developer\Vorks.

Cover your bases with TweetMe4i and JSON

Search for and log twitter messages using open source Java and
RPG

Aaron Bartell February 21, 2012

The world of audits is a reality that more financial companies are learning to live with. One
of the things being audited are the texts sent to social media sites like Twitter, LinkedIn and
Facebook. This tutorial will guide you through how to do Twitter searches from RPG on IBM i
and record the results into a DB2 table.

Where it makes sense

| am a big fan of keeping everything in RPG when dealing with programming on IBM i. | figure
the less languages and runtimes | have to deal with the more | can focus on meeting business
needs vs. focusing on fixing technology. Don't get me wrong, | LOVE learning about new things
outside of the RPG landscape - been diving into PhoneGap and Apache Callback lately - but I've
learned that the adoption of technology should be done with a full understanding of the longterm
ramifications (i.e. it doubles the half-life of information an IT shop needs to keep track of). | digress
into this preamble because in this article | am going to show how to query Twitter from RPG with
Java in the middle. The reason | am going this route (vs. RPG direct to Twitter) is because there
are a handful of things missing from RPG that would make this much more doable - specifically
an RPG implementation of the OAuth mechanism of authenticating to Twitter. OAuth is a new(er)
mechanism to do authentication from one site or service to another. Learn more about the OAuth
authentication protocol from Twitter's perspective.

Twitter4j makes it happen

One of the reasons Java usage is so attractive in today's software eco-system is that it is so
prevalent - there are MANY open source Java projects out there that are quite solid and free for
you to use. For the purposes of this article, the free and open source Twitter4j project is being
used. It should be noted that there are other Java libraries for Twitter. | chose Twitter4j because it
seems to be the most promising library (seemed to be active, had a wide breadth of API's, looked
to be well thought out and included things like debugging needs, and had a license that works well
in commercial situations - Apache License 2.0). If you have no idea why you should be concerned
about which license is used on an open source project then you should take a few minutes to read
up on licensing. | have learned that not all open source projects are created equal and there is

© Copyright IBM Corporation 2012 Trademarks
Cover your bases with TweetMe4i and JSON Page 1 of 7

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
http://en.wikipedia.org/wiki/OAuth
https://dev.twitter.com/docs/auth/using-oauth
http://twitter4j.org/
https://dev.twitter.com/docs/twitter-libraries%23java
http://www.opensource.org/faq

developerWorks® ibm.com/developerWorks/

definitely an art to picking "safe" and good projects. It is something most programmers will need to
be knowledgeable on as litigation increases concerning some licenses (i.e. GPLv3).

Twitter4j has many features that allow you to connect with Twitter on a number of fronts, but the
purpose of this article is to focus solely on doing Twitter searches. Specifically, we are going to
be diving into the Advanced Search capabilities found on this Twitter page so we can learn what
profile "aaronbartell” is tweeting within a certain timeframe.

At this point, it would be good to rewind to a few months ago when | released a new open source
project named TweetMe4i. The initial code base for TweetMe4i focused on sending status updates
to a Twitter account. On the TweetMe4i webpage you can find documentation on how to register
for the various aspects of Twitter and also how to configure your IBM i. This article adds to that
initial code base, TweetMed4i.java specifically, by providing search functionality as shown in

Listing 1 with the search() Java method. You can find the full source for TweetMe4i.java in the file
provided with this article.

Listing 1. Search Java Code

public static String search(String searchStr) {
String result = "";
StringBuilder jsonTweet = new StringBuilder();
try {
System.setOut (new PrintStream(new FileOutputStream("TweetMe4ilLog.txt")));

Twitter twitter = new TwitterFactory().getInstance();
QueryResult gryResult = twitter.search(new Query(searchStr));

boolean firstTime = true;
jsonTweet.append("{ \"tweets\": [");
for (Tweet tweet : gryResult.getTweets()) {
if(!firstTime)
jsonTweet.append(",");
else;
firstTime = false;
jsonTweet.append(DataObjectFactory.getRawJSON(tweet));

}
jsonTweet.append("] }");
result = resultDS("SUCCESS", jsonTweet.toString());
} catch (Exception te) {
result = resultDS("FAIL", "Java Exception:" + stackTraceToString(te));

}

return result;

}

As you can see, the search() Java method receives and returns a String object. An example of a
search string is as follows:

"from:aaronbartell since:2011-11-01 until:2001-11-30"

The basic concept of the search() Java method is to call Twitter with the search string and then
return the result of that search as a JSON string to the calling program. In this case, the calling
program is written in RPG, which we will be reviewing in a next section. JSON is utilized as the
result set return mechanism because it is less laborious to process on the RPG end of things -

Cover your bases with TweetMe4i and JSON Page 2 of 7

http://bit.ly/vNIiZl
http://mowyourlawn.com/tweetme4i.html
http://mowyourlawn.com/tweetme4i.html

ibm.com/developerWorks/ developerWorks®

especially when we have access to a free and open source JSON parser and serializer in RPG -
more on that later.

