
© 2022 IBM Corporation

RPG and Unicode

Enable RPG programs to Handle
International Data

Barbara Morris

RPG Compiler Development

IBM

© 2022 IBM Corporation

2 © Copyright IBM Corporation 2019

CCSID concept

© 2022 IBM Corporation

First, let’s just consider “Data”

What does x'7d' mean?

' apostrophe?

} curly brace?

-7 minus 7?

125 one hundred twenty five?

Yes, all of those. And many more things.

3

© 2022 IBM Corporation

We have to interpret it

By itself, x'7d' doesn't mean anything.

We have to know how to interpret it

' EBCDIC

} UTF-8 and ASCII

-7 1-byte packed decimal

125 1-byte integer

4

© 2022 IBM Corporation

Another interpretation

It could be even be specific to a particular program, where each bit has a

different meaning. x'7d' = b'0111 1110'

Double occupancy False

»Prepaid True

»Vegetarian True

»Fitness class True

»Buenos Aires side trip True

»Swimming pool access True

»Returning customer True

»VIP False

5

© 2022 IBM Corporation

Character data

Let's just focus on character data.

' EBCDIC

} ASCII

-7 packed decimal

125 integer

bit data about a booking

But we still have an interpretation problem. EBCDIC vs UTF-8

And in general, it's not just a matter of UTF-8 vs EBCDIC.

6

© 2022 IBM Corporation

Concept: Character set

There are many different character sets

Latin:

Cyrillic:

Japanese:

7

© 2022 IBM Corporation

Concept: Character set

Think of a “character set” as the tiles for a game. You get 256 tiles.

• 26 have A-Z

• Another 26 have a-z

• 10 have 0-9

• And there's the accented letters like Á, é, ñ, Ç

• And many characters like this; !@#$%^&*,©§¶¼½¾

8

© 2022 IBM Corporation

The characters can be ordered in many ways

Let's consider an imaginary character set with just 32 characters:

! @ # $ % ^ & * , © § ¶ ¼ ½ ¾ A B C D a b c d Á é ñ Ç 0 1 2 3 4

There are many many ways to order these characters.

! @ # $ % ^ & * , © § ¶ ¼ ½ ¾ A B C D a b c d Á é ñ Ç 0 1 2 3 4
A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾
A @ B # C $ D a b © § ¶ ¼ 4 c d Á é ñ 1 2 3 ! % ^ & * , ½ ¾ Ç 0

But they are always the same characters from that set.

9

© 2022 IBM Corporation

The characters can be ordered in many ways

We can give an ID to the orderings

1. ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾ A B C D a b c d Á é ñ Ç 0 1 2 3 4
2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾
3. A @ B # C $ D a b © § ¶ ¼ 4 c d Á é ñ 1 2 3 ! % ^ & * , ½ ¾ Ç 0

We have IDs for 3 different orderings for our character set.

10

© 2022 IBM Corporation

Imagine another character set

Here's another imaginary character set with a couple of orderings.

Some of the characters are the same as for the previous set.

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +
5. Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® + é ê ë è í î ï ì ß A B C D a b c d

We have 2 IDs for our second character set.

11

© 2022 IBM Corporation

Concept: CCSID

1. ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾ A B C D a b c d Á é ñ Ç 0 1 2 3 4
2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾
3. A @ B # C $ D a b © § ¶ ¼ 4 c d Á é ñ 1 2 3 ! % ^ & * , ½ ¾ Ç 0

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +
5. Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® + é ê ë è í î ï ì ß A B C D a b c d

From just the ID, we can deduce both the character set and the order.

Consider ID "4"

⚫ It is from the second character set

⚫ It is the first ordering from that character set

“4” is the “Coded Character Set ID” or CCSID

12

© 2022 IBM Corporation

Knowing the CCSID lets us interpret the data

13

1. ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾ A B C D a b c d Á é ñ Ç 0 1 2 3 4
2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾
3. A @ B # C $ D a b © § ¶ ¼ 4 c d Á é ñ 1 2 3 ! % ^ & * , ½ ¾ Ç 0

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +
5. Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® + é ê ë è í î ï ì ß A B C D a b c d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Let's say the hex value of a byte is x'0B'.

