
XL

C/C++

Enterprise

Edition

for

AIX

Programming

Guide

Version

7.0

SC09-7888-00

���

XL

C/C++

Enterprise

Edition

for

AIX

Programming

Guide

Version

7.0

SC09-7888-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

95.

First

Edition

(July

2004)

This

edition

applies

to

version

7.0

of

XL

C/C++

Enterprise

Edition

for

AIX

(product

number

5724-I11)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

You

can

send

them

to

compinfo@ca.ibm.com.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

guide

.

.

.

.

.

.

.

.

.

.

. v

Document

conventions

.

.

.

.

.

.

.

.

.

.

. v

Highlighting

conventions

.

.

.

.

.

.

.

.

. v

Icons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vi

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

. vi

Chapter

1.

Using

32-bit

and

64-bit

modes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Assigning

long

values

.

.

.

.

.

.

.

.

.

.

. 2

Assigning

constant

values

to

long

variables

.

.

. 2

Bit-shifting

long

values

.

.

.

.

.

.

.

.

.

. 3

Assigning

pointers

.

.

.

.

.

.

.

.

.

.

.

. 3

Aligning

aggregate

data

.

.

.

.

.

.

.

.

.

. 4

Calling

Fortran

code

.

.

.

.

.

.

.

.

.

.

.

. 4

Chapter

2.

Aligning

data

in

aggregates

. 5

Using

alignment

modes

and

modifiers

.

.

.

.

.

. 5

General

rules

for

alignment

.

.

.

.

.

.

.

. 7

Alignment

examples

.

.

.

.

.

.

.

.

.

.

. 7

Using

and

aligning

bit

fields

.

.

.

.

.

.

.

.

. 8

Rules

for

natural

alignment

.

.

.

.

.

.

.

. 9

Rules

for

power

alignment

.

.

.

.

.

.

.

.

. 9

Rules

for

Mac68K

alignment

.

.

.

.

.

.

.

. 9

Rules

for

bit-packed

alignment

.

.

.

.

.

.

. 10

Example

of

bit

field

alignment

.

.

.

.

.

.

. 10

Chapter

3.

Handling

floating

point

operations

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Handling

multiply-add

operations

.

.

.

.

.

.

. 11

Handling

floating-point

rounding

.

.

.

.

.

.

. 11

Handling

floating-point

exceptions

.

.

.

.

.

. 12

Single-precision

and

double-precision

performance

13

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Using

the

scalar

library

.

.

.

.

.

.

.

.

. 13

Using

the

vector

libraries

.

.

.

.

.

.

.

.

. 14

Compiling

and

linking

a

program

with

MASS

.

. 17

Chapter

4.

Using

memory

heaps

.

.

.

. 19

Managing

memory

with

multiple

heaps

.

.

.

.

. 19

Functions

for

managing

user-created

heaps

.

.

. 20

Creating

a

heap

.

.

.

.

.

.

.

.

.

.

.

. 21

Expanding

a

heap

.

.

.

.

.

.

.

.

.

.

. 22

Using

a

heap

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Getting

information

about

a

heap

.

.

.

.

.

. 24

Closing

and

destroying

a

heap

.

.

.

.

.

.

. 24

Changing

the

default

heap

used

in

a

program

.

. 25

Compiling

and

linking

a

program

with

user-created

heaps

.

.

.

.

.

.

.

.

.

.

. 25

Examples

of

creating

and

using

user

heaps

.

.

. 25

Debugging

memory

heaps

.

.

.

.

.

.

.

.

. 30

Functions

for

checking

memory

heaps

.

.

.

. 31

Functions

for

debugging

memory

heaps

.

.

.

. 31

Using

memory

allocation

fill

patterns

.

.

.

.

. 33

Skipping

heap

checking

.

.

.

.

.

.

.

.

. 33

Using

stack

traces

.

.

.

.

.

.

.

.

.

.

. 34

Chapter

5.

Using

C++

templates

.

.

.

. 35

Using

the

-qtempinc

compiler

option

.

.

.

.

.

. 35

Example

of

-qtempinc

.

.

.

.

.

.

.

.

.

. 36

Regenerating

the

template

instantiation

file

.

.

. 38

Using

-qtempinc

with

shared

libraries

.

.

.

. 38

Using

the

-qtemplateregistry

compiler

option

.

.

. 38

Recompiling

related

compilation

units

.

.

.

. 38

Switching

from

-qtempinc

to

-qtemplateregistry

39

Chapter

6.

Ensuring

thread

safety

(C++)

41

Ensuring

thread

safety

of

template

objects

.

.

.

. 41

Ensuring

thread

safety

of

stream

objects

.

.

.

.

. 41

Chapter

7.

Constructing

a

library

.

.

. 43

Compiling

and

linking

a

library

.

.

.

.

.

.

. 43

Compiling

a

static

library

.

.

.

.

.

.

.

.

. 43

Compiling

a

shared

library

.

.

.

.

.

.

.

. 43

Linking

a

shared

library

to

another

shared

library

45

Initializing

static

objects

in

libraries

(C++)

.

.

.

. 45

Assigning

priorities

to

objects

.

.

.

.

.

.

. 46

Order

of

object

initialization

across

libraries

.

. 48

Dynamically

loading

a

shared

library

.

.

.

.

.

. 49

Loading

and

initializing

a

module

with

the

loadAndInit

function

.

.

.

.

.

.

.

.

.

. 50

Terminating

and

unloading

a

module

with

the

terminateAndUnload

function

.

.

.

.

.

.

. 51

Chapter

8.

Using

the

C++

utilities

.

.

. 53

Demangling

compiled

C++

names

.

.

.

.

.

.

. 53

Demangling

compiled

C++

names

with

c++filt

53

Demangling

compiled

C++

names

with

the

demangle

class

library

.

.

.

.

.

.

.

.

.

. 54

Creating

a

shared

library

with

the

makeC++SharedLib

utility

.

.

.

.

.

.

.

.

. 56

Linking

with

the

linkxlC

utility

.

.

.

.

.

.

.

. 57

Chapter

9.

Optimizing

your

applications

59

Using

optimization

levels

.

.

.

.

.

.

.

.

.

. 60

Getting

the

most

out

of

optimization

levels

2

and

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

Optimizing

for

system

architecture

.

.

.

.

.

. 63

Getting

the

most

out

of

target

machine

options

63

Using

high-order

loop

analysis

and

transformations

64

Getting

the

most

out

of

-qhot

.

.

.

.

.

.

. 65

Using

shared-memory

parallelism

.

.

.

.

.

.

. 65

Getting

the

most

out

of

-qsmp

.

.

.

.

.

.

. 65

Using

interprocedural

analysis

.

.

.

.

.

.

.

. 66

Getting

the

most

from

-qipa

.

.

.

.

.

.

.

. 67

Using

profile-directed

feedback

.

.

.

.

.

.

.

. 67

Example

of

compilation

with

pdf

and

showpdf

69

Other

optimization

options

.

.

.

.

.

.

.

.

. 70

©

Copyright

IBM

Corp.

1998,

2004

iii

Summary

of

options

for

optimization

and

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Chapter

10.

Coding

your

application

to

improve

performance

.

.

.

.

.

.

.

. 73

Find

faster

input/output

techniques

.

.

.

.

.

. 73

Reduce

function-call

overhead

.

.

.

.

.

.

.

. 73

Manage

memory

efficiently

.

.

.

.

.

.

.

.

. 75

Optimize

variables

.

.

.

.

.

.

.

.

.

.

.

. 75

Manipulate

strings

efficiently

.

.

.

.

.

.

.

. 76

Optimize

expressions

and

program

logic

.

.

.

. 77

Optimize

operations

in

64-bit

mode

.

.

.

.

.

. 77

Appendix.

Memory

debug

library

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Memory

allocation

debug

functions

.

.

.

.

.

. 79

_debug_calloc

—

Allocate

and

initialize

memory

79

_debug_free

—

Free

allocated

memory

.

.

.

. 80

_debug_heapmin

—

Free

unused

memory

in

the

default

heap

.

.

.

.

.

.

.

.

.

.

.

.

. 81

_debug_malloc

—

Allocate

memory

.

.

.

.

. 82

_debug_ucalloc

—

Reserve

and

initialize

memory

from

a

user-created

heap

.

.

.

.

.

.

.

.

. 83

_debug_uheapmin

—

Free

unused

memory

in

a

user-created

heap

.

.

.

.

.

.

.

.

.

.

. 84

_debug_umalloc

—

Reserve

memory

blocks

from

a

user-created

heap

.

.

.

.

.

.

.

.

.

.

. 84

_debug_realloc

—

Reallocate

memory

block

.

. 85

String

handling

debug

functions

.

.

.

.

.

.

. 87

_debug_memcpy

—

Copy

bytes

.

.

.

.

.

. 87

_debug_memmove

—

Copy

bytes

.

.

.

.

.

. 88

_debug_memset

—

Set

bytes

to

value

.

.

.

.

. 89

_debug_strcat

—

Concatenate

strings

.

.

.

.

. 89

_debug_strcpy

—

Copy

strings

.

.

.

.

.

.

. 90

_debug_strncat

—

Concatenate

strings

.

.

.

. 91

_debug_strncpy

—

Copy

strings

.

.

.

.

.

. 92

_debug_strnset

—

Set

characters

in

a

string

.

.

. 93

_debug_strset

—

Set

characters

in

a

string

.

.

. 94

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Programming

interface

information

.

.

.

.

.

. 96

Trademarks

and

service

marks

.

.

.

.

.

.

.

. 97

Industry

standards

.

.

.

.

.

.

.

.

.

.

.

. 97

iv

Programming

Guide

About

this

guide

This

guide

discusses

advanced

topics

related

to

the

use

of

the

IBM®

XL

C/C++

Enterprise

Edition

for

AIX®

compiler,

with

a

particular

focus

on

program

portability

and

optimization.

The

guide

provides

both

reference

information

and

practical

tips

for

getting

the

most

out

of

the

compiler’s

capabilities,

through

recommended

programming

practices

and

compilation

procedures.

The

guide

also

contains

extensive

cross-references

to

the

relevant

sections

of

the

other

reference

guides

in

the

XL

C/C++

Enterprise

Edition

for

AIX

documentation

set.

This

guide

includes

these

topics:

v

Chapter

1,

“Using

32-bit

and

64-bit

modes,”

on

page

1

discusses

common

problems

that

arise

when

porting

existing

32-bit

applications

to

64-bit

mode,

and

provides

recommendations

for

avoiding

these

problems.

v

Chapter

2,

“Aligning

data

in

aggregates,”

on

page

5

discusses

the

different

compiler

options

available

for

controlling

the

alignment

of

data

in

aggregates,

such

as

structures

and

classes,

on

all

platforms.

v

Chapter

3,

“Handling

floating

point

operations,”

on

page

11

discusses

options

available

for

controlling

the

way

floating-point

operations

are

handled

by

the

compiler.

v

Chapter

4,

“Using

memory

heaps,”

on

page

19

discusses

compiler

library

functions

for

heap

memory

management,

including

using

custom

memory

heaps,

and

validating

and

debugging

heap

memory.

v

Chapter

5,

“Using

C++

templates,”

on

page

35

discusses

the

different

options

for

compiling

programs

that

include

C++

templates.

v

Chapter

6,

“Ensuring

thread

safety

(C++),”

on

page

41

discusses

thread-safety

issues

related

to

C++

class

libraries,

including

input/output

streams,

and

standard

templates.

v

Chapter

7,

“Constructing

a

library,”

on

page

43

discusses

how

to

compile

and

link

static

and

shared

libraries,

and

how

to

specify

the

initialization

order

of

static

objects

in

C++

programs.

v

Chapter

8,

“Using

the

C++

utilities,”

on

page

53

discusses

some

additional

utilities

shipped

with

XL

C/C++

Enterprise

Edition

for

AIX,

for

demangling

compiled

symbol

names,

creating

shared

libraries,

and

linking

C++

modules.

v

Chapter

9,

“Optimizing

your

applications,”

on

page

59

discusses

the

various

options

provided

by

the

compiler

for

optimizing

your

programs,

and

provides

recommendations

for

use

of

the

different

options.

v

Chapter

10,

“Coding

your

application

to

improve

performance,”

on

page

73

discusses

recommended

programming

practices

and

coding

techniques

for

enhancing

program

performance

and

compatibility

with

the

compiler’s

optimization

capabilities.

v

“Memory

debug

library

functions,”

on

page

79

provides

a

reference

listing

and

examples

of

all

compiler

debug

memory

library

functions.

Document

conventions

Highlighting

conventions

This

guide

uses

the

following

highlighting

conventions:

©

Copyright

IBM

Corp.

1998,

2004

v

Bold

Identifies

commands,

keywords,

file,

directory,

and

path

names,

environment

variables,

executable

names,

and

other

items

whose

names

are

predefined

by

the

system.

Italics

Identify

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

programmer.

Italics

are

also

used

for

the

first

mention

of

new

terms.

Monospace

Identifies

examples

of

program

code.

Examples

are

intended

to

be

instructional

and

do

not

attempt

to

minimize

run

time,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

language

constructs.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

Icons

In

general,

this

guide

documents

XL

C/C++

functionality

as

it

has

been

implemented

on

the

AIX

platform.

However,

where

issues

are

discussed

that

affect

portability

to

other

platforms,

the

following

icons

are

used:

AIX

Indicates

the

functionality

supported

on

the

AIX

platform.

Linux

Indicates

the

functionality

supported

on

the

Linux®

platform.

2000Mac OS X

Indicates

the

functionality

supported

on

the

Mac

OS

X

platform.

C++

Indicates

a

feature

that

is

supported

only

in

the

C++

language.

C

Indicates

a

feature

that

is

supported

only

in

the

C

language.

How

to

read

the

syntax

diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

or

C++

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

vi

Programming

Guide

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

Reading

the

Syntax

Diagrams

About

this

guide

vii

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

name

of

the

pragma

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�10�

This

is

the

end

of

the

syntax

diagram.

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

Reading

the

Syntax

Diagrams

viii

Programming

Guide

Chapter

1.

Using

32-bit

and

64-bit

modes

You

can

use

XL

C/C++

to

develop

both

32-bit

and

64-bit

applications.

To

do

so,

specify

-q32

(the

default)

or

-q64,

respectively,

during

compilation.

Alternatively,

you

can

set

the

OBJECT_MODE

environment

variable

to

32

or

64.

However,

porting

existing

applications

from

32-bit

to

64-bit

mode

can

lead

to

a

number

of

problems,

mostly

related

to

the

differences

in

C/C++

long

and

pointer

data

type

sizes

and

alignment

between

the

two

modes.

The

following

table

summarizes

these

differences.

Table

1.

Size

and

alignment

of

data

types

in

32-bit

and

64-bit

modes

Data

type

32-bit

mode

64-bit

mode

Size

Alignment

Size

Alignment

long,

unsigned

long

4

bytes

4-byte

boundaries

8

bytes

8-byte

boundaries

pointer

4

bytes

4-byte

boundaries

8

bytes

8-byte

boundaries

size_t

(system-defined

unsigned

long)

4

bytes

4-byte

boundaries

8

bytes

8-byte

boundaries

ptrdiff_t

(system-defined

long)

4

bytes

4-byte

boundaries

8

bytes

8-byte

boundaries

The

following

sections

discuss

some

of

the

common

pitfalls

implied

by

these

differences,

as

well

as

recommended

programming

practices

to

help

you

avoid

most

of

these

issues:

v

“Assigning

long

values”

on

page

2

v

“Assigning

pointers”

on

page

3

v

“Aligning

aggregate

data”

on

page

4

v

“Calling

Fortran

code”

on

page

4

When

compiling

in

32-bit

or

64-bit

mode,

you

can

use

the

-qwarn64

option

to

help

diagnose

some

issues

related

to

porting

applications.

In

either

mode,

the

compiler

immediately

issues

a

warning

if

undesirable

results,

such

as

truncation

or

data

loss,

have

occurred.

For

suggestions

on

improving

performance

in

64-bit

mode,

see

“Optimize

operations

in

64-bit

mode”

on

page

77.

Related

references

v

-q32/-q64

in

XL

C/C++

Compiler

Reference

v

-qwarn64

in

XL

C/C++

Compiler

Reference

v

″Set

Environment

Variables

to

Select

64-

or

32-bit

Modes″

in

XL

C/C++

Compiler

Reference

©

Copyright

IBM

Corp.

1998,

2004

1

Assigning

long

values

The

limits

of

long

type

integers

defined

in

the

limits.h

standard

library

header

file

are

different

in

32-bit

and

64-bit

modes,

as

shown

in

the

following

table.

Table

2.

Constant

limits

of

long

integers

in

32-bit

and

64-bit

modes

Symbolic

constant

Mode

Value

Hexadecimal

Decimal

LONG_MIN

(smallest

signed

long)

32-bit

–(231)

0x80000000L

–2,147,483,648

64-bit

–(263)

0x8000000000000000L

–9,223,372,036,854,775,808

LONG_MAX

(longest

signed

long)

32-bit

231–1

0x7FFFFFFFL

+2,147,483,647

64-bit

263–1

0x7FFFFFFFFFFFFFFFL

+9,223,372,036,854,775,807

ULONG_MAX

(longest

unsigned

long)

32-bit

232–1

0xFFFFFFFFUL

+4,294,967,295

64-bit

264–1

0xFFFFFFFFFFFFFFFFUL

+18,446,744,073,709,551,615

Implications

of

these

differences

are:

v

Assigning

a

long

value

to

a

double

variable

can

cause

loss

of

accuracy.

v

Assigning

constant

values

to

long-type

variables

can

lead

to

unexpected

results.

This

issue

is

explored

in

more

detail

in

“Assigning

constant

values

to

long

variables.”

v

Bit-shifting

long

values

will

produce

different

results,

as

described

in

“Bit-shifting

long

values”

on

page

3.

v

Using

int

and

long

types

interchangeably

in

expressions

will

lead

to

implicit

conversion

through

promotions,

demotions,

assignments,

and

argument

passing,

and

can

result

in

truncation

of

significant

digits,

sign

shifting,

or

unexpected

results,

without

warning.

In

situations

where

a

long-type

value

can

overflow

when

assigned

to

other

variables

or

passed

to

functions,

you

must:

v

Avoid

implicit

type

conversion

by

using

explicit

type

casting

to

change

types.

v

Ensure

that

all

functions

that

return

long

types

are

properly

prototyped.

v

Ensure

that

long

parameters

can

be

accepted

by

the

functions

to

which

they

are

being

passed.

Assigning

constant

values

to

long

variables

Although

type

identification

of

constants

follows

explicit

rules

in

C

and

C++,

many

programs

use

hexadecimal

or

unsuffixed

constants

as

″typeless″

variables

and

rely

on

a

two’s

complement

representation

to

exceed

the

limits

permitted

on

a

32-bit

system.

As

these

large

values

are

likely

to

be

extended

into

a

64-bit

long

type

in

64-bit

mode,

unexpected

results

can

occur,

generally

at

boundary

areas

such

as:

v

constant

>=

UINT_MAX

v

constant

<

INT_MIN

v

constant

>

INT_MAX

Some

examples

of

unexpected

boundary

side

effects

are

listed

in

the

following

table.

2

Programming

Guide

Table

3.

Unexpected

boundary

results

of

constants

assigned

to

long

types

Constant

assigned

to

long

Equivalent

value

32

bit

mode

64

bit

mode

–2,147,483,649

INT_MIN–1

+2,147,483,647

–2,147,483,649

+2,147,483,648

INT_MAX+1

–2,147,483,648

+2,147,483,648

+4,294,967,726

UINT_MAX+1

0

+4,294,967,296

0xFFFFFFFF

UINT_MAX

–1

+4,294,967,295

0x100000000

UINT_MAX+1

0

+4,294,967,296

0xFFFFFFFFFFFFFFFF

ULONG_MAX

–1

–1

Unsuffixed

constants

can

lead

to

type

ambiguities

that

can

affect

other

parts

of

your

program,

such

as

when

the

results

of

sizeof

operations

are

assigned

to

variables..

For

example,

in

32-bit

mode,

the

compiler

types

a

number

like

4294967295

(UINT_MAX)

as

an

unsigned

long

and

sizeof

returns

4

bytes.

In

64-bit

mode,

this

same

number

becomes

a

signed

long

and

sizeof

will

return

8

bytes.

Similar

problems

occur

when

passing

constants

directly

to

functions.

You

can

avoid

these

problems

by

using

the

suffixes

L

(for

long

constants)

or

UL

(for

unsigned

long

constants)

to

explicitly

type

all

constants

that

have

the

potential

of

affecting

assignment

or

expression

evaluation

in

other

parts

of

your

program.

In

the

example

cited

above,

suffixing

the

number

as

4294967295U

forces

the

compiler

to

always

recognize

the

constant

as

an

unsigned

int

in

32-bit

or

64-bit

mode.

Bit-shifting

long

values

Left

bit-shifting

long

values

will

produce

different

results

in

32-bit

and

64-bit

modes.

The

examples

in

the

table

below

show

the

effects

of

performing

a

bit-shift

on

long

constants,

using

the

following

code

segment:

long

l=valueL<<1;

Table

4.

Results

of

bit-shifting

long

values

Initial

value

Symbolic

constant

Value

after

bit

shift

32-bit

mode

64-bit

mode

0x7FFFFFFFL

INT_MAX

0xFFFFFFFE

0x00000000FFFFFFFE

0x80000000L

INT_MIN

0x00000000

0x0000000100000000

0xFFFFFFFFL

UINT_MAX

0xFFFFFFFE

0x1FFFFFFFE

Assigning

pointers

In

64-bit

mode,

pointers

and

int

types

are

no

longer

the

same

size.

The

implications

of

this

are:

v

Exchanging

pointers

and

int

types

causes

segmentation

faults.

v

Passing

pointers

to

a

function

expecting

an

int

type

results

in

truncation.

v

Functions

that

return

a

pointer,

but

are

not

explicitly

prototyped

as

such,

return

an

int

instead

and

truncate

the

resulting

pointer,

as

illustrated

in

the

following

example.

Although

code

constructs

such

as

the

following

are

valid

in

32-bit

mode:

a=(char*)

calloc(25);

Chapter

1.

Using

32-bit

and

64-bit

modes

3

without

a

function

prototype

for

calloc,

the

compiler

assumes

the

function

returns

an

int,

so

a

is

silently

truncated,

and

then

sign-extended.

Type

casting

the

result

will

not

prevent

the

truncation,

as

the

address

of

the

memory

allocated

by

calloc

was

already

truncated

during

the

return.

In

this

example,

the

correct

solution

would

be

to

include

the

appropriate

header

file,

stdlib.h,

which

contains

the

prototype

for

calloc.

To

avoid

these

types

of

problems:

v

Prototype

any

functions

that

return

a

pointer.

v

Be

sure

that

the

type

of

parameter

you

are

passing

in

a

function

(pointer

or

int)

call

matches

the

type

expected

by

the

function

being

called.

v

For

applications

that

treat

pointers

as

an

integer

type,

use

type

long

or

unsigned

long

in

either

32-bit

or

64-bit

mode.

Aligning

aggregate

data

Structures

are

aligned

according

to

the

strictest

aligned

member

in

both

32-bit

and

64-bit

modes.

However,

since

long

types

and

pointers

change

size

and

alignment

in

64-bit,

the

alignment

of

a

structure’s

strictest

member

can

change,

resulting

in

changes

to

the

alignment

of

the

structure

itself.

Structures

that

contain

pointers

or

long

types

cannot

be

shared

between

32-bit

and

64-bit

applications.

Unions

that

attempt

to

share

long

and

int

types,

or

overlay

pointers

onto

int

types

can

change

or

corrupt

the

alignment.

In

general,

you

should

check

all

but

the

simplest

structures

for

alignment

and

size

dependencies.

In

64-bit

mode,

member

values

in

a

structure

passed

by

value

to

a

va_arg

argument

might

not

be

accessed

properly

if

the

size

of

the

structure

is

not

a

multiple

of

8-bytes.

This

is

a

known

limitation

of

the

operating

system.

For

detailed

information

on

aligning

data

structures,

including

structures

that

contain

bit

fields,

see

Chapter

2,

“Aligning

data

in

aggregates,”

on

page

5.

Calling

Fortran

code

A

significant

number

of

applications

use

C,

C++,

and

Fortran

together,

by

calling

each

other

or

sharing

files.

It

is

currently

easier

to

modify

data

sizes

and

types

on

the

C

side

than

the

on

Fortran

side

of

such

applications.

The

following

table

lists

C

and

C++

types

and

the

equivalent

Fortran

types

in

the

different

modes.

Table

5.

Equivalent

C/C++

and

Fortran

data

types

C/C++

type

Fortran

type

32-bit

64-bit

signed

int

INTEGER

INTEGER

signed

long

INTEGER

INTEGER*8

unsigned

long

LOGICAL

LOGICAL*8

pointer

INTEGER

INTEGER*8

POINTER

(4

bytes)

POINTER*8

(8

bytes)

4

Programming

Guide

Chapter

2.

Aligning

data

in

aggregates

XL

C/C++

provides

many

mechanisms

for

specifying

data

alignment

at

the

levels

of

individual

variables,

members

of

aggregates,

entire

aggregates,

and

entire

compilation

units.

If

you

are

porting

applications

between

different

platforms,

or

between

32-bit

and

64-bit

modes,

you

will

need

to

take

into

account

the

differences

between

alignment

settings

available

in

the

different

environments,

to

prevent

possible

data

corruption

and

deterioration

in

performance.

“Using

alignment

modes

and

modifiers”

discusses

the

default

alignment

settings

for

all

data

types

on

the

different

platforms

and

addressing

models;

options

you

can

use

to

control

the

alignment

of

aggregates

and

aggregate

members;

and

general

rules

for

aggregate

alignment.

This

section

also

provides

examples

of

structure

layouts

based

on

the

different

alignment

options.

“Using

and

aligning

bit

fields”

on

page

8

discusses

additional

rules

and

considerations

for

the

use

and

alignment

of

bit

fields,

and

provides

an

example

of

bit-packed

alignment.

Using

alignment

modes

and

modifiers

Within

aggregates

that

contain

different

data

types,

including

C

and

C++

structures

and

unions,

and

C++

classes,

each

data

type

supported

by

XL

C/C++

is

aligned

along

byte

boundaries

according

to

platform-specific

defaults,

as

follows:

v

AIX

power

or

full,

which

are

equivalent.

v

Linux

linuxppc.

v

2000Mac OS X

power.

Each

of

these

settings

is

defined

in

Table

6

on

page

6.

You

can

also

explicitly

control

the

alignment

of

data

by

using

an

alignment

mode,

as

well

as

alignment

modifiers.

Alignment

modes

allow

you

to

do

the

following:

Set

the

alignment

for

all

aggregates

in

a

single

file

or

multiple

files

in

the

compilation

process

To

use

this

approach,

you

specify

the

-qalign

compiler

option

during

compilation.

The

valid

suboptions

for

-qalign

for

each

platform

are

provided

in

Table

6

on

page

6.

Set

the

alignment

for

a

single

aggregate

or

multiple

aggregates

in

a

file

To

use

this

approach,

you

specify

the

#pragma

align

or

#pragma

options

align

directives

in

the

source

files.

The

valid

suboptions

for

#pragma

align

for

each

platform

are

provided

in

Table

6

on

page

6.

Each

directive

changes

the

alignment

rule

in

effect

for

all

aggregates

that

follow

the

directive

until

another

directive

is

encountered,

or

until

the

end

of

the

compilation

unit.

Set

the

alignment

for

a

single

aggregate

In

addition

to

the

#pragma

align

directive,

you

can

use

the

following

in

source

files:

v

Include

the

__attribute__((aligned(n)))

type

attribute

in

structure

declarations.

The

value

for

n

must

be

a

positive

power

of

2.

For

the

©

Copyright

IBM

Corp.

1998,

2004

5

correct

syntax

for

using

__attribute__((aligned))

as

a

type

attribute

for

an

aggregate,

see

″Type

Attributes″

in

XL

C/C++

Language

Reference.

v

Include

the

__align(n)

specifier

in

structure

declarations.

The

value

for

n

must

be

a

positive

power

of

2.

Alignment

modifiers

allow

you

to

do

the

following:

Set

the

alignment

for

all

members

in

an

aggregate

To

use

this

approach,

you

can

use

any

of

the

following

in

source

files:

v

Include

the

#pragma

pack

directive

before

structure

declarations.

For

valid

values

for

this

directive,

see

#pragma

pack

in

XL

C/C++

Compiler

Reference.

v

Include

the

__attribute__((packed))

type

attribute

in

structure

declarations.

For

the

correct

syntax

for

using

__attribute__((packed))

as

a

type

attribute,

see

″Type

Attributes″

in

XL

C/C++

Language

Reference.

Set

the

alignment

for

a

single

member

within

an

aggregate

To

use

this

approach,

include

__attribute__((packed))

or

__attribute__((aligned(n)))

type

or

variable

attributes

in

structure

declarations.

The

value

for

n

in

__attribute__((aligned))

must

be

a

positive

power

of

2.

For

more

information

on

the

variable

attributes,

see

″The

aligned

Variable

Attribute″

and

″The

packed

Variable

Attribute″

in

XL

C/C++

Language

Reference.

For

information

on

the

type

attributes,

see

″Type

Attributes″

in

XL

C/C++

Language

Reference.

Table

6.

Alignment

settings

Data

type

Storage

Alignment

settings

and

supported

platforms

natural

power

full

mac68k

twobyte

linuxppc

bit_packed3

packed3

AIX

Mac

AIX

Mac

AIX

AIX

Mac

AIX

Linux

AIX

Mac

Linux

AIX

_Bool

(C),

bool

(C++)

1

byte

1

byte

1

byte

1

byte

n/a

1

byte

char,

signed

char,

unsigned

char

1

byte

1

byte

1

byte

1

byte

1

byte

1

byte

wchar_t

(32-bit

mode)

2

bytes

2

bytes

2

bytes

2

bytes

2

bytes

1

byte

wchar_t

(64-bit

mode)

4

bytes

4

bytes

4

bytes

not

supported2

4

bytes

1

byte

int,

unsigned

int

4

bytes

4

bytes

4

bytes

2

bytes

4

bytes

1

byte

short

int,

unsigned

short

int

2

bytes

2

bytes

2

bytes

2

bytes

2

bytes

1

byte

long

int,

unsigned

long

int

(32-bit

mode)

4

bytes

4

bytes

4

bytes

2

bytes

4

bytes

1

byte

long

int,

unsigned

long

int

(64-bit

mode)

8

bytes

8

bytes

8

bytes

not

supported2

8

bytes

1

byte

long

long

8

bytes

8

bytes

8

bytes

2

bytes

8

bytes

1

byte

float

4

bytes

4

bytes

4

bytes

2

bytes

4

bytes

1

byte

double

8

bytes

8

bytes

see

note1

2

bytes

8

bytes

1

byte

long

double

8

bytes

8

bytes

see

note1

2

bytes

8

bytes

1

byte

long

double

with

-qlongdouble

16

bytes

16

bytes

see

note1

2

bytes

n/a

1

byte

pointer

(32-bit

mode)

4

bytes

4

bytes

4

bytes

2

bytes

4

bytes

1

byte

pointer

(64-bit

mode)

8

bytes

8

bytes

8

bytes

not

supported2

8

bytes

1

byte

6

Programming

Guide

Table

6.

