
© Copyright IBM Corporation 2012 Trademarks
Build and install ICU on IBM i Page 1 of 16

Build and install ICU on IBM i
A step-by-step introduction to building ICU4C on IBM i

Zhang Jin Jiang
Li Jia Chen

November 20, 2012

International Components for Unicode (ICU) plays a key role in developing a globalized
product. ICU is supported by option 39 of the base IBM i, however, you may want to build your
customized version of ICU and include it together with your product. Building ICU on IBM i is
as easy as building it on other platforms, but you may still experience some problems due to
the platform difference. To avoid those problems, some environment variables should be set
correctly. In this article, we introduce the steps on how to build ICU on IBM i and how to fix the
potential problems when building it.

Overview of ICU
ICU is a mature, portable set of C/C++ and Java™ libraries providing Unicode and globalization
support for software applications across many platforms. As an open source project sponsored by
IBM, it offers great flexibility for developers to use and customize the provided services, including:
code page conversion, collation, formatting, time calculations and so on.

ICU supports a variety of platforms, including Microsoft® Windows®, Linux®, IBM AIX®, Solaris,
Mac OS X, IBM i, and so on. As there are a number of versions of compilers on so many platforms
and the compatibility between them could not be guaranteed, only a limited number of binary
versions of ICU are distributed. For the platforms on which there are no binary versions provided,
we could build ICU from the source and customize the ICU libraries to meet our needs.

Although there are both C/C++ libraries (ICU4C) and Java libraries (ICU4J) available in the ICU
project, building ICU4J would not be covered in this article, and we will refer to ICU4C by saying
ICU in this article.

ICU support for IBM i
ICU is provided as one option in the base part of the IBM i operating system. Considering IBM i 6.1
as example, the Licensed Program ID of ICU is 5761SS1 and the Product Option is 39. To check
the installation status, use the GO LICPGM command and in the Work with Licensed Programs
menu, select option 10.

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 2 of 16

Press the F11 key twice to display the product option.

Figure 1. ICU installation status

ICU is one option of the base part of the IBM i operating system, but because ICU is ported to
the IBM i platform and rarely is provided as a binary distribution, it is necessary to build ICU
yourselves if you need to customize ICU libraries and include it together with your product. For
example, if you are using ICU in a memory-constrained environment, and you need only the
Unicode-based collation library that is provided by ICU, then you can remove the other data
libraries to bring down the size of the whole ICU package to a fraction of the original size.

Building ICU on IBM i is as easy as building it on other platforms, however, you may still
experience some problems due to the platform difference. To avoid those problems, some
environment variables should be set correctly. In this article, we introduce detailed steps on how to
build ICU on IBM i as well as how to fix the potential problems when building it.

Note that we use ICU 4.4.2 and IBM i 6.1 for this article. Although not all combinations of ICU
version level and IBM i operating system level were evaluated while writing this article, we believe
that most of the issues you might encounter will be similar to the topics covered throughout this
article.

Setting up the building environment

Before we start building ICU on the IBM i platform, the following requirements need to be met.

Install Qshell interpreter

Qshell is an option of the base part of the IBM i platform as well, which is Licensed Program
5761SS1 and Product Option 30 on IBM i 6.1. It is a command-line environment that is built on
IBM i, providing an interface similar to UNIX®, so that we can run the shell script on IBM i for
building ICU.

We can use similar commands to view the installation status of Qshell as what we did for ICU
earlier.

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 3 of 16

Figure 2. Qshell installation status

Install C/C++ compiler
The Integrated Language Environment (ILE) C/C++ compilers, which are parts of the WebSphere
Development Studio for i, need to be installed. They are Licensed Program 5761WDS, Product
Option 51 and 52 on IBM i 6.1. ILE C and C++ compilers support the development on IBM i in both
C and C++ programming languages, which is important for building ICU.

Figure 3. ILE C/C++ compiler installation status

Install and set up IBM Tools for Developers for IBM i
The IBM Tools for Developers for IBM i needs to be installed, which is a no-charge programming
request for price quotation (PRPQ) product that contains various tools. Many of these tools are
ported from other platforms as they are popular and useful for developers. These tools play critical
roles by aiding in development, building, porting, and deployment of the IBM i applications and
improving developer's productivity, because they take advantage of the different environments on
IBM i, such as the command line, Qshell, and the Portable Application Solutions Environment for i
(PASE for i), and make developers being able to remain in a certain environment to work with the
provided tools.