If we know the CCSID, we know the character

CCSID 2:

ñ

CCSID 4:

C

© 2022 IBM Corporation

14 © Copyright IBM Corporation 2019

CCSID conversion

© 2022 IBM Corporation

CCSID conversion

Let’s convert some data from CCSID 2 to CCSID 4, x’011E’

2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 1. Find out which character matches each hex value in CCSID 2,

for our data x'011E'

Hex value in CCSID 2 Character

x'01'

15

© 2022 IBM Corporation

CCSID conversion

Finding the CCSID 2 characters for our hex data

2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 1. Find out which character matches each hex value in CCSID 2, for

our data x'011E'

Hex value in CCSID 2 Character

x'01' B

16

© 2022 IBM Corporation

CCSID conversion

Finding the CCSID 2 characters for our hex data

2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 1. Find out which character matches each hex value in CCSID 2, for our data

x'011E'

Hex value in CCSID 2 Character

x'01' B

x'1E'

17

© 2022 IBM Corporation

CCSID conversion

Finding the CCSID 2 characters for our hex data

2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 1. Find out which character matches each hex value in CCSID 2, for our data

x'011E'

Hex value in CCSID 2 Character

x'01' B

x'1E' ½

18

© 2022 IBM Corporation

CCSID conversion

Converting to CCSID 4

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 2. Find the characters in the second character set

19

Character Hex value in CCSID 4

B

½

© 2022 IBM Corporation

CCSID conversion

Converting to CCSID 4

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 2. Find the characters in the second character set

20

Character Hex value in CCSID 4

B x'0A'

½

© 2022 IBM Corporation

CCSID conversion

Converting to CCSID 4

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 2. Find the characters in the second character set

21

Character Hex value in CCSID 4

B x'0A'

½

Where does this go?

© 2022 IBM Corporation

CCSID conversion

Converting to CCSID 4

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 2. Find the characters in the second character set

22

Character Hex value in CCSID 4

B x'0A'

½ Does not exist!

© 2022 IBM Corporation

CCSID conversion

Converting to CCSID 4

4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Step 2. Find the characters in the second character set

There's nowhere
for it to go. There's
no ½ character.

23

Character Hex value in CCSID 4

B x'0A'

½ Does not exist!

© 2022 IBM Corporation

CCSID conversion

We cannot completely convert x'011E' from CCSID 2 to CCSID 4

2. A B C D a b c d 4 Á é ñ Ç 0 1 2 3 ! @ # $ % ^ & * , © § ¶ ¼ ½ ¾
4. é ê ë è í î ï ì ß A B C D a b c d Á é ñ Ç 0 1 2 3 4 ¿ Ð Ý Þ ® +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

Result: x’Bn'

Hex value in
CCSID 2

Character Hex value in CCSID
4

x'01' B x'0A'

X'1E' ½ ????

Data has been lost!

24

© 2022 IBM Corporation

Loss of data during CCSID conversion

Each character set has a “replacement character” that represents any

character that doesn’t exist in the character set.

When there is no matching character in the target character set, the

replacement character is used instead.

If we assume that x'FE' is the replacement character for our CCSID 4,

then the result of the previous conversion is x'0AFE'

We converted the value 'B½' to 'Bn' where n represents the replacement

character x'FE'.

25

© 2022 IBM Corporation

Loss of data during CCSID conversion

Let's try to convert the CCSID 4 data back to CCSID 2

Assume the replacement character is also x'FE' in CCSID 2.

Original CCSID 2 data: x'011E' = 'B½'

Converted CCSID 4 data: x'0AFE' = 'Bn'

Converted CCSID 2 data: x'01FE' = 'Bn'

We cannot get back to the original CCSID 2 data.

Solution: Don't even try to convert to a character
set that might not have some characters

26

© 2022 IBM Corporation

27 © Copyright IBM Corporation 2019

Character sets
and CCSIDs

© 2022 IBM Corporation 28

Three kinds of character sets

1. Single-byte character set (SBCS)
• One byte per character

• Contains the characters for one type of language

• Examples are Latin (European languages), Cyrillic (Russian)

• Always includes the standard characters A-Z, a-z, 0-9, + = - etc

2. Double-byte character set (DBCS)
• Also called "Graphic"

• Two bytes per character

• Contains the characters for one graphic language

• Examples are Chinese and Japanese

© 2022 IBM Corporation 29

Three kinds of character sets

3. Unicode

• 1-3 bytes per character for UTF-8

• 2-4 bytes per character for UCS-2 and UTF-16

• Contains the characters from all SBCS and DBCS character sets

The Unicode character set will solve our problem. If we have data that
might have characters from different languages, using Unicode is the
only way to avoid losing data.

