
IBM Communications Server for Data Center
Deployment on AIX
Version 7.1

Node Operator Facility Programmer's
Guide

IBM

SC31-8595-06

Note

Before using this information and the product it supports, be sure to read the general information under
Appendix D, “Notices,” on page 667.

Seventh Edition (January 2021)

This edition applies to IBM Communications Server for Data Center Deployment on AIX, Version 7.1, program number
5725-H32, and to all subsequent releases and modifications until otherwise indicated in new editions or technical
newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

IBM welcomes your comments. A form for readers' comments is provided at the back of this publication. If the form has
been removed, you may send your comments to the following address:

• International Business Machines Corporation
• Department CGMD
• P.O. Box 12195
• Research Triangle Park, North Carolina
• 27709-2195
• U.S.A.

If you prefer to send comments electronically, use one of the following methods:

• IBMLink: CIBMORCF at RALVM17
• IBM Mail: USIB2HPD at IBMMAIL
• Internet: USIB2HPD@vnet.ibm.com
• Fax: 1-800-227-5088

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1998, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables...xxix

Figures... xxxi

About this book... xxxiii
Who should use this book..xxxiii
How to use this book... xxxiii

Organization of this book... xxxiii
Typographic conventions... xxxiv
Graphic conventions...xxxiv

Where to find more information... xxxv

Chapter 1. Introduction to the NOF API.. 1
Purpose of the NOF API... 1

Node configuration file... 2
Domain configuration file... 2
Invokable TP data file...2

CS/AIX components...2
Client/Server operation..3

Controller server and backup servers..4
AIX or Linux clients...4
Windows Clients... 5

NOF verbs to manage specific CS/AIX functions.. 5
Managing the target (node or file) for NOF verbs.. 5
Getting started..6
3270 communications... 7
LUA communications..7
APPC communications... 8
CPI-C communications...9
Managing HPR RTP connections.. 10
Managing SNA gateway..10
Managing DLUR...10
Managing TN server..11
Managing TN Redirector...12
Managing SNA management services functions... 12
Managing access to the CS/AIX system from the host NetView program.. 13
Managing diagnostics settings...13
Managing directory entries.. 14
Querying the network topology..15
Checking the communications path to a remote LU... 15
Managing servers and clients on the CS/AIX LAN... 15
Managing configuration file header information... 16
Managing AIX resource usage..16

NOF Indications... 16
Configuration indications... 17
SNA network file indications.. 17
NOF status indications... 17

Chapter 2. Writing NOF applications...19

 iii

Client/Server considerations... 19
AIX or Linux considerations ..19

NOF API entry points for AIX or Linux... 19
Compiling and linking the NOF application... 24

Windows considerations..25
NOF API entry points for Windows.. 25
Compiling and linking the NOF application... 29

Writing portable applications.. 30
Target for NOF verbs.. 30

Processing modes.. 31
Ordering and dependencies between NOF verbs... 31
NOF restrictions based on node configuration... 32

APPN end node and LEN node restrictions... 32
Multiple Domain Support (MDS) restrictions...33
SNA gateway and DLUR restrictions.. 33

List options for QUERY_* Verbs... 33
Obtaining information about a single resource or multiple resources... 33
Obtaining summary or detailed information... 34

Chapter 3. NOF API Verbs.. 35
ACTIVATE_SESSION.. 35

VCB structure..36
Supplied parameters..36
Returned parameters: successful execution...37
Returned parameters: parameter check... 37
Returned parameters: activation failure..37
Returned parameters: other conditions.. 38

ADD_BACKUP...38
VCB structure..38
Supplied parameters..38
Returned parameters: successful execution...38
Returned parameters: state check.. 39
Returned parameters: other conditions.. 39

ADD_DLC_TRACE... 39
VCB structure..39
Supplied parameters..40
Returned parameters: successful execution...41
Returned parameters: parameter check... 41
Returned parameters: other conditions.. 42

APING...42
VCB structure..42
Supplied parameters..42
Returned parameters: successful execution...44
Returned parameters: parameter check... 44
Returned parameters: allocation failure..45
Returned parameters: conversation failure...45
Returned parameters: other conditions.. 46

CHANGE_SESSION_LIMIT.. 46
VCB structure..46
Supplied parameters..46
Returned parameters: successful execution...48
Returned parameters: parameter check... 48
Returned parameters: state check.. 49
Returned parameters: session allocation error...49
Returned parameters: CNOS processing errors.. 49
Returned parameters: other conditions.. 49

CLOSE_FILE... 50

iv

VCB structure..50
Supplied parameters..50
Returned parameters: successful execution...50
Returned parameters: state check.. 50
Returned parameters: other conditions.. 50

CONNECT_NODE..51
VCB structure..51
Supplied parameters..51
Returned parameters: successful execution...51
Returned parameters: parameter check... 52
Returned parameters: state check.. 52
Returned parameters: other conditions.. 52

DEACTIVATE_CONV_GROUP... 52
VCB structure..53
Supplied parameters..53
Returned parameters: successful execution...53
Returned parameters: parameter check... 53
Returned parameters: other conditions.. 54

DEACTIVATE_LU_0_TO_3..54
VCB structure..54
Supplied parameters..54
Returned parameters: successful execution...54
Returned parameters: parameter check... 55
Returned parameters: other conditions.. 55

DEACTIVATE_SESSION..55
VCB structure..55
Supplied parameters..55
Returned parameters: successful execution...56
Returned parameters: parameter check... 56
Returned parameters: other conditions.. 57

DEFINE_ADJACENT_LEN_NODE...57
VCB structure..57
Supplied parameters..57
Returned parameters: successful execution...58
Returned parameters: parameter check... 58
Returned parameters: state check.. 59
Returned parameters: other conditions.. 59

