUNCTION compar_iface(a, b)
USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT
IMPLICIT NONE
TYPE(*), INTENT(IN) :: a, b
INTEGER(C_INT) compar_iface

END FUNCTION
END INTERFACE

950 XL Fortran: Language Reference for Big Endian Distributions

Procedures
This section lists the procedures that are available in the XLF_POSIX_BINDINGS
module.

access(path, amode)
Purpose

Queries the accessibility of a file.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

amode
An INTEGER(C_INT). The value of the corresponding actual argument must be
one or more of the R_OK, W_OK, X_OK, or F_OK named constants.

Result type and attributes

INTEGER(C_INT)

Result value

If the requested access is permitted, the result is 0. Otherwise, the result is -1.

This function sets the error number (errno).

Examples
SUBROUTINE sub(filename)

USE XLF_POSIX_BINDINGS
CHARACTER(*) filename

IF (access(filename, F_OK) == 0) THEN
! The requested file exists.

IF (access(filename, ior(R_OK, W_OK)) == -1) THEN
! File does not have read and write permission,
! or an error occurs. You can use errno() for more information.
...

END IF
END IF

END SUBROUTINE

...
CHARACTER(20) myfile
myfile = ’/home/user/file’ // C_NULL_CHAR
CALL sub(myfile)
CALL sub(’/home/user/file’)

Chapter 21. Service and utility procedures (IBM extension) 951

alarm(seconds)
Purpose

Requests that the operating system generate an alarm signal (SIGALARM) after
seconds seconds.

Class

Function

Argument type and attributes

seconds
An INTEGER(4). The corresponding actual argument must be larger than or
equal to zero. If the corresponding actual argument is 0, any pending alarm
request is canceled.

Result type and attributes

INTEGER(4)

Result value

If there is a pending alarm request, the result is the number of seconds remaining
until the pending request. Otherwise, the result is 0.

Related information
v “alarm_(time, func)” on page 924
v “ualarm(useconds, interval)” on page 990

atexit(x)
Purpose

Registers a subroutine to be called at normal program termination.

Class

Function

Argument type and attributes

x A subroutine. The corresponding actual argument cannot have dummy
arguments.

Result type and attributes

INTEGER(C_INT)

Result value

If the subroutine was registered successfully, the result is 0. Otherwise, the result is
nonzero.

Examples
PROGRAM main

USE XLF_POSIX_BINDINGS
INTEGER(c_int) result

952 XL Fortran: Language Reference for Big Endian Distributions

result = atexit(goodbye)
PRINT *, ’hello’
CONTAINS

SUBROUTINE goodbye()
PRINT *, ’goodbye’

END SUBROUTINE
END PROGRAM

The output is as follows:
hello
goodbye

bsearch(key, base, nel, width, compar)
Purpose

Binary search of an array.

Class

Function

Argument type and attributes

key
A scalar of any type.

base
An INTENT(INOUT) contiguous array. The actual argument corresponding to
base must be of the same type and type parameters as the actual argument
corresponding to key.

nel
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the number of elements in base.

width
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the size of each element in base.

compar
A procedure with an interface that conforms to compar_iface.

Result type and attributes

TYPE(C_PTR)

Result value

If the value of key is found in array base, the result value is a C_PTR to an instance
of the value of key in base. Otherwise, the result is C_NULL_PTR.

Examples
MODULE pts

USE XLF_POSIX_BINDINGS
IMPLICIT NONE
TYPE, BIND(C) :: pt

INTEGER x, y
END TYPE
CONTAINS

FUNCTION y_less_than(a, b)

Chapter 21. Service and utility procedures (IBM extension) 953

TYPE(pt), INTENT(IN) :: a, b
INTEGER(C_INT) y_less_than
y_less_than = a%y - b%y

END FUNCTION
END MODULE

USE pts
IMPLICIT NONE
TYPE(pt), TARGET :: a(5)
TYPE(C_PTR) :: result
TYPE(pt), POINTER :: fresult

a = [pt(2,0), pt(7,1), pt(9,2), pt(1,7), pt(5,7)]

! Find a point with y == 7.
result = bsearch(pt(0,7), a, SIZE(a), C_SIZEOF(a(1)), y_less_than)
IF (C_ASSOCIATED(result)) THEN

CALL c_f_pointer(result, fresult)
PRINT *, ’found:’, fresult

ELSE
PRINT *, ’found nothing.’

END IF
END

The output is as follows:
found: 5 7

Related information
v “lfind(key, base, nelp, width, compar)” on page 973
v “lsearch(key, base, nelp, width, compar)” on page 974

calloc(nelem, elsize)
Purpose

Allocates an array of nelem elements, each of elsize bytes, and sets all bits in the
array to 0.

Class

Function

Argument type and attributes

nelem
An INTEGER(C_SIZE_T).

elsize
An INTEGER(C_SIZE_T).

Result type and attributes

INTEGER(C_INTPTR_T)

Result value

The result is the address of the allocated memory block, or 0 if unsuccessful. The
use of the calloc procedure is discouraged because it can lead to memory leaks. It
is preferred to use allocatable variables instead.

This function sets the error number (errno).

954 XL Fortran: Language Reference for Big Endian Distributions

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “free(ptr)” on page 958
v “malloc(size)” on page 975
v “realloc(ptr, size)” on page 980

chdir(path)
Purpose

Changes the working directory.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

chmod(path, mode)
Purpose

Changes access permission to a file.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

mode
An INTEGER(C_MODE_T). The value of the corresponding actual argument must
be one or more of the named constants from Table 73 on page 947.

Chapter 21. Service and utility procedures (IBM extension) 955

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

chown(path, owner, group)
Purpose

Changes the owner and group of a file.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

owner
An INTEGER(C_UID_T).

group
An INTEGER(C_UID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

clock()
Purpose

Returns the CPU time used by the calling process.

Class

Function

Result type and attributes

INTEGER(C_CLOCK_T)

956 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is the CPU time used by the calling process. To convert this value to
seconds, you can divide the result by CLOCKS_PER_SEC.

If the CPU time used by the process is unavailable, the result is -1.

confstr(name, buf)
Purpose

Gets the value of a configurable system limit or variable.

Class

Function

Argument type and attributes

name
An INTEGER(C_INT). The value of the corresponding actual argument must be
the name of system constant.

buf
An INTENT(OUT) CHARACTER(*).

Result type and attributes

INTEGER(C_SIZE_T)

Result value

If name has a configurable value, the result is the length of buffer required to hold
the configurable value including null-termination. If the result is larger than
LEN(buf) + 1, the configurable value stored in buf is truncated. If name does not
have a configurable value, or if there is an error, the result is 0.

This function sets the error number (errno).

Related information
v “sysconf(name)” on page 987

errno()
Purpose

Gets the current value of the error number (errno).

Class

Function

Result type and attributes

INTEGER(C_INT)

Chapter 21. Service and utility procedures (IBM extension) 957

Result value

The result is the value of errno.

This function has the same functionality as ierrno_.

Related information
v “ierrno_()” on page 936

exit(status)
Purpose

Terminates the calling process with exit status status.

Class

Subroutine

Argument type and attributes

status
An INTEGER(C_INT). The value of the corresponding actual argument must be
EXIT_SUCCESS, EXIT_FAILURE, or in the range 0 to 255 inclusive. If the value of
the corresponding actual argument is outside this range, only the least
significant 8 bits will be available to any waiting parent process.

fork()
Purpose

Creates a new process.

Class

Function

Result type and attributes

INTEGER(C_PID_T)

Result value

If the new process is created successfully, the result for the old process is the
process ID of the new child process, and the result for the child process is 0. If the
new process could not be created, the result is -1.

This function sets the error number (errno).

free(ptr)
Purpose

Deallocates a block of memory that was allocated by calloc, malloc, or realloc.

Class

Subroutine

958 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

ptr
An INTEGER(C_INTPTR_T). The corresponding actual argument must have a
value obtained from a call to calloc, malloc, or realloc.

Related information
v “calloc(nelem, elsize)” on page 954
v “malloc(size)” on page 975
v “realloc(ptr, size)” on page 980

getcwd(buf)
Purpose

Gets the path name of the current working directory.

Class

Function

Argument type and attributes

buf
An INTENT(OUT) CHARACTER(*).

Result type and attributes

TYPE(C_PTR)

Result value

If successful, the result is a C_PTR that points to the actual argument corresponding
to buf. If unsuccessful, the result is C_NULL_PTR.

This function sets the error number (errno).

Examples
USE XLF_POSIX_BINDINGS
TYPE(C_PTR) res
INTEGER(C_LONG) path_len
CHARACTER(:), ALLOCATABLE :: path

path_len = pathconf(’.’, _PC_PATH_MAX);
IF (path_len /= -1) THEN

ALLOCATE(CHARACTER(path_len) :: path)
res = getcwd(path)
IF (C_ASSOCIATED(res)) THEN

PRINT *, ’current directory is ’, trim(path)
END IF

ELSE
CALL perror(’’)

END IF
END

The output is as follows:
current directory is /home/user

Related information
v “getcwd_(name)” on page 932

Chapter 21. Service and utility procedures (IBM extension) 959

getegid()
Purpose

Gets the effective group ID.

Class

Pure function

Result type and attributes

INTEGER(C_GID_T)

Result value

The result is the effective group ID of the process.

geteuid()
Purpose

Gets the effective user ID.

Class

Pure function

Result type and attributes

INTEGER(C_UID_T)

Result value

The result is the effective user ID of the process.

getgid()
Purpose

Gets the group ID.

Class

Pure function

Result type and attributes

INTEGER(C_GID_T)

Result value

The result is the real group ID of the process.

getgroups(gidsetsize, grouplist)
Purpose

Gets supplementary group IDs.

960 XL Fortran: Language Reference for Big Endian Distributions

Class

Function

Argument type and attributes

gidsetsize
An INTEGER(C_INT). The value of the corresponding actual argument must
equal the number of elements in grouplist.

grouplist
An INTENT(INOUT) INTEGER(C_GID_T) array. When the value of the
actual argument corresponding to gidsetsize is not zero, grouplist is
assigned the supplementary group IDs of the calling process.

Result type and attributes

INTEGER(C_INT)

Result value

If gidsetsize is not zero, the result is the number of group IDs assigned to
grouplist. If gidsetsize is zero, the result is the number of supplementary group
IDs of the calling process. If an error occurred, the result is -1.

This function sets the error number errno.

gethostid()
Purpose

Gets the host identifier.

Class

Function

Result type and attributes

INTEGER(C_LONG)

Result value

The result is a 32-bit identifier for the current host.

gethostname(name)
Purpose

Gets the host name

Class

Function

Chapter 21. Service and utility procedures (IBM extension) 961

Argument type and attributes

name
An INTENT(OUT) CHARACTER(*). name is assigned the name of the current
host. If name is not large enough to hold the host name, the host name is
truncated.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

getlogin_r(name)
Purpose

Gets the user name that is used to log into the controlling terminal of the calling
process.

Class

Function

Argument type and attributes

name
An INTENT(OUT) CHARACTER(*). name is assigned the user name used to
log into the controlling terminal of the current process.

Result type and attributes

INTEGER(C_INT)

Result value

If successful, the result is 0. If unsuccessful, the result is a nonzero error number.

This function sets the error number (errno).

getpgid(pid)
Purpose

Gets the group ID of a process

Class

Function

Argument type and attributes

pid
An INTEGER(C_PID_T).

Result type and attributes

INTEGER(C_PID_T)

962 XL Fortran: Language Reference for Big Endian Distributions

Result value

If pid is nonzero, the result is the group ID associated with the process with ID
pid. If pid is zero, the result is the group ID of the calling process. If unsuccessful,
the result is -1.

This function sets the error number (errno).

getpgrp()
Purpose

Gets the process group ID of the calling process.

Class

Function

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is the process group ID of the calling process.

getpid()
Purpose

Gets the process ID of the calling process.

Class

Pure function

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is the process ID of the calling process.

getppid()
Purpose

Gets the parent process ID.

Class

Function

Result type and attributes

INTEGER(C_PID_T)

Chapter 21. Service and utility procedures (IBM extension) 963

Result value

The result is the parent process ID.

getsid(pid)
Purpose

Gets the process group ID of a session leader.

Class

Function

Argument type and attributes

pid
An INTEGER(C_PID_T).

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is the process group ID of the session leader of the process with ID pid.
If unsuccessful, the result is -1.

This function sets the error number (errno).

getuid()
Purpose

Gets the real user ID of the calling process.

Class

Pure function

Result type and attributes

INTEGER(C_UID_T)

Result value

The result is the real user ID of the calling process.

isalnum(c)
Purpose

Tests for an alphanumeric character.

Class

Pure function

964 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) is an alphanumeric character in the locale of
the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isalpha(c)
Purpose

Tests for an alphabetic character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) is an alphabetic character in the locale of the
calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isascii(c)
Purpose

Tests for a 7-bit US-ASCII character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Chapter 21. Service and utility procedures (IBM extension) 965

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) is a 7-bit US-ASCII character. Otherwise, the
result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isblank(c)
Purpose

Tests for a blank character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the blank class in the locale of the
calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

iscntrl(c)
Purpose

Tests for a control character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

966 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is nonzero if ACHAR(c) belongs to the cntrl character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isdigit(c)
Purpose

Tests for a decimal digit character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the digit character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isgraph(c)
Purpose

Tests for a visible character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the graph character class in the
locale of the calling process. Otherwise, the result is 0.

Chapter 21. Service and utility procedures (IBM extension) 967

Related information

“ACHAR(I, KIND)” on page 565

islower(c)
Purpose

Tests for a lowercase character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the lower character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isprint(c)
Purpose

Tests for a printable character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the print character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

968 XL Fortran: Language Reference for Big Endian Distributions

ispunct(c)
Purpose

Tests for a punctuation character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the punct character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isupper(c)
Purpose

Tests for an uppercase character.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the upper character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

isxdigit(c)
Purpose

Tests for a hexadecimal digit character.

Chapter 21. Service and utility procedures (IBM extension) 969

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if ACHAR(c) belongs to the xdigit character class in the
locale of the calling process. Otherwise, the result is 0.

Related information

“ACHAR(I, KIND)” on page 565

j0(x)
Purpose

Bessel function of the first kind, order 0.

Class

Pure function

Argument type and attributes

x A REAL(C_DOUBLE).

Result type and attributes

REAL(C_DOUBLE)

Result value

The result is an approximation of the bessel function of the first kind and of order
0.

j1(x)
Purpose

Bessel function of the first kind, order 1.

Class

Pure function

Argument type and attributes

x A REAL(C_DOUBLE).

970 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

REAL(C_DOUBLE)

Result value

The result is an approximation of the bessel function of the first kind and of order
1.

jn(n, x)
Purpose

Bessel function of the first kind, order n.

Class

Pure function

Argument type and attributes

n An INTEGER(C_INT).

x A REAL(C_DOUBLE).

Result type and attributes

REAL(C_DOUBLE)

Result value

The result is an approximation of the bessel function of the first kind and of order
n.

kill(pid, sig)
Purpose

Sends signal sig to the process with ID pid.

Class

Function

Argument type and attributes

pid
An INTEGER(C_PID_T).

sig
An INTEGER(C_INT). The value of the corresponding actual argument must
equal that of one of the named constants from Table 80 on page 950.

Result type and attributes

INTEGER(C_INT)

Chapter 21. Service and utility procedures (IBM extension) 971

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

killpg(pgrp, sig)
Purpose

Sends signal sig to the process group with ID pgrp.

Class

Function

Argument type and attributes

pgrp
An INTEGER(C_PID_T).

sig
An INTEGER(C_INT). The value of the corresponding actual argument must
equal that of one of the named constants from Table 80 on page 950.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

lchown(path, owner, group)
Purpose

Changes the owner and group of a symbolic link.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

owner
An INTEGER(C_UID_T).

group
An INTEGER(C_GID_T).

972 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

lfind(key, base, nelp, width, compar)
Purpose

Linear search of an array.

Class

Function

Argument type and attributes

key
A scalar of any type.

base
A contiguous array. The actual argument corresponding to base must be of the
same type and type parameters as the actual argument corresponding to key.

nelp
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the number of elements in base.

width
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the size of each element in base.

compar
A procedure with an interface that conforms to compar_iface.

Result type and attributes

TYPE(C_PTR)

Result value

If the value of key is found in array base, the result is a C_PTR that points to the
first instance of the value of key in base in row-major order. Otherwise, C_NULL_PTR
is returned.

Related information
v “lsearch(key, base, nelp, width, compar)” on page 974
v “bsearch(key, base, nel, width, compar)” on page 953

link(path1, path2)
Purpose

Creates a hard link to a file.

Chapter 21. Service and utility procedures (IBM extension) 973

Class

Function

Argument type and attributes

path1
An INTENT(IN) CHARACTER(*). The value of the corresponding actual
argument must be the name of an existing file.

path2
An INTENT(IN) CHARACTER(*). The value of corresponding actual
argument is the name of the hard link to be created.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

lsearch(key, base, nelp, width, compar)
Purpose

Linear search and update of an array.

Class

Function

Argument type and attributes

key
A scalar of any type.

base
An INTENT(INOUT) contiguous array. The corresponding actual argument
must be of the same type and type parameters as the actual argument
corresponding to key.

nelp
An INTENT(INOUT) INTEGER(C_SIZE_T). The value of the corresponding
actual argument must equal the number of elements in base.

width
An INTEGER(C_SIZE_T). The value the corresponding actual argument must
equal the size of each element in base.

compar
A procedure with an interface that conforms to compar_iface.

Result type and attributes

INTEGER(C_INT)

974 XL Fortran: Language Reference for Big Endian Distributions

Result value

If the value of key is found in array base, the result is a C_PTR that points to the
first instance of the value of key in base in row-major order. Otherwise, the result
is a C_PTR that points to a new entry added to the end of base.

Related information
v “bsearch(key, base, nel, width, compar)” on page 953
v “lfind(key, base, nelp, width, compar)” on page 973

malloc(size)
Purpose

Allocates a block of memory.

Class

Function

Argument type and attributes

size An INTEGER(C_SIZE_T). The value of the corresponding actual argument
is the size of the block of memory to allocate in bytes.

Result type and attributes

INTEGER(C_INTPTR_T)

Result value

The result is the address of the allocated memory block or 0 if unsuccessful. The
use of malloc is discouraged because it can lead to memory leaks. It is preferred to
use allocatable variables instead.

This function sets the error number (errno).

Examples
USE XLF_POSIX_BINDINGS
IMPLICIT NONE
INTEGER(C_SIZE_T) num_elements
INTEGER i
INTEGER a(100)
POINTER(p, a)

num_elements = 10
p = malloc(C_SIZEOF(a(1)) * num_elements)
IF (p /= 0) THEN

! malloc() was successful.
! You can access only num_elements of array a
! despite what the declaration says.
a = [(i, i=1, num_elements)]
PRINT *, a(1:num_elements)
CALL free(p)

ELSE
! malloc() failed.
CALL perror(’’)

END IF
END

The output is as follows:

Chapter 21. Service and utility procedures (IBM extension) 975

1 2 3 4 5 6 7 8 9 10

Related information
v “ALLOCATABLE (Fortran 2003)” on page 283
v “free(ptr)” on page 958
v “calloc(nelem, elsize)” on page 954
v “realloc(ptr, size)” on page 980

mkdir(path, mode)
Purpose

Creates a directory.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

mode
An INTEGER(C_MODE_T). The value of the corresponding actual argument must
be one or more of the named constants from Table 73 on page 947.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

mkfifo(path, mode)
Purpose

Creates a FIFO special file.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are

976 XL Fortran: Language Reference for Big Endian Distributions

significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

mode
An INTEGER(C_MODE_T). The value of the corresponding actual argument must
be one or more of the named constants from Table 73 on page 947.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

nice(incr)
Purpose

Changes the nice value of a process. The larger the nice value, the lower the
scheduling priority of the process.

Class

Function

Argument type and attributes

incr
An INTEGER(C_INT). The corresponding actual argument must have a value
in the range 0 ≤ incr ≤ 2 * NZERO - 1.

Result type and attributes

INTEGER(C_INT)

Result value

The result is the new nice value if successful and -1 if unsuccessful.

This function sets the error number (errno).

pathconf(path, name)
Purpose

Queries the value of a configurable pathname variable.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

Chapter 21. Service and utility procedures (IBM extension) 977

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

name
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_LONG)

Result value

The result is the current value of the configurable pathname variable if successful
and -1 if unsuccessful.

This function sets the error number (errno).

Examples
USE XLF_POSIX_BINDINGS
TYPE(C_PTR) res
INTEGER(C_LONG) path_len
CHARACTER(:), ALLOCATABLE :: path

path_len = pathconf(’.’, _PC_PATH_MAX);
IF (path_len /= -1) THEN

ALLOCATE(character(path_len) :: path)
res = getcwd(path)
IF (c_associated(res)) THEN

PRINT *, ’current directory is ’, trim(path)
END IF

ELSE
CALL perror(’’)

END IF
END

The output is as follows:
current directory is /home/user

perror(s)
Purpose

Writes an error message explaining the meaning of the current value of errno to
standard error. If s is not empty, it is prepended to the error message.

Class

Subroutine

Argument type and attributes

s An INTENT(IN) CHARACTER(*).

Examples
USE XLF_POSIX_BINDINGS
IMPLICIT NONE
INTEGER(C_INTPTR_T) x
x = malloc(-1_c_size_t)

978 XL Fortran: Language Reference for Big Endian Distributions

IF (x == 0) THEN
CALL perror(’malloc failed’)

END IF
END

The output is as follows:
malloc failed: Cannot allocate memory

qsort(base, nel, width, compar)
Purpose

Sorts an array using the quick sort algorithm.

Class

Subroutine

Argument type and attributes

base
An INTENT(INOUT) array of any type. The corresponding actual argument is
the array to be sorted.

nelp
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the number of elements in base.

width
An INTEGER(C_SIZE_T). The value of the corresponding actual argument must
equal the size of each element in base.

compar
A procedure with an interface that conforms to compar_iface.

Examples
PURE FUNCTION less_than(a, b)

USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
INTEGER(C_INT), INTENT(IN) :: a, b
INTEGER(C_INT) less_than
less_than = (a - b)

END FUNCTION

USE XLF_POSIX_BINDINGS
IMPLICIT NONE
PROCEDURE(compar_iface) less_than
INTEGER(C_INT) a(5)

a = [INTEGER(C_INT) :: 6, 2, 8, 2, 5]
CALL qsort(a, size(a), C_SIZEOF(a(1)), less_than)
PRINT *, a
END

The output is as follows:
2 2 5 6 8

raise(sig)
Purpose

Sends signal sig to the calling thread or process.

Chapter 21. Service and utility procedures (IBM extension) 979

Class

Function

Argument type and attributes

sig
An INTEGER(C_INT). The value of the corresponding actual argument must
equal that of one of the named constants from Table 80 on page 950.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and nonzero if unsuccessful.

This function sets the error number (errno).

realloc(ptr, size)
Purpose

Reallocates a block of memory.

Class

Function

Argument type and attributes

ptr
An INTEGER(C_INTPTR_T). The value of the corresponding actual argument
must have been obtained from malloc or calloc.

size
An INTEGER(C_SIZE_T). The value of the corresponding actual argument is
the new size for the memory block in bytes.

Result value

The result is the address of the reallocated memory block or 0 if unsuccessful. The
use of realloc is discouraged because it can lead to memory leaks. It is preferred to
use allocatable variables instead.

This function sets the error number errno.

Related information
v “calloc(nelem, elsize)” on page 954
v “malloc(size)” on page 975

remove(path)
Purpose

Deletes a file. If path is a directory name, remove is equivalent to rmdir. Otherwise,
it is equivalent to unlink.

980 XL Fortran: Language Reference for Big Endian Distributions

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

Related information
v “rmdir(path)” on page 982
v “unlink(path)” on page 992

rename(old, new)
Purpose

Renames a file.

Class

Function

Argument type and attributes

old
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

new
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

Chapter 21. Service and utility procedures (IBM extension) 981

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

rmdir(path)
Purpose

Removes a directory.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

Related information
v “remove(path)” on page 980
v “unlink(path)” on page 992

setegid(gid)
Purpose

Sets the effective group ID of the calling process.

Class

Function

Argument type and attributes

gid
An INTEGER(C_GID_T).

982 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

seteuid(uid)
Purpose

Sets the effective user ID of the calling process.

