
© Copyright IBM Corporation 2015 Trademarks
Using the SNMP GetBulk request for data retrieval Page 1 of 6

Using the SNMP GetBulk request for data retrieval
Learn about IBM i SNMP performance and usability improvements

Clair M. Wood March 19, 2015
(First published March 19, 2015)

Simple Network Management Protocol (SNMP) provides a system or network management
application with the ability to gather information about network devices and to monitor them.
To accomplish this, SNMP defines a set of operations for retrieving and setting data as well
as monitoring for conditions being reported by the managed devices. One of these operations
is GetBulk, which provides an application with the ability to easily retrieve a large amount of
data with a single request. This can be particularly useful when retrieving information from the
standard SNMP tables. This article describes how to use a new GetBulk API for retrieving data
from a table and other new functions recently added to the SNMP support on IBM i.

Introduction

The IBM i 7.1 and IBM i 7.2 releases have recently been enhanced to provide new capabilities
for SNMP-related functions. These new capabilities offer IBM i customers improved performance
and enhanced usability. In this article, I will discuss these new enhancements and provide a
programming example that makes use of several of them. The primary focus of this article is on
using the GetBulk operation to easily retrieve data from one of the standard SNMP tables.

Sending SNMP responses through port 161

In the past, IBM i received SNMP requests through UDP port 161 and then sent a response
through a random ephemeral port. This behavior made it difficult for administrators to configure
firewalls and still allow SNMP traffic to flow between an IBM i SNMP agent and an SNMP-based
remote system or network management application. The SNMP agent has been changed so that
responses to SNMP requests will now be sent through UDP port 161. SNMP trap messages that
originate on an IBM i system will also now be sent through port 161. This change does not affect
the IBM i trap manager, which will continue to receive trap messages through UDP port 162. Traps
being forwarded by the IBM i trap manager will also be sent through port 161. This change also
does not affect the native IBM i SNMP manager APIs which will continue to send requests through
a random ephemeral port.

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Using the SNMP GetBulk request for data retrieval Page 2 of 6

Configuring storage pools and disk block sizes
As the storage sizes for both storage pools and individual disk units have increased, the limits
of the original SNMP design have been reached or in some cases exceeded. For example, the
size that SNMP returns for an 8 TB disk unit on an IBM i system might show up as a negative
number in some systems management applications, or it could be flagged as invalid. The latest
enhancements to SNMP allow the configuration of block sizes to be used for returning storage
size information for both storage pools and disk units. One thing to note is that using this support
for disk units can cause IBM i to be non-compliant with the RFC 1514 standard, which defines
a disk unit block size as 1024 bytes. A larger block size can be configured using the new block
size (BLKSIZE) parameter on the Change SNMP Attributes (CHGSNMPA) command. By using an
appropriate block size, you can avoid confusion related to the incorrect storage size value or a disk
unit being flagged as invalid by a systems management application.

GetBulk operation support
The SNMP GetBulk operation was introduced in SNMP version 2 (SNMPv2) and provides a
method to easily get a relatively large amount of data with a single SNMP request. Although IBM
i does not support SNMPv2, it does support SNMP version 3, which provides improved security
and privacy for SNMP messages. The IBM i 7.1 and IBM i 7.2 agents now fully supports the
GetBulk requests for SNMPv3. Additionally, in IBM i 7.2, there is a new SNMP manager API,
snmpGetbulk_v3, that can be used to send a GetBulk request to an SNMPv3 agent.

Retrieving table information using GetBulk
Now, let's take a look at an example of a C program for an SNMP manager running on an IBM
i system. The GetBulk operation is used to retrieve information about storage pools from other
systems. This example assumes that SNMPv3 is already enabled and configured on both the
SNMP manager (source of the SNMP requests) and agent (target of the SNMP requests). Refer to
the GetBulk source code for this example.

The following steps highlight the key operations in this example program.

