developer\Vorks.

The Effect of Max Active on DB2 for i Query
Performance

Anil K. Madan September 19, 2011

This article explains how a high Max Active setting for a memory pool can affect the fair share
of memory, thereby influencing the DB2 for i query optimizer to sometimes choose an inefficient
access plan.

Overview

You already know that a constrained memory pool on IBM i can negatively impact the performance
of DB2 for i queries and SQL requests. But, | bet many of you didn't realize that the Max Active
setting for a memory pool can also have a large influence on the query optimizer and as a result
the performance of queries. Recently, | ran into one such situation, where the Max Active value

for the query pool had unknowingly become too high, which caused some of the queries to take
much longer than normal. For example, one of the SQL statements was now running for hours as
compared to its normal 10 to 15 minute run. Before | go into the specifics of this query, let's more
closely examine the Max Active setting and how it can influence the DB2 for i query optimizer.

What is Max Active?

Max Active (also known as activity level) is a memory tuning parameter, which controls the
maximum number of threads in a memory pool that can use the processor concurrently. Every
shared and private memory pool has a Max Active value associated with it. If this value is too
low, the threads may transition to the ineligible condition. If this value is too high, excessive page
faulting may occur. Max Active can be viewed and changed with the WRKSYSSTS (Work with
System Status) command or by using System i Navigator — Work Management — Memory Pool.
The Max Setting value can also be automatically adjusted by the IBM i operating system if the
performance adjuster on the IBM i partition is turned ON (system value QPFRADJ 2 or 3).

How can Max Active influence DB2 for i query optimizer?

The execution of every query is based on the instructions stored in an access plan. The access
plan is created by the DB2 for i query optimizer, prior to the query's run. This plan is based on the
intersection of various factors such as database design, indexes, number of table rows, column
statistics, query attributes, etc. to name a few. One important environment factor that the optimizer
takes into account when creating an access plan is the share of memory available for that query
(its fair share of the memory). This fair share of memory calculation keeps the optimizer from over
committing memory for a given query, and it allows the optimizer to accordingly consider more or

© Copyright IBM Corporation 2011 Trademarks
The Effect of Max Active on DB2 for i Query Performance Page 1 of 8

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

less memory intensive methods. The fair share of memory value is calculated differently depending
on whether the query is being processed by the Classic Query Engine (CQE) or the SQL Query
Engine (SQE). The following algorithms are used to calculate the fair share value:

1 7.1 enhancement

Ini 7.1, anew PTF - MF54009 is available which changes the algorithm for calculation of the
SQE fair share of memory for a query. With this change, when calculating the fair share of
memory, the optimizer will in most cases use average active in the pool, instead of the 10%
floor. The revised algorithm is:

If query degree = *MAX, then continue to use the entire pool.
Otherwise: SQE fair share of memory = Memory Pool Size /
"Derived_Activity"

If the value of average activity in the pool is at least 5, then the value of "Derived_Activity" will
be the same as the average activity in the pool. If the value of average activity is less than 5
but greater than 10% of Max Active, then this value will be 5, otherwise it will be 10% of the
Max Active.

1. CQE fair share of memory = Memory Pool Size / Max Active
* If Max Active is only 1, then use 1/2 of the pool size
* The minimum share is 100 KB
2. SQE fair share of memory = Memory Pool Size/ min(Max Active, max(Average Active Used,
5))
The Average Active Used is the larger of the following two:
* 10% of the Max Active specified for the memory pool
» Average active in the pool* as reported back by the Storage Management

* Average active in the pool is defined as:
* 15 minute rolling average number of users in the pool when paging option is set to
*CALC
e The no. of unique users in the pool in the last 2 seconds when paging option is set to
*FIXED
3. If ajob's query degree is set to *MAX, then the fair share of memory value for both CQE and
SQE is equal to the entire pool size

As you can see, Max Active has a strong influence on the share of memory available to a query.
The share of memory available, in turn, can strongly influence what methods the query optimizer
will choose when creating an access plan for that query. Also, when the share of available memory
is high (as a result of smaller Max Active value), the optimizer has the freedom to pick any access
method, whether it aggressively uses memory or not, in order to build the most efficient access
plan. A low fair share of memory setting results in the optimizer avoiding those methods that
heavily utilize memory.