In RPG, there are three types of Unicode data:

• UCS-2: data type C with CCSID(13488)

• UTF-16: data type C with CCSID(1200)

• UTF-8: data type A with CCSID(*UTF8)

a

7.2 +

© 2022 IBM Corporation 30

Several kinds of CCSIDs

Single-byte CCSIDs

• Characters from one SBCS character set

Double-byte CCSIDs

• Characters from one DBCS character set

Mixed-byte CCSIDs

• Characters from one SBCS set and one DBCS set

Unicode CCSIDs

• 1208 is the CCSID for UTF-8: 8 bits (1 byte) is the smallest size

• 1200 is the CCSID for UTF-16: 16 bits (2 bytes) is the smallest size

• 13488 is the CCSID for UCS-2: similar to UTF-16

Hex CCSIDs

• 65535 is the Hex CCSID. Hex data cannot be converted to another CCSID

© 2022 IBM Corporation

31 © Copyright IBM Corporation 2019

CCSIDs in RPG

© 2022 IBM Corporation 32

Working with character data in RPG

From now on, I'm going to use the term "string data" to refer to
alphanumeric, graphic and UCS-2 data. The term "character" often just
means RPG's CHAR (A) data type.

All string data has a CCSID. You can use DSPFFD to find out the
CCSID of the data in your files.

You can use the cross reference in your RPG listings to find out the
CCSID of your string variables. If alphanumeric data doesn’t show a
CCSID, then it is the job CCSID.

© 2022 IBM Corporation 33

Working with character data in RPG

RPG defaults:

• Alphanumeric: job CCSID

• Graphic: CCSID is ignored by default
• Add CCSID(*GRAPH:ccsid) to your H spec to support Graphic CCSIDs

• UCS-2: 13488

You can use the CCSID H spec keyword to set different defaults.

For example

CCSID(*CHAR:37) CCSID(*UCS2:1200)

© 2022 IBM Corporation 34

Working with character data in RPG

You can use the /SET and /RESTORE directives to temporarily set different
defaults for your definitions

ctl-opt CCSID(*CHAR:37);
dcl-s company char(20);
/set ccsid(*char : *JOBRUN)

dcl-s city char(20);
dcl-s description char(100) ccsid(*utf8);

/restore ccsid(*char)
dcl-s library char(10);

• "company" has CCSID 37 from the H spec default

• "city" has CCSID *JOBRUN from the /SET default

• "description" has CCSID *UTF8 (1208) from its CCSID keyword

• "library" has CCSID 37 from the H spec default

© 2022 IBM Corporation

35 © Copyright IBM Corporation 2019

CCSID conversion in RPG

© 2022 IBM Corporation 36

Implicit CCSID conversion

Normally, RPG automatically does whatever CCSID conversion is needed.

dcl-s name varchar(20) ccsid(*jobrun);
dcl-s temp_name varucs2(20);

temp_name = name;

• "temp_name" has a different CCSID from "name"

• RPG automatically converts the data in "name" from the job CCSID to
UCS-2 when assigning to "temp_name"

© 2022 IBM Corporation 37

Explicit CCSID conversion

There are a few scenarios, such as some built-in functions, where RPG
does not yet do automatic CCSID conversion

You can explicitly request CCSID conversion using the %CHAR, %UCS2 or
%GRAPH built-in functions.

Assume that "description" is defined as UCS-2:

p = %scan('?' : description); // not supported

p = %scan(%ucs2('?') : description); // ok

© 2022 IBM Corporation 38

Warnings or exceptions for CCSID conversions

We saw that a CCSID conversion may sometimes result in a “substitution” character
being placed in the result.

Unicode source data:
The Thai word for “house” is “บ้าน”.

The target is an alphanumeric variable with CCSID 37:
The Thai word for “house” is “”.

• CCSID 37 uses the “Latin” character set, and there are no matching characters for
the Thai characters that are in the Unicode variable. Substitution characters are
placed in the alphanumeric result.

• The original Thai characters are all converted to the same substitution characters,
so their value is lost!

© 2022 IBM Corporation 39

Warnings or exceptions for CCSID conversions

By default, non-error RPG status code 50 is set when the conversion had to use
substitution characters.

You have to add code to check whether %status = 50

alphaText = unicodeText;

if %status() = 50;

... there was loss of data

Two problems:
• It’s awkward to check for status code 50 after every statement with a

CCSID conversion

• It’s not always easy to tell which statements have CCSID conversions

© 2022 IBM Corporation 40

Get an exception when substitution occurs

CCSIDCVT(*EXCP)

Code H spec keyword CCSIDCVT(*EXCP) to get an exception when a CCSID conversion
results in a substitution character.