In the search() method, you'll notice the code making a call to Ssystem.setout (). This call is done
so that the program can redirect System.out messages to a stream file to make my debugging
efforts significantly easier. Please note that the code doesn't specify a fully qualified path with
TweetMe4iLog.txt. This means that the stream file will be written to the current directory. You can
view your current directly by simply entering WRKLNK onto the IBM i command line with no other
options.

Next in Listing 1, the code obtains a new instance of a Twitter object using the
TwitterFactory.getInstance() call. The code then invokes twitter.search() and passes the
search string that was provided in the call to this method. Underneath the covers an HTTP request
is being made to Twitter.com to submit the search request and retrieve the results back into the
gryResult object. The program then iterates over the gryResult object and starts composing the
JSON string that will be passed back to the RPG program. The reason that the composition logic
hard codes some of the JSON string is because an enveloping structure is required for the JSON
value provided by the call to bataobjectFactory.getRawJSON(tweet) wWhich is used to get the
JSON representation of the twitter result set. A sample of the resulting JSON output is shown in
Listing 2.

To make DataObjectFactory.getRawJSON(tweet) work successfully, you need to add an

entry to the existing twitter4j.properties file, which if you installed TweetMe4i from http://
mowyourlawn.com/tweetme4i.html it will exist at location /java/tweetme4i/twitter4j.properties.
The addition to the twitter4j.properties file is jsonStoreEnabled=true.

Listing 2. JSON Result from search () method

"tweets": [
{

"text":"Opps, wrong url on that last one (though a great Christmas
song :-) Try this one: http://t.co/plw3x4jt",

"from_user_id":44956334,

"id":144505404985057280,

"from_user":"aaronbartell",

"created_at":"Wed, 07 Dec 2011 19:55:47 +0000",

"metadata": {
"result_type":"recent"

}
3
{

"text":"Give feedback for next #RPGNextGen 2.0 features
http://t.co/rwZL1KH2 #opensource #free #RPG #IBMi editor
#eclipse based",

"from_user_id":44956334,

"id":144504285328195584,

"from_user":"aaronbartell",

"created_at":"Wed, 07 Dec 2011 19:51:21 +0000",

"metadata": {

"result_type":"recent"

}

3
{

"text":"RT @SystemiNetwork: Maxed Out: New IBM Tools Uses POWER

Cover your bases with TweetMe4i and JSON Page 3 of 7

developerWorks® ibm.com/developerWorks/

to Crush Commodity Server Architectures: .http://bit.ly/u36umu
#IBMi",

"from_user_id":44956334,
"from_user_name":"Aaron Bartell",
"id":143789937253294080,
"from_user_id_str":"44956334",
"from_user":"aaronbartell",
"created_at":"Mon, 05 Dec 2011 20:32:47 +0000",
"metadata":{

"result_type":"recent"
}

}
1

If this is your first exposure to JSON, then you can learn more about it here. JSON stands for
Javascript Object Notation and was made popular in the web browser programming world as

a way to easily serialize and de-serialize Javascript objects so they could be communicated to
and from the server. For example, in the past | have used it extensively with OpenRPGUI and
ExtJS. Lately, | have been extending JSON beyond Javascript scenarios. For example, JSON has
used it to communicate with an Android application in my DynaDroid4i efforts where Javascript
wasn't involved at all. However, JSON was still used to send messages to and from the IBM i to
the Android mobile device.

RPG side of things

Now it's time to move to the RPG side of the solution to see how to invoke the Java search()
method. Listing 3 shows the mainline of RPG program TM4ISEARCH. Note the full source for
TM4ISEARCH can be found in this article's accompanying zip file.

