
© Copyright IBM Corporation 2011 Trademarks
Debug IBM i programs graphically Page 1 of 20

Debug IBM i programs graphically
A step-by-step introduction to IBM i debugger

Jin Jiang Zhang
Li Jiu Yu
Shuang Hong Wang

October 14, 2011

Debugging IBM i programs can be challenging if you are new to IBM i or used to debugging
applications with graphical tools. This article shows you how to debug programs graphically
using the integrated IBM i debugger.

Overview of IBM i debugger

A debugger tool is a critical component of application development environments. Developers
can use the debugger to isolate problems, understand software code paths and even evaluate
potential code changes. And a powerful debugger can greatly enhance the efficiency of a software
developer.

IBM i developers are familiar with the green screen debuggers that are available on IBM i and its
predecessor platforms (AS/400, iSeries, and System i). The green screen debuggers are accessed
with the STRDBG (Start Debug) and STRISDB (Start Interactive Source Debugger) commands. While
these debuggers work, they do not provide the productivity and ease-of-use features of modern
graphical debuggers. The good news is that there are two graphical debug tools available from
IBM to boost your productivity.

Most IBM i developers are only aware of the graphical debugger that's part of the IBM Rational
Developer for Power Systems software offering. The graphical debugger that gets overlooked is
the graphical IBM i debugger that is included with the IBM i operating system. This debugger is
known as the IBM System i5 Debugger in product documentation, but this article will refer to it as
the graphical IBM i debugger for convenience. This integrated graphical debugger was first made
available on the V5R1 release of OS/400.

IBM Rational Developer for Power Systems software debugger

The IBM Rational Developer for Power Systems product is an IDE used to develop applications
that run on IBM Power Systems. It's a powerful tool which provides RPG and COBOL development

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 2 of 20

tools for IBM i and C/C++ and COBOL development tools for AIX. Developers can use this tool
to create, edit, compile, and debug your source code on IBM i. Figure 1 shows the graphical
debugger interface supplied by the IBM Rational Developer product. Programmers can also use
the tool to create libraries, source physical files, and members on any IBM i server.

The graphical toolset supports the typical steps of creating and debugging application code:

1. Create a new library if you do not want to using the existing ones
2. Create a physical file for containing source code members
3. Create a member for writing source code
4. Compile the source code member with debug information
5. Add the program file, created by the compiler, to service entry point
6. Debug the program (steps are similar to other IDEs)

Figure 1. Rational Developer for Power Systems software

Graphical IBM i debugger

Graphical IBM i debugger can be regarded as the graphical version of traditional the green screen
debugger for IBM i. The graphical IBM i debugger is packaged in two JAR files provided by IBM
Toolbox for Java. The graphical debugger can run on any platform such as Windows, Linux and
Unix platforms that supports Java. The article will discuss this graphical debugger in more detail.

Pros and cons of the two debuggers

As you can see from the content of Table 1, the Rational debugger is the more powerful one
between the two debuggers. But it requires much more disk spaces than the graphical IBM i
debugger. Graphical IBM i debugger is a lightweight debugger, requiring only about 5M bytes on
workstations while providing powerful debug functionalities. Besides, it is very easy to install and
you can use it on different platforms in the same way because it is Java based. Most importantly,
the graphical IBM i debugger is included with the IBM i operating system, which means there is no
additional charge for using the debugger. In contrast, usage of the Rational debugger requires the
purchase of the entire Rational IDE product.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 3 of 20

Table 1. Comparisons of the debuggers for IBM i

Rational debugger Graphical IBM i debugger

Functions Ability to launch code editor from debug
session.
Remote debug

Remote debug

Disk space About 1G bytes About 5M bytes

User experience Very good Good

Cost Additional license fee required None, included with IBM i operating system

Installing graphical IBM i debugger

Typically, there are two methods used to install the graphical IBM i debugger. One method is
accomplished by installing the IBM System i Navigator client. The second method involves
manually copying the required JAR files onto your workstation.