Class

Function

Argument type and attributes

uid
An INTEGER(C_UID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

setgid(gid)
Purpose

Sets the real group ID of the calling process.

Class

Function

Argument type and attributes

gid
An INTEGER(C_GID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

Chapter 21. Service and utility procedures (IBM extension) 983

setpgid(pid, pgid)
Purpose

Sets the process group ID of a process.

Class

Function

Argument type and attributes

pid
An INTEGER(C_PID_T).

pgid
An INTEGER(C_PID_T).

Result type and attributes

INTEGER(C_PID_T).

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

setpgrp()
Purpose

Sets the process group ID of the calling process.

Class

Function

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

setregid(rgid, egid)
Purpose

Sets the real and effective group IDs of the calling process.

Class

Function

984 XL Fortran: Language Reference for Big Endian Distributions

Argument type and attributes

rgid
An INTEGER(C_GID_T).

egid
An INTEGER(C_GID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

setreuid(ruid, euid)
Purpose

Sets the real and effective user IDs of the calling process.

Class

Function

Argument type and attributes

ruid
An INTEGER(C_UID_T).

euid
An INTEGER(C_UID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

setsid()
Purpose

Creates a session and sets process group ID.

Class

Function

Result type and attributes

INTEGER(C_PID_T)

Chapter 21. Service and utility procedures (IBM extension) 985

Result value

If successful, the result is the new process group ID. If unsuccessful, the result is
-1.

This function sets the error number (errno).

setuid(uid)
Purpose

Sets the real user ID of the calling process.

Class

Function

Argument type and attributes

uid
An INTEGER(C_UID_T).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

sleep(seconds)
Purpose

Suspends execution of the calling process for seconds seconds.

Class

Function

Argument type and attributes

seconds
An INTEGER(4).

Result type and attributes

INTEGER(4)

Result value

If sleep returns because the requested time has elapsed, the result is 0. If sleep
returns because of the delivery of a signal, the result is seconds minus the actual
time slept.

986 XL Fortran: Language Reference for Big Endian Distributions

symlink(path1, path2)
Purpose

Creates a symbolic link named path2 to the file named in path1.

Class

Function

Argument type and attributes

path1
An INTENT(IN) CHARACTER(*).

path2
An INTENT(IN) CHARACTER(*).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

sync()
Purpose

Requests a file system update.

Class

Subroutine

sysconf(name)
Purpose

Gets the value of a configurable system limit or variable.

Class

Function

Argument type and attributes

name
An INTEGER(C_INT). The corresponding actual argument must be the name of
a system constant.

Result type and attributes

INTEGER(C_LONG)

Chapter 21. Service and utility procedures (IBM extension) 987

Result value

The result is the current value of the requested configurable system variable. If an
error occurred, or if the configurable system variable has no limit, the result is -1.

This function sets the error number (errno).

Examples
USE XLF_POSIX_BINDINGS
IMPLICIT NONE

INTEGER(C_LONG) arg_max
arg_max = sysconf(_SC_ARG_MAX)
IF (arg_max /= -1) THEN

PRINT *, ’maximum number of arguments is’, arg_max
END IF
END

Related information
v “confstr(name, buf)” on page 957

time(tloc)
Purpose

Gets the value of time since the Epoch calculated in seconds.

Class

Function

Argument type and attributes

tloc
A TYPE(C_PTR). The corresponding actual argument must be either associated
with an INTEGER(C_TIME_T) variable, or is unassociated. If the actual
argument is associated, it is set to the result value of time.

Result type and attributes

INTEGER(C_TIME_T)

Result value

The result is the value of time since the Epoch calculated in seconds. If
unsuccessful, the result is -1.

toascii(c)
Purpose

Converts to 7-bit US-ASCII.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

988 XL Fortran: Language Reference for Big Endian Distributions

Result type and attributes

INTEGER(C_INT)

Result value

The result is IAND(c, z’7f’).

Related information
v “IAND(I, J)” on page 620

tolower(c)
Purpose

Converts to lowercase.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is IACHAR(lower_c), where lower_c is the lowercase character that
corresponds to ACHAR(c) in the current locale.

Related information
v “ACHAR(I, KIND)” on page 565
v “IACHAR(C, KIND)” on page 619

toupper(c)
Purpose

Converts to uppercase.

Class

Pure function

Argument type and attributes

c An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Chapter 21. Service and utility procedures (IBM extension) 989

Result value

The result is IACHAR(upper_c), where upper_c is the uppercase character that
corresponds to ACHAR(c) in the current locale.

Related information
v “ACHAR(I, KIND)” on page 565
v “IACHAR(C, KIND)” on page 619

truncate(path, length)
Purpose

Truncates the file named in path to length bytes.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

length
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

ualarm(useconds, interval)
Purpose

Requests that the operating system generate an alarm signal (SIGALARM) after
useconds microseconds and, if interval is not zero, repeat the alarm every
interval microseconds.

Class

Function

Argument type and attributes

useconds
An INTEGER(C_USECONDS_T).

990 XL Fortran: Language Reference for Big Endian Distributions

interval
An INTEGER(C_USECONDS_T).

Result type and attributes

INTEGER(C_USECONDS_T)

Result value

If there is a pending ualarm request, the result is the number of microseconds
remaining until the pending request. Otherwise, the result is 0.

umask(cmask)
Purpose

Sets and gets the file mode creation mask.

Class

Function

Argument type and attributes

cmask
An INTEGER(C_MODE_T). The value of the corresponding actual argument is
the new file mode creation mask. The value of the corresponding actual
argument must be one or more of the named constants from Table 73 on page
947.

Result type and attributes

INTEGER(C_MODE_T)

Result value

The result is the value of the previous file mode creation mask.

uname(name)
Purpose

Stores identifying information about the current system into name.

Class

Function

Argument type and attributes

name
An INTENT(OUT) of type utsname.

Result type and attributes

INTEGER(C_INT)

Chapter 21. Service and utility procedures (IBM extension) 991

Result value

The result is non-negative if successful and -1 if unsuccessful.

This function sets the error number errno.

unlink(path)
Purpose

Removes a link to the file named in path. If path names a symbolic link, the
symbolic link is removed, not its target.

Class

Function

Argument type and attributes

path
An INTENT(IN) CHARACTER(*).

If the corresponding actual argument is not null-terminated, trailing spaces in
it are ignored. If trailing spaces in the corresponding actual argument are
significant, explicitly null-terminate it. If the corresponding actual argument is
a literal, you can null-terminate it using the -qnullterm option. Otherwise, you
can concatenate C_NULL_CHAR to it.

Result type and attributes

INTEGER(C_INT)

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

usleep(useconds)
Purpose

Suspends execution of the calling process for useconds microseconds.

Class

Function

Argument type and attributes

useconds
An INTEGER(C_USECONDS_T).

Result type and attributes

INTEGER(C_INT)

992 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is 0 if successful and -1 if unsuccessful.

This function sets the error number (errno).

wait(stat_loc)
Purpose

Waits for a child process to stop or terminate.

Class

Function

Argument type and attributes

stat_loc
An INTENT(OUT) INTEGER(C_INT). The wait status is assigned to stat_loc.
It can be interpreted using wexitstatus, wifcontinued, wifexited, wifsignaled,
wifstopped, wstopsig, or wtermsig.

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is the same as that of wait(-1, stat_loc, 0).

This function sets errno.

Related information
v “wexitstatus(stat_val)” on page 994
v “wifcontinued(stat_val)” on page 995
v “wifexited(stat_val)” on page 995
v “wifsignaled(stat_val)” on page 995
v “wifstopped(stat_val)” on page 996
v “wstopsig(stat_val)” on page 996
v “wtermsig(stat_val)” on page 997

waitpid(pid, stat_loc, options)
Purpose

Waits for a child process to stop or terminate.

Class

Function

Argument type and attributes

pid
An INTEGER(C_PID_T).

Chapter 21. Service and utility procedures (IBM extension) 993

stat_loc
An INTENT(OUT) INTEGER(C_INT). The wait status is assigned to stat_loc.
It can be interpreted using wexitstatus, wifcontinued, wifexited, wifsignaled,
wifstopped, wstopsig, or wtermsig.

options
An INTEGER(C_INT). The value of the corresponding actual argument must
be one or more of 0, WCONTINUED, WNOHANG, or WUNTRACED.

Result type and attributes

INTEGER(C_PID_T)

Result value

The result is equal to the process ID of the child process whose status is reported
in stat_loc. If options has a value of WNOHANG, and at least one process that is
specified by pid does not have status ready, the result is 0. Otherwise, the result is
-1.

This function sets the error number (errno).

Related information
v “wexitstatus(stat_val)”
v “wifcontinued(stat_val)” on page 995
v “wifexited(stat_val)” on page 995
v “wifsignaled(stat_val)” on page 995
v “wifstopped(stat_val)” on page 996
v “wstopsig(stat_val)” on page 996
v “wtermsig(stat_val)” on page 997

wexitstatus(stat_val)
Purpose

Decodes the process status value in stat_val to get the exit status of a process.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is the exit status that is encoded in stat_val.

994 XL Fortran: Language Reference for Big Endian Distributions

wifcontinued(stat_val)
Purpose

Decodes the process status value in stat_val to query whether a child process was
continued.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if the process whose status is in stat_val was continued.
Otherwise, the result is 0.

wifexited(stat_val)
Purpose

Decodes the process status value in stat_val to query whether a child process
exited normally.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if the process whose status is in stat_val exited normally.
Otherwise, the result is 0.

wifsignaled(stat_val)
Purpose

Decodes the process status value in stat_val to query whether a child process was
terminated because of an uncaught signal.

Class

Pure function

Chapter 21. Service and utility procedures (IBM extension) 995

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if the process whose status is in stat_val was terminated
due to an uncaught signal. Otherwise, the result is 0.

wifstopped(stat_val)
Purpose

Decodes the process status value in stat_val to query whether a child process is
currently stopped.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is nonzero if the process whose status is in stat_val is currently
stopped. Otherwise, the result is 0.

wstopsig(stat_val)
Purpose

Decodes the process status value in stat_val to get the signal number that caused
a process to stop.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

996 XL Fortran: Language Reference for Big Endian Distributions

Result value

The result is the signal number that caused the process whose status is in stat_val
to stop.

wtermsig(stat_val)
Purpose

Decodes the process status value in stat_val to get the signal number that caused
a process to terminate.

Class

Pure function

Argument type and attributes

stat_val
An INTEGER(C_INT).

Result type and attributes

INTEGER(C_INT)

Result value

The result is the signal number that caused the process whose status is in stat_val
to terminate.

Chapter 21. Service and utility procedures (IBM extension) 997

998 XL Fortran: Language Reference for Big Endian Distributions

Chapter 22. Extensions for source compatibility (IBM
extension)

Record structures
The syntax used for record structures parallels that used for Fortran derived types
in most cases. Also, in most cases, the semantics of the two features are parallel.
For these reasons, record structures are supported in XL Fortran in a way that
makes the two features almost completely interchangeable. Hence,
v An entity of a derived type declared using either syntax can be declared using

either a TYPE statement or a RECORD statement.
v A component of an object of derived type can be selected using either the

percent sign or period.
v A derived type declared using the record structure declaration has a structure

constructor.
v A component of any derived type can be initialized using either the standard

"equals" form of initialization or the extended "double slashes" form of
initialization.

There are differences, however, as outlined here:
v A standard derived type declaration cannot have a %FILL component.
v A record structure declaration must not have a SEQUENCE or PRIVATE

statement.
v The -qalign=struct option applies only to derived types declared using a record

structure declaration.
v A derived type declared using a record structure declaration may have the same

name as an intrinsic type.
v There are differences in the rules for determination of derived types declared

using a record structure declaration and those declared using a standard derived
type declaration.

v A component of a record structure cannot have the PUBLIC or PRIVATE
attribute.

v A derived type declared using the record structure declaration cannot have the
BIND attribute or procedures.

v A standard derived type declaration can have zero components, a record
structure declaration must have at least one component.

The size of a sequence derived type declared using a standard derived type
declaration is equal to the sum of the number of bytes required to hold all of its
components.

The size of a sequence derived type declared using a record structure declaration
is equal to the sum of the number of bytes required to hold all of its components
and its padding.

Previously, a numeric sequence structure or character sequence structure that
appeared in a common block was treated as if its components were enumerated
directly in the common block. Now, that only applies to structures of a type
declared using a standard derived type declaration.

© Copyright IBM Corp. 1996, 2014 999

Declaring record structures
Declaring a record structure declares a user-defined type in the same way that a
standard Fortran derived type definition declares a user-defined type. A type
declared using a record structure declaration is a derived type. For the most part,
rules that apply to derived types declared using the standard Fortran syntax apply
to derived types declared using the record structure syntax. In those cases where
there is a difference, the difference will be called out by referring to the two as
derived types declared using a record structure declaration and derived types
declared using a standard derived type declaration.

Record structure declarations follow this syntax:

record_structure_dcl:

struct_comp_dcl_item:

where component_def_stmt is a type declaration statement used to define the
components of the derived type.

structure_stmt:

component_dcl:

where a is an object name.

�� structure_stmt ��

�� � struct_comp_dcl_item ��

�� end_structure_stmt ��

�� component_def_stmt
record_structure_dcl
parameter_stmt

��

�� STRUCTURE
/structure_name/ component_dcl_list

��

�� a
(-array_spec-)

��

1000 XL Fortran: Language Reference for Big Endian Distributions

A structure statement declares the structure_name to be a derived type in the
scoping unit of the nearest enclosing program unit, interface body or subprogram.
The derived type is a local entity of class 1 in that scoping unit.

A structure statement may not specify a component_dcl_list unless it is nested in
another record structure declaration. Likewise, the structure_name of a structure
statement cannot be omitted unless it is part of a record_structure_dcl that is nested
in another record structure declaration. A record_structure_dcl must have at least
one component.

A derived type declared using a record structure declaration is a sequence derived
type, and is subject to all rules that apply to sequence derived types. A component
of a type declared using a record structure declaration cannot be of a nonsequence
derived type, as is true of sequence derived types declared using standard derived
type declarations. A record structure declaration cannot contain a PRIVATE or
SEQUENCE statement.

A record structure declaration defines a scoping unit. All statements in the
record_structure_dcl are part of the scoping unit of the record structure declaration,
with the exception of any other record_structure_dcl contained in the
record_structure_dcl. These rules are also true of standard derived type declarations,
repeated here for clarity.

A parameter_stmt in a record_structure_dcl declares named constants in the scoping
unit of the nearest enclosing program unit, interface body or subprogram. A named
constant declared in such a parameter_stmt may have the same name as a
component declared in the record_structure_dcl in which it is contained.

Any components declared on a structure_stmt are components of the enclosing
derived type, and are local entities of the enclosing structure's scoping unit. The
type of such a component is the derived type on whose structure_stmt it is
declared.

Unlike derived types declared using a standard derived type declaration, a derived
type name declared using a record structure declaration may be the same as the
name of an intrinsic type.

In place of the name of a component, %FILL can be used in a component_def_stmt
in a record structure declaration. A %FILL component is used as a place-holder to
achieve wanted alignment of data in a record structure declaration. Initialization
cannot be specified for a %FILL component. Each instance of %FILL in a record
structure declaration is treated as a unique component name, different from the
names of all other components you specified for the type, and different from all
other %FILL components. %FILL is a keyword and is not affected by the -qmixed
compiler option.

Each instance of a nested structure that has no name is treated as if it had a unique
name, different from the names of all other accessible entities.

As an extension to the rules described on derived types thus far, the direct
components of a derived type declared using a record structure declaration are:
v the components of that type that are not %FILL components; and
v the direct components of a derived type component that does not have the

ALLOCATABLE or POINTER attributes and is not a %FILL component.

Chapter 22. Extensions for source compatibility (IBM extension) 1001

The non-filler ultimate components of a derived type are the ultimate components
of the derived type that are also direct components.

An object of a derived type with default initialization can be a member of a
common block. You must ensure that a common block is not initialized in more
than one scoping unit.

Examples

Example 1: Nested record structure declarations - named and unnamed
STRUCTURE /S1/

STRUCTURE /S2/ A ! A is a component of S1 of type S2
INTEGER I

END STRUCTURE
STRUCTURE B ! B is a component of S1 of unnamed type

INTEGER J
END STRUCTURE

END STRUCTURE
RECORD /S1/ R1
RECORD /S2/ R2 ! Type S2 is accessible here.
R2.I = 17
R1.A = R2
R1.B.J = 13
END

Example 2: Parameter statement nested in a structure declaration
INTEGER I
STRUCTURE /S/

INTEGER J
PARAMETER(I=17, J=13) ! Declares I and J in scope of program unit to

! be named constants
END STRUCTURE
INTEGER J ! Confirms implicit typing of named constant J
RECORD /S/ R
R.J = I + J
PRINT *, R.J ! Prints 30
END

Example 3: %FILL fields
STRUCTURE /S/

INTEGER I, %FILL, %FILL(2,2), J
STRUCTURE /S2/ R1, %FILL, R2

INTEGER I
END STRUCTURE

END STRUCTURE
RECORD /S/ R
PRINT *, LOC(R%J)-LOC(R%I) ! Prints 24 with -qintsize=4
PRINT *, LOC(R%R2)-LOC(R%R1) ! Prints 8 with -qintsize=4
END

Storage mapping
A derived type declared using a record structure declaration is a sequence derived
type. In memory, objects of such a type will have the components stored in the
order specified. The same is true of objects of a sequence derived type declared
using a standard derived type declaration.

The -qalign option specifies the alignment of data objects in storage, which avoids
performance problems with misaligned data. Both the [no]4k and struct suboptions

1002 XL Fortran: Language Reference for Big Endian Distributions

can be specified and are not mutually exclusive. The default setting is
-qalign=no4k:struct=natural. [no]4K is useful primarily in combination with logical
volume I/O and disk striping.

Union and map (IBM extension)
A union declares a group of fields in the enclosing record structure that can share
the data area in a program.

Unions and maps follow this syntax:

union_dcl:

union_dcl_item:

�� map_dcl
parameter_stmt

��

map_dcl:

map_dcl_item:

struct_comp_dcl_item:

�� UNION � union_dcl_item ��

�� END UNION ��

�� MAP � map_dcl_item ��

�� END MAP ��

�� struct_comp_dcl_item
record_stmt

��

Chapter 22. Extensions for source compatibility (IBM extension) 1003

A union declaration must be defined in a record structure, may be in a map
declaration, and a map declaration must be in a union declaration. All declarations
in a map_dcl_item within a union declaration must be of the same nesting level,
regardless of which map_dcl they reside in. Therefore, no component name inside a
map_dcl may appear in any other map_dcl on the same level.

A component declared within a map declaration must not have a POINTER ,
PRIVATE, PUBLIC, or ALLOCATABLE attribute.

A record structure with union map must not appear in I/O statements.

The components declared in a map declaration share the same storage as the
components declared in the other map declarations within a union construct.
When you assign a value to one component in one map declaration, the
components in other map declarations that share storage with this component may
be affected.

The size of a map is the sum of the sizes of the components declared within it.

The size of the data area established for a union declaration is the size of the
largest map defined for that union

A parameter_stmt in a map declaration or union construct declares entities in the
scoping unit of the nearest enclosing program unit, interface body, or subprogram.

A %FILL field in a map declaration is used as a place-holder to achieve wanted
alignment of data in a record structure. Other non-filler components or part of the
components in other map declarations that share the data area with a %FILL field
are undefined.

If default initialization is specified in component_def_stmts in at least one map
declaration in a union declaration, the last occurrence of the initialization becomes
the final initialization of the components.

If default initialization is specified in one of the union map declarations in a record
structure, a variable of that type that will have its storage class assigned by default
will be given
v the static storage class if either the -qsave=defaultinit or -qsave=all option is

specified; or
v the automatic storage class, if the -qnosave option is specified.

At any time, only one map is associated with the shared storage. If a component
from another map is referenced, the associated map becomes unassociated and its
components become undefined. The map referenced will then be associated with
the storage.

�� component_def_stmt
record_structure_dcl
parameter_stmt
union_dcl

��

1004 XL Fortran: Language Reference for Big Endian Distributions

If a component of map_dcl is entirely or partially mapped with the %FILL
component of the other map_dcl in a union, the value of the overlap portion is
undefined unless that component is initialized by default initialization or an
assignment statement.

Examples

Example 1: The size of the union is equal to the size of the largest map in that
union

structure /S/
union

map
integer*4 i, j, k
real*8 r, s, t

end map
map

integer*4 p, q
real*4 u, v

end map
end union ! Size of the union is 36 bytes.

end structure
record /S/ r

Example 2: The results of union map are different with different -qsave option and
suboptions.

PROGRAM P
CALL SUB
CALL SUB
END PROGRAM P

SUBROUTINE SUB
LOGICAL, SAVE :: FIRST_TIME = .TRUE.
STRUCTURE /S/

UNION
MAP

INTEGER I/17/
END MAP
MAP

INTEGER J
END MAP

END UNION
END STRUCTURE
RECORD /S/ LOCAL_STRUCT
INTEGER LOCAL_VAR

IF (FIRST_TIME) THEN
LOCAL_STRUCT.J = 13
LOCAL_VAR = 19
FIRST_TIME = .FALSE.

ELSE
! Prints " 13" if compiled with -qsave or -qsave=all
! Prints " 13" if compiled with -qsave=defaultinit
! Prints " 17" if compiled with -qnosave
PRINT *, LOCAL_STRUCT%j
! Prints " 19" if compiled with -qsave or -qsave=all
! Value of LOCAL_VAR is undefined otherwise
PRINT *, LOCAL_VAR

END IF
END SUBROUTINE SUB

Example 3: The last occurrence of default initialization in a map declaration within
a union structure becomes the final initialization of the component.

Chapter 22. Extensions for source compatibility (IBM extension) 1005

structure /st/
union

map
integer i /3/, j /4/
union

map
integer k /8/, l /9/

end map
end union

end map
map

integer a, b
union

map
integer c /21/

end map
end union

end map
end union

end structure
record /st/ R
print *, R.i, R.j, R.k, R.l ! Prints "3 4 21 9"
print *, R.a, R.b, R.c ! Prints "3 4 21"
end

Example 4: The following program is compiled with -qintsize=4 and
-qalign=struct=packed. The components in the union MAP are aligned and
packed.

structure /s/
union

map
integer*2 i /z’1a1a’/, %FILL, j /z’2b2b’/

end map
map

integer m, n
end map

end union
end structure
record /s/ r

print ’(2z6.4)’, r.i, r.j ! Prints "1A1A 2B2B"
print ’(2z10.8)’, r.m, r.n ! Prints "1A1A0000 2B2B0000" however

! the two bytes in the lower order are
! not guaranteed.

r.m = z’abc00cba’ ! Components are initialized by
! assignment statements.

r.n = z’02344320’

print ’(2z10.8)’, r.m, r.n ! Prints "ABC00CBA 02344320"
print ’(2z6.4)’, r.i, r.j ! Prints "ABC0 0234"
end

1006 XL Fortran: Language Reference for Big Endian Distributions

Appendix.

Compatibility across standards
This information is provided for the benefit of users of earlier language standards,
such as FORTRAN 77 , who are unfamiliar with more current language standards
like Fortran 90, Fortran 95, Fortran 2003, or Fortran 2008, or with XL Fortran.

Except as noted here, the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008
standards are upward-compatible extensions to the preceding Fortran International
Standard, ISO 1539-1:1980, informally referred to as FORTRAN 77. Any
standard-conforming FORTRAN 77 program remains standard-conforming under
the Fortran 90 standard, except as noted under item 4 below regarding intrinsic
procedures. Any standard-conforming FORTRAN 77 program remains
standard-conforming under the Fortran 95, Fortran 2003, or Fortran 2008 standard,
as long as none of the deleted features are used in the program, except as noted
under item 4 below regarding intrinsic procedures. The Fortran 90, Fortran 95,
Fortran 2003, and Fortran 2008 standards restrict the behavior of some features that
are processor-dependent in FORTRAN 77. Therefore, a standard-conforming
FORTRAN 77 program that uses one of these processor-dependent features may
have a different interpretation under the Fortran 90, Fortran 95, Fortran 2003, or
Fortran 2008 standard, yet remain a standard-conforming program. The following
FORTRAN 77 features have different interpretations in Fortran 90, Fortran 95,
Fortran 2003, and Fortran 2008:
1. FORTRAN 77 permitted a processor to supply more precision derived from a

real constant than can be contained in a real datum when the constant is used
to initialize a DOUBLE PRECISION data object in a DATA statement. Fortran
90, Fortran 95, Fortran 2003, and Fortran 2008 do not permit this
processor-dependent option.
Previous releases of XL Fortran have been consistent with the Fortran 90 and
Fortran 95 behavior.