DEFINE_CN.. 59
VCB structure..59
Supplied parameters..60
Returned parameters: successful execution...61
Returned parameters: parameter check... 61
Returned parameters: state check.. 62
Returned parameters: function not supported... 62
Returned parameters: other conditions.. 62

DEFINE_COS.. 62
VCB structure..62
Supplied parameters..63
Returned parameters: successful execution...66
Returned parameters: parameter check... 66
Returned parameters: state check.. 67
Returned parameters: other conditions.. 67

DEFINE_CPIC_SIDE_INFO.. 67
VCB structure..67
Supplied parameters..68
Returned parameters: successful execution...69
Returned parameters: parameter check... 69
Returned parameters: other conditions.. 69

 v

DEFINE_DEFAULT_PU... 69
VCB structure..70
Supplied parameters..70
Returned parameters: successful execution...70
Returned parameters: other conditions.. 70

DEFINE_DEFAULTS..70
VCB structure..70
Supplied parameters..71
Returned parameters: successful execution...71
Returned parameters: parameter check... 71
Returned parameters: other conditions.. 72

DEFINE_DIRECTORY_ENTRY.. 72
VCB structure..72
Supplied parameters..72
Returned parameters: successful execution...73
Returned parameters: parameter check... 73
Returned parameters: other conditions.. 74

DEFINE_DLC.. 74
VCB structure..74
Supplied parameters..75
Returned parameters: successful execution...78
Returned parameters: parameter check... 79
Returned parameters: state check.. 79
Returned parameters: other conditions.. 79

DEFINE_DLUR_DEFAULTS...79
VCB structure..79
Supplied parameters..80
Returned parameters: successful execution...80
Returned parameters: parameter check... 80
Returned parameters: function not supported... 81
Returned parameters: other conditions.. 81

DEFINE_DOMAIN_CONFIG_FILE..81
VCB structure..81
Supplied parameters..81
Returned parameters: successful execution...82
Returned parameters: other conditions.. 82

DEFINE_DOWNSTREAM_LU..82
VCB structure..82
Supplied parameters..82
Returned parameters: successful execution...83
Returned parameters: parameter check... 84
Returned parameters: state check.. 84
Returned parameters: function not supported... 85
Returned parameters: other conditions.. 85

DEFINE_DOWNSTREAM_LU_RANGE..85
VCB structure..85
Supplied parameters..85
Returned parameters: successful execution...86
Returned parameters: parameter check... 86
Returned parameters: state check.. 87
Returned parameters: function not supported... 87
Returned parameters: other conditions.. 88

DEFINE_DSPU_TEMPLATE.. 88
VCB structure..88
Supplied parameters..88
Returned parameters: successful execution...89
Returned parameters: parameter check... 90
Returned parameters: state check.. 90

vi

Returned parameters: function not supported... 90
Returned parameters: other conditions.. 91

DEFINE_FOCAL_POINT...91
VCB structure..91
Supplied parameters..91
Returned parameters: successful execution...92
Returned parameters: parameter check... 92
Returned parameters: function not supported... 92
Returned parameters: replaced...92
Returned parameters: unsuccessful..92
Returned parameters: other conditions.. 93

DEFINE_INTERNAL_PU.. 93
VCB structure..93
Supplied parameters..93
Returned parameters: successful execution...95
Returned parameters: parameter check... 95
Returned parameters: state check.. 95
Returned parameters: function not supported... 95
Returned parameters: other conditions.. 96

DEFINE_LOCAL_LU..96
VCB structure..96
Supplied parameters..96
Returned parameters: successful execution...98
Returned parameters: parameter check... 98
Returned parameters: state check.. 99
Returned parameters: other conditions.. 99
Default LUs... 99

DEFINE_LS...100
VCB structure... 100
Supplied parameters..104
Returned parameters: successful execution...122
Returned parameters: parameter check... 122
Returned parameters: state check.. 124
Returned parameters: other conditions.. 125
Bit ordering in MAC addresses...125
Modem control characters...126

DEFINE_LS_ROUTING...127
VCB structure... 127
Supplied parameters..127
Returned parameters: successful execution...128
Returned parameters: parameter check... 128
Returned parameters: state check.. 128
Returned parameters: other conditions.. 128

DEFINE_LU62_TIMEOUT.. 129
VCB structure... 129
Supplied parameters..129
Returned parameters: successful execution...129
Returned parameters: parameter check... 130
Returned parameters: other conditions.. 130

DEFINE_LU_0_TO_3.. 130
VCB structure... 130
Supplied parameters..131
Returned parameters: successful execution...133
Returned parameters: parameter check... 133
Returned parameters: state check.. 133
Returned parameters: other conditions.. 134

DEFINE_LU_0_TO_3_RANGE..134
VCB structure... 134

 vii

Supplied parameters..134
Returned parameters: successful execution...137
Returned parameters: parameter check... 137
Returned parameters: state check.. 137
Returned parameters: other conditions.. 138

DEFINE_LU_LU_PASSWORD... 138
VCB structure... 138
Supplied parameters..138
Returned parameters: successful execution...139
Returned parameters: parameter check... 139
Returned parameters: other conditions.. 139

DEFINE_LU_POOL... 140
VCB structure... 140
Supplied parameters..140
Returned parameters: successful execution...140
Returned parameters: parameter check... 140
Returned parameters: state check.. 141
Returned parameters: other conditions.. 141

DEFINE_MODE.. 141
VCB structure... 141
Supplied parameters..142
Returned parameters: successful execution...144
Returned parameters: parameter check... 144
Returned parameters: other conditions.. 145