Some of examples of these tools include: icc (a complier that invokes ILE C or ILE C++ compiler
from Qshell), gmake (a GNU version of make), GNU emacs (an extensible text editor), gzip (a

http://www-01.ibm.com/software/rational/products/devstudio/i/
http://www-01.ibm.com/software/rational/products/devstudio/i/

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 4 of 16

popular data compression program of GNU), qar (a utility for creating, modifying, and extracting
from archives), GNU gawk (a pattern-matching utility) and so on.

To install IBM Tools for Developers for IBM i, we can download it from the IBM Tools for
Developers for IBM i website and perform the following steps:

1. Extract the file to get q5799ptl_v5r4m0.savf
2. Create a Save File on IBM i using the following command.

CRTSAVF FILE (QGPL/Q5799PTL)

3. Upload the file to IBM i using FTP, and FTP commands such as:
 put q5799ptl_v5r4m0.savf QGPL/q5799ptl

4. Install IBM Tools for Developers for IBM i on IBM i using the following commands:
 RSTLICPGM LICPGM(5799PTL) DEV(*SAVF) LNG(2924) SAVF(QGPL/Q5799PTL)

5. View the installation status using the following command on IBM i, and use option 10 and then
press F11 twice to display the product option.
GO LICPGM

Figure 4. IBM Tools for Developers for IBM i installation status

After installing the tools successfully, we can use the following command to start the tools. The
command initializes certain environment variables and sets up related tasks for the user to use this
tool.

STRPTL

When the following screen is displayed, type the name of the client. This name can be used to
ensure that the X-window screens are sent to the correct display of the client.

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 5 of 16

Figure 5. Start IBM Tools for Developers for IBM i

Upload ICU source code files to IBM i IFS
Then we can upload the ICU source code files to IBM i using the following commands. (In this
case, consider ICU4.4.2 as an example.) Note that in order to unpack ICU and convert the files
to an EBCDIC code page to restore the binary files can be restored to the original code page,
we need to copy unpax-icu.sh from the ICU source ZIP file (under folder ..\icu\as_is\os400) and
upload it to IBM i as well.

ftp [serverip]
[Username]
[Password]
quote site namefmt 1
binary
put icu4c-4_4_2-src.tgz /tmp/zjj/icutemp/icu4c-4_4_2-src.tgz
put unpax-icu.sh /tmp/zjj/icutemp/unpax-icu.sh

Changing the binary mode in the command is important as it avoids problems that might be
caused by different code pages between IBM i and the platforms that you downloaded ICU to.

Building ICU on IBM i
After the building environment is ready, we can start to build ICU on IBM i. The steps here are a
little different from the ones introduced in the ICU readme file. Actually, that is one of the points
that this article will cover. To build ICU4C 4.4.2 successfully on IBM i, we should:

1. Create a library where you want to store the building results, that is, ICU utility programs,
service programs, and modules. In thiscase, I want to put the results in iculib6, so you create
the following library:
 CRTLIB LIB(iculib6)

2. Add the necessary environment variables that are used by ICU to configure and make
process. A series of variables are needed, and they are:
 addenvvar envvar(OUTPUTDIR) value('iculib6') replace(*YES)
 addenvvar envvar(MAKE) value('gmake') replace(*YES)
 addenvvar envvar(GREP) value('grep') replace(*YES)
 addenvvar envvar(AR) value('qar') replace(*YES)
 addenvvar envvar(AWK) value('gawk') replace(*YES)

3. After adding the variables, you can run the wrkenvvar command to check your results.

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 6 of 16

4. Change this job's CCSID to 37 by using the following command:
 chgjob ccsid(37)

5. Start Tools For Developers using the strptl command. This tool provides some of the useful
utilities that are needed for building ICU and including icc, gmake, qar, and so on.

6. Start the shell by running the Qsh command and change to the directory where the ICU source
code is located. In this case, it is in the /tmp/zjj/icutemp/ directory. Further in this article, we
will refer to this directory as $ICU_SOURCE_DIR.