Performance investigation of the long running query

Now, let's discuss our specific SQL performance situation. The customer complained that this
guery used to complete in about 10 minutes, but now it was taking hours to complete. Hoping
that this was a query processed by SQE, | looked for the long-running SQL statement with the

The Effect of Max Active on DB2 for i Query Performance Page 2 of 8

ibm.com/developerWorks/ developerWorks®

SQL Plan Cache tool. To do this, | used System i Navigator to connect to the customer's IBM i. |
then clicked on Databases icon in the navigation tree and then clicked on the name of the local
database to access the DB2 performance tools. After that, | right-clicked on the SQL Plan Cache
Snapshot object and selected the New->Snapshot task. This action resulted in the dialog window
in Figure 1 being displayed. | took the default parameters and provided the name of My_SnapShot
for the snapshot name. Creation of a plan cache snapshot allowed me the freedom of conducting
my analysis at a later time - even on a different IBM i system. Note that the SQL Plan Cache only
stores access plans of SQL statements processed by SQE. If this was a query run by CQE, |
would have needed to collect database monitor traces using the SQL Performance Monitor tool.

Figure 1: Creation of SQL Plan Cache

Mame: |M\,r_5napshnt
Schema: |ru1y_8|:hema ;I

& Anclude all plan cache entries:

A | o R]

I =
0] I Zancel | Help |?

Identification and analysis

To access the snapshot | just created, | clicked on the SQL Plan Cache Snapshots object. | then
right-clicked on my saved snapshot, My SnapShot, and selected the Show Statements task. In
the dialog window in Figure 2, | provided a selection filter by specifying a value of 5 seconds for
the "minimum run time of the longest execution of the statement” and then hit the Apply button.

The Effect of Max Active on DB2 for i Query Performance Page 3 of 8

developerWorks® ibm.com/developerWorks/

This action gave me a list of the SQL statements in Figure 2 which had at least one execution
of 5 seconds or more, in the descending order of the most expensive run. Our query of interest
appeared at the top of this list, and it had a run time of 15,686 seconds (over 4 hrs). To perform
detailed analysis of this statement, | right-clicked on the statement to launch the Visual Explain
tool. The Visual Explain tool provided me a graphical representation of the access plan that was
used for this query. | reviewed the SQL statement, which was displayed in the lower panel of the
Visual Explain window. The statement was a complex statement joining together 8 tables with
selection predicates across multiple tables.

Figure 2: Top statements with longest execution time of at least 5 seconds

1Z) Statements - My_SnapShot - Cteperf.rchland.ibm.com(Ctcperf)

A=)

[~ Staterments that reference the following objects:

CREMA

. |

I~ Staterments that contain the following text

S/4M0 5:44:07 A0
S4M 0 5:24:36 AM
SH4N0 313623 AW
54110 1:56:57 A
5410 1:52:03 A
5410 4:11:09 A4
SN0 91323 A0
SN0 34647 P
SN0 1:35:46 A
SM4M0 53637 AW
Si4M0 5:37:41 Ad
50210 1:34:03 A

AN 0 4:40:24 Pl
SN0 111500 ..
SN0 3:00:27 A
SN0 101940 .
SIAM0 51731 P
3N 0 24621 P

SN 1 FI'I'Ir"I a
A

4300 11:34:44.

Filters (o apphe ; Staternants:
I Minimum runtime for the longest execution of the stalement: || SIAMLTIME | Most Expensive Time Staters
- S0 62858 Al 15686990 select =
| 5= |seconds | 54110 91210 21 1007.773 selectP
[~ Statements that ran on or afer this date and fime; 53N 0 4:40:35 P 508.086 selectp
— - B30 51 4:44 P 444882 selectp
| T 5 l_ 041 .:’

3I78.082 DELETE
355738 selectp
327774 SELECT
170658 selecttr
97.954 selectP
87616 SELEC
77016 szelectP
G7.312 SELEC
65187 selectP
63.133 DELETE
G3.047 DELETE
60513 selectP
40908 select
40577 SELECT
30.365 SELECT
37.486 selectP
37138 SELECT
35136 selectp
33233 SELEC

17 ART RFI i::,LI
3

Status: Complete - filtered resulis e !

