
© Copyright IBM Corporation 2014 Trademarks
Are deleted rows wasting resources on your IBM i system? Page 1 of 7

Are deleted rows wasting resources on your IBM i
system?
A task for database engineers on IBM DB2 for i

Tom McKinley November 06, 2014

Historically, IBM i systems have not had a database administrator or engineer. This reduced
focus on the database can often lead to very inefficient use of system resources. This article
explains how to address one of the key performance issues, deleted row space, caused by
a lack of focus on database management. You can learn how to identify tables that have lots
of deleted row which causes system resources to be wasted on specific IBM® DB2® access
methods. The article also describes the steps to be taken to reduce the deleted row space and
reduce system resource usage.

Introduction
Do you have an IBM DB2 table with a lot of deleted rows in it? Though this seems to be a basic
question, the interesting thing is that many IBM i shops don't know the answer. Typically, most
IBM i shops don't have a database administrator to watch these types of details. The worst I have
seen during one of my customer engagements is a table with 2.6 billion (yes, that is billion) deleted
rows. And that table was being scanned frequently. Not only are many customers not sure how
many deleted rows there are in their database, but they also don't understand the impact those
deleted rows are having.

Let's see if we can help you answer two questions:

1. What tables have a large number of deleted rows?
2. Are those deleted rows wasting processor and memory resources?

Of course, the deleted rows are taking up disk space, but how much? We also want to understand
if those deleted rows are causing extra disk operations, taking up room in memory, and wasting
processor utilization on scan operations. It might also be good to know if the storage consumed by
the deleted rows is being reused when new rows are added to a table in the future.

First, let's find the DB2 tables and physical files that have the largest number of deleted rows in
them. Before you start this analysis, you need to perform the following data collection for one

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Are deleted rows wasting resources on your IBM i system? Page 2 of 7

or more of your main production data libraries. Create a library for this collection data with the
following command:

CRTLIB DELETDROWS

Run the following CL commands for each library (replace LIBNAME with your data library name or
*ALLUSR). These commands collect information about the files in the named library.

DSPFD FILE(LIBNAME/*ALL) TYPE(*MBR) OUTPUT(*OUTFILE) FILEATR(*PF)
OUTFILE(DELETDROWS/DSPFD_MBR) OUTMBR(*FIRST *ADD)

DSPFD FILE(LIBNAME/*ALL) TYPE(*ATR) OUTPUT(*OUTFILE) FILEATR(*PF)
OUTFILE(DELETDROWS/DSPFD_ATR) OUTMBR(*FIRST *ADD)

Create a couple of indexes over these two newly created out files to improve the performance of
your analysis.

CREATE INDEX DELETDROWS.DSPFD_ATR_IX ON DELETDROWS.DSPFD_ATR(PHFILE);
CREATE INDEX DELETDROWS.DSPFD_MBR_IX
 ON DELETDROWS.DSPFD_MBR(MBFTYP, MBFILE, MBNDTR);

Run the following procedure call from any SQL interface. This stored procedure dumps SQL plan
cache entries to a table named PCSS in the DELETDROWS library.

CALL QSYS2.DUMP_PLAN_CACHE('DELETDROWS', 'PCSS')

Step 1 – Identify tables that have a large number of deleted rows

The following SQL query returns the top 25 tables with the largest number of deleted rows. If
you see tables in the query output that you know are used heavily, consider reorganizing them to
eliminate the deleted rows.

SELECT DISTINCT F.MBFILE AS FILENAME,
 F.MBNAME as Member,
 MBLIB AS LIBRARY,
 MBNRCD AS "Number Non-Deleted Rows",
 MBNDTR AS "Number Deleted Rows",
 PHRUSE AS "Reusing Deleted Rows",
 integer(mbndtr/(Case when mbnrcd+mbndtr=0 then 1
 else mbnrcd+mbndtr end) * 100) as "Percent Deleted",
 Case when MBDSSZ >0 then MBDSSZ ELSE MBDSZ2 END as Size,
 Integer(Case when MBDSSZ >0 then MBDSSZ ELSE MBDSZ2 END *
 (mbndtr/(Case when mbnrcd+mbndtr=0 then 1
 else mbnrcd+mbndtr end))) as "Deleted Space"

 FROM DELETDROWS.DSPFD_MBR AS F JOIN DELETDROWS.DSPFD_ATR AS A
 ON F.MBFILE = A.PHFILE
 WHERE MBFTYP = 'P' AND MBNDTR > 10000
 ORDER BY MBNDTR DESC FETCH FIRST 25 ROWS ONLY

You can modify this query to look for tables that exceed some threshold of deleted rows. In this
example, the threshold is set to 10,000 rows(mbndtr > 10000). You can also sort the results by the
Percent Deleted value to list tables with the highest percentage of deleted rows at the top.

ibm.com/developerWorks/ developerWorks®

Are deleted rows wasting resources on your IBM i system? Page 3 of 7

Figure 1 – Example output from step 1 query

Step 2 – Look for SQL statements that are wasting resources
Some SQL statements consume more system resources to process deleted rows based on access
methods used in the runtime implementation. This section focuses on a couple of the methods that
are more expensive because of the deleted rows in the table.