Alignment

settings

(continued)

Data

type

Storage

Alignment

settings

and

supported

platforms

natural

power

full

mac68k

twobyte

linuxppc

bit_packed3

packed3

AIX

Mac

AIX

Mac

AIX

AIX

Mac

AIX

Linux

AIX

Mac

Linux

AIX

Notes:

1.

These

types

use

the

natural

alignment

for

the

first

member

in

the

aggregate

and

4

bytes

or

the

natural

alignment

(whichever

is

less)

for

subsequent

members.

2.

If

you

declare

an

aggregate

with

a

member

of

this

type

and

try

to

compile

with

this

alignment

setting,

the

compiler

issues

a

warning

message,

and

compiles

with

the

default

alignment

setting

for

the

appropriate

platform.

3.

The

packed

alignment

will

not

pack

bit-field

members

at

the

bit

level;

use

the

bit_packed

alignment

if

you

want

to

pack

bit

fields

at

the

bit

level.

If

you

generate

data

with

an

application

on

one

platform

and

read

the

data

with

an

application

on

another

platform,

you

will

want

to

be

sure

to

use

a

platform-neutral

alignment

mode,

such

as

#pragma

pack

or

qalign=bit_packed.

Note:

C++

The

C++

compiler

might

generate

extra

fields

for

classes

that

contain

base

classes

or

virtual

functions.

Objects

of

these

types

might

not

conform

to

the

usual

mappings

for

aggregates.

General

rules

for

alignment

If

you

control

the

alignment

of

aggregates

with

any

of

the

settings

listed

in

Table

6

on

page

6,

the

following

rules

apply:

v

For

all

alignment

settings,

the

size

of

an

aggregate

is

the

smallest

multiple

of

its

alignment

value

that

can

encompass

all

of

the

members

of

the

aggregate.

v

For

all

alignment

settings

except

mac68k,

the

alignment

of

an

aggregate

is

equal

to

the

largest

alignment

value

of

any

of

its

members.

v

For

mac68k

alignment,

any

aggregate

has

an

alignment

of

2

bytes,

regardless

of

the

data

types

of

its

members.

v

Aligned

aggregates

can

be

nested,

and

the

alignment

rules

applicable

to

each

nested

aggregate

are

determined

by

the

alignment

mode

that

is

in

effect

when

a

nested

aggregate

is

declared.

For

rules

on

aligning

aggregates

containing

bit

fields,

see

“Using

and

aligning

bit

fields”

on

page

8.

Alignment

examples

The

following

examples

use

these

symbols

to

show

padding

and

boundaries:

p

=

padding

|

=

halfword

(2-byte)

boundary

:

=

byte

boundary

Mac68K

example

For:

Chapter

2.

Aligning

data

in

aggregates

7

#pragma

options

align=mac68k

struct

B

{

char

a;

double

b;

}

#pragma

options

align=reset

The

size

of

B

is

10

bytes.

The

alignment

of

B

is

2

bytes.

The

layout

of

B

is:

|a:p|b:b|b:b|b:b|b:b|

Packed

example

For:

#pragma

options

align=packed

struct

{

char

a;

double

b;

}

B;

#pragma

options

align=reset

The

size

of

B

is

9

bytes.

The

layout

of

B

is:

|a:b|b:b|b:b|b:

Nested

aggregate

example

For:

#pragma

options

align=mac68k

struct

A

{

char

a;

#pragma

options

align=power

struct

B

{

int

b;

char

c;

}

B1;

//

<--

B1

laid

out

using

Power

alignment

rules

#pragma

options

align=reset

//

<--

has

no

effect

on

A

or

B,

but

on

subsequent

structs

char

d;

};

#pragma

options

align=reset

The

size

of

A

is

12

bytes.

The

alignment

of

A

is

2

bytes.

The

layout

of

A

is:

|a:p|b:b|b:b|c:p|p:p|d:p|

Related

references

v

-qalign

in

XL

C/C++

Compiler

Reference

v

#pragma

align

in

XL

C/C++

Compiler

Reference

v

#pragma

pack

in

XL

C/C++

Compiler

Reference

v

″The

aligned

Variable

Attribute″,

″The

packed

Variable

Attribute″,

″The

__align

Specifier″,

and

″Type

Attributes″

in

″Declarations″

in

XL

C/C++

Language

Reference.

Using

and

aligning

bit

fields

You

can

declare

a

bit

field

as

a

_Bool

(C),

bool

(C++),

char,

signed

char,

unsigned

char,

short,

unsigned

short,

int,

unsigned

int,

long,

unsigned

long,

long

long,

or

unsigned

long

long

data

type.

A

bit

field

is

always

4

or

8

bytes,

depending

on

the

declared

base

type

and

the

compilation

mode

(32-bit

or

64-bit).

C

8

Programming

Guide

C In

the

C

language,

you

can

specify

bit

fields

as

char

or

short

instead

of

int,

but

XL

C/C++

maps

them

as

if

they

were

unsigned

int.

The

length

of

a

bit

field

cannot

exceed

the

length

of

its

base

type.

In

extended

mode,

you

can

use

the

sizeof

operator

on

a

bit

field.

(The

sizeof

operator

on

a

bit

field

always

returns

4.)

C++

The

length

of

a

bit

field

can

exceed

the

length

of

its

base

type,

but

the

remaining

bits

will

be

used

to

pad

the

field,

and

will

not

actually

store

any

value.

However,

alignment

rules

for

aggregates

containing

bit

fields

are

different

depending

on

the

alignment

setting

you

specify.

These

rules

are

described

below.

Rules

for

natural

alignment

v

A

zero-length

bit

field

pads

to

the

next

alignment

boundary

of

its

base

declared

type.

This

causes

the

next

member

to

begin

on

a

4-byte

boundary

for

all

types

except

long

in

64-bit

mode

and

long

long

in

both

32-bit

and

64-bit

mode,

which

will

move

the

next

member

to

the

next

8-byte

boundary.

Padding

does

not

occur

if

the

previous

member’s

memory

layout

ended

on

the

appropriate

boundary.

v

C

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

0

bytes

and

an

alignment

of

4

bytes.

v

C++

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

4

or

8

bytes,

depending

on

the

declared

type

of

the

bit

field

and

the

compilation

mode.

Rules

for

power

alignment

v

Aggregates

containing

bit

fields

are

4-byte

(word)

aligned.

v

Bit

fields

are

packed

into

the

current

word.

If

a

bit

field

would

cross

a

word

boundary,

it

starts

at

the

next

word

boundary.

v

A

bit

field

of

length

zero

causes

the

bit

field

that

immediately

follows

it

to

be

aligned

at

the

next

word

boundary,

or

8

bytes,

depending

on

the

declared

type

and

the

compilation

mode.

If

the

zero-length

bit

field

is

at

a

word

boundary,

the

next

bit

field

starts

at

this

boundary.

v

C

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

0

bytes.

v

C++

An

aggregate

that

contains

only

zero-length

bit

fields

has

the

length

of

1

byte.

Rules

for

Mac68K

alignment

v

Bit

fields

are

packed

into

a

word

and

are

aligned

on

a

2-byte

boundary.

v

Bit

fields

that

would

cross

a

word

boundary

are

moved

to

the

next

halfword

boundary

even

if

they

are

already

starting

on

a

halfword

boundary.

(The

bit

field

can

still

end

up

crossing

a

word

boundary.)

v

A

bit

field

of

length

zero

forces

the

next

member

(even

if

it

is

not

a

bit

field)

to

start

at

the

next

halfword

boundary

even

if

the

zero-length

bit

field

is

currently

at

a

halfword

boundary.

v

An

aggregate

containing

nothing

but

zero-length

bit

fields

has

a

length,

in

bytes,

of

two

times

the

number

of

zerolength

bit

fields.

v

For

unions,

there

is

one

special

case:

unions

whose

largest

element

is

a

bit

field

of

length

16

or

less

have

a

size

of

2

bytes.

If

the

length

of

the

bit

field

is

greater

than

16,

the

size

of

the

union

is

4

bytes.

Chapter

2.

Aligning

data

in

aggregates

9

Rules

for

bit-packed

alignment

v

Bit

fields

have

an

alignment

of

1

byte,

and

are

packed

with

no

default

padding

between

bit

fields.

v

A

zero-length

bit

field

causes

the

next

member

to

start

at

the

next

byte

boundary.

If

the

zero-length

bit

field

is

already

at

a

byte

boundary,

the

next

member

starts

at

this

boundary.

A

non-bit

field

member

that

follows

a

bit

field

is

aligned

on

the

next

byte

boundary.

Example

of

bit

field

alignment

Bit-packed

example

For:

#pragma

options

align=bit_packed

struct

{

int

a

:

8;

int

b

:

10;

int

c

:

12;

int

d

:

4;

int

e

:

3;

int

:

0;

int

f

:

1;

char

g;

}

A;

pragma

options

align=reset

The

size

of

A

is

7

bytes.

The

alignment

of

A

is

1

byte.

The

layout

of

A

is:

Member

name

Byte

offset

Bit

offset

a

0

0

b

1

0

c

2

2

d

3

6

e

4

2

f

5

0

g

6

0

10

Programming

Guide

Chapter

3.

Handling

floating

point

operations

XL

C/C++

supports

single-precision

floating-point

numbers

with

an

approximate

range

of

10-38

to

10+38,

and

about

7

decimal

digits

of

precision;

and

double-precision

floating-point

numbers

with

an

approximate

range

of

10-308

to

10+308

and

precision

of

about

16

decimal

digits.

Quadruple

precision

values

have

the

same

range

as

double

precision

values,

but

the

precision

is

about

29

decimal

digits.

The

following

sections

provide

reference

information,

portability

considerations,

and

suggested

procedures

for

using

compiler

options

to

manage

floating-point

operations:

v

“Handling

multiply-add

operations”

v

“Handling

floating-point

rounding”

v

“Handling

floating-point

exceptions”

on

page

12

v

“Single-precision

and

double-precision

performance”

on

page

13

v

“Using

the

Mathematical

Acceleration

Subsystem

(MASS)”

on

page

13

Handling

multiply-add

operations

By

default,

the

compiler

violates

certain

IEEE

754

floating-point

rules

in

order

to

improve

performance.

For

example,

multiply-add

instructions

are

generated

by

default

because

they

are

faster

and

produce

a

more

precise

result

than

separate

multiply

and

add

instructions.

If

you

want

greater

compatibility

with

the

accuracy

available

on

other

systems,

you

can

use

the

-qfloat=nomaf

option

to

suppress

the

generation

of

these

multiply-add

instructions.

Related

references

v

-qfloat

in

XL

C/C++

Compiler

Reference

Handling

floating-point

rounding

By

default,

the

compiler

attempts

to

perform

as

much

arithmetic

as

possible

at

compile

time.

A

floating-point

operation

with

constant

operands

is

folded,

which

means

that

the

arithmetical

expression

is

replaced

with

the

compile-time

result.

If

you

enable

optimization,

increased

folding

might

occur.

However,

the

result

of

a

compile-time

computation

might

differ

slightly

from

the

result

that

would

have

been

calculated

at

run

time,

because

more

rounding

operations

occur

at

compile

time.

For

example,

where

a

multiply-add-fused

(MAF)

operation

might

be

used

at

run

time

with

less

rounding,

separate

multiply

and

add

operations

might

be

used

at

compile

time,

producing

a

slightly

different

result.

To

prevent

the

possibility

of

unexpected

results

due

to

compile-time

rounding,

you

have

two

options:

v

Use

the

-qfloat=nofold

compiler

option

to

suppress

all

compile-time

folding

of

floating-point

computations.

v

Use

the

-y

compiler

option

to

specify

a

IEEE

compile-time

rounding

mode

that

matches

the

rounding

mode

to

be

used

at

run

time.

By

default,

the

rounding

mode

is

round-to-nearest,

unless

you

specify

another

value

(which

you

can

do

via

the

XL

C/C++

built-in

function

__setrnd,

declared

in

the

builtins.h

file).

©

Copyright

IBM

Corp.

1998,

2004

11

For

example,

if

you

were

to

compile

the

following

code

sample

with

-yz,

which

specifies

a

rounding

mode

of

round-to-zero,

the

two

results

of

u.x

would

be

slightly

different:

int

main

()

{

union

uu

{

float

x;

int

i;

}

u;

volatile

float

one,

three;

u.x=1.0/3.0;

printf(“1/3=%8X

\n”,

u.i);

one=1.0;

three=3.0;

u.x=one/three;

printf

(“1/3=%8X

\n”,

u.i);

return

0;

}

This

is

because

the

calculation

of

1.0/3.0

would

be

folded

at

compile-time

using

round-to-zero

rounding,

while

one/three

would

be

calculated

at

run-time

using

the

default

rounding

mode

of

round-to-nearest.

(Declaring

the

variables

one

and

three

as

volatile

suppresses

folding

by

the

compiler,

even

under

optimization.)

The

output

of

the

program

would

be:

1/3=3EAAAAAA

1/3=3EAAAAAB

To

ensure

consistency

between

compile-time

and

run-time

results

in

this

example,

you

would

compile

with

the

option

-yn

(which

is

the

default).

Related

references

v

-qfloat

in

XL

C/C++

Compiler

Reference

v

-y

in

XL

C/C++

Compiler

Reference

v

__setrnd

in

“Appendix

B:

Built-in

Functions”

in

theXL

C/C++

Compiler

Reference

Handling

floating-point

exceptions

By

default,

invalid

operations

such

as

division

by

zero,

division

by

infinity,

overflow,

and

underflow

are

ignored

at

run

time.

However,

you

can

use

the

-qflttrap

option

to

detect

these

types

of

exceptions.

In

addition,

you

can

add

suitable

support

code

to

your

program

to

allow

program

execution

to

continue

after

an

exception

occurs,

and

to

modify

the

results

of

operations

causing

exceptions.

Because,

however,

floating-point

computations

involving

constants

are

usually

folded

at

compile

time,

the

potential

exceptions

that

would

be

produced

at

run

time

will

not

occur.

To

ensure

that

the

-qflttrap

option

traps

all

run-time

floating-point

exceptions,

consider

using

the

-qfloat=nofold

option

to

suppress

all

compile-time

folding.

Related

references

v

-qfloat

in

XL

C/C++

Compiler

Reference

v

-qflttrap

in

XL

C/C++

Compiler

Reference

12

Programming

Guide

Single-precision

and

double-precision

performance

If

you

compile

your

application

with

the

default

value

of

-qarch=com

option

or

any

of

the

values

pwr,

pwr2,

pwrx,

pwr2s,

or

p2sc,

only

double-precision

computations

are

supported.

For

these

architectures,

if

you

need

to

convert

results

to

single

precision,

rounding

is

applied,

based

on

the

rounding

mode

in

effect.

With

these

architectures,

because

explicit

rounding

operations

are

required,

single-precision

computations

are

often

slower

than

double-precision

computations.

With

all

other

values

for

-qarch,

single-precision

instructions

are

used

for

single-precision

operations,

and

are

executed

with

the

same

speed

as

double-precision

operations.

For

more

information

about

the

PowerPC

floating-point

processor,

see

the

AIX

Assembler

Language

Reference.

Related

references

v

-qarch

in

XL

C/C++

Compiler

Reference

Using

the

Mathematical

Acceleration

Subsystem

(MASS)

The

XL

C/C++

Enterprise

Edition

for

AIX

ships

the

Mathematical

Acceleration

Subsystem

(MASS),

a

set

of

libraries

of

tuned

mathematical

intrinsic

functions

that

provide

improved

performance

over

the

corresponding

libm.a

library

functions.

The

accuracy

and

exception

handling

might

not

be

identical

in

MASS

functions

and

libm.a

functions.

The

MASS

libraries

on

AIX

consist

of

a

library

of

scalar

functions,

described

in

“Using

the

scalar

library,”

and

a

set

of

vector

libraries

tuned

for

specific

architectures,

described

in

“Using

the

vector

libraries”

on

page

14.

“Compiling

and

linking

a

program

with

MASS”

on

page

17

describes

how

to

compile

and

link

a

program

that

uses

the

MASS

libraries,

and

how

to

selectively

use

the

MASS

scalar

library

functions

in

concert

with

the

regular

libm.a

scalar

functions.

Using

the

scalar

library

The

MASS

scalar

library,

libmass.a,

contains

an

accelerated

set

of

frequently

used

math

intrinsic

functions

in

the

AIX

system

library

libm.a.

These

functions

all

accept

double-precision

parameters

and

return

a

double-precision

result,

and

are

summarized

in

Table

7.

To

provide

the

prototypes

for

the

functions,

include

math.h

in

your

source

files.

Table

7.

MASS

scalar

library

functions

Function

Description

Prototype

sqrt

Returns

the

square

root

of

x

double

sqrt

(double

x);

rsqrt

Returns

the

reciprocal

of

the

square

root

of

x

double

rsqrt

(double

x);

exp

Returns

the

exponential

function

of

x

double

exp

(double

x);

log

Returns

the

natural

logarithm

of

x

double

log

(double

x);

sin

Returns

the

sine

of

x

double

sin

(double

x);

cos

Returns

the

cosine

of

x

double

cos

(double

x);

tan

Returns

the

tangent

of

x

double

tan

(double

x);

atan

Returns

the

arctangent

of

x

double

atan

(double

x);

Chapter

3.

Handling

floating

point

operations

13

Table

7.

MASS

scalar

library

functions

(continued)

Function

Description

Prototype

atan2

Returns

the

arctangent

of

x/y

double

atan2

(double

x,

double

y);

sinh

Returns

the

hyperbolic

sine

of

x

double

sinh

(double

x);

cosh

Returns

the

hyperbolic

cosine

of

x

double

cosh

(double

x);

tanh

Returns

the

hyperbolic

tangent

of

x

double

tanh

(double

x);

dnint

Returns

the

nearest

integer

to

x

(as

a

double)

double

dnint

(double

x);

pow

Returns

x

raised

to

the

power

y

double

pow

(double

x,

double

y);

The

trigonometric

functions

(sin,

cos,

tan)

return

NaN

(Not-a-Number)

for

large

arguments

(abs(x)>2**50*pi).

Note:

In

some

cases

the

MASS

functions

are

not

as

accurate

as

libm.a,

and

they

might

handle

edge

cases

differently

(sqrt(Inf),

for

example).

Using

the

vector

libraries

The

MASS

vector

libraries

are

shipped

in

the

following

archives:

libmassv.a

The

general

vector

library.

libmassvp3.a

Contains

some

functions

that

have

been

tuned

for

the

POWER3

architecture.

The

remaining

functions

are

identical

to

those

in

libmassv.a.

libmassvp4.a

Contains

some

functions

that

have

been

tuned

for

the

POWER4

architecture.

The

remaining

functions

are

identical

to

those

in

libmassv.a.

If

you

are

using

POWER5,

this

library

is

the

recommended

choice.

With

the

exception

of

a

few

functions

(described

below),

all

of

the

functions

in

libmassv.a,

libmassvp3.a,

and

libmassvp4.a

accept

three

parameters:

a

double-precision

or

single-precision

vector

input

parameter;

a

double-precision

or

single-precision

output

parameter;

and

an

integer

vector-length

parameter.

The

functions

are

of

the

form

function_name

(y,x,n),

where

x

is

the

source

vector,

y

is

the

target

vector,

and

n

is

the

vector

length.

The

parameters

y

and

x

are

assumed

to

be

double-precision

for

functions

with

the

prefix

v,

and

single-precision

for

functions

with

the

prefix

vs.

As

an

example,

the

following

code:

#include

<massv.h>

double

x[500],

y[500];

int

n;

n

=

500;

...

vexp

(y,

x,

&n);

outputs

a

vector

y

of

length

500

whose

elements

are

exp(x[i]),

where

i=0,...,499.

The

single-precision

and

double-precision

functions

contained

in

the

vector

libraries

are

summarized

in

Table

8

on

page

15.

To

provide

the

prototypes

for

the

functions,

include

massv.h

in

your

source

files.

Note

that

in

C

and

C++

applications,

only

call

by

reference

is

supported,

even

for

scalar

arguments.

14

Programming

Guide

Table

8.

MASS

vector

library

functions

Double-
precision

function

Single-
precision

function

Description

Double-precision

function

prototype

Single-precision

function

prototype

vacos

vsacos

Sets

y[i]

to

the

arccosine

of

x[i],

for

i=0,..,*n–1

void

vacos

(double

y[],

double

x[],

int

*n);

void

vsacos

(float

y[],

float

x[],

int

*n);

vasin

vsasin

Sets

y[i]

to

the

arcsine

of

x[i],

for

i=0,..,*n–1

void

vasin

(double

y[],

double

x[],

int

*n);

void

vsasin

(float

y[],

float

x[],

int

*n);

vatan2

vsatan2

Sets

z[i]

to

the

arctangent

of

x[i]/y[i],

for

i=0,..,*n–1

void

vatan2

(double

z[],

double

x[],

double

y[],

int

*n);

void

vsatan2

(float

z[],

float

x[],

float

y[],

int

*n);

vcos

vscos

Sets

y[i]

to

the

cosine

of

x[i],

for

i=0,..,*n–1

void

vcos

(double

y[],

double

x[],

int

*n);

void

vscos

(float

y[],

float

x[],

int

*n);

vcosh

vscosh

Sets

y[i]

to

the

hyperbolic

cosine

of

x[i],

for

i=0,..,*n–1

void

vcosh

(double

y[],

double

x[],

int

*n);

void

vscosh

(float

y[],

float

x[],

int

*n);

vcosisin1

vscosisin1

Sets

the

real

part

of

y[i]

to

the

cosine

of

x[i]

and

the

imaginary

part

of

y[i]

to

the

sine

of

x[i],

for

i=0,..,*n–1

void

vcosisin

(double

complex

y[],

double

x[],

int

*n);

void

vscosisin

(float

complex

y[],

float

x[],

int

*n)

vdint

Sets

y[i]

to

the

integer

truncation

of

x[i],

for

i=0,..,*n–1

void

vdint

(double

y[],

double

x[],

int

*n);

vdiv

vsdiv

Sets

z[i]

to

x[i]/y[i],

for

i=0,..,*n–1

void

vdiv

(double

z[],

double

x[],

double

y[],

int

*n);

void

vsdiv

(float

z[],

float

x[],

float

y[],

int

*n);

vdnint

Sets

y[i]

to

the

nearest

integer

to

x[i],

for

i=0,..,n–1

void

vdnint

(double

y[],

double

x[],

int

*n);

vexp

vsexp

Sets

y[i]

to

the

exponential

function

of

x[i],

for

i=0,..,*n–1

void

vexp

(double

y[],

double

x[],

int

*n);

void

vsexp

(float

y[],

float

x[],

int

*n);

vexpm1

vsexpm1

Sets

y[i]

to

(the

exponential

function

of

x[i])-1,

for

i=0,..,*n–1

void

vexpm1

(double

y[],

double

x[],

int

*n);

void

vsexpm1

(float

y[],

float

x[],

int

*n);

vlog

vslog

Sets

y[i]

to

the

natural

logarithm

of

x[i],

for

i=0,..,*n–1

void

vlog

(double

y[],

double

x[],

int

*n);

void

vslog

(float

y[],

float

x[],

int

*n);

vlog10

vslog10

Sets

y[i]

to

the

base-10

logarithm

of

x[i],

for

i=0,..,*n–1

void

vlog10

(double

y[],

double

x[],

int

*n);

void

vslog10

(float

y[],

float

x[],

int

*n);

Chapter

3.

Handling

floating

point

operations

15

Table

8.

MASS

vector

library

functions

(continued)

vlog1p

vslog1p

Sets

y[i]

to

the

natural

logarithm

of

(x[i]+1),

for

i=0,..,*n–1

void

vlog1p

(double

y[],

double

x[],

int

*n);

void

vslog1p

(float

y[],

float

x[],

int

*n);

vpow

vspow

Sets

z[i]

to

x[i]

raised

to

the

power

y[i],

for

i=0,..,*n-1

void

vpow

(double

z[],

double

x[],

double

y[],

int

*n);

void

vspow

(float

z[],

float

x[],

float

y[],

int

*n);

vrec

vsrec

Sets

y[i]

to

the

reciprocal

of

x[i],

for

i=0,..,*n–1

void

vrec

(double

y[],

double

x[],

int

*n);

void

vsrec

(float

y[],

float

x[],

int

*n);

vrsqrt

vsrsqrt

Sets

y[i]

to

the

reciprocal

of

the

square

root

of

x[i],

for

i=0,..,*n–1

void

vrsqrt

(double

y[],

double

x[],

int

*n);

void

vsrsqrt

(float

y[],

float

x[],

int

*n);

vsin

vssin

Sets

y[i]

to

the

sine

of

x[i],

for

i=0,..,*n–1

void

vsin

(double

y[],

double

x[],

int

*n);

void

vssin

(float

y[],

float

x[],

int

*n);

vsincos

vssincos

Sets

y[i]

to

the

sine

of

x[i]

and

z[i]

to

the

cosine

of

x[i],

for

i=0,..,*n–1

void

vsincos

(double

y[],

double

z[],

double

x[],

int

*n);

void

vssincos

(float

y[],

float

z[],

float

x[],

int

*n);

vsinh

vssinh

Sets

y[i]

to

the

hyperbolic

sine

of

x[i],

for

i=0,..,*n–1

void

vsinh

(double

y[],

double

x[],

int

*n);

void

vssinh

(float

y[],

float

x[],

int

*n);

vsqrt

vssqrt

Sets

y[i]

to

the

square

root

of

x[i],

for

i=0,..,*n–1

void

vsqrt

(double

y[],

double

x[],

int

*n);

void

vssqrt

(float

y[],

float

x[],

int

*n);

vtan

vstan

Sets

y[i]

to

the

tangent

of

x[i],

for

i=0,..,*n-1

void

vtan

(double

y[],

double

x[],

int

*n);

void

vstan

(float

y[],

float

x[],

int

*n);

vtanh

vstanh

Sets

y[i]

to

the

hyperbolic

tangent

of

x[i],

for

i=0,..,*n–1

void

vtanh

(double

y[],

double

x[],

int

*n);

void

vstanh

(float

y[],

float

x[],

int

*n);

Notes:

1.

By

default,

these

functions

use

the

__Complex

data

type,

which

is

only

available

for

AIX

5.2

and

later,

and

will

not

compile

on

older

versions

of

the

operating

system.

To

get

an

alternate

prototype

for

these

functions,

compile

with

-D__nocomplex.

This

will

define

the

functions

as:

void

vcosisin

(double

y[2][],

double

x[],

int

*n);

and

void

vscosisin

(float

y[2][],

float

x[],

int

*n);

The

functions

vdiv,

vsincos,

and

vatan2

take

four

parameters.

The

functions

vdiv

and

vatan2

take

the

parameters

(z,x,y,n).

The

function

vdiv

outputs

a

vector

z

whose

elements

are

x[i]/y[i],

where

i=0,..,*n–1.

The

function

vatan2

outputs

a

vector

z

whose

elements

are

atan(x[i]/y[i]),

where

i=0,..,*n–1.

The

function

vsincos

takes

the

parameters

(y,z,x,n),

and

outputs

two

vectors,

y

and

z,

whose

elements

are

sin(x[i])

and

cos(x[i])

respectively.

In

vcosisin(y,x,n),

x

is

a

vector

of

n

double

elements

and

the

function

outputs

a

vector

y

of

n

double

complex

elements

of

the

form

(cos(x[i]),sin(x[i])).

If

-D__nocomplex

is

used

(see

note

in

15),

the

output

vector

holds

y[0][i]

=

cos(x[i])

and

y[1][i]

=

sin(x[i]),

where

i=0,..,*n−1.

16

Programming

Guide

Consistency

of

MASS

vector

functions

In

the

interest

of

speed,

the

MASS

libraries

make

certain

trade-offs.

One

of

these

involves

the

consistency

of

certain

MASS

vector

functions.

For

certain

functions,

it

is

possible

that

the

result

computed

for

a

particular

input

value

will

vary

slightly

(usually

only

in

the

least

significant

bit)

depending

on

its

position

in

the

vector,

the

vector

length,

and

nearby

elements

of

the

input

vector.

Also,

the

results

produced

by

the

different

MASS

libraries

are

not

necessarily

bit-wise

identical.

However,

the

libmassvp4.a

library

provides

newer,

consistent

versions

of

certain

functions.

These

consistent

functions

are:

vsqrt,

vssqrt,

vlog,

vrec,

vdiv,

vsin,

vcos,

vacos,

vasin,

vatan2,

vrsqrt,

vscos,

vsdiv,

vexp,

vsrec,

vssin.

The

accuracy

of

the

vector

functions

is

comparable

to

that

of

the

corresponding

scalar

functions

in

libmass.a,

though

results

might

not

be

bit-wise

identical.

For

more

information

on

consistency

and

avoiding

inconsistency

with

the

vector

libraries,

as

well

as

performance

and

accuracy

data,

see

the

MASS

Web

site

at

http://www.ibm.com/software/awdtools/vacpp/mass.

Related

references

v

-D

in

XL

C/C++

Compiler

Reference

Compiling

and

linking

a

program

with

MASS

To

compile

an

application

that

calls

the

routines

in

these

libraries,

specify

mass

and

massv

(or

massvp3

or

massvp4)

on

the

-l

linker

option.

For

example,

if

the

MASS

libraries

are

installed

in

the

default

directory

/usr/lib,

you

could

specify:

xlc

progc.c

-o

progf

-lmass

-lmassv

The

MASS

functions

must

run

in

the

round-to-nearest

rounding

mode

and

with

floating-point

exception

trapping

disabled.

(These

are

the

default

compilation

settings.)

Using

libmass.a

with

libm.a

If

you

wish

to

use

the

libmass.a

scalar

library

for

some

functions

and

the

normal

libm.a

for

other

functions,

follow

this

procedure

to

compile

and

link

your

program:

1.

Create

an

export

list

(this

can

be

a

flat

text

file)

containing

the

names

of

the

desired

functions.

For

example,

to

select

only

the

fast

tangent

function

from

libmass.a

for

use

with

the

C

program

sample.c,

create

a

file

called

fast_tan.exp

with

the

following

line:

tan

2.

Create

a

shared

object

from

the

export

list

with

the

AIX

ld

command,

linking

with

the

libmass.a

library.

For

example:

ld

-bexport:fast_tan.exp

-o

fast_tan.o

-bnoentry

-lmass

-bmodtype:SRE

3.

Archive

the

shared

object

into

a

library

with

the

AIX

ar

command.

For

example:

ar

-q

libfasttan.a

fast_tan.o

4.

Create

the

final

executable

using

xlc,

specifying

the

object

file

containing

the

MASS

functions

before

the

standard

math

library,

libm.a.