Listing 3. TM4AISEARCH mainline

monitor;
cmd = 'ADDENVVAR ENVVAR(CLASSPATH) REPLACE(*YES) VALUE(' +
gqte +
'/java/tweetmedi' +
':/java/tweetme4i/TweetMe4i. jar' +
':/java/tweetmedi/twitter4j-core-2.2.5.jar' +
1 L
qte + ')';

QCMDEXC(%trimr(cmd): %len(%trimr(cmd)));

cmd = 'ADDENVVAR ENVVAR(QIBM_RPG_JAVA_PROPERTIES) ' +
'REPLACE(*YES) VALUE(' + gte + '-Djava.version=1.5;' + qte + ')';

QCMDEXC(%trimr(cmd): %len(%trimr(cmd)));
on-error;
endmon;

gSrchStr = 'from:aaronbartell since:2011-10-01';
jStr = TweetMe4i_search(newStr(gSrchStr));
gResult = getBytes(jStr);

if gResult.code = 'SUCCESS';

jsonToDB(gResult. text);
endif;

In Listing 3 | have bolded the areas that we will be discussing. First we see the CLASSPATH
environment variable being added to include both TweetMe4i.jar and twitter4j-core-2.2.5.jar.

Cover your bases with TweetMe4i and JSON Page 4 of 7

http://json.org/
http://openrpgui.com/
http://sencha.com/
http://www.ibmsystemsmag.com/ibmi/developer/general/Meet-DynaDroid4i/

ibm.com/developerWorks/ developerWorks®

The TweetMe4i.jar contains the search() function discussed earlier and twitter4j-
core-2.2.5.jar is the latest version of Twitter4j as of this writing. Next, look at the formulation
of the search string being applied to the gsrchstr variable which is then used on the call to
TweetMe4i_search(). The RPG prototype for the TweetMe4i_search APl can be seen in Listing 4.

Listing 4. TweetMe4i_search prototype

D TweetMe4i_search...

D pr o] class(*java: jStrConst) static

D extproc(

D *java:

D 'com.mowyourlawn. twitter.TweetMe4i':
D 'search')

D pTxt o] class(*java: jStrConst) const

After the RPG program receives the JSON response back, the last bit of important code in Listing
3 is the call to jsonToDB(). The jsonTobB() sub procedure can be seen in Listing 5 and its
purpose is to take the inputted JSON string, parse it and write the contents to a DB2 table, TWTHST
(short for Tweet History).

Listing 5. jsonToDB sub procedure

o

jsonToDB b
jsontoDB pi
pStr 65535a

O O

*

D jRoot
D jTweets
D jObj
D
D

*

*
101 0
101 0

tweetCount
X
/free

nwunnunn

jRoot = json_parse(%addr (pStr));

jTweets = json_getArray(jRoot: 'tweets');
tweetCount = jsona_size(jTweets);

for x = 0 to (tweetCount - 1);
jObj = jsona_getObject(jTweets: x);

if jobj = *null;
leave;
endif;

clear TWTHSTR;

ID = json_getLong(jObj: 'id');

chain ID TWTHST;

if not %found(TWTHST);
TXT = %str(json_get(jobj: 'text'));
FRMUSRID = json_getInt(jObj: 'from_user_id');
FRMUSR = %str(json_get(joObj: 'from_user'));
CRTDAT = %str(json_get(jObj: 'created_at'));
write TWTHSTR;

endif;

endfor;

json_dispose(jRoot);

/end-free
P e

Cover your bases with TweetMe4i and JSON Page 5 of 7

developerWorks® ibm.com/developerWorks/

This sub procedure introduces the JSON *SRVPGM object from Mihael Schmidt of
RPGNextGen.com. All of the sub procedure calls that start with json_ or jsona_ are from Mihael's
JSON *SRVPGM and the variables that start with a lower case j are meant to represent the JSON
*SRVPGM's objects (pointers, actually). You should definitely take a look at RPGNextGen.com

if you haven't already done so. Mihael has been very busy and generous towards the RPG
community with his many open source tools.

The first step in the jsonTobB sub procedure is calling the json_parse() routine which will take
the JSON string and store it in a specialized pointer array under the covers. This operation allows
the RPG program to subsequently access the various JSON parts by name. The code uses
json_getArray() to obtain the tweets portion of the array and store reference to it in the jTweets
pointer - if necessary, go back to Listing 2 for a review of the structure. After obtaining the total
number of tweets with jsona_size(), the code logic starts iterating through the results starting

at an index of zero. The open source contributor, Mihael, must have had Java on the mind the
day he created this part of the tool - we all know RPG people like to start indexes at 1! The call

to jsona_getObject () retrieves a tweets iteration and stores it in jobj. After determining whether
or not the jobj is null (i.e. was the retrieval successful and did the entry exist), the code starts
obtaining the various portions of the JSON tweets result using json_* API calls and populate
them into the DB2 record. If you dig into the json_* prototypes you'll find that there are generic
"getters” like json_get(), and more specific ones like json_getString() or json_getInt(). Either
approach works fine, though the more generic ones require a type-cast as shown (i.e. %str()).

