
© Copyright IBM Corporation 2014 Trademarks
Building an STRSQL utility with PowerRuby Page 1 of 28

Building an STRSQL utility with PowerRuby
PowerRuby tutorial

Cairns Tony March 20, 2014

This tutorial creates a Rails version of old green screen Start SQL Interactive Session
(STRSQL) utility. Most IBM i professionals use STRSQL on IBM i, but if you have not, simply
sign on to your IBM i 5250 and enter STRSQL on the command line. Other products duplicate
the STRSQL support as a client/server application, but this Rails version stays completely on
the IBM i server and use any device with a browser as the interface.

Introduction

This tutorial creates a Rails version of the old green screen STRSQL utility. Other products
duplicate the STRSQL support as a client/server application, but this Rails version stays
completely on the IBM i server and can use any device with a browser as interface.

This tutorial uses a new IBM i technology, PowerRuby, to fast path your way through the web-
based STRSQL application. If you are unfamiliar with Ruby on Rails, see the following PowerRuby
tutorials for instruction on PowerRuby installation and PowerRuby Rails fast path Command
Language (CL) utilities:

• PowerRuby tutorial
• iProDeveloper tutorial

What is PowerRuby? PowerRuby is a privately held business that has teamed with IBM to
provide a formal port of the Ruby language and the Rails framework including a native database
driver that communicates directly with IBM® DB2® on i without the need for any other proxies
(such as MySQL, JDBC, ODBC).

PowerRuby is currently available in a free community version. Additional features under
development can take the Ruby and Rails environments to the next level and be included in a
licensed commercial version of PowerRuby.

Rails web version STRSQL

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
http://powerruby.com/
https://powerruby.worketc.com/kb?id=22
http://iprodeveloper.com/application-development/discover-power-rails-ibm-i

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 2 of 28

This tutorial uses the IBM i command line to edit, test, and deploy a step-by-step Rails web
version of the IBM i STRSQL application instead of using the PowerRuby CL-based fast Rails
helpers (SETPOWRBY, RAILSNEW, and RAILSSVR). This manual approach can provide a better
understanding of the Rails plumbing, which should make it easier for you to develop PowerRuby
applications.

A Ruby gem is simply a community contribution to the Ruby project. In this case, IBM authored
both ibm_db gem for DB2 access and xmlservice gem for IBM i access to native objects (*CMD,
*PGM, *SRVPGM, DB2 objects, and so on). You will be creating your web STRSQL using
PowerRuby included IBM gem technologies:

• xmlservice gem - enables IBM i call of CMD, PGM, and so on.
• ibm_db gem - enables DB2 for i

Rails commands used:

rails new strsql --skip-sprockets --skip-bundle
 bundle install --local
rails generate model
 rake db:migrate
rails generate controller
rails server -p 4242
 Ctrl-C to shutdown server

Rails STRSQL step-by-step

This tutorial uses the IBM Portable Application Solutions Environment (PASE) for i. The PASE
command line is used to edit, test, and deploy a step-by-step Rails web version of the IBM i
STRSQL application. A simplified interface application will be created without using asset pipeline
(rails sprockets or CoffeeScript), thereby the tutorial remains focused on IBM i specific topics.

Web GUI designers and Rails asset pipeline development requires a native JavaScript engine
to process and package CoffeeScript or JavaScript™ code. As of this writing, IBM i does not
provide a native JavaScript engine, and therefore, Rails commands dealing with asset pipeline or
sprockets might fail. However, with a simple web search, you can find web pages that explain the
concept of precompiling assets, developing JavaScript assets on a notebook and deploying them
on an IBM i system.

Start now …

Step 0. Design web STRSQL

A quick tour of the STRSQL interface will define our web STRSQL requirements. We will simplify
the interface of web STRSQL to use HTML, but we will keep the basic functions found in the green
screen version.

http://www.youngiprofessionals.com/wiki/index.php/XMLSERVICE/XMLSERVICERuby
http://www.youngiprofessionals.com/wiki/index.php/XMLSERVICE/XMLSERVICERuby
http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 3 of 28

Figure 1. STRSQL requirements match green screen interface

• STRSQL enables SQL statements to create tables, insert data, and delete data.
• STRSQL SQL Select statements also fetch data rows for display.
• STRSQL records user history, allowing recall of previous SQL statements.

Step 1. Command line and editor
As a Linux® user, I prefer a Secure Shell (SSH) terminal connected to my IBM i server (lp0364d).
This tutorial is not about SSH. However, note that the ssh -X option allows me to run a graphical
IBM AIX® editor on IBM i (SSH setup). YiPs site provides a copy of nedit binary on wiki page Fun
with QSH, call qp2term and RPG (SHELL_use-1.0.3.zip). Feel free to substitute your favorite
remote attached editor, but I am going with native IBM i PASE technology. If you choose not to
use the SSH terminal, you can enter Rails commands from 5250 command line as follows: CALL
qp2term.