7. Extract the ICU compressed source code using the following command:
 gzip –d icu4c-4_4_2-src.tgz

You should get an archived file, icu4c-4_4_2-src.tar, after running the command.
8. Extract the archived file (icu4c-4_4_2-src.tar) using the following command:

 unpax-icu.sh icu4c-4_4_2-src.tar

It is very important to extract the archive using unpax-icu.sh provided with ICU, rather than the
standard tar utilities. unpax-icu.sh can help to create files of the correct format that is specific
to ICU. It will take about 40 minutes to extract the files depending on your environment. Here
are the results:

Figure 6. Extracting the archived file using unpax-icu.sh

9. Modify runConfigureICU, located in $ICU_SOURCE_DIR/icu/source, as shown in Figure 7.

Figure 7. Revise the configure file, runConfigureICU

10. Update mh-os400 in $ICU_SOURCE_DIR/icu/source/config/mh-os400, as shown in Figure 8.

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 7 of 16

Figure 8. Revise mh-os400

This is because icc only accepts share libraries with the suffix "*.o".
11. Revise line number 1219 in the pkgdata.cpp file in $ICU_SOURCE_DIR/icu/source/tools/

pkgdata by adding a comma, as shown in Figure 9. This is a syntax error in ICU4C4.4.2.

Figure 9. Revise pkgdata.cpp

12. Run the following command to configure ICU and generate the necessary make files.
 ./runConfigureICU IBMi

When finished, you will see the results as shown in Figure 10 and Figure 11. We can ignore
the warning (as shown in Figure 11) and proceed further.

Figure 10. runConfigureICU result

Figure 11. runConfigureICU warning

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 8 of 16

13. Type gmake to build ICU. After about 1 hour, gmake would complete and display a screen as
shown Figure 12.

Figure 12. Completion of building ICU

Building ICU on IBM i is now complete.

Check the building result

In this section, we have listed three ways to check the building result.

1. The basic and simple way to check your results is by checking whether the files (service
programs, programs, and modules) are created in the library you specified by adding the
environment variable: OUTPUTDIR. In our case, it should be located in the ICULIB6 library,
as shown in Figure 13.

Figure 13. Check the build results in OUTPUTDIR

2. Check your results by running the following command as suggested by the ICU readme
document.
 gmake check QIBM_MULTI_THREADED=Y

This is not a mandatory step to build ICU. It is only used for testing your build results, and the
results might depend on your build environment (compiler, OS version, and build options).
Figure 14 and Figure 15 are our results for your reference.

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 9 of 16

Figure 14. gmake check results 1

Figure 15. gmake check results 2

3. A sample program:
Here is a sample program, icuDateTime.c that uses the ICU libraries we just built. The
program will output the current date and time in the correct format for the locale and culture
specified by the user.

Listing 1. icuDateTime.c source code

|--------10----20----30-----40----50----60----70---80-----|
/*
 * icuDateTime.c source code
 * This program is only for demonstrative purpose
 * to show writing globalized programs
 * using ICU APIs.
 * There are generally 2 steps for this program
 * Firstly, it gets the current system time.
 * Secondly, it displays the time in the format for the locale user specifies.
 */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "unicode/urename.h"
#include "unicode/utypes.h"
#include "unicode/udat.h"

/*
 * In this program, we use the lower-case two-letter
 * language codes defined in ISO-639
 * and uppper-case two-letter country codes

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 10 of 16

 * defined in ISO-3166 to represent a Locale.
 * For example, "en_US" represents a valid locale,
 * i.e. English language in United States.
 * So we define locale length to 5 letters.
 */
#define LOCALE_LEN 5

int main()
{
 UErrorCode status = U_ZERO_ERROR;
 UChar *u_strDateTime;
 char* strDateTime;
 int32_t nDateTimeLen = 0, i = 0, j = 0;
 UDate udDateTime = 0.0;
 char strLocale[LOCALE_LEN + 1] = {0};
 UDateFormat* dfmt;

 printf("Input the locale that you want to check):\n");
 printf("the locale should be no more than 5 chars,
 such as en_US;\n Press 0 to quit;\n");

 while ('0' != strLocale[0])
 {
 Memset#strLocale, 0, sizeof(strLocale)#;

 // Get user's input for locales
 gets(strLocale);

 // Get date and time format for the specified locale
 dfmt = udat_open(UDAT_MEDIUM, UDAT_SHORT, strLocale, NULL, -1, NULL, -1, &status);
 if(0 == dfmt)
 {
 printf("an error occurs. Error is %s\n", u_errorName(status));
 }