DEFINE_NODE...145
VCB structure... 145
Supplied parameters..146
Returned parameters: successful execution...155
Returned parameters: parameter check... 155
Returned parameters: state check.. 156
Returned parameters: other conditions.. 156

DEFINE_PARTNER_LU.. 156
VCB structure... 156
Supplied parameters..157
Returned parameters: successful execution...158
Returned parameters: parameter check... 158
Returned parameters: state check.. 158
Returned parameters: other conditions.. 158

DEFINE_PORT... 159
VCB structure... 159
Supplied parameters..163
Returned parameters: successful execution...172
Returned parameters: parameter check... 172
Returned parameters: state check.. 173
Returned parameters: other conditions.. 174
Incoming calls.. 174

DEFINE_RCF_ACCESS... 174
VCB structure... 174
Supplied parameters..174
Returned parameters: successful execution...175
Returned parameters: parameter check... 175
Returned parameters: other conditions.. 175

DEFINE_RTP_TUNING... 175
VCB structure... 176
Supplied parameters..176
Returned parameters: successful execution...177
Returned parameters: parameter check... 177
Returned parameters: other conditions.. 177

viii

DEFINE_SECURITY_ACCESS_LIST... 177
VCB structure... 178
Supplied parameters..178
Returned parameters: successful execution...179
Returned parameters: parameter check... 179
Returned parameters: other conditions.. 179

DEFINE_TN3270_ACCESS.. 179
VCB structure... 179
Supplied parameters..180
Returned parameters: successful execution...184
Returned parameters: parameter check... 184
Returned parameters: other conditions.. 185
Using the Telnet Daemon's TCP/IP Port.. 185

DEFINE_TN3270_ASSOCIATION... 185
VCB structure... 185
Supplied parameters..186
Returned parameters: successful execution...186
Returned parameters: parameter check... 186
Returned parameters: other conditions.. 187

DEFINE_TN3270_DEFAULTS.. 187
VCB structure... 187
Supplied parameters..187
Returned parameters: successful execution...188
Returned parameters: parameter check... 188
Returned parameters: other conditions.. 188

DEFINE_TN3270_EXPRESS_LOGON.. 188
VCB structure... 189
Supplied parameters..189
Returned parameters: successful execution...189
Returned parameters: other conditions.. 189

DEFINE_TN3270_SLP... 190
VCB structure... 190
Supplied parameters..190
Returned parameters: successful execution...191
Returned parameters: parameter check... 192
Returned parameters: other conditions.. 192

DEFINE_TN3270_SSL_LDAP.. 192
VCB structure... 192
Supplied parameters..193
Returned parameters: successful execution...193
Returned parameters: parameter check... 194
Returned parameters: function not supported... 194
Returned parameters: other conditions.. 194

DEFINE_TN_REDIRECT...194
VCB structure... 194
Supplied parameters..195
Returned parameters: successful execution...199
Returned parameters: parameter check... 199
Returned parameters: other conditions.. 199

DEFINE_TP...199
VCB structure... 200
Supplied parameters..200
Returned parameters: successful execution...201
Returned parameters: parameter check... 202
Returned parameters: state check.. 202
Returned parameters: other conditions.. 202

DEFINE_TP_LOAD_INFO... 202
VCB structure... 202

 ix

Supplied parameters..203
Returned parameters: successful execution...204
Returned parameters: parameter check... 204
Returned parameters: other conditions.. 205

DEFINE_USERID_PASSWORD...205
VCB structure... 205
Supplied parameters..205
Returned parameters: successful execution...206
Returned parameters: parameter check... 206
Returned parameters: other conditions.. 207

DELETE_ADJACENT_LEN_NODE.. 207
VCB structure... 207
Supplied parameters..207
Returned parameters: successful execution...208
Returned parameters: parameter check... 208
Returned parameters: state check.. 208
Returned parameters: other conditions.. 208

DELETE_BACKUP...208
VCB structure... 208
Supplied parameters..209
Returned parameters: successful execution...209
Returned parameters: state check.. 209
Returned parameters: other conditions.. 209

DELETE_CN.. 209
VCB structure... 210
Supplied parameters..210
Returned parameters: successful execution...210
Returned parameters: parameter check... 210
Returned parameters: function not supported... 211
Returned parameters: other conditions.. 211

DELETE_COS.. 211
VCB structure... 211
Supplied parameters..211
Returned parameters: successful execution...211
Returned parameters: parameter check... 211
Returned parameters: other conditions.. 212

DELETE_CPIC_SIDE_INFO..212
VCB structure... 212
Supplied parameters..212
Returned parameters: successful execution...212
Returned parameters: state check.. 212
Returned parameters: other conditions.. 213

DELETE_DIRECTORY_ENTRY..213
VCB structure... 213
Supplied parameters..213
Returned parameters: successful execution...214
Returned parameters: parameter check... 214
Returned parameters: state check.. 214
Returned parameters: other conditions.. 214

DELETE_DLC.. 214
VCB structure... 214
Supplied parameters..215
Returned parameters: successful execution...215
Returned parameters: parameter check... 215
Returned parameters: state check.. 215
Returned parameters: other conditions.. 215

DELETE_DOWNSTREAM_LU... 215
VCB structure... 216

x

Supplied parameters..216
Returned parameters: successful execution...216
Returned parameters: parameter check... 216
Returned parameters: state check.. 216
Returned parameters: function not supported... 217
Returned parameters: other conditions.. 217

DELETE_DOWNSTREAM_LU_RANGE..217
VCB structure... 217
Supplied parameters..217
Returned parameters: successful execution...217
Returned parameters: parameter check... 218
Returned parameters: state check.. 218
Returned parameters: function not supported... 218
Returned parameters: other conditions.. 218