Figure 2. Start SSH Terminal - ssh -X me@myibmi

ssh -X me@myibmi
The SSH terminal session in Figure 2 is launched from the bash shell. The bash shell is the
preferred shell for most Linux users – it's available as a binary download from the YiPS website.
The two export commands are required to select the PowerRuby version of Ruby on Rails. The
working directory is changed to create the application in DocumentRoot.

http://youngiprofessionals.com/wiki/index.php/PASE/SSHSetup
http://youngiprofessionals.com/wiki/index.php/PASE/Shell
http://youngiprofessionals.com/wiki/index.php/PASE/Shell

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 4 of 28

Step 2. Create Rails application
We need to create our Rails skeleton application. We are using a few options with rails new to
help IBM i stay within the basic PowerRuby distribution. Executing the PowerRuby Rails utility,
rails new, in the /www/apachedft/htdocs directory creates a new sub-directory strsql/ with the
full Rails skeleton application sub-directories and "get started" code.

Figure 3. The rails new strsql command

As you can see in Figure 3, the rails new strsql command invocation specifies the --skip-
sprockets option to ignore asset pipeline and the --skip-bundle option to avoid bundle
processing.

Step 3. Edit Gemfile
We wish to use DB2 for i, not sqlite3 (default). So, we need to edit Gemfile created by rails new
and replace sqlite3 with ibm_db (DB2 for i) as shown in Figure 4. Also, we are not using the many
options for Rails asset pipeline (JavaScript, and so on). So, comment out these directives to avoid
unwanted processing errors later in the tutorial and to simplify this example.

Figure 4. Edit Gemfile to add ibm_db

Step 4. Bundle install
We wish to avoid unwanted automatic gem version updates from Rails http://rubygems.org. So,
we will use the local option (--local) when running the bundle install command in the /www/
apachedft/htdocs/strsql directory as demonstrated in Figure 5. Examining the Gemfile.lock file after
bundle install, we see that our application gem dependencies are PowerRuby locked for any

http://rubygems.org

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 5 of 28

deployments. Of course PowerRuby is our IBM i team guardian with a PowerRuby installation, so
our Rails applications are likely to run out of box on other PowerRuby systems.

Figure 5. Command bundle install

Step 5. Edit database.yml
We wish to use DB2 for i for our Rails database. So, we must remove all sqlite3 (default), in favor
of DB2 for i profile information as shown in Figure 6. This tutorial uses an IBM i user profile named
DB2. A user profile name of DB2 is not a requirement for Rails applications. Your profile name
could be any user profile on your IBM i system. The PowerRuby RAILSNEW command will ask you
for a profile you wish to use and update database.yml on create, but as promised, this is what is
happening under the covers. The database.yml file is located in the /www/apachedft/htdocs/strsql/
config directory.

Figure 6. Edit database.yml user ID, password, and options

There are many ibm_db options for the database.yml file, and thanks to IBM DB2 Connect™ 10.5,
most will work remotely from your workstation connected to a DB2 for i server. DB2 Connect is a
licensed program product that needs to be purchased. For production usage, the DB2 Connect
Unlimited Edition for System i packaging typically offers the best terms for IBM i customers.
Contact your local IBM representative or IBM Business Partner for pricing information. For more
information on this product, see the DB2 Connect website. A trial DB2 Connect license file for
evaluation purposes can be obtained by sending an email to: rmahendr@us.ibm.com.

Additionally, DB2 for i system naming mode, starting with IBM i 7.1, accepts both SQL naming
schema.table and system naming LIB/FILE. So, open source software such as Ruby/Rails has a

http://www-03.ibm.com/software/products/en/db2connunlieditforsysti
mailto:rmahendr@us.ibm.com

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 6 of 28

higher probability of working with IBM i traditional applications dependent on the *LIBL (library list)
behavior. However, the PowerRuby team has not tested Rails under all possible IBM i options. So,
it is perhaps best to simply use the default values for your Rails application.

The follow is a list of possible DB2 values in your database.yml, IBM i specific values labeled
'ibm_i_' are intended for DB2 for i, only one value is allowed on a single line.

List of possible database.yml options

development:
 schema: BOB
 app_user: bob
 account: bob
 application: bob1
 workstation: bobws
 ibm_i_naming: system, sql (default sql)
 ibm_i_libl: BOB QTEMP (CHGLIBL)
 ibm_i_curlib: BOB (CHGCURLIB)
 ibm_i_sort_seq: job, system (default system)
 ibm_i_isolation: none, ur, cs, rs, rr
 ibm_i_date_fmt: iso, usa, eur, jis, dmy, mdy, ymd, jul, job
 ibm_i_time_fmt: iso, usa, eur, jis, hms
 ibm_i_date_sep: slash, dash, period, comma, blank, job
 ibm_i_time_sep: colon, period, comma, blank, job
 ibm_i_decimal_sep: period, comma, job
 ibm_i_query_goal: first, all
 <<: *db2profile

YiPs ibm_db versions include database.yml password encryption ability, details of encrypt support
are not fully tested, and therefore, support might change in ibm_db gem. However, if you chose to
use encrypt support today, here are the new ibm_db APIs.