The TwTHST table definition is shown in Listing 6. Each of the columns in TWTHST are occupied with
data from Twitter, including the unique key of the table. The column label values correspond to the
actual name of the JSON entity that Twitter and Twitter4j provided.

Listing 6. TTHST table definition

CREATE TABLE TWEETME4I.TWTHST (
ID NUMERIC(30,0) NOT NULL DEFAULT O ,
TXT CHAR(140) CCSID 37 NOT NULL DEFAULT '' ,
FRMUSRID NUMERIC(9, ©) NOT NULL DEFAULT O ,
FRMUSR CHAR(20) CCSID 37 NOT NULL DEFAULT '' ,
CRTDAT CHAR(31) CCSID 37 NOT NULL DEFAULT '' ,
PRIMARY KEY(ID));

LABEL ON COLUMN TWEET4MEI.TWTHST
(ID TEXT IS 'ID' ,

TXT TEXT IS 'TEXT' ,

FRMUSRID TEXT IS 'FROM_USER_ID' ,
FRMUSR TEXT IS 'FROM_USER' ,
CRTDAT TEXT IS 'CREATED_AT') ;

The last required step in jsonToDB() is to clean up all of the allocated memory by calling
json_dispose(). At this point ,the coding is complete and there are now results in the TWTHST
DB2 table as shown in Figure 1 via a screen shot from Squirrel SQL (a great tool to check out if
you aren't already using it).

Cover your bases with TweetMe4i and JSON Page 6 of 7

http://rpgnextgen.com/
http://rpgnextgen.com/
http://www.squirrelsql.org/

ibm.com/developerWorks/ developerWorks®

Figure 1. TWTHST Content via Squirrel SQL

800 SQuirrel SOL Client Version 3.3.0
Connect to: | :) |ﬂ§ | & | Active Session: | 1 - WHITE (506176A5... ||« @] @ | 2l E]

2 201 =Wt =_-_.-:..
S [@]e):[#]: 3 [Cle[GRB[S[#]:[¢] o] 5] (&) [alL]2]: W[5
| Objects m
o | delete from tweetmedi.twthst S [+)(E) ® umitrows: [100
% select * fron tweetmedi.twehse
&
N select * fromt
Rows 3; soleck * from kweotmedi.twehst *
MetaData__Info | Owverview |
[D | T | ramusmio | | emsuse | | CRTDAT |
144.505.408.985.057.2 50 [0pps. wrong url on that last one (thowq...|44.956.334 laaronbartell... Wed. 07 Dec 2011 18. |
144,504,285,328,195,584 Give feedback for next SRPGNextGen 2. 44,956,334 aaronbamell.. Wed, 07 Dec 2011 19,
143,789,937,253,294,080 RT @SysterniMemwark: Maxed Qur Mew... 44,936,334 aaronbamell... Mon, 05 Dec 2011 20..,
[t [ETE]

avw T
Query 1 of 1, Rows read: 3, Elapsed time {seconds) - Total: 0.223, 50L query: 0.021, Building output: 0.201
Beconnected to WHITE

i [Loas: Ervars 5, Wamings 0. Infes 16 || [| 390FBLME [][] [nmzames

Summary

So that's it! You have officially done a Twitter search from your IBM i and stored the results in
our beloved DB2. Note that there are also API's for the other social networks like LinkedIn and
Facebook, but those offerings also require more permission to see the content that is being sent
back and forth (i.e. on Facebook you need to be somebody's friend to see their content). If you
would find value in seeing an API for Facebook or LinkedIn, then please email me and | will see
what effort it would take to put something together and subsequently write about it.

Resources

* How to use advanced Twitter search
Twitter

http://twitter4j.org

http://json.org

http://rpgnextgen.com
http://mowyourlawn.com/tweetme4i.html

© Copyright IBM Corporation 2012
(www.ibm.com/legal/copytrade.shtml)
Trademarks

(www.ibm.com/developerworks/ibm/trademarks/)

Cover your bases with TweetMe4i and JSON Page 7 of 7

mailto:aaronbartell@gmail.com
https://support.twitter.com/groups/31-twitter-basics/topics/110-search/articles/71577-how-to-use-advanced-twitter-search
http://www.twitter.com
http://twitter4j.org
http://json.org
http://rpgnextgen.com
http://mowyourlawn.com/tweetme4i.html
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Where it makes sense
	Twitter4j makes it happen
	RPG side of things
	Summary
	Resources
	Trademarks