2. If a named variable that is not in a common block is initialized in a DATA
statement and does not have the SAVE attribute specified, FORTRAN 77 left its
SAVE attribute processor-dependent. The Fortran 90, Fortan 95, Fortran 2003,
and Fortran 2008 standards specify that this named variable has the SAVE
attribute.
Previous releases of XL Fortran have been consistent with the Fortran 90 and
Fortran 95 behavior.

3. FORTRAN 77 required that the number of characters required by the input list
must be less than or equal to the number of characters in the record during
formatted input. The Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008
standards specify that the input record is logically padded with blanks if there
are not enough characters in the record, unless the PAD='NO' specifier is
indicated in an appropriate OPEN statement.
With XL Fortran, the input record is not padded with blanks if the noblankpad
suboption of the -qxlf77 compiler option is specified.

4. The Fortran 90, Fortan 95, Fortran 2003, and Fortran 2008 standards have more
intrinsic functions than FORTRAN 77, in addition to a few intrinsic
subroutines. Therefore, a standard-conforming FORTRAN 77 program may
have a different interpretation under Fortran 90, Fortran 95, Fortran 2003, or

© Copyright IBM Corp. 1996, 2014 1007

Fortran 2008 if it invokes a procedure having the same name as one of the new
standard intrinsic procedures, unless that procedure is specified in an
EXTERNAL statement.
With XL Fortran, the -qextern compiler option also treats specified names as if
they appear in an EXTERNAL statement.

5. In Fortran 95, Fortran 2003, and Fortran 2008, for some edit descriptors, a value
of 0 for a list item in a formatted output statement will be formatted differently.
In addition, the Fortran 95 standard, unlike the FORTRAN 77 standard,
specifies how rounding of values will affect the output field form. Therefore,
for certain combinations of values and edit descriptors, FORTRAN 77
processors may produce a different output form than Fortran 95 processors.

6. Fortran 95, Fortran 2003, and Fortran 2008 allow a processor to distinguish
between a positive and a negative real zero, whereas Fortran 90 did not.
Fortran 95 changes the behavior of the SIGN intrinsic function when the
second argument is negative real zero.

7. To distinguish between the Fortran 95 and Fortran 2003 interpretations of
signed zeros in the ATAN2(Y,X), LOG(X) and SQRT(X) intrinsics, the
-qxlf2003=signdzerointr suboption must be used in conjunction with the
-qxlf90=signedzero option. For the xlf95 invocation only
-qxlf2003=signdzerointr needs to be specified since -qxlf90=signedzero is on
by default. For xlf2003 none of the options need to be specified since both are
on by default. For the xlf90, f77 and xlf invocations, both options must be
specified in order to have Fortran 2003 standard behaviour.

Fortran 90 compatibility
Except as noted here, the Fortran 95 standard is an upward-compatible extension
to the preceding Fortran International Standard, ISO/IEC 1539-1:1991, informally
referred to as Fortran 90. A standard conforming Fortran 90 program that does not
use any of the features deleted from the Fortran 95 standard, is a standard
conforming Fortran 95 program, as well. The Fortran 90 features that have been
deleted from the Fortran 95 standard are the following:
v ASSIGN and assigned GO TO statements
v PAUSE statement
v DO control variables and expressions of type real
v H edit descriptor
v Branching to an END IF statement from outside the IF block

Fortran 95 allows a processor to distinguish between a positive and a negative real
zero, whereas Fortran 90 did not. Fortran 95 changes the behavior of the SIGN
intrinsic function when the second argument is negative real zero.

More intrinsic functions appear in the Fortran 95 standard than in the Fortran 90
standard. Therefore, a program that conforms to the Fortran 90 standard may have
a different interpretation under the Fortran 95 standard. The different
interpretation of the program in Fortran 95 will only occur if the program invokes
a procedure that has the same name as one of the new standard intrinsic
procedures, unless that procedure is specified in an EXTERNAL statement or with
an interface body.

Obsolescent features
As the Fortran language evolves, it is only natural that the functionality of some
older features are better handled by newer features geared toward today's
programming needs. At the same time, the considerable investment in legacy

1008 XL Fortran: Language Reference for Big Endian Distributions

Fortran code suggests that it would be insensitive to customer needs to decommit
any Fortran 90 or FORTRAN 77 features at this time. For this reason, XL Fortran is
fully upward compatible with the Fortran 90 and FORTRAN 77 standards. Fortran
95 has removed features that were part of both the Fortran 90 and FORTRAN 77
language standards. However, functionality has not been removed from Fortran 95
as efficient alternatives to the features deleted do exist.

Fortran 95 defines two categories of outmoded features: deleted features and
obsolescent features. Deleted features are Fortran 90 or FORTRAN 77 features that
are considered to be largely unused and so are not supported in Fortran 95.

Obsolescent features are FORTRAN 77 features that are still frequently used today
but whose use can be better delivered by newer features and methods. Although
obsolescent features are, by definition, supported in the Fortran 95 standard, some
of them may be marked as deleted in the next Fortran standard. Although a
processor may still support deleted features as extensions to the language, you
may want to take steps now to modify your existing code to use better methods.

Fortran 90 indicates the following FORTRAN 77 features are obsolescent:
v Arithmetic IF

Recommended method: Use the logical IF statement, IF construct, or CASE
construct.

v DO control variables and expressions of type real
Recommended method: Use variables and expression of type integer.

v PAUSE statement
Recommended method: Use the READ statement.

v Alternate return specifiers
Recommended method: Evaluate a return code in a CASE construct or a computed
GO TO statement on return from the procedure.
! FORTRAN 77

CALL SUB(A,B,C,*10,*20,*30)

! Fortran 90

CALL SUB(A,B,C,RET_CODE)
SELECT CASE (RET_CODE)

CASE (1)

...
CASE (2)

...
CASE (3)

...
END SELECT

v ASSIGN and assigned GO TO statements
Recommended method: Use internal procedures.

v Branching to an END IF statement from outside the IF block
Recommended method: Branch to the statement that follows the END IF statement.

v Shared loop termination and termination on a statement other than END DO or
CONTINUE

Recommended method: Use an END DO or CONTINUE statement to terminate
each loop.

Appendix. 1009

v H edit descriptor
Recommended method: Use the character constant edit descriptor.

Fortran 95 and Fortran 2003 indicate the following FORTRAN 77 features as
obsolescent:
v Arithmetic IF

Recommended method: Use the logical IF statement, IF construct, or CASE
construct.

v Alternate return specifiers
Recommended method: Evaluate a return code in a CASE construct or a computed
GO TO statement on return from the procedure.
! FORTRAN 77

CALL SUB(A,B,C,*10,*20,*30)

! Fortran 90

CALL SUB(A,B,C,RET_CODE)
SELECT CASE (RET_CODE)

CASE (1)

...
CASE (2)

...
CASE (3)

...
END SELECT

v Shared loop termination and termination on a statement other than END DO or
CONTINUE

Recommended method: Use an END DO or CONTINUE statement to terminate
each loop.

v Statement functions
v DATA statements in executables
v Assumed length character functions
v Fixed source form
v CHARACTER* form of declaration

Deleted features
Fortran 2003 and Fortran 95 indicates that the following Fortran 90 and FORTRAN
77 features have been deleted:
v ASSIGN and assigned GO TO statements
v PAUSE statement
v DO control variables and expressions of type real
v H edit descriptor
v Branching to an END IF statement from outside the IF block

ASCII and EBCDIC character sets
XL Fortran uses the ASCII character set as its collating sequence.

1010 XL Fortran: Language Reference for Big Endian Distributions

This table lists the standard ASCII characters in numerical order with the
corresponding decimal and hexadecimal values. For convenience in working with
programs that use EBCDIC character values, the corresponding information for
EBCDIC characters is also included. The table indicates the control characters with
“Ctrl-” notation. For example, the horizontal tab (HT) appears as “Ctrl-I”, which
you enter by simultaneously pressing the Ctrl key and I key.

Table 84. Equivalent characters in the ASCII and EBCDIC character sets

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

0 00 Ctrl-@ NUL null NUL null

1 01 Ctrl-A SOH start of heading SOH start of heading

2 02 Ctrl-B STX start of text STX start of text

3 03 Ctrl-C ETX end of text ETX end of text

4 04 Ctrl-D EOT end of
transmission

SEL select

5 05 Ctrl-E ENQ enquiry HT horizontal tab

6 06 Ctrl-F ACK acknowledge RNL required new-line

7 07 Ctrl-G BEL bell DEL delete

8 08 Ctrl-H BS backspace GE graphic escape

9 09 Ctrl-I HT horizontal tab SPS superscript

10 0A Ctrl-J LF line feed RPT repeat

11 0B Ctrl-K VT vertical tab VT vertical tab

12 0C Ctrl-L FF form feed FF form feed

13 0D Ctrl-M CR carriage return CR carriage return

14 0E Ctrl-N SO shift out SO shift out

15 0F Ctrl-O SI shift in SI shift in

16 10 Ctrl-P DLE data link escape DLE data link escape

17 11 Ctrl-Q DC1 device control 1 DC1 device control 1

18 12 Ctrl-R DC2 device control 2 DC2 device control 2

19 13 Ctrl-S DC3 device control 3 DC3 device control 3

20 14 Ctrl-T DC4 device control 4 RES/
ENP

restore/enable
presentation

21 15 Ctrl-U NAK negative
acknowledge

NL new-line

22 16 Ctrl-V SYN synchronous idle BS backspace

23 17 Ctrl-W ETB end of
transmission
block

POC program-operator
communications

24 18 Ctrl-X CAN cancel CAN cancel

25 19 Ctrl-Y EM end of medium EM end of medium

26 1A Ctrl-Z SUB substitute UBS unit backspace

27 1B Ctrl-[ESC escape CU1 customer use 1

28 1C Ctrl-\ FS file separator IFS interchange file
separator

Appendix. 1011

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

29 1D Ctrl-] GS group separator IGS interchange group
separator

30 1E Ctrl-∧ RS record separator IRS interchange
record separator

31 1F Ctrl-_ US unit separator IUS/ITB interchange unit
separator /
intermediate
transmission
block

32 20 SP space DS digit select

33 21 ! exclamation mark SOS start of
significance

34 22 " straight double
quotation mark

FS field separator

35 23 # number sign WUS word underscore

36 24 $ dollar sign BYP/
INP

bypass/inhibit
presentation

37 25 % percent sign LF line feed

38 26 & ampersand ETB end of
transmission
block

39 27 ' apostrophe ESC escape

40 28 (left parenthesis SA set attribute

41 29) right parenthesis

42 2A * asterisk SM/SW set model switch

43 2B + addition sign CSP control sequence
prefix

44 2C , comma MFA modify field
attribute

45 2D - subtraction sign ENQ enquiry

46 2E . period ACK acknowledge

47 2F / right slash BEL bell

48 30 0

49 31 1

50 32 2 SYN synchronous idle

51 33 3 IR index return

52 34 4 PP presentation
position

53 35 5 TRN

54 36 6 NBS numeric
backspace

55 37 7 EOT end of
transmission

56 38 8 SBS subscript

1012 XL Fortran: Language Reference for Big Endian Distributions

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

57 39 9 IT indent tab

58 3A : colon RFF required form
feed

59 3B ; semicolon CU3 customer use 3

60 3C < less than DC4 device control 4

61 3D = equal NAK negative
acknowledge

62 3E > greater than

63 3F ? question mark SUB substitute

64 40 @ at symbol SP space

65 41 A

66 42 B

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J ¢ cent

75 4B K . period

76 4C L < less than

77 4D M (left parenthesis

78 4E N + addition sign

79 4F O | logical or

80 50 P & ampersand

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

86 56 V

87 57 W

88 58 X

89 59 Y

90 5A Z ! exclamation mark

91 5B [left bracket $ dollar sign

92 5C \ left slash * asterisk

93 5D] right bracket) right parenthesis

94 5E ^ hat, circumflex ; semicolon

Appendix. 1013

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

95 5F _ underscore ¬ logical not

96 60 ` grave - subtraction sign

97 61 a / right slash

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j ¦ split vertical bar

107 6B k , comma

108 6C l % percent sign

109 6D m _ underscore

110 6E n > greater than

111 6F o ? question mark

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y ` grave

122 7A z : colon

123 7B { left brace # numbersign

124 7C | logical or @ at symbol

125 7D } right brace ' apostrophe

126 7E ~ similar, tilde = equal

127 7F DEL delete " straight double
quotation mark

128 80

129 81 a

130 82 b

131 83 c

132 84 d

1014 XL Fortran: Language Reference for Big Endian Distributions

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

133 85 e

134 86 f

135 87 g

136 88 h

137 89 i

138 8A

139 8B

140 8C

141 8D

142 8E

143 8F

144 90

145 91 j

146 92 k

147 93 l

148 94 m

149 95 n

150 96 o

151 97 p

152 98 q

153 99 r

154 9A

155 9B

156 9C

157 9D

158 9E

159 9F

160 A0

161 A1 ~ similar, tilde

162 A2 s

163 A3 t

164 A4 u

165 A5 v

166 A6 w

167 A7 x

168 A8 y

169 A9 z

170 AA

171 AB

Appendix. 1015

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

172 AC

173 AD

174 AE

175 AF

176 B0

177 B1

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BD

190 BE

191 BF

192 C0 { left brace

193 C1 A

194 C2 B

195 C3 C

196 C4 D

197 C5 E

198 C6 F

199 C7 G

200 C8 H

201 C9 I

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 D0 } right brace

209 D1 J

210 D2 K

1016 XL Fortran: Language Reference for Big Endian Distributions

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

211 D3 L

212 D4 M

213 D5 N

214 D6 O

215 D7 P

216 D8 Q

217 D9 R

218 DA

219 DB

220 DC

221 DD

222 DE

223 DF

224 E0 \ left slash

225 E1

226 E2 S

227 E3 T

228 E4 U

229 E5 V

230 E6 W

231 E7 X

232 E8 Y

233 E9 Z

234 EA

235 EB

236 EC

237 ED

238 EE

239 EF

240 F0 0

241 F1 1

242 F2 2

243 F3 3

244 F4 4

245 F5 5

246 F6 6

247 F7 7

248 F8 8

249 F9 9

Appendix. 1017

Table 84. Equivalent characters in the ASCII and EBCDIC character sets (continued)

Decimal
Value

Hex
Value

Control
Character

ASCII
Symbol Meaning

EBCDIC
Symbol Meaning

250 FA | vertical line

251 FB

252 FC

253 FD

254 FE

255 FF EO eight ones

1018 XL Fortran: Language Reference for Big Endian Distributions

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2014 1019

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

1020 XL Fortran: Language Reference for Big Endian Distributions

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2014.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

Trademarks and service marks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 1021

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1022 XL Fortran: Language Reference for Big Endian Distributions

Glossary

This glossary defines terms that are commonly used in this document. It includes
definitions developed by the American National Standards Institute (ANSI) and
entries from the IBM Terminology website.

A

abstract interface
An ABSTRACT INTERFACE consists of procedure characteristics and
names of dummy arguments. Used to declare the interfaces for procedures
and deferred bindings.

abstract type
A type that has the ABSTRACT attribute. A nonpolymorphic object cannot
be declared to be of abstract type. A polymorphic object cannot be
constructed or allocated to have a dynamic type that is abstract.

active processor
See online processor.

actual argument
An expression, variable, procedure, or alternate return specifier that is
specified in a procedure reference.

alias A single piece of storage that can be accessed through more than a single
name. Each name is an alias for that storage.

alphabetic character
A letter or other symbol, excluding digits, used in a language. Usually the
uppercase and lowercase letters A through Z plus other special symbols
(such as $ and _) allowed by a particular language.

alphanumeric
Pertaining to a character set that contains letters, digits, and usually other
characters, such as punctuation marks and mathematical symbols.

American National Standard Code for Information Interchange
See ASCII.

argument
An expression that is passed to a function or subroutine. See also actual
argument, dummy argument.

argument association
The relationship between an actual argument and a dummy argument
during the invocation of a procedure.

arithmetic constant
A constant of type integer, real, or complex.

arithmetic expression
One or more arithmetic operators and arithmetic primaries, the evaluation
of which produces a numeric value. An arithmetic expression can be an
unsigned arithmetic constant, the name of an arithmetic constant, or a
reference to an arithmetic variable, function reference, or a combination of
such primaries formed by using arithmetic operators and parentheses.

© Copyright IBM Corp. 1996, 2014 1023

http://www.ibm.com/software/globalization/terminology/

arithmetic operator
A symbol that directs the performance of an arithmetic operation. The
intrinsic arithmetic operators are:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

array An entity that contains an ordered group of scalar data. All objects in an
array have the same data type and type parameters.

array declarator
The part of a statement that describes an array used in a program unit. It
indicates the name of the array, the number of dimensions it contains, and
the size of each dimension.

array element
A single data item in an array, identified by the array name and one or
more subscripts. See also subscript.

array name
The name of an ordered set of data items.

array section
A subobject that is an array and is not a structure component.

ASCII The standard code, using a coded character set consisting of 7-bit coded
characters (8-bits including parity check), that is used for information
interchange among data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and
graphic characters. See also Unicode.

asynchronous
Pertaining to events that are not synchronized in time or do not occur in
regular or predictable time intervals.

assignment statement
An executable statement that defines or redefines a variable based on the
result of expression evaluation.

associate name
The name by which a selector of a SELECT TYPE or ASSOCIATE
construct is known within the construct.

assumed-size array
A dummy array whose size is assumed from the associated actual
argument. Its last upper bound is specified by an asterisk.

assumed-type object
An entity declared with TYPE(*). An assumed-type object does not have a
declared type, and its dynamic type and type parameters are assumed
from its corresponding actual argument.

attribute
A property of a data object that may be specified in a type declaration
statement, attribute specification statement, or through a default setting.

1024 XL Fortran: Language Reference for Big Endian Distributions

automatic parallelization
The process by which the compiler attempts to parallelize both explicitly
coded DO loops and DO loops generated by the compiler for array
language.

B

base object
An object that is designated by the leftmost part_name.

base type
An extensible type that is not an extension of another type.

binary constant
A constant that is made of one or more binary digits (0 and 1).

bind To relate an identifier to another object in a program; for example, to relate
an identifier to a value, an address or another identifier, or to associate
formal parameters and actual parameters.

binding label
A value of type default character that uniquely identifies how a variable,
common block, subroutine, or function is known to a companion processor.

blank common
An unnamed common block.

block data subprogram
A subprogram headed by a BLOCK DATA statement and used to initialize
variables in named common blocks.

bounds_remapping
Allows a user to view a flat, rank-1 array as a multi-dimensional array.

bss storage
Uninitialized static storage.

busy-wait
The state in which a thread keeps executing in a tight loop looking for
more work once it has completed all of its work and there is no new work
to do.

byte constant
A named constant that is of type byte.

byte type
A data type representing a one-byte storage area that can be used wherever
a LOGICAL(1), CHARACTER(1), or INTEGER(1) can be used.

C

C descriptor
A C structure of type CFI_cdesc_t that is defined in the
ISO_Fortran_binding.h header file.

character constant
A string of one or more alphabetic characters enclosed in apostrophes or
double quotation marks.

character expression
A character object, a character-valued function reference, or a sequence of
them separated by the concatenation operator, with optional parentheses.

Glossary 1025

character operator
A symbol that represents an operation, such as concatenation (//), to be
performed on character data.

character set
All the valid characters for a programming language or for a computer
system.

character string
A sequence of consecutive characters.

character substring
A contiguous portion of a character string.

character type
A data type that consists of alphanumeric characters. See also data type.

chunk A subset of consecutive loop iterations.

class A set of types comprised of a base type and all types extended from it.

collating sequence
The sequence in which the characters are ordered for the purpose of
sorting, merging, comparing, and processing indexed data sequentially.

comment
A language construct for the inclusion of text in a program that has no
effect on the execution of the program.

common block
A storage area that may be referred to by a calling program and one or
more subprograms.

compile
To translate a source program into an executable program (an object
program).

compiler comment directive
A line in source code that is not a Fortran statement but is recognized and
acted on by the compiler.

compiler directive
Source code that controls what XL Fortran does rather than what the user
program does.

complex constant
An ordered pair of real or integer constants separated by a comma and
enclosed in parentheses. The first constant of the pair is the real part of the
complex number; the second is the imaginary part.

complex number
A number consisting of an ordered pair of real numbers, expressible in the
form a+bi, where a and b are real numbers and i squared equals -1.

complex type
A data type that represents the values of complex numbers. The value is
expressed as an ordered pair of real data items separated by a comma and
enclosed in parentheses. The first item represents the real part of the
complex number; the second represents the imaginary part.

component
A constituent of a derived type.

1026 XL Fortran: Language Reference for Big Endian Distributions

component order
The ordering of the components of a derived type that is used for intrinsic
formatted input/output and for structure constructors.

conform
To adhere to a prevailing standard. An executable program conforms to the
Fortran 95 Standard if it uses only those forms and relationships described
therein and if the executable program has an interpretation according to
the Fortran 95 Standard. A program unit conforms to the Fortran 95
Standard if it can be included in an executable program in a manner that
allows the executable program to be standard-conforming. A processor
conforms to the standard if it executes standard-conforming programs in a
manner that fulfills the interpretations prescribed in the standard.

connected unit
In XL Fortran, a unit that is connected to a file in one of three ways:
explicitly via the OPEN statement to a named file, implicitly, or by
preconnection.

constant
A data object with a value that does not change. The four classes of
constants specify numbers (arithmetic), truth values (logical), character
data (character), and typeless data (hexadecimal, octal, and binary). See
also variable.

construct
A sequence of statements starting with a SELECT CASE, DO, IF, or
WHERE statement, for example, and ending with the corresponding
terminal statement.

contiguous
An array is contiguous if it has array elements in order that are not
separated by other data objects. A data object with multiple parts is
contiguous if the parts in order are not separated by other data objects.

continuation line
A line that continues a statement beyond its initial line.

control statement
A statement that is used to alter the continuous sequential invocation of
statements; a control statement may be a conditional statement, such as IF,
or an imperative statement, such as STOP.

D

data object
A variable, constant, or subobject of a constant.

data striping
Spreading data across multiple storage devices so that I/O operations can
be performed in parallel for better performance. Also known as disk
striping.

data transfer statement
A READ, WRITE, or PRINT statement.

data type
The properties and internal representation that characterize data and
functions. The intrinsic types are integer, real, complex, logical, and
character. See also intrinsic.

Glossary 1027

debug line
Allowed only for fixed source form, a line containing source code that is to
be used for debugging. Debug lines are defined by a D or X in column 1.
The handling of debug lines is controlled by the -qdlines and -qxlines
compiler options.

decimal symbol
The symbol that separates the whole and fractional parts of a real number.

declared type
The type that a data entity is declared to have. May differ from the type
during execution (the dynamic type) for polymorphic data entities.

default initialization
The initialization of an object with a value specified as part of a derived
type definition.

deferred binding
A binding with the DEFERRED attribute. A deferred binding can only
appear in an abstract type definition.

definable variable
A variable whose value can be changed by the appearance of its name or
designator on the left of an assignment statement.

delimiters
A pair of parentheses or slashes (or both) used to enclose syntactic lists.

denormalized number
An IEEE number with a very small absolute value and lowered precision.
A denormalized number is represented by a zero exponent and a non-zero
fraction.

derived type
A type whose data have components, each of which is either of intrinsic
type or of another derived type.

digit A character that represents a nonnegative integer. For example, any of the
numerals from 0 through 9.

directive
A type of comment that provides instructions and information to the
compiler.

disk striping
See data striping.

DO loop
A range of statements invoked repetitively by a DO statement.

DO variable
A variable, specified in a DO statement, that is initialized or incremented
prior to each occurrence of the statement or statements within a DO loop.
It is used to control the number of times the statements within the range
are executed.

DOUBLE PRECISION constant
A constant of type real with twice the precision of the default real
precision.