Installing and starting graphical IBM i debugger via IBM System i Navigator

The IBM System i Navigator client provides end users a graphical user interface instead of the
traditional green screen for administering and managing IBM i systems. Besides that functionality,
it also embeds the graphical IBM i debugger for developers to use. If you already have the IBM
System i Navigator client installed on your workstation, then you need not perform any steps to
install the graphical IBM i debugger. More information about the IBM System i Navigator offering
can be found in the Resource section.

Once the IBM System i Navigator client is installed, starting the debugger is done by performing
the following steps:

1. Expand the following items successively in the navigation tree of your IBM System i Navigator
client: My connections -> Your System Name-> Databases.

2. Right-click on the desired database, and select the Run SQL Scripts task.
3. In the Run SQL Scripts window, select the Debugger task from the Run pull-down menu as

shown in Figure 2.

There is no doubt that starting the debugger in this way is more convenient for debugging SQL
procedures, functions and triggers. This interface can also be used to start the debugger for
programs without SQL.

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 4 of 20

Figure 2. Starting graphical IBM i debugger from Run SQL Scripts

Installing graphical IBM i debugger via IBM Toolbox for Java
If you do not have the ability to install the IBM System i Navigator client, there is an alternative way
to install the graphical IBM i debugger. This method copies specific components out of the IBM
Toolbox for Java. The toolbox which consists of a set of JAR files, is not designed specifically for
debugging programs on IBM i, but for developing Java programs that utilize IBM i resources.

Specifically, only two JAR files are needed on your workstation and they are provided by the IBM
Toolbox for Java. There are two methods to get the JAR files required by the graphical debugger
onto your workstation. One is by downloading the JTOpen package onto your workstation. JTOpen
is the open source versions of the IBM Toolbox for Java. Both packages contain identical code.
The second method is by accessing a system that has the IBM Toolbox for Java installed. The first
method is pretty simple and straightforward, so that method is not discussed in detail. Refer to the
IBM Toolbox for Java item in the Resource section. The second method is outlined below.

To get the two JAR files from an IBM i system, you need access to a server which has the IBM
Toolbox for Java package installed. The IBM Toolbox for Java is not required to be installed on a
system in order to debug programs running on it using the graphical IBM i debugger. By default,
the toolbox should already be installed on your system. To check if the IBM Toolbox for Java is
installed on your system, follow these steps:

1. Logon to your IBM i system
2. On a command line, enter go licpgm, which navigates you to the Work with Licensed

Programs panel.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 5 of 20

3. Select option 10, Display installed licensed programs. This option produces a list of the
currently installed licensed programs.

4. Page down to view the installed programs in the Display Installed Licensed Programs
panel. If the IBM Toolbox for Java product appears in the list, then you know that the product
is installed.

If the toolbox is not installed, follow the steps below to install the IBM Toolbox for Java:

1. On a command line, enter go licpgm.
2. Select option 11, Install licensed programs.
3. Type 1 in the Option column on the entry named Extended Base Directory Support to install

the toolbox.
4. After the installation, verify that the IBM Toolbox for Java is installed using the previously

documented steps.

For detailed information and prerequisites on installing IBM Toolbox for Java, refer to the book IBM
Toolbox for Java, which is found in the IBM i Information Center.

Assuming that the IBM Toolbox for Java is installed, the next step is getting the needed JAR
files installed on your workstation. The installation steps documented here are for a Windows
workstation. The installation procedure will be similar for other types of workstations.

1. Copy the two JAR files, jt400.jar and tes.jar, from /QIBM/ProdData/HTTP/Public/jt400/
lib/ on IBM i (or from the JTOpen package you just copied to your workstation). These two
JAR files are the IBM Toolbox for Java components which provide the graphical debugger
functionality.

2. Add the path for the two JAR files to your CLASSPATH environment variable. For example,
if you copied the two JAR files to C:\iDebugger\ on your Windows workstation, you should
update the CLASSPATH variable by appending the following line: ;C:\iDebugger\jt400.jar;C:
\iDebugger\tes.jar

At this point, the graphical IBM i debugger installation is completed. In order to run the graphical
debugger, you must have a proper JDK or JRE version installed on your workstation. The
minimum JDK and JRE version required depends on the IBM i OS version from which you copy
the JAR files. For example, the minimum version required for the IBM i V5R4 release is Java
version 1.3.1. The IBM i 7.1 version of the IBM Toolbox for Java requires version 1.4 Java. A
detailed listing of the software requirements for the graphical IBM i debugger can be found
in the IBM i Information Center. In order to access the graphical debugger's help documents
successfully, you need to have the jhall.jar file added to your CLASSPATH. This JAR file can
be obtained from the JavaHelp system. For more detailed information about prerequisites and
installation of the graphical IBM i debugger, please refer to the IBM i Information Center book titled,
System i5 Debugger

You can invoke graphical IBM i debugger with the following command from a Windows command
prompt to verify your installation: java utilities.Debug. Your result should be similar to the
graphical debugger output in Figure 3.