• pwd_key = ActiveRecord::Base.ibm_db_generate_key()
• pwd_enc = ActiveRecord::Base.ibm_db_generate_password(password,pwd_key)

• Sample program ibm_db download
test/IBMi/samples/genpassword.rb

You have multiple choices for database.yml:

• Open passwords one database.yml
db2profile: &db2profile
 adapter: ibm_db
 database: "*LOCAL"
 username: DB2
 password: MYPWD
development:
 <<: *db2profile
test:
 <<: *db2profile
production:
 <<: *db2profile

Notes:
- typical Rails yaml file
- password open/clear password

• Everything in one database.yml

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 7 of 28

db2profile: &db2profile
 adapter: ibm_db
 database: "*LOCAL"
 username: DB2
 pwd_enc: "alkqap/Ao7ACWwizSQ2JvZ86+s0yR5FdDmIU68JuQv4=%0A"
 pwd_key: "YIPS4321AAAAAAAAAAAAAAA132424245"
development:
 <<: *db2profile
test:
 <<: *db2profile
production:
 <<: *db2profile

Notes:
- encrypted password, but key in the
same file
- pwd_key =
ActiveRecord::Base.ibm_db_generate_key() (or your 32 characters)
- pwd_enc =
ActiveRecord::Base.ibm_db_generate_password(password,pwd_key)

• Separate yaml files
• database.yml

db2profile: &db2profile
 adapter: ibm_db
 database: "*LOCAL"
 username: DB2
 pwd_yaml: /my/safe/path/password.yml
development:
 <<: *db2profile
test:
 <<: *db2profile
production:
 <<: *db2profile

Notes
- encrypted password and key in separate files (limit access)
- pwd_yaml path to password yaml file

• password.yml
key_yaml: /my/really/safe/path/key.yml
DB2:
pwd_enc: "alkqap/Ao7ACWwizSQ2JvZ86+s0yR5FdDmIU68JuQv4=%0A"
FLINROCK:
pwd_enc: "alkqap/Ao7ACWwizSQ2Jvrdt+s0yR5FdDmIU68JuQv4=%0A"
SLATER:
pwd_enc: "alkqap/Ao7A123izSQ2Jvrdt+s0yR5FdDmIU68JuQv4=%0A"

Notes:
- admin many profiles, where key is username from database.yml (DB2 this case)
- key_yaml path to key yaml file
- pwd_enc = ActiveRecord::Base.ibm_db_generate_password(password,pwd_key)

• key.yml
pwd_key: "YIPS4321AAAAAAAAAAAAAAA132424245"

Notes:
- pwd_key used both generation/runtime
- pwd_key = ActiveRecord::Base.ibm_db_generate_key() (or your 32 characters)

Step 6. Try web server
So far, we completed rails new house keeping administration, edited Gemfile, and database.yml.
Therefore, we now have enough Rails application to check our web environment. For the web
server component, we have many options in Rails living within IBM i Apache.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 8 of 28

Most Rails applications are deployed in proxy/reverse configuration, meaning, you start/stop a
Rails application independently of your main website. Non-Apache web servers exist to start/
stop/mange Rails applications as child jobs, but these web servers largely hide proxy/reverse
configuration (nice for administrators, challenging for developers to understand). This tutorial is
using the IBM i Apache web server, and therefore, it will follow traditional Rails reverse proxy
configuration and start the Rails web server independent of the Apache web server.

IBM i Apache server start.

• STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

Rails webrick server start.

 cd /www/apachedft/htdocs/strsql
rails server -p 4242
(Ctrl-C to shutdown server)

Note: We can choose to deploy the Rails application as Apache FastCGI similar to PHP on i
(Zend Server), but FastCGI is not the Rails way. Not to mention you might have trouble finding
information on using Rails and FastCGI together.

PowerRuby RAILSNEW and RAILSSVR commands

Rails issues dealing with the IBM i Apache server largely disappear using PowerRuby smart
IBM i wizards (RAILSNEW and RAILSSVR). Essentially, the RAILSNEW and RAILSSVR commands
are Apache DocumentRoot agnostic, allowing you to create your Rails application anywhere
in the IFS and RAILSNEW creates an Apache configuration without the need of DocumentRoot.
RAILSNEW creates an Apache configuration (httpd.conf), which passes all web traffic directly to your
independently started Rails application (RewriteRule/ProxyPassReverse). PowerRuby RAILSSVR
of course, manages day-to-day administration aspects such as starting and stopping your Rails
applications (rails server -p 4242). And the RAILSSVR command can be used as a stand-alone
interface to batch-submit the application in this tutorial.

RAILSNEW no DocumentRoot issues

httpd.conf:
Listen *:10022
RewriteEngine On
RewriteRule ^(.*) http://127.0.0.1:4242/$1 [P]
ProxyPassReverse / http://127.0.0.1:4242/

The RAILSNEW and RAILSVR wizards are a great way to get online quickly with Rails
applications. However, when you try to fit a Rails application into an existing website, or want other
ways of configuring your site, you might need a better understanding of the Rails experience.

Step 6.1. Try web server (simple site detour)

Our tutorial goal is to add a Rails application to an exiting site (next step), but we will also take a
quick look at a simple one Rails application site.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 9 of 28

In previous steps, we created our Rails application in the Apache subdirectory, /www/apachedft/
htdocs/strsql, to avoid issues with Apache subdirectories, we must modify our Apache
DocumentRoot to fit our one Rails application site.

/www/apachedft/htdocs/strsql
/www/apachedft/httpd.conf:
Listen *:10022

DocumentRoot /www/apachedft/htdocs
DocumentRoot /www/apachedft/htdocs/strsql

Simple configuration (like RAILSNEW)
RewriteEngine On
RewriteRule ^(.*) http://127.0.0.1:4242/$1 [P]
ProxyPassReverse / http://127.0.0.1:4242/

Now, we start our Rails application.

cd /www/apachedft/htdocs/strsql
rails server -p 4242
(Ctrl-C to shutdown server)

And we start our Apache server — order of start is not important.

STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

Figure 7. First STRSQL welcome screen

http://lp0364d:10022

Technically speaking, as Apache reverse proxy sends a request http://lp0364d:10022, HTTP
"get route" seen by your Rails application contains "/". There are no Apache subdirectory issues,
because we changed DocumentRoot to /www/apachedft/htdocs/strsql, so Rails reverse proxy
just works.

Note: We are essentially mimicking RAILSNEW and RAILSVR wizards by removing all Apache
DocumentRoot subdirectory issues. In fact, we could move the Rails application out of /www/
apachedft/htdocs and start in another directory and all would continue to work.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 10 of 28

Step 6.2. Try web server (existing site)

When you create an IBM i Apache instance, DocumentRoot is set to /www/instance/htdocs.
This enables a '/' root directory container for your many web application running the websites:
htdocs/index.html, htdocs/wiki, htdocs/strsql, and so on to wit, keeps web traffic contained to /
www/instance/htdocs child subdirectories to avoid hacker anarchy access to non-web parts of
your system. So, let's add the new application we have been building in the subdirectory, htdocs/
strsql.

Fail first attempt

We are adding a Rails application to an existing website and we want to use the traditional
Rails proxy/reverse method, therefore, a simple modification to the previous example Apache
configuration adding '/strsql' seems logical, but does not work.

/www/apachedft/httpd.conf:
Listen *:10022

DocumentRoot /www/apachedft/htdocs
DocumentRoot /www/apachedft/htdocs/strsql

Simple configuration (like RAILSNEW)
RewriteEngine On
RewriteRule ^(.*) http://127.0.0.1:4242/$1 [P]
ProxyPassReverse / http://127.0.0.1:4242/

Existing web site (change config/routes.rb)
RewriteEngine on
RewriteRule ^/strsql(.*) http://127.0.0.1:4242/strsql/$1 [P]
ProxyPassReverse /strsql/ http://127.0.0.1:4242/strsql/

Now we start our Rails application.

cd /www/apachedft/htdocs/strsql
rails server -p 4242
(Ctrl-C to shutdown server)

And, we start our Apache server — the starting order is not important

STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

Rails and the Apache subdirectory problem

This tutorial is about lifting the curtain on the PowerRuby CL-based helpers and exposing Rails
plumbing. There are many Ruby folks who face difficulty in deploying Rails applications in an
existing website using Apache. The good news is that Rails can work within existing IBM i Apache
websites, but you must understand the true multiple application website landscape. As we see
from the browser error, our first issue, unfortunately, Rails does not work well as an Apache
subdirectory to DocumentRoot '/strsql'.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 11 of 28

Figure 8. Error STRSQL welcome screen

http://lp0364d:10022/strsql

Technically speaking, as the Apache reverse proxy sends a subdirectory request http://
lp0364d:10022/strsql, HTTP "get route" seen by your Rails application contains the subdirectory,
"/strsql". Unfortunately, your Rails application was started under subdirectory and assumes the
DocumentRoot location "/", which results in a route mismatch Apache sent "/strsql" and you see an
error in your browser.

Rails subdirectory scope fix

Rails provides an easy work around by changing the Rails application configuration file, config/
routes.rb, to understand the subdirectory scope "/strsql" sent by Apache.

config/routes.rb (use scope):
scope "/strsql" do
 get "welcome/index"
 root :to => 'welcome#index'
end

Simple enough fix, however, our tutorial in not yet ready to test out this fix. A STRSQL welcome
page to replace the default Rails welcome page is explained in the next step.

Later versions of Rails

This tutorial is written generically for any version of Rails. As you approach later versions of Rails
edge documentation, you find alternative ways dealing with Rails applications in a subdirectory.
Feel free to try the following recommendation.

Add this line to the config/environments/development.rb file.

config.relative_url_root = "/strsql"

Then modify the config.ru file.

require ::File.expand_path('../config/environment', __FILE__)
map Rails.application.config.relative_url_root || "/" do
 run Rails.application
end

You should be able to remove most manually entered /strsql in the tutorial.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 12 of 28

Step 7. Create welcome page
We wish to replace the default Rails welcome screen (simple site detour), and actually begin the
process of building our application. The first task is to create a welcome page. We will be viewing
the default index page created by rails generate controller welcome index command in the /
www/apachedft/htdocs/strsql directory as shown in Figure 9. So, you see exactly what this Rails
command generates. However, don't worry: we will modify our page to mimic STRSQL later in the
tutorial.

Figure 9. Rails generate controller command

We will find our new welcome page at app/views/welcome/index.html.erb. However, as
mentioned previously, before we can try our web server, we need to adjust the config/routes.rb
file in the in the /www/apachedft/htdocs/strsql/ directory to understand our Apache subdirectory, "/
strsql" by adding the scope command as shown in Figure 10 .

Figure 10. Edit routes.rb to add subdirectory scope

Step 7.1. Try welcome web server
We added our welcome page, app/views/welcome/index.html.erb, and we fixed the scope '/
strsql' in the config/routes.rb file. So our existing site Rails application will now work (repeat
steps).

rails /strsql (subdir affects rails)
RewriteEngine on
RewriteRule ^/strsql(.*) http://127.0.0.1:4242/strsql/$1 [P]
ProxyPassReverse /strsql/ http://127.0.0.1:4242/strsql/

Now, we start our Rails application.

cd /www/apachedft/htdocs/strsql
rails server -p 4242
(Ctrl-C to shutdown server)

And, we start our Apache server — the starting order is not important.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 13 of 28

STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

Figure 11. Basic STRSQL command screen

As Figure 11 displays, the default welcome page is nothing fancy, but it works!