This

links

only

the

functions

specified

in

the

object

file

(in

this

example,

the

tan

function)

and

the

remainder

of

the

math

functions

from

the

standard

system

library.

For

example:

xlc

sample.c

-o

sample

-Ldir_containing_libfasttan.a

-lfasttan

-lm

Chapter

3.

Handling

floating

point

operations

17

http://www.ibm.com/software/awdtools/vacpp/mass

Note:

The

MASS

cos

function

is

automatically

linked

if

you

export

MASS

sin;

MASS

atan2

is

automatically

linked

if

you

export

MASS

atan.

Related

references:

v

ld

in

the

AIX

Commands

Reference

v

ar

in

the

AIX

Commands

Reference

18

Programming

Guide

Chapter

4.

Using

memory

heaps

In

addition

to

the

memory

management

functions

defined

by

ANSI,

XL

C/C++

provides

enhanced

versions

of

memory

management

functions

that

can

help

you

improve

program

performance

and

debug

your

programs.

These

functions

allow

you

to:

v

Allocate

memory

from

multiple,

custom-defined

pools

of

memory,

known

as

user-created

heaps.

v

Debug

memory

problems

in

the

default

run-time

heap.

v

Debug

memory

problems

in

user-created

heaps.

All

the

versions

of

the

memory

management

functions

actually

work

in

the

same

way.

They

differ

only

in

the

heap

from

which

they

allocate,

and

in

whether

they

save

information

to

help

you

debug

memory

problems.

The

memory

allocated

by

all

of

these

functions

is

suitably

aligned

for

storing

any

type

of

object.

“Managing

memory

with

multiple

heaps”

discusses

the

advantages

of

using

multiple,

user-created

heaps;

summarizes

the

functions

available

to

manage

user-created

heaps;

provides

procedures

for

creating,

expanding,

using,

and

destroying

user-defined

heaps;

and

provides

examples

of

programs

that

create

user

heaps

using

both

regular

and

shared

memory.

“Debugging

memory

heaps”

on

page

30

discusses

the

functions

available

for

checking

and

debugging

the

default

and

user-created

heaps.

Managing

memory

with

multiple

heaps

You

can

use

XL

C/C++

to

create

and

manipulate

your

own

memory

heaps,

either

in

place

of

or

in

addition

to

the

default

XL

C

run-time

heap.

You

can

create

heaps

of

regular

memory

or

shared

memory,

and

you

can

have

any

number

of

heaps

of

any

type.

The

only

limit

is

the

space

available

on

your

operating

system

(your

machine’s

memory

and

swapper

size,

minus

the

memory

required

by

other

running

applications).

You

can

also

change

the

default

run-time

heap

to

a

heap

that

you

have

created.

Using

your

own

heaps

is

optional,

and

your

applications

will

work

well

using

the

default

memory

management

provided

(and

used

by)

the

XL

C/C++

run-time

library.

However,

using

multiple

heaps

can

be

more

efficient

and

can

help

you

improve

your

program’s

performance

and

reduce

wasted

memory

for

a

number

of

reasons:

v

When

you

allocate

from

a

single

heap,

you

can

end

up

with

memory

blocks

on

different

pages

of

memory.

For

example,

you

might

have

a

linked

list

that

allocates

memory

each

time

you

add

a

node

to

the

list.

If

you

allocate

memory

for

other

data

in

between

adding

nodes,

the

memory

blocks

for

the

nodes

could

end

up

on

many

different

pages.

To

access

the

data

in

the

list,

the

system

might

have

to

swap

many

pages,

which

can

significantly

slow

your

program.

With

multiple

heaps,

you

can

specify

the

heap

from

which

you

want

to

allocate.

For

example,

you

might

create

a

heap

specifically

for

a

linked

list.

The

list’s

memory

blocks

and

the

data

they

contain

would

remain

close

together

on

fewer

pages,

which

reduces

the

amount

of

swapping

required.

©

Copyright

IBM

Corp.

1998,

2004

19

v

In

multithreaded

applications,

only

one

thread

can

access

the

heap

at

a

time

to

ensure

memory

is

safely

allocated

and

freed.

For

example,

if

thread

1

is

allocating

memory,

and

thread

2

has

a

call

to

free,

thread

2

must

wait

until

thread

1

has

finished

its

allocation

before

it

can

access

the

heap.

Again,

this

can

slow

down

performance,

especially

if

your

program

does

a

lot

of

memory

operations.

If

you

create

a

separate

heap

for

each

thread,

you

can

allocate

from

them

concurrently,

eliminating

both

the

waiting

period

and

the

overhead

required

to

serialize

access

to

the

heap.

v

With

a

single

heap,

you

must

explicitly

free

each

block

that

you

allocate.

If

you

have

a

linked

list

that

allocates

memory

for

each

node,

you

have

to

traverse

the

entire

list

and

free

each

block

individually,

which

can

take

some

time.

If

you

create

a

separate

heap

for

that

linked

list,

you

can

destroy

it

with

a

single

call

and

free

all

the

memory

at

once.

v

When

you

have

only

one

heap,

all

components

share

it

(including

the

XL

C/C++

run-time

library,

vendor

libraries,

and

your

own

code).

If

one

component

corrupts

the

heap,

another

component

might

fail.

You

might

have

trouble

discovering

the

cause

of

the

problem

and

where

the

heap

was

damaged.

With

multiple

heaps,

you

can

create

a

separate

heap

for

each

component,

so

if

one

damages

the

heap

(for

example,

by

using

a

freed

pointer),

the

others

can

continue

unaffected.

You

also

know

where

to

look

to

correct

the

problem.

The

following

sections

describe

the

functions

available

for

using

multiple

heaps,

provide

programming

guidelines

for

creating,

using

and

destroying

multiple

heaps,

and

provide

code

examples

that

implement

multiple

heaps.

Functions

for

managing

user-created

heaps

The

libhu.a

library

provides

a

set

of

functions

that

allow

you

to

manage

user-created

heaps.

These

functions

are

all

prefixed

by

_u

(for

″user″

heaps),

and

they

are

declared

in

the

header

file

umalloc.h.

The

following

table

summarizes

the

functions

available

for

creating

and

managing

user-defined

heaps.

Table

9.

Functions

for

managing

memory

heaps

Default

heap

function

Corresponding

user-created

heap

function

Description

n/a

_ucreate

Creates

a

heap.

Described

in

“Creating

a

heap”

on

page

21.

n/a

_uopen

Opens

a

heap

for

use

by

a

process.

Described

in

“Using

a

heap”

on

page

23.

n/a

_ustats

Provides

information

about

a

heap.

Described

in

“Getting

information

about

a

heap”

on

page

24.

n/a

_uaddmem

Adds

memory

blocks

to

a

heap.

Described

in

“Expanding

a

heap”

on

page

22.

n/a

_uclose

Closes

a

heap

from

further

use

by

a

process.

Described

in

“Closing

and

destroying

a

heap”

on

page

24.

n/a

_udestroy

Destroys

a

heap.

Described

in

“Closing

and

destroying

a

heap”

on

page

24.

calloc

_ucalloc

Allocates

and

initializes

memory

from

a

heap

you

have

created.

Described

in

“Using

a

heap”

on

page

23.

20

Programming

Guide

Table

9.

Functions

for

managing

memory

heaps

(continued)

Default

heap

function

Corresponding

user-created

heap

function

Description

malloc

_umalloc

Allocates

memory

from

a

heap

you

have

created.

Described

in

“Using

a

heap”

on

page

23.

_heapmin

_uheapmin

Returns

unused

memory

to

the

system.

Described

in

“Closing

and

destroying

a

heap”

on

page

24.

n/a

_udefault

Changes

the

default

run-time

heap

to

a

user-created

heap.

Described

in

“Changing

the

default

heap

used

in

a

program”

on

page

25.

Note:

There

are

no

user-created

heap

versions

of

realloc

or

free.

These

standard

functions

always

determine

the

heap

from

which

memory

is

allocated,

and

can

be

used

with

both

user-created

and

default

memory

heaps.

Creating

a

heap

You

can

create

a

fixed-size

heap,

or

a

dynamically-sized

heap.

With

a

fixed-size

heap,

the

initial

block

of

memory

must

be

large

enough

to

satisfy

all

allocation

requests

made

to

it.

With

a

dynamically-sized

heap,

the

heap

can

expand

and

contract

as

your

program

needs

demand.

Procedures

for

creating

both

types

of

heaps

are

provided

below.

Creating

a

fixed-size

heap

When

you

create

a

fixed-size

heap,

you

first

allocate

a

block

of

memory

large

enough

to

hold

the

heap

and

to

hold

internal

information

required

to

manage

the

heap,

and

you

assign

it

a

handle.

For

example:

Heap_t

fixedHeap;

/*

this

is

the

“heap

handle”

*/

/*

get

memory

for

internal

info

plus

5000

bytes

for

the

heap

*/

static

char

block[_HEAP_MIN_SIZE

+

5000];

The

internal

information

requires

a

minimum

set

of

bytes,

specified

by

the

_HEAP_MIN_SIZE

macro

(defined

in

umalloc.h).

You

can

add

the

amount

of

memory

your

program

requires

to

this

value

to

determine

the

size

of

the

block

you

need

to

get.

Once

the

block

is

fully

allocated,

further

allocation

requests

to

the

heap

will

fail.

After

you

have

allocated

a

block

of

memory,

you

create

the

heap

with

_ucreate,

and

specify

the

type

of

memory

for

the

heap,

regular

or

shared.

For

example:

fixedHeap

=

_ucreate(block,

(_HEAP_MIN_SIZE+5000),

/*

block

to

use

*/

!_BLOCK_CLEAN,

/*

memory

is

not

set

to

0

*/

_HEAP_REGULAR,

/*

regular

memory

*/

NULL,

NULL);

/*

functions

for

expanding

and

shrinking

a

dynamically-sized

heap

*/

The

!_BLOCK_CLEAN

parameter

indicates

that

the

memory

in

the

block

has

not

been

initialized

to

0.

If

it

were

set

to

0

(for

example,

by

memset),

you

would

specify

_BLOCK_CLEAN.

The

calloc

and

_ucalloc

functions

use

this

information

to

improve

their

efficiency;

if

the

memory

is

already

initialized

to

0,

they

don’t

need

to

initialize

it.

The

fourth

parameter

indicates

the

type

of

memory

the

heap

contains:

regular

(_HEAP_REGULAR)

or

shared

(_HEAP_SHARED).

Chapter

4.

Using

memory

heaps

21

For

a

fixed-size

heap,

the

last

two

parameters

are

always

NULL.

Creating

a

dynamically-sized

heap

With

the

XL

C/C++default

heap,

when

not

enough

storage

is

available

to

fulfill

a

malloc

request,

the

run-time

environment

gets

additional

storage

from

the

system.

Similarly,

when

you

minimize

the

heap

with

_heapmin

or

when

your

program

ends,

the

run-time

environment

returns

the

memory

to

the

operating

system.

When

you

create

an

expandable

heap,

you

provide

your

own

functions

to

do

this

work,

which

you

can

name

however

you

choose.

You

specify

pointers

to

these

functions

as

the

last

two

parameters

to

_ucreate

(instead

of

the

NULL

pointers

you

use

to

create

a

fixed-size

heap).

For

example:

Heap_t

growHeap;

static

char

block[_HEAP_MIN_SIZE];

/*

get

block

*/

growHeap

=

_ucreate(block,

_HEAP_MIN_SIZE,

/*

starting

block

*/

!_BLOCK_CLEAN,

/*

memory

not

set

to

0

*/

_HEAP_REGULAR,

/*

regular

memory

*/

expandHeap,

/*

function

to

expand

heap

*/

shrinkHeap);

/*

function

to

shrink

heap

*/

Note:

You

can

use

the

same

expand

and

shrink

functions

for

more

than

one

heap,

as

long

as

the

heaps

use

the

same

type

of

memory

and

your

functions

are

not

written

specifically

for

one

heap.

Expanding

a

heap

To

increase

the

size

of

a

heap,

you

add

blocks

of

memory

to

it

by

doing

the

following:

v

For

fixed-size

or

dynamically-sized

heaps,

calling

the

_uaddmem

function.

v

For

dynamically-sized

heaps

only,

writing

a

function

that

expands

the

heap,

and

that

can

be

called

automatically

by

the

system

if

necessary,

whenever

you

allocate

memory

from

the

heap.

Both

options

are

described

below.

Adding

blocks

of

memory

to

a

heap

You

can

add

blocks

of

memory

to

a

fixed-size

or

dynamically-sized

heap

with

_uaddmem.

This

can

be

useful

if

you

have

a

large

amount

of

memory

that

is

allocated

conditionally.

Like

the

starting

block,

you

must

first

allocate

memory

for

a

block

of

memory.

This

block

will

be

added

to

the

current

heap,

so

make

sure

the

block

you

add

is

of

the

same

type

of

memory

as

the

heap

to

which

you

are

adding

it.

For

example,

to

add

64K

to

fixedHeap:

static

char

newblock[65536];

_uaddmem(fixedHeap,

/*

heap

to

add

to

*/

newblock,

65536,

/*

block

to

add

*/

_BLOCK_CLEAN);

/*

sets

memory

to

0

*/

Note:

For

every

block

of

memory

you

add,

a

small

number

of

bytes

from

it

are

used

to

store

internal

information.

To

reduce

the

total

amount

of

overhead,

it

is

better

to

add

a

few

large

blocks

of

memory

than

many

small

blocks.

Writing

a

heap-expanding

function

When

you

call

_umalloc

(or

a

similar

function)

for

a

dynamically-sized

heap,

_umalloc

tries

to

allocate

the

memory

from

the

initial

block

you

provided

to

_ucreate.

If

not

enough

memory

is

there,

it

then

calls

the

heap-expanding

function

22

Programming

Guide

you

specified

as

a

parameter

to

_ucreate.

Your

function

then

gets

more

memory

from

the

operating

system

and

adds

it

to

the

heap.

It

is

up

to

you

how

you

do

this.

Your

function

must

have

the

following

prototype:

void

*(*functionName)(Heap_t

uh,

size_t

*size,

int

*clean);

Where

functionName

identifies

the

function

(you

can

name

it

however

you

want),

uh

is

the

heap

to

be

expanded,

and

size

is

the

size

of

the

allocation

request

passed

by

_umalloc.

You

probably

want

to

return

enough

memory

at

a

time

to

satisfy

several

allocations;

otherwise

every

subsequent

allocation

has

to

call

your

heap-expanding

function,

reducing

your

program’s

execution

speed.

Make

sure

that

you

update

the

size

parameter

if

you

return

more

than

the

size

requested.

Your

function

must

also

set

the

clean

parameter

to

either

_BLOCK_CLEAN,

to

indicate

the

memory

has

been

set

to

0,

or

!_BLOCK_CLEAN,

to

indicate

that

the

memory

has

not

been

initialized.

The

following

fragment

shows

an

example

of

a

heap-expanding

function:

static

void

*expandHeap(Heap_t

uh,

size_t

*length,

int

*clean)

{

char

*newblock;

/*

round

the

size

up

to

a

multiple

of

64K

*

/

*length

=

(*length

/

65536)

*

65536

+

65536;

*clean

=

_BLOCK_CLEAN;

/*

mark

the

block

as

“clean”

*/

return(newblock);

/*

return

new

memory

block

*/

}

Using

a

heap

Once

you

have

created

a

heap,

you

can

open

it

for

use

by

calling

_uopen:

_uopen(fixedHeap);

This

opens

the

heap

for

that

particular

process;

if

the

heap

is

shared,

each

process

that

uses

the

heap

needs

its

own

call

to

_uopen.

You

can

then

allocate

and

free

memory

from

your

own

heap

just

as

you

would

from

the

default

heap.

To

allocate

memory,

use

_ucalloc

or

_umalloc.

These

functions

work

just

like

calloc

and

malloc,

except

you

specify

the

heap

to

use

as

well

as

the

size

of

block

that

you

want.

For

example,

to

allocate

1000

bytes

from

fixedHeap:

void

*up;

up

=

_umalloc(fixedHeap,

1000);

To

reallocate

and

free

memory,

use

the

regular

realloc

and

free

functions.

Both

of

these

functions

always

check

the

heap

from

which

the

memory

was

allocated,

so

you

don’t

need

to

specify

the

heap

to

use.

For

example,

the

realloc

and

free

calls

in

the

following

code

fragment

look

exactly

the

same

for

both

the

default

heap

and

your

heap:

void

*p,

*up;

p

=

malloc(1000);

/*

allocate

1000

bytes

from

default

heap

*/

up

=

_umalloc(fixedHeap,

1000);

/*

allocate

1000

from

fixedHeap

*/

realloc(p,

2000);

/*

reallocate

from

default

heap

*/

realloc(up,

100);

/*

reallocate

from

fixedHeap

*/

Chapter

4.

Using

memory

heaps

23

free(p);

/*

free

memory

back

to

default

heap

*/

free(up);

/*

free

memory

back

to

fixedHeap

*/

When

you

call

any

heap

function,

make

sure

the

heap

you

specify

is

valid.

If

the

heap

is

not

valid,

the

behavior

of

the

heap

functions

is

undefined.

Getting

information

about

a

heap

You

can

determine

the

heap

from

which

any

object

was

allocated

by

calling

_mheap.

You

can

also

get

information

about

the

heap

itself

by

calling

_ustats,

which

tells

you:

v

The

amount

of

memory

the

heap

holds

(excluding

memory

used

for

overhead)

v

The

amount

of

memory

currently

allocated

from

the

heap

v

The

type

of

memory

in

the

heap

v

The

size

of

the

largest

contiguous

piece

of

memory

available

from

the

heap

Closing

and

destroying

a

heap

When

a

process

has

finished

using

the

heap,

close

it

with

_uclose.

Once

you

have

closed

the

heap

in

a

process,

that

process

can

no

longer

allocate

from

or

return

memory

to

that

heap.

If

other

processes

share

the

heap,

they

can

still

use

it

until

you

close

it

in

each

of

them.

Performing

operations

on

a

heap

after

you

have

closed

it

causes

undefined

behavior.

To

destroy

a

heap,

do

the

following:

v

For

a

fixed-size

heap,

call

_udestroy.

If

blocks

of

memory

are

still

allocated

somewhere,

you

can

force

the

destruction.

Destroying

a

heap

removes

it

entirely

even

if

it

was

shared

by

other

processes.

Again,

performing

operations

on

a

heap

after

you

have

destroyed

it

causes

undefined

behavior.

v

For

a

dynamically-sized

heap,

call

_uheapmin

to

coalesce

the

heap

(return

all

blocks

in

the

heap

that

are

totally

free

to

the

system),

or

_udestroy

to

destroy

it.

Both

of

these

functions

call

your

heap-shrinking

function.

(See

below.)

After

you

destroy

a

heap,

it

is

up

to

you

to

return

the

memory

for

the

heap

(the

initial

block

of

memory

you

supplied

to

_ucreate

and

any

other

blocks

added

by

_uaddmem)

to

the

system.

Writing

the

heap-shrinking

function

When

you

call

_uheapmin

or

_udestroy

to

coalesce

or

destroy

a

dynamically-sized

heap,

these

functions

call

your

heap-shrinking

function

to

return

the

memory

to

the

system.

It

is

up

to

you

how

you

implement

this

function.

Your

function

must

have

the

following

prototype:

void

(*functionName)(Heap_t

uh,

void

*block,

size_t

size);

Where

functionName

identifies

the

function

(you

can

name

it

however

you

want),

uh

identifies

the

heap

to

be

shrunk.

The

pointer

block

and

its

size

are

passed

to

your

function

by

_uheapmin

or

_udestroy.

Your

function

must

return

the

memory

pointed

to

by

block

to

the

system.

For

example:

static

void

shrinkHeap(Heap_t

uh,

void

*block,

size_t

size)

{

free(block);

return;

}

24

Programming

Guide

Changing

the

default

heap

used

in

a

program

The

regular

memory

management

functions

(malloc

and

so

on)

always

use

the

current

default

heap

for

that

thread.

The

initial

default

heap

for

all

XL

C/C++

applications

is

the

run-time

heap

provided

by

XL

C/C++.

However,

you

can

make

your

own

heap

the

default

by

calling

_udefault.

Then

all

calls

to

the

regular

memory

management

functions

allocate

memory

from

your

heap

instead

of

the

default

run-time

heap.

The

default

heap

changes

only

for

the

thread

where

you

call

_udefault.

You

can

use

a

different

default

heap

for

each

thread

of

your

program

if

you

choose.

This

is

useful

when

you

want

a

component

(such

as

a

vendor

library)

to

use

a

heap

other

than

the

XL

C/C++

default

heap,

but

you

cannot

actually

alter

the

source

code

to

use

heap-specific

calls.

For

example,

if

you

set

the

default

heap

to

a

shared

heap

and

then

call

a

library

function

that

calls

malloc,

the

library

allocates

storage

in

shared

memory

Because

_udefault

returns

the

current

default

heap,

you

can

save

the

return

value

and

later

use

it

to

restore

the

default

heap

you

replaced.

You

can

also

change

the

default

back

to

the

XL

C/C++

default

run-time

heap

by

calling

_udefault

and

specifying

the

_RUNTIME_HEAP

macro

(defined

in

umalloc.h).

You

can

also

use

this

macro

with

any

of

the

heap-specific

functions

to

explicitly

allocate

from

the

default

run-time

heap.

Compiling

and

linking

a

program

with

user-created

heaps

To

compile

an

application

that

calls

any

of

the

user-created

heap

functions

(prefixed

by

_u),

specify

hu

on

the

-l

linker

option.

For

example,

if

the

libhu.a

library

is

installed

in

the

default

directory,

you

could

specify:

xlc

progc.c

-o

progf

-lhu

Examples

of

creating

and

using

user

heaps

Example

of

a

user

heap

with

regular

memory

The

program

below

shows

how

you

might

create

and

use

a

heap

that

uses

regular

memory.

#include

<stdlib.h>

#include

<stdio.h>

#include

<umalloc.h>

static

void

*get_fn(Heap_t

usrheap,

size_t

*length,

int

*clean)

{

void

*p;

/*

Round

up

to

the

next

chunk

size

*/

*length

=

((*length)

/

65536)

*

65536

+

65536;

*clean

=

_BLOCK_CLEAN;

p

=

calloc(*length,1);

return

(p);

}

static

void

release_fn(Heap_t

usrheap,

void

*p,

size_t

size)

{

free(

p

);

return;

}

int

main(void)

{

void

*initial_block;

long

rc;

Chapter

4.

Using

memory

heaps

25

Heap_t

myheap;

char

*ptr;

int

initial_sz;

/*

Get

initial

area

to

start

heap

*/

initial_sz

=

65536;

initial_block

=

malloc(initial_sz);

if(initial_block

==

NULL)

return

(1);

/*

create

a

user

heap

*/

myheap

=

_ucreate(initial_block,

initial_sz,

_BLOCK_CLEAN,

_HEAP_REGULAR,

get_fn,

release_fn);

if

(myheap

==

NULL)

return(2);

/*

allocate

from

user

heap

and

cause

it

to

grow

*/

ptr

=

_umalloc(myheap,

100000);

_ufree(ptr);

/*

destroy

user

heap

*/

if

(_udestroy(myheap,

_FORCE))

return(3);

/*

return

initial

block

used

to

create

heap

*/

free(initial_block);

return

0;

}

Example

of

a

shared

user

heap

–

parent

process

The

following

program

shows

how

you

might

implement

a

heap

shared

between

a

parent

and

several

child

processes.

This

program

shows

the

parent

process,

which

creates

the

shared

heap.

First

the

main

program

calls

the

init

function

to

allocate

shared

memory

from

the

operating

system

(using

CreateFileMapping)

and

name

the

memory

so

that

other

processes

can

use

it

by

name.

The

init

function

then

creates

and

opens

the

heap.

The

loop

in

the

main

program

performs

operations

on

the

heap,

and

also

starts

other

processes.

The

program

then

calls

the

term

function

to

close

and

destroy

the

heap.

#include

<umalloc.h>

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

#define

PAGING_FILE

0xFFFFFFFF

#define

MEMORY_SIZE

65536

#define

BASE_MEM

(VOID*)0x01000000

static

HANDLE

hFile;

/*

Handle

to

memory

file

*/

static

void*

hMap;

/*

Handle

to

allocated

memory

*/

typedef

struct

mem_info

{

void

*

pBase;

Heap_t

pHeap;

}

MEM_INFO_T;

/*--*/

/*

inithp:

*/

/*

Function

to

create

and

open

the

heap

with

a

named

shared

memory

object

*/

/*--*/

static

Heap_t

inithp(size_t

heap_size)

{

MEM_INFO_T

info;

/*

Info

structure

*/

/*

Allocate

shared

memory

from

the

system

by

creating

a

shared

memory

*/

/*

pool

basing

it

out

of

the

system

paging

(swapper)

file.

*/

26

Programming

Guide

hFile

=

CreateFileMapping(

(HANDLE)

PAGING_FILE,

NULL,

PAGE_READWRITE,

0,

heap_size

+

sizeof(Heap_t),

“MYNAME_SHAREMEM”

);

if

(hFile

==

NULL)

{

return

NULL;

}

/*

Map

the

file

to

this

process’

address

space,

starting

at

an

address

*/

/*

that

should

also

be

available

in

child

processe(s)

*/

hMap

=

MapViewOfFileEx(

hFile,

FILE_MAP_WRITE,

0,

0,

0,

BASE_MEM

);

info.pBase

=

hMap;

if

(info.pBase

==

NULL)

{

return

NULL;

}

/*

Create

a

fixed

sized

heap.

Put

the

heap

handle

as

well

as

the

*/

/*

base

heap

address

at

the

beginning

of

the

shared

memory.

*/

info.pHeap

=

_ucreate((char

*)info.pBase

+

sizeof(info),

heap_size

-

sizeof(info),

!_BLOCK_CLEAN,

_HEAP_SHARED

|

_HEAP_REGULAR,

NULL,

NULL);

if

(info.pBase

==

NULL)

{

return

NULL;

}

memcpy(info.pBase,

info,

sizeof(info));

if

(_uopen(info.pHeap))

{

/*

Open

heap

and

check

result

*/

return

NULL;

}

return

info.pHeap;

}

/*--*/

/*

termhp:

*/

/*

Function

to

close

and

destroy

the

heap

*/

/*--*/

static

int

termhp(Heap_t

uheap)

{

if

(_uclose(uheap))

/*

close

heap

*/

return

1;

if

(_udestroy(uheap,

_FORCE))

/*

force

destruction

of

heap

*/

return

1;

UnmapViewOfFile(hMap);

/*

return

memory

to

system

*/

CloseHandle(hFile);

return

0;

}

/*--*/

/*

main:

*/

/*

Main

function

to

test

creating,

writing

to

and

destroying

a

shared

*/

/*

heap.

*/

/*--*/

int

main(void)

{

int

i,

rc;

/*

Index

and

return

code

*/

Heap_t

uheap;

/*

heap

to

create

*/

char

*p;

/*

for

allocating

from

heap

*/

/*

*/

/*

call

init

function

to

create

and

open

the

heap

*/

Chapter

4.

Using

memory

heaps

27

uheap

=

inithp(MEMORY_SIZE);

if

(uheap

==

NULL)

/*

check

for

success

*/

return

1;

/*

if

failure,

return

non

zero

*/

/*

*/

/*

perform

operations

on

uheap

*/

/*

*/

for

(i

=

1;

i

<=

5;

i++)

{

p

=

_umalloc(uheap,

10);

/*

allocate

from

uheap

*/

if

(p

==

NULL)

return

1;

memset(p,

’M’,

_msize(p));

/*

set

all

bytes

in

p

to

’M’

*/

p

=

realloc(p,50);

/*

reallocate

from

uheap

*/

if

(p

==

NULL)

return

1;

memset(p,

’R’,

_msize(p));

/*

set

all

bytes

in

p

to

’R’

*/

}

/*

*/

/*

Start

a

second

process

which

accesses

the

heap

*/

/*

*/

if

(system(“memshr2.exe”))

return

1;

/*

*/

/*

Take

a

look

at

the

memory

that

we

just

wrote

to.

Note

that

memshr.c

*/

/*

and

memshr2.c

should

have

been

compiled

specifying

the

*/

/*

alloc(debug[,

yes])

flag.

*/

/*

*/

#ifdef

DEBUG

_udump_allocated(uheap,

-1);

#endif

/*

*/

/*

call

term

function

to

close

and

destroy

the

heap

*/

/*

*/

rc

=

termhp(uheap);

#ifdef

DEBUG

printf(“memshr

ending...

rc

=

%d\n”,

rc);

#endif

return

rc;

}

Example

of

a

shared

user

heap

-

child

process

The

following

program

shows

the

process

started

by

the

loop

in

the

parent

process.

This

process

uses

OpenFileMapping

to

access

the

shared

memory

by

name,

then

extracts

the

heap

handle

for

the

heap

created

by

the

parent

process.

The

process

then

opens

the

heap,

makes

it

the

default

heap,

and

performs

some

operations

on

it

in

the

loop.

After

the

loop,

the

process

replaces

the

old

default

heap,

closes

the

user

heap,

and

ends.

#include

<umalloc.h>

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

static

HANDLE

hFile;

/*

Handle

to

memory

file

*/

static

void*

hMap;

/*

Handle

to

allocated

memory

*/

typedef

struct

mem_info

{

void

*

pBase;

28

Programming

Guide

Heap_t

pHeap;

}

MEM_INFO_T;

/*--*/

/*

inithp:

Subprocess

Version

*/

/*

Function

to

create

and

open

the

heap

with

a

named

shared

memory

object

*/

/*--*/

static

Heap_t

inithp(void)

{

MEM_INFO_T

info;

/*

Info

structure

*/

/*

Open

the

shared

memory

file

by

name.

The

file

is

based

on

the

*/

/*

system

paging

(swapper)

file.

*/

hFile

=

OpenFileMapping(FILE_MAP_WRITE,

FALSE,

“MYNAME_SHAREMEM”);

if

(hFile

==

NULL)

{

return

NULL;

}

/*

Figure

out

where

to

map

this

file

by

looking

at

the

address

in

the

*/

/*

shared

memory

where

the

memory

was

mapped

in

the

parent

process.

*/

hMap

=

MapViewOfFile(

hFile,

FILE_MAP_WRITE,

0,

0,

sizeof(info)

);

if

(hMap

==

NULL)

{

return

NULL;

}

/*

Extract

the

heap

and

base

memory

address

from

shared

memory

*/

memcpy(info,

hMap,

sizeof(info));

UnmapViewOfFile(hMap);

hMap

=

MapViewOfFileEx(

hFile,

FILE_MAP_WRITE,

0,

0,

0,

info.pBase

);

if

(_uopen(info.pHeap))

{

/*

Open

heap

and

check

result

*/

return

NULL;

}

return

info.pHeap;

}

/*--*/

/*

termhp:

*/

/*

Function

to

close

my

view

of

the

heap

*/

/*--*/

static

int

termhp(Heap_t

uheap)

{

if

(_uclose(uheap))

/*

close

heap

*/

return

1;

UnmapViewOfFile(hMap);

/*

return

memory

to

system

*/

CloseHandle(hFile);

return

0;

}

/*--*/

/*

main:

*/

/*

Main

function

to

test

creating,

writing

to

and

destroying

a

shared

*/

/*

heap.