DELETE_DSPU_TEMPLATE.. 218
VCB structure... 219
Supplied parameters..219
Returned parameters: successful execution...220
Returned parameters: parameter check... 220
Returned parameters: other conditions.. 220

DELETE_FOCAL_POINT.. 220
VCB structure... 220
Supplied parameters..220
Returned parameters: successful execution...221
Returned parameters: parameter check... 221
Returned parameters: function not supported... 221
Returned parameters: other conditions.. 221

DELETE_INTERNAL_PU.. 222
VCB structure... 222
Supplied parameters..222
Returned parameters: successful execution...222
Returned parameters: parameter check... 222
Returned parameters: state check.. 222
Returned parameters: function not supported... 223
Returned parameters: other conditions.. 223

DELETE_LOCAL_LU... 223
VCB structure... 223
Supplied parameters..223
Returned parameters: successful execution...223
Returned parameters: parameter check... 223
Returned parameters: other conditions.. 224

DELETE_LS...224
VCB structure... 224
Supplied parameters..224
Returned parameters: successful execution...224
Returned parameters: parameter check... 224
Returned parameters: state check.. 225
Returned parameters: other conditions.. 225

DELETE_LS_ROUTING...225
VCB structure... 225
Supplied parameters..225
Returned parameters: successful execution...226
Returned parameters: parameter check... 226
Returned parameters: state check.. 226
Returned parameters: other conditions.. 227

DELETE_LU62_TIMEOUT.. 227
VCB structure... 227
Supplied parameters..227

 xi

Returned parameters: successful execution...227
Returned parameters: parameter check... 228
Returned parameters: other conditions.. 228

DELETE_LU_0_TO_3.. 228
VCB structure... 228
Supplied parameters..228
Returned parameters: successful execution...229
Returned parameters: parameter check... 229
Returned parameters: state check.. 229
Returned parameters: other conditions.. 229

DELETE_LU_0_TO_3_RANGE..229
VCB structure... 229
Supplied parameters..230
Returned parameters: successful execution...230
Returned parameters: parameter check... 230
Returned parameters: state check.. 231
Returned parameters: other conditions.. 231

DELETE_LU_LU_PASSWORD... 231
VCB structure... 231
Supplied parameters..231
Returned parameters: successful execution...232
Returned parameters: parameter check... 232
Returned parameters: other conditions.. 232

DELETE_LU_POOL... 232
VCB structure... 232
Supplied parameters..232
Returned parameters: successful execution...233
Returned parameters: parameter check... 233
Returned parameters: other conditions.. 233

DELETE_MODE...233
VCB structure... 233
Supplied parameters..234
Returned parameters: successful execution...234
Returned parameters: parameter check... 234
Returned parameters: other conditions.. 234

DELETE_PARTNER_LU...234
VCB structure... 234
Supplied parameters..235
Returned parameters: successful execution...235
Returned parameters: parameter check... 235
Returned parameters: other conditions.. 235

DELETE_PORT..235
VCB structure... 235
Supplied parameters..236
Returned parameters: successful execution...236
Returned parameters: parameter check... 236
Returned parameters: state check.. 236
Returned parameters: other conditions.. 236

DELETE_RCF_ACCESS... 236
VCB structure... 237
Supplied parameters..237
Returned parameters: successful execution...237
Returned parameters: other conditions.. 237

DELETE_SECURITY_ACCESS_LIST... 237
VCB structure... 237
Supplied parameters..238
Returned parameters: successful execution...238
Returned parameters: parameter check... 238

xii

Returned parameters: other conditions.. 238
DELETE_TN3270_ACCESS.. 238

VCB structure... 239
Supplied parameters..239
Returned parameters: successful execution...240
Returned parameters: parameter check... 240
Returned parameters: other conditions.. 240

DELETE_TN3270_ASSOCIATION..240
VCB structure... 241
Supplied parameters..241
Returned parameters: successful execution...241
Returned parameters: parameter check... 241
Returned parameters: state check.. 241
Returned parameters: other conditions.. 241

DELETE_TN_REDIRECT...242
VCB structure... 242
Supplied parameters..242
Returned parameters: successful execution...243
Returned parameters: parameter check... 243
Returned parameters: other conditions.. 243

DELETE_TP...243
VCB structure... 243
Supplied parameters..243
Returned parameters: successful execution...244
Returned parameters: parameter check... 244
Returned parameters: other conditions.. 244

DELETE_TP_LOAD_INFO... 244
VCB structure... 244
Supplied parameters..244
Returned parameters: successful execution...245
Returned parameters: parameter check... 245
Returned parameters: other conditions.. 245

DELETE_USERID_PASSWORD...245
VCB structure... 245
Supplied parameters..246
Returned parameters: successful execution...246
Returned parameters: parameter check... 246
Returned parameters: other conditions.. 246

DISCONNECT_NODE... 247
VCB structure... 247
Supplied parameters..247
Returned parameters: successful execution...247
Returned parameters: state check.. 247
Returned parameters: other conditions.. 247

INIT_NODE.. 248
VCB structure... 248
Supplied parameters..248
Returned parameters: successful execution...248
Returned parameters: parameter check... 248
Returned parameters: state check.. 248
Returned parameters: other conditions.. 249

INITIALIZE_SESSION_LIMIT..249
VCB structure... 249
Supplied parameters..249
Returned parameters: successful execution...251
Returned parameters: parameter check... 251
Returned parameters: state check.. 251
Returned parameters: session allocation error...252

 xiii

Returned parameters: CNOS processing errors..252
Returned parameters: other conditions.. 252

OPEN_FILE.. 252
VCB structure... 252
Supplied parameters..253
Returned parameters: successful execution...253
Returned parameters: parameter check... 254
Returned parameters: state check.. 254
Returned parameters: other conditions.. 254