So far …

Time to take a breath and recap our progress:

• rails new strsql —skip-sprockets —skip-bundle
• Created our rails application in /www/apachedft/htdocs/strsql
• Option: —skip-sprockets used to avoid asset pipeline (IBM i does not have native

JavaScript)
• Option: —skip-bundle used to avoid updates from http://rubygems.org

• Edit strsql/Gemfile
• change from SQLite3 to ibm_db (DB2)

• Bundle install —local
• bundle locked our Gemfile.lock to PowerRuby
• option: —local avoids unwanted updates into PowerRuby (leave alone)

• Edit /strsql/db/database.yml
• Open passwords one database.yml (traditional Rails)
• Encrypted passwords/key everything in one database.yml
• Encrypted passwords/key separate .yml files

• Start the web server
• Tutorial following traditional dual server Rails model proxy/reverse
• IBM i Apache start.

STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

• Rails webrick server start.
cd /www/apachedft/htdocs/strsql
rails server -p 4242
Ctrl-C to shutdown server)

• Multiple configurations possible.

http://rubygems.org

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 14 of 28

 # Simple configuration (like RAILSNEW)
 RewriteEngine On
 # RewriteRule ^(.*) http://127.0.0.1:4242/$1 [P]
 # ProxyPassReverse / http://127.0.0.1:4242/

 # Existing web site (change config/routes.rb)
 RewriteEngine on
 RewriteRule ^/strsql(.*) http://127.0.0.1:4242/strsql/$1 [P]
 ProxyPassReverse /strsql/ http://127.0.0.1:4242/strsql/

• Next steps
• An example of adding the Rails application to the existing website
• No longer have to start/stop Apache server, only the Rails application server needs to

start/stop for the remainder of the tutorial.

Step 8. Add xmlservice (Gemfile)
We wish to use the gem xmlservice to process our STRSQL commands. Therefore, we must alter
Gemfile in the /www/apachedft/htdocs/strsql directory as shown in Figure 12 and run the bundle
command again. As mentioned earlier, the bundle install '--local' command invocation will lock
our Gemfile.lock to PowerRuby gems, and includes PowerRuby xmlservice gem.

Figure 12. Edit Gemfile to add xmlservice

Step 8.1. STRSQL welcome page (view)
We need our welcome page to look like STRSQL, so that SQL statements can be submitted to the
xmlservice gem. For now, let's ignore recalling previous SQL requests and add a very simple form
with a text input to act as our STRSQL command line. This is done by editing the index.html.erb
file in the /www/apachedft/htdocs/strsql/app/views/welcome/ directory.

Figure 13. Edit index.html.erb file to add simple STRSQL command line

Any html.erb file might look intimidating at first glance, but similar to HTML, you simply have to
play around with the syntax to see how it works and consult the Ruby erb manual .

http://apidock.com/rails/v4.0.2/ActionView/Helpers/FormTagHelper/select_tag

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 15 of 28

• erb is a mix of pseudo-HTML and pure HTML.
• erb is processed by Ruby, and therefore, Ruby statements and variables can be used (not this

form).

Specifically, this form, we are hard coding REST target /strsql/xmlservice/execute, and
defaulting to the 'post' action. Rails has many other ways to accomplish the form task, but true to
this tutorial, we are staying close to the plumbing to aid understanding (and to keep it simple). The
submit_tag "Execute statement" is a button on the welcome form.

The :action => 'execute' directive routes to the def execute method in our xmlservice controller.

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 end
end

If you read the manual, you will see text_field_tag "command" will render as params[:command] in
our xmlservice controller. So, now we know how to transfer the

STRSQL request from the welcome form text input field.

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 @command = params[:command]
 end
end

Step 8.2. STRSQL execute route (route)
We need to modify routes.rb file in the /www/apachedft/htdocs/strsql/config directory to route our
new STRSQL welcome form 'post' request /strsql/xmlservice/execute.

Figure 14. Edit routes.rb file to new STRSQL command screen

As we learned, life in a the '/strsql/ Apache subdirectory requires our routes to be scoped,
therefore we place the target of /strsql/xmlservice/execute inside the scoped block. We
know action is post using the welcome form and that '/strsql' will be part of the scope, leaving /
xmlservice/execute in routes, which we route as controller#action to our xmlservice controller
xmlservice#execute on form submit.

app/views/welcome/index.html.erb:
<%= form_tag "/strsql/xmlservice/execute" do %>

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 16 of 28

<%= text_field_tag "command", 'select * from db2/animals', size: 66 %>

<%= submit_tag "Execute statement" , :action => 'execute' %>
<% end %>

config/routes.rb:
Strsql::Application.routes.draw do
 scope "/strsql" do
 get "welcome/index"
 post '/xmlservice/execute', to: 'xmlservice#execute'
 root :to => 'welcome#index'
 end
 end

app/controllers/xmlservice_controller.rb:`
class XmlserviceController < ApplicationController
 def execute
 @command = params[:command]
 end
end

Step 9. Add xmlservice (create)

We need a controller to handle xmlservice requests for STRSQL. This is done by executing the
rails generate controller command as shown in Figure 15 in the /www/apachedft/htdocs/strsql
directory.

