
© Copyright IBM Corporation 2015 Trademarks
Running Node.js with IBM HTTP Server for i Page 1 of 11

Running Node.js with IBM HTTP Server for i
Using JavaScript programs for server-side web development

Xu Meng
Zheng Chang Qing

September 14, 2015
(First published September 14, 2015)

Node.js, the server-side JavaScript runtime platform, is now supported on IBM i. The event-
driven, non-blocking I/O model supported by node.js is well suited to web application
development. IBM® HTTP Server for i is a powerful Apache-based web server on IBM i.
This article explains how to associate IBM HTTP Server for i with Node.js through a Node.js
FastCGI add-on to create a powerful and secure web environment.

Introduction

This article describes how to associate IBM HTTP Server for i with Node.js, leveraging the Node.js
FastCGI add-on. Both local and remote associations are introduced in this article. Additionally,
a simple Node.js example in this article explains how to use the HTTP Server authentication
mechanism to secure and protect an application. This article provides step-by-step guidance to set
up the environment.

Node.js is an open source project based on Google Chrome V8 engine. It provides a platform
for server-side JavaScript applications running without the need for a browser. Node.js is now
supported on the IBM i platform. To get started with Node.js on IBM i, it is recommended to read
the article, Native JavaScript applications on IBM i with Node.js.

Note: Node.js is an official trademark of Joyent.

FastCGI is an open standard, language-independent and Common Gateway Interface (CGI) like
protocol for interfacing interactive programs with a web server. The open source Node.js FastCGI
add-on has been enabled on IBM i. This gives Node.js on IBM i the ability to communicate
with other servers through the FastCGI protocol. We have supported this for the Hypertext
Preprocessor (PHP) ecosystem for many years. For more details about the FastCGI on IBM i, refer
to FastCGI.

IBM HTTP Server (powered by Apache) for i is a complete web server product, which offers
several components and features to assist in your website configuration and development. With

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Non-blocking_I/O
https://www.ibm.com/developerworks/ibmi/library/i-native-js-app-ibmi-with-nodejs/
http://yips.idevcloud.com/wiki/index.php/FastCGI/FastCGI

developerWorks® ibm.com/developerWorks/

Running Node.js with IBM HTTP Server for i Page 2 of 11

the IBM HTTP Server (powered by Apache) for i, you have everything you need to quickly and
easily establish a web presence to get started working on the web for business.

Figure 1. Node.js FastCGI application flow

Software prerequisites
Node.js for IBM i is packaged as part of 5733OPS, which is supported in IBM i 7.1 and later
versions. Node.js is delivered in option 1 of this new Licensed Program Offering (LPO). In addition
to installing the new LPO, some additional software programs are required in order to use Node.js
and the FastCGI add-on on IBM i. The FastCGI add-on, node-fastcgi, is included in the following
program temporary fix (PTF) groups.

• Required licensed programs:
• 5733OPS, option 1－IBM i open source solutions
• 5770SS1, option 33－Portable app solutions environment
• 5733SC1, option 1－OpenSSH, OpenSSL, zlib
• 5770DG1,*BASE – IBM HTTP Server for i

• Required Group PTF
• IBM i 7.1 PTF Group SF99368 - level 34 (or higher)
• IBM i 7.2 PTF Group SF99713 - level 8 (or higher)

After successfully installing the prerequisites, you need to install the FastCGI add-on, node-
fastcgi, in the /QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi directory.

In the following sections, we create a HTTP Server instance and associate it with a Node.js
application using FastCGI protocol. And finally, secure the FastCGI application with IBM i profile
validation.

HTTP Server instance creation and configuration
This section describes the configuration of the HTTP Server. First, we need to have a HTTP
instance and configure it to load the IBM i FastCGI plug-in so that it can communicate with the
backend FastCGI application.

Step 1. Create a HTTP Server instance.

IBM Web Administration for i (http://<your.server.name>:2001/HTTPAdmin) can be used easily to
create an instance of IBM HTTP Server for i. Please refer to IBM i Knowledge Center for details of
how to create an instance of HTTP Server for i.

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaie/rzaiegetstarted.htm

ibm.com/developerWorks/ developerWorks®

Running Node.js with IBM HTTP Server for i Page 3 of 11

This article uses an HTTP instance named HTTPSERV as example. It listens to port 10036 and
the root directory is /www/httpserv.

Step 2. Update the HTTP Server instance configuration file with FastCGI setting.

When you create the instance through IBM Web Administration for i, click Edit Configuration File
in the left panel of IBM Web Administration for i.

In the right text box, add following directive to the top of the configuration file to load the HTTP
Server FastCGI plug-in.