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzahh/rzahhprintthis.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzahh/rzahhprintthis.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzamq/rzamqprintthis.htm

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 6 of 20

Figure 3. Starting IBM i System Debugger

Overview of graphical IBM i debugger

Let's first look into the debugger's architecture. As shown in Figure 4, on the workstation side,
graphical IBM i debugger is composed of theree components: Debug Manager, System Debugger
and OS/400 PASE System Debugger. On the IBM i side, the graphical debugger relies on the
Debug Hub and Debug Server components.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 7 of 20

Figure 4. Graphical IBM i debugger architecture

The Debug Manager is responsible for registering clients with the Debug Hub components, so
that the graphical debugger will be enabled on IBM i. Besides that, it helps manage your debug
settings by adding or removing systems or users. The Debug Manager provides a convenient
interface to start the debugger if you have to debug programs on many different systems. Figure
5 displays the user interface of the Debug Manager. The Debug Hub component stored the user
information in its registry. By storing that user information, the Debug Hub knows to automatically
launch the graphical IBM i debugger when that same user issues the STRDBG CL command.
Another function performed by the Debug Hub component is to invoke the Debug Server when
it receives requests from remote workstations. For instance, when you start a graphical debug
session from the Debug Manager or Windows command line, a request will be received by the
Debug Hub. The Hub then turns around and creates a corresponding Debug Server instance
to handle debugging commands from the debug session. The PASE System Debugger is for
programs that run in a PASE environment. This debugger provides similar debugging functions as
the graphical IBM i debugger as well as some other functions specific to the PASE environment.
For additional information on the PASE environment, reference the book titled, PASE for IBM i, in
the IBM i 7.1 Information Center. The graphical IBM i debugger can debug programs written in ILE
and non-ILE languages as well as Java.

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/topic/rzalf/rzalfmstpdf.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 8 of 20

Figure 5. Debug Manager

Graphical IBM i debugger in action

This section, will show you how to utilize the graphical IBM i debugger by debugging a sample
program. The sample C program provides a simple function – it converts a lower case English
letter to its corresponding upper case letter. The program runs without any errors in a Windows
environment as shown by the successful output in Figure 6.

Figure 6. Output from successful execution of sample program

Running the same C program logic on IBM i, produces the incorrect output displayed in Figure 7.
For example, the C program running on IBM i incorrectly converts the lower-case letter 'a' to '/' and
converts the lower-case letter 'z' to 'i'.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 9 of 20

Figure 7. Incorrect output from program running on IBM i

Let's use the graphical IBM i debugger to find the cause of the incorrect output. The source code of
the sample program is included in Listing 1 for your reference.

Listing 1. Source code of the sample program
//LWR2UPR.c source code.
//This is the sample code used for debugging, which would fail
//when running on IBM i system.

#include <stdio.h>

//Convert a lower case letter to its corresponding upper case letter.
//Return value 0 indicates successful process, otherwise return 1;
int convert2Captial(char* pChar)
{
 //determine if the user's input is legal
 if((*pChar < 'a') || (*pChar > 'z'))
 {
 printf("Input is error. Pls input a letter between a and z:\n");
 return 1;
 }
 else
 {
 *pChar -= 32;
 return 0;
 }
}

int main(void)
{
 char chInput; //The letter that user inputs
 char* pChar; //Pointer to the letter
 int nRet;

 printf("Pls input the lower case letter to be converted:\n");
 printf("Input 0 to exit.\n");

 //Gets letter from terminal:
 while ((chInput = getchar()) != '0')
 {
 pChar = &chInput;