Help |"|

Reset All Filters Apply
| _LI Close |

From the View tab, | selected Estimated Processing Time for the Arrow Labels, and then clicked
on 'Highlight Expensive Icons" - "Estimated processing time". This action highlighted a Table Probe
method for of one of the tables (call it T1). The estimated processing time for this table accounted
for more than 98% of the estimated run time of the entire query (displayed under final results). |
clicked on this table and reviewed information pertaining to its plan from the right hand panel of the
Visual Explain. This table had more than 2 million rows, and its table probe was estimated to have
almost 246 Million 10 requests.

Figure 3 shows a partial Visual Explain output which focuses on the access of table T1. Notice
that the DB2 optimizer chose a Hash Table probe access method. A Hash Table probe access
method is generally considered by the optimizer when determining implementation for a secondary
table of a join. It requires creation of a temporary hash table with the key columns that match the

The Effect of Max Active on DB2 for i Query Performance Page 4 of 8

ibm.com/developerWorks/ developerWorks®

equal selection or join criteria for the underlying table. The Hash Table probe allows the optimizer
to choose the most efficient implementation to select rows from the underlying table without regard
for any join criteria. The hash tables are constructed with the goal that the majority of the hash
table will remain resident within main memory, and the 1/0O associated with a hash probe will be
minimal. If the hash table can be populated with all necessary columns from the underlying table,
no additional table probe is required to finish processing this table.

There were 4 join and selection columns of interest for this table. For the optimal join performance
of this table, the optimizer should have created a temporary hash table with all 4 columns for this
step. | clicked on the Temporary Hash Table Icon to review the columns selected for creation of
this hash table. | noticed that the optimizer created and populated the temporary hash table with
just one column (one of the join columns). | then clicked on the Table Probe icon to review the
columns accessed from the underlying table T1. The details for this method showed that the data
for the 4 required columns was being retrieved by probing this table with the data retrieved from
hash probe of the temporary hash table.

Figure 3: Partial Visual Explain showing access method used for the Table T1

£x

Index Scan

i

Temporary Hash Table

|
i

Hash Probe

Mested Loop .Join

137 161,659

Creation of a single column hash table and subsequent table probe had turned out to be very
expensive, because it required excessive random 10s during the table probe. So, why didn't the

The Effect of Max Active on DB2 for i Query Performance Page 5 of 8

developerWorks® ibm.com/developerWorks/

optimizer create the temporary hash table of all 4 columns? To find an answer to this question, let's
examine the following Environment Information for the SQL Statement:

Environment Information for the SQL Statement

Memory Pool Size: 2,454,335,488
Share of Memory Available (bytes): 81,811,184
Average Active Used: 30

Memory Active in the Pool: 300

Average Active in the Pool: 9

This information was obtained by clicking on the Final Result icon. The query ran in a pool of
2,454 MB, which had a Max Active value of 300 (Memory Active in the Pool). The Average Active
Used was calculated as 30 (10% of 300), and therefore the optimizer determined that the fair
share of the memory available to this query was 81 MB (2454/ 30). The optimizer must have
determined that 81 MB was not enough room for a hash table containing all 4 columns. As a result,
the optimizer decided to create a smaller hash table containing only the join column from table T1,
which could fit in the available share of the memory.

How the lowering of the Max Active helped?