▪ Status code 00452

If you are on 6.1 and 7.1 and get this function through a PTF, you will need to add
messages RNX0452 and RNQ0452 to your message file. The cover letter of the PTF for
the RPG runtime has CLP code for adding the messages. See the RPG Cafe for PTF
details.

© 2022 IBM Corporation 41

Get a list of CCSID conversions

CCSIDCVT(*LIST)

Code H spec keyword CCSIDCVT(*LIST) to get a list of all the CCSID conversions in
the module.

For each conversion, it shows

▪ The source statements using that conversion

▪ Whether the conversion might result in substitution characters

If you want both options, code CCSIDCVT(*EXCP:*LIST) or CCSIDCVT(*LIST:*EXCP)

© 2022 IBM Corporation 42

Sample CCSIDCVT summary

C C S I D C o n v e r s i o n s

From CCSID To CCSID References

RNF7361 834 *JOBRUN 15 25

RNF7357 1200 *JOBRUN 27 921 1073

*JOBRUN 1200 28 12 321 426

552 631

RNF7359 835 834 41 302 302

RNF7360 *JOBRUN 834 242 304 305

* * * * E N D O F C C S I D C O N V E R S I O N S * * * *

RNF7357 Conversion from UCS-2 to Alpha might not convert all data.
RNF7358 Conversion from UCS-2 to DBCS might not convert all data.
RNF7359 Conversion from DBCS to DBCS might not convert all data.
RNF7360 Conversion from Alpha to DBCS might not convert all data.
RNF7361 Conversion from DBCS to Alpha might not convert all data.

© 2022 IBM Corporation 43

How to use the CCSIDCVT summary

You can use this information for two purposes:

• Improve performance: Reduce the number of conversions by changing the data
types of some of your variables.

• Improve reliability: Eliminate the conversions that have the potential to result in
substitution characters.

For example

• You convert UCS-2 variable NAME to alphanumeric variable TEMPNAME

• TEMPNAME is later converted to UCS-2 as part of UCS-2 FULL_NAME

• Consider changing the type of TEMPNAME to UCS-2, to avoid the potential
data loss.

© 2022 IBM Corporation

44 © Copyright IBM Corporation 2019

Why bother with CCSIDs?

© 2022 IBM Corporation 45

Why bother about the CCSID of alpha data?

Starting in 7.2, you can code the CCSID keyword for character fields:

• All EBCDIC CCSIDs

• ASCII CCSIDs

• The Unicode CCSID UTF-8 (1208, or *UTF8)

But why bother? Isn't the job CCSID good enough?

© 2022 IBM Corporation 46

The job CCSID isn't always the right CCSID

Assume that the getData procedure returns UTF-8 data

Prior to 7.2, you could call some API to convert the data to UCS-2:

dcl-s stringA char(10000);
dcl-s stringC varucs2(10000);
dcl-pr getData varchar(10000); ...

stringA = getData ();
stringC = convert(stringA: %len(stringA): 1208: 13488);

But remember not to use the data for ordinary RPG statements because RPG thinks
the data is in the job CCSID.

if stringA <> *blanks; // BUG!
stringC = convert...
...

© 2022 IBM Corporation 47

Defining alpha data with a CCSID

In 7.2, you can say that the data is UTF-8.

dcl-s stringA char(10000) ccsid(*utf8);
dcl-pr getData varchar(10000) ccsid(*utf8); ...

stringA = getData ();

Now you can use the returned value in ordinary RPG statements because RPG
knows that it is UTF-8 data.

if stringA <> *blanks; // OK!
stringC = convert...
...

© 2022 IBM Corporation 48

CCSID of externally-described subfields

UCS-2 and graphic subfields always get the CCSID of the field in the file.

By default, alpha subfields are defined with the job CCSID for RPG.

If you want the alpha subfields to be defined with the same CCSID as the
matching fields in the file, code CCSID(*EXACT) for the data structure.

dcl-ds ds1 likerec(rec) ccsid(*exact);

dcl-ds ds2 extname('MYFILE') ccsid(*exact);

© 2022 IBM Corporation

49 © Copyright IBM Corporation 2019

CCSIDs and RPG I/O

© 2022 IBM Corporation 50

Using CCSID(*EXACT) data structures for I/O

When you specify a data structure in the result field of your I/O
operation, the data is copied directly between the I/O buffer and your
data structure

If there is invalid data in the record of the file, this allows you to delay the
discovery of the problem

read rec ds;
monitor;

salary = ds.salary;
on-error;

... problem with the "salary" field

© 2022 IBM Corporation 51

Using CCSID(*EXACT) files for I/O

But what happens if the data structure was defined with CCSID(*EXACT)?
The subfields might have a different CCSID.