Figure 15. Rails command to generate controller xmlservice

Step 9.1. Add xmlservice (controller)

We need some code to handle the strsql/xmlservice/execute request from the welcome form.
This code is added by editing the xmlservice_controller.rb file in the /www/apachedft/htdocs/strsql/
app/controllers directory.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 17 of 28

Figure 16. Edit xmlservice_conroller.rb file to handle execute SQL requests

Again, our welcome form will route as controller#action to our xmlservice controller
xmlservice#execute on the form submit action.

config/routes.rb:
Strsql::Application.routes.draw do
 scope "/strsql" do
 get "welcome/index"
 post '/xmlservice/execute', to: 'xmlservice#execute'
 root :to => 'welcome#index'
 end
end

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 @command = params[:command]
 ibmx = XMLService::I_DB2.new(@command)
 ibmx.xmlservice
 rows = ibmx.response.output
 @output = rows.inspect
 end
end

ActiveXMLService provides default
ActiveXMLService::Base.establish_connection("connection" => "ActiveRecord"),
thereby default XMLSERVICE requests flow on your current DB2 ActiveRecord connection
(I_DB2, I_PGM, I_SRVPGM, and so on). A connection to DB2 for i started when our Rails
application started rails server -p 4242. In addition, XMLSERVICE provides a stored
procedure interface (iPLUG4K - iPLUG15MB), therefore, def execute only need to use ibmx =
XMLService::I_DB2.new(@command) and it all works (simple Rails model).

Step 9.2. Add xmlservice (view)

We need a view for xmlservice execute. We did not ask rails generate controller xmlservice
for a view component, so we just add a view manually by editing the execute.html.erb file in the /
www/apachedft/htdocs/strsql/app/views/xmlservice/execute.html.erb directory.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 18 of 28

Figure 17. Add view for xmlservice result execute to execute.html.erb

Nothing fancy on the xmlservice execute view, simply dump the output of xmlservice data provided
by xmlservice controller in text_area_tag. Displayed information is @command = params[:command]
command passed through from welcome form, and of course data returned from xmlservice
@output = rows.inspect . XMLSERVICE on IBM i only deals with XML documents, so XML
document to array output was handled by xmlservice gem, XMLService::I_DB2.new(@command).

app/views/xmlservice/execute.html.erb:
<%= text_field_tag "command", @command, size: 66 %>
<%= text_area_tag 'body', @output, size: "75x10" %>

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 @command = params[:command]
 ibmx = XMLService::I_DB2.new(@command)
 ibmx.xmlservice
 rows = ibmx.response.output
 @output = rows.inspect
 end
end

Step 9.3. STRSQL query animals

We now have a fully functional STRSQL, and now, you can restart the Rails application with the
following commands.

 cd /www/apachedft/htdocs/strsql rails server -p 4242 (Ctrl-C to
 shutdown server)

STRSQL welcome page now appears as shown in Figure 18.

Figure 18. STRSQL command line welcome page

Click Execute statement to run the SQL select statement found in the text box: select * from
db2/animals. The output returned by the executed select statement is displayed in Figure 19.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 19 of 28

Figure 19. STRSQL execute simple SQL query output

Step 9.4. STRSQL query against Syscolumns catalog view

We can do almost anything with STRSQL at this point, so we will try running a query against the
Syscolumns catalog view to return the default column value for any columns named BREED in the
database.

Figure 20. STRSQL command line welcome page

Simply type in the following query, select column_default from syscolumns where NAME =
'BREED' into the text box and click the Execute statement button. The output of this query is
displayed in Figure 21.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 20 of 28

Figure 21. STRSQL output for Syscolumns query

So far …

Time to take a breath and recap our progress:

• Edit Gemfile
• Add xmlservicegem
• Bundle install —local

• Locked Gemfile.lock to PowerRuby (with xmlservice)
• Edit welcome page app/views/welcome/index.html.erb

• Made a crude text entry to run STRSQL requests (like the green screen)
• Added a form that will post requests to /strsql/xmlservice/execute

• Edit routes config/routes.rb
• Added a 'post' route to handle /xmlservice/execute

• Rails generate controller xmlservice
• Generated a controller to handle /xmlservice/execute

• Edit xmlservice controller to add the execute method. app/controllers/
xmlservice_controller.rb

• After calling the xmlservice class variable @output has result
• Edit the xmlservice view for execute to dump processed output

• Crude text area to display provided @output variable
• Next steps?

• Cleanup the STRSQL views
• Create a recall model database table to emulate the ability of STRSQL to retrieve

previously run SQL statements

Step 10. Create history (model)
STRSQL needs a history database to enable 'recall previous command' similar to to the
retrieve capability provided by the STRSQL command F9 function key. The Rails command,

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 21 of 28

rails generate model History command:text, executed in the /www/apachedft/htdocs/strsql
directory will build a database migration model template file. The template is found in the db/
migrate/20140131193446_create_histories.rb file. Our History table will contain an integer ID key
column (automatic), and we added a command of type text command:text, where text maps to the
DB2 CLOB data type.

Figure 22. Generate model database history

Rails plurals

Note that the rails generate model command specified a name of History,
whereby, Rails immediately asserted the actual physical table name 'Histories', db/
migrate/20140131193446_create_histories.rb. The intent of pluralization is to make your code
more readable and transparent, but this convention drives some developers crazy. The following
list contains the default Rails rules for plural and singular. Becoming familiar with these three
conventions will go a long way toward getting comfortable with Rails.