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 10 of 20

 if(*pChar != '\n')
 {
 printf("Your input is: %c\n", *pChar);
 }
 else
 {
 continue;
 }

 if (0 == (nRet = convert2Captial(pChar)))
 {
 printf("Its upper case is: %c\n", *pChar);
 }
 else
 {
 continue;
 }
 }

 printf("Size of a inteter in byte is: %d\n", sizeof(nRet));
 printf("Size of a char in byte is: %d\n", sizeof(chInput));
 printf("Size of a pointer in byte is: %d\n", sizeof(pChar));

 return 0;
}

Logon to the graphical IBM i debugger

From the Debug Manager interface shown in Figure 3, use your IBM i user profile and password
to start a debug session by logging onto the IBM i system containing the program that is being
debugged.

Start the program debug session

Once you are logged on, you should automatically be prompted with the Start Debug panel
displayed in Figure 8. If the Start Debug panel does not appear automatically, press the F4 key or
select the Start task from the Debug pull-down menu.

As shown in this panel, you can debug a program in two different modes. The first mode, Submit
and debug program in batch job, is for the debug of a program which is not yet running. The
second mode, Debug existing job on system, is for debugging a program that already is running
on the targeted system. This mode is more suitable for programs that initialize successfully or
programs that operate as a server.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 11 of 20

Figure 8. Specify the program to debug

This debug example will use the Submit and debug program in batch job mode. The next step
is supplying the appropriate contents for the Program to debug section. The values for this section
are very important to debug the intended program. There are three possible values for the Type
field: "Program" and "Class File". The "Class File" value is for Java programs, while the "Program"
value is for programs that are written in other high-level languages, such as C, RPG and COBOL.
A final value, "Service Program" is available if you choose to debug an existing job. A Service
Program on IBM i is similar to a shared library on other platforms. A service program cannot be
run directly, so that is why the value is only available when using the debug existing job mode. The
sample program is composed in C, so the "Program" value is specified for program type.

Next, you need to fill in the program name and the library name of the IBM i program object
being debugged. There are no additional parameters and initialization commands for the sample
program, so leave those fields blank. The final field in the Program to debug section is the
Standard I/O field. The parameter sets where the program's output will be directed. There are two
options for this field: "Send to spool file" and "Redirect to I/O panel". If your program's output is
large, then a spool file is a good choice for this field. With the other option, you can redirect your

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 12 of 20

program's output to the graphical IBM i debugger's I/O panel, which will be discussed later in this
article. If your program is interactive and requires the user to input value, then you should choose
the I/O panel option. Furthermore, this option allows you to easily check your program's output on
the debugger's I/O panel without logging on to IBM i to view the contents of a spool file. For this
example, the "Redirect to I/O Panel" option is used. With all of the input fields completed, you can
click the OK button to start debugging the sample code.

If you want to debug an existing job, you have to obtain the job's information on IBM i to fill in
the corresponding entries in Existing job to debug field. There are two methods to get the job
information. The first method is to press the Browse button on the bottom half of the Start Debug
window in Figure 8. Selecting this button will result in a dialog window that presents filter options
to help you will find the job that needs to be debugged. The second method is to log on to IBM i,
enter command wrkactjob, and scroll down to find the job you want to debug.

Reproduce the problem using the debugger
The graphical IBM i debugger's user interface is shown in Figure 9. The interface is divided into
four windows. Source code for the debugged program is displayed in the top-right window, called
the Source Window. If the source code is not displayed in the window, one of the possible reasons
may be that the program object does not contain necessary debug information. In this case, please
recreate the program with proper debug parameter value. The remaining windows contain different
tags in them. For statement simplicity, the article will refer to them by their tag names regardless
of their location. For instance, the Programs tag located in the left-top window will be called the
Programs Panel.

Figure 9. System Debugger's Interface

Since the "Redirect to I/O Panel" option was chosen when starting this program in debugger, all
the input and output actions can be performed in the Standard I/O panel located in the bottom
window on the right. You do not need to interact with the IBM i system with an emulator session.
Instead, you can interact with the program from the graphical debugger interface. Just simply

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 13 of 20

click on the Standard I/O tab to access the interface panel shown in Figure 10. Then, run the
program by selecting the green triangle Resume button in the top toolbar or press the F12 key. After
a moment, a message asking the user to input the lower case letter will appear in the Standard
Output section of the Standard I/O window. You can then input the testing letter from the Standard
Input section and click Go button beside the panel.

