
© Copyright IBM Corporation 2015 Trademarks
JTOpen jdbcClient – simplifies Java SQL development Page 1 of 6

JTOpen jdbcClient – simplifies Java SQL development
Open source utility makes JDBC testing quick and easy

John W. Eberhard January 08, 2015
(First published January 08, 2015)

JTOpen jdbcClient provides a convenient and quick access to JDBC supported databases for
application developers. Allowing easy access to databases using a variety of JDBC drivers,
a developer can quickly and easily run SQL statements. Using the prepared statements and
Java reflection, this client allows developers to easily use the advanced JDBC features without
writing any Java™ code. It is the perfect tool for developers who want to easily use JDBC
without the expense of creating and compiling a JDBC program.

Introduction

Starting with version 7.6, JTOpen (version 7.6 and later) includes a simple JDBC client program,
jdbcClient, to simplify life for JDBC and SQL developers. jdbcClient is a command-line client
that is implemented using only Java and can be run from any platform that has a Java virtual
machine (JVM). The jdbcClient program allows you to easily connect to a database and run the
SQL statements. For most Java developers, this is easier than starting another program, such as
System i Navigator's Run SQL scripts. Using this client, you can quickly view the results of running
particular SQL statements and experiment with the intricacies of JDBC methods without the need
to write and compile a Java program.

To use jdbcClient, you have to simply add the .jar file for the JDBC driver to your class path and
specify a JDBC URL for the database server to which you wish to connect. Once connected to a
database server, you can execute SQL commands against that server. jdbcClient also allows the
use of JDBC PreparedStatements to pass a variety of parameter types to the database. As an
enhanced developer tool, jdbcClient also allows the use of reflection to involve methods on Java
and JDBC objects.

Connecting to a database

jdbcClient is included with JTOpen's jt400.jar file and is named
com.ibm.as400.access.jdbcClient.Main. To use the client, start the Main program and pass 3

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
https://www.linkedin.com/in/jweberhard

developerWorks® ibm.com/developerWorks/

JTOpen jdbcClient – simplifies Java SQL development Page 2 of 6

arguments to the program: the JDBC URL, the user ID, and the password. The JDBC URL is a
JDBC URL that is accepted by Java's DriverManager.getConnection method. Because the test
program accepts a JDBC URL, it can use other JDBC drivers besides the JTOpen JDBC driver, as
long as they are included in the class path.

To connect to IBM® DB2® for i using JTOpen driver on a Microsoft® Windows® or Linux®
platform, you just start jdbcClient with jt400.jar on your class path and add the JDBC URL, user ID,
and password.

java –cp jt400.jar com.ibm.as400.access.jdbcClient.Main jdbc:as400:SYSTEM USERID PASSWORD

You can also connect to DB2 for i using the native JDBC driver by starting the client from the
Qshell Interpreter (qsh). In this case, you again need to add jt400.jar to the class path, but in this
case, it can be loaded from its shipped location on the system. You do not need to add the .jar file
for the native JDBC driver because it is already found on the Java extensions class path. When
connecting to the local system using the native JDBC driver, you do not need to specify a user ID
and password on the connection request. The native JDBC driver will use the current user ID for
the connection when a user ID is not specified.

java –cp /QIBM/ProdData/OS400/JT400/lib/jt400.jar com.ibm.as400.access.jdbcClient.Main jdbc:db2:localhost

You can also connect to DB2 for i using the IBM DB2 Connect™ JDBC driver from an IBM AIX®,
Windows, or Linux system. In this case, your class path must contain jt400.jar as well as the JAR
files for the driver: db2jcc4.jar and db2jcc_license_cisuz.jar. In this case, the JDBC URL has the
format jdbc:db2://SYSTEM:446/*LOCAL, where SYSTEM is the system name, 446 is the port for
the server on IBM i, and *LOCAL indicates that the local database is to be used.

java –cp jt400.jar:db2jcc4.jar:db2jcc_license_cisuz.jar
com.ibm.as400.access.jdbcClient.Main jdbc:db2://SYSTEM:446/*LOCAL USERID PASSWORD

You can also connect to databases other than DB2 for i. When running on Linux, you can connect
to a MySQL database by including mysql.jar on the class path and using the jdbc:mysql JDBC
URL.

java –cp jt400.jar: mysql.jar com.ibm.as400.access.jdbcClient.Main
jdbc:mysql://localhost/DATABASE USERID PASSWORD

jdbcClient is a useful tool that can be used to connect to a wide variety of database systems using
a wide variety of JDBC drivers.