SQL statements performing table scans

Table scan operations are clearly more expensive because of the deleted rows. Each deleted row
is accessed as DB2 scans the table to find the non-deleted rows that meet the search criteria.
Even if more advanced methods are used to skip the rows that do not meet the search criteria, it
is likely that there are more disk I/O operations required. More operations are needed because in
general, the pages in the table are more sparsely populated with non-deleted rows.

The following SQL query identifies the tables that were the target of a table scan and accounts for
the largest total of deleted rows processed.

with bigdel as (
 SELECT distinct
 mbfile as File,
 mbname as Member,
 mblib as Library,
 mbnrcd as NumberRecords,
 mbndtr as NumberDeletedRecords,
 phruse as ReuseDeleted

developerWorks® ibm.com/developerWorks/

Are deleted rows wasting resources on your IBM i system? Page 4 of 7

 FROM deletdrows.DSPFD_MBR F
 join deletdrows.DSPFD_ATR a on f.MBFILE=a.PHFILE
 WHERE mbftyp ='P' AND mbndtr >10000)
-- Join table scan info from the plan cache
SELECT QQTLN as LIBrary, QQTFN as "Table Name", D.REUSEDELETED as
"Reusing Deleted Rows" , Max(QQTOTR)as "Number Non-Deleted Rows",
max(d.numberDeletedRecords) as "Number Deleted Rows" ,
SUM(d.numberDeletedRecords) as "Total Deleted Rows Scanned",
count(*) as TotalScans
FROM deletdrows.PCSS M JOIN bigdel d
 ON d.mblib=m.qqtln AND d.mbfile=m.qqtfn AND d.Member=m.qqtmn
WHERE qqrid = 3000 AND QQC11 <>'Y'
GROUP BY qqtln, qqtfn, d.reusedeleted
ORDERY BY SUM(d.numberDeletedRecords) DESC
FETCH FIRST 25 ROWS ONLY OPTIMIZE FOR ALL ROWS

It is outside the scope of this article, but you should look for the SQL statements that are causing
these table scan operations and see if they creating additional indexes can eliminate the table
scan method from being used. Still, that does not remove the need to reduce the size of these
very frequently used DB2 tables in your database. As you can see in Figure 1, each table scan of
DELTEST processes 210 MB of storage occupied by deleted rows.

Figure 2 – Example output from Step 2 query

SQL statements performing temporary index builds

Index builds have to perform more I/O operations to bring in storage pages with deleted rows only
to skip over the deleted rows during the creation of the index. Some of these index builds might
occur over small tables, but creating a temporary index many times can amplify the expense of
those deleted rows.

The following SQL query identifies the SQL statements that involve temporary index builds over
tables having a large number of deleted rows (greater than 10000).

with bigdel as (
Select mbfile, mblib,F.MBNAME as Member, mbftyp, MBNRCD as
NumberRecords, MBNDTR as numberDeletedRecords,
 PHRUSE as REUSEDELETED,
 MBDSSZ as MBRSIZE
 FROM deletdrows.DSPFD_MBR F join deletdrows.DSPFD_ATR a
 ON f.MBFILE=a.PHFILE
WHERE MBFTYP ='P' AND mbndtr >10000)
-- Join Index builds to the tables with large number of deleted rows
Select QQTLN as Library, QQTFN as "Table Name", D.REUSEDELETED as
"Reusing Delweted Rows", Max(QQTOTR)as "Non-Deleted Rows",
max(d.numberDeletedRecords) as "Deleted Rows", SUM(d.numberDeletedRecords) as
"Total Deleted Rows Scanned", SUM(M.QQRIDX) as "Total index entries created",
QQIDXD as Index_Advised_Columns,
Sum(case when QQC16='N' then qqi6 else 0 end) as total_keys_built,
Sum(case when QQC16='N' then 1 else 0 end) as indexCreated,
Sum(case when QQC16='Y' then 1 else 0 end) as indexreused,

ibm.com/developerWorks/ developerWorks®

Are deleted rows wasting resources on your IBM i system? Page 5 of 7

Count(*) as TotalIXsCreated
FROM deletdrows.PCSS M JOIN bigdel d
 ON d.mblib=m.qqtln and d.mbfile=m.qqtfn and d.Member= m.qqtmn
WHERE qqrid = 3002
GROUP BY qqtln, qqtfn ,qqtmn, d.REUSEDELETED, m.QQRCOD , QQIDXD
ORDER BY SUM(d.numberDeletedRecords)DESC
FETCH FIRST 25 ROWS ONLY OPTIMIZE FOR ALL ROWS

The output from this query helps to identify those tables that are good candidates to be
reorganized. An additional benefit of this report is that this can also be a good way to see some
indexes that might need to be created to eliminate the temporary index builds.