Figure 10. Graphical Debugger Standard I/O panel

Figure 11 contains the outputted result from the program call. The results show that the lower case
letter "a" is mistakenly converted to a forward slash "/" and "z" is converted to letter "i", which is the
same output the program produces when run on IBM i as shown in Figure 7.

Figure 11. Standard Output Example

Review the source code logic
Now that the program error has been reproduced, the next step is to review the source code to
determine where the debug breakpoints should be set. The logic of the code is not complicated.
First, the sample program accepts an input letter from the terminal as shown in the following code
snippet.

while ((chInput = getchar()) != '0')

Second, if the user has chosen not to exit (the input letter is not "0"), program control is transferred
to the function convert2Captial to convert the letter to upper case.:

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 14 of 20

if (0 == (nRet = convert2Captial(pChar)))

Third, the function convert2Captial, after checking the input letter is indeed a legal lower case
letter, converts the letter to its corresponding upper case letter according to their ASCII code
points.

Finally, return from the called function to main, and display the results to terminal.

Adding breakpoints

To determine the cause of the incorrect output, breakpoints are added to the following 3 lines
of code in the Source Window by right-clicking in the corresponding line and choosing the Add
Breakpoint task or simply double-clicking the left side of the line number.

1) return 0;
2) if(*pChar != '\n')
3) if (0 == (nRet = convert2Captial(pChar)))

The debugger screen should now look similar to the screen displayed in Figure 12. In the Source
Window, two red arrows are displayed next to the corresponding lines in the source code to
signal that breakpoints are associated with those lines of code. If you want to browse all of the
breakpoints, just click the Breakpoints tab. From this tab you are provided useful property settings
about each breakpoint such as condition of the breakpoint, thread settings if the program is multi-
threaded and the style. You can right-click the node in the Breakpoints window and select Edit
Breakpoint… or Breakpoint Properties… to display the corresponding setting dialogs. In this
example, a condition of *pChar !='A' could be added to the breakpoint on line 20 so that the
program execution is only stopped when an incorrect result is produced when the input is lower
case letter 'a'. This conditional breakpoint capability provides developer a lot of flexibility in the
debug process. Besides that, you can also change the breakpoints symbol color by creating
different breakpoint groups. Different breakpoint colors may help you manage breakpoints for
debugging different types of problems within a complex program as shown in Figure 12.

Figure 12. Breakpoints in groups

It's possible you may not find the bug in the program before having to go on to other activities and
close the debugger. What happens to all the breakpoints you set when the debugger session is
ended? Fortunately, all of the breakpoints are remembered by the debugger. All you have to do
is just to start the graphical IBM i debugger and this will restore all aspects of the last session's
debug environment such as the breakpoints, the monitored variables, and the program objects

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 15 of 20

being debugged. All of these settings automatically come back the next time you start graphical
IBM i debugger which is a great way to improve the productivity of your daily work.

Examining variables
The capability to examine the value of variables is one of the most common functions that any
debugger should provide. The graphical IBM i debugger provides four different interfaces to check
a variable's value – Source window, Console panel, Locals panel or Monitors panel. Looking at a
variable's value in the Source window is simple and straightforward. Either place your cursor over
the variable you want to check or highlight the variable in the Source window. Both of these actions
will result in the current value of variable being displayed in the message section at the bottom of
the debugger window or in a flyover window in the Source window. In Console panel, you can run
the EVAL command to manually display the value of a variable or expression. The Locals panel is
used for monitoring variables within the current function and the variable values are automatically
displayed in the Value column of the panel. If you want to monitor the value of specific variable
during execution of the program logic, then you have to add those variables to the Monitors panel.
In this section, you will learn how to examining variables on the Monitors panel.

In the sample program, the variable pChar needs to be monitored. Add the pChar variable to the
monitor queue by right-clicking any space in the Monitors panel or Source Window and selecting
the New Monitor task in the popup menu. Specify the variable (pChar) you want to monitor as
shown in Figure 13. The New Monitor menu task is disabled when the program is not stopped on
a statement in the source code. By default, the stopped position of the debugger is indicated by a
yellow background line as demonstrated in Figure 13.