The subfields are copied directly between the buffer and the data structure
unless CCSID conversion is required

Field Buffer CCSID Handled … DS CCSID

ID - Move bytes -

NAME Job Converted 37

SALARY - Move bytes -

STARTDATE - -

ADDRESS Job Converted 37

DESC Job Converted 1208

BONUS - Move bytes -

© 2022 IBM Corporation 52

Avoiding CCSID conversions for database files

By default, for a database file

• When you read a record, database converts the alphanumeric data from the
field CCSID to the job CCSID

• When you write or update a record, database converts the alphanumeric
data from the job CCSID to the field CCSID

Use DATA(*NOCVT) for a file to open the file so these conversions do not
happen at the database level. Any CCSID conversions will be performed in the
RPG program if necessary.

Use H spec OPENOPT(*NOCVTDATA) to default this behaviour for all
database files.

© 2022 IBM Corporation 53

Using CCSID(*EXACT) with DATA(*NOCVT)

If the data structure is defined with CCSID(*EXACT) and the file is defined with
DATA(*NOCVT), the data in the buffer and the data structure will have the
same CCSID

Field Buffer CCSID Handled … DS CCSID

ID - Move bytes -

NAME 37 37

SALARY - -

STARTDATE - -

ADDRESS 37 37

DESC 1208 1208

BONUS - -

© 2022 IBM Corporation 54

Using DATA(*NOCVT) without data structures

If you don't specify a data structure for your I/O operation, the data is
always moved between the fields and the buffer individually.

CCSID conversion is automatically done as part of this.

© 2022 IBM Corporation 55

RPG and I/O with CCSID 65535

If the job CCSID is 65535
• By default, a database file is opened with the expectation that the

alpha data is converted to the job CCSID
• But no CCSID conversion is done by database for 65535
• The data in the buffer has the same CCSID as the data in the file.

By default, RPG thinks that the data is in the default CCSID of the job.
The default CCSID depends on the Language ID and the Country ID.

Language identifier : ENU
Country or region identifier : US
Coded character set identifier : 65535
Default coded character set identifier : 37

© 2022 IBM Corporation 56

RPG and I/O with job CCSID 65535

If the default job CCSID is the same as the CCSID of all the alpha fields in the
file, everything is fine

If all the fields in the file have an EBCDIC CCSID, and all the characters in the
data have the same hex values as the characters in the job CCSID, everything
is fine

If some fields in the file are UTF-8, RPG will not handle the data correctly (by
default)

Using UTF-8 data with RPG is unusable

if the job CCSID might be 65535

(by default)

© 2022 IBM Corporation 57

The DATA keyword with CCSID 65535

If DATA(*NOCVT) is coded for the file, the data in the I/O buffer will
always have the same CCSID as the fields in the file.

If DATA(*CVT) is coded, then the data in the I/O buffer might have the
job CCSID or the CCSID of the fields in the file, depending on the job
CCSID at runtime.

The RPG compiler will generate code to handle both situations, so
your program will work with a job CCSID of either 65535 or another
CCSID.

© 2022 IBM Corporation 58

RPG and I/O with CCSID 65535

To make RPG handle database files correctly when your job CCSID is
65535, do any of the following

• Code CCSID(*EXACT) in the H spec
• Code the DATA keyword for the file, either DATA(*CVT) or

DATA(*NOCVT)
• Define the CCSID for all the alpha fields in the RPG program (CCSID

keyword on externally-described DS, CCSID keyword on fields)

Doing any one of these will cause RPG to handle the I/O buffers correctly.

© 2022 IBM Corporation

59 © Copyright IBM Corporation 2019

RPG and literals

© 2022 IBM Corporation 60

RPG and literals

In the past, RPG did not always handle CCSIDs correctly
(and still does not, by default)

Literals are handled as though they have the job CCSID, but they are
actually saved in the source file CCSID

dcl-pi *n;
parm char(1) const;

end-pi;

if parm = '!';
dsply ('parm is exclamation mark!');

else;
dsply ('parm is not exclamation mark!');

endif;

return;

© 2022 IBM Corporation 61

RPG and literals

Here is the hex value of the "if" statement in a source file with CCSID(37):

if parm = '!'; ! is x'5A'
88498994747575
96071940E0DADE

In a source file with CCSID(500):

if parm = '|'; ! is x'4F'
88498994747475
96071940E0DFDE

(My emulator is setup with CCSID 37, so DSPPFM is showing the data as if it
were CCSID 37 data)

© 2022 IBM Corporation 62

RPG and literals

I compile the two programs. The ! character is saved as x'5A' in
TEST37, and as x'4F' in TEST500.