*/

/*--*/

int

main(void)

{

int

rc,

i;

/*

for

return

code,

loop

iteration

*/

Chapter

4.

Using

memory

heaps

29

Heap_t

uheap,

oldheap;

/*

heap

to

create,

old

default

heap

*/

char

*p;

/*

for

allocating

from

the

heap

*/

/*

*/

/*

Get

the

heap

storage

from

the

shared

memory

*/

/*

*/

uheap

=

inithp();

if

(uheap

==

NULL)

return

1;

/*

*/

/*

Register

uheap

as

default

run-time

heap,

save

old

default

*/

/*

*/

oldheap

=

_udefault(uheap);

if

(oldheap

==

NULL)

{

return

termhp(uheap);

}

/*

*/

/*

Perform

operations

on

uheap

*/

/*

*/

for

(i

=

1;

i

<=

5;

i++)

{

p

=

malloc(10);

/*

malloc

uses

default

heap,

which

is

now

uheap*/

memset(p,

’M’,

_msize(p));

}

/*

*/

/*

Replace

original

default

heap

and

check

result

*/

/*

*/

if

(uheap

!=

_udefault(oldheap))

{

return

termhp(uheap);

}

/*

*/

/*

Close

my

views

of

the

heap

*/

/*

*/

rc

=

termhp(uheap);

#ifdef

DEBUG

printf(“Returning

from

memshr2

rc

=

%d\n”,

rc);

#endif

return

rc;

}

Debugging

memory

heaps

XL

C/C++

provides

two

sets

of

functions

for

debugging

memory

problems:

v

Heap-checking

functions

similar

to

those

provided

by

other

compilers.

(Described

in

“Functions

for

checking

memory

heaps”

on

page

31.)

v

Debug

versions

of

all

memory

management

functions.

(Described

in

“Functions

for

debugging

memory

heaps”

on

page

31.)

Both

sets

of

debugging

functions

have

their

benefits

and

drawbacks.

The

one

you

choose

to

use

depends

on

your

program,

your

problems,

and

your

preference.

The

heap-checking

functions

perform

more

general

checks

on

the

heap

at

specific

points

in

your

program.

You

have

greater

control

over

where

the

checks

the

occur.

The

heap-checking

functions

also

provide

compatibility

with

other

compilers

that

offer

these

functions.

You

only

have

to

rebuild

the

modules

that

contain

the

heap-checking

calls.

However,

you

have

to

change

your

source

code

to

include

these

calls,

which

you

will

probably

want

to

remove

in

your

final

code.

Also,

the

30

Programming

Guide

heap-checking

functions

only

tell

you

if

the

heap

is

consistent

or

not;

they

do

not

provide

the

details

that

the

debug

memory

management

functions

do.

On

the

other

hand,

the

debug

memory

management

functions

provide

detailed

information

about

all

allocation

requests

you

make

with

them

in

your

program.

You

don’t

need

to

change

any

code

to

use

the

debug

versions;

you

need

only

specify

the

-qheapdebug

option.

A

recommended

approach

is

to

add

calls

to

heap-checking

functions

in

places

you

suspect

possible

memory

problems.

If

the

heap

turns

out

to

be

corrupted,

you

can

rebuild

with

-qheapdebug.

Regardless

of

which

debugging

functions

you

choose,

your

program

requires

additional

memory

to

maintain

internal

information

for

these

functions.

If

you

are

using

fixed-size

heaps,

you

might

have

to

increase

the

heap

size

in

order

to

use

the

debugging

functions.

Related

references

v

“Memory

debug

library

functions,”

on

page

79

Functions

for

checking

memory

heaps

The

header

file

umalloc.h

declares

a

set

of

functions

for

validating

user-created

heaps.

These

functions

are

not

controlled

by

a

compiler

option,

so

you

can

use

them

in

your

program

at

any

time.

Regular

versions

of

these

functions,

without

the

_u

prefix,

are

also

available

for

checking

the

default

heap.

The

heap-checking

functions

are

summarized

in

the

following

table.

Table

10.

Functions

for

checking

memory

heaps

Default

heap

function

User-created

heap

function

Description

_heapchk

_uheapchk

Checks

the

entire

heap

for

minimal

consistency.

_heapset

_uheapset

Checks

the

free

memory

in

the

heap

for

minimal

consistency,

and

sets

the

free

memory

in

the

heap

to

a

value

you

specify.

_heap_walk

_uheap_walk

Traverses

the

heap

and

provides

information

about

each

allocated

or

freed

object

to

a

callback

function

that

you

provide.

To

compile

an

application

that

calls

the

user-created

heap

functions,

see

“Compiling

and

linking

a

program

with

user-created

heaps”

on

page

25.

Functions

for

debugging

memory

heaps

Debug

versions

are

available

for

both

regular

memory

management

functions

and

user-defined

heap

memory

management

functions.

Each

debug

version

performs

the

same

function

as

its

non-debug

counterpart,

and

you

can

use

them

for

any

type

of

heap,

including

shared

memory.

Each

call

you

make

to

a

debug

function

also

automatically

checks

the

heap

by

calling

_heap_check

(described

below),

and

provides

information,

including

file

name

and

line

number,

that

you

can

use

to

debug

memory

problems.

The

names

of

the

user-defined

debug

versions

are

prefixed

by

_debug_u

(for

example,

_debug_umalloc),

and

they

are

defined

in

umalloc.h.

Chapter

4.

Using

memory

heaps

31

For

a

complete

list

and

details

about

all

of

the

debug

memory

management

functions,

see

“Memory

debug

library

functions,”

on

page

79.

Table

11.

Functions

for

debugging

memory

heaps

Default

heap

function

Corresponding

user-created

heap

function

_debug_calloc

_debug_ucalloc

_debug_malloc

_debug_umalloc

_debug_heapmin

_debug_uheapmin

_debug_realloc

n/a

_debug_free

n/a

To

use

these

debug

versions,

you

can

do

either

of

the

following:

v

In

your

source

code,

prefix

any

of

the

default

or

user-defined-heap

memory

management

functions

with

debug.

v

If

you

do

not

wish

to

make

changes

to

the

source

code,

simply

compile

with

the

-qheapdebug

option.

This

option

maps

all

calls

to

memory

management

functions

to

their

debug

version

counterparts.

To

prevent

a

call

from

being

mapped,

parenthesize

the

function

name.

To

compile

an

application

that

calls

the

user-created

heap

functions,

see

“Compiling

and

linking

a

program

with

user-created

heaps”

on

page

25.

Notes:

1.

When

the

-qheapdebug

option

is

specified,

code

is

generated

to

pre-initialize

the

local

variables

for

all

functions.

This

makes

it

much

more

likely

that

uninitialized

local

variables

will

be

found

during

the

normal

debug

cycle

rather

than

much

later

(usually

when

the

code

is

optimized).

2.

Do

not

use

the

-brtl

option

with

-qheapdebug.

3.

You

should

place

a

#pragma

strings

(readonly)

directive

at

the

top

of

each

source

file

that

will

call

debug

functions,

or

in

a

common

header

file

that

each

includes.

This

directive

is

not

essential,

but

it

ensures

that

the

file

name

passed

to

the

debug

functions

cannot

be

overwritten,

and

that

only

one

copy

of

the

file

name

string

is

included

in

the

object

module.

Additional

functions

for

debugging

memory

heaps

Three

additional

debug

memory

management

functions

do

not

have

regular

counterparts.

They

are

summarized

in

the

following

table.

Table

12.

Additional

functions

for

debugging

memory

heaps

Default

heap

function

Corresponding

user-created

heap

function

Description

_dump_allocated

_udump_allocated

Prints

information

to

stderr

about

each

memory

block

currently

allocated

by

the

debug

functions.

_dump_allocated_delta

_udump_allocated_delta

Prints

information

to

file

descriptor

2

about

each

memory

block

allocated

by

the

debug

functions

since

the

last

call

to

_dump_allocated

or

_dump_allocated_delta.

32

Programming

Guide

Table

12.

Additional

functions

for

debugging

memory

heaps

(continued)

Default

heap

function

Corresponding

user-created

heap

function

Description

_heap_check

_uheap_check

Checks

all

memory

blocks

allocated

or

freed

by

the

debug

functions

to

make

sure

that

no

overwriting

has

occurred

outside

the

bounds

of

allocated

blocks

or

in

a

free

memory

block.

The

_heap_check

function

is

automatically

called

by

the

debug

functions;

you

can

also

call

this

function

explicitly.

You

can

then

use

_dump_allocated

or

_dump_allocated_delta

to

display

information

about

currently

allocated

memory

blocks.

You

must

explicitly

call

these

functions.

Using

memory

allocation

fill

patterns

Some

debug

functions

set

all

the

memory

they

allocate

to

a

specified

fill

pattern.

This

lets

you

easily

locate

areas

in

memory

that

your

program

uses.

The

debug_malloc,

debug_realloc,

and

debug_umalloc

functions

set

allocated

memory

to

a

default

repeating

0xAA

fill

pattern.

To

enable

this

fill

pattern,

export

the

HD_FILL

environment

variable.

The

debug_free

function

sets

all

free

memory

to

a

repeating

0xFB

fill

pattern.

Skipping

heap

checking

Each

debug

function

calls

_heap_check

(or

_uheap_check)

to

check

the

heap.

Although

this

is

useful,

it

can

also

increase

your

program’s

memory

requirements

and

decrease

its

execution

speed.

To

reduce

the

overhead

of

checking

the

heap

on

every

debug

memory

management

function,

you

can

control

how

often

the

functions

check

the

heap

with

the

HD_SKIP

environment

variable.

You

will

not

need

to

do

this

for

most

of

your

applications

unless

the

application

is

extremely

memory

intensive.

Set

HD_SKIP

like

any

other

environment

variable.

The

syntax

for

HD_SKIP

is:

set

HD_SKIP=increment,[start]

where:

increment

Specifies

the

number

of

debug

function

calls

to

skip

between

performing

heap

checks.

start

Specifies

the

number

debug

function

calls

to

skip

before

starting

heap

checks.

Note:

The

comma

separating

the

parameters

is

optional.

For

example,

if

you

specify:

set

HD_SKIP=10

then

every

tenth

debug

memory

function

call

performs

a

heap

check.

If

you

specify:

set

HD_SKIP=5,100

Chapter

4.

Using

memory

heaps

33

then

after

100

debug

memory

function

calls,

only

every

fifth

call

performs

a

heap

check.

When

you

use

the

start

parameter

to

start

skipping

heap

checks,

you

are

trading

off

heap

checks

that

are

done

implicitly

against

program

execution

speed.

You

should

therefore

start

with

a

small

increment

(like

5)

and

slowly

increase

until

the

application

is

usable.

Using

stack

traces

Stack

contents

are

traced

for

each

allocated

memory

object.

If

the

contents

of

an

object’s

stack

change,

the

traced

contents

are

dumped.

The

trace

size

is

controlled

by

the

HD_STACK

environment

variable.

If

this

variable

is

not

set,

the

compiler

assumes

a

stack

size

of

10.

To

disable

stack

tracing,

set

the

HD_STACK

environment

variable

to

0.

34

Programming

Guide

Chapter

5.

Using

C++

templates

In

C++,

you

can

use

a

template

to

declare

a

set

of

related:

v

Classes

(including

structures)

v

Functions

v

Static

data

members

of

template

classes

Within

an

application,

you

can

instantiate

the

same

template

multiple

times

with

the

same

arguments

or

with

different

arguments.

If

you

use

the

same

arguments,

the

repeated

instantiations

are

redundant.

These

redundant

instantiations

increase

compilation

time,

increase

the

size

of

the

executable,

and

deliver

no

benefit.

There

are

four

basic

approaches

to

the

problem

of

redundant

instantiations:

Code

for

unique

instantiations

Organize

your

source

code

so

that

the

object

files

contain

only

one

instance

of

each

required

instantiation

and

no

unused

instantiations.

This

is

the

least

usable

approach,

because

you

must

know

where

each

template

is

defined

and

where

each

template

instantiation

is

required.

Instantiate

at

every

occurrence

Use

the

-qnotempinc

and

-qnotemplateregistry

compiler

options

(these

are

the

default

settings).

The

compiler

generates

code

for

every

instantiation

that

it

encounters.

With

this

approach,

you

accept

the

disadvantages

of

redundant

instantiations.

Have

the

compiler

store

instantiations

in

a

template

include

directory

Use

the

-qtempinc

compiler

option.

If

the

template

definition

and

implementation

files

have

the

required

structure,

each

template

instantiation

is

stored

in

a

template

include

directory.

If

the

compiler

is

asked

to

instantiate

the

same

template

again

with

the

same

arguments,

it

uses

the

stored

version

instead.

This

approach

is

described

in

“Using

the

-qtempinc

compiler

option.”

Have

the

compiler

store

instantiation

information

in

a

registry

Use

the

-qtemplateregistry

compiler

option.

Information

about

each

template

instantiation

is

stored

in

a

template

registry.

If

the

compiler

is

asked

to

instantiate

the

same

template

again

with

the

same

arguments,

it

points

to

the

instantiation

in

the

first

object

file

instead.

The

-qtemplateregistry

compiler

option

provides

the

benefits

of

the

-qtempinc

compiler

option

but

does

not

require

a

specific

structure

for

the

template

definition

and

implementation

files.

This

approach

is

described

in

“Using

the

-qtemplateregistry

compiler

option”

on

page

38.

Note:

The

-qtempinc

and

-qtemplateregistry

compiler

options

are

mutually

exclusive.

Using

the

-qtempinc

compiler

option

To

use

-qtempinc,

you

must

structure

your

application

as

follows:

v

Declare

your

class

templates

and

function

templates

in

template

header

files,

with

a

.h

extension.

©

Copyright

IBM

Corp.

1998,

2004

35

v

For

each

template

declaration

file,

create

a

template

implementation

file.

This

file

must

have

the

same

file

name

as

the

template

declaration

file

and

an

extension

of

.c

or

.t,

or

the

name

must

be

specified

in

a

#pragma

implementation

directive.

For

a

class

template,

the

implementation

file

defines

the

member

functions

and

static

data

members.

For

a

function

template,

the

implementation

file

defines

the

function.

v

In

your

source

program,

specify

an

#include

directive

for

each

template

declaration

file.

v

Optionally,

to

ensure

that

your

code

is

applicable

for

both

-qtempinc

and

-qnotempinc

compilations,

in

each

template

declaration

file,

conditionally

include

the

corresponding

template

implementation

file

if

the

__TEMPINC__

macro

is

not

defined.

(This

macro

is

automatically

defined

when

you

use

the

-qtempinc

compilation

option.)

This

produces

the

following

results:

–

Whenever

you

compile

with

-qnotempinc,

the

template

implementation

file

is

included.

–

Whenever

you

compile

with

-qtempinc,

the

compiler

does

not

include

the

template

implementation

file.

Instead,

the

compiler

looks

for

a

file

with

the

same

name

as

the

template

implementation

file

and

extension

.c

the

first

time

it

needs

a

particular

instantiation.

If

the

compiler

subsequently

needs

the

same

instantiation,

it

uses

the

copy

stored

in

the

template

include

directory.

Example

of

-qtempinc

This

example

includes

the

following

source

files:

v

A

template

declaration

file:

stack.h.

v

The

corresponding

template

implementation

file:

stack.c.

v

A

function

prototype:

stackops.h

(not

a

function

template).

v

The

corresponding

function

implementation

file:

stackops.cpp.

v

The

main

program

source

file:

stackadd.cpp.

In

this

example:

1.

Both

source

files

include

the

template

declaration

file

stack.h.

2.

Both

source

files

include

the

function

prototype

stackops.h.

3.

The

template

declaration

file

conditionally

includes

the

template

implementation

file

stack.c

if

the

program

is

compiled

with

-qnotempinc.

Template

declaration

file:

stack.h

This

header

file

defines

the

class

template

for

the

class

Stack.

#ifndef

STACK_H

#define

STACK_H

template

<class

Item,

int

size>

class

Stack

{

public:

void

push(Item

item);

//

Push

operator

Item

pop();

//

Pop

operator

int

isEmpty(){

return

(top==0);

//

Returns

true

if

empty,

otherwise

false

}

Stack()

{

top

=

0;

}

//

Constructor

defined

inline

private:

Item

stack[size];

//

The

stack

of

items

int

top;

//

Index

to

top

of

stack

};

36

Programming

Guide

#ifndef

__USE_STL_TEMPINC__

//

�3�

#include

"stack.c"

//

�3�

#endif

//

�3�

#endif

Template

implementation

file:

stack.c

This

file

provides

the

implementation

of

the

class

template

for

the

class

Stack.

template

<class

Item,

int

size>

void

Stack<Item,size>::push(Item

item)

{

if

(top

>=

size)

throw

size;

stack[top++]

=

item;

}

template

<class

Item,

int

size>

Item

Stack<Item,size>::pop()

{

if

(top

<=

0)

throw

size;

Item

item

=

stack[--top];

return(item);

}

Function

declaration

file:

stackops.h

This

header

file

contains

the

prototype

for

the

add

function,

which

is

used

in

both

stackadd.cpp

and

stackops.cpp.

void

add(Stack<int,

50>&

s);

Function

implementation

file:

stackops.cpp

This

file

provides

the

implementation

of

the

add

function,

which

is

called

from

the

main

program.

#include

"stack.h"

//

�1�

#include

"stackops.h"

//

�2�

void

add(Stack<int,

50>&

s)

{

int

tot

=

s.pop()

+

s.pop();

s.push(tot);

return;

}

Main

program

file:

stackadd.cpp

This

file

creates

a

Stack

object.

#include

<iostream.h>

#include

"stack.h"

//

�1�

#include

"stackops.h"

//

�2�

main()

{

Stack<int,

50>

s;

//

create

a

stack

of

ints

int

left=10,

right=20;

int

sum;

s.push(left);

//

push

10

on

the

stack

s.push(right);

//

push

20

on

the

stack

add(s);

//

pop

the

2

numbers

off

the

stack

//

and

push

the

sum

onto

the

stack

sum

=

s.pop();

//

pop

the

sum

off

the

stack

cout

<<

"The

sum

of:

"

<<

left

<<

"

and:

"

<<

right

<<

"

is:

"

<<

sum

<<

endl;

return(0);

}

Chapter

5.

Using

C++

templates

37

Regenerating

the

template

instantiation

file

The

compiler

builds

a

template

instantiation

file

in

the

TEMPINC

directory

corresponding

to

each

template

implementation

file.

With

each

compilation,

the

compiler

can

add

information

to

the

file

but

it

never

removes

information

from

the

file.

As

you

develop

your

program,

you

might

remove

template

function

references

or

reorganize

your

program

so

that

the

template

instantiation

files

become

obsolete.

You

can

periodically

delete

the

TEMPINC

destination

and

recompile

your

program.

Using

-qtempinc

with

shared

libraries

In

a

traditional

application

development

environment,

different

applications

can

share

both

source

files

and

compiled

files.

When

you

use

templates,

applications

can

share

source

files

but

cannot

share

compiled

files.

If

you

use

-qtempinc:

v

Each

application

must

have

its

own

TEMPINC

destination.

v

You

must

compile

all

of

the

source

files

for

the

application,

even

if

some

of

the

files

have

already

been

compiled

for

another

application.

Related

references

v

-qtempinc

in

XL

C/C++

Compiler

Reference

v

#pragma

implementation

in

XL

C/C++

Compiler

Reference

Using

the

-qtemplateregistry

compiler

option

Unlike

-qtempinc,

the

-qtemplateregistry

compiler

option

does

not

impose

specific

requirements

on

the

organization

of

your

source

code.

Any

program

that

compiles

successfully

with

-qnotempinc

will

compile

with

-qtemplateregistry.

The

template

registry

uses

a

″first-come

first-served″

algorithm:

v

When

a

program

references

a

new

instantiation

for

the

first

time,

it

is

instantiated

in

the

compilation

unit

in

which

it

occurs.

v

When

another

compilation

unit

references

the

same

instantiation,

it

is

not

instantiated.

Thus,

only

one

copy

is

generated

for

the

entire

program.

The

instantiation

information

is

stored

in

a

template

registry

file.

You

must

use

the

same

template

registry

file

for

the

entire

program.

Two

programs

cannot

share

a

template

registry

file.

The

default

file

name

for

the

template

registry

file

is

templateregistry,

but

you

can

specify

any

other

valid

file

name

to

override

this

default.

When

cleaning

your

program

build

environment

before

starting

a

fresh

or

scratch

build,

you

must

delete

the

registry

file

along

with

the

old

object

files.

Recompiling

related

compilation

units

If

two

compilation

units,

A

and

B,

reference

the

same

instantiation,

the

-qtemplateregistry

compiler

option

has

the

following

effect:

v

If

you

compile

A

first,

the

object

file

for

A

contains

the

code

for

the

instantiation.

v

When

you

later

compile

B,

the

object

file

for

B

does

not

contain

the

code

for

the

instantiation

because

object

A

already

does.

38

Programming

Guide

v

If

you

later

change

A

so

that

it

no

longer

references

this

instantiation,

the

reference

in

object

B

would

produce

an

unresolved

symbol

error.

When

you

recompile

A,

the

compiler

detects

this

problem

and

handles

it

as

follows:

–

If

the

-qtemplaterecompile

compiler

option

is

in

effect,

the

compiler

automatically

recompiles

B

during

the

link

step,

using

the

same

compiler

options

that

were

specified

for

A.

(Note,

however,

that

if

you

use

separate

compilation

and

linkage

steps,

you

need

to

include

the

compilation

options

in

the

link

step

to

ensure

the

correct

compilation

of

B.)

–

If

the

-qnotemplaterecompile

compiler

option

is

in

effect,

the

compiler

issues

a

warning

and

you

must

manually

recompile

B.

Switching

from

-qtempinc

to

-qtemplateregistry

Because

the

-qtemplateregistry

compiler

option

does

not

impose

any

restrictions

on

the

file

structure

of

your

application,

it

has

less

administrative

overhead

than

-qtempinc.

You

can

make

the

switch

as

follows:

v

If

your

application

compiles

successfully

with

both

-qtempinc

and

-qnotempinc,

you

do

not

need

to

make

any

changes.

v

If

your

application

compiles

successfully

with

-qtempinc

but

not

with

-qnotempinc,

you

must

change

it

so

that

it

will

compile

successfully

with

-qnotempinc.

In

each

template

definition

file,

conditionally

include

the

corresponding

template

implementation

file

if

the

__TEMPINC__

macro

is

not

defined.

This

is

illustrated

in

“Example

of

-qtempinc”

on

page

36.

Related

references

v

-qtemplateregistry

in

XL

C/C++

Compiler

Reference

v

-qtemplaterecompile

in

XL

C/C++

Compiler

Reference

Chapter

5.

Using

C++

templates

39

40

Programming

Guide

Chapter

6.

Ensuring

thread

safety

(C++)

If

you

are

building

multithreaded

C++

applications,

there

are

some

thread-safety

issues

which

you

need

to

consider

when

using

objects

defined

in

the

C++

Standard

Template

Library

and

in

the

stream

classes.

Ensuring

thread

safety

of

template

objects

The

following

headers

in

the

Standard

Template

Library

are

reentrant:

v

algorithm

v

deque

v

functional

v

iterator

v

list

v

map

v

memory

v

numeric

v

queue

v

set

v

stack

v

string

v

unordered_map

v

unordered_set

v

utility

v

valarray

v

vector

XL

C/C++

supports

reentrancy

to

the

extent

that

you

can

safely

read

a

single

object

from

multiple

threads

simultaneously.

This

level

of

reentrancy

is

intrinsic.

No

locks

or

other

globally

allocated

resources

are

used.

However,

the

headers

are

not

reentrant

in

these

cases:

v

A

single

container

object

is

written

by

multiple

threads

simultaneously.

v

A

single

container

object

is

written

in

one

thread,

while

being

read

in

one

or

more

other

threads.

If

multiple

threads

write

to

a

single

container,

or

a

single

thread

writes

to

a

single

container

while

other

threads

are

reading

from

that

container,

it

is

your

responsibility

to

serialize

access

to

this

container.

If

multiple

threads

read

from

a

single

container,

and

no

processes

write

to

the

container,

no

serialization

is

necessary.

Ensuring

thread

safety

of

stream

objects

All

classes

declared

in

the

iostream

standard

library

are

reentrant,

and

use

a

single

lock

to

ensure

thread-safety

while

preventing

deadlock

from

occurring.

However,

on

multiprocessor

machines,

there

is

a

chance,

although

rare,

that

livelock

can

occur

when

two

different

threads

attempt

to

concurrently

access

a

shared

stream

object,

or

when

a

stream

object

holds

a

lock

while

waiting

for

input

(for

example,

from

the

keyboard).

If

you

want

to

avoid

the

possibility

of

livelock,

you

can

disable

locking

in

input

stream

objects,

output

stream

objects,

or

both,

by

using

the

following

macros

at

compile

time:

©

Copyright

IBM

Corp.

1998,

2004

41

__NOLOCK_ON_INPUT

Disables

input

locking.

__NOLOCK_ON_OUTPUT

Disables

output

locking.

To

use

one

or

both

of

these

macros,

prefix

the

macro

name

with

the

-D

option

on

the

compilation

command

line.

For

example:

xlC_r

-D__NOLOCK_ON_INPUT

-D__NOLOCK_ON_OUTPUT

a.C

However,

if

you

disable

locking

on

input

or

output

objects,

it

is

your

responsibility

to

provide

the

appropriate

locking

mechanisms

in

your

source

code

if

stream

objects

are

shared

between

threads.

If

you

do

not,

the

behavior

is

undefined,

with

the

possibility

of

data

corruption

or

application

crash.

Note:

If

you

use

OpenMP

directives

or

the

-qsmp

option

to

automatically

parallelize

code

which

shares

input/output

stream

objects,

in

conjunction

with

the

lock-disabling

macros,

you

run

the

same

risks

as

with

code

that

implements

Pthreads

or

other

multithreading

constructs,

and

you

will

need

to

synchronize

the

threads

accordingly.

Related

references

v

-D

in

XL

C/C++

Compiler

Reference

v

-qsmp

in

XL

C/C++

Compiler

Reference

42

Programming

Guide

Chapter

7.

Constructing

a

library

You

can

include

static

and

shared

libraries

in

your

C

and

C++

applications.

“Compiling

and

linking

a

library”

describes

how

to

compile

your

source

files

into

object

files

for

inclusion

in

a

library,

how

to

link

a

library

into

the

main

program,

and

how

to

link

one

library

into

another.

“Initializing

static

objects

in

libraries

(C++)”

on

page

45

describes

how

to

use

priorities

to

control

the

order

of

initialization

of

objects

across

multiple

files

in

a

C++

application.

“Dynamically

loading

a

shared

library”

on

page

49

describes

two

functions

you

can

use

in

your

application

code

to

load,

initialize,

unload,

and

terminate

a

C++

shared

library

at

run

time.

Compiling

and

linking

a

library

Compiling

a

static

library

To

compile

a

static

(unshared)

library:

1.

Compile

each

source

file

into

an

object

file,

with

no

linking.

2.

Use

the

AIX

ar

command

to

add

the

generated

object

files

to

an

archive

library

file.

For

example:

xlc

-c

bar.c

example.c

ar

-rv

libfoo.a

bar.o

example.o

Compiling

a

shared

library

To

create

a

shared

library

that

uses

static

linking:

1.

Compile

each

source

file

into

an

object

file,

with

no

linking.

For

example:

xlc

-c

foo.c

-o

foo.o

2.

Optionally,

create

an

export

file

listing

the

global

symbols

to

be

exported,

by

doing

one

of

the

following:

v

Use

the

CreateExportList

utility,

described

in

“Exporting

symbols

with

the

CreateExportList

utility”

on

page

44.

v

Use

the

-qexpfile=

compiler

option

with

the

-qmkshrobj

option,

to

create

the

basis

for

the

export

file

used

in

the

real

link

step.

For

example:

xlc

-qmkshrobj

-qexpfile=exportlist

foo.o

v

Manually

create

the

export

file.

If

necessary,

in

a

text

editor,

edit

the

export

file

to

control

which

symbols

will

be

exported

when

you

create

the

shared

library.
3.

Create

the

shared

library

from

the

desired

object

files,

using

the

-qmkshrobj

compiler

option

and

the

-bE

linker

option

if

you

created

an

export

file

in

step

2.

If

you

do

not

specify

a

-bE

option,

all

symbols

will

be

exported.

(If

you

are

creating

a

shared

library

from

C++

object

files,

you

can

also

assign

an

initialization

priority

to

the

shared

library,

as

described

in

“Assigning

priorities

to

objects”

on

page

46.)

For

example:

xlc

-qmkshrobj

foo.o

-o

mySharedObject

-bE:exportlist

©

Copyright

IBM

Corp.

1998,

2004

43

(The

default

name

of

the

shared

object

is

shr.o,

unless

you

use

the

-o

option

to

specify

another

name.)

Alternatively,

if

you

are

creating

a

shared

library

from

C++

object

files

you

can

use

the

makeC++SharedLib

utility,

described

in

“Creating

a

shared

library

with

the

makeC++SharedLib

utility”

on

page

56;

however,

the

-qmkshrobj

method

is

preferred

as

it

has

several

advantages,

including

the

ability

to

automatically

handle

C++

template

instantiation,

and

compatibility

with

the

-O5

optimization

option.

4.

Optionally,

use

the

AIX

ar

command

to

produce

an

archive

library

file

from

multiple

shared

or

static

objects.

For

example:

ar

-rv

libfoo.a

shr.o

anotherlibrary.so

5.

Link

the

shared

library

to

the

main

application,

as

described

in

“Linking

a

library

to

an

application”

on

page

45.

To

create

a

shared

library

that

uses

run-time

linking:

1.

Follow

steps

1

and

2

in

the

procedure

described

above.

2.

Use

the

-G

option

to

create

a

shared

library

from

the

generated

object

files,

to

be

linked

at

load-time,

and

the

-bE

linker

option

to

specify

the

name

of

the

export

list

file.

(You

can

also

use

the

-qmkshrobj

option

if

you

want

to

specify

a

priority

for

a

C++

shared

object;

see

“Initializing

static

objects

in

libraries

(C++)”

on

page

45.)

For

example:

xlc

-G

-o

libfoo.so

foo1.o

foo2.o

-bE:exportlist

3.

Link

the

shared

library

to

the

main

application,

as

described

in

“Linking

a

library

to

an

application”

on

page

45.

C++

If

you

want

the

system

to

perform

static

initialization

when

dynamically

loading

a

shared

library,

use

the

load

and

unload

functions

described

in

“Dynamically

loading

a

shared

library”

on

page

49.