After the variable is monitored, the continued debug of the program shows that the value of the
pChar is converted to an undesired character ("a" to "/) when the program execution reaches line
20 shown in Figure 14.

Figure 13. Set Variable to Monitor on Monitors panel

On the Monitors panel, there is a column named Watch for every monitored variable. If you choose
to watch a variable by clicking the Watch column of the row, then the program will automatically
stop after the statement that caused the value of the watched variable to chang. That is to say, a
watched variable will function like a breakpoint when its value changes. Providing that there are

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 16 of 20

breakpoints or watched variables defined, you can simply click the Resume button in the toolbar to
run the program. This enables execution to continue until the debugger encounters a line where
there is a breakpoint set or a watched variable is changed. Besides these options for controlling
the program execution, there are several different kinds of step execution options provided on the
toolbar.

Figure 14. Monitors Panel before "a" is converted

Using the Memory Panel

The Memory panel displays the memory of the variables or expressions. To view the memory values
associated with a variable or expression, you can just type the variable name or expression into
the Expression field of the panel. However, the simplest method is to right-click on the desired
variable in the Locals or Monitors panel and select the Go to Memory task in the context menu as
shown in Figure 15. There are three columns of output in the Memory panel. The first column is the
memory sequence number in hexadecimal form. The second column contains just the memory's
contents in hexadecimal format. The third column, called character representation area, displays
the characters (if displayable) corresponding to the hexadecimal values in the second column. The
characters are enclosed in brackets. You can customize the number of bytes displayed per line
and how many bytes of memory are to be displayed by setting the Bytes per line and Bytes field
respectively. Another customization option is the "Size of" setting for the Bytes field. This option
causes the panel to only display the memory allocated to the specified variable or expression.

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 17 of 20

Figure 15. Memory Panel before upper-case conversion

Let's examine the memory for the variable pChar because this variable is associated with the letter
being converted. In this example, when lower case letter "a" is input, the corresponding memory
value is 0x81 as shown in Figure 15. After the converting, the memory is changed to 0x61 which
represents the forward slash character (/) as shown in Figure 16. Why? After checking the ASCII
table, the code point for letter "a" code should be 0x61, while that for forward slash "/" should
be 0x2F. The memory values for the variable are not consistent with the ASCII code points. You
may notice that there is a field naming Format in the Memory panel. The field is used to control
which encoding system is used to display the memory values as character strings. The options are
EBCDIC, ASCII, Unicode and UTF32. At this point, the problem is clear. The IBM i operating is an
EBCDIC-based operating system, not ASCII-based. The following code expression for converting
to the corresponding upper case letter is not correct for EBCDIC code points:

*pChar -= 32;

After checking the EBCDIC code table, EBCDIC code point for letter 'a' is 0x81, and that for "/" is
0x61, which is consistent with Figure 16. Furthermore, the EBCDIC code point distance from a
lower case letter to its corresponding upper case letter is 64, not -32. Thus, the problem within the
sample program logic has been identified!

Another point of this panel is that memory contents can be changed at debugging time. To change
the content, position the cursor to the place where you want to change the memory value in either
the second column or third column. Then, type the new value you want to use and click the Save
button to change the memory content as shown in Figure 16.

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 18 of 20

Figure 16. Change the memory's contents

Fixing the code
From this point, we know that the problem is caused by a different encoding system: EBCDIC.
How to revise the code to make it function correctly on different platforms such as Windows, IBM i
or UNIX operating systems? The simplest way is to change the logic in the following line of code in
the function convert2Captial:

*pChar -= 32;

to this updated logic:

*pChar -= ('a' – 'A');

Besides that problem, there is another problem in the function convert2Captial:

if((*pChar < 'a') || (*pChar > 'z'))

This statement is used to determine to check if the input letter is legal. It's clear from the EBCDIC
code points table that the code points from 'a' to 'z' are not successive. So, the verification code
logic needs to be changed to the following:

if((*pChar < 'a')
|| ((*pChar > 'i') && (*pChar < 'j'))
|| ((*pChar > 'r') && (*pChar < 's'))
|| (*pChar > 'z'))

At this point, the code revisions are complete and the program runs successfully on IBM i.