I call the programs:

> call bmorris/test37 '!'
DSPLY parm is exclamation mark!

> call bmorris/test500 '!'
DSPLY parm is not exclamation mark|

Two problems with test500:
• I did pass an exclamation mark!
• The DSPLY shows | instead of !

© 2022 IBM Corporation 63

To have RPG handle literals correctly

Add CCSID(*EXACT) to the H spec.

ctl-opt ccsid(*exact);

dcl-pi *n;
parm char(1) const;

end-pi;
...

I call the new programs. They both work correctly. The TEST500 program
understands that the literal must be converted to the job CCSID.

> call bmorris/test37 '!'
DSPLY parm is exclamation mark!

> call bmorris/test500 '!'
DSPLY parm is exclamation mark!

© 2022 IBM Corporation

64 © Copyright IBM Corporation 2019

UTF8 in RPG

© 2022 IBM Corporation 65

UTF-8 data

UTF-8 data can have characters which are 1, 2, or 3 bytes long.

For example, the Ø character is two bytes in UTF-8.

dcl-s a37 varchar(4) ccsid(37) inz('Ø');
dcl-s a1208 varchar(4) ccsid(*utf8) inz('Ø');
return;

In debug (the first two bytes are the varying length)

> EVAL a37:x
00000 000180 1 byte, x'80'

> EVAL a1208:x
00000 0002C398 2 bytes, x'c398'

© 2022 IBM Corporation 66

UTF-8 data

Since some characters may be up to 3 bytes long, UTF-8 data is
longer than EBCDIC alphanumeric data.

If you define UTF-8 fields, be sure to define them long enough

© 2022 IBM Corporation 67

UTF-8 data

RPG does not consider the length of each character in string
operations

• %len
• substring
• scan
• truncation on assignment

These are all handled by RPG on a byte basis, not a character basis

(This issue has always existed for mixed SBCS/DBCS data)

Please follow (and vote for) IBM Idea 2128 ("Make %subst and %len
operate on characters for UTF-8 and UTF-16") for information on how RPG
may deal with this issue in the future.
https://ibm-power-systems.ideas.ibm.com/ideas/IBMI-I-2128

https://ibm-power-systems.ideas.ibm.com/ideas/IBMI-I-2128

© 2022 IBM Corporation

68 © Copyright IBM Corporation 2019

Recommendations

© 2022 IBM Corporation 69

Recommendations

• Code CCSID(*EXACT) so that RPG will handle CCSIDs correctly

• Code CCSIDCVT(*EXCP) so that conversion failures will cause an

exception

• Code CCSIDCVT(*LIST), possibly temporarily, and study the CCSID

conversions that are happening in your module

• Be sure to define UTF-8 fields long enough

© 2022 IBM Corporation

70 © Copyright IBM Corporation 2019

Useful links

© 2022 IBM Corporation

71

Where to find PTF'd RPG enhancements
•

Regularly check the “welcome” page in the RPG Cafe wiki

http://ibm.biz/rpg_cafe

There is a section for “Enhancements delivered through PTFs”, and the “Announcement” section at the

top will have information about the most recent enhancements

Regularly check the “What’s New Since …” section in the ILE RPG Reference

http://ibm.biz/rpg_cafe

© 2022 IBM Corporation

72

Where to request RPG enhancements
•

RPG is part of the RFE (Request for Enhancements) process

• You can submit requirements

• You can vote on requirements that others have requested

• Votes aren’t the only consideration when IBM decides which RFEs to work on, but they are

important

• Be careful not to vote for too many RFEs. Just vote on the ones that you need the most

• Add comments to existing RFEs, to clarify the request, or add additional reasons why the

enhancement is important

Here is a link to the current RFEs for the RPG compiler: http://ibm.biz/rpg_rfe

They are under

Brand: Servers and Systems Software

Product family: Power Systems

Product: IBM i

Component: Languages – RPG

http://ibm.biz/rpg_rfe

© 2022 IBM Corporation

Thank you