1028 XL Fortran: Language Reference for Big Endian Distributions

dummy argument
An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION, SUBROUTINE, ENTRY, or statement
function statement.

dynamic dimensioning
The process of re-evaluating the bounds of an array each time the array is
referenced.

dynamic extent
For a directive, the lexical extent of the directive and all subprograms
called from within the lexical extent.

dynamic type
The type of a data entity during execution of a program. The dynamic type
of a data entity that is not polymorphic is the same as its declared type.

E

edit descriptor
An abbreviated keyword that controls the formatting of integer, real, or
complex data.

effective item
A scalar object resulting from expanding an input/output list.

elemental
Pertaining to an intrinsic operation, procedure or assignment that is
applied independently to elements of an array or corresponding elements
of a set of conformable arrays and scalars.

embedded blank
A blank that is surrounded by any other characters.

entity A general term for any of the following: a program unit, procedure,
operator, interface block, common block, external unit, statement function,
type, named variable, expression, component of a structure, named
constant, statement label, construct, or namelist group.

environment variable
A variable that describes the operating environment of the process.

epoch The starting date used for time in POSIX. It is Jan 01 00:00:00 GMT 1970.

executable program
A program that can be executed as a self-contained procedure. It consists
of a main program and, optionally, modules, submodules, subprograms
and non-Fortran external procedures.

executable statement
A statement that causes an action to be taken by the program; for example,
to perform a calculation, test conditions, or alter normal sequential
execution.

explicit initialization
The initialization of an object with a value in a data statement initial value
list, block data program unit, type declaration statement, or array
constructor.

explicit interface
For a procedure referenced in a scoping unit, the property of being an
internal procedure, module procedure, intrinsic procedure, external

Glossary 1029

procedure that has an interface block, recursive procedure reference in its
own scoping unit, or dummy procedure that has an interface block.

expression
A sequence of operands, operators, and parentheses. It may be a variable, a
constant, or a function reference, or it may represent a computation.

extended-precision constant
A processor approximation to the value of a real number that occupies 16
consecutive bytes of storage.

extended type
An extensible type that is an extension of another type. A type that is
declared with the EXTENDS attribute.

extensible type
A type from which new types may be derived using the EXTENDS
attribute. A nonsequence type that does not have the BIND attribute.

extension type
A base type is an extension type of itself only. An extended type is an
extension type of itself and of all types for which its parent type is an
extension.

external file
A sequence of records on an input/output device. See also internal file.

external name
The name of a common block, subroutine, or other global procedure,
which the linker uses to resolve references from one compilation unit to
another.

external procedure
A procedure that is defined by an external subprogram or by a means
other than Fortran.

F

field An area in a record used to contain a particular category of data.

file A sequence of records. See also external file, internal file.

file index
See i-node.

final subroutine
A subroutine that is called automatically during finalization.

finalizable
A type that has final subroutines, or that has a finalizable component. An
object of finalizable type.

finalization
The process of calling user-defined final subroutines immediately before
destroying an object.

floating-point number
A real number represented by a pair of distinct numerals. The real number
is the product of the fractional part, one of the numerals, and a value
obtained by raising the implicit floating-point base to a power indicated by
the second numeral.

1030 XL Fortran: Language Reference for Big Endian Distributions

format
A defined arrangement of such things as characters, fields, and lines,
usually used for displays, printouts, or files.

To arrange such things as characters, fields, and lines.

formatted data
Data that is transferred between main storage and an input/output device
according to a specified format. See also list-directed and unformatted record.

function
A procedure that returns the value of a single variable or an object and
usually has a single exit. See also intrinsic procedure, subprogram.

G

generic identifier
A lexical token that appears in an INTERFACE statement and is associated
with all the procedures in an interface block.

H

hard limit
A system resource limit that can only be raised or lowered by using root
authority, or cannot be altered because it is inherent in the system or
operating environments's implementation. See also soft limit.

hexadecimal
Pertaining to a system of numbers to the base sixteen; hexadecimal digits
range from 0 (zero) through 9 (nine) and A (ten) through F (fifteen).

hexadecimal constant
A constant, usually starting with special characters, that contains only
hexadecimal digits.

high order transformations
A type of optimization that restructures loops and array language.

Hollerith constant
A string of any characters capable of representation by XL Fortran and
preceded with nH, where n is the number of characters in the string.

host A main program or subprogram that contains an internal procedure is
called the host of the internal procedure. A module or submodule that
contains a module procedure is called the host of the module procedure. A
module or submodule is called the host of its descendant submodules.

host association
The process by which an internal subprogram, module subprogram,
derived-type definition, or submodule accesses the entities of its host.

host instance
An instance of the host procedure that supplies the host environment of
the internal procedure.

I

IPA Interprocedural analysis, a type of optimization that allows optimizations
to be performed across procedure boundaries and across calls to
procedures in separate source files.

implicit interface
A procedure referenced in a scoping unit other than its own is said to have
an implicit interface if the procedure is an external procedure that does not

Glossary 1031

have an interface block, a dummy procedure that does not have an
interface block, or a statement function.

implied DO
An indexing specification (similar to a DO statement, but without
specifying the word DO) with a list of data elements, rather than a set of
statements, as its range.

infinity
An IEEE number (positive or negative) created by overflow or division by
zero. Infinity is represented by an exponent where all the bits are 1's, and a
zero fraction.

inherit
To acquire from a parent. Type parameters, components, or procedure
bindings of an extended type that are automatically acquired from its
parent type without explicit declaration in the extended type are said to be
inherited.

inheritance association
The relationship between the inherited components and the parent
component in an extended type.

i-node The internal structure that describes the individual files in the operating
system. There is at least one i-node for each file. An i-node contains the
node, type, owner, and location of a file. A table of i-nodes is stored near
the beginning of a file system. Also known as file index.

input/output (I/O)
Pertaining to either input or output, or both.

input/output list
A list of variables in an input or output statement specifying the data to be
read or written. An output list can also contain a constant, an expression
involving operators or function references, or an expression enclosed in
parentheses.

integer constant
An optionally signed digit string that contains no decimal point.

interface block
A sequence of statements from an INTERFACE statement to its
corresponding END INTERFACE statement.

interface body
A sequence of statements in an interface block from a FUNCTION or
SUBROUTINE statement to its corresponding END statement.

interference
A situation in which two iterations within a DO loop have dependencies
upon one another.

internal file
A sequence of records in internal storage. See also external file.

interprocedural analysis
See IPA.

intrinsic
Pertaining to types, operations, assignment statements, and procedures that
are defined by Fortran language standards and can be used in any scoping
unit without further definition or specification.

1032 XL Fortran: Language Reference for Big Endian Distributions

intrinsic module
A module that is provided by the compiler and is available to any
program.

intrinsic procedure
A procedure that is provided by the compiler and is available to any
program.

K

keyword
A statement keyword is a word that is part of the syntax of a statement (or
directive) and may be used to identify the statement.

An argument keyword specifies the name of a dummy argument

kind type parameter
A parameter whose values label the available kinds of an intrinsic type or
a derived-type parameter that is declared to have the KIND attribute.

L

lexical extent
All of the code that appears directly within a directive construct.

lexical token
A sequence of characters with an indivisible interpretation.

link-edit
To create a loadable computer program by means of a linker.

linker A program that resolves cross-references between separately compiled or
assembled object modules and then assigns final addresses to create a
single relocatable load module. If a single object module is linked, the
linker simply makes it relocatable.

list-directed
A predefined input/output format that depends on the type, type
parameters, and values of the entities in the data list.

literal A symbol or a quantity in a source program that is itself data, rather than a
reference to data.

literal constant
A lexical token that directly represents a scalar value of intrinsic type.

load balancing
An optimization strategy that aims at evenly distributing the work load
among processors.

logical constant
A constant with a value of either true or false (or T or F).

logical operator
A symbol that represents an operation on logical expressions:
.NOT. (logical negation)
.AND. (logical conjunction)
.OR. (logical union)
.EQV. (logical equivalence)
.NEQV. (logical nonequivalence)
.XOR. (logical exclusive disjunction)

loop A statement block that executes repeatedly.

M

Glossary 1033

_main The default name given to a main program by the compiler if the main
program was not named by the programmer.

main program
The first program unit to receive control when a program is run. See also
subprogram.

master thread
The head process of a team of threads.

module
A program unit that contains or accesses definitions to be accessed by
other program units.

module procedure interface body
An interface body whose initial statement contains the MODULE prefix
specifier. A module procedure interface body specifies the interface of a
separate module procedure.

module subprogram
A subprogram that is contained in a module or submodule, but is not an
internal subprogram. A module subprogram is a function subprogram, a
subroutine subprogram, or a separate module subprogram.

mutex A primitive object that provides mutual exclusion between threads. A
mutex is used cooperatively between threads to ensure that only one of the
cooperating threads is allowed to access shared data or run certain
application code at a time.

N

NaN (not-a-number)
A symbolic entity encoded in floating-point format that does not
correspond to a number. See also quiet NaN, signaling NaN.

name A lexical token consisting of a letter followed by up to 249 alphanumeric
characters (letters, digits, and underscores). Note that in FORTRAN 77, this
was called a symbolic name.

named common
A separate, named common block consisting of variables.

namelist group name
The first parameter in the NAMELIST statement that names a list of names
to be used in READ, WRITE, and PRINT statements.

negative zero
An IEEE representation where the exponent and fraction are both zero, but
the sign bit is 1. Negative zero is treated as equal to positive zero.

nest To incorporate a structure or structures of some kind into a structure of the
same kind. For example, to nest one loop (the nested loop) within another
loop (the nesting loop); to nest one subroutine (the nested subroutine)
within another subroutine (the nesting subroutine).

NEWUNIT value
A negative number that is less than -2 and is unequal to the unit number
of any currently connected file. It is a unit value that the runtime library
assigns to the variable specified by the NEWUNIT= specifier.

1034 XL Fortran: Language Reference for Big Endian Distributions

nonexecutable statement
A statement that describes the characteristics of a program unit, data,
editing information, or statement functions, but does not cause any action
to be taken by the program.

nonexisting file
A file that does not physically exist on any accessible storage medium.

normal
A floating-point number that is not denormal, infinity, or NaN.

not-a-number
See NaN.

numeric constant
A constant that expresses an integer, real, complex, or byte number.

numeric storage unit
The space occupied by a nonpointer scalar object of type default integer,
default real, or default logical.

O

octal Pertaining to a system of numbers to the base eight; the octal digits range
from 0 (zero) through 7 (seven).

octal constant
A constant that is made of octal digits.

one-trip DO-loop
A DO loop that is executed at least once, if reached, even if the iteration
count is equal to 0. (This type of loop is from FORTRAN 66.)

online processor
In a multiprocessor machine, a processor that has been activated (brought
online). The number of online processors is less than or equal to the
number of physical processors actually installed in the machine. Also
known as active processor.

operator
A specification of a particular computation involving one or two operands.

P

pad To fill unused positions in a field or character string with dummy data,
usually zeros or blanks.

paging space
Disk storage for information that is resident in virtual memory but is not
currently being accessed.

parent component
The component of an entity of extended type that corresponds to its
inherited portion.

parent type
The extensible type from which an extended type is derived.

passed-object dummy argument
The dummy argument of a type-bound procedure or procedure pointer
component that becomes associated with the object through which the
procedure was invoked.

PDF See profile-directed feedback.

Glossary 1035

pointee array
An explicit-shape or assumed-size array that is declared in an integer
POINTER statement or other specification statement.

pointer
A variable that has the POINTER attribute. A pointer must not be
referenced or defined unless it is pointer associated with a target. If it is an
array, it does not have a shape unless it is pointer-associated.

polymorphic
Able to be of differing types during program execution. An object declared
with the CLASS keyword is polymorphic.

preconnected file
A file that is connected to a unit at the beginning of execution of the
executable program. Standard error, standard input, and standard output
are preconnected files (units 0, 5 and 6, respectively).

predefined convention
The implied type and length specification of a data object, based on the
initial character of its name when no explicit specification is given. The
initial characters I through N imply type integer of length 4; the initial
characters A through H, O through Z, $, and _ imply type real of length 4.

present
A dummy argument is present in an instance of a subprogram if it is
associated with an actual argument and the actual argument is a dummy
argument that is present in the invoking procedure or is not a dummy
argument of the invoking procedure.

primary
The simplest form of an expression: an object, array constructor, structure
constructor, function reference, or expression enclosed in parentheses.

procedure
A computation that may be invoked during program execution. It may be
a function or a subroutine. It may be an intrinsic procedure, an external
procedure, a module procedure, an internal procedure, a dummy
procedure, or a statement function. A subprogram may define more than
one procedure if it contains ENTRY statements.

procedure binding
See type-bound procedure.

procedure pointer
A procedure entity that has the EXTERNAL and POINTER attributes. It
can be pointer associated with an external procedure, a module procedure,
a dummy procedure or another procedure pointer.

profile-directed feedback (PDF)
A type of optimization that uses information collected during application
execution to improve performance of conditional branches and in
frequently executed sections of code.

program state
The values of user variables at certain points during the execution of a
program.

program unit
A main program or subprogram.

pure An attribute of a procedure that indicates there are no side effects.

1036 XL Fortran: Language Reference for Big Endian Distributions

Q

quiet NaN
A NaN (not-a-number) value that does not signal an exception. The intent
of a quiet NaN is to propagate a NaN result through subsequent
computations. See also NaN, signaling NaN.

R

random access
An access method in which records can be read from, written to, or
removed from a file in any order. See also sequential access.

rank The number of dimensions of an array.

real constant
A string of decimal digits that expresses a real number. A real constant
must contain a decimal point, a decimal exponent, or both.

record A sequence of values that is treated as a whole within a file.

relational expression
An expression that consists of an arithmetic or character expression,
followed by a relational operator, followed by another arithmetic or
character expression.

relational operator
The words or symbols used to express a relational condition or a relational
expression:
.GT. greater than
.GE. greater than or equal to
.LT. less than
.LE. less than or equal to
.EQ. equal to
.NE. not equal to

result variable
The variable that returns the value of a function.

return specifier
An argument specified for a statement, such as CALL, that indicates to
which statement label control should return, depending on the action
specified by the subroutine in the RETURN statement.

S

scalar A single datum that is not an array.

Not having the property of being an array.

scale factor
A number indicating the location of the decimal point in a real number
(and, on input, if there is no exponent, the magnitude of the number).

scope That part of an executable program within which a lexical token has a
single interpretation.

scope attribute
That part of an executable program within which a lexical token has a
single interpretation of a particular named property or entity.

scoping unit
A derived-type definition.

A BLOCK construct (not including any nested BLOCK constructs,
derived-type definitions, and interface bodies within it).

Glossary 1037

An interface body.

A program unit or subprogram, excluding derived-type definitions,
BLOCK constructs, interface bodies, and subprograms contained within it.

selector
The object that is associated with the associate name in an ASSOCIATE
construct.

semantics
The relationships of characters or groups of characters to their meanings,
independent of the manner of their interpretation and use. See also syntax.

separate module procedure
A module procedure that is defined by a separate module subprogram or
by a function or subroutine subprogram whose initial statement contains
the MODULE prefix specifier. A separate module procedure defines a
module procedure interface body.

separate module subprogram
A module subprogram whose initial statement contains the MODULE
PROCEDURE statement. A separate module subprogram defines a module
procedure interface body.

sequential access
An access method in which records are read from, written to, or removed
from a file based on the logical order of the records in the file. See also
random access.

signaling NaN
A NaN (not-a-number) value that signals an invalid operation exception
whenever it appears as an operand. The intent of the signaling NaN is to
catch program errors, such as using an uninitialized variable. See also NaN,
quiet NaN.

sleep The state in which a thread completely suspends execution until another
thread signals it that there is work to do.

SMP See symmetric multiprocessing.

soft limit
A system resource limit that is currently in effect for a process. The value
of a soft limit can be raised or lowered by a process, without requiring root
authority. The soft limit for a resource cannot be raised above the setting of
the hard limit. See also hard limit.

spill space
The stack space reserved in each subprogram in case there are too many
variables to hold in registers and the program needs temporary storage for
register contents.

specification statement
A statement that provides information about the data used in the source
program. The statement could also supply information to allocate data
storage.

stanza A group of lines in a file that together have a common function or define a
part of the system. Stanzas are usually separated by blank lines or colons,
and each stanza has a name.

1038 XL Fortran: Language Reference for Big Endian Distributions

statement
A language construct that represents a step in a sequence of actions or a
set of declarations. Statements fall into two broad classes: executable and
nonexecutable.

statement function
A name, followed by a list of dummy arguments, that is equated with an
intrinsic or derived-type expression, and that can be used as a substitute
for the expression throughout the program.

statement label
A number made up of one to five digits that is used to identify a
statement. Statement labels can be used to transfer control, to define the
range of a DO, or to refer to a FORMAT statement.

storage association
The relationship between two storage sequences if a storage unit of one is
the same as a storage unit of the other.

structure
A scalar data object of derived type.

structure component
The part of a data object of derived-type corresponding to a component of
its type.

submodule
A program unit that extends a module or another submodule. A
submodule accesses the definitions from its ancestor module or
submodules through host association. It might contain definitions to be
accessed by its descendant submodules through host association. It might
also contain separate module procedures that define module procedure
interface bodies declared in its ancestor module or submodules.

subobject
A portion of a named data object that may be referenced or defined
independently of other portions. It can be an array element, array section,
structure component, or substring.

subprogram
A function subprogram or a subroutine subprogram. Note that in
FORTRAN 77, a block data program unit was called a subprogram. See
also main program.

subroutine
A procedure that is invoked by a CALL statement or defined assignment
statement.

subscript
A subscript quantity or set of subscript quantities enclosed in parentheses
and used with an array name to identify a particular array element.

substring
A contiguous portion of a scalar character string. (Although an array
section can specify a substring selector, the result is not a substring.)

symmetric multiprocessing (SMP)
A system in which functionally-identical multiple processors are used in
parallel, providing simple and efficient load-balancing.

Glossary 1039

synchronous
Pertaining to an operation that occurs regularly or predictably with regard
to the occurrence of a specified event in another process.

syntax The rules for the construction of a statement. See also semantics.

T

target A named data object specified to have the TARGET attribute, a data object
created by an ALLOCATE statement for a pointer, or a subobject of such
an object.

thread A stream of computer instructions that is in control of a process. A
multithread process begins with one stream of instructions (one thread)
and may later create other instruction streams to perform tasks.

thread-visible variable
A variable that can be accessed by more than one thread.

time slice
An interval of time on the processing unit allocated for use in performing
a task. After the interval has expired, processing unit time is allocated to
another task, so a task cannot monopolize processing unit time beyond a
fixed limit.

token In a programming language, a character string, in a particular format, that
has some defined significance.

trigger constant
A sequence of characters that identifies comment lines as compiler
comment directives.

Type-bound procedure
A procedure binding in a type definition. The procedure may be referenced
by the binding-name via any object of that dynamic type, as a defined
operator, by defined assignment, or as part of the finalization process.

type compatible
All entities are type compatible with other entities of the same type.
Unlimited polymorphic entities are type compatible with all entities; other
polymorphic entities are type compatible with entities whose dynamic type
is an extension type of the polymorphic entity's declared type.

type declaration statement
A statement that specifies the type, length, and attributes of an object or
function. Objects can be assigned initial values.

type parameter
A parameter of a data type. KIND and LEN are the type parameters of
intrinsic types. A type parameter of a derived type has either a KIND or a
LEN attribute.

Note: The type parameters of a derived type are defined in the
derived-type definition.

U

unformatted record
A record that is transmitted unchanged between internal and external
storage.

Unicode
A universal character encoding standard that supports the interchange,

1040 XL Fortran: Language Reference for Big Endian Distributions

processing, and display of text that is written in any of the languages of
the modern world. It also supports many classical and historical texts in a
number of languages. The Unicode standard has a 16-bit international
character set defined by ISO 10646. See also ASCII.

unit A means of referring to a file to use in input/output statements. A unit can
be connected or not connected to a file. If connected, it refers to a file. The
connection is symmetric: that is, if a unit is connected to a file, the file is
connected to the unit.

unsafe option
Any option that could result in undesirable results if used in the incorrect
context. Other options may result in very small variations from the default
result, which is usually acceptable. Typically, using an unsafe option is an
assertion that your code is not subject to the conditions that make the
option unsafe.

use association
The association of names in different scoping units specified by a USE
statement.

V

variable
A data object whose value can be defined and redefined during the
execution of an executable program. It may be a named data object, array
element, array section, structure component, or substring. Note that in
FORTRAN 77, a variable was always scalar and named.

X

XPG4 X/Open Common Applications Environment (CAE) Portability Guide Issue
4; a document which defines the interfaces of the X/Open Common
Applications Environment that is a superset of POSIX.1-1990,
POSIX.2-1992, and POSIX.2a-1992 containing extensions to POSIX
standards from XPG3.

Z

zero-length character
A character object that has a length of 0 and is always defined.

zero-sized array
An array that has a lower bound that is greater than its corresponding
upper bound. The array is always defined.