PATH_SWITCH... 254
VCB structure... 255
Supplied parameters..255
Returned parameters: successful execution...255
Returned parameters: parameter check... 255
Returned parameters: state check.. 255
Returned parameters: path switch disabled... 255
Returned parameters: path switch failure...256
Returned parameters: node check.. 256
Returned parameters: other conditions.. 256

QUERY_ACTIVE_TRANSACTION...256
VCB structure... 256
Supplied parameters..257
Returned parameters: successful execution...258
Returned parameters: parameter check... 259
Returned parameters: function not supported... 259
Returned parameters: other conditions.. 259

QUERY_ADJACENT_NN... 259
VCB structure... 259
Supplied parameters..260
Returned parameters: successful execution...260
Returned parameters: parameter check... 261
Returned parameters: function not supported... 262
Returned parameters: other conditions.. 262

QUERY_AVAILABLE_TP... 262
VCB structure... 262
Supplied parameters..263
Returned parameters: successful execution...263
Returned parameters: parameter check... 264
Returned parameters: other conditions.. 264

QUERY_BUFFER_AVAILABILITY...264
VCB structure... 264
Supplied parameters..265
Returned parameters: successful execution...265
Returned parameters: other conditions.. 266

QUERY_CENTRAL_LOGGER...266
VCB structure... 267
Supplied parameters..267
Returned parameters: successful execution...267
Returned parameters: state check.. 267
Returned parameters: other conditions.. 267

QUERY_CENTRAL_LOGGING.. 267
VCB structure... 267
Supplied parameters..268
Returned parameters: successful execution...268
Returned parameters: parameter check... 268
State check...268
Returned parameters: other conditions.. 268

QUERY_CN..269

xiv

VCB structure... 269
Supplied parameters..270
Returned parameters: successful execution...270
Returned parameters: parameter check... 272
Returned parameters: function not supported... 272
Returned parameters: other conditions.. 272

QUERY_CN_PORT.. 273
VCB structure... 273
Supplied parameters..273
Returned parameters: successful execution...274
Returned parameters: parameter check... 274
Returned parameters: function not supported... 275
Returned parameters: other conditions.. 275

QUERY_CONVERSATION... 275
VCB structure... 275
Supplied parameters..276
Returned parameters: successful execution...277
Returned parameters: parameter check... 278
Returned parameters: other conditions.. 278

QUERY_COS... 279
VCB structure... 279
Supplied parameters..279
Returned parameters: successful execution...280
Returned parameters: parameter check... 281
Returned parameters: other conditions.. 281

QUERY_COS_NODE_ROW... 281
VCB structure... 281
Supplied parameters..282
Returned parameters: successful execution...283
Returned parameters: parameter check... 284
Returned parameters: other conditions.. 284

QUERY_COS_TG_ROW... 284
VCB structure... 285
Supplied parameters..285
Returned parameters: successful execution...286
Returned parameters: parameter check... 289
Returned parameters: other conditions.. 289

QUERY_CPIC_SIDE_INFO... 289
VCB structure... 289
Supplied parameters..290
Returned parameters: successful execution...290
Returned parameters: parameter check... 292
Returned parameters: state check.. 292
Returned parameters: other conditions.. 292

QUERY_CS_TRACE... 293
VCB structure... 293
Supplied parameters..293
Returned parameters: successful execution...293
Returned parameters: parameter check... 294
Returned parameters: other conditions.. 294

QUERY_DEFAULT_PU...294
VCB structure... 294
Supplied parameters..295
Returned parameters: successful execution...295
Returned parameters: node not started..295
Returned parameters: other conditions.. 295

QUERY_DEFAULTS... 295
VCB structure... 295

 xv

Supplied parameters..296
Returned parameters: successful execution...296
Returned parameters: node not started..297
Returned parameters: other conditions.. 297

QUERY_DIRECTORY_ENTRY... 297
VCB structure... 297
Supplied parameters..298
Returned parameters: successful execution...299
Returned parameters: parameter check... 302
Returned parameters: other conditions.. 303

QUERY_DIRECTORY_LU.. 303
VCB structure... 303
Supplied parameters..304
Returned parameters: successful execution...304
Returned parameters: parameter check... 306
Returned parameters: other conditions.. 307

QUERY_DIRECTORY_STATS.. 307
VCB structure... 307
Supplied parameters..307
Returned parameters: successful execution...307
Returned parameters: other conditions.. 308

QUERY_DLC..308
VCB structure... 308
Supplied parameters..309
Returned parameters: successful execution...310
Returned parameters: parameter check... 312
Returned parameters: other conditions.. 313

QUERY_DLC_TRACE...313
VCB structure... 313
Supplied parameters..313
Returned parameters: successful execution...315
Returned parameters: parameter check... 317
Returned parameters: other conditions.. 317

QUERY_DLUR_DEFAULTS..317
VCB structure... 317
Supplied parameters..317
Returned parameters: successful execution...318
Returned parameters: function not supported... 318
Returned parameters: other conditions.. 318

QUERY_DLUR_LU...318
VCB structure... 318
Supplied parameters..319
Returned parameters: successful execution...320
Returned parameters: parameter check... 321
Returned parameters: function not supported... 322
Returned parameters: other conditions.. 322

QUERY_DLUR_PU.. 322
VCB structure... 322
Supplied parameters..323
Returned parameters: successful execution...324
Returned parameters: parameter check... 327
Returned parameters: function not supported... 327
Returned parameters: other conditions.. 327

QUERY_DLUS... 327
VCB structure... 328
Supplied parameters..328
Returned parameters: successful execution...329
Returned parameters: parameter check... 331

xvi

Returned parameters: function not supported... 331
Returned parameters: other conditions.. 331

