developer\Vorks.

Performance basics for row and column access
control

Sandy Ryan November 27, 2014
(First published November 27, 2014)

IBM DB2 for i version 7.2 has the new database security capability, row and column access
control (RCAC). RCAC provides the capability to control data access to the record and column
level. Specified through SQL statements, though it controls all access to the enabled tables,
performance is a consideration when using RCAC. This article discusses the basic factors of
RCAC performance and provides examples of the performance effects on OLTP workloads.

Introduction

The IBM i 7.2 release includes new DB2 for i security capabilities known as RCAC. RCAC
provides the capability to control data access to the record and column level. It is designed to
provide an extra layer of data security at the database level and to make data easier to control.

DB2 for i clients have a strong business motivation to engage and deploy RCAC for the following
reasons:

» RCAC is a data-centric technology.
* RCAC is a no-charge feature.
* RCAC can be used with SQL or DDS-created tables.

To understand the details behind any of these assertions, refer to the RCAC IBM Redpaper™
listed at the end of this article. As with most database technologies, you'll have greater success
if you consider all aspects (that is, have a complete strategy) before moving forward. This article
covers performance topics related to RCAC that are not covered elsewhere.

The SQL mechanisms to specify RCAC are row permissions and column masks, which define
the rules for allowing access to the rows and columns for a database file. You can define and
enable row permissions and column masks using the CREATE PERMISSION and CREATE MASK SQL
statements.

* CREATE PERMISSION defines a rule that is automatically applied by the database to determine
the set of rows that are visible.

© Copyright IBM Corporation 2014 Trademarks
Performance basics for row and column access control Page 1 of 5

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

* CREATE MASK defines a rule that is automatically applied when the target column is the target
of selection. A CASE expression indicates the portion of the column data that is returned to
the user or the application.

Both, the CREATE MASK and CREATE PERMISSION Statements, are very powerful and flexible.

SQL workload with RCAC

As expected, with this power and flexibility you need to exercise caution and good SQL tuning
practices to maintain good application performance. The framework of RCAC itself has been
implemented very efficiently to have minimal effect on SQL query performance. To ensure this, an
OLTP SQL workload was used to measure the effects of RCAC on workload performance and the
following four scenarios were considered:

1. Baseline (without RCAC).
2. Add row permissions: Row permissions were created over all tables in the workload.
3. Add row permissions and column masks:
Row permissions were created over all tables in the workload and column masks were
created over all frequently selected columns.
4. Use SQL views to emulate the row permissions.

The RCAC rule text for the masks and permissions was a simple invocation of the
VERIFY_GROUP_FOR_USER built-in function. The VERIFY_GROUP_FOR_USER function was added in
the IBM i 7.2 release to provide an easy and fast mechanism to determine whether a user is a
member of a specific group profile. The permissions, masks, and views used in the workload
measurements were similar to those shown in examples 1, 2, and 3.

Listing 1. Row permission used to evaluate performance impact

CREATE PERMISSION library.permissionname
ON library.tablename
FOR ROWS WHERE
VERIFY_GROUP_FOR_USER(SESSION_USER, ‘groupname’) = 1
ENFORCED FOR ALL ACCESS

Listing 2. Column mask used to evaluate performance impact

CREATE MASK library.maskname

ON library.tablename

FOR COLUMN columnname

RETURN CASE
WHEN VERIFY_GROUP_FOR_USER (SESSION_USER , 'groupname') = 1
THEN columnname
ELSE ' XXXXXXXX'

END

Listing 3. SQL view used to emulate a row permission

CREATE VIEW library.viewname as
SELECT *
FROM library.tablename
WHERE VERIFY_GROUP_FOR_USER(SESSION_USER, 'groupname') = 1;

The workload was measured at several memory pool sizes to determine whether the RCAC
framework increased the workload memory usage. As shown in Figure 1, the average response

Performance basics for row and column access control Page 2 of 5

ibm.com/developerWorks/ developerWorks®

time was negligibly affected with RCAC. There was no measureable difference in average
transaction response time for the RCAC permission implementation compared to the view
equivalent. The difference in the average transaction response time for the scenario with RCAC
permissions and masks compared to the baseline with no security checks was in the 5% to 6%
range.

