
© Copyright IBM Corporation 2014 Trademarks
Using IBM WebSphere MQ message property APIs in ILE RPG Page 1 of 6

Using IBM WebSphere MQ message property APIs in
ILE RPG

Kevin Adler February 10, 2014

Handling Java™ Message Service (JMS) message properties from native IBM® WebSphere®
MQ applications is now much easier with the addition of the MQINQMP and MQSETMP application
programming interfaces (APIs) in WebSphere MQ. This article highlights how these new APIs
can be used within Integrated Language Environment (ILE) RPG programs.

The old way and the way forward
Traditionally, to communicate with a JMS application (say, a web service running in IBM
WebSphere Application Server), one would need to use an RFH2 header. This is cumbersome,
especially in RPG. The RFH2 headers consist of a set of fixed header fields followed by an
arbitrary number of data structures, each containing a length field and a buffer containing XML
data that defines the properties. Generating an RFH2 header is not too hard. Just include the copy
file, cmqrfh2g, in to your data structure and define as many lengths and data pairs as needed
for the number of folders you need to set (properties in different folders must be sent in different
pairs). For more freedom and to eliminate sending extra blanks from the fixed length fields, you
can also build a buffer dynamically. The real trouble comes in trying to read the properties, which
requires parsing an RFH2 header sent by another application. Although RPG is perfectly capable
of parsing varying length headers with an arbitrary number of varying length fields, it is much better
suited to fixed-length, record-like data.

The other issue with using RFH2 headers in RPG (really any ILE language) is that the XML data
must be in Unicode. RPG has the benefit here of supporting UTF-16 natively. Unless you're only
dealing with other RPG applications, though, most likely any RFH2 headers you get from other
applications will be in UTF-8, since that is the default for Linux, Windows, and Java. This means
that your are pretty much guaranteed to have to deal with iconv, which is always a pain.

With the release of WebSphere MQ 7.0, MQ gained new API calls that greatly decrease the
amount of work needed to interact with message properties and remove the need to generate or
parse RFH2 headers. These are:

• MQSETMP – Set a message property
• MQDLTMP – Delete a message property

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Using IBM WebSphere MQ message property APIs in ILE RPG Page 2 of 6

• MQINQMP – Inquire about a message property

Along with these APIs, other APIs were added to aid in the use of the message property APIs:

• MQCRTMH – Create a message handle
• MQDLTMH – Delete a message handle
• MQBUFMH – Convert a message buffer into a message handle
• MQMHBUF – Convert a message handle into a message buffer

The key to the new message property APIs is a message handle. A message handle (MQHMSG) is a
64-bit identifier and is used to allow an application to refer to the properties of a message, similar
to how an MQHCONN is used to refer to a connection to a queue manager or an MQHOBJ is used to
refer to a topic or queue. The first step in using these new message property APIs is to create a
message handle.

dcl-s Hmsg int(20);
dcl-ds MQCMHO Qualified;
 /copy CMQCMHOG
end-ds;

MQCRTMH(HConn : MQCMHO : HMsg : CompletionCode : Reason);

You declare two variables, HMsg as a 64-bit integer and an MQCMHO (Create Message Handle
Options) structure. Then, you call MQCRTMH to generate our message handle. Assuming that
CompletionCode is 0, you now have a message handle with which you can use the new message
property APIs.

Using MQSETMP
To see how to use MQSETMP to set a message property, let's first look at the parameters of MQSETMP:

Example 1: MQSETMP procedure definition from CMQG
DMQSETMP PR EXTPROC('MQSETMP')
D* Connection handle
D HCONN 10I 0 VALUE
D* Message handle
D HMSG 20I 0 VALUE
D* Options that control the action of MQSETMP (MQSMPO)
D SETOPT 20A
D* Property name (MQCHARV)
D PRNAME 32A
D* Property descriptor (MQPD)
D PRPDSC 24A
D* Property data type
D TYPE 10I 0 VALUE
D* Length of the Value area
D VALLEN 10I 0 VALUE
D* Property value
D VALUE * VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CompCode
D REASON 10I 0

For the purposes of this exercise, using the default values for MQSMPO and MQPD are fine. For more
information on these parameters, refer to the WebSphere MQ Information Center.

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/index.jsp

ibm.com/developerWorks/ developerWorks®

Using IBM WebSphere MQ message property APIs in ILE RPG Page 3 of 6

Let's define some variables to use MQSETMP:

dcl-ds PropName Qualified;
 /copy QMCHRVG
end-ds;

dcl-s PropertyName varchar(40);
dcl-s PropertyValue varchar(40);

dcl-ds MQPD Qualified;
 /copy CMQPDG
end-ds;

dcl-ds MQSMPO Qualified;
 /copy CMQSMPOG
end-ds;

In this example, we will define the usr.format property to inform the receiving application that the
message is XML data. First, set up the property name.

PropertyName = 'format';
PropertyValue = 'xml';
PropName.VCHRP = %ADDR(PropertyName : *DATA);
PropName.VCHRL = %LEN(PropertyName);

Note: If you do not qualify a property name, it will default to the 'usr' folder.