From my above mentioned analysis, | was convinced that if this query had a larger share of
available memory, the optimizer would chose a better and more optimized access plan for the table
T1. To increase the share of the available memory, we had two choices:

1. Increase the overall memory pool size
2. Reduce the Max Activity level of the memory pool

We opted for the second choice, and lowered the Max Activity setting for the pool to 100 (from
300 before). We ran the SQL query again, and reviewed the new access plan with the help of
Visual Explain. The environment information for the same SQL statement showed the fair share of
memory value to be about 245 MB. The new environment information for the SQL statement was
the following:

Environment Information for the SQL Statement after the change

Memory Pool Size: 2,454,335,488
Share of Memory Available (bytes): 245,433,548
Average Active Used: 10

Memory Active in the Pool: 100

Average Active in the Pool: 9

This time the optimizer determined that there was enough available memory for a hash table
that contained all 4 columns from table T1. The size of the temporary hash table of all 4 columns
was determined to be about 235 MB (this information was obtained from under the Hash Table
Size panel of Visual Explain by clicking on the Hash Probe icon), which fit well in the share of the
available memory. The optimizer created a revised access plan for accessing data from the table
T1 (Figure 4). For the new plan, a temporary hash table containing all 4 columns was created by
doing a Table Scan of T1 (instead of the Index Scan used in previous run), followed by a Hash
Probe. Since all of the required columns could be found in the hash table, there was no need for

The Effect of Max Active on DB2 for i Query Performance Page 6 of 8

ibm.com/developerWorks/ developerWorks®

a Table Probe of the underlying table. Eliminating the Table Probe operation heavily reduced the
number of 10 operations, and the query completed in approximately 720 seconds — A performance
increase of more than 20X!

Figure 4: Partial Visual Explain showing access method used for table T1 after
lowering the Max Active value

Table Scan

Jo
E

Temparary Hash Tahle

|
-

Hash Probe

i143.054

=
]
=
Logic

e
3

mlested Loop Jain

@1

Conclusions and recommendations

Max Active value for a pool can have a strong influence on the query optimizer. A high Max Active
value for a pool can potentially cause queries to run slow and therefore for optimal and consistent
guery performance, this value should not be allowed to go too high for a memory pool running
gueries. On the other hand, a low Max Active value may negatively impact applications which
spawn multiple threads (such as Java-based applications), or for a pool where very large number
of concurrent jobs are expected to run. This is because a low activity level may cause some of
those threads or jobs to wait for execution. Due to this conflicting requirement, it is not advisable to
share memory pool with heavily-threaded applications with that of the database server jobs (such
as QZDASOINIT and QSQSRVR). In these situations, you should consider having the applications
run in a separate memory pool.

Resources

Learn

» Check out IBM DB2 for i on developerWorks for more information.

The Effect of Max Active on DB2 for i Query Performance Page 7 of 8

http://www.ibm.com/developerworks/data/products/db2i5OS/

developerWorks® ibm.com/developerWorks/

Read Feature: What's New: DB2 for i 7.1 to learn about other DB2 for i 7.1 enhancements.
Learn more about Information Management at the developerWorks Information Management
zone. Find technical documentation, how-to articles, education, downloads, product
information, and more.

Stay current with developerWorks technical events and webcasts.

Follow developerWorks on Twitter.

Learn more about DB2 for i performance tuning from the Redbook OnDemand SQL
Performance Analysis Simplified on DB2 for i5/0S in V5R4 (SG24-7326)

Contact IBM Systems Lab Services and Training for performance consulting and training

Discuss

Participate in the discussion forum.
Check out the developerWorks blogs and get involved in the developerWorks community.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

The Effect of Max Active on DB2 for i Query Performance Page 8 of 8

http://www.ibm.com/developerworks/data/library/dmmag/DMMag_2010_Issue2/FeatureDB2/index.html
http://www.ibm.com/developerworks/data/
http://www.ibm.com/developerworks/data/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.twitter.com/developerworks/
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/SG247326.html?Open
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/SG247326.html?Open
http://www.ibm.com/systems/services/labservices
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=292
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview
	What is Max Active?
	How can Max Active influence DB2 for i query optimizer?

	Performance investigation of the long running query
	Identification and analysis

	How the lowering of the Max Active helped?
	Conclusions and recommendations
	Resources
	Learn
	Discuss

	Trademarks