• Database table names: plural
• Database table names are expected to be pluralized. For example, a table containing

employee records should be named Employees.
• Model class names: singular

• Model class names are the singular form of the database table that they are modeling.
For example, an employee model is created based on a table named Employees.

• Controller class names: plural
• Controller class names are pluralized, such as EmployeesController or

AccountsController.

Where is my table?

The physical DB2 table, Histories, was not created using the command rails generate model,
only a migration template was created in the db/migrate/20140131193446_create_histories.rb
file. Therefore, thereby allowing us to edit custom attributes before the actual migration and
creation of the DB2 table object. You can verify this by using the schema value specified in the
database.yml file on the WRKLIB (work with libraries) system command. Using a traditional Rails
database.yml file, the DB2 default schema will be the same as the user name directive (username:
DB2). Other schema options are possible by making configuration changes to the database.yml
file.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 22 of 28

Step 10.1. Edit history migration template file
Edit the generated migrate file db/migrate/20140131193446_create_histories.rb to add any
attributes required before the actual migration and creation of the DB2 histories table. The
Histories table definition was customized to not allow NULL values by adding :null => false as
shown in Figure 23.

Figure 23. Edit database migration template for Histories table

Step 10.2. Create/Migrate History model
After editing the custom attributes in Histories migration, we will generate the actual physical DB2
table using the rake db:migrate command in the /www/apachedft/htdocs/strsql directory as shown
in Figure 24.

Figure 24. Create database table histories

If we made a mistake in our schema design, we can re-createthe tables using the rake
db:migrate:redo command as shown in Figure 25

Figure 25. Re-create histories table

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 23 of 28

There are many rake options, see command line rake -T. Here's a list of some more popular
commands below. I didn't have time to test all options with DB2 for i.

rake db:create - creates the database for the current env
rake db:create:all - creates the databases for all envs
rake db:drop - drops the database for the current env
rake db:drop:all - drops the databases for all envs
rake db:migrate - runs migrations for the current env that have not run yet
rake db:migrate:up - runs one specific migration
rake db:migrate:down - rolls back one specific migration
rake db:migrate:status - shows current migration status
rake db:migrate:rollback - rolls back the last migration
rake db:forward - advances the current schema version to the next one
rake db:seed - (only) runs the db/seed.rb file
rake db:schema:load - loads the schema into the current env's database
rake db:schema:dump - dumps the current env's schema
 (and seems to create the db as well)
rake db:setup - runs db:schema:load, db:seed
rake db:reset - runs db:drop db:setup
rake db:migrate:redo - runs (db:migrate:down db:migrate:up)
 or (db:migrate:rollback db:migrate:migrate)
 depending on the specified migration
rake db:migrate:reset - runs db:drop db:create db:migrate

Migration ID establishes up/down:

> cd /www/apachedft/htdocs/strsql
> rake db:migrate:status
database: *LOCAL
Status Migration ID Migration Name
--
up 000 ********** NO FILE **********
up 20131017214312 ********** NO FILE **********
up 20131017214541 ********** NO FILE **********
up 20131118211937 ********** NO FILE **********
up 20140131193446 Create histories

After migration, you can verify whether the table exists on the server by running the DSPFD (display
file description) command on a 5250 Emulator command line.

Step 11. Save history commands (xmlservice)

Our xmlservice controller already has the functional capability to run SQL statements. So, all we
need do is track History records with History.create(:command => @command).

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 @command = params[:command]
 ibmx = XMLService::I_DB2.new(@command)
 ibmx.xmlservice
 rows = ibmx.response.output
 @output = rows.inspect
 # add to history
 History.create(:command => @command)
 end
end

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 24 of 28

Step 11.1. Display STRSQL history (welcome)
Initially, we will simply display the STRSQL statement history on the STRSQL welcome page as
displayed in Figure 26.

Figure 26. STRSQL welcome screen with a simple command history

Here is our welcome view and controller code, augmented with history of SQL statements. This
uses a default list, so it's nothing fancy – but it works!

app/views/welcome/index.html.erb:
<%= form_tag "/strsql/xmlservice/execute" do %>
<%= text_field_tag "command", 'select * from db2/animals', size: 66 %>

<%= submit_tag "Execute statement" , :action => 'execute' %>

<%= text_area_tag 'body', @output, size: "75x10" %>
<% end %>

app/controllers/welcome_controller.rb:
class WelcomeController < ApplicationController
 def index
 # display history
 @output = ""
 History.find_each do |row|
 @output += row.command + "\n"
 end
 end
end

Step 12. Fancy history recall
At this point, we have covered the basics of view and controller logic. So, we will run quickly
through the STRSQL history recall.

CSS was added to the welcome form to look more like the STRSQL green screen interface, but we
took some design liberty in Figure 27 to modernize the task of recalling a previous statement to be
a simple mouse click on the history line for a better user experience.

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 25 of 28

Figure 27. Fancy STRSQL welcome form with SQL history

We replaced text_area_tag tag with an easy-to-use, line-by-line select_tag and added a small bit
of JavaScript in welcome STRSQL :onchange =>'changeValue("previous","command"); to move
any history item selected with a mouse click into the text filed for Execute Statement.