QUERY_DOMAIN_CONFIG_FILE...331
VCB structure... 331
Supplied parameters..332
Returned parameters: successful execution...332
Returned parameters: other conditions.. 332

QUERY_DOWNSTREAM_LU...332
VCB structure... 332
Supplied parameters..334
Returned parameters: successful execution...335
Returned parameters: parameter check... 338
Returned parameters: state check.. 339
Returned parameters: function not supported... 339
Returned parameters: other conditions.. 339

QUERY_DOWNSTREAM_PU.. 339
VCB structure... 339
Supplied parameters..340
Returned parameters: successful execution...341
Returned parameters: parameter check... 343
Returned parameters: function not supported... 343
Returned parameters: other conditions.. 343

QUERY_DSPU_TEMPLATE... 343
VCB structure... 343
Supplied parameters..344
Returned parameters: successful execution...345
Returned parameters: parameter check... 346
Returned parameters: other conditions.. 346

QUERY_FOCAL_POINT..346
VCB structure... 346
Supplied parameters..347
Returned parameters: successful execution...348
Returned parameters: parameter check... 350
Returned parameters: function not supported... 350
Returned parameters: other conditions.. 350

QUERY_GLOBAL_LOG_TYPE... 350
VCB structure... 351
Supplied parameters..351
Returned parameters: successful execution...351
Returned parameters: parameter check... 352
Returned parameters: other conditions.. 352

QUERY_ISR_SESSION... 352
VCB structure... 352
Supplied parameters..354
Returned parameters: successful execution...355
Returned parameters: parameter check... 359
Returned parameters: function not supported... 359
Returned parameters: other conditions.. 359

QUERY_KERNEL_MEMORY_LIMIT..359
VCB structure... 359
Supplied parameters..359
Returned parameters: successful execution...360
Returned parameters: other conditions.. 360

QUERY_LOCAL_LU...360
VCB structure... 361
Supplied parameters..362
Returned parameters: successful execution...363
Returned parameters: parameter check... 366

 xvii

Returned parameters: other conditions.. 367
QUERY_LOCAL_TOPOLOGY... 367

VCB structure... 367
Supplied parameters..368
Returned parameters: successful execution...369
Returned parameters: parameter check... 371
Returned parameters: other conditions.. 372

QUERY_LOG_FILE..372
VCB structure... 372
Supplied parameters..372
Returned parameters: successful execution...372
Returned parameters: parameter check... 373
Returned parameters: other conditions.. 373

QUERY_LOG_TYPE...373
VCB structure... 374
Supplied parameters..374
Returned parameters: successful execution...374
Returned parameters: other conditions.. 375

QUERY_LS.. 375
VCB structure... 375
Supplied parameters..378
Returned parameters: successful execution...379
Returned parameters: parameter check... 395
Returned parameters: other conditions.. 395

QUERY_LS_ROUTING.. 395
VCB structure... 395
Supplied parameters..396
Returned parameters: successful execution...397
Returned parameters: parameter check... 397
Returned parameters: other conditions.. 397

QUERY_LU_0_TO_3... 397
VCB structure... 398
Supplied parameters..400
Returned parameters: successful execution...401
Returned parameters: parameter check... 409
Returned parameters: other conditions.. 409

QUERY_LU_LU_PASSWORD...409
VCB structure... 409
Supplied parameters..410
Returned parameters: successful execution...411
Returned parameters: parameter check... 412
Returned parameters: other conditions.. 412

QUERY_LU_POOL...412
VCB structure... 412
Supplied parameters..413
Returned parameters: successful execution...414
Returned parameters: parameter check... 415
Returned parameters: other conditions.. 416

QUERY_LU62_TIMEOUT..416
VCB structure... 416
Supplied parameters..417
Returned parameters: successful execution...418
Returned parameters: parameter check... 418
Returned parameters: other conditions.. 419

QUERY_MDS_APPLICATION... 419
VCB structure... 419
Supplied parameters..419
Returned parameters: successful execution...420

xviii

Returned parameters: parameter check... 421
Returned parameters: function not supported... 421
Returned parameters: other conditions.. 421

QUERY_MDS_STATISTICS... 421
VCB structure... 421
Supplied parameters..422
Returned parameters: successful execution...422
Returned parameters: function not supported... 423
Returned parameters: other conditions.. 423

QUERY_MODE.. 423
VCB structure... 423
Supplied parameters..424
Returned parameters: successful execution...425
Returned parameters: parameter check... 428
Returned parameters: other conditions.. 428

QUERY_MODE_DEFINITION...429
VCB structure... 429
Supplied parameters..430
Returned parameters: successful execution...430
Returned parameters: parameter check... 433
Returned parameters: other conditions.. 433

QUERY_MODE_TO_COS_MAPPING...433
VCB structure... 433
Supplied parameters..434
Returned parameters: successful execution...434
Returned parameters: parameter check... 435
Returned parameters: other conditions.. 435

QUERY_NMVT_APPLICATION... 435
VCB structure... 435
Supplied parameters..436
Returned parameters: successful execution...436
Returned parameters: parameter check... 437
Returned parameters: other conditions.. 438

QUERY_NN_TOPOLOGY_NODE... 438
VCB structure... 438
Supplied parameters..438
Returned parameters: successful execution...440
Returned parameters: parameter check... 442
Returned parameters: function not supported... 442
Returned parameters: other conditions.. 442

QUERY_NN_TOPOLOGY_STATS...443
VCB structure... 443
Supplied parameters..443
Returned parameters: successful execution...443
Returned parameters: function not supported... 445
Returned parameters: other conditions.. 445