Glossary 1041

1042 XL Fortran: Language Reference for Big Endian Distributions

Index

Special characters
; statement separator 10, 11
: (colon) editing 261
:: (double colon) separator 298
! inline comments 8, 9
/ (slash) editing 261
// (concatenation) operator 106
(MODULE) PROCEDURE statement 428
$ (dollar) editing 262
* comment lines 9
@PROCESS 526
%VAL and %REF functions 194
#LINE 518
+, -, *, /, ** arithmetic operators 104
' (apostrophe) editing 241
" (double quotation mark) editing 241

A
A (character) editing 245
ABS

specific name 565
abstract interface 172, 283
ABSTRACT INTERFACE 282
ACCESS specifier

of INQUIRE statement 386
of OPEN statement 411

access, inquiring about 386
accessibility

private 426
public 434

ACOS
specific name 567

ACOSD
specific name 568

ACTION specifier
of INQUIRE statement 386
of OPEN statement 411

actual arguments
definition of 1023
specification 190
specifying procedure names as 363

addition arithmetic operator 104
ADVANCE specifier

of READ statement 436
of WRITE statement 490

AINT
specific name 571

alarm_ service and utility
subprogram 924

ALGAMA specific name 642
ALIGN 500
allocatable arguments 847, 848, 851
ALLOCATABLE attribute 283
ALLOCATE statement 285
ALLOCATED array intrinsic

function 287
allocation status 26
ALOG specific name 642
ALOG10 specific name 643

alphabetic character, definition of 1023
alphanumeric, definition of 1023
alternate entry point 353
alternate return

point 191
specifier 190, 203

AMAX0 specific name 648
AMAX1 specific name 648
AMIN0 specific name 655
AMIN1 specific name 655
AMOD specific name 660
AND logical operator 107
AND specific name 620
ANINT specific name 574
apostrophe (') editing 241
arguments

definition of 1023
keywords 190
specification 190

arithmetic
expressions 103
operators 104
relational expressions 110
type

complex 39, 40
integer 35
real 37

Arithmetic conversion 117
arithmetic IF statement 380
arrays

adjustable 77
allocatable 79
array pointers 80
assumed-rank 84
assumed-shape 77
assumed-size 82
automatic 76
bounds 73
constructors 92
declarators 74
decription 73
deferred-shape 78
elements 85
explicit-shape 75
extents 74
implied-shape 81
pointee 77
pointer 80
rank 74
sections 86
shape 74
size 74
specifications 74
zero-sized 73

ASCII
character set 5, 1010
definition of 1024

ASIN
specific name 575

ASIND
specific name 576

ASSERT 501
ASSIGN statement 288
assigned GO TO statement 377
assignment

defined 169
intrinsic 115
masked array 120
pointer 127
procedure pointer 130
statements

described 115
statement label (ASSIGN) 288

ASSOCIATE
construct 133
statement 289

ASSOCIATED intrinsic function 287
association

argument 192
common 315
description 154
entry 375
equivalence 358
host 154
integer pointer 158
pointer 157
use 156

assumed-rank object 853
assumed-type object 851
asterisk as dummy argument 191, 203
asynch I/O

INQUIRE statement and 387
OPEN statement and 411
WRITE statement and 491

ASYNCH specifier
of INQUIRE statement 386
of OPEN statement 411

asynchronous I/O
data transfer and 216
INQUIRE statement and 387
OPEN statement and 412
WAIT statement and 486
WRITE statement and 492

ASYNCHRONOUS specifier 490
of INQUIRE statement 386
of OPEN statement 411
of READ statement 436
of WAIT statement 486

ASYNCHRONOUS statement 290
ATAN

specific name 578
ATAN2

specific name 580
ATAN2D

specific name 581
ATAND

specific name 581
attributes

ALLOCATABLE 283
AUTOMATIC 292
BIND 295
CONTIGUOUS 321

© Copyright IBM Corp. 1996, 2014 1043

attributes (continued)
description 282
DIMENSION 332
EXTERNAL 363
INTENT 397
INTRINSIC 402
OPTIONAL 417
PARAMETER 419
POINTER 421
PRIVATE 426
PROTECTED 432
PUBLIC 434
SAVE 451
STATIC 457
TARGET 465
VALUE 482
VOLATILE 484

AUTOMATIC attribute 292
automatic object 18

B
B (binary) editing 245
BACKSPACE statement 293
base type 56
basic example, described xviii
bic_ service and utility subprogram 925
binary

constants 30
editing (B) 245
operations 99

BIND attribute 295
BIND statement 295
bis_ service and utility subprogram 925
bit_ service and utility subprogram 926
BIT_SIZE

intrinsic function 101
blank

common block 314
editing 262
interpretation during formatting,

setting 262
null (BN) editing 262
specifier

of INQUIRE statement
(BLANK) 386

of OPEN statement (BLANK) 411
zero (BZ) editing 262

block
ELSE 142
ELSE IF 142
IF 142, 381
statement 133

BLOCK
statement 135

BLOCK construct 134
block data

program unit 188
statement (BLOCK DATA) 297

BLOCK statement 296
BLOCKLOOP 504
BN (blank null) editing 262
branching control 147
BTEST

specific name 583
byte named constants 114
BYTE type declaration statement 298

BZ (blank zero) editing 262

C
C_ASSOCIATED intrinsic procedure 858
C_F_POINTER intrinsic procedure 859
C_F_PROCPOINTER intrinsic

procedure 859
C_FUNLOC intrinsic procedure 860
C_LOC intrinsic procedure 860
C_SIZEOF intrinsic procedure 861
CABS specific name 565
CACHE_ZERO compiler directive 537
CALL statement 300
CASE

construct 143, 303
statement 303

CCOS specific name 588
CDABS specific name 565
CDCOS specific name 588
CDEXP specific name 608
CDLOG specific name 642
CDSIN specific name 695
CDSQRT specific name 701
CEXP specific name 608
CHAR

specific name 585
character

editing
(A) 245
(Q), count 258

expressions 105
format specification 372
multibyte 43
operator 106
relational expressions 110
set 5
string edit descriptor 241
substrings 44

CHARACTER type declaration
statement 305

CHARACTER_KINDS 877
CHARACTER_STORAGE_SIZE 877
character-string editing 241
chtz command 594
chunk

definition of 1026
clock_ service and utility

subprogram 926
CLOG specific name 642
CLOSE statement 311
clr_fpscr_flags subprogram 888
CMPLX

specific name 586
CNCALL 505
CNVERR run-time option

conversion errors and 230
implied-DO list and 442, 495

COLLAPSE 506
collating sequence 5
colon (:) editing 261
comment lines

description 8
fixed source form format 9
free source form input format 11
order within a program unit 14

common
association 315
block 6, 313

COMMON statement 313
communication between program units

using arguments 190
using common blocks 313
using modules 175
using submodules 178

compatibility across standards 1007
compiler directives 497
compiler options

-I 514
-qalias 193
-qautodbl 564
-qci 513
-qctyplss

and the CASE statement 304
character constants and 43, 114
typeless constants and 31

-qddim 77, 423
-qdirective 529
-qdlines 10
-qescape

and Hollerith constants 30
apostrophe editing and 241
double quotation mark editing

and 241
H editing and 254

-qextname 923
-qfixed 9
-qintlog 113, 166
-qintsize

integer default size and 35, 41
intrinsic procedure return types

and 564
-qlog4 113
-qmbcs 241, 254
-qmixed 6, 514
-qnoescape 43
-qnosave 27, 384
-qnullterm 43
-qposition 221, 411
-qqcount 258
-qrealsize 36, 564
-qrecur 205

CALL statement and 302
ENTRY statement and 355
FUNCTION statement and 377

-qsave 27, 384
-qsigtrap 694
-qundef 384
-qxflag=oldtab 9
-qxlf77

binary editing and 246, 251, 259
hexadecimal editing and 260
octal editing and 257
OPEN statement and 416
real and complex editing and 253

-qxlf90 238, 692
-qzerosize 44
-U 923

COMPILER_OPTIONS 883
COMPILER_VERSION 883
complex data type 39
complex editing 235

1044 XL Fortran: Language Reference for Big Endian Distributions

COMPLEX type declaration
statement 316

component order 54
computed GO TO statement 379
concatenation operator 106
conditional

INCLUDE 514
vector merge intrinsic functions 593

conditional compilation 13
conformable arrays 98, 559
CONJG

specific name 587
conjunction, logical 107
constants

arithmetic
complex 39, 40
integer 35
real 37

binary 30
byte named 114
character 42
description 17
expressions 100
hexadecimal 29
Hollerith 30
logical 41
octal 29
typeless 28

construct
ASSOCIATE 133
CASE 143
DO 136
DO WHILE 140
FORALL 124
IF 141
WHERE 118

construct entities 150
construct entity 153
construct name 153
constructor 69
constructors 69

for arrays 92
for complex objects 39, 40

CONTAINS statement 320
contiguity 96, 321
CONTIGUOUS attribute 321
continuation

character 9
lines 8

CONTINUE statement 323
control

edit descriptors 240
format 243
statements

arithmetic IF 380
assigned GO TO 377
block IF 381
computed GO TO 379
CONTINUE 323
DO 333
DO WHILE 335
END 345
ERROR STOP 359
logical IF 382
PAUSE 420
STOP 459
unconditional GO TO 380

control (continued)
transfer of 14

control mask 120
control structures 133
COS

specific name 588
COSD

specific name 589
COSH

specific name 590
cpu_time_type run-time option 591
CQABS specific name 565
CQCOS specific name 588
CQEXP specific name 608
CQLOG specific name 642
CQSIN specific name 695
CQSQRT specific name 701
CSIN specific name 695
CSQRT specific name 701
ctime_ service and utility

subprogram 926
CYCLE statement 324

D
D (double precision) editing 247
D debug lines 8
DABS specific name 565
DACOS specific name 567
DACOSD specific name 568
DASIN specific name 575
DASIND specific name 576
data

edit descriptors 235, 245
objects 17
statement (DATA) 325
type

derived 47
types

conversion rules 105
description 15
intrinsic 35
predefined conventions 17

data transfer
asynchronous 216
executing 215
statement

PRINT 424
READ 435
WRITE 490

DATAN specific name 578
DATAN2 specific name 580
DATAN2D specific name 581
DATAND specific name 581
date service and utility subprogram 927
DBLE

specific name 596
DBLEQ specific name 596
DC (decimal) editing 263
DCBF compiler directive 537
DCBFL compiler directive 538
DCBFLP compiler directive 538
DCBST compiler directive 538
DCMPLX

specific name 597
DCONJG specific name 587
DCOS specific name 588

DCOSD specific name 589
DCOSH specific name 590
DDIM specific name 599
DEALLOCATE statement 328
debug lines 8, 10
decimal (DC and DP) editing 263
DECIMAL specifier

of INQUIRE statement 386
of READ statement 436
of WRITE statement 490

declarators
array 74
scoping level 149

declaring procedures 182
default typing 17
deferred-shape arrays 78
defined assignment 169
defined operations 111
defined operators 168
definition status 19
DELIM specifier

of INQUIRE statement 386
of OPEN statement 411

DERF specific name 604
DERFC specific name 605
derived type 48

components 49
derived type parameters 48
derived types 69

array structure components 90
description 47
determining the type of 68

derived-type statement 330
designator 6
designators

for array elements 85
DEXP specific name 608
DFLOAT specific name 596
digits 5
DIM

specific name 599
DIMENSION attribute 332
dimension bound expression 73
dimensions of an array 74
DINT specific name 571
DIRECT specifier, of INQUIRE

statement 386
directive lines 8
directives

CACHE_ZERO 537
DCBF 537
DCBFL 538
DCBFLP 538
DCBST 538
DCBTSTT 540
DCBTSTT compiler directive 540
DCBTT 541
DCBTT compiler directive 541
DEFAULT_PREFETCH_DEPTH 541
DEFAULT_PREFETCH_DEPTH

compiler directive 541
DEPTH_ATTAINMENT_URGENCY 542
DEPTH_ATTAINMENT_URGENCY

compiler directive 542
discussion 497

Index 1045

directives (continued)
HARDWARE_TRANSIENT_ENABLE 543
HARDWARE_TRANSIENT_ENABLE

compiler directive 543
HARDWARE_UNIT_COUNT_ENABLE 543
HARDWARE_UNIT_COUNT_ENABLE

compiler directive 543
ISYNC 539
LIGHT_SYNC 539
LOAD_STREAM_DISABLE 543
LOAD_STREAM_DISABLE compiler

directive 543
LOAD_TRANSIENT_ENABLE 544
LOAD_TRANSIENT_ENABLE

compiler directive 544
MEM_DELAY 521
NEW 521
PARTIAL_DCBT 544
PARTIAL_DCBT compiler

directive 544
PREFETCH_BY_LOAD 545
PREFETCH_BY_LOAD compiler

directive 545
PREFETCH_BY_STREAM 545
PREFETCH_BY_STREAM compiler

directive 545
PREFETCH_FOR_LOAD 546
PREFETCH_FOR_LOAD compiler

directive 546
PREFETCH_FOR_STORE 546
PREFETCH_FOR_STORE compiler

directive 546
PROTECTED_STREAM_COUNT 548
PROTECTED_STREAM_COUNT

compiler directive 548
PROTECTED_STREAM_GO 549
PROTECTED_STREAM_GO compiler

directive 549
PROTECTED_STREAM_SET 550
PROTECTED_STREAM_SET compiler

directive 550
PROTECTED_STREAM_STOP 551
PROTECTED_STREAM_STOP

compiler directive 551
PROTECTED_STREAM_STOP_ALL 551
PROTECTED_STREAM_STOP_ALL

compiler directive 551
PROTECTED_STREAM_STRIDE 550
PROTECTED_STREAM_STRIDE

compiler directive 550
SET_PREFETCH_UNIT_COUNT 554
SET_PREFETCH_UNIT_COUNT

compiler directive 554
SOFTWARE_TRANSIENT_ENABLE 554
SOFTWARE_TRANSIENT_ENABLE

compiler directive 554
SOFTWARE_UNIT_COUNT_ENABLE 554
SOFTWARE_UNIT_COUNT_ENABLE

compiler directive 554
STORE_TRANSIENT_ENABLE 555
STORE_TRANSIENT_ENABLE

compiler directive 555
STRIDE_N_STREAM_ENABLE 555
STRIDE_N_STREAM_ENABLE

compiler directive 555
Directives

@PROCESS 526

Directives (continued)
#LINE 518
ALIGN 500
ASSERT 501
assertive 500
BLOCKLOOP 504
CATCH 510
CNCALL 505
COLLAPSE 506
EJECT 508
ENTER 511
EXECUTION_FREQUENCY 508
EXIT 511
EXPECTED_VALUE 509
IGNORE_TKR 512
INCLUDE 513
INDEPENDENT 515
loop optimization 500
LOOPID 520
NOFUNCTRACE 522
NOSIMD 524
NOVECTOR 524
optimization 500
PERMUTATION 525
SNAPSHOT 527
SOURCEFORM 528
STREAM_UNROLL 529
SUBSCRIPTORDER 531
UNROLL 533
UNROLL_AND_FUSE 534

disconnection, closing files and 215
disjunction, logical 107
division arithmetic operator 104
DLGAMA specific name 642
DLOG specific name 642
DLOG10 specific name 643
DMAX1 specific name 648
DMIN1 specific name 655
DMOD specific name 660
DNINT specific name 574
DO

loop 136, 334
statement 137, 333

DO WHILE
construct 140
loop 335
statement 335

dollar ($) editing 262
DONE specifier, of WAIT statement 486
DOUBLE COMPLEX type declaration

statement 336
double precision (D) editing 247
DOUBLE PRECISION type declaration

statement 339
double quotation mark (") editing 241
DP (decimal) editing 263
DPROD

specific name 600
DREAL specific name 681
DSIGN specific name 693
DSIN specific name 695
DSIND specific name 695
DSINH specific name 696
DSQRT specific name 701
DT editing 248
DTAN specific name 706
DTAND specific name 707

DTANH specific name 707
dtime_ service and utility

subprogram 927
dummy argument

asterisk as 203
definition of 1029
description 191
intent attribute and 195
procedure as 202
procedure pointer as 202
variable as 197

dummy procedure 202
dummy procedure pointer 202
dynamic extent, definition of 1029

E
E (real with exponent) editing 247
EBCDIC character set 1010
edit descriptors

character string 241
control (nonrepeatable) 240
data (repeatable) 235
names and 6

editing
: (colon) 261
/ (slash) 261
$ (dollar) 262
' (apostrophe) 241
" (double quotation mark) 241
A (character) 245
B (binary) 245
BN (blank null) 262
BZ (blank zero) 262
character count Q 258
character-string 241
D (double precision) 247
DC and DP (decimal) 263
DT 248
E (real with exponent) 247
EN 249
ES 250
F (real without exponent) 251
G (general) 252
H 254
I (integer) 255
L (logical) 256
O (octal) 257
P (scale factor) 263
Q (extended precision) 247
RC, RD, RN, RP, RU, and RZ

(round) 264
S, SS, and SP (sign control) 265
T, TL, TR, and X (positional) 265
Z (hexadecimal) 259

efficient floating-point control and
inquiry procedures

clr_fpscr_flags 888
discussion 886
get_fpscr 888
get_fpscr_flags 888
get_round_mode 889
set_fpscr 890
set_fpscr_flags 890
set_round_mode 890

EIEIO compiler directive 539
EJECT 508

1046 XL Fortran: Language Reference for Big Endian Distributions

ELEMENTAL 208
elemental intrinsic procedures 559
elemental procedures 208
ELSE

block 142
statement 142, 342

ELSE IF
block 142
statement 142, 343

ELSEWHERE statement 118, 343
EN editing 249
ENCODING specifier

of INQUIRE statement 386
of OPEN statement 411

END ASSOCIATE statement 346
END BLOCK statement 135
END DO statement 137, 346
END ENUM statement 356
END FORALL statement 346
END IF statement 142, 346
END INTERFACE statement 162, 349
END SELECT statement 346
END specifier

of READ statement 436
of WAIT statement 486

END statement 345
END TYPE statement 350
END WHERE statement 118, 346
end-of-file conditions 223
end-of-record conditions 223
end-of-record, preventing with $

editing 262
ENDFILE statement 351
entities, scope of 150
entry

association 375
name 353
statement (ENTRY) 353

ENUM statement 356
enumerators 356
EOR specifier, of READ statement 436
equivalence

logical 107
EQUIVALENCE

association 358
restriction on COMMON and 315

EQUIVALENCE statement 357
EQV logical operator 107
ERF

specific name 604
ERFC

specific name 605
ERR specifier

of BACKSPACE statement 293
of CLOSE statement 311
of ENDFILE statement 351
of INQUIRE statement 386
of OPEN statement 411
of READ statement 436
of REWIND statement 450
of WAIT statement 486
of WRITE statement 490

ERR_RECOVERY run-time option
BACKSPACE statement and 294
conversion errors and 230
EDNFILE statement and 352

ERR_RECOVERY run-time option
(continued)

Fortran 2003 language errors
and 231

Fortran 2008 language errors
and 231

Fortran 90 language errors and 231
Fortran 95 language errors and 231
OPEN statement and 416
READ statement and 442
REWIND statement and 451
severe errors and 224
WRITE statement and 495

error conditions 223
ERROR STOP statement 359
ERROR_UNIT 877
errors

catastrophic 223
conversion 230
Fortran 2003 language 231
Fortran 2008 language 231
Fortran 90 language 231
Fortran 95 language 231
recoverable 226
severe 224

ES editing 250
escape sequences 43
etime_ service and utility

subprogram 928
exclusive disjunction, logical 107
executable program 159
executing data transfer statements 215
execution sequence 14
EXECUTION_FREQUENCY 508
execution_part 174
EXIST specifier, of INQUIRE

statement 386
EXIT statement 361
exit_ service and utility subprogram 928
EXP

specific name 608
EXPECTED_VALUE 509
explicit

interface 161
typing 17

explicit-shape arrays 75
exponentiation arithmetic operator 104
expressions

arithmetic 103
character 105
constant 100
dimension bound 73
general 106
in FORMAT statement 373
initialization 100
logical 107
primary 109
relational 109
restricted 101
specification 101

extended
intrinsic operations 111
precision (Q) editing 247

extended type 56
external

function 373

external (continued)
subprograms in the XL Fortran

library 923
EXTERNAL attribute 363
external files 212

F
F (real without exponent) editing 251
factor

arithmetic 103
logical 107

fdate_ service and utility
subprogram 928

fexcp.h include file 694
file position

BACKSPACE statement, after
execution 294

before and after data transfer 221
ENDFILE statement, after

execution 352
REWIND statement, after

execution 451
file positioning statement

BACKSPACE statement 293
ENDFILE statement 351
REWIND statement 450

FILE specifier
of INQUIRE statement 386
of OPEN statement 411

FILE_STORAGE_SIZE 878
files 212
finalizable 63
fiosetup_ service and utility

subprogram 929
fixed source form 9
FLOAT specific name 681
flush_ service and utility

subprogram 930
FMT specifier

of PRINT statement 425
of READ statement 436
of WRITE statement 490

for structures 69
FORALL

construct 124
statement 366

FORALL (Construct) statement 369
FORM specifier

of INQUIRE statement 386
of OPEN statement 411

format
conditional compilation 13
control 242
fixed source form 9
free source form 11
IBM free source form 12
interaction with input/output

list 242
specification

character 372
statement (FORMAT) 371

format-directed formatting 235
formatted

specifier of INQUIRE statement
(FORMATTED) 386

Index 1047

fpgets and fpsets service and utility
subprograms 885

fpscr constants
Exception Details Flags 887
Exception Summary Flags 887
IEEE Exception Enable Flags 887
IEEE Exception Status Flags 887
IEEE Rounding Modes 887
list 886

fpscr procedures
clr_fpscr_flags 888
discussion 886
get_fpscr 888
get_fpscr_flags 888
get_round_mode 889
set_fpscr 890
set_fpscr_flags 890
set_round_mode 890

free source form 11
free source form format

IBM 12
ftell_ service and utility

subprograms 930
ftell64_ service and utility

subprogram 931
function

reference 183
specification 102
statement 456
subprogram 182
value 183

FUNCTION statement 373
FUNCTRACE_XLF_CATCH 510
FUNCTRACE_XLF_ENTER 511
FUNCTRACE_XLF_EXIT 511

G
G (general) editing 252
GAMMA

specific name 614
general expression 106
general service and utility

procedures 923
get__fpscr subprogram 888
get__fpscr_flags subprogram 888
get_round_mode subprogram 889
getarg service and utility

subprogram 931
getcwd_ service and utility

subprogram 932
getfd service and utility

subprogram 932
getgid_ service and utility

subprogram 933
getlog_ service and utility

subprogram 933
getpid_ service and utility

subprogram 933
getuid_ service and utility

subprogram 934
global entities 150
global_timef service and utility

subprogram 934
gmtime_ service and utility

subprogram 934

GO TO statement
assigned 377
computed 379
unconditional 380

H
H editing 254
hardware-specific intrinsic procedures

BPERMD 722
CMPB 722
DIVDE 723
DIVWE 724
FCFI 724
FCFID 725
FCFUD 725
FCTID 726
FCTIDZ 727
FCTIW 727
FCTIWZ 727
FCTUDZ 728
FCTUWZ 728
FMADD 729
FMSUB 730
FNABS 730
FNMADD 731
FNMSUB 731
FRE 732
FRES 732
FRIC 733
FRIM 733
FRIN 734
FRIP 734
FRIZ 735
FRSQRTE 735
FRSQRTES 736
FSEL 736
MTFSF 737
MTFSFI 737
MULHY 737
POPCNTB 738
PREFETCH_GET_DSCR_REGISTER 546
PREFETCH_SET_DSCR_REGISTER 547
ROTATELI 739
ROTATELM 739
SETFSB0 740
SETFSB1 740
SFTI 740
SWDIV 741
SWDIV_NOCHK 742
TRAP 743
VCIPHER 715
VCIPHERLAST 715
VNCIPHER 716
VNCIPHERLAST 716
VPERMXOR 719
VPMSUMB 719
VPMSUMD 720
VPMSUMH 721
VPMSUMW 721
VSBOX 717
VSHASIGMAD 717
VSHASIGMAW 718

hexadecimal
(Z) editing 259
constants 29

HFIX specific name 618

Hollerith constants 6, 30
host

association 149, 154
scoping unit 149

hostnm_ service and utility
subprogram 935

I
I (integer) editing 255
IABS specific name 565
IAND

specific name 620
iargc service and utility subprogram 935
IBCLR

specific name 621
IBITS

specific name 622
IBM free source form 12
IBM2GCCLDBL

specific name 622
IBM2GCCLDBL_CMPLX

specific name 623
IBSET

specific name 624
ICHAR

specific name 624
ID specifier

of INQUIRE statement 386
of READ statement 436
of WAIT statement 486
of WRITE statement 490

idate_ service and utility
subprogram 936

identity arithmetic operator 104
IDIM specific name 599
IDINT specific name 628
IDNINT specific name 664
IEEE Modules and Support 891
IEEE Operators 894
IEEE Procedures 894
IEEE_CLASS 895
IEEE_CLASS_TYPE 893
IEEE_COPY_SIGN 896
IEEE_FEATURES_TYPE 894
IEEE_FLAG_TYPE 892
IEEE_GET_FLAG 897
IEEE_GET_HALTING 897
IEEE_GET_ROUNDING 898
IEEE_GET_STATUS 898
IEEE_GET_UNDERFLOW_MODE 898
IEEE_IS_FINITE 899
IEEE_IS_NAN 899
IEEE_IS_NEGATIVE 900
IEEE_IS_NORMAL 901
IEEE_LOGB 902
IEEE_NEXT_AFTER 902
IEEE_REM 903
IEEE_RINT 904
IEEE_ROUND_TYPE 893
IEEE_SCALB 904
IEEE_SELECTED_REAL_KIND 905
IEEE_SET_FLAG 907
IEEE_SET_HALTING 907
IEEE_SET_ROUNDING 908
IEEE_SET_STATUS 909
IEEE_SET_UNDERFLOW_MODE 909

1048 XL Fortran: Language Reference for Big Endian Distributions

IEEE_STATUS_TYPE 893
IEEE_SUPPORT_DATATYPE 909
IEEE_SUPPORT_DENORMAL 910
IEEE_SUPPORT_DIVIDE 910
IEEE_SUPPORT_FLAG 911
IEEE_SUPPORT_HALTING 911
IEEE_SUPPORT_INF 912
IEEE_SUPPORT_IO 913
IEEE_SUPPORT_NAN 913
IEEE_SUPPORT_ROUNDING 914
IEEE_SUPPORT_SQRT 914
IEEE_SUPPORT_STANDARD 915
IEEE_SUPPORT_UNDERFLOW_CONTROL 916
IEEE_UNORDERED 916
IEEE_VALUE 917
IEOR

specific name 625
ierrno_ service and utility

subprogram 936
IF

construct 141
statement

arithmetic 380
block 381
logical 382

IFIX specific name 628
IGNORE_TKR 512
implicit

connection 215
interface 162
typing 17

IMPLICIT
description 383
statement, storage class assignment

and 27
type determination and 17

implied-DO
array constructor list in 95
DATA statement and 326

IMPORT
description 385

INCLUDE 513
inclusive disjunction, logical 107
incrementation processing 139
INDEPENDENT 515
INDEX

specific name 627
inherited length

by a named constant 308, 476
initial

line 8
value, declaring 325

initialization expressions 100
inline comments 8
INPUT_UNIT 879
input/output conditions 222
INQUIRE statement 386
inquiry

specification 102
inquiry intrinsic functions 559

BIT_SIZE 583
DIGITS 597
EPSILON 603
HUGE 618
KIND 633
MAXEXPONENT 649
MINEXPONENT 655

inquiry intrinsic functions (continued)
PRECISION 670
PRESENT 671
RADIX 675
RANGE 678