Running simple statements
After you are connected, jdbcClient provides a command prompt for entering SQL statements and
other commands. This prompt assumes that everything is an SQL command, with the exception of
jdbcClient commands which begin with '!'.

Here is an example of running various SQL statements against a DB2 for i server to create a table,
insert data into the table, retrieve the data from the table, and call a stored procedure.

ibm.com/developerWorks/ developerWorks®

JTOpen jdbcClient – simplifies Java SQL development Page 3 of 6

>java -cp jt400.jar com.ibm.as400.access.jdbcClient.Main jdbc:as400:SYSTEM UID PWD
>create table sample(c1 int, c2 varchar(80))
>insert into sample values(1,'abc')
>select * from sample
C1,C2
1,abc
>call sysibm.sqltables(null,null,'SAMPLE',null,null)

*** Warning ***

SQLState: 0100C
Message: [SQL0466] 1 result sets are available from procedure SQLTABLES in SYSIBM.
Vendor: 466

TABLE_CAT,TABLE_SCHEM,TABLE_NAME,TABLE_TYPE,REMARKS
SYSTEM,UID,SAMPLE,TABLE,null

As can be seen above, the query output of jdbcClient is very simple and merely delimits the output
columns using commas. The first output row contains the column names and the remaining rows
contain the output data. jdbcClient also displays the warnings that are encountered, as seen by the
SQL0466 warning above.

Parameters can be passed to a stored procedure call using —INPARM after the call statement. Here
is an example of calling a procedure using this syntax.

>call sysibm.sqltables(null,null,?,null,null) -- INPARM SAMPLE

*** Warning ***
SQLState: 0100C
Message: [SQL0466] 1 result sets are available from procedure SQLTABLES in SYSIBM.
Vendor: 466

TABLE_CAT,TABLE_SCHEM,TABLE_NAME,TABLE_TYPE,REMARKS
SYSTEM,UID,SAMPLE,TABLE,null

The jdbcClient recognizes that a result set was returned by the stored procedure and displays the
contents of the result set.

Using prepared statements

Using the jdbcClient client commands, you can also run the prepared statements which are
commonly used in Java applications. The prepared statements are often used in conjunction with
parameter markers, which allow the parameters to be changed each time the statement is run.
Using the prepared statements usually consists of three parts: preparing the statement, setting the
parameters, and running the statement.

The !PREPARE command is used to prepare a statement. The !SETPARM command is used to
set parameters. The !EXECUTEUPDATE or !EXECUTEQUERY command is used to run the prepared
statement. Here is an example of using the prepared statements to insert data into a table.

developerWorks® ibm.com/developerWorks/

JTOpen jdbcClient – simplifies Java SQL development Page 4 of 6

>!PREPARE insert into sample values(?,?)
>!SETPARM 1,10
>!SETPARM 2,insert1
>!EXECUTEUPDATE
>!SETPARM 1,10
>!SETPARM 2,insert2
>!EXECUTEUPDATE
>select * from sample where c1=10
C1,C2
10,insert1
10,insert2

In this example, two rows were added to the table and then a query was run to illustrate that the
data was actually inserted.

For the !SETPARM command, a variety of data types are supported. The various types are shown in
the following table.

Table 1. Data types supported by the !SETPARM command

Syntax Description

UX'....' Unicode string (in hexadecimal)

X'....' Byte array (in hexadecimal)

FILEBLOB=<filename> A binary large object (BLOB) retrieved from the named file

FILECLOB=<filename> A character large object (CLOB) retrieved from the named file

SAVEDPARM=<number> A parameter from a previous CALL statement

SQLARRAY[TYPE:e1:e2:...] A JAVA.SQL.ARRAY type: Supported types are:
String:BigDecimal:Time:Blob:Clob:int:short:
long:float:double:byteArray

Here is an example of using some of the various types.

>!PREPARE select cast(? AS VARGRAPHIC(40) CCSID 1200) from sysibm.sysdummy1
>!SETPARM 1,UX'0233'
>!EXECUTEQUERY
00001
U'0233'

>!PREPARE select cast(? AS VARBINARY(10)) from sysibm.sysdummy1
>!SETPARM 1,X'aa'
>!EXECUTEQUERY
00001
aa

>!PREPARE select cast(? AS BLOB),cast(? AS CLOB) from sysibm.sysdummy1
>!PREPARE select cast(? AS BLOB),cast(? AS CLOB) from sysibm.sysdummy1
>!SETPARM 1,FILEBLOB=file.txt
>!SETPARM 2,FILECLOB=file.txt
>!EXECUTEQUERY
00001,00002
5468697320697320612066696c650a, This is a file