Exporting

symbols

with

the

CreateExportList

utility

CreateExportList

is

a

shell

script

that

creates

a

file

containing

a

list

of

all

the

global

symbols

found

in

a

given

set

of

object

files.

Note

that

this

command

is

run

automatically

when

you

use

the

-qmkshrobj

option,

unless

you

specify

an

alternative

export

file

with

the

-qexpfile

command.

The

syntax

of

the

CreateExportList

command

is

as

follows:

��

CreateExportList

exp_list

-f

file_list

-r

obj_files

32

-X

64

��

You

can

specify

one

or

more

of

the

following

options:

-r

If

specified,

template

prefixes

are

pruned.

The

resource

file

symbol

(__rsrc)

is

not

added

to

the

resource

list.

exp_list

The

name

of

a

file

that

will

contain

a

list

of

global

symbols

found

in

the

object

files.

This

file

is

overwritten

each

time

the

CreateExportList

command

is

run.

-ffile_list

The

name

of

a

file

that

contains

a

list

of

object

file

names.

obj_files

One

or

more

names

of

object

files.

-X32

Generates

names

from

32-bit

object

files

in

the

input

list

specified

by

-f

file_list

or

obj_files.

This

is

the

default.

44

Programming

Guide

-X64

Generates

names

from

64-bit

object

files

in

the

input

list

specified

by

-f

file_list

or

obj_files.

Linking

a

library

to

an

application

You

can

use

the

same

command

string

to

link

a

static

or

shared

library

to

your

main

program.

For

example:

xlc

-o

myprogram

main.c

-Ldirectory

-lfoo

where

directory

is

the

path

to

the

directory

containing

the

library.

If

your

library

uses

run-time

linking,

add

the

-brtl

option

to

the

command:

xlc

-brtl

-o

myprogram

main.c

-Ldirectory

-lfoo

By

using

the

-l

option,

you

instruct

the

linker

to

search

in

the

directory

specified

via

the

-L

option

for

libfoo.so;

if

it

is

not

found,

the

linker

searches

for

libfoo.a.

For

additional

linkage

options,

including

options

that

modify

the

default

behavior,

see

the

AIX

ld

documentation.

Linking

a

shared

library

to

another

shared

library

Just

as

you

link

modules

into

an

application,

you

can

create

dependencies

between

shared

libraries

by

linking

them

together.

For

example:

xlc

-qmkshrobj

[-G]

-o

mylib.so

myfile.o

-Ldirectory

-lfoo

Related

references

v

-qmkshrobj

in

XL

C/C++

Compiler

Reference

v

-l

in

XL

C/C++

Compiler

Reference

v

-L

in

XL

C/C++

Compiler

Reference

v

ar

in

the

AIX

Commands

Reference

v

ld

in

the

AIX

Commands

Reference

v

-G

in

XL

C/C++

Compiler

Reference

v

-brtl

in

XL

C/C++

Compiler

Reference

v

-qexpfile

in

XL

C/C++

Compiler

Reference

Initializing

static

objects

in

libraries

(C++)

The

C++

language

definition

specifies

that,

before

the

main

function

in

a

C++

program

is

executed,

all

objects

with

constructors,

from

all

the

files

included

in

the

program

must

be

properly

constructed.

Although

the

language

definition

specifies

the

order

of

initialization

for

these

objects

within

a

file

(which

follows

the

order

in

which

they

are

declared),

it

does

not,

however,

specify

the

order

of

initialization

for

these

objects

across

files

and

libraries.

You

might

want

to

specify

the

initialization

order

of

static

objects

declared

in

various

files

and

libraries

in

your

program.

To

specify

an

initialization

order

for

objects,

you

assign

relative

priority

numbers

to

objects.

The

mechanisms

by

which

you

can

specify

priorities

for

entire

files

or

objects

within

files

are

discussed

in

“Assigning

priorities

to

objects”

on

page

46.

The

mechanisms

by

which

you

can

control

the

initialization

order

of

objects

across

modules

are

discussed

in

“Order

of

object

initialization

across

libraries”

on

page

48.

Chapter

7.

Constructing

a

library

45

Assigning

priorities

to

objects

You

can

assign

a

priority

number

to

objects

and

files

within

a

single

library,

and

the

objects

will

be

initialized

at

run

time

according

to

the

order

of

priority.

However,

because

of

the

differences

in

the

way

modules

are

loaded

and

objects

initialized

on

the

different

platforms,

the

levels

at

which

you

can

assign

priorities

vary

among

the

different

platforms,

as

follows:

AIX

Linux

Set

the

priority

level

for

an

entire

file

To

use

this

approach,

you

specify

the

-qpriority

compiler

option

during

compilation.

By

default,

all

objects

within

a

single

file

are

assigned

the

same

priority

level,

and

are

initialized

in

the

order

in

which

they

are

declared,

and

terminated

in

reverse

declaration

order.

AIX

Linux

2000Mac OS X

Set

the

priority

level

for

objects

within

a

file

To

use

this

approach,

you

include

#pragma

priority

directives

in

the

source

files.

Each

#pragma

priority

directive

sets

the

priority

level

for

all

objects

that

follow

it,

until

another

pragma

directive

is

specified.

Within

a

file,

the

first

#pragma

priority

directive

must

have

a

higher

priority

number

than

the

number

specified

in

the

-qpriority

option

(if

it

is

used),

and

subsequent

#pragma

priority

directives

must

have

increasing

numbers.

While

the

relative

priority

of

objects

within

a

single

file

will

remain

the

order

in

which

they

are

declared,

the

pragma

directives

will

affect

the

order

in

which

objects

are

initialized

across

files.

The

objects

are

initialized

according

to

their

priority,

and

terminated

in

reverse

priority

order.

Linux

2000Mac OS X

Set

the

priority

level

for

individual

objects

To

use

this

approach,

you

use

init_priority

variable

attributes

in

the

source

files.

The

init_priority

attribute

takes

precedence

over

#pragma

priority

directives,

and

can

be

applied

to

objects

in

any

declaration

order.

On

Linux,

the

objects

are

initialized

according

to

their

priority

and

terminated

in

reverse

priority

across

compilation

units;

on

Mac

OS

X,

the

objects

are

initialized

according

to

their

priority

and

terminated

in

reverse

priority

only

within

a

compilation

unit.

AIX

On

AIX

only,

you

can

additionally

set

the

priority

of

an

entire

shared

library,

by

using

the

priority

sub-option

of

the

-qmkshrobj

compiler

option.

As

loading

and

initialization

on

AIX

occur

as

separate

processes,

priority

numbers

assigned

to

files

(or

to

objects

within

files)

are

entirely

independent

of

priority

numbers

assigned

to

libraries,

and

do

not

need

to

follow

any

sequence.

Using

priority

numbers

AIX

Priority

numbers

can

range

from

-2147483643

to

2147483647.

However,

numbers

from

-2147483648

to

-2147482624

are

reserved

for

system

use.

The

smallest

priority

number

that

you

can

specify,

-2147482623,

is

initialized

first.

The

largest

priority

number,

2147483647,

is

initialized

last.

If

you

do

not

specify

a

priority

level,

the

default

priority

is

0

(zero).

Linux

2000Mac OS X

Priority

numbers

can

range

from

101

to

65535.

The

smallest

priority

number

that

you

can

specify,

101,

is

initialized

first.

The

largest

priority

number,

65535,

is

initialized

last.

If

you

do

not

specify

a

priority

level,

the

default

priority

is

65535.

The

examples

below

show

how

to

specify

the

priority

of

objects

within

a

single

file,

and

across

two

files.

“Order

of

object

initialization

across

libraries”

on

page

48

provides

detailed

information

on

the

order

of

initialization

of

objects

on

the

AIX

platform.

46

Programming

Guide

Example

of

object

initialization

within

a

file

The

following

example

shows

how

to

specify

the

priority

for

several

objects

within

a

source

file.

...

#pragma

priority(2000)

//Following

objects

constructed

with

priority

2000

...

static

Base

a

;

House

b

;

...

#pragma

priority(3000)

//Following

objects

constructed

with

priority

3000

...

Barn

c

;

...

#pragma

priority(2500)

//

Error

-

priority

number

must

be

larger

//

than

preceding

number

(3000)

...

#pragma

priority(4000)

//Following

objects

constructed

with

priority

4000

...

Garage

d

;

...

Example

of

object

initialization

across

multiple

files

The

following

example

describes

the

initialization

order

for

objects

in

two

files,

farm.C

and

zoo.C.

Both

files

use

#pragma

priority

directives

and

are

compiled

with

the

-qpriority

option.

farm.C

-qpriority=2000

zoo.C

-qpriority=2000

#pragma

priority(3000)

...

Dog

a

;

Dog

b

;

...

#pragma

priority(6000)

...

Cat

c

;

Cow

d

;

...

#pragma

priority(7000)

Mouse

e

;

...

...

Lion

k

;

#pragma

priority(4000)

Bear

m

;

...

#pragma

priority(5000)

...

Zebra

n

;

Snake

s

;

...

#pragma

priority(8000)

Frog

f

;

...

At

run

time,

the

objects

in

these

files

are

initialized

in

the

following

order:

Sequence

Object

Priority

value

Comment

1

Lion

k

2000

Takes

priority

number

of

file

zoo.o

(2000)

(initialized

first).

2

Dog

a

3000

Takes

pragma

priority

(3000).

3

Dog

b

3000

Follows

Dog

a.

4

Bear

m

4000

Next

priority

number,

specified

by

pragma

(4000).

5

Zebra

n

5000

Next

priority

number

from

pragma

(5000).

6

Snake

s

5000

Follows

with

same

priority.

7

Cat

c

6000

Next

priority

number.

8

Cow

d

6000

Follows

with

same

priority.

Chapter

7.

Constructing

a

library

47

Sequence

Object

Priority

value

Comment

9

Mouse

e

7000

Next

priority

number.

10

Frog

f

8000

Next

priority

number

(initialized

last).

Related

references

v

-qmkshrobj

in

XL

C/C++

Compiler

Reference

v

-qpriority

in

XL

C/C++

Compiler

Reference

v

#pragma

priority

in

XL

C/C++

Compiler

Reference

Order

of

object

initialization

across

libraries

At

run

time,

once

all

modules

in

an

application

have

been

loaded,

the

modules

are

initialized

in

their

order

of

priority

(the

executable

program

containing

the

main

function

is

always

assigned

a

priority

of

0).

When

objects

are

initialized

within

a

library,

the

order

of

initialization

follows

the

rules

outlined

in

“Assigning

priorities

to

objects”

on

page

46.

If

objects

do

not

have

priorities

assigned,

or

have

the

same

priorities,

object

files

are

initialized

in

random

order,

and

the

objects

within

the

files

are

initialized

according

to

their

declaration

order.

Objects

are

terminated

in

reverse

order

of

their

construction.

Example

of

object

initialization

across

libraries

In

this

example,

the

following

modules

are

used:

v

main.out,

the

executable

containing

the

main

function

v

libS1

and

libS2,

two

shared

libraries

v

libS3

and

libS4,

two

shared

libraries

that

are

dependencies

of

libS1

v

libS5

and

libS6,

two

shared

libraries

that

are

dependencies

of

libS2

The

dependent

libraries

are

created

with

the

following

command

strings:

xlC

-qmkshrobj=50

-o

libS3

fileE.o

fileF.o

xlC

-qmkshrobj=-600

-o

libS4

fileG.o

fileH.o

xlC

-qmkshrobj=-200

-o

libS4

fileI.o

fileJ.o

xlC

-qmkshrobj=-150

-o

libS6

fileK.o

fileL.o

The

parent

libraries

are

linked

with

the

main

program

with

the

following

command

strings:

xlC

-qmkshrobj=-300

main.c

-o

main.out

-L.

-lA

xlC

-qmkshrobj=100

main.c

-o

main.out

-L.

-lB

The

following

diagram

shows

the

initialization

order

of

the

objects

in

the

shared

libraries.

48

Programming

Guide

main.out

fileA.o fileB.o fileC.o fileD.o

fileE.o fileF.o fileG.o fileH.o fileI.o fileJ.o fileK.o fileL.o

2

41 36

7

5

libS1
-qmkshrobj=-300

libS3
-qmkshrobj=50

libS2
-qmkshrobj=100

libS4
-qmkshrobj=-600

libS5
-qmkshrobj=-200

libS6
-qmkshrobj=-150

Objects

are

initialized

as

follows:

Sequence

Object

Priority

value

Comment

1

libS4

-600

Initialized

first

(lowest

priority

number).

2

libS1

-300

Initialized

next

(next

priority

number).

3

libS4

-200

Initialized

next

(next

priority

number).

4

libS6

-150

Initialized

next

(next

priority

number).

5

main.out

0

Initialized

next

(next

priority

number).

The

main

program

always

has

a

priority

of

0.

6

libS3

50

Initialized

next

(next

priority

number).

7

libS2

100

Initialized

last

(next

priority

number).

8

All

objects

from

all

libraries

are

initialized

according

to

their

priority

numbers.

Related

references

v

-qmkshrobj

in

XL

C/C++

Compiler

Reference

Dynamically

loading

a

shared

library

If

you

want

to

programmatically

control

the

loading

and

initialization

of

C++

objects

contained

in

shared

libraries,

you

can

use

two

functions

provided

by

XL

C/C++:

loadAndInit

and

terminateAndUnload.

These

functions

are

declared

in

the

header

file

load.h,

and

you

can

call

them

from

the

main

program

to

load,

initialize,

terminate,

and

unload

any

named

shared

library.

These

functions

work

in

the

same

way

as

the

AIX

load

and

unload

routines,

but

they

additionally

perform

initialization

of

C++

objects.

Note:

For

portability,

you

might

wish

to

use

the

POSIX

dlopen

and

dlclose

functions,

which

also

perform

initialization

and

termination,

and

interact

Figure

1.

Object

initialization

order

on

AIX

Chapter

7.

Constructing

a

library

49

correctly

with

loadAndInit

and

terminateAndUnload.

For

more

information

on

dlopen

and

dlclose,

see

the

AIX

Technical

Reference:

Base

Operating

System

and

Extensions.

Loading

and

initializing

a

module

with

the

loadAndInit

function

The

loadAndInit

function

takes

the

same

parameters

and

returns

the

same

values

and

error

codes

as

the

load

routine.

See

the

load

routine

in

theAIX

Technical

Reference:

Base

Operating

System

and

Extensions

for

more

information.

Format

#include

<load.h>

int

(*loadAndInit(char

*FilePath,

unsigned

int

Flags,

char

*LibraryPath))();

Description

The

loadAndInit

function

calls

the

AIX

load

routine

to

load

the

specified

module

(shared

library)

into

the

calling

process’s

address

space.

If

the

shared

library

is

loaded

successfully,

any

C++

initialization

is

performed.

The

loadAndInit

function

ensures

that

a

shared

library

is

only

initialized

once,

even

if

dlopen

is

used

to

load

the

library

too.

Subsequent

loads

of

the

same

shared

library

will

not

perform

any

initialization

of

the

shared

library.

If

loading

a

shared

library

results

in

other

shared

libraries

being

loaded,

the

initialization

for

those

shared

libraries

will

also

be

performed

(if

it

has

not

been

previously).

If

loading

a

shared

library

results

in

the

initialization

of

multiple

shared

libraries,

the

order

of

initialization

is

determined

by

the

priority

assigned

to

the

shared

libraries

when

they

were

built.

Shared

libraries

with

the

same

priority

are

initialized

in

random

order.

To

terminate

and

unload

the

shared

library,

use

the

terminateAndUnload

function,

described

below.

Do

not

reference

symbols

in

the

C++

initialization

that

need

to

be

resolved

by

a

call

to

the

AIX

loadbind

routine,

since

the

loadbind

routine

normally

is

not

called

until

after

the

loadAndInit

function

returns.

Parameters

FilePath

Points

to

the

name

of

the

shared

library

being

loaded,

or

to

the

member

of

an

archive.

If

you

specify

a

relative

or

full

path

name

(that

is,

a

name

containing

one

or

more

/

characters),

the

file

is

used

directly,

and

no

search

of

directories

specified

in

the

LibraryPath

is

performed.

If

you

specify

a

base

name

(that

is,

a

name

containing

no

/

characters),

a

search

is

performed

of

the

directory

you

specify

in

the

LibraryPath

parameter

(see

below).

Flags

Modifies

the

behavior

of

loadAndInit.

If

no

special

behavior

is

required,

set

the

value

to

0

(or

1).

The

possible

flags

are:

L_LIBPATH_EXEC

Specifies

that

the

library

path

used

at

program

execution

time

be

prepended

to

any

library

path

specified

in

the

loadAndInit

call.

You

should

use

this

flag.

L_NOAUTODEFER

Specifies

that

any

deferred

imports

must

be

explicitly

resolved

by

the

use

of

the

loadbind

routine.

50

Programming

Guide

L_LOADMEMBER

Specifies

that

the

FilePath

is

the

name

of

a

member

in

an

archive.

The

format

is

archivename.a(member).

LibraryPath

Points

to

the

default

library

search

path.

Return

values

Upon

successful

completion,

the

loadAndInit

function

returns

the

pointer

to

function

for

the

entry

point

(or

data

section)

of

the

shared

library.

If

the

loadAndInit

function

fails,

a

null

pointer

is

returned,

the

module

is

not

loaded

or

initialized,

and

the

errno

global

variable

is

set

to

indicate

the

error.

Terminating

and

unloading

a

module

with

the

terminateAndUnload

function

The

terminateAndUnload

function

takes

the

same

parameters

and

returns

the

same

values

and

error

codes

as

the

unload

routine.

See

the

unload

routine

in

AIX

Technical

Reference:

Base

Operating

System

and

Extensions

for

more

information.

Format

#include

<load.h>

int

terminateAndUnload(int

(*FunctionPointer)());

Description

The

terminateAndUnload

function

performs

any

C++

termination

that

is

required

and

unloads

the

module

(shared

library).

The

function

pointer

returned

by

the

loadAndInit

routine

is

used

as

the

parameter

for

the

terminateAndUnload

function.

If

this

is

the

last

time

the

shared

library

is

being

unloaded,

any

C++

termination

is

performed

for

this

shared

library

and

any

other

shared

libraries

that

are

being

unloaded

for

the

last

time

as

well.

The

terminateAndUnload

function

ensures

that

the

shared

library

is

only

terminated

once,

even

if

dlclose

is

used

to

unload

the

library

too.

The

order

of

termination

is

the

reverse

order

of

initialization

performed

by

the

loadAndInit

function.

If

any

uncaught

exceptions

occur

during

the

C++

termination,

the

termination

is

stopped

and

the

shared

library

is

unloaded.

If

the

loadAndInit

function

is

called

more

times

for

a

shared

library

than

terminateAndUnload,

the

shared

library

will

never

have

the

C++

termination

performed.

If

you

rely

on

the

C++

termination

being

performed

at

the

time

the

terminateAndUnload

function

is

called,

ensure

the

number

of

calls

to

the

terminateAndUnload

function

matches

the

number

of

calls

to

the

loadAndInit

function.

If

any

shared

libraries

loaded

with

the

loadAndInit

function

are

still

in

use

when

the

program

exits,

the

C++

termination

is

performed.

If

the

terminateAndUnload

function

is

used

to

unload

shared

libraries

not

loaded

with

the

loadAndInit

function,

no

termination

will

be

performed.

Parameters

FunctionPointer

Specifies

the

name

of

the

function

returned

by

the

loadAndInit

function.

Return

values

Successful

completion

of

the

terminateAndUnload

function

returns

a

value

of

0,

even

if

the

C++

termination

was

not

performed

and

the

shared

library

was

not

unloaded

because

the

shared

library

was

still

in

use.

Chapter

7.

Constructing

a

library

51

If

the

terminateAndUnload

function

fails,

it

returns

a

value

of

-1

and

sets

errno

to

indicate

the

error.

52

Programming

Guide

Chapter

8.

Using

the

C++

utilities

XL

C/C++

Enterprise

Edition

for

AIX

ships

with

a

set

of

additional

utilities

you

can

use

for

managing

your

C++

applications:

v

A

filter

for

demangling

compiled

symbol

names

in

object

files.

Described

in

“Demangling

compiled

C++

names

with

c++filt.”

v

A

library

of

classes

for

demangling

and

manipulating

mangled

names.

Described

in

“Demangling

compiled

C++

names

with

the

demangle

class

library”

on

page

54.

v

A

distributable

shell

script

for

creating

shared

libraries

from

library

files.

Described

in

“Creating

a

shared

library

with

the

makeC++SharedLib

utility”

on

page

56.

v

A

distributable

shell

script

for

linking

C++

object

files

and

archives.

Described

in

“Linking

with

the

linkxlC

utility”

on

page

57.

Demangling

compiled

C++

names

When

XL

C/C++

compiles

a

C++

program,

it

encodes

(mangles)

all

function

names

and

certain

other

identifiers

to

include

type

and

scoping

information.

The

name

mangling

is

necessary

to

accommodate

overloading

of

C++

functions

and

operators.

The

linker

uses

these

mangled

names

to

resolve

duplicate

symbols

and

ensure

type-safe

linkage.

These

mangled

names

appear

in

the

object

files

and

final

executable

file.

Tools

that

can

manipulate

the

files,

the

AIX

dump

utility

for

example,

have

only

the

mangled

names

and

not

the

original

source-code

names,

and

present

the

mangled

name

in

their

output.

This

output

might

be

undesirable

because

the

names

are

no

longer

recognizable.

Two

utilities

convert

the

mangled

names

to

their

original

source

code

names:

c++filt

A

filter

that

demangles

(decodes)

mangled

names.

demangle.h

A

class

library

that

you

can

use

to

develop

tools

to

manipulate

mangled

names.

Both

are

described

in

the

following

sections.

Demangling

compiled

C++

names

with

c++filt

The

c++filt

utility

is

a

filter

that

copies

characters

from

file

names

or

standard

input

to

standard

output,

replacing

all

mangled

names

with

their

corresponding

demangled

names.

You

can

use

the

filter

directly

with

file

name

arguments,

and

the

filter

will

output

the

demangled

names

of

all

mangled

names

in

the

files;

or

you

can

use

a

shell

command

that

inputs

text,

such

as

specific

mangled

names,

and

pipe

it

to

the

filter,

so

that

the

filter

provides

the

demangled

names

of

the

names

you

specified.

The

syntax

of

the

c++filt

utility

is

as

follows:

©

Copyright

IBM

Corp.

1998,

2004

53

��

c++filt

-m

-s

-w

width

-C

-S

�

filename

��

You

can

specify

one

or

more

of

the

following

options:

-m

Produces

a

symbol

map,

containing

a

side-by-side

listing

of

demangled

names

in

the

left

column

and

their

corresponding

mangled

names

in

the

right

column.

-s

Produces

a

continuous

listing

of

each

demangled

name

followed

immediately

by

its

mangled

name.

-w

width

Prints

demangled

names

in

fields

width

characters

wide.

If

the

name

is

shorter

than

width,

it

is

padded

on

the

right

with

blanks;

if

longer,

it

is

truncated

to

width.

-C

Demangles

standalone

class

names,

such

as

Q2_1X1Y.

-S

Demangles

special

compiler-generated

symbol

names,

such

as

__vft1X

(represents

a

virtual

function).

filename

Is

the

name

of

the

file

containing

the

mangled

names

you

want

to

demangle.

You

can

specify

more

than

one

file

name.

For

example,

the

following

command

would

show

the

symbols

contained

in

an

object

file

functions.o,

producing

a

side-by-side

listing

of

the

mangled

and

demangled

names

with

a

field

width

of

40

characters:

c++filt

-m

-w

40

functions.o

The

output

would

appear

as

follows:

C++

Symbol

Mapping

demangled:

Mangled:

Average::insertValue(double)

insertValue__7AverageFd

Average::getCount()

getCount__7AverageFv

Average::getTotal()

getTotal__7AverageFv

Average::getAverage()

getAverage__7AverageFv

The

following

command

would

show

the

demangled

name

immediately

followed

by

the

mangled

name:

echo

getAverage__7AverageFv

|

c++filt

-s

The

output

would

appear

as

follows:

Average::getAverage()getAverage__7AverageFv

Demangling

compiled

C++

names

with

the

demangle

class

library

The

demangle

class

library

contains

a

small

class

hierarchy

that

client

programs

can

use

to

demangle

names

and

examine

the

resulting

parts

of

the

name.

It

also

provides

a

C-language

interface

for

use

in

C

programs.

Although

it

is

a

C++

library,

it

uses

no

external

C++

features,

so

you

can

link

it

directly

to

C

programs.

The

demangle

library

is

included

as

part

of

libC.a,

and

is

automatically

linked,

when

required,

if

libC.a

is

linked.

The

header

file

declares

a

base

class,

Name,

and

a

member

function,

Demangle,

that

takes

a

mangled

name

as

a

parameter,

and

returns

the

corresponding

54

Programming

Guide

demangled

name.

The

header

file

declares

four

additional

subclasses,

which

each

contain

member

functions

that

allow

you

to

get

additional

information

about

the

name.

These

classes

are:

ClassName

Can

be

used

to

query

names

of

independent

or

nested

classes.

FunctionName

Can

be

used

to

query

names

of

functions.

MemberVarName

Can

be

used

to

query

names

of

member

variables.

MemberFunctionName

Can

be

used

to

query

names

of

member

functions.

For

each

of

these

classes,

functions

are

defined

that

allow

you

to

get

information

about

the

name.

For

example,

for

function

names,

a

set

of

functions

are

defined

that

return

the

following

information:

Kind

Returns

the

type

of

the

name

being

queried

(that

is,

class,

function,

member

variable,

or

member

function).

Text

Returns

the

fully

qualified

original

text

of

the

function.

Rootname

Returns

the

unqualified

original

name

of

the

function.

Arguments

Returns

the

original

text

of

the

parameter

list.

Scope

Returns

the

original

text

of

the

function’s

qualifiers.

IsConst/IsVolatile/IsStatic

Returns

true/false

for

these

type

qualifiers

or

storage

class

specifiers.

To

demangle

a

name

(represented

as

a

character

array),

create

a

dynamic

instance

of

the

Name

class,

providing

the

character

string

to

the

class’s

constructor.

For

example,

if

the

compiler

mangled

X::f(int)

to

the

mangled

name

f__1XFi,

in

order

to

demangle

the

name,

use

the

following

code:

char

*rest;

Name

*name

=

Demangle(“f__1XFi”,

rest)

;

If

the

supplied

character

string

is

not

a

name

that

requires

demangling,

because

the

original

name

was

not

mangled,

the

Demangle

function

returns

NULL.

Once

your

program

has

constructed

an

instance

of

class

Name,

the

program

could

query

the

instance

to

find

out

what

kind

of

name

it

is,

using

the

Kind

method.

Using

the

example

of

the

mangled

name

f__1XFi,

the

following

code:

name->Kind()

would

return

MemberFunction.

Based

on

the

kind

of

name

returned,

the

program

could

ask

for

the

text

of

the

different

parts

of

the

name,

or

the

text

of

the

entire

name.

The

following

table

shows

examples,

still

assuming

the

mangled

name

f__1XFi.

To

return...

...use

this

code:

Result

The

name

of

the

function’s

qualifier

((MemberFunctionName

*)name)->Scope()->Text()

X

Chapter

8.

Using

the

C++

utilities

55

To

return...

...use

this

code:

Result

The

unqualified

name

of

the

function

((MemberFunctionName

*)name)->RootName()

f

The

fully

qualified

name

of

the

function

((MemberFunctionName

*)name)->Text()

X::f(int)

For

further

details

about

the

demangle

library

and

the

C++

interface,

look

at

the

comments

in

the

library’s

header

file,

/usr/vacpp/include/demangle.h.

Creating

a

shared

library

with

the

makeC++SharedLib

utility

makeC++SharedLib

is

a

shell

script

that

links

C++

.o

and

.a

files.

It

can

be

redistributed

and

used

by

someone

who

does

not

have

XL

C/C++

installed.

It

is

recommended

that

you

use

the

-qmkshrobj

compiler

option

instead

of

the

makeC++SharedLib

command.

Among

the

advantages

to

using

this

option

are

the

automatic

handling

of

link-time

C++

template

instantiation

(using

either

the

template

include

directory

or

the

template

registry),

and

compatibility

with

the

-O5

option.

The

syntax

for

makeC++SharedLib

is

as

follows:

��

invocation

�

command_line_options

input_files

��

invocation

Is

the

command,

preceded

by

the

path.

The

following

commands

are

provided:

v

makeC++SharedLib

v

makeC++SharedLib_r

v

makeC++SharedLib_r7

v

makeC++SharedLib128

Command

line

options

-o

shared_file.o

The

name

of

the

file

that

will

hold

the

shared

file

information.

The

default

is

shr.o.

-b

Uses

the

-b

binder

options

of

the

ld

command.

-Llib_dir

Uses

the

-L

option

of

the

ld

command

to

add

the

directory

lib_dir

to

the

list

of

directories

to

be

searched

for

unresolved

symbols.

-llibrary

Adds

library

to

the

list

of

libraries

to

be

searched

for

unresolved

symbols.

-p

priority

Specifies

the

priority

level

for

the

file.

priority

can

be

any

number

from

-214782623

(highest

priority-initialized

first)

to

214783647

(lowest

priority-initialized

last).

Numbers

from

-214783648

to

-214782624

are

reserved

for

system

use.

For

more

information,

see

“Assigning

priorities

to

objects”

on

page

46.

-I

import_list

Uses

the

-bI

option

of

the

ld

command

to

resolve

the

list

of

symbols

in

the

file

import_list

that

can

be

resolved

by

the

binder.

-E

export_list

Uses

the

-bE

option

of

the

ld

command

to

export

the

external

56

Programming

Guide

symbols

in

the

export_list

file.

If

you

do

not

specify

-E

export_list,

a

list

of

all

global

symbols

is

generated.

-e

file

Saves

in

file

the

list

computed

by

-E

export_list.

-n

name

Sets

the

entry

name

for

the

shared

executable

to

name.

This

is

equivalent

to

using

the

command

ld

-e

name.

-X

mode

Specifies

the

type

of

object

file

makeC++SharedLib

should

create.

The

mode

must

be

either

32,

which

processes

only

32-bit

object

files,

or

64,

which

processes

only

64-bit

object

files.

The

default

is

to

process

32-bit

object

files

(ignore

64-bit

objects).

You

can

also

set

the

mode

with

the

OBJECT_MODE

environment

variable.

For

example,

OBJECT_MODE=64

causes

makeC++SharedLib

to

process

any

64-bit

objects

and

ignore

32-bit

objects.

The

-X

flag

overrides

the

OBJECT_MODE

variable.

Input

Files

file.o

Is

an

object

file

to

be

put

into

the

shared

library.

file.a

Is

an

archive

file

to

be

put

into

the

shared

library.

Linking

with

the

linkxlC

utility

linkxlC

is

a

small

shell

script

that

links

C++

.o

and

.a

files.