LoadModule zend_enabler_module /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM

Add the following two directives to add a new handler 'FastCGI-script' for requests to files with
the .jsx file extension.

AddType application/x-httpd-javascript .jsx
AddHandler fastcgi-script .jsx

The full configuration file httpd.conf looks as shown below.

LoadModule zend_enabler_module /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM
Listen *:10036
DocumentRoot /www/httpserv/htdocs
HotBackup Off

AddType application/x-httpd-javascript .jsx
AddHandler fastcgi-script .jsx

Figure 2. HTTP configuration file for FastCGI setting

Step 3. Update the home page of the instance.

developerWorks® ibm.com/developerWorks/

Running Node.js with IBM HTTP Server for i Page 4 of 11

Edit the index.html file located in /www/httpserv/htdocs as below. This simple page shows a text
box that accepts IBM i system value name input and a button that runs the query.

<!DOCTYPE HTML>
<html lang="en-US">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>FastCGI Example</title>
</head>
<style>
input {
height:30px;
 width:200px;
 text-align:center;
border:#ccc solid 1px
}
</style>
<body>
<form name="input" action="dspsysval.jsx" method="get">
<input type="text" name="key" placeholder="QCCSID"/>
<input type="submit" value="Display System Value"/>
</form>
</body>
</html>

Step 4. Verify that the HTTP Server instance is workable.

Start the instance by clicking the icon at the top of panel. Access http://your.server.name:10036
to check whether the instance is working. If everything is fine, the following web page will
be displayed. But, it cannot serve any FastCGI request yet as we have not configured the
corresponding backend part. We will set up and associate a FastCGI application in next section to
handle a FastCGI requests.

Figure 3. Default HTTP Server web page

Node.js FastCGI application creation
The open source FastCGI add-on, node-FastCGI, has been enabled in the latest node.js PTF. If
this add-on is installed successfully, the /QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi
directory should exist and contain two template files.

According to the FastCGI protocol, the web server and FastCGI application can be on the same
system or on different systems. There are two modes for the association, (local or remote) as
shown in Figure 4. For a simple configuration, the local mode enables the FastCGI application
that is running on the same server of the frontend HTTP Server. But in some complex network
environments (for example, the frontend HTTP Server just works as a proxy or a balancer and
there are multiple backend application servers), remote mode is the best choice. In the remaining
sections, both the modes are introduced.

ibm.com/developerWorks/ developerWorks®

Running Node.js with IBM HTTP Server for i Page 5 of 11

Figure 4. The two working mode of FastCGI server

There are two key components needed to configure the association. One is the configuration file
for FastCGI plug-in used by HTTP Server to communicate with the backend FastCGI application.
The other is the Node.js FastCGI application itself. Currently, Node.js for i provides templates for
fastcgi.conf and fcgi.js, which are located in /QOpenSys/QIBM/ProdData/Node/os400/node-
fastcgi. Users need to update the content of these templates for practical requirements. The
following steps demonstrate how to build an example FastCGI application from these templates.

Step1. Copy template files to HTTP Server configuration directory.

Copy the template files, fastcgi.conf and fcgi.js, to the configuration directory of the HTTPSERV
HTTP instance.

cp –p /QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi/fastcgi.conf /www/httpserv/conf/
cp –p /QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi/fcgi.js /www/httpserv/conf/

Note: It is not recommended to modify the original template files directly. You can modify the
copies of them and make sure that the HTTP Server runtime profile, QTMHHTTP, has *RX
authorities to them. You can copy fcgi.js to any other directory. But, if you are configuring in remote
mode, you should copy fcgi.js to a directory of the system running the Node.js FastCGI application.

By default, the content of the fastcgi.conf file is as given below:

; Local Mode --the HTTP server should run at the same IP address with the FastCGI server.
Server type="application/x-httpd-javascript"
 CommandLine="/QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi/fcgi.js" StartProcesses="1"

; Remote Mode --the FastCGI server can run at different IP addresses. Set 'Binding=' to the IP/port
 that the FastCGI server listens to.
; ExternalServer type="application/x-httpd-javascript" Binding="127.0.0.1:8080" ConnectionTimeout="300"
 RequestTimeout="300"

; Where to place socket files
IpcDir /www/fastcgi/logs

developerWorks® ibm.com/developerWorks/

Running Node.js with IBM HTTP Server for i Page 6 of 11

Note: In this configuration file, the semi-colon, ';', is used to comment out directives. You can refer
to the detailed configuration guide for more information.