QUERY_NN_TOPOLOGY_TG...445
VCB structure... 446
Supplied parameters..447
Returned parameters: successful execution...448
Returned parameters: parameter check... 452
Returned parameters: function not supported... 452
Returned parameters: other conditions.. 452

QUERY_NODE.. 452
VCB structure... 452
Supplied parameters..454
Returned parameters: successful execution...454
Returned parameters: other conditions.. 464

 xix

QUERY_NODE_ALL.. 464
VCB structure... 464
Supplied parameters..465
Returned parameters: successful execution...465
Returned parameters: parameter check... 466
Returned parameters: other conditions.. 466

QUERY_NODE_LIMITS.. 466
VCB structure... 467
Supplied parameters..467
Returned parameters: successful execution...467
Returned parameters: other conditions.. 469

QUERY_PARTNER_LU.. 469
VCB structure... 470
Supplied parameters..470
Returned parameters: successful execution...472
Returned parameters: parameter check... 475
Returned parameters: other conditions.. 475

QUERY_PARTNER_LU_DEFINITION... 475
VCB structure... 475
Supplied parameters..476
Returned parameters: successful execution...477
Returned parameters: parameter check... 479
Returned parameters: other conditions.. 479

QUERY_PORT... 479
VCB structure... 479
Supplied parameters..481
Returned parameters: successful execution...482
Returned parameters: parameter check... 487
Returned parameters: other conditions.. 487

QUERY_PU... 487
VCB structure... 487
Supplied parameters..488
Returned parameters: successful execution...489
Returned parameters: parameter check... 491
Returned parameters: state check.. 492
Returned parameters: other conditions.. 492

QUERY_RAPI_CLIENTS... 492
VCB structure... 492
Supplied parameters..493
Returned parameters: successful execution...493
Returned parameters: parameter check... 495
Returned parameters: other conditions.. 495

QUERY_RCF_ACCESS...495
VCB structure... 495
Supplied parameters..496
Returned parameters: successful execution...496
Returned parameters: other conditions.. 496

QUERY_RTP_CONNECTION... 496
VCB structure... 497
Supplied parameters..498
Returned parameters: successful execution...499
Returned parameters: parameter check... 503
Returned parameters: other conditions.. 503

QUERY_RTP_TUNING.. 503
VCB structure... 504
Supplied parameters..504
Returned parameters: successful execution...504
Returned parameters: other conditions.. 505

xx

QUERY_SECURITY_ACCESS_LIST...505
VCB structure... 505
Supplied parameters..505
Returned parameters: successful execution...506
Returned parameters: parameter check... 507
Returned parameters: other conditions.. 508

QUERY_SESSION... 508
VCB structure... 508
Supplied parameters..509
Returned parameters: successful execution...511
Returned parameters: parameter check... 514
Returned parameters: other conditions.. 515

QUERY_SNA_NET.. 515
VCB structure... 515
Supplied parameters..515
Returned parameters: successful execution...516
Returned parameters: parameter check... 517
Returned parameters: state check.. 517
Returned parameters: other conditions.. 517

QUERY_STATISTICS...517
VCB structure... 518
Supplied parameters..518
Returned parameters: successful execution...519
Returned parameters: parameter check... 520
Returned parameters: state check.. 520
Returned parameters: function not supported... 520
Returned parameters: other conditions.. 521

QUERY_TN3270_ACCESS_DEF... 521
VCB structure... 521
Supplied parameters..522
Returned parameters: successful execution...523
Returned parameters: parameter check... 525
Returned parameters: other conditions.. 526

QUERY_TN3270_ASSOCIATION... 526
VCB structure... 526
Supplied parameters..526
Returned parameters: successful execution...527
Returned parameters: parameter check... 527
Returned parameters: other conditions.. 528

QUERY_TN3270_DEFAULTS..528
VCB structure... 528
Supplied parameters..528
Returned parameters: successful execution...528
Returned parameters: other conditions.. 529

QUERY_TN3270_EXPRESS_LOGON... 529
VCB structure... 529
Supplied parameters..530
Returned parameters: successful execution...530
Returned parameters: other conditions.. 530

QUERY_TN3270_SLP...530
VCB structure... 530
Supplied parameters..531
Returned parameters: successful execution...531
Returned parameters: other conditions.. 532

QUERY_TN3270_SLP_TRACE.. 532
VCB structure... 532
Supplied parameters..532
Returned parameters: successful execution...532

 xxi

Returned parameters: other conditions.. 533
QUERY_TN3270_SSL_LDAP..533

VCB structure... 533
Supplied parameters..534
Returned parameters: successful execution...534
Returned parameters: other conditions.. 534

QUERY_TN_REDIRECT_DEF..535
VCB structure... 535
Supplied parameters..535
Returned parameters: successful execution...536
Returned parameters: parameter check... 537
Returned parameters: other conditions.. 537

QUERY_TN_SERVER_TRACE..537
VCB structure... 537
Supplied parameters..537
Returned parameters: successful execution...537
Returned parameters: other conditions.. 538

QUERY_TP.. 538
VCB structure... 538
Supplied parameters..539
Returned parameters: successful execution...539
Returned parameters: parameter check... 540
Returned parameters: other conditions.. 541

QUERY_TP_DEFINITION..541
VCB structure... 541
Supplied parameters..541
Returned parameters: successful execution...542
Returned parameters: parameter check... 544
Returned parameters: other conditions.. 545

QUERY_TP_LOAD_INFO...545
VCB structure... 545
Supplied parameters..545
Returned parameters: successful execution...546
Returned parameters: parameter check... 547
Returned parameters: other conditions.. 547

QUERY_TRACE_FILE..548
VCB structure... 548
Supplied parameters..548
Returned parameters: successful execution...548
Returned parameters: parameter check... 549
Returned parameters: other conditions.. 549