Then, you just need to call MQSETMP, specifying all the parameters:

MQSETMP(HConn : HMsg : MQSMPO : PropName : MQPD : TYPSTR :
 %LEN(PropertyValue) : %ADDR(PropertyValue : *DATA) :
 CompletionCode : Reason);

At this point, you've created a message handle and set the usr.format property to xml, but what
message has received this property? The answer is that you haven't actually set this property on
an actual message yet. All you've done is allocated a message handle that refers to an area of
storage within WebSphere MQ which holds the message properties. When you put a message,
you can tell WebSphere MQ to add those properties to the message you are putting. The only
thing you must do for this to happen is to set the message handle field to the message handle you
got from MQCRTMH and tell WebSphere MQ that you are using a version 3 MQPMO (so that WebSphere
MQ knows that the message handle field is defined).

MQPMO.PMVER = PMVER3;
MQPMO.PMOMH = Hmsg;

Now, just do an MQPUT like normal and the message properties will be added to the message.
Under the covers, WebSphere MQ will read the properties from the message handle and generate
the RFH2 header for you. You can easily verify that everything worked by using IBM WebSphere
MQ Explorer or the WRKMQMQ system command. MQ Explorer is an Eclipse-based graphical tool
that enables you to explore and configure all WebSphere MQ objects and resources from your
Microsoft® Windows® or Linux® PC. It is included with the MQ server installation and is also
available separately in the MS0T SupportPac. To view in MQ Explorer, expand the queue manager

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24021041

developerWorks® ibm.com/developerWorks/

Using IBM WebSphere MQ message property APIs in ILE RPG Page 4 of 6

and click Queues. You can then right-click the queue and click Browse Messages. Find the
message in the list to inspect and right-click it and then click Properties. When you select Named
Properties in the left pane you can see the properties as shown in Figure 1.

Figure 1: MQ Explorer

Using MQINQMP
Like MQSETMP, which makes it easier to set message properties, there is also MQINQMP to retrieve
the value of a specific message property or even use wildcards to fetch the value of multiple
properties. A prototype is shown in Example 2.

Example 2: MQINQMP procedure definition from CMQG
DMQINQMP PR EXTPROC('MQINQMP')
D* Connection handle
D HCONN 10I 0 VALUE
D* Message handle
D HMSG 20I 0 VALUE
D* Options that control the action of MQINQMP (MQIMPO)
D INQOPT 72A
D* Property name (MQCHARV)
D PRNAME 32A
D* Property descriptor (MQPD)
D PRPDSC 24A
D* Property data type
D TYPE 10I 0
D* Length in bytes of the Value area
D VALLEN 10I 0 VALUE
D* Property value
D VALUE * VALUE
D* Length of the property value
D DATLEN 10I 0
D* Completion code

ibm.com/developerWorks/ developerWorks®

Using IBM WebSphere MQ message property APIs in ILE RPG Page 5 of 6

D CMPCOD 10I 0
D* Reason code qualifying CompCode
D REASON 10I 0

The only real difference from MQSETMP is that you use an MQIMPO instead of MQSMPO.

To use MQINQMP, you first create a message handle like above and pass it in the MQGMO. The only
other trick you need is to tell WebSphere MQ that you want the message properties returned in the
message handle and not in an RFH2 header.

MQGMO.GMVER = GMVER4;
MQGMO.GMMH = Hmsg;

MQGMO.GMOPT += GMPRIH; // return message properties in handle

MQIMPO.IPOPT = IPINQN + // iterate over properties
 IPCTYP + // convert type if necessary
 IPCVAL; // convert value into native CCSID

PropQuery = 'usr.%';
PropName.VCHRP = %ADDR(PropQuery : *DATA);
PropName.VCHRL = %LEN(PropQuery);

MQIMPO.IPRETNAMCHRP = %ADDR(PropertyName : *DATA);
MQIMPO.IPRETNAMVSBS = PropNameMax;

MQINQMP(HConn : HMsg : MQIMPO : PropName : MQPD : PropertyType :
 PropValueMax : %ADDR(PropertyValue : *DATA) :
 ActPropLength : CompletionCode : Reason);

%LEN(PropertyValue) = ActPropLength;
%LEN(PropertyName) = MQIMPO.IPRETNAMCHRL;

Here, you use the query of usr.% to retrieve all the properties in the usr folder. After the call to
MQINQMP, PropertyName contains the name of the first user property found and PropertyValue
contains its value. After you have processed this property, you can call MQINQMP again
to retrieve the next property that matched the query. Eventually, there will be no more
properties and WebSphere MQ will set a completion code of 1 and a reason code 2471
(MQRC_PROPERTY_NOT_AVAILABLE).

Conclusion
With the advent of the new message property functions in WebSphere MQ 7.0, it is now much
easier to deal with message properties within ILE applications. No longer does an application need
to handle parsing RFH2 headers, deal with XML, or deal with character conversion using iconv to
get or set message properties. This article has shown how to make use of these new APIs in your
applications. Full examples can be found in the AMQ3IQM4 and AMQ3STM4 samples included
with WebSphere MQ 7.1. These samples are also included in WebSphere MQ 7.0.1.6 and later fix
packs.

Resources
• Find more information about Message Properties, MQSETMP, and MQINQMP in the

WebSphere MQ Information Center.

http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fg20530_.htm
http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/ir80770_.htm
http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/ir85260_.htm
http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/index.jsp

developerWorks® ibm.com/developerWorks/

Using IBM WebSphere MQ message property APIs in ILE RPG Page 6 of 6

• SupportPac MS0T download
• IBM i developerWorks forum

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24021041
https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-0000-000000002675
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	The old way and the way forward
	Using MQSETMP
	Using MQINQMP
	Conclusion
	Resources
	Trademarks