It

can

be

redistributed

and

used

by

someone

who

does

not

have

XL

C/C++

installed.

linkxlC

supports

the

following

subset

of

the

xlC

compiler

options:

v

-q32

(build

a

32-bit

application)

v

-q64

(build

a

64-bit

application)

v

-b

(pass

linker

options

to

ld)

v

-f

(pass

a

list

of

object

files

to

ld)

v

-l

(pass

a

library

to

ld)

v

-L

(pass

a

library

path

to

ld)

v

-o

(specify

the

output

file)

v

-s

(strip

output)

v

-qtwolink

(enable

two-step

linking)

linkxlC

does

not

support

the

following

compiler

options:

v

-G

v

-p

v

-pg

linkxlC

accepts

and

ignores

all

other

compiler

options.

Unlike

xlC,

linkxlC

does

not

specify

any

run-time

libraries.

You

must

specify

these

libraries

yourself.

For

example,

xlC

a.o

would

become:

linkxlC

a.o

-L/usr/lpp/vacpp/lib

-lC

-lm

-lc

Related

references

v

ld

in

the

AIX

Commands

Reference

Chapter

8.

Using

the

C++

utilities

57

58

Programming

Guide

Chapter

9.

Optimizing

your

applications

By

default,

a

standard

compilation

performs

only

very

basic

local

optimizations

on

your

code,

while

still

providing

fast

compilation

and

full

debugging

support.

Once

you

have

developed,

tested,

and

debugged

your

code,

you

will

want

to

take

advantage

of

the

extensive

range

of

optimization

capabilities

offered

by

XL

C/C++,

that

allow

for

significant

performance

gains

without

the

need

for

any

manual

re-coding

effort.

In

fact,

it

is

not

recommended

to

excessively

hand-optimize

your

code

(for

example,

by

manually

unrolling

loops),

as

unusual

constructs

can

confuse

the

compiler,

and

make

your

application

difficult

to

optimize

for

new

machines.

Instead,

you

can

control

XL

C/C++

compiler

optimization

through

the

use

of

a

set

of

compiler

options.

These

options

provide

you

with

the

following

approaches

to

optimizing

your

code:

v

You

can

use

an

option

that

performs

a

specific

type

of

optimization,

including:

–

System

architecture.

If

your

application

will

run

on

a

specific

hardware

configuration,

the

compiler

can

generate

instructions

that

are

optimized

for

the

target

machine,

including

microprocessor

architecture,

cache

or

memory

geometry,

and

addressing

model.

These

options

are

discussed

in

“Optimizing

for

system

architecture”

on

page

63.

–

Shared

memory

parallelization.

If

your

application

will

run

on

hardware

that

supports

shared

memory

parallelization,

you

can

instruct

the

compiler

to

automatically

generate

threaded

code,

or

to

recognize

OpenMP

standard

programming

constructs.

Options

for

parallelizing

your

program

are

discussed

in

“Using

shared-memory

parallelism”

on

page

65.

–

High-order

loop

analysis

and

transformation.

The

compiler

uses

various

techniques

to

optimize

loops.

These

options

are

discussed

in

“Using

high-order

loop

analysis

and

transformations”

on

page

64.

–

Interprocedural

analysis

(IPA).

The

compiler

reorganizes

code

sections

to

optimize

calls

between

functions.

IPA

options

are

discussed

in

“Using

interprocedural

analysis”

on

page

66.

–

Profile-directed

feedback

(PDF).

The

compiler

can

optimize

sections

of

your

code

based

on

call

and

block

counts

and

execution

times.

PDF

options

are

discussed

in

“Using

profile-directed

feedback”

on

page

67

–

Other

types

of

optimization,

including

loop

unrolling,

function

inlining,

stack

storage

compacting,

and

many

others.

Brief

descriptions

of

these

options

are

provided

in

“Other

optimization

options”

on

page

70.
v

You

can

use

an

optimization

level,

which

bundles

several

techniques

and

may

include

one

or

more

of

the

aforementioned

specific

optimization

options.

There

are

four

optimization

levels

that

perform

increasingly

aggressive

optimizations

on

your

code.

Optimization

levels

are

described

in

“Using

optimization

levels”

on

page

60.

v

You

can

combine

optimization

options

and

levels

to

achieve

the

precise

results

you

want.

Discussions

on

how

to

do

so

are

provided

throughout

the

sections

referenced

above.

Keep

in

mind

that

program

optimization

implies

a

trade-off,

in

that

it

results

in

longer

compile

times,

increased

program

size

and

disk

usage,

and

diminished

debugging

capability.

At

higher

levels

of

optimization,

program

semantics

might

be

affected,

and

code

that

executed

correctly

before

optimization

might

no

longer

run

as

expected.

Thus,

not

all

optimizations

are

beneficial

for

all

applications

or

even

©

Copyright

IBM

Corp.

1998,

2004

59

all

portions

of

applications.

For

programs

that

are

not

computationally

intensive,

the

benefits

of

faster

instruction

sequences

brought

about

by

optimization

can

be

outweighed

by

better

paging

and

cache

performance

brought

about

by

a

smaller

program

footprint.

To

identify

modules

of

your

code

that

would

benefit

from

performance

enhancements,

compile

the

selected

files

with

the

-p

or

-pg

options,

and

use

the

operating

system

profiler

gprof

to

identify

functions

that

are

″hot

spots″

and

are

computationally

intensive.

If

both

size

and

speed

are

important,

optimize

the

modules

which

contain

hot

spots,

while

keeping

code

size

compact

in

other

modules.

To

find

the

right

balance,

you

might

need

to

experiment

with

different

combinations

of

techniques.

An

exhaustive

list

of

all

options

available

for

optimization,

organized

by

category,

is

provided

in

“Summary

of

options

for

optimization

and

performance”

on

page

71.

Finally,

if

you

want

to

manually

tune

your

application

to

complement

the

optimization

techniques

used

by

the

compiler,

Chapter

10,

“Coding

your

application

to

improve

performance,”

on

page

73

provides

suggestions

and

best

practices

for

coding

for

performance.

Related

references

v

-p

in

XL

C/C++

Compiler

Reference

v

-pg

in

XL

C/C++

Compiler

Reference

Using

optimization

levels

By

default,

the

compiler

performs

only

quick

local

optimizations

such

as

constant

folding

and

elimination

of

local

common

sub-expressions,

while

still

allowing

full

debugging

support.

You

can

optimize

your

program

by

specifying

various

optimization

levels,

which

provide

increasing

application

performance,

at

the

expense

of

larger

program

size

and

debugging

support.

The

options

you

can

specify

are

summarized

in

the

following

table,

and

more

detailed

descriptions

of

the

techniques

used

at

each

optimization

level

are

provided

below.

Table

13.

Optimization

levels

Option

Behavior

-O

or

-O2

or

-qoptimize

or

-qoptimize=2

Comprehensive

low-level

optimization;

partial

debugging

support.

-O3

or

-qoptimize=3

More

extensive

optimization;

some

precision

trade-offs.

-O4

or

-qoptimize=4

Interprocedural

optimization;

loop

optimization;

automatic

machine

tuning.

-O5

or

-qoptimize=5

Techniques

used

in

optimization

level

2

At

optimization

level

2,

the

compiler

is

conservative

in

the

optimization

techniques

it

applies

and

should

not

affect

program

correctness.

At

optimization

level

2,

the

following

techniques

are

used:

v

Eliminating

common

sub-expressions

that

are

recalculated

in

subsequent

expressions.

For

example,

with

these

expressions:

60

Programming

Guide

a

=

c

+

d;

f

=

c

+

d

+

e;

the

common

expression

c

+

d

is

saved

from

its

first

evaluation

and

is

used

in

the

subsequent

statement

to

determine

the

value

of

f.

v

Simplifying

algebraic

expressions.

For

example,

the

compiler

combines

multiple

constants

that

are

used

in

the

same

expression.

v

Evaluating

constants

at

compile

time.

v

Eliminating

unused

or

redundant

code,

including:

–

Code

that

cannot

be

reached.

–

Code

whose

results

are

not

subsequently

used.

–

Store

instructions

whose

values

are

not

subsequently

used.
v

Rearranging

the

program

code

to

minimize

branching

logic,

combine

physically

separate

blocks

of

code,

and

minimize

execution

time.

v

Allocating

variables

and

expressions

to

available

hardware

registers

using

a

graph

coloring

algorithm.

v

Replacing

less

efficient

instructions

with

more

efficient

ones.

For

example,

in

array

subscripting,

an

add

instruction

replaces

a

multiply

instruction.

v

Moving

invariant

code

out

of

a

loop,

including:

–

Expressions

whose

values

do

not

change

within

the

loop.

–

Branching

code

based

on

a

variable

whose

value

does

not

change

within

the

loop.

–

Store

instructions.
v

Unrolling

some

loops

(equivalent

to

using

the

-qunroll

compiler

option).

v

Pipelining

some

loops

Techniques

used

in

optimization

level

3

At

optimization

levels

3

and

above,

the

compiler

is

more

aggressive,

making

changes

to

program

semantics

that

will

improve

performance

even

if

there

is

some

risk

that

these

changes

will

produce

different

results.

Here

are

some

examples:

v

In

some

cases,

X*Y*Z

will

be

calculated

as

X*(Y*Z)

instead

of

(X*Y)*Z.

This

could

produce

a

different

result

due

to

rounding.

v

In

some

cases,

the

sign

of

a

negative

zero

value

will

be

lost.

This

could

produce

a

different

result

if

you

multiply

the

value

by

infinity.

“Getting

the

most

out

of

optimization

levels

2

and

3”

on

page

62

provides

some

suggestions

for

mitigating

this

risk.

At

optimization

level

3,

all

of

the

techniques

in

optimization

level

2

are

used,

plus

the

following:

v

Unrolling

deeper

loops

and

improving

loop

scheduling.

v

Increasing

the

scope

of

optimization.

v

Performing

optimizations

with

marginal

or

niche

effectiveness,

which

might

not

help

all

programs.

v

Performing

optimizations

that

are

expensive

in

compile

time

or

space.

v

Reordering

some

floating-point

computations,

which

might

produce

precision

differences

or

affect

the

generation

of

floating-point-related

exceptions

(equivalent

to

compiling

with

the

-qnostrict

option).

v

Eliminating

implicit

memory

usage

limits

(equivalent

to

compiling

with

the

-qmaxmem=-1

option).

Chapter

9.

Optimizing

your

applications

61

v

Increasing

automatic

inlining.

v

Propagating

constants

and

values

through

structure

copies.

v

Removing

the

″address

taken″

attribute

if

possible

after

other

optimizations.

v

Grouping

loads,

stores

and

other

operations

on

contiguous

aggregate

members,

in

some

cases

using

VMX

vector

register

operations.

Techniques

used

in

optimization

levels

4

and

5

At

optimization

levels

4

and

5,

all

of

the

techniques

in

optimization

levels

2

and

3

are

used,

plus

the

following:

v

Interprocedural

analysis,

which

invokes

the

optimizer

at

link

time

to

perform

optimizations

across

multiple

source

files

(equivalent

to

compiling

with

the

-qipa

option).

v

High-order

transformations,

which

provide

optimized

handling

of

loop

nests

and

array

language

constructs

(equivalent

to

compiling

with

the

-qhot

option).

v

Hardware-specific

optimization

(equivalent

to

compiling

with

the

-qarch=auto,

-qtune=auto,

and

-qcache=auto

options).

v

At

optimization

level

5,

more

detailed

interprocedural

analysis

(the

equivalent

to

compiling

with

the

-qipa=level=2

option).

With

level

2

IPA,

high-order

transformations

(equivalent

to

compiling

with

-qhot)

are

delayed

until

link

time,

after

whole-program

information

has

been

collected.

Getting

the

most

out

of

optimization

levels

2

and

3

Here

is

a

recommended

approach

to

using

optimization

levels

2

and

3:

1.

If

possible,

test

and

debug

your

code

without

optimization

before

using

-O2.

2.

Ensure

that

your

code

complies

with

its

language

standard.

3.

C

In

C

code,

ensure

that

the

use

of

pointers

follows

the

type

restrictions:

generic

pointers

should

be

char*

or

void*.

Also

check

that

all

shared

variables

and

pointers

to

shared

variables

are

marked

volatile.

4.

C

In

C,

use

the

-qlibansi

compiler

option

unless

your

program

defines

its

own

functions

with

the

same

names

as

library

functions.

5.

Compile

as

much

of

your

code

as

possible

with

-O2.

6.

If

you

encounter

problems

with

-O2,

consider

using

-qalias=noansi

rather

than

turning

off

optimization.

7.

Next,

use

-O3

on

as

much

code

as

possible.

8.

If

you

encounter

problems

or

performance

degradations,

consider

using

-qstrict

or

-qcompact

along

with

-O3

where

necessary.

9.

If

you

still

have

problems

with

-O3,

switch

to

-O2

for

a

subset

of

files,

but

consider

using

-qmaxmem=-1,

-qnostrict,

or

both.

Related

references

v

-O

in

XL

C/C++

Compiler

Reference

v

-qnostrict

in

XL

C/C++

Compiler

Reference

v

-qmaxmem

in

XL

C/C++

Compiler

Reference

v

-qunroll

in

XL

C/C++

Compiler

Reference

v

-qalias

in

XL

C/C++

Compiler

Reference

v

-qlibansi

in

XL

C/C++

Compiler

Reference

62

Programming

Guide

Optimizing

for

system

architecture

You

can

instruct

the

compiler

to

generate

code

for

optimal

execution

on

a

given

microprocessor

or

architecture

family.

By

selecting

appropriate

target

machine

options,

you

can

optimize

to

suit

the

broadest

possible

selection

of

target

processors,

a

range

of

processors

within

a

given

family

of

processor

architectures,

or

a

specific

processor.

The

following

table

lists

the

optimization

options

that

affect

individual

aspects

of

the

target

machine.

Using

a

predefined

optimization

level

sets

default

values

for

these

individual

options.

Table

14.

Target

machine

options

Option

Behavior

-q32

Generates

code

for

a

32-bit

(4/4/4)

addressing

model

(32-bit

execution

mode).

This

is

the

default

setting.

-q64

Generates

code

for

a

64-bit

(4/8/8)

addressing

model

(64-bit

execution

mode).

-qarch

Selects

a

family

of

processor

architectures

for

which

instruction

code

should

be

generated.

This

option

restricts

the

instruction

set

generated

to

a

subset

of

that

for

the

PowerPC®

architecture.

The

default

is-qarch=com.

Using

-O4

or

-O5

sets

the

default

to

-qarch=auto.

-qtune

Biases

optimization

toward

execution

on

a

given

microprocessor,

without

implying

anything

about

the

instruction

set

architecture

to

use

as

a

target.

The

default

is

-qtune=pwr3.

-qcache

Defines

a

specific

cache

or

memory

geometry.

The

defaults

are

determined

through

the

setting

of

-qtune.

For

a

complete

listing

of

valid

hardware-related

suboptions

and

combinations

of

suboptions,

see

“Specify

Compiler

Options

for

Architecture-Specific,

32-

or

64-bit

Compilation”,

and

“Acceptable

Compiler

Mode

and

Processor

Architecture

Combinations”

in

XL

C/C++

Compiler

Reference.

Getting

the

most

out

of

target

machine

options

Using

-qarch

options

If

your

application

will

run

on

the

same

machine

on

which

you

are

compiling

it,

you

can

use

the

-qarch=auto

option,

which

automatically

detects

the

specific

architecture

of

the

compiling

machine,

and

generates

code

to

take

advantage

of

instructions

available

only

on

that

machine

(or

on

a

system

that

supports

the

equivalent

processor

architecture).

Otherwise,

try

to

specify

with

-qarch

the

smallest

family

of

machines

possible

that

will

be

expected

to

run

your

code

reasonably

well.

To

optimize

square

root

operations,

by

generating

inline

code

rather

than

calling

a

library

function,

you

need

to

specify

a

family

of

processors

that

supports

sqrt

functionality,

in

addition

to

specifying

the

-qignerrno

option

(or

any

optimization

option

that

implies

it).

Use

-qarch=ppc64grsq,

which

will

generate

correct

code

for

all

processors

in

the

ppc64grsq

group

of

processors:

RS64

II,

RS64

III,

POWER3,

POWER4,

POWER5,

and

PowerPC970.

Using

-qtune

options

If

you

specify

a

particular

architecture

with

-qarch,

-qtune

will

automatically

select

the

suboption

that

generates

instruction

sequences

with

the

best

performance

for

that

architecture.

If

you

specify

a

group

of

architectures

with

-qarch,

compiling

with

-qtune=auto

will

generate

code

that

runs

on

all

of

the

architectures

in

the

specified

Chapter

9.

Optimizing

your

applications

63

group,

but

the

instruction

sequences

will

be

those

with

the

best

performance

on

the

architecture

of

the

compiling

machine.

Try

to

specify

with

-qtune

the

particular

architecture

that

the

compiler

should

target

for

best

performance

but

still

allow

execution

of

the

produced

object

file

on

all

architectures

specified

in

the-qarch

option.

For

information

on

the

valid

combinations

of

-qarch

and

-qtune,

see

“Acceptable

Compiler

Mode

and

Processor

Architecture

Combinations”

in

XL

C/C++

Compiler

Reference.

Using

-qcache

options

Before

using

the

-qcache

option,

use

the

-qlistopt

option

to

generate

a

listing

of

the

current

settings

and

verify

if

they

are

satisfactory.

If

you

decide

to

specify

your

own

-qcache

suboptions,

use

-qhot

or

-qsmp

along

with

it.

For

the

full

set

of

suboptions,

option

syntax,

and

guidelines

for

use,

see

-qcache

in

XL

C/C++

Compiler

Reference.

Related

references

v

-qarch

in

XL

C/C++

Compiler

Reference

v

-qcache

in

XL

C/C++

Compiler

Reference

v

-qtune

in

XL

C/C++

Compiler

Reference

v

-qlistopt

in

XL

C/C++

Compiler

Reference

Using

high-order

loop

analysis

and

transformations

High-order

transformations

are

optimizations

that

specifically

improve

the

performance

of

loops

through

techniques

such

as

interchange,

fusion,

and

unrolling.

The

goals

of

these

loop

optimizations

include:

v

Reducing

the

costs

of

memory

access

through

the

effective

use

of

caches

and

translation

look-aside

buffers.

v

Overlapping

computation

and

memory

access

through

effective

utilization

of

the

data

prefetching

capabilities

provided

by

the

hardware.

v

Improving

the

utilization

of

microprocessor

resources

through

reordering

and

balancing

the

usage

of

instructions

with

complementary

resource

requirements.

To

enable

high-order

loop

analysis

and

transformations,

you

use

the

-qhot

option.

The

following

table

lists

the

suboptions

available

for

-qhot.

Table

15.

-qhot

suboptions

suboption

Behavior

vector

Instructs

the

compiler

to

transform

some

loops

to

use

optimized

versions

of

various

trigonometric

functions

and

operations

such

as

reciprocal

and

square

root

that

reside

in

a

built-in

library,

rather

than

use

the

standard

versions.

The

optimized

versions

make

different

trade-offs

with

respect

to

precision

versus

performance.

This

suboption

is

enabled

by

default

when

you

use

-qhot,

-O4,

or

-O5.

novector

Instructs

the

compiler

to

avoid

optimizations

that

use

the

above-mentioned

built-in

library

functions.

Use

this

suboption

or

-qstrict

if

you

do

not

want

your

precision

of

your

program’s

results

to

be

affected.

arraypad

Instructs

the

compiler

to

pad

any

arrays

where

it

infers

there

might

be

a

benefit

and

to

pad

by

whatever

amount

it

chooses.

64

Programming

Guide

Getting

the

most

out

of

-qhot

Here

are

some

suggestions

for

using

-qhot:

v

Try

using

-qhot

along

with

-O2

and

-O3

for

all

of

your

code.

It

is

designed

to

have

a

neutral

effect

when

no

opportunities

for

transformation

exist.

v

If

you

encounter

unacceptably

long

compile

times

(this

can

happen

with

complex

loop

nests)

or

if

your

performance

degrades

with

the

use

of

-qhot,

try

using

-qhot=novector,

or

-qstrict

or

-qcompact

along

with

-qhot.

v

If

necessary,

deactivate

-qhot

selectively,

allowing

it

to

improve

some

of

your

code.

Related

references

v

-qhot

in

XL

C/C++

Compiler

Reference

v

-qstrict

in

XL

C/C++

Compiler

Reference

Using

shared-memory

parallelism

Some

IBM

pSeries™

machines

are

capable

of

shared-memory

parallel

processing.

You

can

compile

with

-qsmp

to

generate

the

threaded

code

needed

to

exploit

this

capability.

The

option

implies

an

optimization

level

of

at

least

-O2.

The

following

table

lists

the

most

commonly

used

suboptions.

Descriptions

and

syntax

of

all

the

suboptions

are

provided

in

XL

C/C++

Compiler

Reference.

Table

16.

Commonly

used

-qsmp

suboptions

suboption

Behavior

auto

Instructs

the

compiler

to

automatically

generate

parallel

code

where

possible

without

user

assistance.

This

is

the

default

setting

if

you

do

not

specify

any

-qsmp

suboptions,

and

it

also

implies

the

opt

suboption.

omp

Instructs

the

compiler

to

observe

OpenMP

language

extensions

for

specifying

explicit

parallelism.

Note

that

-qsmp=omp

is

currently

incompatible

with

-qsmp=auto.

opt

Instructs

the

compiler

to

optimize

as

well

as

parallelize.

The

optimization

is

equivalent

to

-O2

-qhot

in

the

absence

of

other

optimization

options.

fine_tuning

Other

values

for

the

suboption

provide

control

over

thread

scheduling,

nested

parallelism,

locking,

etc.

Getting

the

most

out

of

-qsmp

Here

are

some

suggestions

for

using

the

-qsmp

option:

v

Before

using

-qsmp

with

automatic

parallelization,

test

your

programs

using

optimization

and

-qhot

in

a

single-threaded

manner.

v

If

you

are

compiling

an

OpenMP

program

and

do

not

want

automatic

parallelization,

use

-qsmp=omp:noauto

.

v

Always

use

the

reentrant

compiler

invocations

(the

_r

invocations)

when

using

-qsmp.

v

By

default,

the

run-time

environment

uses

all

available

processors.

Do

not

set

the

XLSMPOPTS=PARTHDS

or

OMP_NUM_THREADS

environment

variables

unless

you

want

to

use

fewer

than

the

number

of

available

processors.

You

might

want

to

set

the

number

of

executing

threads

to

a

small

number

or

to

1

to

ease

debugging.

v

If

you

are

using

a

dedicated

machine

or

node,

consider

setting

the

SPINS

and

YIELDS

environment

variables

(suboptions

of

the

XLSMPOPTS

environment

Chapter

9.

Optimizing

your

applications

65

variables)

to

0.

Doing

so

prevents

the

operating

system

from

intervening

in

the

scheduling

of

threads

across

synchronization

boundaries

such

as

barriers.

v

When

debugging

an

OpenMP

program,

try

using

-qsmp=noopt

(without

-O)

to

make

the

debugging

information

produced

by

the

compiler

more

precise.

Related

references

v

-qsmp

in

XL

C/C++

Compiler

Reference

v

″Runtime

Options

for

Parallel

Processing″

in

XL

C/C++

Compiler

Reference

v

″OpenMP

Runtime

Options

for

Parallel

Processing″

in

XL

C/C++

Compiler

Reference

Using

interprocedural

analysis

Interprocedural

analysis

(IPA)

enables

the

compiler

to

optimize

across

different

files

(whole-program

analysis),

and

can

result

in

significant

performance

improvements.

You

can

specify

interprocedural

analysis

on

the

compile

step

only

or

on

both

compile

and

link

steps

(“whole

program”

mode).

Whole

program

mode

expands

the

scope

of

optimization

to

an

entire

program

unit,

which

can

be

an

executable

or

shared

object.

As

IPA

can

significantly

increase

compilation

time,

you

should

limit

using

IPA

to

the

final

performance

tuning

stage

of

development.

You

enable

IPA

by

specifying

the

-qipa

option.

The

most

commonly

used

suboptions

and

their

effects

are

described

in

the

following

table.

The

full

set

of

suboptions

and

syntax

is

described

in

-qipa

in

the

XL

C/C++

Compiler

Reference.

Table

17.

Commonly

used

-qipa

suboptions

suboption

Behavior

level=0

Program

partitioning

and

simple

interprocedural

optimization,

which

consists

of:

v

Automatic

recognition

of

standard

libraries.

v

Localization

of

statically

bound

variables

and

procedures.

v

Partitioning

and

layout

of

procedures

according

to

their

calling

relationships.

(Procedures

that

call

each

other

frequently

are

located

closer

together

in

memory.)

v

Expansion

of

scope

for

some

optimizations,

notably

register

allocation.

level=1

Inlining

and

global

data

mapping.

Specifically:

v

Procedure

inlining.

v

Partitioning

and

layout

of

static

data

according

to

reference

affinity.

(Data

that

is

frequently

referenced

together

will

be

located

closer

together

in

memory.)

This

is

the

default

level

if

you

do

not

specify

any

suboptions

with

the

-qipa

option.

level=2

Global

alias

analysis,

specialization,

interprocedural

data

flow:

v

Whole-program

alias

analysis.

This

level

includes

the

disambiguation

of

pointer

dereferences

and

indirect

function

calls,

and

the

refinement

of

information

about

the

side

effects

of

a

function

call.

v

Intensive

intraprocedural

optimizations.

This

can

take

the

form

of

value

numbering,

code

propagation

and

simplification,

code

motion

into

conditions

or

out

of

loops,

elimination

of

redundancy.

v

Interprocedural

constant

propagation,

dead

code

elimination,

pointer

analysis,

and

code

motion

across

functions.

v

Procedure

specialization

(cloning).

inline=variable

Allows

you

precise

control

over

function

inlining.

66

Programming

Guide

Table

17.

Commonly

used

-qipa

suboptions

(continued)

suboption

Behavior

fine_tuning

Other

values

for

-qipa

provide

the

ability

to

specify

the

behavior

of

library

code,

tune

program

partitioning,

read

commands

from

a

file,

etc.

Getting

the

most

from

-qipa

It

is

not

necessary

to

compile

everything

with

-qipa,

but

try

to

apply

it

to

as

much

of

your

program

as

possible.

Here

are

some

suggestions:

v

Specify

the

-qipa

option

on

both

the

compile

and

link

steps

of

the

entire

application,

or

as

much

of

it

as

possible.

Although

you

can

also

use

-qipa

with

libraries,

shared

objects,

and

executables,

be

sure

to

use

-qipa

to

compile

the

main

and

exported

functions.

v

When

compiling

and

linking

separately,

use

-qipa=noobject

on

the

compile

step

for

faster

compilation.

v

When

specifying

optimization

options

in

a

makefile,

remember

to

use

the

compiler

driver

(xlc)

to

link,

and

to

include

all

compiler

options

on

the

link

step.

v

As

IPA

can

generate

significantly

larger

object

files

than

traditional

compilations,

ensure

that

there

is

enough

space

in

the

/tmp

directory

(at

least

200

MB),

or

use

the

TMPDIR

environment

variable

to

specify

a

different

directory

with

sufficient

free

space.

v

Try

varying

the

level

suboption

if

link

time

is

too

long.

Compiling

with

–qipa=level=0

can

still

be

very

beneficial

for

little

additional

link

time.

v

Use

-qlist

or

-qipa=list

to

generate

a

report

of

functions

that

were

inlined.

If

too

few

or

too

many

functions

are

inlined,

consider

using

–qipa=inline

or

–qipa=noinline.

To

control

inlining

of

specific

functions,

use

-Q+

or

-Q-.

Related

references

v

-qipa

in

XL

C/C++

Compiler

Reference

v

-Q

in

XL

C/C++

Compiler

Reference

v

-qlist

in

XL

C/C++

Compiler

Reference

Using

profile-directed

feedback

You

can

use

profile-directed

feedback

(PDF)

to

tune

the

performance

of

your

application

for

a

typical

usage

scenario.

The

compiler

optimizes

the

application

based

on

an

analysis

of

how

often

branches

are

taken

and

blocks

of

code

are

executed.

Because

the

process

requires

compiling

the

entire

application

twice,

it

is

intended

to

be

used

after

other

debugging

and

tuning

is

finished,

as

one

of

the

last

steps

before

putting

the

application

into

production.

The

following

diagram

illustrates

the

PDF

process.

Chapter

9.

Optimizing

your

applications

67

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

You

first

compile

the

program

with

the

-qpdf1

option,

which

generates

profile

data

by

using

the

compiled

program

in

the

same

ways

that

users

will

typically

use

it.

You

then

compile

the

program

again,

with

the

-qpdf2

option.

This

optimizes

the

program

based

on

the

profile

data,

by

invoking

qipa=level=0.

Note

that

you

do

not

need

to

compile

all

of

the

application’s

code

with

the

-qpdf1

option

to

benefit

from

the

PDF

process;

in

a

large

application,

you

might

want

to

concentrate

on

those

areas

of

the

code

that

can

benefit

most

from

optimization.

To

use

the

-qpdf

options:

1.

Compile

some

or

all

of

the

source

files

in

the

application

with

-qpdf1.

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

It

is

important

to

use

data

that

is

representative

of

the

data

that

will

be

used

by

your

application

in

a

real-world

scenario.

When

the

application

exits,

it

writes

profiling

information

to

the

PDF

file

in

the

current

working

directory

or

the

directory

specified

by

the

PDFDIR

environment

variable.

3.

Compile

the

application

with

-qpdf2.

You

can

take

more

control

of

the

PDF

file

generation,

as

follows:

1.

Compile

some

or

all

of

the

source

files

in

the

application

with

-qpdf1.

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

This

produces

a

PDF

file

in

the

current

directory.

3.

Change

the

directory

specified

by

the

PDFDIR

environment

variable

to

produce

a

PDF

file

in

a

different

directory.

4.

Re-compile

the

application

with

-qpdf1.

5.

Repeat

steps

3

and

4

as

often

as

you

want.

6.

Use

the

mergepdf

utility

to

combine

the

PDF

files

into

one

PDF

file.

For

example,

if

you

produce

three

PDF

files

that

represent

usage

patterns

that

will

occur

53%,

32%,

and

15%

of

the

time

respectively,

you

can

use

this

command:

mergepdf

-r

53

path1

-r

32

path2

-r

15

path3

7.

Compile

the

application

with

-qpdf2.

To

collect

more

detailed

information

on

function

call

and

block

statistics,

do

the

following:

1.

Compile

the

application

with

-qpdf1

-qshowpdf.

Figure

2.

Profile-directed

feedback

68

Programming

Guide

2.

Run

the

application

using

a

typical

data

set

or

several

typical

data

sets.

The

application

writes

more

detailed

profiling

information

in

the

PDF

file.

3.

Use

the

showpdf

utility

to

view

the

information

in

the

PDF

file.

To

erase

the

information

in

the

PDF

directory,

use

the

cleanpdf

utility

or

the

resetpdf

utility.