Step 3 – Look at highly accessed tables

If you are running IBM i 7.1 or later versions on your system, you can use the new access counters
to identify tables that are frequently accessed. These counters are automatically incremented by
DB2 for both SQL and non-SQL interfaces. To identify the more highly accessed DB2 tables, run
the following query and look for tables that have a high count of deleted rows.

SELECT table_schema, Table_name, Data_size, Number_Deleted_Rows,
Logical_Reads, Physical_reads, Sequential_reads, Random_reads
FROM qsys2.systablestat
ORDER BY Logical_reads DESC FETCH FIRST 25 rows ONLY

In this example, the query output in Figure 3 shows only one table, DELTEST, that has a significant
number of deleted rows.

developerWorks® ibm.com/developerWorks/

Are deleted rows wasting resources on your IBM i system? Page 6 of 7

Figure 3 – Example result from a highly accessed table query

Step 4 – Fix the problematic tables

To eliminate the deleted rows from the tables identified by the previous analysis methods, we need
to use the Reorganize Physical File Member (RGZPFM) system command. However, there are
some important points to consider before performing a reorganize operation. Some applications
might fail to work properly if one or more of the tables they use are reorganized. There are two
reasons that this might occur:

1. The application has a dependency on the physical location of some rows. You would have to
obtain the Relative Record Number (RRN) of a specific row and store the value else where so
that you can use the value to access the row later. You might need it for some native record-
level access request or the SQL RRN function. This case is unlikely, but it is a possibility.
However, this is not a recommended programming practice.

2. The application might have a dependency on the rows being stored in the arrival sequence.
That is, a row inserted after another row will have a higher RRN value.

The other key consideration is the file attribute that controls whether deleted record space is
reused for new rows being inserted into the table. If a file is reusing deleted rows, the applications
cannot have the arrival sequence dependency unless rows are never deleted.

ibm.com/developerWorks/ developerWorks®

Are deleted rows wasting resources on your IBM i system? Page 7 of 7

There are two basic options for reorganizing. The first option is to slide all the rows up filling the
deleted holes and then truncate the set of deleted rows at the end. Performing the reorganize
in this manner maintains the arrival sequence, and therefore, applications with an arrival order
sequence dependency continue to function.

The second option is to move the non-deleted rows from the end of table to the deleted row
locations at the beginning of the table. This method breaks the arrival order sequence of the
rows, but usually performs much better than the first method. For more details on the RGZPFM
command, refer to the IBM Redpaper™ listed in the Resources section.

Monitoring and managing deleted row space is one of the key activities that a DB2 for i database
engineer should be performing on a regular basis. If you do not have a DB2 for i database
engineer, you can read the blog entry to better understand the role and responsibilities of this
position.

Hopefully, this article might have given you some motivation to start paying attention to deleted
row space and allow you to take focused action to minimize the system resources being wasted on
deleted rows.

You can also use the Phase 2 System Limits support to track changes in your biggest files,
including delete operations. Refer to the Gain Big Insights into DB2 for i with System Limits, Phase
2 article for more information about System Limits support.

Resources

• IBM i Reorganize Physical File Member Redpaper
• DB2 for i Center of Excellence Services
• DB2 for i blog
• DB2 for i SQL Performance Workshop

© Copyright IBM Corporation 2014
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://db2fori.blogspot.com/2012/11/db2-for-i-database-engineer-description.html
http://iprodeveloper.com/systems-management/gain-big-insights-db2-i-system-limits-phase-2
http://iprodeveloper.com/systems-management/gain-big-insights-db2-i-system-limits-phase-2
http://www.redbooks.ibm.com/abstracts/redp5083.html?Open
http://www-03.ibm.com/systems/services/labservices/platforms/labservices_power.html
http://db2fori.blogspot.com/
http://ibm.com/systems/power/software/i/db2/education/performance.html
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Step 1 – Identify tables that have a large number of deleted rows
	Step 2 – Look for SQL statements that are wasting resources
	Step 3 – Look at highly accessed tables
	Step 4 – Fix the problematic tables
	Resources
	Trademarks