 // time(NULL) returns the current time by seconds,
 //which should be converted to milliseconds.
 udDateTime = 1000.0 * time(NULL);

 nDateTimeLen = 0;
 // The statement here is intended to get the output size needed.
 nDateTimeLen = udat_format(dfmt, udDateTime, NULL, nDateTimeLen, NULL, &status);
 if (status == U_BUFFER_OVERFLOW_ERROR)
 {
 status=U_ZERO_ERROR;
 u_strDateTime=(UChar*)malloc(sizeof(UChar) * (nDateTimeLen+1));
 udat_format(dfmt, udDateTime, u_strDateTime, nDateTimeLen+1, NULL, &status);
 if(U_SUCCESS(status))
 {
 /*
 * Convert "UChar*" to "char*" to print it in console screen.
 * Generally speaking, 2 times buffer size of its wide-char counterpart
 * should be
 * enough for storing the resulting string.
 */
 strDateTime = (char*)malloc(2 * sizeof(char) * (nDateTimeLen + 1));
 u_austrcpy(strDateTime, u_strDateTime);
 printf("the result is: %s\n", strDateTime);

 free(u_strDateTime);
 free(strDateTime);

 continue;
 }

 free(u_strDateTime);
 }

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 11 of 16

 printf("an error occurs. Error is %s\n", u_errorName(status));
 }

 return 0;
}

Compile the above sample code using the following command:
icc -I/tmp/zjj/icutemp/icu/source/common icuDateTime.c /tmp/zjj/icutemp/icu/source/

lib/libicuuc44.o /tmp/zjj/icutemp/icu/source/lib/libicuin44.o,
where /tmp/zjj/icutemp/icu/source/common specifies the location of the ICU header files
that we used in this program, /tmp/zjj/icutemp/icu/source/lib/libicuuc44.o and /tmp/zjj/
icutemp/icu/source/lib/libicuin44.o are the two ICU libraries we just built.
After compiling the program, try to run it using the following command:
 ./a.out

We can see that the date and time format are formatted according to the locales specified
(refer to Figure 16).

Figure 16. Compile and run the ICU sample program

Troubleshooting problems when building ICU on IBM i

Generally speaking, if you follow strictly the steps, you should be able to build ICU successfully.
However, the contents in the following sections are helpful, if you encounter some problems.

• ./runConfigureICU fails with error: The C compiler cannot create executables (as shown
in Figure 17). When you encounter this error, you should check the config.log file in the
$ICU_SOURCE_DIR/icu/source directory first. If you see errors such as library XXXX cannot
be found in the log (as shown in Figure 18), it usually means that you cannot even compile
any source code in this environment using icc. For example, when we compile a simple C
source code, ctest.c, it can be compiled successfully on other platforms whereas it fails in this
environment (as shown in Figure 19). We get similar errors as in the config.log file.

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 12 of 16

Figure 17. ICU configuration failure as icc cannot create executables

Figure 18. library XXXX cannot be found error

Figure 19. icc not working as expected

In another case, you might not see the error as shown in Figure 18, and see only the errors as
shown in Figure 17 in the log file. In such cases, you can compile the C source code successfully
using icc. It is usually caused by an uncustomized configuration file for IBM i. There is a simple
way to check if your configuration file is customized for IBM i. Check the header of the file to see
whether the configuration will use qsh or sh to run. If the header shows qsh (as shown in the right
pane of Figure 20), then this file should already be customized for IBM i.

Figure 20. Header of the two different configuration files

Resolution: For the first case, such an error occurs usually because you do not set the
environment variable, OUTPUTDIR, when using icc. Export the variable in either IBM OS/400®
Command Entry (recommended) or QSH Command Entry to resolve the problem. Here is an
example:

addenvvar envvar(OUTPUTDIR) value('iculib6') replace(*YES) in OS's Command Entry, or

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 13 of 16

export OUTPUTDIR=iculib6 in QSH Command Entry.

For the second case, using the unpax-icu.sh icu4c-4_4_2-src.tar command to extract the
source package will help to generate a customized configuration file for IBM i.

• ./runConfigureICU fails with error: No acceptable XXXX (stands for some common command,
such as grep, ar, awk and so on) can be found in SOMEWHERE (location). Figure 21
indicates an instance where grep cannot be found in the environment. When you type grep
in the command line, the results show that the command can be located in the environment.
Actually, grep is located in /QOpenSys/usr/bin.