INT
specific name 628

INT16 878
INT32 878
INT64 879
INT8 878
integer

data type 35
editing (I) 255
pointer association 158
POINTER statement 423

INTEGER type declaration
statement 394

INTEGER_KINDS 879
INTENT attribute 397
interface

blocks 162
implicit 162
statement (INTERFACE) 400

interference 502, 515
interlanguage calls

%VAL and %REF functions 194
internal

function 373
procedures 159

internal files 212
interoperability of procedures 846
intrinsic

assignment 115
attribute (INTRINSIC) 402
data types 35
functions 559

detailed descriptions 564
generic 189
specific 189

inquiry 559
procedures 189

discussion 559
elemental 559
inquiry 559, 561
name in an INTRINSIC

statement 402
subroutines 561
transformational 561

statement (INTRINSIC) 167
subroutines 561

intrinsic procedures
ABORT 564
ABS 565
ACHAR 565
ACOS 566
ACOSD 567
ACOSH 568
ADJUSTL 568
ADJUSTR 569
AIMAG 569
AINT 570
ALIGNX 571
ALL 571
ALLOCATED 572
ANINT 573
ANY 574

intrinsic procedures (continued)
ASIN 574
ASIND 575
ASINH 576
ASSOCIATED 577
ATAN 578, 579
ATAN2 579
ATAN2D 580
ATAND 581
ATANH 582
BIT_SIZE 583
BTEST 582
CEILING 584
CHAR 584
CMPLX 585
COMMAND_ARGUMENT_COUNT 586
CONJG 587
COS 587
COSD 588
COSH 589
COUNT 590
CPU_TIME 591
CSHIFT 592
CVMGM 593
CVMGN 593
CVMGP 593
CVMGT 593
CVMGZ 593
DATE_AND_TIME 594
DBLE 596
DCMPLX 596
DIGITS 597
DIM 598
DIMAG 569
DOT_PRODUCT 599
DPROD 599
DSHIFTL 600
DSHIFTR 601
EOSHIFT 601
EPSILON 603
ERF 604
ERFC 605
ERFC_SCALED 605
EXECUTE_COMMAND_LINE 606
EXP 608
EXPONENT 608
EXTENDS_TYPE_OF 609
FINDLOC 610
FLOOR 612
FRACTION 612
GAMMA 613
GET_COMMAND 614
GET_COMMAND_ARGUMENT 615
GET_ENVIRONMENT_VARIABLE 616
GETENV 617
HFIX 617
HUGE 618
HYPOT 618
IACHAR 619
IAND 620
IBCLR 620
IBITS 621
IBM2GCCLDBL 622
IBM2GCCLDBL_CMPLX 622
IBSET 623
ICHAR 624
IEOR 625

Index 1049

intrinsic procedures (continued)
ILEN 625
IMAG 626
INDEX 626
INT 627
INT2 628
IOR 629
IS_CONTIGUOUS 630
IS_IOSTAT_END 630
IS_IOSTAT_EOR 631
ISHFT 631
ISHFTC 632
KIND 633
LBOUND 633
LEADZ 635
LEN 635
LEN_TRIM 636
LGAMMA 637
LGE 637
LGT 638
LLE 639
LLT 639
LOC 640
LOG 641
LOG_GAMMA 642
LOG10 643
LOGICAL 644
LSHIFT 644
MASKL 645
MASKR 645
MATMUL 646
MAX 648
MAXEXPONENT 649
MAXLOC 649
MAXVAL 651
MERGE 653
MERGE_BITS 654
MIN 654
MINEXPONENT 655
MINLOC 656
MINVAL 658
MOD 659
MODULO 660
MOVE_ALLOC 661
MVBITS 661
NEAREST 662
NEW_LINE 663
NINT 663
NOT 664
NULL 665
NUM_PARTHDS 666
NUM_USRTHDS 667
NUMBER_OF_PROCESSORS 667
PACK 668
POPCNT 669
POPPAR 670
PRECISION 670
PRESENT 671
PROCESSORS_SHAPE 672
PRODUCT 672
QCMPLX 674
QEXT 675
QIMAG 569
RADIX 675
RAND 676
RANDOM_NUMBER 677
RANDOM_SEED 677

intrinsic procedures (continued)
RANGE 678
RANK 679
REAL 680
REPEAT 681
RESHAPE 682
RRSPACING 683
RSHIFT 683
SAME_TYPE_AS 684
SCALE 685
SCAN 685
SELECTED_CHAR_KIND 686
SELECTED_INT_KIND 687
SELECTED_REAL_KIND 687
SET_EXPONENT 689
SHAPE 690
SHIFTA 691
SHIFTL 691
SHIFTR 692
SIGN 692
SIGNAL 694
SIN 694
SIND 695
SINH 696
SIZE 696
SIZEOF 698
SPACING 699
SPREAD 699
SQRT 700
SRAND 701
SUM 702
SYSTEM 704
SYSTEM_CLOCK 704
TAN 705
TAND 706
TANH 707
TINY 707
TRAILZ 708
TRANSFER 709
TRANSPOSE 710
TRIM 711
UBOUND 711
UNPACK 712
VERIFY 713

invocation commands 8
IOMSG specifier

of BACKSPACE statement 293
of CLOSE statement 311
of ENDFILE statement 351
of INQUIRE statement 386
of OPEN statement 411
of READ statement 436
of REWIND statement 450
of WAIT statement 486
of WRITE statement 490

IOR
specific name 629

IOSTAT specifier
of BACKSPACE statement 293
of CLOSE statement 311
of ENDFILE statement 351
of INQUIRE statement 386
of OPEN statement 411
of READ statement 436
of REWIND statement 450
of WAIT statement 486
of WRITE statement 490

IOSTAT values 222
IOSTAT_END 879
IOSTAT_EOR 880
IOSTAT_INQUIRE_INTERNAL_UNIT 880
IQINT specific name 628
IQNINT specific name 664
irand service and utility

subprogram 936
irtc service and utility subprogram 937
ISHFT

specific name 632
ISHFTC

specific name 633
ISIGN specific name 693
ISO_Fortran_binding.h 861

functions
__xlf_CFI_strerror 874
CFI_address 865
CFI_allocate 866
CFI_deallocate 867
CFI_establish 867
CFI_is_contiguous 870
CFI_section 870
CFI_select_part 872
CFI_setpoint 873

macros 864
Type and structure definitions 862

ISO_FORTRAN_ENV intrinsic
module 877

ISYNC compiler directive 539
iteration count

DO statement and 138
in implied-DO list of a DATA

statement 327
itime_ service and utility

subprogram 937

J
jdate service and utility subprogram 937

K
keywords

argument 190
statement 7

KIND
intrinsic, restricted expressions 101

kind type parameter 15

L
L (logical) editing 256
labels, statement 7
langlvl run-time option 273
LANGLVL run-time option 231
LEN

intrinsic, restricted expressions 101
specific name 636

lenchr_ service and utility
subprogram 938

length type parameter 16
length, inherited by a named

constant 308, 476
letters, character 5

1050 XL Fortran: Language Reference for Big Endian Distributions

lexical
tokens 5

lexical extent, definition of 1033
LGAMMA

specific name 642
LGE

specific name 638
LGT

specific name 639
library subprograms 923
LIGHT_SYNC compiler directive 539
line breaks, preventing with $

editing 262
lines

comment 8
conditional compilation 13
continuation 8
debug 8, 10
directive 8, 497
initial 8
source formats and 8

list-directed formatting 267
value separators 267

list-directed input 267
end-of-record 268
rules 267

list-directed output 268
rules 269
types 268
written field width 270

literal storage class 26
LLE

specific name 639
LLT

specific name 640
lnblnk_ service and utility

subprogram 938
LOC

intrinsic function 131
local entities 150
logical

(L) editing 256
conjunction 107
data type 41
equivalence 107
exclusive disjunction 107
expressions 107
IF statement 382
inclusive disjunction 107
negation 107
nonequivalence 107
type declaration statement

(LOGICAL) 403
LOGICAL_KINDS 881
loop

carried dependency 502, 515
control processing 138
DO construct and 136

LOOPID 520
LSHIFT

specific name 645
ltime_ service and utility

subprogram 939

M
main program 174, 432
masked array assignment 120
masked ELSEWHERE statement 118,

343
MAX0 specific name 648
MAX1 specific name 648
mclock service and utility

subprogram 939
MEM_DELAY compiler directive 521
MIN0 specific name 655
MIN1 specific name 655
MOD

specific name 660
module

description 175
reference 156, 478
statement (MODULE) 407

MODULE PROCEDURE statement 408
module subprogram 181
multibyte characters 43
multiplication arithmetic operator 104

N
name

common block 313
description 6
determining storage class of 26
determining type of 17
entry 353
of a generic or specific function 189
scope of a 149

NAME specifier, of INQUIRE
statement 386

name-value subsequences 272
named common block 314
NAMED specifier, of INQUIRE

statement 386
namelist

group 6
NAMELIST

run-time option 276
statement 408

namelist comments 271
namelist formatting 270
namelist input 271

rules 272
namelist output 275
negation

arithmetic operator 104
logical operator 107

NEQV logical operator 107
NEW compiler directive 521
NEWUNIT specifier

of OPEN statement 411
NEXTREC specifier

of INQUIRE statement 386
NINT

specific name 664
NML specifier

of READ statement 436
of WRITE statement 490

NOFUNCTRACE 522
nonequivalence, logical 107
NOSIMD 524

NOT
logical operator 107
specific name 665

NOVECTOR 524
NULLIFY statement 410
NUM specifier

of READ statement 436
of WRITE statement 490

NUMBER specifier, of INQUIRE
statement 386

NUMERIC_STORAGE_SIZE 881

O
O (octal) editing 257
objects, data 17
octal (O) editing 257
octal constants 29
of WRITE statement 490
ONLY clause of USE statement 479
OPEN statement 410
OPENED specifier, of INQUIRE

statement 386
operations

defined 111
extended intrinsic 111

operators
arithmetic 104
character 106
defined 168
logical 107
precedence of 112
relational 110

optional arguments 195
Optional arguments 847
OPTIONAL attribute 417
OR

logical operator 107
specific name 629

order
of statements 14

OUTPUT_UNIT 881

P
P (scale factor) editing 263
PAD specifier

of INQUIRE statement 386
of OPEN statement 411

PARAMETER attribute 419
parameters 48
parent type 56
PAUSE statement 420
pending control mask 120
PENDING specifier

of INQUIRE statement 386
Performance

drawbacks
sequence derived types 56

PERMUTATION 525
Pixel data type 46
pointee

arrays 77
POINTER statement and 423

pointer
assignment 127

Index 1051

pointer (continued)
association 157
attribute, POINTER (Fortran 90) 421

pointer arguments 847, 848, 851
POSITION specifier

of INQUIRE statement 386
of OPEN statement 411

positional (T, TL, TR, and X) editing 265
POSIX procedures

access 951
alarm 952
atexit 952
bsearch 953
calloc 954
chdir 955
chmod 955
chown 956
clock 956
confstr 957
errno 957
exit 958
fork 958
free 958
getcwd 959
getegid 960
geteuid 960
getgid 960
getgroups 960
gethostid 961
gethostname 961
getlogin_r 962
getpgid 962
getpgrp 963
getpid 963
getppid 963
getsid 964
getuid 964
isalnum 964
isalpha 965
isascii 965
isblank 966
iscntrl 966
isdigit 967
isgraph 967
islower 968
isprint 968
ispunct 969
isupper 969
isxdigit 969
j0 970
j1 970
jn 971
kill 971
killpg 972
lchown 972
lfind 973
link 973
lsearch 974
malloc 975
mkdir 976
mkfifo 976
nice 977
pathconf 977
perror 978
qsort 979
raise 979
realloc 980

POSIX procedures (continued)
remove 980
rename 981
rmdir 982
setegid 982
seteuid 983
setgid 983
setpgid 984
setpgrp 984
setregid 984
setreuid 985
setsid 985
setuid 986
sleep 986
symlink 987
sync 987
sysconf 987
time 988
toascii 988
tolower 989
toupper 989
truncate 990
ualarm 990
umask 991
uname 991
unlink 992
usleep 992
wait 993
waitpid 993
wexitstatus 994
wifcontinued 995
wifexited 995
wifsignaled 995
wifstopped 996
wstopsig 996
wtermsig 997

precedence
of all operators 112
of arithmetic operators 104
of logical operators 107

precision of real objects 37
preconnection 214
PREFETCH compiler directives 540
PRESENT intrinsic function 418
primaries (expressions) 99
primary expressions 109
PRINT statement 424
PRIVATE

attribute 426
statement 426

procedure
dummy 202
external 159, 432
internal 159

procedure pointer 51
procedure pointer, assignment 130
procedure pointers 182
procedure references 183
PROCEDURE statement 429
procedure, invoked by a

subprogram 159
PROGRAM statement 432
program unit 159
PROTECTED attribute 432
PUBLIC attribute 434
PURE 206
pure procedures 206

Q
Q (extended precision) editing 247
QABS specific name 565
QACOS specific name 567
QACOSD specific name 568
QARCOS specific name 567
QARSIN specific name 575
QASIN specific name 575
QASIND specific name 576
QATAN specific name 578
QATAN2 specific name 580
QATAN2D specific name 581
QATAND specific name 581
QCMPLX

specific name 675
QCONJG specific name 587
QCOS specific name 588
QCOSD specific name 589
QCOSH specific name 590
QDIM specific name 599
QERF specific name 604
QERFC specific name 605
QEXP specific name 608
QEXT

specific name 675
QEXTD specific name 675
QFLOAT specific name 675
QGAMMA specific name 614
QINT specific name 571
QLGAMA specific name 642
QLOG specific name 642
QLOG10 specific name 643
QMAX1 specific name 648
QMIN1 specific name 655
QMOD specific name 660
QNINT specific name 574
QPROD specific name 600
QREAL specific name 681
QSIGN specific name 693
QSIN specific name 695
QSIND specific name 695
QSINH specific name 696
qsort_ service and utility

subprogram 939
qsort_down service and utility

subprogram 940
qsort_up service and utility

subprogram 941
QSQRT specific name 701
QTAN specific name 706
QTAND specific name 707
QTANH specific name 707

R
rank

of array sections 92
of arrays 74

RC (round) editing 264
RD (round) editing 264
READ

specifier, of INQUIRE statement 386
statement 435

READWRITE specifier, of INQUIRE
statement 386

1052 XL Fortran: Language Reference for Big Endian Distributions

REAL
specific name 681

real data type 36
real editing

E (with exponent) 247
F (without exponent) 251
G (general) 252

REAL type declaration statement 443
REAL_KINDS 882
REAL128 882
REAL32 881
REAL64 882
REC specifier

of READ statement 436
of WRITE statement 490

RECL specifier
of INQUIRE statement 386
of OPEN statement 411

record
statements

statement label (RECORD) 447
RECORD statement 447
records

description 211
recursion

FUNCTION statement and 377
procedures and 205
SUBROUTINE statement and 463

RECURSIVE keyword 377, 463
reference, function 183
relational

expressions 109
operators 110

REPEAT
intrinsic function 101

repeat specification 371
RESHAPE

array intrinsic function 101
restricted expression 101
RESULT keyword 354, 374
result variable 354, 374
return points and specifiers,

alternate 190
return specifier 15
RETURN statement 448
REWIND statement 450
right margin 9
RN (round) editing 264
round (RC, RD, RN, RP, RU, and RZ)

editing 264
ROUND specifier

of INQUIRE statement 386
of OPEN statement 411
of WRITE statement 490

rounding mode 105
RP (round) editing 264
RSHIFT

specific name 684
rtc service and utility subprogram 941
RU (round) editing 264
run-time options

changing with SETRTEOPTS
procedure 942

CNVERR
conversion errors and 230
READ statement and 442
WRITE statement and 495

run-time options (continued)
ERR_RECOVERY 231

BACKSPACE statement and 294
conversion errors and 230
ENDFILE statement and 352
OPEN statement and 416
READ statement and 442
REWIND statement and 451
severe errors and 224
WRITE statement and 495

langlvl 273
LANGLVL 231
NAMELIST 276
NLWIDTH 276
UNIT_VARS 215, 411

RZ (round) editing 264

S
S (sign control) editing 265
SAVE attribute 451
scale factor (P) editing 263
scope, entities and 149
scoping unit 149
section_subscript, syntax of for array

section 86
SELECT CASE statement

CASE construct 143
CASE statement and 303
description 453

SELECT TYPE statement
description 454

SELECTED_INT_KIND
intrinsic function 101

SELECTED_REAL_KIND
intrinsic function 101

selector 6
semicolon statement separator 10, 11
separate module procedure 185
separate module subprogram 186, 187
sequence derived type 52
SEQUENCE statement 455
sequential access 212
SEQUENTIAL specifier, of INQUIRE

statement 386
service and utility subprograms

alarm_ 924
bic_ 925
bis_ 925
bit_ 926
clock_ 926
ctime_ 926
date 927
discussion 923
dtime_ 927
efficient floating-point control and

inquiry procedures 886
etime_ 928
exit_ 928
fdate_ 928
fiosetup_ 929
flush_ 930
fpgets and fpsets 885
ftell_ 930
ftell64_ 931
general 923
getarg 931

service and utility subprograms
(continued)

getcwd_ 932
getfd 932
getgid_ 933
getlog_ 933
getpid_ 933
getuid_ 934
global_timef 934
gmtime_ 934
hostnm_ 935
iargc 935
idate_ 936
ierrno_ 936
irand 936
irtc 937
itime_ 937
jdate 937
lenchr_ 938
lnblnk_ 938
ltime_ 939
mclock 939
qsort_ 939
qsort_down 940
qsort_up 941
rtc 941
setrteopts 942
sleep_ 942
time_ 942
timef 943
timef_delta 943
umask_ 943
usleep_ 944
xl_ _trbk 944

set_fpscr subprogram 890
set_fpscr_flags subprogram 890
set_round_mode subprogram 890
setrteopts service and utility

subprogram 942
shape

of an array 74
of array sections 92

SIGN
specific name 693

sign control (S, SS, and SP) editing 265
SIGN specifier

of INQUIRE statement 386
of WRITE statement 490

signal.h include file 694
SIN

specific name 695
SIND

specific name 695
SINH

specific name 696
SIZE

specifier, of READ statement 436
slash (/) editing 261
sleep_ service and utility

subprogram 942
SNAPSHOT 527
SNGL specific name 681
SNGLQ specific name 681
sorting (qsort_ procedure) 939
source file options 518, 526
source formats

conditional compilation 13

Index 1053

source formats (continued)
fixed source form 9
free source form 11
IBM free source form 12

SOURCEFORM 528
SP (sign control) editing 265
special characters 5
specification expression 101
specification function 102
specification inquiry 102
specification_part 174
specifying kind 15
SQRT

specific name 701
SS (sign control) editing 265
statement

asynchronous 290
statements

assignment 115
BIND 295
block 133
description 7
discussion 279
entities 150, 152, 153
function statement 456
label assignment (ASSIGN)

statement 288
label record (RECORD)

statement 447
labels 7
order 14
terminal 137

STATIC
attribute 457

STATUS specifier
of CLOSE statement 311
of OPEN statement 411

STOP statement 459
storage

classes for variables
description 26
fundamental 26
literal 26
secondary 27

sequence within common blocks 315
sharing

using common blocks 314
using EQUIVALENCE 358
using integer pointers 158
using pointers 157

STREAM_UNROLL 529
structure 69

array components 90
structure constructor 69
submodule

description 178
statement (SUBMODULE) 461

subobjects of variables 17
subprograms

external 159
function 373

external 182
internal 182

internal 159
invocation 159
references 183
service and utility 923

subprograms (continued)
subroutine 182

subroutine
functions and 181
statement (SUBROUTINE) 462

subscript_triplet, syntax of 88
SUBSCRIPTORDER 531
substring

character 44
ranges

relationship to array sections 90
specifying 87

subtraction arithmetic operator 104
system inquiry intrinsic functions 561

T
T (positional) editing 265
tabs, formatting 9
TAN

specific name 706
TAND

specific name 707
TANH

specific name 707
TARGET attribute 465
terminal statement 137
The TRANSACTIONAL_MEMORY

intrinsic module
TM_ABORT 747
TM_BEGIN 746
TM_END 747
TM_FAILURE_ADDRESS 752
TM_FAILURE_CODE 752
TM_IS_CONFLICT 751
TM_IS_FAILURE_PERSISTENT 751
TM_IS_FOOTPRINT_EXCEEDED 749
TM_IS_ILLEGAL 749
TM_IS_NAMED_USER_ABORT 748
TM_IS_NESTED_TOO_DEEP 750
TM_IS_USER_ABORT 748
TM_NAMED_ABORT 747
TM_NESTING_DEPTH 750
TM_SIMPLE_BEGIN 746

thread-safing
of Fortran 90 pointers 421

time zone, setting 594
time_ service and utility

subprogram 942
timef service and utility

subprogram 943
timef_delta service and utility

subprogram 943
TL (positional) editing 265
TR (positional) editing 265
TRANSFER intrinsic function

restricted expressions 101
transfer of control

description 14
in a DO loop 139

TRANSFER specifier, of INQUIRE
statement 386

transformational intrinsic functions 561
TRIM intrinsic function

restricted expressions 101
type declaration 470

BYTE 298

type declaration (continued)
CHARACTER 305
COMPLEX 316
DOUBLE COMPLEX 336
DOUBLE PRECISION 339
INTEGER 394
LOGICAL 403
REAL 443
TYPE 466
VECTOR 483

type parameters 48
type specifier 16
type, determining 17
typeless constants

binary 30
hexadecimal 29
Hollerith 30
octal 29
using 31

TZ environment variable 594

U
umask_ service and utility

subprogram 943
unambiguous references 165
unary operations 99
unconditional GO TO statement 380
UNFORMATTED specifier

of INQUIRE statement 386
Unicode characters and filenames

and character constants 241
character constants and 43
compiler option for 43
environment variable for 43
H editing and 254
Hollerith constants and 31

UNIT specifier
of BACKSPACE statement 293
of CLOSE statement 311
of ENDFILE statement 351
of INQUIRE statement 386
of OPEN statement 411
of READ statement 436
of REWIND statement 450
of WRITE statement 490

units, external files reference 214
UNROLL 533
UNROLL_AND_FUSE 534
unsigned data type 46
use association 156, 478
USE statement 478
usleep_ service and utility

subprogram 944

V
VALUE attribute 482
variable

description 17
format expressions and 373

vector data type 45
vector intrinsic procedures

VEC_POPCNT 811
vector subscripts 89
VECTOR type declaration statement 483

1054 XL Fortran: Language Reference for Big Endian Distributions

VIRTUAL statement 483
VMX intrinsic procedures

VEC_ABS 755
VEC_ABSS 755
VEC_ADD 756
VEC_ADD_U128 756
VEC_ADDC 759
VEC_ADDC_U128 757
VEC_ADDE_U128 758
VEC_ADDEC_U128 758
VEC_ADDS 759
VEC_ALL_EQ 760
VEC_ALL_GE 760
VEC_ALL_GT 761
VEC_ALL_IN 761
VEC_ALL_LE 762
VEC_ALL_LT 762
VEC_ALL_NAN 763
VEC_ALL_NE 763
VEC_ALL_NGE 764
VEC_ALL_NGT 764
VEC_ALL_NLE 765
VEC_ALL_NLT 765
VEC_ALL_NUMERIC 766
VEC_AND 766
VEC_ANDC 767
VEC_ANY_EQ 767
VEC_ANY_GE 768
VEC_ANY_GT 768
VEC_ANY_LE 769
VEC_ANY_LT 769
VEC_ANY_NAN 770
VEC_ANY_NE 770
VEC_ANY_NGE 770
VEC_ANY_NGT 771
VEC_ANY_NLE 771
VEC_ANY_NLT 772
VEC_ANY_NUMERIC 772
VEC_ANY_OUT 773
VEC_AVG 773
VEC_BPERM 774
VEC_CEIL 775
VEC_CMPB 775
VEC_CMPEQ 776
VEC_CMPGE 777
VEC_CMPGT 777
VEC_CMPLE 778
VEC_CMPLT 779
VEC_CNTLZ 779
VEC_CONVERT 780
VEC_CPSGN 780
VEC_CTD 781
VEC_CTF 781
VEC_CTS 782
VEC_CTSL 782
VEC_CTU 783
VEC_CTUL 784
VEC_CVF 784
VEC_DIV 785
VEC_DSS 785
VEC_DSSALL 785
VEC_DST 786
VEC_DSTST 786
VEC_DSTSTT 787
VEC_DSTT 787
VEC_EQV 788
VEC_EXPTE 788