Local

There are three directives in fastcgi.conf (one is commented out by default). Directive Server
allows the FastCGI application to run in the local mode. It means that the HTTP Server and the
FastCGI application must exist on the same system. When you start the associated HTTP Server,
the HTTP Server will automatically start the FastCGI application defined by the CommandLine
property.

Remote

The second directive that is commented out is for the remote mode. In this mode, the HTTP Server
and the FastCGI application can run in different systems. The attribute, Binding, defines the IP
address and port that the FastCGI application listens to. If you want to enable this mode, comment
out the first directive to disable the local mode first and uncomment the second directive. They
cannot co-exist.

The last directive, IpcDir, defines where to place the socket files of the FastCGI application. We
need to change it to an existing directory.

Step 2. Update fastcgi.conf.

To configure the local mode, update fastcgi.conf with the following content.

Server type="application/x-httpd-javascript" CommandLine="/www/httpserv/conf/fcgi.js"
 StartProcesses="1"
; ExternalServer type="application/x-httpd-javascript" Binding="127.0.0.1:8080 "
IpcDir /www/httpserv/logs

To configure the remote mode, update fastcgi.conf with the following content.

; Server type="application/x-httpd-javascript" CommandLine="/www/httpserv/conf/fcgi.js"
 StartProcesses="1"
ExternalServer type="application/x-httpd-javascript" Binding="127.0.0.1:8080"
IpcDir /www/httpserv/logs

Now, we have completed the FastCGI plug-in configuration for IBM HTTP Server for i.

Step 3. Update fcgi.js to handle FastCGI requests.

The default content of /www/httpserv/conf/fcgi.js. It only responds to the URL for FastCGI
request from HTTP Server side.

http://yips.idevcloud.com/wiki/index.php/FastCGI/FastCGI

ibm.com/developerWorks/ developerWorks®

Running Node.js with IBM HTTP Server for i Page 7 of 11

#!/QOpenSys/QIBM/ProdData/Node/bin/node

var fcgi = require('/QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi');

var fcgiServer = fcgi.createServer(function(req, res) {
 if (req.method === 'GET') {
 res.writeHead(200, { 'Content-Type': 'text/plain' });
 res.end('GET: ' + req.url);
 } else {
 res.writeHead(501);
 res.end();
 }
});
fcgiServer.listen(); //Local mode
// fcgiServer.listen(8080); //Remote mode

Make a note of the last two lines. If the FastCGI application does not listen to a valid port, then it
works in the local mode. Starting the HTTP Server will run this FastCGI application automatically. If
the FastCGI application listens to a valid port, then it will work in the remote mode. Change the line
according to your real requirement.

To process different types of requests, we can update this file to dynamically load different node.js
applications according to the requested .jsx file name.

#!/QOpenSys/QIBM/ProdData/Node/bin/node

var fcgi = require('/QOpenSys/QIBM/ProdData/Node/os400/node-fastcgi');
var url = require('url');
var fs = require('fs');

var fcgiServer = fcgi.createServer(function(req, res) {
 var app = __dirname + url.parse(req.url).pathname.slice(0,-1);
 //Replace .jsx with .js to get the real path.
 fs.exists(app, function(exists){
 if(exists){
 var handler = require(app); // Load the javascript module according the URL requested
 handler.process(req, res);
 } else {
 res.writeHead(404);
 res.end();
 }
 });
});
fcgiServer.listen(); //Local mode
// fcgiServer.listen(8080); //Remote mode

Now we have the simple framework of the FastCGI application, allowing it to invoke Node.js
programs as FastCGI applications.

Step 4. Add a system value query handler.

The previous steps configured the HTTP Server to run the Node.js program. We now create a
Node.js program that is used to display system values. In the same directory of fcgi.js, create a
new JavaScript file named dspsysval.js with the following content. This is a handler for system
value query.

developerWorks® ibm.com/developerWorks/

Running Node.js with IBM HTTP Server for i Page 8 of 11

var url = require('url');
var db = require('/QOpenSys/QIBM/ProdData/Node/os400/db2i/lib/db2');
var xt = require('/QOpenSys/QIBM/ProdData/Node/os400/xstoolkit/lib/itoolkit');
var wk = require('/QOpenSys/QIBM/ProdData/Node/os400/xstoolkit/lib/iwork');

exports.process = function(req, res) { // Implement the interface ‘process()’
 var key = url.parse(req.url, true).query.key.toUpperCase(); // Get the query key from the URL.
 var conn = new xt.iConn('*LOCAL');
 var work = new wk.iWork(conn);
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end(key + ' = ' + work.getSysValue(key)); // Write the system value to the HTTP response.
};

This program reads the key name from the URL and queries the corresponding value of local IBM
i system using the Node.js toolkit application programming interface (API), getSysValue(). Then, it
writes the system value to the HTTP response.