As shown above, non-printable Unicode characters are shown using the U' notation. Any binary
data is shown as a hexadecimal value.

ibm.com/developerWorks/ developerWorks®

JTOpen jdbcClient – simplifies Java SQL development Page 5 of 6

Using reflection

A unique feature of jdbcClient that appeals to JDBC developers is the ability to use reflection to
call Java methods. With the use of reflection, calls to Java methods do not need to come from
compiled code, but are dynamically resolved. jdbcClient has three main commands that use
reflection. The !CALLMETHOD command is used to call either static or instance methods. The !
SETVAR command is used to set a variable with the result of a method call. jdbcClient maintains the
list of variables that refer to Java objects. The !SETNEWVAR command is used to call a constructor to
create a new object. Here are examples of how these calls can be used.

>!CALLMETHOD java.lang.System.getProperty(java.version)
Call returned 1.6.0
>!CALLMETHOD CON.getCatalog()
Call returned MYSYSTEM
>!SETVAR DMD=CON.getMetaData()
DMD=MYSYSTEM
>!SETVAR DRS=DMD.getTables(null,null,SAMPLE,null)
DRS=CRSR0008
>!CALLMETHOD com.ibm.as400.access.jdbcClient.Main.dispResultSet(DRS)
TABLE_CAT,TABLE_SCHEM,TABLE_NAME,TABLE_TYPE,REMARKS,TYPE_CAT,TYPE_SCHEM,TYPE_NAME,
 SELF_REFERENCING_COL_NAME,REF_GENERATION
MYSYSTEM,EBERHARD,SAMPLE,TABLE,null,null,null,null,null,null Call returned null
>!SETNEWVAR MYINT=java.lang.Integer(10)
MYINT=10

In the first call, the System.getProperty static method is called to obtain the java.version property.
In the second call, the getCatalog() method on the existing CON object is called. The !SETVAR
command is used to obtain a DatabaseMetaData object from the CON object and then obtain a
ResultSet using a call to getTables(). To display the result set, the static method dispResultSet
of the jdbcClient.Main class is used. The last call shows the creation of a java.lang.Integer
object.

To assist with the use of objects assigned to variables, jdbcClient has the!SHOWVARMETHODS
command. When called without any parameters, this command shows the variables that are
defined. Here is an example of using this command.

>!SHOWVARMETHODS
Could not find variable
Valid variables are the following
DMD
STMT
MAIN
DRS
CON

When used in conjunction with a variable, the !SHOWVARMETHODS command shows the methods that
can be invoked on an object. For example, here is a sample of the methods that can be invoked on
the CON JDBC connection object.

developerWorks® ibm.com/developerWorks/

JTOpen jdbcClient – simplifies Java SQL development Page 6 of 6

>!SHOWVARMETHODS CON
boolean equals(java.lang.Object)
int hashCode()
java.lang.String toString()
void clearWarnings()
void close()
void commit()
java.sql.Statement createStatement()
java.sql.Statement createStatement(int,int)
java.sql.Statement createStatement(int,int,int)
boolean getAutoCommit()

The use of reflection is not limited to JDBC objects. You can use jdbcClient to experiment with
all kinds of Java objects. When working with a Java class for the first time, this is useful for
experimenting with the behavior of the Java class without needing to write and compile a Java
program.

Additional features

jdbcClient has a variety of other features available. To see what can be done, just use the
jdbcClient!HELP command. These features include the ability to run a command in a separate
thread, the ability to repeat a command for a specified number of times, commands to view the
history of the entered commands, and commands to control the formatting of the output data.

Summary

As you have seen, the JTOpen command line jdbcClient enables connecting to any database
supported by a JDBC driver. More importantly, jdbcClient provides an easy way to run SQL
statements through JDBC. It also provides support for prepared statements and parameters of
various data types. Finally, it exposes Java objects through reflection, allowing Java methods to be
dynamically called. jdbcClient provides a quick and easy way to work with JDBC drivers and the
databases they connect to, thus becoming an irreplaceable tool for Java JDBC developers.

Resources

• JTOpen website
• DB2 for i forum
• Java reflection documentation

© Copyright IBM Corporation 2015
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://jt400.sourceforge.net/
https://www.ibm.com/developerworks/community/forums/html/forum?id=11111111-0000-0000-0000-000000000292&ps=25
https://docs.oracle.com/javase/tutorial/reflect/
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Connecting to a database
	Running simple statements
	Using prepared statements
	Using reflection
	Additional features
	Summary
	Resources
	Trademarks