Example

of

compilation

with

pdf

and

showpdf

The

following

example

shows

how

you

can

use

PDF

with

the

showpdf

utility

to

view

the

call

and

block

statistics

for

a

“Hello

World”

application.

The

source

for

the

program

file

hello.c

is

as

follows:

#include

<stdio.h>

void

HelloWorld()

{

printf("Hello

World");

}

main()

{

HelloWorld();

return

0;

}

1.

Compile

the

source

file:

xlc

-qpdf1

-qshowpdf

hello.c

2.

Run

the

resulting

program

executable

a.out.

3.

Run

the

showpdf

utility

to

display

the

call

and

block

counts

for

the

executable:

showpdf

The

results

will

look

similar

to

the

following:

HelloWorld(4):

1

(hello.c)

Call

Counters:

5

|

1

printf(6)

Call

coverage

=

100%

(

1/1

)

Block

Counters:

3-5

|

1

6

|

6

|

1

Block

coverage

=

100%

(

2/2

)

main(5):

1

(hello.c)

Call

Counters:

10

|

1

HelloWorld(4)

Call

coverage

=

100%

(

1/1

)

Block

Counters:

8-11

|

1

11

|

Block

coverage

=

100%

(

1/1

)

Total

Call

coverage

=

100%

(

2/2

)

Total

Block

coverage

=

100%

(

3/3

)

Chapter

9.

Optimizing

your

applications

69

Related

references

v

-qpdf

in

XL

C/C++

Compiler

Reference

v

-showpdf

in

XL

C/C++

Compiler

Reference

Other

optimization

options

The

following

options

are

available

to

control

particular

aspects

of

optimization.

They

are

often

enabled

as

a

group

or

given

default

values

when

you

enable

a

more

general

optimization

option

or

level.

For

more

information

on

these

options,

see

the

heading

for

each

option

in

the

XL

C/C++

Compiler

Reference.

Table

18.

Selected

compiler

options

for

optimizing

performance

Option

Description

-qcompact

Suppresses

optimizations

that

would

result

in

larger

code

size,

such

as

loop

unrolling,

and

function

inlining.

-qignerrno

Allows

the

compiler

to

assume

that

errno

is

not

modified

by

library

function

calls,

so

that

such

calls

can

be

optimized.

Also

allows

optimization

of

square

root

operations,

by

generating

inline

code

rather

than

calling

a

library

function.

(For

processors

that

support

sqrt.)

-qsmallstack

Instructs

the

compiler

to

compact

stack

storage.

Doing

so

may

increase

heap

usage.

-qinline

Controls

inlining

of

named

functions.

Can

be

used

at

compile

time,

link

time,

or

both.

When

-qipa

is

used,

-qinline

is

synonymous

with

-qipa=inline.

-qunroll

Independently

controls

loop

unrolling.

Is

implicitly

activated

under

-O3.

-qinlglue

Instructs

the

compiler

to

inline

the

″glue

code″

generated

by

the

linker

and

used

to

make

a

call

to

an

external

function

or

a

call

made

through

a

function

pointer.

64-bit

mode

only.

-qtbtable

Controls

the

generation

of

traceback

table

information.

64-bit

mode

only.

C++

-qnoeh

Informs

the

compiler

that

no

C++

exceptions

will

be

thrown

and

that

cleanup

code

can

be

omitted.

If

your

program

does

not

throw

any

C++

exceptions,

use

this

option

to

compact

your

program

by

removing

exception-handling

code.

-qnounwind

Informs

the

compiler

that

the

stack

will

not

be

unwound

while

any

routine

in

this

compilation

is

active.

This

option

can

improve

optimization

of

non-volatile

register

saves

and

restores.

In

C++,

the

-qnounwind

option

implies

the

-qnoeh

option.

-qnostrict

Stops

the

compiler

from

reordering

floating-point

calculations

and

potentially

excepting

instructions.

A

potentially

excepting

instruction

is

one

that

might

raise

an

interrupt

due

to

erroneous

execution

(for

example,

floating-point

overflow,

a

memory

access

violation).

-qlargepage

Supports

large

16M

pages

in

addition

to

the

default

4K

pages,

to

allow

hardware

prefetching

to

be

done

more

efficiently.

Informs

the

compiler

that

heap

and

static

data

will

be

allocated

from

large

pages

at

execution

time.

70

Programming

Guide

Summary

of

options

for

optimization

and

performance

The

following

table

presents

a

summary

of

the

compiler

options

that

deal

with

optimization

and

performance

tuning.

The

options

are

grouped

by

type.

For

a

description,

full

syntax,

and

usage

of

each

option,

see

the

appropriate

option

heading

in

the

XL

C/C++

Compiler

Reference.

Table

19.

Options

related

to

optimization

and

performance

tuning

Optimization

flags

Optimization

restriction

options

-O/-qoptimize

-qagrrcopy

-qkeepparm

-qnoprefetch

-qstrict

-qcompact

-qmaxmem

Function

inlining

Code

size

reduction

-Q

-qinline

-qinlglue

-bmaxdata

-s

-qnoeh

Side

effects

Loop

optimization

-qignerrno

-qisolated_call

-qhot

-qreport

-qnostrict_induction

-qunroll

Whole-program

analysis

Processor

and

architectural

optimization

-qipa

-qarch

-qcache

-qtune

-qdirectstorage

Performance

data

collection

Other

optimization

options

-qfdpr

-p

-qpdf1

-qpdf2

-pg

-qshowpdf

-qlargepage

-qtocdata

-qtocmerge

-qsmallstack

-qspill

Chapter

9.

Optimizing

your

applications

71

72

Programming

Guide

Chapter

10.

Coding

your

application

to

improve

performance

Chapter

9,

“Optimizing

your

applications,”

on

page

59

discusses

the

various

compiler

options

that

XL

C/C++

provides

for

optimizing

your

code

with

minimal

coding

effort.

If

you

want

to

take

your

application

a

step

further,

to

complement

and

take

the

most

advantage

of

compiler

optimizations,

the

following

sections

discuss

C

and

C++

programming

techniques

that

can

improve

performance

of

your

code:

v

“Find

faster

input/output

techniques”

v

“Reduce

function-call

overhead”

v

“Manage

memory

efficiently”

on

page

75

v

“Optimize

variables”

on

page

75

v

“Manipulate

strings

efficiently”

on

page

76

v

“Optimize

expressions

and

program

logic”

on

page

77

v

“Optimize

operations

in

64-bit

mode”

on

page

77

Find

faster

input/output

techniques

There

are

a

number

of

ways

to

improve

your

program’s

performance

of

input

and

output:

v

Use

binary

streams

instead

of

text

streams.

In

binary

streams,

data

is

not

changed

on

input

or

output.

v

Use

the

low-level

I/O

functions,

such

as

open

and

close.

These

functions

are

faster

and

more

specific

to

the

application

than

the

stream

I/O

functions

like

fopen

and

fclose.

You

must

provide

your

own

buffering

for

the

low-level

functions.

v

If

you

do

your

own

I/O

buffering,

make

the

buffer

a

multiple

of

4K,

which

is

the

size

of

a

page.

v

When

reading

input,

read

in

a

whole

line

at

once

rather

than

one

character

at

a

time.

v

If

you

know

you

have

to

process

an

entire

file,

determine

the

size

of

the

data

to

be

read

in,

allocate

a

single

buffer

to

read

it

to,

read

the

whole

file

into

that

buffer

at

once

using

read,

and

then

process

the

data

in

the

buffer.

This

reduces

disk

I/O,

provided

the

file

is

not

so

big

that

excessive

swapping

will

occur.

Consider

using

the

mmap

function

to

access

the

file.

v

Instead

of

scanf

and

fscanf,

use

fgets

to

read

in

a

string,

and

then

use

one

of

atoi,

atol,

atof,

or

_atold

to

convert

it

to

the

appropriate

format.

v

Use

sprintf

only

for

complicated

formatting.

For

simpler

formatting,

such

as

string

concatenation,

use

a

more

specific

string

function.

Reduce

function-call

overhead

When

you

write

a

function

or

call

a

library

function,

consider

the

following

guidelines:

v

Call

a

function

directly,

rather

than

using

function

pointers.

v

Pass

a

value

to

a

function

as

an

argument,

rather

than

letting

the

function

take

the

value

from

a

global

variable.

©

Copyright

IBM

Corp.

1998,

2004

73

v

Use

constant

arguments

in

inlined

functions

whenever

possible.

Functions

with

constant

arguments

provide

more

opportunities

for

optimization.

v

Use

the

#pragma

isolated_call

preprocessor

directive

to

list

functions

that

have

no

side

effects

and

do

not

depend

on

side

effects.

v

Use

#pragma

disjoint

within

functions

for

pointers

or

reference

parameters

that

can

never

point

to

the

same

memory.

v

Declare

a

nonmember

function

as

static

whenever

possible.

This

can

speed

up

calls

to

the

function.

v

C++

Usually,

you

should

not

declare

virtual

functions

inline.

If

all

virtual

functions

in

a

class

are

inline,

the

virtual

function

table

and

all

the

virtual

function

bodies

will

be

replicated

in

each

compilation

unit

that

uses

the

class.

v

C++

When

declaring

functions,

use

the

const

specifier

whenever

possible.

v

C

Fully

prototype

all

functions.

A

full

prototype

gives

the

compiler

and

optimizer

complete

information

about

the

types

of

the

parameters.

As

a

result,

promotions

from

unwidened

types

to

widened

types

are

not

required,

and

parameters

can

be

passed

in

appropriate

registers.

v

C

Avoid

using

unprototyped

variable

argument

functions.

v

Design

functions

so

that

the

most

frequently

used

parameters

are

in

the

leftmost

positions

in

the

function

prototype.

v

Avoid

passing

by

value

structures

or

unions

as

function

parameters

or

returning

a

structure

or

a

union.

Passing

such

aggregates

requires

the

compiler

to

copy

and

store

many

values.

This

is

worse

in

C++

programs

in

which

class

objects

are

passed

by

value

because

a

constructor

and

destructor

are

called

when

the

function

is

called.

Instead,

pass

or

return

a

pointer

to

the

structure

or

union,

or

pass

it

by

reference.

v

Pass

non-aggregate

types

such

as

int

and

short

by

value

rather

than

passing

by

reference,

whenever

possible.

v

If

your

function

exits

by

returning

the

value

of

another

function

with

the

same

parameters

that

were

passed

to

your

function,

put

the

parameters

in

the

same

order

in

the

function

prototypes.

The

compiler

can

then

branch

directly

to

the

other

function.

v

Use

the

built-in

functions,

which

include

string

manipulation,

floating-point,

and

trigonometric

functions,

instead

of

coding

your

own.

Intrinsic

functions

require

less

overhead

and

are

faster

than

a

function

call,

and

often

allow

the

compiler

to

perform

better

optimization.

C++

Your

functions

are

automatically

mapped

to

built-in

functions

if

you

include

the

XL

C/C++

header

files.

C

Your

functions

are

mapped

to

built-in

functions

if

you

include

math.h

and

string.h.

v

Selectively

mark

your

functions

for

inlining,

using

the

inline

keyword.

An

inlined

function

requires

less

overhead

and

is

generally

faster

than

a

function

call.

The

best

candidates

for

inlining

are

small

functions

that

are

called

frequently

from

a

few

places,

or

functions

called

with

one

or

more

compile-time

constant

parameters,

especially

those

that

affect

if,

switch

or

for

statements.

You

might

also

want

to

put

these

functions

into

header

files,

which

allows

automatic

inlining

across

file

boundaries

even

at

low

optimization

levels.

Be

sure

to

inline

all

functions

that

only

load

or

store

a

value,

or

use

simple

operators

such

as

comparison

or

arithmetic

operators.

Large

functions

and

functions

that

are

called

rarely

might

not

be

good

candidates

for

inlining.

74

Programming

Guide

v

Avoid

breaking

your

program

into

too

many

small

functions.

If

you

must

use

small

functions,

seriously

consider

using

the

-qipa

compiler

option,

which

can

automatically

inline

such

functions,

and

uses

other

techniques

for

optimizing

calls

between

functions.

v

C++

Avoid

virtual

functions

and

virtual

inheritance

unless

required

for

class

extensibility.

These

language

features

are

costly

in

object

space

and

function

invocation

performance.

Related

references

v

#pragma

isolated_call

in

XL

C/C++

Compiler

Reference

v

#pragma

disjoint

in

XL

C/C++

Compiler

Reference

v

-qipa

in

XL

C/C++

Compiler

Reference

Manage

memory

efficiently

Because

C++

objects

are

often

allocated

from

the

heap

and

have

limited

scope,

memory

use

affects

performance

more

in

C++

programs

than

it

does

in

C

programs.

For

that

reason,

consider

the

following

guidelines

when

you

develop

C++

applications:

v

In

a

structure,

declare

the

largest

members

first.

v

In

a

structure,

place

variables

near

each

other

if

they

are

frequently

used

together.

v

C++

Ensure

that

objects

that

are

no

longer

needed

are

freed

or

otherwise

made

available

for

reuse.

One

way

to

do

this

is

to

use

an

object

manager.

Each

time

you

create

an

instance

of

an

object,

pass

the

pointer

to

that

object

to

the

object

manager.

The

object

manager

maintains

a

list

of

these

pointers.

To

access

an

object,

you

can

call

an

object

manager

member

function

to

return

the

information

to

you.

The

object

manager

can

then

manage

memory

usage

and

object

reuse.

v

Storage

pools

are

a

good

way

of

keeping

track

of

used

memory

(and

reclaiming

it)

without

having

to

resort

to

an

object

manager

or

reference

counting.

v

C++

Avoid

copying

large,

complicated

objects.

v

C++

Avoid

performing

a

deep

copy

if

a

shallow

copy

is

all

you

require.

For

an

object

that

contains

pointers

to

other

objects,

a

shallow

copy

copies

only

the

pointers

and

not

the

objects

to

which

they

point.

The

result

is

two

objects

that

point

to

the

same

contained

object.

A

deep

copy,

however,

copies

the

pointers

and

the

objects

they

point

to,

as

well

as

any

pointers

or

objects

contained

within

that

object,

and

so

on.

v

C++

Use

virtual

methods

only

when

absolutely

necessary.

Optimize

variables

Consider

the

following

guidelines:

v

Use

local

variables,

preferably

automatic

variables,

as

much

as

possible.

The

compiler

must

make

several

worst-case

assumptions

about

a

global

variable.

For

example,

if

a

function

uses

external

variables

and

also

calls

external

functions,

the

compiler

assumes

that

every

call

to

an

external

function

could

change

the

value

of

every

external

variable.

If

you

know

that

a

global

variable

is

not

affected

by

any

function

call,

and

this

variable

is

read

several

times

with

function

calls

interspersed,

copy

the

global

variable

to

a

local

variable

and

then

use

this

local

variable.

Chapter

10.

Coding

your

application

to

improve

performance

75

v

If

you

must

use

global

variables,

use

static

variables

with

file

scope

rather

than

external

variables

whenever

possible.

In

a

file

with

several

related

functions

and

static

variables,

the

optimizer

can

gather

and

use

more

information

about

how

the

variables

are

affected.

v

If

you

must

use

external

variables,

group

external

data

into

structures

or

arrays

whenever

it

makes

sense

to

do

so.

All

elements

of

an

external

structure

use

the

same

base

address.

v

The

#pragma

isolated_call

preprocessor

directive

can

improve

the

run-time

performance

of

optimized

code

by

allowing

the

compiler

to

make

less

pessimistic

assumptions

about

the

storage

of

external

and

static

variables.

Isolated

call

functions

with

constant

or

loop-invariant

parameters

can

be

moved

out

of

loops,

and

multiple

calls

with

the

same

parameters

can

be

replaced

with

a

single

call.

v

Avoid

taking

the

address

of

a

variable.

If

you

use

a

local

variable

as

a

temporary

variable

and

must

take

its

address,

avoid

reusing

the

temporary

variable.

Taking

the

address

of

a

local

variable

inhibits

optimizations

that

would

otherwise

be

done

on

calculations

involving

that

variable.

v

Use

constants

instead

of

variables

where

possible.

The

optimizer

will

be

able

to

do

a

better

job

reducing

run-time

calculations

by

doing

them

at

compile-time

instead.

For

instance,

if

a

loop

body

has

a

constant

number

of

iterations,

use

constants

in

the

loop

condition

to

improve

optimization

(for

(i=0;

i<4;

i++)

can

be

better

optimized

than

for

(i=0;

i<x;

i++)).

v

Use

register-sized

integers

(long

data

type)

for

scalars.

For

large

arrays

of

integers,

consider

using

one-

or

two-byte

integers

or

bit

fields.

v

Use

the

smallest

floating-point

precision

appropriate

to

your

computation.

Use

the

long

double

data

type

only

when

extremely

high

precision

is

required.

Related

references

v

#pragma

isolated_call

in

XL

C/C++

Compiler

Reference

Manipulate

strings

efficiently

The

handling

of

string

operations

can

affect

the

performance

of

your

program.

v

When

you

store

strings

into

allocated

storage,

align

the

start

of

the

string

on

an

8-byte

boundary.

v

Keep

track

of

the

length

of

your

strings.

If

you

know

the

length

of

a

string,

you

can

use

mem

functions

instead

of

str

functions.

For

example,

memcpy

is

faster

than

strcpy

because

it

does

not

have

to

search

for

the

end

of

the

string.

v

If

you

are

certain

that

the

source

and

target

do

not

overlap,

use

memcpy

instead

of

memmove.

This

is

because

memcpy

copies

directly

from

the

source

to

the

destination,

while

memmove

might

copy

the

source

to

a

temporary

location

in

memory

before

copying

to

the

destination

(depending

on

the

length

of

the

string).

v

When

manipulating

strings

using

mem

functions,

faster

code

will

be

generated

if

the

count

parameter

is

a

constant

rather

than

a

variable.

This

is

especially

true

for

small

count

values.

v

Make

string

literals

read-only,

whenever

possible.

This

improves

certain

optimization

techniques

and

reduces

memory

usage

if

there

are

multiple

uses

of

the

same

string.

You

can

explicitly

set

strings

to

read-only

by

using

#pragma

strings

(readonly)

in

your

source

files

or

-qro

(this

is

enabled

by

default)

to

avoid

changing

your

source

files.

76

Programming

Guide

Related

references

v

#pragma

strings

(readonly)

in

XL

C/C++

Compiler

Reference

v

-qro

in

XL

C/C++

Compiler

Reference

Optimize

expressions

and

program

logic

Consider

the

following

guidelines:

v

If

components

of

an

expression

are

used

in

other

expressions,

assign

the

duplicated

values

to

a

local

variable.

v

Avoid

forcing

the

compiler

to

convert

numbers

between

integer

and

floating-point

internal

representations.

For

example:

float

array[10];

float

x

=

1.0;

int

i;

for

(i

=

0;

i<

9;

i++)

{

/*

No

conversions

needed

*/

array[i]

=

array[i]*x;

x

=

x

+

1.0;

}

for

(i

=

0;

i<

9;

i++)

{

/*

Multiple

conversions

needed

*/

array[i]

=

array[i]*i;

}

When

you

must

use

mixed-mode

arithmetic,

code

the

integer

and

floating-point

arithmetic

in

separate

computations

whenever

possible.

v

Avoid

goto

statements

that

jump

into

the

middle

of

loops.

Such

statements

inhibit

certain

optimizations.

v

Improve

the

predictability

of

your

code

by

making

the

fall-through

path

more

probable.

Code

such

as:

if

(error)

{handle

error}

else

{real

code}

should

be

written

as:

if

(!error)

{real

code}

else

{error}

v

If

one

or

two

cases

of

a

switch

statement

are

typically

executed

much

more

frequently

than

other

cases,

break

out

those

cases

by

handling

them

separately

before

the

switch

statement.

v

C++

Use

try

blocks

for

exception

handling

only

when

necessary

because

they

can

inhibit

optimization.

v

Keep

array

index

expressions

as

simple

as

possible.

Optimize

operations

in

64-bit

mode

The

ability

to

handle

larger

amounts

of

data

directly

in

physical

memory

rather

than

relying

on

disk

I/O

is

perhaps

the

most

significant

performance

benefit

of

64-bit

machines.

However,

some

applications

compiled

in

32-bit

mode

perform

better

than

when

they

are

recompiled

in

64-bit

mode.

Some

reasons

for

this

include:

v

64-bit

programs

are

larger.

The

increase

in

program

size

places

greater

demands

on

physical

memory.

v

64-bit

long

division

is

more

time-consuming

than

32-bit

integer

division.

v

64-bit

programs

that

use

32-bit

signed

integers

as

array

indexes

might

require

additional

instructions

to

perform

sign

extension

each

time

the

array

is

referenced.

Chapter

10.

Coding

your

application

to

improve

performance

77

Some

ways

to

compensate

for

the

performance

liabilities

of

64-bit

programs

include:

v

Avoid

performing

mixed

32-

and

64-bit

operations.

For

example,

adding

a

32-bit

data

type

to

a

64-bit

data

type

requires

that

the

32-bit

type

be

sign-extended

to

clear

the

upper

32

bits

of

the

register.

This

slows

the

computation.

v

Avoid

long

division

whenever

possible.

Multiplication

is

usually

faster

than

division.

If

you

need

to

perform

many

divisions

with

the

same

divisor,

assign

the

reciprocal

of

the

divisor

to

a

temporary

variable,

and

change

all

divisions

to

multiplications

with

the

temporary

variable.

For

example,

the

function

double

preTax(double

total)

{

return

total

*

(1.0

/

1.0825);

}

will

perform

faster

than

the

more

straightforward:

double

preTax(double

total)

{

return

total

/

1.0825;

}

The

reason

is

that

the

division

(1.0

/

1.0825)

is

evaluated

once,

and

folded,

at

compile

time

only.

v

Use

long

types

instead

of

signed,

unsigned,

and

plain

int

types

for

variables

which

will

be

frequently

accessed,

such

as

loop

counters

and

array

indexes.

Doing

so

frees

the

compiler

from

having

to

truncate

or

sign-extend

array

references,

parameters

during

function

calls,

and

function

results

during

returns.

78

Programming

Guide

Appendix.

Memory

debug

library

functions

This

appendix

contains

reference

information

about

the

XL

C/C++

memory

debug

library

functions,

which

are

extensions

of

the

standard

C

memory

management

functions.

The

appendix

is

divided

into

two

sections:

v

“Memory

allocation

debug

functions”

describes

the

debug

versions

of

the

standard

library

functions

for

allocating

heap

memory.

v

“String

handling

debug

functions”

on

page

87

describes

the

debug

versions

of

the

standard

library

functions

for

manipulating

strings.

To

use

these

debug

versions,

you

can

do

either

of

the

following:

v

In

your

source

code,

prefix

any

of

the

default

or

user-defined-heap

memory

management

functions

with

debug.

v

If

you

do

not

wish

to

make

changes

to

the

source

code,

simply

compile

with

the

-qheapdebug

option.

This

option

maps

all

calls

to

memory

management

functions

to

their

debug

version

counterparts.

To

prevent

a

call

from

being

mapped,

parenthesize

the

function

name.

All

of

the

examples

provided

in

this

appendix

assume

compilation

with

the

-qheapdebug

option.

Related

references

v

-qheapdebug

in

XL

C/C++

Compiler

Reference

Memory

allocation

debug

functions

This

section

describes

the

debug

versions

of

standard

and

user-created

heap

memory

allocation

functions.

All

of

these

functions

automatically

make

a

call

to

_heap_check

or

_uheap_check

to

check

the

validity

of

the

heap.

You

can

then

use

the

_dump_allocated

or

_dump_allocated_delta

functions

to

print

the

information

returned

by

the

heap-checking

functions.

_debug_calloc

—

Allocate

and

initialize

memory

Format

#include

<stdlib.h>

/*

also

in

<malloc.h>

*/

void

*_debug_calloc(size_t

num,

size_t

size,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

calloc.

Like

calloc,

it

allocates

memory

from

the

default

heap

for

an

array

of

num

elements,

each

of

length

size

bytes.

It

then

initializes

all

bits

of

each

element

to

0.

In

addition,

_debug_calloc

makes

an

implicit

call

to

_heap_check,

and

stores

the

name

of

the

file

file

and

the

line

number

line

where

the

storage

is

allocated.

Return

value

Returns

a

pointer

to

the

reserved

space.

If

not

enough

memory

is

available,

or

if

num

or

size

is

0,

returns

NULL.

©

Copyright

IBM

Corp.

1998,

2004

79

Example

This

example

reserves

storage

of

100

bytes.

It

then

attempts

to

write

to

storage

that

was

not

allocated.

When

_debug_calloc

is

called

again,

_heap_check

detects

the

error,

generates

several

messages,

and

stops

the

program.

/*

_debug_calloc.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

int

main(void)

{

char

*ptr1,

*ptr2;

if

(NULL

==

(ptr1

=

(char*)calloc(1,

100)))

{

puts(“Could

not

allocate

memory

block.”);

exit(EXIT_FAILURE);

}

memset(ptr1,

’a’,

105);

/*

overwrites

storage

that

was

not

allocated

*/

ptr2

=

(char*)calloc(2,

20);

/*

this

call

to

calloc

invokes

_heap_check

*/

puts(“_debug_calloc

did

not

detect

that

a

memory

block

was

overwritten.”);

return

0;

}

The

output

should

be

similar

to:

End

of

allocated

object

0x00073890

was

overwritten

at

0x000738f4.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

6161616161616161.

This

memory

block

was

(re)allocated

at

line

number

9

in

_debug_calloc.c.

Heap

state

was

valid

at

line

9

of

_debug_calloc.c.

Memory

error

detected

at

line

14

of

_debug_calloc.c.

_debug_free

—

Free

allocated

memory

Format

#include

<stdlib.h>

/*

also

in

<malloc.h>

*/

void

_debug_free(void

*ptr,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

free.

Like

free,

it

frees

the

block

of

memory

pointed

to

by

ptr.

_debug_free

also

sets

each

block

of

freed

memory

to

0xFB,

so

you

can

easily

locate

instances

where

your

program

uses

the

data

in

freed

memory.

In

addition,

_debug_free

makes

an

implicit

call

to

the

_heap_check

function,

and

stores

the

file

name

file

and

the

line

number

line

where

the

memory

is

freed.

Because

_debug_free

always

checks

the

type

of

heap

from

which

the

memory

was

allocated,

you

can

use

this

function

to

free

memory

blocks

allocated

by

the

regular,

heap-specific,

or

debug

versions

of

the

memory

management

functions.

However,

if

the

memory

was

not

allocated

by

the

memory

management

functions,

or

was

previously

freed,

_debug_free

generates

an

error

message

and

the

program

ends.

Return

value

There

is

no

return

value.

Example

This

example

reserves

two

blocks,

one

of

10

bytes

and

the

other

of

20

bytes.

It

then

frees

the

first

block

and

attempts

to

overwrite

the

freed

storage.

When

_debug_free

is

called

a

second

time,

_heap_check

detects

the

error,

prints

out

several

messages,

and

stops

the

program.

80

Programming

Guide

/*

_debug_free.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

int

main(void)

{

char

*ptr1,

*ptr2;

if

(NULL

==

(ptr1

=

(char*)malloc(10))

||

NULL

==

(ptr2

=

(char*)malloc(20)))

{

puts(“Could

not

allocate

memory

block.”);

exit(EXIT_FAILURE);

}

free(ptr1);

memset(ptr1,

’a’,

5);

/*

overwrites

storage

that

has

been

freed

*/

free(ptr2);

/*

this

call

to

free

invokes

_heap_check

*/

puts(“_debug_free

did

not

detect

that

a

freed

memory

block

was

overwritten.”);

return

0;

}

The

output

should

be

similar

to:

Free

heap

was

overwritten

at

0x00073890.

Heap

state

was

valid

at

line

12

of

_debug_free.c.

Memory

error

detected

at

line

14

of

_debug_free.c.

_debug_heapmin

—

Free

unused

memory

in

the

default

heap

Format

#include

<stdlib.h>

/*

also

in

<malloc.h>

*/

int

_debug_heapmin(const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

_heapmin.

Like

_heapmin,

it

returns

all

unused

memory

from

the

default

runtime

heap

to

the

operating

system.

In

addition,

_debug_heapmin

makes

an

implicit

call

to

_heap_check,

and

stores

the

file

name

file

and

the

line

number

line

where

the

memory

is

returned.

Return

value

If

successful,

returns

0;

otherwise,

returns

-1.

Example

This

example

allocates

10000

bytes

of

storage,

changes

the

storage

size

to

10

bytes,

and

then

uses

_debug_heapmin

to

return

the

unused

memory

to

the

operating

system.

The

program

then

attempts

to

overwrite

memory

that

was

not

allocated.

When

_debug_heapmin

is

called

again,

_heap_check

detects

the

error,

generates

several

messages,

and

stops

the

program.

/*

_debug_heapmin.c

*/

#include

<stdlib.h>

#include

<stdio.h>

int

main(void)

{

char

*ptr;

/*

Allocate

a

large

object

from

the

system

*/

if

(NULL

==

(ptr

=

(char*)malloc(100000)))

{

puts(“Could

not

allocate

memory

block.”);

exit(EXIT_FAILURE);

}

ptr

=

(char*)realloc(ptr,

10);

_heapmin();

/*

No

allocation

problems

to

detect

*/

*(ptr

-

1)

=

’a’;

/*

Overwrite

memory

that

was

not

allocated

*/

Appendix.

Memory

debug

library

functions

81

_heapmin();

/*

This

call

to

_heapmin

invokes

_heap_check

*/

puts(“_debug_heapmin

did

not

detect

that

a

non-allocated

memory

block”

“was

overwritten.”);

return

0;

}

Possible

output

is:

Header

information

of

object

0x000738b0

was

overwritten

at

0x000738ac.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

AAAAAAAAAAAAAAAA.

This

memory

block

was

(re)allocated

at

line

number

13

in

_debug_heapmin.c.

Heap

state

was

valid

at

line

14

of

_debug_heapmin.c.

Memory

error

detected

at

line

17

of

_debug_heapmin.c.

_debug_malloc

—

Allocate

memory

Format

#include

<stdlib.h>

/*

also

in

<malloc.h>

*/

void

*_debug_malloc(size_t

size,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

malloc.

Like

malloc,

it

reserves

a

block

of

storage

of

size

bytes

from

the

default

heap.

_debug_malloc

also

sets

all

the

memory

it

allocates

to

0xAA,

so

you

can

easily

locate

instances

where

your

program

uses

the

data

in

the

memory

without

initializing

it

first.

In

addition,

_debug_malloc

makes

an

implicit

call

to

_heap_check,

and

stores

the

file

name

file

and

the

line

number

line

where

the

storage

is

allocated.

Return

value

Returns

a

pointer

to

the

reserved

space.

If

not

enough

memory

is

available

or

if

size

is

0,

returns

NULL.

Example

This

example

allocates

100

bytes

of

storage.

It

then

attempts

to

write

to

storage

that

was

not

allocated.

When

_debug_malloc

is

called

again,

_heap_check

detects

the

error,

generates

several

messages,

and

stops

the

program.