Step 5. Start HTTP Server and the Node.js FastCGI application.

Open the IBM Web Administration for i http://your.server.name:2001/HTTPAdmin) and click the
 button to the start the HTTPSERV instance. If the instance has been running already, click the
 button to restart it. We can also use the control language (CL) command to start or restart the

HTTP instance.

STRTCPSVR SERVER(*HTTP) HTTPSVR(HTTPSERV)
STRTCPSVR SERVER(*HTTP) RESTART(*HTTP) HTTPSVR(HTTPSERV)

When HTTP Server is started, we can issue the following CL command to check its status.

WRKACTJOB SBS(QHTTPSVR)

Figure 5. FastCGI application running status

Job PGM-zfcgi and PGM-node exist only for the local mode. In the remote mode, when the HTTP
Server is started, you have to manually start the fcgi.js program in PASE. Remember to keep the
port number same in both fcgi.js and FastCGI.conf.

node /path/to/fcgi.js

Step 6. Access and verify the association between HTTP Server and Node.js.

We can browse the home page http://your.server.name10036 and enter any system value name
you want to query to verify the association. If the QCCSID system value is displayed as shown in
Figure 6, then it means that the FastCGI application is working.

ibm.com/developerWorks/ developerWorks®

Running Node.js with IBM HTTP Server for i Page 9 of 11

Figure 6. The FastCGI response

Secure your FastCGI application with IBM i profile validation

This section describes how to use the IBM HTTP Server for i server authentication function to
protect the application. Only visitors with IBM i profiles are allowed to access the application.

Step 1. Update HTTP Server configuration with authentication setting.

Click the 'Edit Configuration File' button in the IBM Web Administration for i to configure the
HTTPSERV instance. Add the following directives (in bold font) at the end.

LoadModule zend_enabler_module /QSYS.LIB/QHTTPSVR.LIB/QZFAST.SRVPGM
Listen *:10036
DocumentRoot /www/httpserv/htdocs
HotBackup Off

AddType application/x-httpd-javascript .jsx
AddHandler fastcgi-script .jsx

<Location />
 AuthType Basic
 AuthName "Login with your IBM i profile"
 Require valid-user
 PasswdFile %%SYSTEM%%
</Location>

These directives enable authentication for all .jsx file requests. The complete configuration file,
httpd.conf, is shown above.

Step 2. Restart HTTP Server to make the authentication setting take effect.

Restart the HTTPSERV instance and access http://your.server.name:10036 to query a system
value. A dialog box prompts you to log in with your IBM i profile.

developerWorks® ibm.com/developerWorks/

Running Node.js with IBM HTTP Server for i Page 10 of 11

Figure 7. Authentication dialog

If you passed the authentication, then you can access the query page and the backend FastCGI
application. Otherwise, the HTTP Server will block the access and respond with the following error
message.

Figure 8. Blocking unauthorized access

Summary

The event-driven, non-blocking I/O feature makes Node.js primarily used as a lightweight
web server. There are more and more third-party add-ons being developed by open source
communities that can greatly extend the function and value of Node.js. Additionally, the IBM HTTP
Server for i is a highly customizable, robust, and proven web server. It uses IBM i specific features
such as High Availability (HA), Fast Response Cache Accelerator (FRCA) , profile authentication to
achieve higher security and better performance.

Now, we can connect these IBM i specific features with the FastCGI protocol and complement
each other and take advantage of the strengths of each. It is even possible to deploy these servers
in a distributed system. The flexible combination of modes are applicable to different scenarios.

Resources

• Node.js
• FastCGI on IBM i
• Native JavaScript applications on IBM i with Node.js

https://nodejs.org/
http://youngiprofessionals.com/wiki/index.php/FastCGI/FastCGI
https://www.ibm.com/developerworks/ibmi/library/i-native-js-app-ibmi-with-nodejs/

ibm.com/developerWorks/ developerWorks®

Running Node.js with IBM HTTP Server for i Page 11 of 11

• Getting started with the IBM Web Administration for i interface
• IBM i Technology Updates
• Rev up your Tomcat server on IBM i
• IBM i Open Source

© Copyright IBM Corporation 2015
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzaie/rzaiegetstarted.htm
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM i Technology Updates
https://www.ibm.com/developerworks/ibmi/library/i-run-asf-tomcat-on-ibmi/
https://www.ibm.com/developerworks/ibmi/techupdates/opensource
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Software prerequisites
	HTTP Server instance creation and configuration
	Node.js FastCGI application creation
	Secure your FastCGI application with IBM i profile validation
	Summary
	Resources
	Trademarks