Ruby erb has a very nice select_tag feature, options_for_select(@output), which allows us to
pass an array to populate options for our select, and therefore we can alter the welcome controller
to pass an array instead of a string used for removed text_area_tag.

app/controllers/welcome_controller.rb:
class WelcomeController < ApplicationController
 def index
 # display history
 @output = Array.new
 History.find_each do |row|
 @output << row.command
 end
 end
end

We added the submit_tag buttons to our form_tag /strsql/xmlservice/execute:

• Execute Statement - run statement (original)
• Refresh History - refresh history list
• Clear History - clear history database

Welcome erb also changed :action => 'execute' to :name => 'execute', allowing much simpler
coding of multiple button logic in the execute controller.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 26 of 28

app/views/welcome/index.html.erb:
<head>
<style>
body { background-color:green; color:white; }
select {width:550px; border-style:none;}
option {border-style:none; }
input[type="text"] {width:535px;}
input[type="submit"] {background-color:green; color:white; border-style:none;
 text-decoration:underline; }
</style>
<script type="text/javascript">
function changeValue(id1,id2)
{
 here = document.getElementById(id1);
 there = document.getElementById(id2);
 if (here.selectedIndex >= 0) {
 there.value = here.options[here.selectedIndex].value;
}
}
</script>
</head>
<body>
<%= form_tag "/strsql/xmlservice/execute" do %>
STRSQL (Enter new SQL statment or highlight previous statement)

<%= select_tag 'previous', options_for_select(@output), size: 10, :onchange =>'
changeValue("previous","command");' %>

<%= text_field_tag "command", ''%>

Action: <%= submit_tag "Execute Statement" , :name => 'execute' %>
<%= submit_tag "Refresh History", :name => 'refresh' %>
<%= submit_tag "Clear History", :name => 'clear' %>
<% end %>
</body>

We updated our xmlservice controller to handle multiple button names: execute, clear, and refresh.

app/controllers/xmlservice_controller.rb:
class XmlserviceController < ApplicationController
 def execute
 if !params[:execute].nil?
 if params[:command].strip == ""
 refresh
 else
 run
 end
 elsif !params[:clear].nil?
 clear
 refresh
 elsif !params[:refresh].nil?
 refresh
 end
 end
def run
 @command = params[:command]
 ibmx = XMLService::I_DB2.new(@command)
 ibmx.xmlservice
 rows = ibmx.response.output
 @output = rows.inspect
 # add to history
 History.create(:command => @command)
end
def clear
 History.delete_all
end

ibm.com/developerWorks/ developerWorks®

Building an STRSQL utility with PowerRuby Page 27 of 28

def refresh
 redirect_to :back
end
end

Our config/routes.rb remains the same for post '/xmlservice/execute', to:
'xmlservice#execute', simply included for completeness.

config/routes.rb:
Strsql::Application.routes.draw do
 # get "welcome/index" -- rails generate controller moved into scope
 scope "/strsql" do
 get "welcome/index"
 post '/xmlservice/execute', to: 'xmlservice#execute'
 root :to => 'welcome#index'
 end
end

Step 13. Fancy output display

The tutorial leaves the task of creating a fancier STRSQL output display to the reader, but at least
we did go green.

Figure 28. STRSQL simple output display screen

To give you a head start, we changed view execute (erb), adding :disabled for no edit allowed,
and link_to "Back" to return to the welcome screen after running the statement.

developerWorks® ibm.com/developerWorks/

Building an STRSQL utility with PowerRuby Page 28 of 28

app/views/xmlservice/execute.html.erb:
<head>
<style>
body { background-color:green; color:white; }
input[type="text"] {width:535px;}
a{color:white;}
</style>
</head>
<body>
<%= text_field_tag "command", @command, disabled:true %>

<%= text_area_tag 'body', @output, size: "75x10", disabled:true %>

<%= link_to "Back", "/strsql" %>
</body>

Summary

This tutorial used the IBM i command line to edit, test, and deploy a step-by-step Rails web version
of IBM i STRSQL using Ruby gems ibm_db gem for DB2 access and xmlservice gem for IBM i
access to native objects.

Hopefully, this manual approach provided you a deeper understanding of developing PowerRuby
applications. Happy Rails to your IBM i from PowerRuby!

Resources

• PowerRuby

• Ruby on Rails site

• IBM i developerWorks forum

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://powerruby.com/
http://rubyonrails.org/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=2675&start=0
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Step 0. Design web STRSQL
	Step 1. Command line and editor
	Step 2. Create Rails application
	Step 3. Edit Gemfile
	Step 4. Bundle install
	Step 5. Edit database.yml
	Step 6. Try web server
	Step 6.1. Try web server (simple site detour)
	Step 6.2. Try web server (existing site)

	Step 7. Create welcome page
	Step 7.1. Try welcome web server

	Step 8. Add xmlservice (Gemfile)
	Step 8.1. STRSQL welcome page (view)
	Step 8.2. STRSQL execute route (route)

	Step 9. Add xmlservice (create)
	Step 9.1. Add xmlservice (controller)
	Step 9.2. Add xmlservice (view)
	Step 9.3. STRSQL query animals
	Step 9.4. STRSQL query against Syscolumns catalog view

	Step 10. Create history (model)
	Step 10.1. Edit history migration template file
	Step 10.2. Create/Migrate History model

	Step 11. Save history commands (xmlservice)
	Step 11.1. Display STRSQL history (welcome)

	Step 12. Fancy history recall
	Step 13. Fancy output display
	Summary
	Resources
	Trademarks