/*

_debug_malloc.c

*/

#include

<stdlib.h>

#include

<stdio.h>

int

main(void)

{

char

*ptr1,

*ptr2;

if

(NULL

==

(ptr1

=

(char*)malloc(100)))

{

puts(“Could

not

allocate

memory

block.”);

exit(EXIT_FAILURE);

}

*(ptr1

-

1)

=

’a’;

/*

overwrites

storage

that

was

not

allocated

*/

ptr2

=

(char*)malloc(10);

/*

this

call

to

malloc

invokes

_heap_check

*/

puts(“_debug_malloc

did

not

detect

that

a

memory

block

was

overwritten.”);

return

0;

}

Possible

output

is:

Header

information

of

object

0x00073890

was

overwritten

at

0x0007388c.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

AAAAAAAAAAAAAAAA.

This

memory

block

was

(re)allocated

at

line

number

8

in

_debug_malloc.c.

Heap

state

was

valid

at

line

8

of

_debug_malloc.c.

Memory

error

detected

at

line

13

of

_debug_malloc.c.

82

Programming

Guide

_debug_ucalloc

—

Reserve

and

initialize

memory

from

a

user-created

heap

Format

#include

<umalloc.h>

void

*_debug_ucalloc(Heap_t

heap,

size_t

num,

size_t

size,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

_ucalloc.

Like

_ucalloc,

it

allocates

memory

from

the

heap

you

specify

for

an

array

of

num

elements,

each

of

length

size

bytes.

It

then

initializes

all

bits

of

each

element

to

0.

In

addition,

_debug_ucalloc

makes

an

implicit

call

to

_uheap_check,

and

stores

the

name

of

the

file

file

and

the

line

number

line

where

the

storage

is

allocated.

If

the

heap

does

not

have

enough

memory

for

the

request,

_debug_ucalloc

calls

the

heap-expanding

function

that

you

specify

when

you

create

the

heap

with

_ucreate.

Note:

Passing

_debug_ucalloc

a

heap

that

is

not

valid

results

in

undefined

behavior.

Return

value

Returns

a

pointer

to

the

reserved

space.

If

size

or

num

was

specified

as

zero,

or

if

your

heap-expanding

function

cannot

provide

enough

memory,

returns

NULL.

Example

This

example

creates

a

user

heap

and

allocates

memory

from

it

with

_debug_ucalloc.

It

then

attempts

to

write

to

memory

that

was

not

allocated.

When

_debug_free

is

called,

_uheap_check

detects

the

error,

generates

several

messages,

and

stops

the

program.

/*

_debug_ucalloc.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<umalloc.h>

#include

<string.h>

int

main(void)

{

Heap_t

myheap;

char

*ptr;

/*

Use

default

heap

as

user

heap

*/

myheap

=

_udefault(NULL);

if

(NULL

==

(ptr

=

(char*)_ucalloc(myheap,

100,

1)))

{

puts(“Cannot

allocate

memory

from

user

heap.”);

exit(EXIT_FAILURE);

}

memset(ptr,

’x’,

105);

/*

Overwrites

storage

that

was

not

allocated

*/

free(ptr);

return

0;

}

The

output

should

be

similar

to

:

End

of

allocated

object

0x00073890

was

overwritten

at

0x000738f4.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

7878787878787878.

This

memory

block

was

(re)allocated

at

line

number

14

in

_debug_ucalloc.c.

Heap

state

was

valid

at

line

14

of

_debug_ucalloc.c.

Memory

error

detected

at

line

19

of

_debug_ucalloc.c.

Appendix.

Memory

debug

library

functions

83

_debug_uheapmin

—

Free

unused

memory

in

a

user-created

heap

Format

#include

<umalloc.h>

int

_debug_uheapmin(Heap_t

heap,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

_uheapmin.

Like

_uheapmin,

it

returns

all

unused

memory

blocks

from

the

specified

heap

to

the

operating

system.

To

return

the

memory,

_debug_uheapmin

calls

the

heap-shrinking

function

you

supply

when

you

create

the

heap

with

_ucreate.

If

you

do

not

supply

a

heap-shrinking

function,

_debug_uheapmin

has

no

effect

and

returns

0.

In

addition,

_debug_uheapmin

makes

an

implicit

call

to

_uheap_check

to

validate

the

heap.

Return

value

If

successful,

returns

0.

A

nonzero

return

value

indicates

failure.

If

the

heap

specified

is

not

valid,

generates

an

error

message

with

the

file

name

and

line

number

in

which

the

call

to

_debug_uheapmin

was

made.

Example

This

example

creates

a

heap

and

allocates

memory

from

it,

then

uses

_debug_heapmin

to

release

the

memory.

/*

_debug_uheapmin.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

#include

<umalloc.h>

int

main(void)

{

Heap_t

myheap;

char

*ptr;

/*

Use

default

heap

as

user

heap

*/

myheap

=

_udefault(NULL);

/*

Allocate

a

large

object

*/

if

(NULL

==

(ptr

=

(char*)_umalloc(myheap,

60000)))

{

puts(“Cannot

allocate

memory

from

user

heap.\n”);

exit(EXIT_FAILURE);

}

memset(ptr,

’x’,

60000);

free(ptr);

/*

_debug_uheapmin

will

attempt

to

return

the

freed

object

to

the

system

*/

if

(0

!=

_uheapmin(myheap))

{

puts(“_debug_uheapmin

returns

failed.\n”);

exit(EXIT_FAILURE);

}

return

0;

}

_debug_umalloc

—

Reserve

memory

blocks

from

a

user-created

heap

Format

#include

<umalloc.h>

void

*_debug_umalloc(Heap_t

heap,

size_t

size,

const

char

*file,

size_t

line);

84

Programming

Guide

Description

This

is

the

debug

version

of

_umalloc.

Like

_umalloc,

it

reserves

storage

space

from

the

heap

you

specify

for

a

block

of

size

bytes.

_debug_umalloc

also

sets

all

the

memory

it

allocates

to

0xAA,

so

you

can

easily

locate

instances

where

your

program

uses

the

data

in

the

memory

without

initializing

it

first.

In

addition,

_debug_umalloc

makes

an

implicit

call

to

_uheap_check,

and

stores

the

name

of

the

file

file

and

the

line

number

line

where

the

storage

is

allocated.

If

the

heap

does

not

have

enough

memory

for

the

request,

_debug_umalloc

calls

the

heap-expanding

function

that

you

specify

when

you

create

the

heap

with

_ucreate.

Note:

Passing

_debug_umalloc

a

heap

that

is

not

valid

results

in

undefined

behavior.

Return

value

Returns

a

pointer

to

the

reserved

space.

If

size

was

specified

as

zero,

or

your

heap-expanding

function

cannot

provide

enough

memory,

returns

NULL.

Example

This

example

creates

a

heap

myheap

and

uses

_debug_umalloc

to

allocate

100

bytes

from

it.

It

then

attempts

to

overwrite

storage

that

was

not

allocated.

The

call

to

_debug_free

invokes

_uheap_check,

which

detects

the

error,

generates

messages,

and

ends

the

program.

/*

_debug_umalloc.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<umalloc.h>

#include

<string.h>

int

main(void)

{

Heap_t

myheap;

char

*ptr;

/*

Use

default

heap

as

user

heap

*/

myheap

=

_udefault(NULL);

if

(NULL

==

(ptr

=

(char*)_umalloc(myheap,

100)))

{

puts(“Cannot

allocate

memory

from

user

heap.\n”);

exit(EXIT_FAILURE);

}

memset(ptr,

’x’,

105);

/*

Overwrites

storage

that

was

not

allocated

*/

free(ptr);

return

0;

}

The

output

should

be

similar

to

:

End

of

allocated

object

0x00073890

was

overwritten

at

0x000738f4.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

7878787878787878.

This

memory

block

was

(re)allocated

at

line

number

14

in

_debug_umalloc.c.

Heap

state

was

valid

at

line

14

of

_debug_umalloc.c.

Memory

error

detected

at

line

19

of

_debug_umalloc.c.

_debug_realloc

—

Reallocate

memory

block

Format

#include

<stdlib.h>

/*

also

in

<malloc.h>

*/

void

*_debug_realloc(void

*ptr,

size_t

size,

const

char

*file,

size_t

line);

Appendix.

Memory

debug

library

functions

85

Description

This

is

the

debug

version

of

realloc.

Like

realloc,

it

reallocates

the

block

of

memory

pointed

to

by

ptr

to

a

new

size,

specified

in

bytes.

It

also

sets

any

new

memory

it

allocates

to

0xAA,

so

you

can

easily

locate

instances

where

your

program

tries

to

use

the

data

in

that

memory

without

initializing

it

first.

In

addition,

_debug_realloc

makes

an

implicit

call

to

_heap_check,

and

stores

the

file

name

file

and

the

line

number

line

where

the

storage

is

reallocated.

If

ptr

is

NULL,

_debug_realloc

behaves

like

_debug_malloc

(or

malloc)

and

allocates

the

block

of

memory.

Because

_debug_realloc

always

checks

to

determine

the

heap

from

which

the

memory

was

allocated,

you

can

use

_debug_realloc

to

reallocate

memory

blocks

allocated

by

the

regular

or

debug

versions

of

the

memory

management

functions.

However,

if

the

memory

was

not

allocated

by

the

memory

management

functions,

or

was

previously

freed,

_debug_realloc

generates

an

error

message

and

the

program

ends.

Return

value

Returns

a

pointer

to

the

reallocated

memory

block.

The

ptr

argument

is

not

the

same

as

the

return

value;

_debug_realloc

always

changes

the

memory

location

to

help

you

locate

references

to

the

memory

that

were

not

freed

before

the

memory

was

reallocated.

If

size

is

0,

returns

NULL.

If

not

enough

memory

is

available

to

expand

the

block

to

the

given

size,

the

original

block

is

unchanged

and

NULL

is

returned.

Example

This

example

uses

_debug_realloc

to

allocate

100

bytes

of

storage.

It

then

attempts

to

write

to

storage

that

was

not

allocated.

When

_debug_realloc

is

called

again,

_heap_check

detects

the

error,

generates

several

messages,

and

stops

the

program.

/*

_debug_realloc.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

int

main(void)

{

char

*ptr;

if

(NULL

==

(ptr

=

(char*)realloc(NULL,

100)))

{

puts(“Could

not

allocate

memory

block.”);

exit(EXIT_FAILURE);

}

memset(ptr,

’a’,

105);

/*

overwrites

storage

that

was

not

allocated

*/

ptr

=

(char*)realloc(ptr,

200);

/*

realloc

invokes

_heap_check

*/

puts(“_debug_realloc

did

not

detect

that

a

memory

block

was

overwritten.”

);

return

0;

}

The

output

should

be

similar

to:

End

of

allocated

object

0x00073890

was

overwritten

at

0x000738f4.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

6161616161616161.

This

memory

block

was

(re)allocated

at

line

number

8

in

_debug_realloc.c.

Heap

state

was

valid

at

line

8

of

_debug_realloc.c.

Memory

error

detected

at

line

13

of

_debug_realloc.c.

86

Programming

Guide

Related

references

v

“Functions

for

debugging

memory

heaps”

on

page

31

String

handling

debug

functions

This

section

describes

the

debug

versions

of

the

string

manipulation

and

memory

functions

of

the

standard

C

string

handling

library.

Note

that

these

functions

check

only

the

current

default

heap;

they

do

not

check

all

heaps

in

applications

that

use

multiple

user-created

heaps.

_debug_memcpy

—

Copy

bytes

Format

#include

<string.h>

void

*_debug_memcpy(void

*dest,

const

void

*src,

size_t

count,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

memcpy.

Like

memcpy,

it

copies

count

bytes

of

src

to

dest,

where

the

behavior

is

undefined

if

copying

takes

place

between

objects

that

overlap.

_debug_memcpy

validates

the

heap

after

copying

the

bytes

to

the

target

location,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_memcpy

makes

an

implicit

call

to

_heap_check.

If

_debug_memcpy

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_memcpy

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

dest.

Example

This

example

contains

a

programming

error.

On

the

call

to

memcpy

used

to

initialize

the

target

location,

the

count

is

more

than

the

size

of

the

target

object,

and

the

memcpy

operation

copies

bytes

past

the

end

of

the

allocated

object.

/*

_debug_memcpy.c

*/

#include

<stdlib.h>

#include

<string.h>

#include

<stdio.h>

#define

MAX_LEN

10

int

main(void)

{

char

*source,

*target;

target

=

(char*)malloc(MAX_LEN);

memcpy(target,

“This

is

the

target

string”,

11);

printf(“Target

is

\”%s\“\n”,

target);

return

0;

}

The

output

should

be

similar

to:

Appendix.

Memory

debug

library

functions

87

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

5468697320697320.

This

memory

block

was

(re)allocated

at

line

number

11

in

_debug_memcpy.c.

Heap

state

was

valid

at

line

11

of

_debug_memcpy.c.

Memory

error

detected

at

line

12

of

_debug_memcpy.c.

_debug_memmove

—

Copy

bytes

Format

#include

<string.h>

void

*_debug_memmove(void

*dest,

const

void

*src,

size_t

count,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

memmove.

Like

memmove,

it

copies

count

bytes

of

src

to

dest,

and

allows

for

copying

between

objects

that

might

overlap.

_debug_memmove

validates

the

heap

after

copying

the

bytes

to

the

target

location,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_memmove

makes

an

implicit

call

to

_heap_check.

If

_debug_memmove

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_memmove

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

dest.

Example

This

example

contains

a

programming

error.

The

count

specified

on

the

call

to

memmove

is

15

instead

of

5,

and

the

memmove

operation

copies

bytes

past

the

end

of

the

allocated

object.

/*

_debug_memmove.c

*/

#include

<stdlib.h>

#include

<string.h>

#include

<stdio.h>

#define

SIZE

21

int

main(void)

{

char

*target,

*p,

*source;

target

=

(char*)malloc(SIZE);

strcpy(target,

“a

shiny

white

sphere”);

p

=

target+8;

/*

p

points

at

the

starting

character

of

the

word

we

want

to

replace

*/

source

=

target+2;

/*

start

of

“shiny”

*/

printf(“Before

memmove,

target

is

\”%s\“\n”,

target);

memmove(p,

source,

15);

printf(“After

memmove,

target

becomes

\”%s\“\n”,

target);

return

0;

}

The

output

should

be

similar

to:

Before

memmove,

target

is

“a

shiny

white

sphere”

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c95.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

61207368696E7920.

This

memory

block

was

(re)allocated

at

line

number

11

in

_debug_memmove.c.

Heap

state

was

valid

at

line

12

of

_debug_memmove.c.

Memory

error

detected

at

line

18

of

_debug_memmove.c.

88

Programming

Guide

_debug_memset

—

Set

bytes

to

value

Format

#include

<string.h>

void

*_debug_memset(void

*dest,

int

c,

size_t

count,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

memset.

Like

memset,

it

sets

the

first

count

bytes

of

dest

to

the

value

c.

The

value

of

c

is

converted

to

an

unsigned

character.

_debug_memset

validates

the

heap

after

setting

the

bytes,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_memset

makes

an

implicit

call

to

_heap_check.

If

_debug_memset

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_memset

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

dest.

Example

This

example

contains

a

programming

error.

The

invocation

of

memset

that

puts

’B’

in

the

buffer

specifies

the

wrong

count,

and

stores

bytes

past

the

end

of

the

buffer.

/*

_debug_memset.c

*/

#include

<stdlib.h>

#include

<string.h>

#include

<stdio.h>

#define

BUF_SIZE

20

int

main(void)

{

char

*buffer,

*buffer2;

char

*string;

buffer

=

(char*)calloc(1,

BUF_SIZE+1);

/*

+1

for

null-terminator

*/

string

=

(char*)memset(buffer,

’A’,

10);

printf(“\nBuffer

contents:

%s\n”,

string);

memset(buffer+10,

’B’,

20);

return

0;

}

The

output

should

be:

Buffer

contents:

AAAAAAAAAA

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c95.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

4141414141414141.

This

memory

block

was

(re)allocated

at

line

number

12

in

_debug_memset.c.

Heap

state

was

valid

at

line

14

of

_debug_memset.c.

Memory

error

detected

at

line

16

of

_debug_memset.c.

_debug_strcat

—

Concatenate

strings

Format

#include

<string.h>

char

*_debug_strcat(char

*string1,

const

char

*string2,

const

char

*file,

size_t

file);

Appendix.

Memory

debug

library

functions

89

Description

This

is

the

debug

version

of

strcat.

Like

strcat,

it

concatenates

string2

to

string1

and

ends

the

resulting

string

with

the

null

character.

_debug_strcat

validates

the

heap

after

concatenating

the

strings,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strcat

makes

an

implicit

call

to

_heap_check.

If

_debug_strcat

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strcat

will

report

the

file

name

file

and

line

number

file

in

a

message.

Return

value

Returns

a

pointer

to

the

concatenated

string

string1.

Example

This

example

contains

a

programming

error.

The

buffer1

object

is

not

large

enough

to

store

the

result

after

the

string

“

program”

is

concatenated.

/*

_debug_strcat.hc

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

#define

SIZE

10

int

main(void)

{

char

*buffer1;

char

*ptr;

buffer1

=

(char*)malloc(SIZE);

strcpy(buffer1,

“computer”);

ptr

=

strcat(buffer1,

“

program”);

printf(“buffer1

=

%s\n”,

buffer1);

return

0;

}

The

output

should

be

similar

to:

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

636F6D7075746572.

This

memory

block

was

(re)allocated

at

line

number

12

in

_debug_strcat.c.

Heap

state

was

valid

at

line

13

of

_debug_strcat.c.

Memory

error

detected

at

line

15

of

_debug_strcat.c.

_debug_strcpy

—

Copy

strings

Format

#include

<string.h>

char

*_debug_strcpy(char

*string1,

const

char

*string2,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

strcpy.

Like

strcpy,

it

copies

string2,

including

the

ending

null

character,

to

the

location

specified

by

string1.

_debug_strcpy

validates

the

heap

after

copying

the

string

to

the

target

location,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strcpy

makes

an

implicit

call

to

_heap_check.

If

_debug_strcpy

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strcpy

will

report

the

file

name

file

and

line

number

line

in

a

message.

90

Programming

Guide

Return

value

Returns

a

pointer

to

the

copied

string

string1.

Example

This

example

contains

a

programming

error.

The

source

string

is

too

long

for

the

destination

buffer,

and

the

strcpy

operation

damages

the

heap.

/*

_debug_strcpy.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

#define

SIZE

10

int

main(void)

{

char

*source

=

“1234567890123456789”;

char

*destination;

char

*return_string;

destination

=

(char*)malloc(SIZE);

strcpy(destination,

“abcdefg”),

printf(“destination

is

originally

=

’%s’\n”,

destination);

return_string

=

strcpy(destination,

source);

printf(“After

strcpy,

destination

becomes

’%s’\n\n”,

destination);

return

0;

}

The

output

should

be

similar

to:

destination

is

originally

=

’abcdefg’

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

3132333435363738.

This

memory

block

was

(re)allocated

at

line

number

13

in

_debug_strcpy.c.

Heap

state

was

valid

at

line

14

of

_debug_strcpy.c.

Memory

error

detected

at

line

17

of

_debug_strcpy.c.

_debug_strncat

—

Concatenate

strings

Format

#include

<string.h>

char

*_debug_strncat(char

*string1,

const

char

*string2,

size_t

count,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

strncat.

Like

strncat,

it

appends

the

first

count

characters

of

string2

to

string1

and

ends

the

resulting

string

with

a

null

character

(\0).

If

count

is

greater

than

the

length

of

string2,

the

length

of

string2

is

used

in

place

of

count.

_debug_strncat

validates

the

heap

after

appending

the

characters,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strncat

makes

an

implicit

call

to

_heap_check.

If

_debug_strncat

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strncat

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

the

joined

string

string1.

Example

This

example

contains

a

programming

error.

The

buffer1

object

is

not

large

enough

to

store

the

result

after

eight

characters

from

the

string

“

programming”

are

concatenated.

Appendix.

Memory

debug

library

functions

91

/*

_debug_strncat.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

#define

SIZE

10

int

main(void)

{

char

*buffer1;

char

*ptr;

buffer1

=

(char*)malloc(SIZE);

strcpy(buffer1,

“computer”);

/*

Call

strncat

with

buffer1

and

“

programming”

*/

ptr

=

strncat(buffer1,

“

programming”,

8);

printf(“strncat:

buffer1

=

\”%s\“\n”,

buffer1);

return

0;

}

The

output

should

be

similar

to:

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

636F6D7075746572.

This

memory

block

was

(re)allocated

at

line

number

12

in

_debug_strncat.c.

Heap

state

was

valid

at

line

13

of

_debug_strncat.c.

Memory

error

detected

at

line

17

of

_debug_strncat.c.

_debug_strncpy

—

Copy

strings

Format

#include

<string.h>

char

*_debug_strncpy(char

*string1,

const

char

*string2,

size_t

count,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

strncpy.

Like

strncpy,

it

copies

count

characters

of

string2

to

string1.

If

count

is

less

than

or

equal

to

the

length

of

string2,

a

null

character

(\0)

is

not

appended

to

the

copied

string.

If

count

is

greater

than

the

length

of

string2,

the

string1

result

is

padded

with

null

characters

(\0)

up

to

length

count.

_debug_strncpy

validates

the

heap

after

copying

the

strings

to

the

target

location,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strncpy

makes

an

implicit

call

to

_heap_check.

If

_debug_strncpy

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strncpy

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

string1.

Example

This

example

contains

a

programming

error.

The

source

string

is

too

long

for

the

destination

buffer,

and

the

strncpy

operation

damages

the

heap.

/*

_debug_strncopy

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

#define

SIZE

10

92

Programming

Guide

int

main(void)

{

char

*source

=

“1234567890123456789”;

char

*destination;

char

*return_string;

int

index

=

15;

destination

=

(char*)malloc(SIZE);

strcpy(destination,

“abcdefg”),

printf(“destination

is

originally

=

’%s’\n”,

destination);

return_string

=

strncpy(destination,

source,

index);

printf(“After

strncpy,

destination

becomes

’%s’\n\n”,

destination);

return

0;

}

The

output

should

be

similar

to:

destination

is

originally

=

’abcdefg’

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

3132333435363738.

This

memory

block

was

(re)allocated

at

line

number

14

in

_debug_strncpy.c.

Heap

state

was

valid

at

line

15

of

_debug_strncpy.c.

Memory

error

detected

at

line

18

of

_debug_strncpy.c.

_debug_strnset

—

Set

characters

in

a

string

Format

#include

<string.h>

char

*_debug_strnset(char

*string,

int

c,

size_t

n,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

strnset.

Like

strnset,

it

sets,

at

most,

the

first

n

characters

of

string

to

c

(converted

to

a

char),

where

if

n

is

greater

than

the

length

of

string,

the

length

of

string

is

used

in

place

of

n.

_debug_strnset

validates

the

heap

after

setting

the

bytes,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strnset

makes

an

implicit

call

to

_heap_check.

If

_debug_strnset

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strnset

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

the

altered

string.

There

is

no

error

return

value.

Example

This

example

contains

two

programming

errors.

The

string,

str,

was

created

without

a

null-terminator

to

mark

the

end

of

the

string,

and

without

the

terminator

strnset

with

a

count

of

10

stores

bytes

past

the

end

of

the

allocated

object.

/*

_debug_strnset

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

int

main(void)

{

char

*str;

str

=

(char*)malloc(10);

printf(“This

is

the

string

after

strnset:

%s\n”,

str);

return

0;

}

Appendix.

Memory

debug

library

functions

93

The

output

should

be:

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

7878787878797979.

This

memory

block

was

(re)allocated

at

line

number

9

in

_debug_strnset.c.

Heap

state

was

valid

at

line

11

of

_debug_strnset.c.

_debug_strset

—

Set

characters

in

a

string

Format

#include

<string.h>

char

*_debug_strset(char

*string,

size_t

c,

const

char

*file,

size_t

line);

Description

This

is

the

debug

version

of

strset.

Like

strset,

it

sets

all

characters

of

string,

except

the

ending

null

character

(\0),

to

c

(converted

to

a

char).

_debug_strset

validates

the

heap

after

setting

all

characters

of

string,

and

performs

this

check

only

when

the

target

is

within

a

heap.

_debug_strset

makes

an

implicit

call

to

_heap_check.

If

_debug_strset

detects

a

corrupted

heap

when

it

makes

a

call

to

_heap_check,

_debug_strset

will

report

the

file

name

file

and

line

number

line

in

a

message.

Return

value

Returns

a

pointer

to

the

altered

string.

There

is

no

error

return

value.

Example

This

example

contains

a

programming

error.

The

string,

str,

was

created

without

a

null-terminator,

and

strset

propagates

the

letter

’k’

until

it

finds

what

it

thinks

is

the

null-terminator.

/*

file:

_debug_strset.c

*/

#include

<stdlib.h>

#include

<stdio.h>

#include

<string.h>

int

main(void)

{

char

*str;

str

=

(char*)malloc(10);

strnset(str,

’x’,

5);

strset(str+5,

’k’);

printf(“This

is

the

string

after

strset:

%s\n”,

str);

return

0;

}

The

output

should

be:

End

of

allocated

object

0x00073c80

was

overwritten

at

0x00073c8a.

The

first

eight

bytes

of

the

memory

block

(in

hex)

are:

78787878786B6B6B.

This

memory

block

was

(re)allocated

at

line

number

9

in

_debug_strset.c.

Heap

state

was

valid

at

line

11

of

_debug_strset.c.

Memory

error

detected

at

line

12

of

_debug_strset.c.

94

Programming

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2004

95

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Programming

interface

information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interface

allow

the

customer

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

96

Programming

Guide

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Note:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

the

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

v

AIX

v

IBM

v

IBM

(logo)

v

PowerPC

v

pSeries

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Industry

standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899-1999

(E)).

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998).

v

The

C++

language

is

also

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:2003

(E)).

v

The

C

and

C++

languages

are

consistent

with

the

OpenMP

C

and

C++

Application

Programming

Interface

Version

2.0.

Notices

97

98

Programming

Guide

����

Program

Number:

5724-I11

SC09-7888-00

	Contents
	About this guide
	Document conventions
	Highlighting conventions
	Icons

	How to read the syntax diagrams

	Chapter 1. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Chapter 2. Aligning data in aggregates
	Using alignment modes and modifiers
	General rules for alignment
	Alignment examples
	Mac68K example
	Packed example
	Nested aggregate example

	Using and aligning bit fields
	Rules for natural alignment
	Rules for power alignment
	Rules for Mac68K alignment
	Rules for bit-packed alignment
	Example of bit field alignment
	Bit-packed example

	Chapter 3. Handling floating point operations
	Handling multiply-add operations
	Handling floating-point rounding
	Handling floating-point exceptions
	Single-precision and double-precision performance
	Using the Mathematical Acceleration Subsystem (MASS)
	Using the scalar library
	Using the vector libraries
	Consistency of MASS vector functions

	Compiling and linking a program with MASS
	Using libmass.a with libm.a

	Chapter 4. Using memory heaps
	Managing memory with multiple heaps
	Functions for managing user-created heaps
	Creating a heap
	Creating a fixed-size heap
	Creating a dynamically-sized heap

	Expanding a heap
	Adding blocks of memory to a heap
	Writing a heap-expanding function

	Using a heap
	Getting information about a heap
	Closing and destroying a heap
	Writing the heap-shrinking function

	Changing the default heap used in a program
	Compiling and linking a program with user-created heaps
	Examples of creating and using user heaps
	Example of a user heap with regular memory
	Example of a shared user heap – parent process
	Example of a shared user heap - child process

	Debugging memory heaps
	Functions for checking memory heaps
	Functions for debugging memory heaps
	Additional functions for debugging memory heaps

	Using memory allocation fill patterns
	Skipping heap checking
	Using stack traces

	Chapter 5. Using C++ templates
	Using the -qtempinc compiler option
	Example of -qtempinc
	Template declaration file: stack.h
	Template implementation file: stack.c
	Function declaration file: stackops.h
	Function implementation file: stackops.cpp
	Main program file: stackadd.cpp

	Regenerating the template instantiation file
	Using -qtempinc with shared libraries

	Using the -qtemplateregistry compiler option
	Recompiling related compilation units
	Switching from -qtempinc to -qtemplateregistry

	Chapter 6. Ensuring thread safety (C++)
	Ensuring thread safety of template objects
	Ensuring thread safety of stream objects

	Chapter 7. Constructing a library
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Exporting symbols with the CreateExportList utility

	Linking a shared library to another shared library

	Initializing static objects in libraries (C++)
	Assigning priorities to objects
	Using priority numbers
	Example of object initialization within a file
	Example of object initialization across multiple files

	Order of object initialization across libraries
	Example of object initialization across libraries

	Dynamically loading a shared library
	Loading and initializing a module with the loadAndInit function
	Format
	Description
	Parameters
	Return values

	Terminating and unloading a module with the terminateAndUnload function
	Format
	Description
	Parameters
	Return values

	Chapter 8. Using the C++ utilities
	Demangling compiled C++ names
	Demangling compiled C++ names with c++filt
	Demangling compiled C++ names with the demangle class library

	Creating a shared library with the makeC++SharedLib utility
	Linking with the linkxlC utility

	Chapter 9. Optimizing your applications
	Using optimization levels
	Getting the most out of optimization levels 2 and 3

	Optimizing for system architecture
	Getting the most out of target machine options
	Using -qarch options
	Using -qtune options
	Using -qcache options

	Using high-order loop analysis and transformations
	Getting the most out of -qhot

	Using shared-memory parallelism
	Getting the most out of -qsmp

	Using interprocedural analysis
	Getting the most from -qipa

	Using profile-directed feedback
	Example of compilation with pdf and showpdf

	Other optimization options
	Summary of options for optimization and performance

	Chapter 10. Coding your application to improve performance
	Find faster input/output techniques
	Reduce function-call overhead
	Manage memory efficiently
	Optimize variables
	Manipulate strings efficiently
	Optimize expressions and program logic
	Optimize operations in 64-bit mode

	Appendix. Memory debug library functions
	Memory allocation debug functions
	_debug_calloc — Allocate and initialize memory
	_debug_free — Free allocated memory
	_debug_heapmin — Free unused memory in the default heap
	_debug_malloc — Allocate memory
	_debug_ucalloc — Reserve and initialize memory from a user-created heap
	_debug_uheapmin — Free unused memory in a user-created heap
	_debug_umalloc — Reserve memory blocks from a user-created heap
	_debug_realloc — Reallocate memory block

	String handling debug functions
	_debug_memcpy — Copy bytes
	_debug_memmove — Copy bytes
	_debug_memset — Set bytes to value
	_debug_strcat — Concatenate strings
	_debug_strcpy — Copy strings
	_debug_strncat — Concatenate strings
	_debug_strncpy — Copy strings
	_debug_strnset — Set characters in a string
	_debug_strset — Set characters in a string

	Notices
	Programming interface information
	Trademarks and service marks
	Industry standards