1. For each agent, the program must perform SNMPv3 agent engine ID discovery between
the SNMP manager program and the agent. This is done by calling the snmpDiscover_v3()
API. If the API call is successful, SNMPv3 operations between the manager and agent can
proceed. The snmpDiscover_v3() API returns a control block that is used by other SNMPv3
APIs for time synchronization and authentication. The control block returned is specific to
an agent. Because of this, the example program issues the snmpDiscover_v3() API once for
each agent.

Listing 1. Performing SNMPv3 agent engine ID discovery
host = hostList[currentHost].host; /* Set the host name. */
cb = NULL; /* Set authentication CB to NULL. */
rc = snmpDiscover_v3(host, timeout, &cb); /* Perform SNMP Agent Discovery */
if (rc != API_RC_OK) { /* Check whether discovery failed. */
 printf("Discovery failed with rc=%d\n", rc); /* Output reason code. */
 goto Cleanup; /* Cleanup and end. */
} else;

https://www.ibm.com/developerworks/ibmi/library/i-snmp-getbulk-data-retrieval/getbulkxmp.c

ibm.com/developerWorks/ developerWorks®

Using the SNMP GetBulk request for data retrieval Page 3 of 6

2. The program must determine the number of storage pools that are configured for the
SNMP agent. To do this, the snmpGetnext_v3()API is used to examine the host resources'
storage table, also known by the standard name of hrStorageTable. The first entry in the
table, hrStorageIndex, provides the program with the information needed to read selected
information from the table. The snmpGetnext_v3() API is used in a loop until all the table
entries corresponding to hrStorageIndex have been accessed. Counting these entries
provides the number of rows in hrStorageTable.

Listing 2. Determining the number of table entries
maxReps = 0; /* Initialize maximum repetitions. */
do { /* Loop until finished. */
 pdu->varbind->val_len = API_MAX_VALUE_SIZE + 1;
 rc = snmpGetnext_v3(pdu, host, timeout, user, &cb); /* Perform GetNext operation. */
 maxReps++; /* Incremment maximum repetitions.*/
} while ((memcmp(tblIndexOID, pdu->varbind->oid, strlen(tblIndexOID)) == 0) &&
 (rc == API_RC_OK)); /* Check whether we are still */
 /* processing index entries. */

3. To prepare for performing the GetBulk operation, the program sets up the necessary protocol
data unit (PDU) structures and variable bindings (varbinds). The program gets several
pieces of general system information as well as specific information from each row of
hrStorageTable. For this example, it adds the varbinds to get the system name (sysName) and
the network management system (SNMP server) up-time (sysUpTime). The GetBulk request
that the program builds will result in each of these varbinds only being processed once. These
make up the non-repeaters section of the GetBulk PDU.

4. Next, the program sets up the varbinds for retrieving the storage pool information from
hrStorageTable. It will add varbinds for the description of the storage pool (hrStorageDesc),
the size in bytes of an allocation unit (hrStorageAllocationUnits), the storage size in
allocation units (hrStorageSize), and the amount of storage used in allocation units
(hrStorageUsed). These varbinds make up the maximum-repetitions portion of the GetBulk
PDU.

5. Next, the program calculates the number of varbinds that are expected to be returned in
the response to the GetBulk request. The program then needs to allocate all the varbind
structures necessary for the GetBulk response. For a single GetBulk request, IBM i supports
returning up to 512 varbinds. The IBM i system also restricts the size of the response
data packet to 32 KB. On a large system, a table such as the host resources' device table
(hrDeviceTable) can contain more than 512 entries. Multiple GetBulk requests would be
necessary to retrieve an entire table in some cases.

6. All the information for hrStorageTable will then be retrieved with a single GetBulk request sent
by the snmpGetbulk_v3() API.