VMX intrinsic procedures (continued)
VEC_EXTRACT 789
VEC_FLOOR 789
VEC_GBB 790
VEC_INSERT 790
VEC_LD 791
VEC_LDE 792
VEC_LDL 792
VEC_LOGE 793
VEC_LVSL 793
VEC_LVSR 794
VEC_MADD 794
VEC_MADDS 795
VEC_MAX 795
VEC_MERGEH 796
VEC_MERGEL 796
VEC_MFVSCR 797
VEC_MIN 797
VEC_MLADD 798
VEC_MRADDS 798
VEC_MSUB 799
VEC_MSUM 800
VEC_MSUMS 800
VEC_MTVSCR 801
VEC_MUL 801
VEC_MULE 802
VEC_MULO 802
VEC_NABS 803
VEC_NAND 803
VEC_NEG 804
VEC_NMADD 804
VEC_NMSUB 805
VEC_NOR 806
VEC_OR 806
VEC_ORC 806
VEC_PACK 807
VEC_PACKPX 808
VEC_PACKS 808
VEC_PACKSU 809
VEC_PERM 810
VEC_PERMI 810
VEC_PROMOTE 811
VEC_RE 812
VEC_RL 812
VEC_ROUND 813
VEC_ROUNDC 813
VEC_ROUNDM 814
VEC_ROUNDP 814
VEC_ROUNDZ 814
VEC_RSQRTE 814
VEC_SEL 815
VEC_SL 815
VEC_SLD 816
VEC_SLDW 816
VEC_SLL 817
VEC_SLO 818
VEC_SPLAT 818
VEC_SPLAT_S16 819
VEC_SPLAT_S32 820
VEC_SPLAT_S8 819
VEC_SPLAT_U16 821
VEC_SPLAT_U32 821
VEC_SPLAT_U8 820
VEC_SPLATS 819
VEC_SQRT 822
VEC_SR 822
VEC_SRA 823

VMX intrinsic procedures (continued)
VEC_SRL 823
VEC_SRO 824
VEC_ST 824
VEC_STE 825
VEC_STL 826
VEC_SUB 826
VEC_SUB_U128 827
VEC_SUBC 830
VEC_SUBC_U128 828
VEC_SUBE_U128 828
VEC_SUBEC_U128 829
VEC_SUBS 830
VEC_SUM2S 831
VEC_SUM4S 831
VEC_SUMS 832
VEC_TRUNC 832
VEC_UNPACKH 833
VEC_UNPACKL 833
VEC_XL 834
VEC_XL_BE(ARG1, ARG2) 835
VEC_XLD2 836
VEC_XLDS 837
VEC_XLW4 837
VEC_XOR 838
VEC_XST 839
VEC_XST_BE 839
VEC_XSTD2 840
VEC_XSTW4 840

VOLATILE attribute 484

W
WAIT statement 486
WHERE

construct 118
construct statement 488
nested in FORALL 126
statement 118, 488

where_construct_name 118, 343, 346, 488
white space 5
whole array 73
WRITE

specifier of INQUIRE statement 386
statement 490

X
X (positional) editing 265
xl_ _trbk service and utility

subprogram 944
xlf_fp_util module 886
XLF_POSIX_BINDINGS

abstract interface 950
module 944
named constants 945
procedures 951
types 945

xlfutility module 923
XOR

logical operator 107
specific name 625

Index 1055

Z
Z (hexadecimal) editing 259
ZABS specific name 565
ZCOS specific name 588
zero-length string 43
zero-sized array 73
ZEXP specific name 608
ZLOG specific name 642
ZSIN specific name 695
ZSQRT specific name 701

1056 XL Fortran: Language Reference for Big Endian Distributions

����

Product Number: 5765-J10; 5725-C75

Printed in USA

SC27-4255-01

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. XL Fortran for Linux
	Fortran language standards
	Fortran 2008
	Fortran 2003
	Fortran 95
	Fortran 90
	FORTRAN 77
	IBM extensions

	OpenMP API Version 3.1
	Standards documents

	Chapter 2. XL Fortran language fundamentals
	Characters
	Names
	Designators
	Operators
	Statements
	Statement keywords
	Statement labels

	Delimiters
	Lines and source formats
	Fixed source form
	Debug lines (IBM extension)

	Free source form
	White space

	IBM free source form (IBM extension)
	Conditional compilation (IBM extension)
	Syntax for conditional compilation
	Conditional compilation rules

	Order of statements and execution sequence
	Data types
	Type declaration: type parameters and specifiers
	Applicable intrinsic procedures
	Type parameter inquiry

	Determining Type

	Data objects
	Constants
	Automatic objects
	Polymorphic entities (Fortran 2003)
	Definition status of variables
	Events causing definition
	Events causing undefinition
	Syntactic contexts of definition or undefinition of variables

	Allocation status
	Storage classes for variables (IBM extension)
	Fundamental storage classes
	Secondary storage classes
	Storage class assignment

	Typeless literal constants
	Hexadecimal constants
	Octal constants
	Binary constants
	Hollerith constants
	Using typeless constants

	Chapter 3. Intrinsic data types
	Integer
	Real
	Complex
	Logical
	Character
	Examples of character constants
	Character substrings

	Byte (IBM extension)
	Vector (IBM extension)
	Pixel (IBM extension)
	Unsigned (IBM extension)

	Chapter 4. Derived types
	Syntax of a derived type
	Derived type parameters (Fortran 2003)
	Derived type components
	Allocatable and pointer components
	Procedure pointer components
	Array components
	Default initialization for components
	Component order
	Referencing components

	Component and procedure accessibility
	Sequence derived types
	Extensible derived types (Fortran 2003)
	Abstract types and deferred bindings (Fortran 2003)
	Derived type Values
	Type-bound procedures (Fortran 2003)
	Syntax of a type-bound procedure
	Specific binding
	Generic binding
	Final binding
	Procedure overriding

	Finalization (Fortran 2003)
	The finalization process
	When finalization occurs
	Non-finalized entities

	Determining declared type for derived types
	Structure constructor

	Chapter 5. Array concepts
	Array basics
	Bounds of a dimension
	Extent of a dimension
	Rank, shape, and size of an array

	Array declarators
	Explicit-shape arrays
	Automatic arrays
	Adjustable arrays
	Pointee arrays (IBM extension)

	Assumed-shape arrays
	Deferred-shape arrays
	Allocatable arrays
	Array pointers

	Implied-shape arrays (Fortran 2008)
	Assumed-size arrays
	Assumed-rank objects (Technical Specification)
	Array elements
	Array sections
	Subscript triplets
	Vector subscripts
	Substring ranges
	Array sections and structure components
	Rank and shape of array sections

	Array constructors
	Implied-DO list for an array constructor

	Contiguity (Fortran 2008)
	Expressions involving arrays

	Chapter 6. Expressions and assignment
	Introduction to expressions and assignment
	Primary
	Examples of primaries
	Type, parameters, and shape

	Constant expressions
	Specification expressions
	Operators and expressions
	Arithmetic
	Examples of arithmetic expressions
	Data type of an arithmetic expression

	Character
	General
	Logical
	Value of a logical expression

	Primary
	Relational
	Arithmetic relational expressions
	Character relational expressions

	Extended intrinsic and defined operations
	How expressions are evaluated
	Precedence of operators
	Summary of interpretation rules
	Evaluation of expressions

	Using BYTE data objects (IBM extension)

	Intrinsic assignment
	Arithmetic conversion
	Character assignment
	BYTE assignment

	WHERE construct
	Interpreting masked array assignments

	FORALL construct
	Interpreting the FORALL construct

	Data pointer assignment
	Procedure pointer assignment (Fortran 2003)
	Integer pointer assignment (IBM extension)

	Chapter 7. Execution control
	Statement blocks
	ASSOCIATE Construct (Fortran 2003)
	BLOCK construct (Fortran 2008)
	DO construct
	The terminal statement
	Range of a DO construct
	Active and inactive DO constructs
	Executing a DO statement
	Loop control processing
	DO execution range
	Terminal statement execution
	Incrementation processing

	DO WHILE construct

	IF construct
	CASE construct
	SELECT TYPE construct (Fortran 2003)
	Associate names
	Branching
	CONTINUE statement
	STOP statement
	ERROR STOP statement (Fortran 2008)

	Chapter 8. Program units and procedures
	Scope
	Scoping unit
	Entities with scope
	Global entity
	Local entity
	Statement entity
	Statement and construct entity
	Construct entity (Fortran 2003)

	Association
	Host association
	Use association
	Construct Association
	Pointer association
	Integer pointer association (IBM extension)

	Program units, procedures, and subprograms
	Internal procedures
	Interface concepts
	Explicit interface
	Implicit interface

	Interface blocks
	Generic interface blocks
	Unambiguous generic procedure references
	Extending intrinsic procedures with generic interface blocks
	Defined operators
	Defined assignment
	User-defined derived-type Input/Output procedures (Fortran 2003)

	Abstract interface (Fortran 2003)
	Main program
	Modules
	Submodules (Fortran 2008)
	Module subprograms
	Function and subroutine subprograms
	Declaring procedures
	Procedure references
	Separate module procedures (Fortran 2008)

	Separate module subprograms (Fortran 2008)

	Block data program unit
	Intrinsic procedures
	Conflicts between intrinsic procedure names and other names

	Arguments
	Actual argument specification
	Argument keywords
	Dummy arguments

	Argument association
	%VAL and %REF (IBM extension)
	Intent of dummy arguments
	Optional dummy arguments
	The passed-object dummy argument
	Restrictions on optional dummy arguments not present
	Length of character arguments
	Variables as dummy arguments
	Allocatable objects as dummy arguments (Fortran 2003)
	Pointers as dummy arguments
	Procedures as dummy arguments
	Examples of procedures as dummy arguments
	Related information

	Asterisks as dummy arguments

	Resolution of procedure references
	Rules for resolving procedure references to names

	Recursion
	Pure procedures
	Elemental procedures

	Chapter 9. XL Fortran Input/Output
	Records
	Formatted records
	Unformatted records
	Endfile records

	Files
	Definition of an external file
	File access methods
	Sequential access
	Direct access
	Stream access (Fortran 2003)

	Units
	Connection of a unit
	Preconnection
	Implicit connection (IBM extension)
	Disconnection

	Data transfer statements
	Asynchronous Input/Output
	Advancing and nonadvancing Input/Output
	User-defined derived-type Input/Output procedure interfaces (Fortran 2003)
	User-defined derived-type Input/Output (Fortran 2003)
	File position before and after data transfer

	Conditions and IOSTAT values
	End-of-record conditions
	End-of-file conditions
	Error conditions
	Catastrophic errors
	Severe errors
	Recoverable errors
	Conversion errors
	Fortran 90, 95, 2003, and 2008 standard language errors

	Chapter 10. Input/Output formatting
	Format-directed formatting
	Complex editing
	Data edit descriptors
	Rules for Data Edit Descriptor and Modifiers
	Rules for numeric edit descriptors on input
	Rules for numeric data edit descriptors on output
	Rules for derived type edit descriptors (Fortran 2003)

	Control edit descriptors
	Rules for Control Edit Descriptors and Modifiers

	Character string edit descriptors
	Apostrophe/Double quotation mark editing

	Effective list items (Fortran 2003)
	Interaction of Input/Output lists and format specifications
	Comma-separated Input/Output (IBM extension)

	Data edit descriptors
	A (Character) Editing
	B (Binary) Editing
	E, D, and Q (Extended Precision) Editing
	DT Editing (Fortran 2003)
	EN Editing
	ES Editing
	F (Real without Exponent) Editing
	G (General) Editing
	Generalized real and complex editing

	H Editing
	I (Integer) Editing
	L (Logical) Editing
	O (Octal) Editing
	Q (Character Count) Editing (IBM extension)
	Z (Hexadecimal) Editing

	Control edit descriptors
	/ (Slash) Editing
	: (Colon) Editing
	$ (Dollar) Editing (IBM extension)
	BN (Blank Null) and BZ (Blank Zero) Editing
	DC and DP (Decimal) Editing (Fortran 2003)
	P (Scale Factor) Editing
	RC, RD, RN, RP, RU, and RZ (Round) Editing (Fortran 2003)
	S, SP, and SS (Sign Control) Editing
	T, TL, TR, and X (Positional) Editing

	List-directed formatting
	Value separators
	List-directed input
	Rules for list-directed input
	Continuing a character value
	End-of-record and list-directed input

	List-directed output
	Types of list-directed output
	List-directed character output
	Rules for list-directed output

	Namelist formatting
	Namelist input
	Namelist comments
	Name-value subsequence
	Rules for namelist input
	Example of namelist input data

	Namelist output
	Namelist character output
	Rules for namelist output
	Example of namelist output data

	Chapter 11. Statements and attributes
	Attributes
	ABSTRACT (Fortran 2003)
	ALLOCATABLE (Fortran 2003)
	ALLOCATE
	ASSIGN
	ASSOCIATE (Fortran 2003)
	ASYNCHRONOUS
	AUTOMATIC (IBM extension)
	BACKSPACE
	BIND (Fortran 2003)
	BLOCK (Fortran 2008)
	BLOCK DATA
	BYTE (IBM extension)
	CALL
	CASE
	CHARACTER
	CLASS (Fortran 2003)
	CLOSE
	COMMON
	Common association
	Common block storage sequence
	Size of a common block
	Differences between named and blank common blocks

	COMPLEX
	CONTAINS
	CONTIGUOUS (Fortran 2008)
	CONTINUE
	CYCLE
	DATA
	DEALLOCATE
	Derived Type
	DIMENSION
	DO
	DO WHILE
	DOUBLE COMPLEX (IBM extension)
	DOUBLE PRECISION
	ELSE
	ELSE IF
	ELSEWHERE
	END
	END (Construct)
	END INTERFACE
	END TYPE
	ENDFILE
	ENTRY
	ENUM/END ENUM (Fortran 2003)
	EQUIVALENCE
	ERROR STOP (Fortran 2008)
	EXIT
	EXTERNAL
	FLUSH (Fortran 2003)
	FORALL
	Interpreting the FORALL statement
	Loop parallelization

	FORALL (construct)
	FORMAT
	Character format specification
	Variable format expressions (IBM extension)

	FUNCTION
	Recursion
	Elemental procedures

	GO TO (assigned)
	GO TO (computed)
	GO TO (unconditional)
	IF (arithmetic)
	IF (block)
	IF (logical)
	IMPLICIT
	IMPORT (Fortran 2003)
	INQUIRE
	INTEGER
	INTENT
	INTERFACE
	INTRINSIC
	LOGICAL
	MODULE
	MODULE PROCEDURE (Fortran 2008)
	NAMELIST
	NULLIFY
	OPEN
	OPTIONAL
	PARAMETER
	PAUSE
	POINTER (Fortran 90)
	POINTER (integer) (IBM extension)
	PRINT
	Implied-DO List

	PRIVATE
	PROCEDURE
	PROCEDURE declaration (Fortran 2003)
	PROGRAM
	PROTECTED (Fortran 2003)
	PUBLIC
	READ
	Implied-DO List

	REAL
	RECORD (IBM extension)
	RETURN
	REWIND
	SAVE
	SELECT CASE
	SELECT TYPE (Fortran 2003)
	SEQUENCE
	Statement Function
	STATIC (IBM extension)
	STOP
	SUBMODULE (Fortran 2008)
	SUBROUTINE
	TARGET
	TYPE
	Type Declaration
	Type Guard (Fortran 2003)
	USE
	VALUE (Fortran 2003)
	VECTOR (IBM extension)
	VIRTUAL (IBM extension)
	VOLATILE
	WAIT (Fortran 2003)
	WHERE
	WRITE
	Implied-DO List

	Chapter 12. Directives (IBM extension)
	Comment and noncomment form directives
	Comment form directives
	Noncomment form directives

	Directives and optimization
	Assertive directives
	Directives for Loop Optimization

	Detailed directive descriptions
	ALIGN
	ASSERT
	BLOCK_LOOP
	CNCALL
	COLLAPSE
	EJECT
	EXECUTION_FREQUENCY (IBM extension)
	EXPECTED_VALUE
	FUNCTRACE_XLF_CATCH
	FUNCTRACE_XLF_ENTER
	FUNCTRACE_XLF_EXIT
	IGNORE_TKR (IBM extension)
	INCLUDE
	INDEPENDENT
	#LINE
	LOOPID
	MEM_DELAY
	NEW
	NOFUNCTRACE
	NOSIMD
	NOVECTOR
	PERMUTATION
	@PROCESS
	SNAPSHOT
	SOURCEFORM
	STREAM_UNROLL
	SUBSCRIPTORDER
	UNROLL
	UNROLL_AND_FUSE

	Chapter 13. Hardware-specific directives
	Cache control
	CACHE_ZERO
	DCBF
	DCBFL
	DCBFLP
	DCBST
	EIEIO
	ISYNC
	LIGHT_SYNC

	PREFETCH
	DCBTSTT
	DCBTT
	DEFAULT_PREFETCH_DEPTH
	DEPTH_ATTAINMENT_URGENCY
	HARDWARE_TRANSIENT_ENABLE
	HARDWARE_UNIT_COUNT_ENABLE
	LOAD_STREAM_DISABLE
	LOAD_TRANSIENT_ENABLE
	PARTIAL_DCBT
	PREFETCH_BY_LOAD
	PREFETCH_BY_STREAM
	PREFETCH_FOR_LOAD
	PREFETCH_FOR_STORE
	PREFETCH_GET_DSCR_REGISTER
	PREFETCH_SET_DSCR_REGISTER(VALUE)
	PROTECTED_STORE_STREAM_SET
	PROTECTED_STREAM_COUNT
	PROTECTED_STREAM_COUNT_DEPTH
	PROTECTED_STREAM_GO
	PROTECTED_STREAM_SET
	PROTECTED_STREAM_STRIDE
	PROTECTED_STREAM_STOP
	PROTECTED_STREAM_STOP_ALL
	PROTECTED_UNLIMITED_STORE_STREAM _SET
	PROTECTED_UNLIMITED_STREAM_SET
	PROTECTED_UNLIMITED_STREAM_SET_GO
	SET_PREFETCH_UNIT_COUNT
	SOFTWARE_TRANSIENT_ENABLE
	SOFTWARE_UNIT_COUNT_ENABLE
	STORE_TRANSIENT_ENABLE
	STRIDE_N_STREAM_ENABLE
	TRANSIENT_PROTECTED_STREAM_COUNT _DEPTH
	TRANSIENT_UNLIMITED_PROTECTED _STREAM_DEPTH
	UNLIMITED_PROTECTED_STREAM_DEPTH
	Examples

	Chapter 14. Intrinsic procedures
	Classes of intrinsic procedures
	Inquiry intrinsic functions
	Elemental intrinsic procedures
	System inquiry intrinsic functions (IBM extension)
	Transformational intrinsic functions
	Intrinsic subroutines

	Data representation models
	Integer bit model
	Integer data model
	Real data model

	Detailed descriptions of intrinsic procedures
	ABORT() (IBM extension)
	ABS(A)
	ACHAR(I, KIND)
	ACOS(X)
	ACOSD(X) (IBM extension)
	ACOSH(X) (Fortran 2008)
	ADJUSTL(STRING)
	ADJUSTR(STRING)
	AIMAG(Z), IMAG(Z)
	AINT(A, KIND)
	ALIGNX(K,M) (IBM extension)
	ALL(MASK, DIM)
	ALLOCATED(X)
	ANINT(A, KIND)
	ANY(MASK, DIM)
	ASIN(X)
	ASIND(X) (IBM extension)
	ASINH(X) (Fortran 2008)
	ASSOCIATED(POINTER, TARGET)
	ATAN(X)
	ATAN(Y, X) (Fortran 2008)
	ATAN2(Y, X)
	ATAN2D(Y, X) (IBM extension)
	ATAND(X) (IBM extension)
	ATANH(X) (Fortran 2008)
	BTEST(I, POS)
	BIT_SIZE(I)
	CEILING(A, KIND)
	CHAR(I, KIND)
	CMPLX(X, Y, KIND)
	COMMAND_ARGUMENT_COUNT() (Fortran 2003)
	CONJG(Z)
	COS(X)
	COSD(X) (IBM extension)
	COSH(X)
	COUNT(MASK, DIM, KIND)
	CPU_TIME(TIME) (Fortran 95)
	CSHIFT(ARRAY, SHIFT, DIM)
	CVMGx(TSOURCE, FSOURCE, MASK) (IBM extension)
	DATE_AND_TIME(DATE, TIME, ZONE, VALUES)
	DBLE(A)
	DCMPLX(X, Y) (IBM extension)
	DIGITS(X)
	DIM(X, Y)
	DOT_PRODUCT(VECTOR_A, VECTOR_B)
	DPROD(X, Y)
	DSHIFTL(I, J, SHIFT) (Fortran 2008)
	DSHIFTR(I, J, SHIFT) (Fortran 2008)
	EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)
	EPSILON(X)
	ERF(X) (Fortran 2008)
	ERFC(X) (Fortran 2008)
	ERFC_SCALED(X) (Fortran 2008)
	EXECUTE_COMMAND_LINE(COMMAND, WAIT, EXITSTAT, CMDSTAT, CMDMSG) (Fortran 2008)
	EXP(X)
	EXPONENT(X)
	EXTENDS_TYPE_OF(A, MOLD) (Fortran 2003)
	FINDLOC(ARRAY, VALUE, DIM, MASK, KIND, BACK) or FINDLOC(ARRAY, VALUE, MASK, KIND, BACK) (Fortran 2008)
	FLOOR(A, KIND)
	FRACTION(X)
	GAMMA(X) (Fortran 2008)
	GET_COMMAND(COMMAND, LENGTH, STATUS) (Fortran 2003)
	GET_COMMAND_ARGUMENT(NUMBER, VALUE, LENGTH, STATUS) (Fortran 2003)
	GET_ENVIRONMENT_VARIABLE(NAME, VALUE, LENGTH, STATUS, TRIM_NAME) (Fortran 2003)
	GETENV(NAME, VALUE) (IBM extension)
	HFIX(A) (IBM extension)
	HYPOT(X, Y) (Fortran 2008)
	HUGE(X)
	IACHAR(C, KIND)
	IAND(I, J)
	IBCLR(I, POS)
	IBITS(I, POS, LEN)
	IBM2GCCLDBL(A) (IBM extension)
	IBM2GCCLDBL_CMPLX(A)
	IBSET(I, POS)
	ICHAR(C, KIND)
	IEOR(I, J)
	ILEN(I) (IBM extension)
	IMAG(Z) (IBM extension)
	INDEX(STRING, SUBSTRING, BACK, KIND)
	INT(A, KIND)
	INT2(A) (IBM extension)
	IOR(I, J)
	IS_CONTIGUOUS(ARRAY) (Fortran 2008)
	IS_IOSTAT_END(I) (Fortran 2003)
	IS_IOSTAT_EOR(I) (Fortran 2003)
	ISHFT(I, SHIFT)
	ISHFTC(I, SHIFT, SIZE)
	KIND(X)
	LBOUND(ARRAY, DIM, KIND)
	LEADZ(I) (Fortran 2008)
	LEN(STRING, KIND)
	LEN_TRIM(STRING, KIND)
	LGAMMA(X) (IBM extension)
	LGE(STRING_A, STRING_B)
	LGT(STRING_A, STRING_B)
	LLE(STRING_A, STRING_B)
	LLT(STRING_A, STRING_B)
	LOC(X) (IBM extension)
	LOG(X)
	LOG_GAMMA(X) (Fortran 2008)
	LOG10(X)
	LOGICAL(L, KIND)
	LSHIFT(I, SHIFT) (IBM extension)
	MASKL(I, KIND) (Fortran 2008)
	MASKR(I, KIND) (Fortran 2008)
	MATMUL(MATRIX_A, MATRIX_B, MINDIM)
	MAX(A1, A2, A3, ...)
	MAXEXPONENT(X)
	MAXLOC(ARRAY, DIM, MASK, KIND, BACK) or MAXLOC(ARRAY, MASK, KIND, BACK)
	MAXVAL(ARRAY, DIM, MASK) or MAXVAL(ARRAY, MASK)
	MERGE(TSOURCE, FSOURCE, MASK)
	MERGE_BITS(I, J, MASK) (Fortran 2008)
	MIN(A1, A2, A3, ...)
	MINEXPONENT(X)
	MINLOC(ARRAY, DIM, MASK, KIND, BACK) or MINLOC(ARRAY, MASK, KIND, BACK)
	MINVAL(ARRAY, DIM, MASK) or MINVAL(ARRAY, MASK)
	MOD(A, P)
	MODULO(A, P)
	MOVE_ALLOC(FROM, TO) (Fortran 2003)
	MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
	NEAREST(X,S)
	NEW_LINE(A) (Fortran 2003)
	NINT(A, KIND)
	NOT(I)
	NULL(MOLD)
	NUM_PARTHDS() (IBM extension)
	NUM_USRTHDS() (IBM extension)
	NUMBER_OF_PROCESSORS(DIM) (IBM extension)
	PACK(ARRAY, MASK, VECTOR)
	POPCNT(I) (Fortran 2008)
	POPPAR(I) (Fortran 2008)
	PRECISION(X)
	PRESENT(A)
	PROCESSORS_SHAPE() (IBM extension)
	PRODUCT(ARRAY, DIM, MASK) or PRODUCT(ARRAY, MASK)
	QCMPLX(X, Y) (IBM extension)
	QEXT(A) (IBM extension)
	RADIX(X)
	RAND() (IBM extension)
	RANDOM_NUMBER(HARVEST)
	RANDOM_SEED(SIZE, PUT, GET, GENERATOR)
	RANGE(X)
	RANK(A) (Technical Specification)
	REAL(A, KIND)
	REPEAT(STRING, NCOPIES)
	RESHAPE(SOURCE, SHAPE, PAD, ORDER)
	RRSPACING(X)
	RSHIFT(I, SHIFT) (IBM extension)
	SAME_TYPE_AS(A,B) (Fortran 2003)
	SCALE(X,I)
	SCAN(STRING, SET, BACK, KIND)
	SELECTED_CHAR_KIND(NAME) (Fortran 2003)
	SELECTED_INT_KIND(R)
	SELECTED_REAL_KIND(P, R, RADIX)
	SET_EXPONENT(X,I)
	SHAPE(SOURCE, KIND)
	SHIFTA(I, SHIFT) (Fortran 2008)
	SHIFTL(I, SHIFT) (Fortran 2008)
	SHIFTR(I, SHIFT) (Fortran 2008)
	SIGN(A, B)
	SIGNAL(I, PROC) (IBM extension)
	SIN(X)
	SIND(X) (IBM extension)
	SINH(X)
	SIZE(ARRAY, DIM, KIND)
	SIZEOF(A) (IBM extension)
	SPACING(X)
	SPREAD(SOURCE, DIM, NCOPIES)
	SQRT(X)
	SRAND(SEED) (IBM extension)
	SUM(ARRAY, DIM, MASK) or SUM(ARRAY, MASK)
	SYSTEM(CMD, RESULT) (IBM extension)
	SYSTEM_CLOCK(COUNT, COUNT_RATE, COUNT_MAX)
	TAN(X)
	TAND(X) (IBM extension)
	TANH(X)
	TINY(X)
	TRAILZ(I) (Fortran 2008)
	TRANSFER(SOURCE, MOLD, SIZE)
	TRANSPOSE(MATRIX)
	TRIM(STRING)
	UBOUND(ARRAY, DIM, KIND)
	UNPACK(VECTOR, MASK, FIELD)
	VERIFY(STRING, SET, BACK, KIND)