Figure 21. grep command cannot be found

Resolution: Add the environment variable of the command or revise the PATH variable in either
Command Entry or QSH Command Entry. Here are some examples:

adenvvar envvar(GREP) value('grep') replace(*YES), or

chgenvvar envvar(PATH) value('/QIBM/ProdData/DeveloperTools/qsh/bin:/usr/bin:.:/

QOpenSys/usr/bin'), or

export PATH=/QIBM/ProdData/DeveloperTools/qsh/bin:$PATH, or

export GREP=grep.

• gmake fails with error: This is an error found on the CRTMOD command, as shown in Figure
22. When examining the compilation command, we find that all the shared objects have a
suffix .so, as shown in Figure 22. This is true on Linux while not on IBM i. Specifically, in
the environment of Tools for Developer on IBM i, shared objects, otherwise called service
program, must have a suffix *.o to compile the code successfully using icc.

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 14 of 16

Figure 22. Error with the CRTCMOD command

Resolution: Revise the mh-os400 file located in the $ICU_SOURCE_DIR/icu/source/config
directory as instructed in the previous section and rebuild the ICU source code.

• The source file, pkgdata.cpp, located in the $ICU_SOURCE_DIR/icu/source/tools/pkgdata
directory cannot be compiled successfully. The error, The text "pkgDataFlags" is
unexpected is displayed.

Figure 23. Error when compiling pkgdata.cpp

Resolution: This is due to a syntax error in the pkgdata.cpp file. Revise the file as shown in Figure
9 and recompile the ICU code.

• Make ICU source code fails with an error, not an ICU data file: './in/icudt44l.dat'.Tue
icudt44.dat file is provided with the ICU source code, which is located in the
$ICU_SOURCE_DIR/icu/source/data/in directory. It is used to build the ICU data files, such as
icudt44e.dat (in this case), as shown in Figure 24. Theoretically, the file should be accepted
by the utility icupkg, because it is provided together with the ICU source code. The error
is usually caused by incorrect ways of unpacking the ICU source code in tar format. For
example, you might unpack the tar file directly using the tar command on the qsh environment
on IBM i, or upload the source code files after unpacking the tar file on other platforms.

ibm.com/developerWorks/ developerWorks®

Build and install ICU on IBM i Page 15 of 16

Figure 24. Not an ICU data file error

Resolution: Use the unpax-icu.sh icu4c-4_4_2-src.tar command to extract the source package
rather than any other methods.

• Make ICU code fails with the U_ILLEGAL_CHAR_FOUND error, as shown in Figure 25.
This might again be due to incorrectly unpacking the TAR file, which is the same problem as
shown in Figure 24.

Figure 25. U_ILLEGAL_CHAR_FOUND error

Resolution: Use the unpax-icu.sh icu4c-4_4_2-src.tar command to extract the source package
rather than any other methods.

Summary
In this article, we provided step-by-step instructions to build ICU4.4.2 on IBM i, including preparing,
building the environment, and verifying the build results. We summarized the common issues that
might be encountered during the process and suggested the possible resolutions. ICU libraries can
definitely help to develop globalized applications.

Resources
Here are a few materials that would help you get a better understanding of this article:

• ICU 4.4.2 can be download from the ICU download page
• For more information about IBM Tools for Developers for IBM i, refer to IBM PartnerWorld

http://icu-project.org/download/4.4.html#ICU4C
https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_porting_tools_index

developerWorks® ibm.com/developerWorks/

Build and install ICU on IBM i Page 16 of 16

• If you encounter other common ICU problems that are not listed in this article, then ICU FAQs
is a good place to start with.

• You can check the sample program's result with ICU4C demonstrations: Locale Explorer.
• For CCSID information on the IBM i system, refer to the IBM i information center.

© Copyright IBM Corporation 2012
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://userguide.icu-project.org/icufaq/
http://demo.icu-project.org/icu-bin/locexp
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fnls%2Frbagsccsidcdepgscharsets.htm
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview of ICU
	ICU support for IBM i
	Setting up the building environment
	Install Qshell interpreter
	Install C/C++ compiler
	Install and set up IBM Tools for Developers for IBM i
	Upload ICU source code files to IBM i IFS

	Building ICU on IBM i
	Check the building result
	Troubleshooting problems when building ICU on IBM i
	Summary
	Resources
	Trademarks