Listing 3. Setting up varbinds and performing GetBulk
/* Add a varbind to retrieve the system name. This will only be retrieved once
 and is part of the "non-repeaters" varbind section of the GetBulk input PDU.
*/

varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.1.5");

developerWorks® ibm.com/developerWorks/

Using the SNMP GetBulk request for data retrieval Page 4 of 6

/* Add a varbind to retrieve the network management up-time. This will be
 retrieved once and is part of the "non-repeaters" varbind section of the GetBulk input PDU.
*/

varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.1.3");
bulkpdu->non_repeaters = varBNbr; /* Set number of non-repeaters. */

/* These statements add the OIDs to the GetBulk PDU which will allow us to
 retrieve the information from the host resources storage table (hrStorageTable) for the
 system's storage pools. These will be retrieved repeatedly and make up the
 "maximum-repetitions" section of the PDU
*/

varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.25.2.3.1.3"); /* Storage Description */
varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.25.2.3.1.4"); /* Allocation units */
varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.25.2.3.1.5"); /* Storage size */
varBNbr = AddVarbind((snmppdu **) &bulkpdu, "1.3.6.1.2.1.25.2.3.1.6"); /* Storage used */
bulkpdu->pdu_type = GETBULK_PDU_TYPE; /* Initialize the PDU type */
bulkpdu->maximum_repetitions = maxReps; /* Set maximum repetitions */
respNbr = ((varBNbr - bulkpdu->non_repeaters) * bulkpdu->maximum_repetitions) +
 bulkpdu->non_repeaters; /* Calculate the number of varbinds
 in the response PDU. */
MakeResponsePDUSpace(&pdu, respNbr); /* Make a response PDU space with
 calcuated number of varbinds. */
rc = snmpGetbulk_v3(bulkpdu, host, timeout, user, &cb, pdu); /* Perform the GetBulk. */

7. After a successful call to snmpGetbulk_v3(), the program walks through the varbinds in the
response PDU and displays the information that was returned. It also uses the information
returned to calculate and display the storage size in bytes and the storage used in bytes.

8. The program then cleans up all the storage it allocated and the authentication control block
that was allocated for processing the current agent. The snmpFreeAuthCB_v3() API must be
used to free the authentication control block.

9. The program then processes the next agent in its list.

Example 1 shows the output of the program.

Example 1. Storage pool information from GetBulk

System Name: LOCALHOST
Up-time (in seconds): 62939

Pool Block Size Size Size Size Used
Description in Bytes in Blocks in Bytes in Bytes
System ASP 4096 39141480 160323502080 46772875264
RAM 4096 145441 595726336 576901120
RAM 4096 1135368 4650467328 3070193664
RAM 4096 15728 64421888 12288
RAM 4096 276327 1131835392 144236544

System Name: BIGSYSTEM
Up-time (in seconds): 62900

Pool Block Size Size Size Size Used
Description in Bytes in Blocks in Bytes in Bytes
System ASP 8192 1228421942 10063232548864 6161258889216
User ASP 8192 9321270 76359843840 5750784
User ASP 8192 335544320 2748779069440 351518720
Independent ASP 8192 120193024 984621252608 8866537472
Independent ASP 8192 51511296 421980536832 124952576
RAM 8192 6442790 52779335680 34723086336
RAM 8192 96346898 789273788416 380127264768

ibm.com/developerWorks/ developerWorks®

Using the SNMP GetBulk request for data retrieval Page 5 of 6

RAM 8192 25787520 211251363840 880140288
RAM 8192 1298759 10639433728 119259136

One thing to note about the output is that each system has a different unit or block size retrieved
for hrStorageAllocationUnits. The CHGSNMPA BLKSIZE(8192 *DFT) command was run on the
system BIGSYSTEM before running the GetBulk operation. This caused 8192 to be returned
for hrStorageAllocationUnits instead of letting the system determine the block size. Before
running the CHGSNMPA command, the output from the example program produced invalid results
for hrStorageSize because of the large size of the system auxiliary storage pool (ASP) on
BIGSYSTEM. Even with a 4096 block size, the total number of blocks might not fit in a 4-byte
integer. Changing the block size allowed valid information to be retrieved for hrStorageSize which
the program could then use to calculate the actual storage size in bytes. One last thing to note
is that the SNMP server must be ended and restarted in order for changes to the block size to
become effective. Example 2 shows the output before changing the storage pool block size. The
size both in blocks and bytes show incorrectly as a negative number:

Example 2. Partial GetBulk results with block size too small

System Name: BIGSYSTEM
Up-time (in seconds): 11

Pool Block Size Size Size Size Used
Description in Bytes in Blocks in Bytes in Bytes
System ASP 4096 -1838123412 -7528953495552 6167716663296

Additional information
Required PTFs

The following PTFs enable the enhancements described in this article:

• IBM i 7.1 - PTF SI55745.
• IBM i 7.2 - PTFs SI55537, SI55539, SI55766, SI55787, and SI55966.

Setting up SNMPv3 on an IBM i system

You need to perform the following steps to set up SNMPv3 on an IBM i system.

1. Check whether SNMPv3 is already enabled on your system by entering the CHGSNMPA
command on the IBM i command line. Locate the Allow SNMPv3 Support (ALWSNMPV3)
parameter and verify that it is set to *YES.

2. If not, change it to *YES and also change the SNMP engine identifier (SNMPENGID) to *SYSGEN.
3. End the SNMP server by running the ENDTCPSVR *SNMP command.
4. Configure the SNMPv3 users by running the Add User for SNMP (ADDUSRSNMP) command.

User names and passwords that you configure with ADDUSRSNMP are case sensitive and
must match exactly between the SNMP agent and manager. In addition, the authentication
and privacy protocols must also match exactly.

5. If you are using the IBM i SNMPv3 manager APIs, you must specify a key type (KEYTYPE)
parameter value of *NONLOCALIZED. This is necessary because the SNMP manager uses the

developerWorks® ibm.com/developerWorks/

Using the SNMP GetBulk request for data retrieval Page 6 of 6

agent's SNMP engine ID to localize the authentication and privacy keys when performing
encryption and decryption operations.

6. After adding all your SNMPv3 users, you can start the SNMP server by running the STRTCPSVR
*SNMP command.

Due to differences in SNMPv3 manager implementations, it might be necessary to add an
environment variable to make a change in the way the IBM i agent performs validation checks
during the initial communication with an SNMPv3 manager. If an SNMPv3 manager application is
timing out or reporting a time synchronization error while attempting to establish the initial SNMPv3
communications with the IBM i agent, add this environment variable using the following command:

ADDENVVAR ENVVAR(QIBM_SNMPV3_AUTH) VALUE('1') LEVEL(*SYS)

After running this command, the SNMP server must be ended and then restarted. In addition, it
might be necessary to end and then restart the SNMP manager application.

Summary

The IBM i system now offers new capabilities that include the ability to more easily configure
firewalls by sending responses through UDP port 161, to eliminate SNMP manager reported errors
by configuring storage pool and disk unit block sizes, and to improve SNMP manager performance
through the use of the GetBulk request.

References

• For information about the IBM i SNMPv3 Manager APIs, see the Simple Network
Management Protocol (SNMP) Manager APIs topic in the IBM i Knowledge Center.

• The Host Resources MIB is described by RFC1514 - Host Resources MIB
• The GetBulk operation is described by RFC1448 - Protocol Operations for version 2 of the

Simple Network Management Protocol (SNMPv2)

© Copyright IBM Corporation 2015
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/apis/unix6b.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/apis/unix6b.htm
https://tools.ietf.org/html/rfc1514
https://tools.ietf.org/html/rfc1448
https://tools.ietf.org/html/rfc1448
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Sending SNMP responses through port 161
	Configuring storage pools and disk block sizes
	GetBulk operation support
	Retrieving table information using GetBulk
	Additional information
	Required PTFs
	Setting up SNMPv3 on an IBM i system

	Summary
	References
	Trademarks