	Chapter 15. Hardware-specific intrinsic procedures (IBM extension)
	Cryptography procedures
	Advanced Encryption Standard procedures
	VCIPHER(STATE_ARRAY, ROUND_KEY)
	VCIPHERLAST(STATE_ARRAY, ROUND_KEY)
	VNCIPHER(STATE_ARRAY, ROUND_KEY)
	VNCIPHERLAST (STATE_ARRAY, ROUND_KEY)
	VSBOX(STATE_ARRAY)

	Secure Hash Algorithm procedures
	VSHASIGMAD(X, TYPE, MASK)
	VSHASIGMAW(X, TYPE, MASK)

	Miscellaneous procedures
	VPERMXOR(A, B, MASK)
	VPMSUMB(A, B)
	VPMSUMD(A, B)
	VPMSUMH(A, B)
	VPMSUMW(A, B)

	BPERMD(MASK, SOURCE)
	CMPB(X,Y)
	DIVDE(X,Y)
	DIVWE(X,Y)
	FCFI(I)
	FCFID(I)
	FCFUD(I)
	FCTID(X)
	FCTIDZ(X)
	FCTIW(X)
	FCTIWZ(X)
	FCTUDZ(X)
	FCTUWZ(X)
	FMADD(A, X, Y)
	FMSUB(A, X, Y)
	FNABS(X)
	FNMADD(A, X, Y)
	FNMSUB(A, X, Y)
	FRE(X)
	FRES(X)
	FRIC(A)
	FRIM(A)
	FRIN(A)
	FRIP(A)
	FRIZ(A)
	FRSQRTE(X)
	FRSQRTES(X)
	FSEL(X,Y,Z)
	MTFSF(MASK, R)
	MTFSFI(BF, I)
	MULHY(RA, RB)
	POPCNTB(I)
	ROTATELI(RS, IS, SHIFT, MASK)
	ROTATELM(RS, SHIFT, MASK)
	SETFSB0(BT)
	SETFSB1(BT)
	SFTI(M, Y)
	SWDIV(X,Y)
	SWDIV_NOCHK(X,Y)
	TRAP(A, B, TO)

	Chapter 16. The TRANSACTIONAL_MEMORY intrinsic module (IBM extension)
	Transaction begin and end functions
	TM_SIMPLE_BEGIN()
	TM_BEGIN(TM_BUFF)
	TM_END()

	Transaction abort functions
	TM_ABORT()
	TM_NAMED_ABORT(CODE)

	Transaction inquiry functions
	TM_IS_USER_ABORT(TM_BUFF)
	TM_IS_NAMED_USER_ABORT(TM_BUFF, CODE)
	TM_IS_ILLEGAL(TM_BUFF)
	TM_IS_FOOTPRINT_EXCEEDED(TM_BUFF)
	TM_NESTING_DEPTH(TM_BUFF)
	TM_IS_NESTED_TOO_DEEP(TM_BUFF)
	TM_IS_CONFLICT(TM_BUFF)
	TM_IS_FAILURE_PERSISTENT(TM_BUFF)
	TM_FAILURE_ADDRESS()
	TM_FAILURE_CODE(TM_BUFF)

	Chapter 17. Vector intrinsic procedures (IBM extension)
	VEC_ABS(ARG1)
	VEC_ABSS(ARG1)
	VEC_ADD(ARG1, ARG2)
	VEC_ADD_U128 (ARG1, ARG2)
	VEC_ADDC_U128 (ARG1, ARG2)
	VEC_ADDE_U128 (ARG1, ARG2, ARG3)
	VEC_ADDEC_U128 (ARG1, ARG2, ARG3)
	VEC_ADDC(ARG1, ARG2)
	VEC_ADDS(ARG1, ARG2)
	VEC_ALL_EQ(ARG1, ARG2)
	VEC_ALL_GE(ARG1, ARG2)
	VEC_ALL_GT(ARG1, ARG2)
	VEC_ALL_IN(ARG1, ARG2)
	VEC_ALL_LE(ARG1, ARG2)
	VEC_ALL_LT(ARG1, ARG2)
	VEC_ALL_NAN(ARG1)
	VEC_ALL_NE(ARG1, ARG2)
	VEC_ALL_NGE(ARG1, ARG2)
	VEC_ALL_NGT(ARG1, ARG2)
	VEC_ALL_NLE(ARG1, ARG2)
	VEC_ALL_NLT(ARG1, ARG2)
	VEC_ALL_NUMERIC(ARG1)
	VEC_AND(ARG1, ARG2)
	VEC_ANDC(ARG1, ARG2)
	VEC_ANY_EQ(ARG1, ARG2)
	VEC_ANY_GE(ARG1, ARG2)
	VEC_ANY_GT(ARG1, ARG2)
	VEC_ANY_LE(ARG1, ARG2)
	VEC_ANY_LT(ARG1, ARG2)
	VEC_ANY_NAN(ARG1)
	VEC_ANY_NE(ARG1, ARG2)
	VEC_ANY_NGE(ARG1, ARG2)
	VEC_ANY_NGT(ARG1, ARG2)
	VEC_ANY_NLE(ARG1, ARG2)
	VEC_ANY_NLT(ARG1, ARG2)
	VEC_ANY_NUMERIC(ARG1)
	VEC_ANY_OUT(ARG1, ARG2)
	VEC_AVG(ARG1, ARG2)
	VEC_BPERM (ARG1, ARG2)
	VEC_CEIL(ARG1)
	VEC_CMPB(ARG1, ARG2)
	VEC_CMPEQ(ARG1, ARG2)
	VEC_CMPGE(ARG1, ARG2)
	VEC_CMPGT(ARG1, ARG2)
	VEC_CMPLE(ARG1, ARG2)
	VEC_CMPLT(ARG1, ARG2)
	VEC_CNTLZ(ARG1)
	VEC_CONVERT(V, MOLD)
	VEC_CPSGN(ARG1, ARG2)
	VEC_CTD(ARG1, ARG2)
	VEC_CTF(ARG1, ARG2)
	VEC_CTS(ARG1, ARG2)
	VEC_CTSL(ARG1, ARG2)
	VEC_CTU(ARG1, ARG2)
	VEC_CTUL(ARG1, ARG2)
	VEC_CVF(ARG1)
	VEC_DIV(ARG1, ARG2)
	VEC_DSS(ARG1)
	VEC_DSSALL
	VEC_DST(ARG1, ARG2, ARG3)
	VEC_DSTST(ARG1, ARG2, ARG3)
	VEC_DSTSTT(ARG1, ARG2, ARG3)
	VEC_DSTT(ARG1, ARG2, ARG3)
	VEC_EQV(ARG1, ARG2)
	VEC_EXPTE(ARG1)
	VEC_EXTRACT(ARG1, ARG2)
	VEC_FLOOR(ARG1)
	VEC_GBB(ARG1)
	VEC_INSERT(ARG1, ARG2, ARG3)
	VEC_LD(ARG1, ARG2)
	VEC_LDE(ARG1, ARG2)
	VEC_LDL(ARG1, ARG2)
	VEC_LOGE(ARG1)
	VEC_LVSL(ARG1, ARG2)
	VEC_LVSR(ARG1, ARG2)
	VEC_MADD(ARG1, ARG2, ARG3)
	VEC_MADDS(ARG1, ARG2, ARG3)
	VEC_MAX(ARG1, ARG2)
	VEC_MERGEH(ARG1, ARG2)
	VEC_MERGEL(ARG1, ARG2)
	VEC_MFVSCR
	VEC_MIN(ARG1, ARG2)
	VEC_MLADD(ARG1, ARG2, ARG3)
	VEC_MRADDS(ARG1, ARG2, ARG3)
	VEC_MSUB(ARG1, ARG2, ARG3)
	VEC_MSUM(ARG1, ARG2, ARG3)
	VEC_MSUMS(ARG1, ARG2, ARG3)
	VEC_MTVSCR(ARG1)
	VEC_MUL(ARG1, ARG2)
	VEC_MULE(ARG1, ARG2)
	VEC_MULO(ARG1, ARG2)
	VEC_NABS(ARG1)
	VEC_NAND(ARG1, ARG2)
	VEC_NEG(ARG1)
	VEC_NMADD(ARG1, ARG2, ARG3)
	VEC_NMSUB(ARG1, ARG2, ARG3)
	VEC_NOR(ARG1, ARG2)
	VEC_OR(ARG1, ARG2)
	VEC_ORC(ARG1, ARG2)
	VEC_PACK(ARG1, ARG2)
	VEC_PACKPX(ARG1, ARG2)
	VEC_PACKS(ARG1, ARG2)
	VEC_PACKSU(ARG1, ARG2)
	VEC_PERM(ARG1, ARG2, ARG3)
	VEC_PERMI(ARG1, ARG2, ARG3)
	VEC_POPCNT(ARG1)
	VEC_PROMOTE(ARG1, ARG2)
	VEC_RE(ARG1)
	VEC_RL(ARG1, ARG2)
	VEC_ROUND(ARG1)
	VEC_ROUNDC(ARG1)
	VEC_ROUNDM(ARG1)
	VEC_ROUNDP(ARG1)
	VEC_ROUNDZ(ARG1)
	VEC_RSQRTE(ARG1)
	VEC_SEL(ARG1, ARG2, ARG3)
	VEC_SL(ARG1, ARG2)
	VEC_SLD(ARG1, ARG2, ARG3)
	VEC_SLDW(ARG1, ARG2, ARG3)
	VEC_SLL(ARG1, ARG2)
	VEC_SLO(ARG1, ARG2)
	VEC_SPLAT(ARG1, ARG2)
	VEC_SPLATS(ARG1)
	VEC_SPLAT_S8(ARG1)
	VEC_SPLAT_S16(ARG1)
	VEC_SPLAT_S32(ARG1)
	VEC_SPLAT_U8(ARG1)
	VEC_SPLAT_U16(ARG1)
	VEC_SPLAT_U32(ARG1)
	VEC_SQRT(ARG1)
	VEC_SR(ARG1, ARG2)
	VEC_SRA(ARG1, ARG2)
	VEC_SRL(ARG1, ARG2)
	VEC_SRO(ARG1, ARG2)
	VEC_ST(ARG1, ARG2, ARG3)
	VEC_STE(ARG1, ARG2, ARG3)
	VEC_STL(ARG1, ARG2, ARG3)
	VEC_SUB(ARG1, ARG2)
	VEC_SUB_U128 (ARG1, ARG2)
	VEC_SUBC_U128 (ARG1, ARG2)
	VEC_SUBE_U128 (ARG1, ARG2, ARG3)
	VEC_SUBEC_U128 (ARG1, ARG2, ARG3)
	VEC_SUBC(ARG1, ARG2)
	VEC_SUBS(ARG1, ARG2)
	VEC_SUM2S(ARG1, ARG2)
	VEC_SUM4S(ARG1, ARG2)
	VEC_SUMS(ARG1, ARG2)
	VEC_TRUNC(ARG1)
	VEC_UNPACKH(ARG1)
	VEC_UNPACKL(ARG1)
	VEC_XL(ARG1, ARG2)
	VEC_XL_BE(ARG1, ARG2)
	VEC_XLD2(ARG1, ARG2)
	VEC_XLDS(ARG1, ARG2)
	VEC_XLW4(ARG1, ARG2)
	VEC_XOR(ARG1, ARG2)
	VEC_XST(ARG1, ARG2, ARG3)
	VEC_XST_BE(ARG1, ARG2, ARG3)
	VEC_XSTD2(ARG1, ARG2, ARG3)
	VEC_XSTW4(ARG1, ARG2, ARG3)

	Chapter 18. Language interoperability features
	Interoperability of types
	Intrinsic types
	Derived types

	Interoperability of variables
	Interoperable variables in asynchronous communication (Technical Specification)

	Interoperability of common blocks
	Interoperability of procedures
	Optional arguments (Technical Specification)
	Allocatable and pointer arguments (Technical Specification)
	Rules for allocatable and pointer arguments
	Example: Allocatable and pointer arguments
	Allocatable and pointer arguments in parallel environments

	Assumed-type objects (Technical Specification)
	Assumed-rank objects (Technical Specification)

	The ISO_C_BINDING module
	Constants for use as kind type parameters
	Character constants
	Other constants
	Types
	Procedures
	C_ASSOCIATED(C_PTR_1[, C_PTR_2])
	C_F_POINTER(CPTR, FPTR [, SHAPE])
	C_F_PROCPOINTER(CPTR, FPTR)
	C_FUNLOC(X)
	C_LOC(X)
	C_SIZEOF(X) (Fortran 2008)

	The ISO_Fortran_binding.h header file (Technical Specification)
	Type definitions and structures
	Macros
	Functions
	CFI_address
	CFI_allocate
	CFI_deallocate
	CFI_establish
	CFI_is_contiguous
	CFI_section
	CFI_select_part
	CFI_setpointer
	__xlf_CFI_strerror (IBM extension)

	Binding labels

	Chapter 19. The ISO_FORTRAN_ENV intrinsic module
	ISO_FORTRAN_ENV constants
	CHARACTER_KINDS (Fortran 2008)
	CHARACTER_STORAGE_SIZE
	ERROR_UNIT
	FILE_STORAGE_SIZE
	INT8 (Fortran 2008)
	INT16 (Fortran 2008)
	INT32 (Fortran 2008)
	INT64 (Fortran 2008)
	INTEGER_KINDS (Fortran 2008)
	INPUT_UNIT
	IOSTAT_END
	IOSTAT_EOR
	IOSTAT_INQUIRE_INTERNAL_UNIT (Fortran 2008)
	LOGICAL_KINDS (Fortran 2008)
	NUMERIC_STORAGE_SIZE
	OUTPUT_UNIT
	REAL32 (Fortran 2008)
	REAL64 (Fortran 2008)
	REAL128 (Fortran 2008)
	REAL_KINDS (Fortran 2008)

	ISO_FORTRAN_ENV functions
	COMPILER_OPTIONS (Fortran 2008)
	COMPILER_VERSION (Fortran 2008)

	Chapter 20. Floating-point control and inquiry procedures
	fpgets fpsets
	Efficient floating-point control and inquiry procedures
	xlf_fp_util floating-point procedures
	clr_fpscr_flags
	get_fpscr
	get_fpscr_flags
	get_round_mode
	set_fpscr
	set_fpscr_flags
	set_round_mode

	IEEE Modules and support (Fortran 2003)
	Compiling and exception handling
	Related information

	General rules for implementing IEEE modules
	IEEE derived data types and constants
	IEEE_FLAG_TYPE
	IEEE_STATUS_TYPE
	IEEE_CLASS_TYPE
	IEEE_ROUND_TYPE
	IEEE_FEATURES_TYPE

	IEEE Operators
	IEEE procedures
	IEEE_CLASS(X)
	IEEE_COPY_SIGN(X, Y)
	IEEE_GET_FLAG(FLAG, FLAG_VALUE)
	IEEE_GET_HALTING_MODE(FLAG, HALTING)
	IEEE_GET_ROUNDING_MODE (ROUND_VALUE)
	IEEE_GET_STATUS(STATUS_VALUE)
	IEEE_GET_UNDERFLOW_MODE(GRADUAL)
	IEEE_IS_FINITE(X)
	IEEE_IS_NAN(X)
	IEEE_IS_NEGATIVE(X)
	IEEE_IS_NORMAL(X)
	IEEE_LOGB(X)
	IEEE_NEXT_AFTER(X, Y)
	IEEE_REM(X, Y)
	IEEE_RINT(X)
	IEEE_SCALB(X, I)
	IEEE_SELECTED_REAL_KIND([P, R, RADIX])
	IEEE_SET_FLAG(FLAG, FLAG_VALUE)
	IEEE_SET_HALTING_MODE(FLAG, HALTING)
	IEEE_SET_ROUNDING_MODE (ROUND_VALUE)
	IEEE_SET_STATUS(STATUS_VALUE)
	IEEE_SET_UNDERFLOW_MODE(GRADUAL)
	IEEE_SUPPORT_DATATYPE or IEEE_SUPPORT_DATATYPE(X)
	IEEE_SUPPORT_DENORMAL or IEEE_SUPPORT_DENORMAL(X)
	IEEE_SUPPORT_DIVIDE or IEEE_SUPPORT_DIVIDE(X)
	IEEE_SUPPORT_FLAG(FLAG) or IEEE_SUPPORT_FLAG(FLAG, X)
	IEEE_SUPPORT_HALTING(FLAG)
	IEEE_SUPPORT_INF or IEEE_SUPPORT_INF(X)
	IEEE_SUPPORT_IO or IEEE_SUPPORT_IO(X)
	IEEE_SUPPORT_NAN or IEEE_SUPPORT_NAN(X)
	IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)
	IEEE_SUPPORT_SQRT or IEEE_SUPPORT_SQRT(X)
	IEEE_SUPPORT_STANDARD or IEEE_SUPPORT_STANDARD(X)
	IEEE_SUPPORT_UNDERFLOW_CONTROL() or IEEE_SUPPORT_UNDERFLOW_CONTROL(X)
	IEEE_UNORDERED(X, Y)
	IEEE_VALUE(X, CLASS)

	Rules for floating-point status
	Examples

	Chapter 21. Service and utility procedures (IBM extension)
	General service and utility procedures
	List of service and utility procedures
	alarm_(time, func)
	bic_(X1, X2)
	bis_(X1, X2)
	bit_(X1, X2)
	clock_()
	ctime_(STR, TIME)
	date()
	dtime_(dtime_struct)
	etime_(etime_struct)
	exit_(exit_status)
	fdate_(str)
	fiosetup_(unit, command, argument)
	flush_(lunit)
	ftell_(lunit)
	ftell64_(lunit)
	getarg(i1,c1)
	getcwd_(name)
	getfd(lunit)
	getgid_()
	getlog_(name)
	getpid_()
	getuid_()
	global_timef()
	gmtime_(stime, tarray)
	hostnm_(name)
	iargc()
	idate_(idate_struct)
	ierrno_()
	irand()
	irtc()
	itime_(itime_struct)
	jdate()
	lenchr_(str)
	lnblnk_(str)
	ltime_(stime, tarray)
	mclock()
	qsort_(array, len, isize, compar)
	qsort_down(array, len, isize)
	qsort_up(array, len, isize)
	rtc()
	setrteopts(c1)
	sleep_(sec)
	time_()
	timef()
	timef_delta(t)
	umask_(cmask)
	usleep_(msec)
	xl__trbk()

	The XLF_POSIX_BINDINGS module
	Types
	Named constants
	Abstract interfaces
	Procedures
	access(path, amode)
	alarm(seconds)
	atexit(x)
	bsearch(key, base, nel, width, compar)
	calloc(nelem, elsize)
	chdir(path)
	chmod(path, mode)
	chown(path, owner, group)
	clock()
	confstr(name, buf)
	errno()
	exit(status)
	fork()
	free(ptr)
	getcwd(buf)
	getegid()
	geteuid()
	getgid()
	getgroups(gidsetsize, grouplist)
	gethostid()
	gethostname(name)
	getlogin_r(name)
	getpgid(pid)
	getpgrp()
	getpid()
	getppid()
	getsid(pid)
	getuid()
	isalnum(c)
	isalpha(c)
	isascii(c)
	isblank(c)
	iscntrl(c)
	isdigit(c)
	isgraph(c)
	islower(c)
	isprint(c)
	ispunct(c)
	isupper(c)
	isxdigit(c)
	j0(x)
	j1(x)
	jn(n, x)
	kill(pid, sig)
	killpg(pgrp, sig)
	lchown(path, owner, group)
	lfind(key, base, nelp, width, compar)
	link(path1, path2)
	lsearch(key, base, nelp, width, compar)
	malloc(size)
	mkdir(path, mode)
	mkfifo(path, mode)
	nice(incr)
	pathconf(path, name)
	perror(s)
	qsort(base, nel, width, compar)
	raise(sig)
	realloc(ptr, size)
	remove(path)
	rename(old, new)
	rmdir(path)
	setegid(gid)
	seteuid(uid)
	setgid(gid)
	setpgid(pid, pgid)
	setpgrp()
	setregid(rgid, egid)
	setreuid(ruid, euid)
	setsid()
	setuid(uid)
	sleep(seconds)
	symlink(path1, path2)
	sync()
	sysconf(name)
	time(tloc)
	toascii(c)
	tolower(c)
	toupper(c)
	truncate(path, length)
	ualarm(useconds, interval)
	umask(cmask)
	uname(name)
	unlink(path)
	usleep(useconds)
	wait(stat_loc)
	waitpid(pid, stat_loc, options)
	wexitstatus(stat_val)
	wifcontinued(stat_val)
	wifexited(stat_val)
	wifsignaled(stat_val)
	wifstopped(stat_val)
	wstopsig(stat_val)
	wtermsig(stat_val)

	Chapter 22. Extensions for source compatibility (IBM extension)
	Record structures
	Declaring record structures
	Storage mapping

	Union and map (IBM extension)

	Appendix.
	Compatibility across standards
	Fortran 90 compatibility
	Obsolescent features
	Deleted features

	ASCII and EBCDIC character sets

	Notices
	Trademarks and service marks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