Other functions of Graphical IBM i Debugger
Source view can be changed by right clicking the Source Window and select Change Source View.
The available options in the Change source view dialog depend on how you compile the source
code. For example, if you create a program with OPTION(*SHOWINC), then ILE C include
view will be available in the dialog as shown in Figure 17. This view is useful when you want to
examine the contents of the included header files. Specifically, when you are developing SQL-
embedded programs for IBM i and pre-compile it with parameter DBGVIEW(*SOURCE) and

ibm.com/developerWorks/ developerWorks®

Debug IBM i programs graphically Page 19 of 20

COMPILEOPT('option(*showinc)'), then available source views for the Source Window will be
similar as shown in Figure 17. The SQL Output View will help to debug SQL procedures, functions
and triggers, if they are created or altered with the proper debug option set. For more detailed
information on graphically debugging SQL procedures, please refer to the corresponding paper in
the Resource section.

As indicated previously, the program that you are debugging can be very complex. The program
may consist of many source code files and modules, or it may contain thousands of lines of source
code. You many wonder in these cases if you can easily jump to a specific line in large source files
or locate the correct source code file? Fortunately, there are several ways to achieve that type of
navigation with the graphical IBM i debugger:

• Double-click on the entry in the Call Stack panel, which will navigate into the current stop
position, as indicated by the Line column, in different methods, functions or modules.

• Double-click the breakpoint in the Breakpoints panel, which will navigate into the
corresponding breakpoints line in Source Window.

• Double-click the program object, such as a program, a service program or a Java class file,
which will open the corresponding source file in Source Window.

• Right-click the entry in the Monitors panel, and select Go To Source.
• Right-click in the Source Window and select Find… or Go To Line….

Figure 17. Change source view dialog

The Threads panel can be used to debug a multi-threading program. The Call Stack panel
makes it easy to display the call stack of the current program. The Console panel is used to
display system messages and to execute IBM i debug commands from this panel. For more
detailed information about all of these functions, please refer to the graphical IBM i debugger's
documentation.

Summary
In this article, you were introduced to two graphical debuggers for IBM i with a comparison of the
debuggers to help developers choose the debugger most suitable for them. You also learned how

developerWorks® ibm.com/developerWorks/

Debug IBM i programs graphically Page 20 of 20

to install the graphical IBM i debugger using different methods. And most importantly, you learned
how to utilize the graphical IBM i debugger for troubleshooting a program.

Resources

Here are some useful resources you can refer to for some detailed information mentioned in the
article:

1. IBM i Information Center topic on IBM i Debugger.
2. Download the paper Graphical debugging makes procedural SQL debugging on i5/OS even

easier.
3. Read the developerWorks article on IBM Toolbox for Java and JTOpen.
4. Information about introducing, installing and using IBM System i Navigator.
5. IBM Rational Developer for Power Systems Software.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzamq/rzamqmain.htm
http://public.dhe.ibm.com/partnerworld/pub/pdf/courses/2ae2.pdf
http://public.dhe.ibm.com/partnerworld/pub/pdf/courses/2ae2.pdf
http://www.ibm.com/developerworks/ibmi/library/i-javatoolbox/index.html?ca=drs-
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzaj2/rzaj2overview.htm
http://www.ibm.com/developerworks/rational/products/rdp/
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview of IBM i debugger
	IBM Rational Developer for Power Systems software debugger
	Graphical IBM i debugger
	Pros and cons of the two debuggers

	Installing graphical IBM i debugger
	Installing and starting graphical IBM i debugger via IBM System i Navigator
	Installing graphical IBM i debugger via IBM Toolbox for Java

	Overview of graphical IBM i debugger
	Graphical IBM i debugger in action
	Logon to the graphical IBM i debugger
	Start the program debug session
	Reproduce the problem using the debugger
	Review the source code logic
	Adding breakpoints
	Examining variables
	Using the Memory Panel
	Fixing the code
	Other functions of Graphical IBM i Debugger

	Summary
	Resources
	Trademarks