Figure 1. Average transaction response time against memory pool size

Average Transaction Response Time vs Pool Size

—— Baseline

\ iews

—8— RCAC - Permissions

' RCAC - Perms and Masks
H"--..
-ﬂfq

2 i

—
[

Response Tlme (ms)

(]

Pool Size (GB)

Figure 2 shows normalized throughput against memory pool size for the four scenarios.
Normalized throughput is the transactions per second at a constant level of processor utilization.
The higher the normalized transactions per second, the lower the processor usage of the workload
per transaction. There was 1% or less difference in the normalized throughput for the RCAC
permissions when compared with view implementations. There was less than 5% difference for the
RCAC permissions and masks when compared with the baseline with no extra security checks.

Performance basics for row and column access control Page 3 of 5

developerWorks® ibm.com/developerWorks/

Figure 2. Normalized throughput against memory pool size

Normalized Throughput vs Pool Size

1200
s ———
o 1000 =5
W —~=
2 :
E o 600 —+— Baseline
g S Views
& & 600 o
e —s— RCAC - Permissions
2 400 RCAC - Perms & Masks
[
S 200
=

0 T T T T T T
0 1 2 3 4 5 [7
Pool Size (GB)

As with any performance data, results might vary for different configurations and workloads.

For the OLTP workload used in this study, the measurement data shows that the basic RCAC
implementation itself has little impact on processor or memory usage for SQL queries. However,
the permission and mask creation statements allow for the creation of complex checks in the
masks and permissions. If the row permission rule text includes a complex and/or data-intensive
subquery, the performance of an application could be adversely impacted. The same applies to
the CREATE MASK definition. With every row or column accessed in a table, which has at least one
active permission or mask, the conditions of that permission and/or mask must be checked. You
can think of it as similar to potentially running another query for each row or column. So, you need
to be very careful while defining permissions and masks. Performance testing and tuning before
production use is highly recommended.

Native record-level access with RCAC

While RCAC is controlled through SQL statements the security settings must apply for any access
to tables, either through SQL or native record-level access. RCAC is implemented only in the

SQL Query Engine (SQE), not the Classic Query Engine (CQE). Special processing is done to
enable native access, traditionally implemented through CQE, to automatically go through the SQE
path. This might be advantageous for performance, as SQE, with advanced optimization and 1/0
techniques, is far more efficient than CQE. However, there is additional processing in the query
open phase to enable the native query to be processed through SQE. In general, the more the
data to be processed in the query, the more the efficiency gained by SQE which can mitigate or
even surpass the additional processing during the open phase.

To understand the effect of RCAC on the performance of an OLTP workload with native access,
measurements were done on a workload of an order processing application with the transactions
using native access to the database with COBOL. For this workload, the additional processing

Performance basics for row and column access control Page 4 of 5

ibm.com/developerWorks/ developerWorks®

to enable SQE to do the database queries increased the processor use by an additional 4%.
However, the more efficient I/O implementation in SQE improved the disk usage by 2% to 6%,
offsetting some of the cost to transition a native open to SQE.

In native record-level access workloads in which there are permissions and masks on the tables,
the native to SQE performance effects would be in addition to any performance impacts from

the permission and mask processing. In this workload, with VERIFY_GROUP_FOR_USER checks in
permissions over all the tables in the workload, the workload increased processor usage by 7%,
where 4% related to the native to SQE processing and 3% was associated with the row permission
implementation.

The effect of RCAC on the performance of this OLTP workload shows the overall workload
impacts of RCAC with native record-level access to be relatively small. However, the performance
impact might vary by workload and configuration. Thus, performance testing is essential when
implementing RCAC.

Conclusion

RCAC provides very powerful new functionality to secure data. However, with these capabilities
there are some performance considerations. Testing of OLTP benchmarks has shown that

the RCAC framework itself has little impact on performance for SQL workloads and only a

small effect for SQL queries over tables with permissions and masks employing the new
VERIFY_GROUP_FOR_USER function. RCAC does impact the performance of native record-level
access due to the open phase requiring more processor usage. While the impact of this additional
processing has been measured as relatively small on an OLTP workload, the SQL implementation
is faster. Applications that are modernized from the native record-level access to SQL can

realize the benefit of this faster implementation. In general, care must be taken in the definition

of permissions and masks, as complex permission and mask security checks can adversely
affect performance as they might slow down data access. Performance testing and tuning before
production use is highly recommended.

Resources

* IBM Knowledge Center - Row and column access control (RCAC)
* Redpaper - Row and Column Access Support in IBM DB2 for i
* DB2 for i forum

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Performance basics for row and column access control Page 5 of 5

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahf/rzahfrcactitle.htm
http://www.redbooks.ibm.com/redpieces/abstracts/redp5110.html
https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-0000-000000000292
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	SQL workload with RCAC
	Native record-level access with RCAC
	Conclusion
	Resources
	Trademarks