QUERY_TRACE_TYPE...549
VCB structure... 549
Supplied parameters..550
Returned parameters: successful execution...550
Returned parameters: other conditions.. 551

QUERY_USERID_PASSWORD.. 551
VCB structure... 551
Supplied parameters..551
Returned parameters: successful execution...552
Returned parameters: parameter check... 553
Returned parameters: other conditions.. 553

REGISTER_INDICATION_SINK...553
VCB structure... 554
Supplied parameters..554
Returned parameters: successful execution...554
Returned parameters: parameter check... 554
Returned parameters: function not supported... 555

xxii

Returned parameters: other conditions.. 555
REMOVE_DLC_TRACE..555

VCB structure... 555
Supplied parameters..556
Returned parameters: successful execution...557
Returned parameters: parameter check... 557
Returned parameters: other conditions.. 558

RESET_SESSION_LIMIT.. 558
VCB structure... 558
Supplied parameters..558
Returned parameters: successful execution...560
Returned parameters: parameter check... 560
Returned parameters: state check.. 561
Returned parameters: session allocation error...561
Returned parameters: CNOS processing errors..561
Returned parameters: other conditions.. 562

SET_BUFFER_AVAILABILITY.. 562
VCB structure... 562
Supplied parameters..562
Returned parameters: successful execution...562
Returned parameters: other conditions.. 562

SET_CENTRAL_LOGGING..562
VCB structure... 562
Supplied parameters..563
Returned parameters: successful execution...563
Returned parameters: parameter check... 563
Returned parameters: other conditions.. 563

SET_CS_TRACE...563
VCB structure... 564
Supplied parameters..564
Returned parameters: successful execution...565
Returned parameters: parameter check... 565
Returned parameters: other conditions.. 565

SET_GLOBAL_LOG_TYPE...565
VCB structure... 566
Supplied parameters..566
Returned parameters: successful execution...567
Returned parameters: parameter check... 567
Returned parameters: other conditions.. 567

SET_KERNEL_MEMORY_LIMIT... 567
VCB structure... 568
Supplied parameters..568
Returned parameters: successful execution...568
Returned parameters: other conditions.. 568

SET_LOG_FILE... 568
VCB structure... 569
Supplied parameters..569
Returned parameters: successful execution...570
Returned parameters: parameter check... 570
Returned parameters: other conditions.. 571

SET_LOG_TYPE.. 571
VCB structure... 571
Supplied parameters..571
Returned parameters: successful execution...572
Returned parameters: parameter check... 573
Returned parameters: other conditions.. 573

SET_PROCESSING_MODE...573
VCB structure... 573

 xxiii

Supplied parameters..573
Returned parameters: successful execution...574
Returned parameters: parameter check... 574
Returned parameters: state check.. 574
Returned parameters: other conditions.. 575

SET_TN3270_SLP_TRACE..575
VCB structure... 575
Supplied parameters..575
Returned parameters: successful execution...576
Returned parameters: other conditions.. 576

SET_TN_SERVER_TRACE...576
VCB structure... 576
Supplied parameters..576
Returned parameters: successful execution...577
Returned parameters: other conditions.. 577

SET_TRACE_FILE... 577
VCB structure... 577
Supplied parameters..577
Returned parameters: successful execution...578
Returned parameters: parameter check... 579
Returned parameters: other conditions.. 579

SET_TRACE_TYPE.. 579
VCB structure... 579
Supplied parameters..579
Returned parameters: successful execution...581
Returned parameters: parameter check... 581
Returned parameters: other conditions.. 581
Trace types... 581

START_DLC...583
VCB structure... 583
Supplied parameters..583
Returned parameters: successful execution...583
Returned parameters: parameter check... 583
Returned parameters: state check.. 583
Returned parameters: other conditions.. 584

START_INTERNAL_PU...584
VCB structure... 584
Supplied parameters..584
Returned parameters: successful execution...585
Returned parameters: parameter check... 585
Returned parameters: state check.. 585
Returned parameters: unsuccessful... 585
Returned parameters: function not supported... 586
Returned parameters: other conditions.. 586

START_LS... 586
VCB structure... 586
Supplied parameters..586
Returned parameters: successful execution...587
Returned parameters: parameter check... 587
Returned parameters: state check.. 587
Returned parameters: unsuccessful... 588
Returned parameters: cancelled... 588
Returned parameters: other conditions.. 588

START_PORT.. 588
VCB structure... 589
Supplied parameters..589
Returned parameters: successful execution...589
Returned parameters: parameter check... 589

xxiv

Returned parameters: state check.. 589
Returned parameters: cancelled... 590
Returned parameters: other conditions.. 590

STOP_DLC...590
VCB structure... 590
Supplied parameters..590
Returned parameters: successful execution...590
Returned parameters: parameter check... 590
Returned parameters: state check.. 591
Returned parameters: cancelled... 591
Returned parameters: other conditions.. 591

STOP_INTERNAL_PU...591
VCB structure... 591
Supplied parameters..592
Returned parameters: successful execution...592
Returned parameters: parameter check... 592
Returned parameters: state check.. 592
Returned parameters: function not supported... 592
Returned parameters: other conditions.. 593

STOP_LS... 593
VCB structure... 593
Supplied parameters..593
Returned parameters: successful execution...594
Returned parameters: parameter check... 594
Returned parameters: state check.. 594
Returned parameters: cancelled... 594
Returned parameters: other conditions.. 594

STOP_PORT..594
VCB structure... 595
Supplied parameters..595
Returned parameters: successful execution...595
Returned parameters: parameter check... 595
Returned parameters: state check.. 595
Returned parameters: cancelled... 596
Returned parameters: other conditions.. 596

TERM_NODE.. 596
VCB structure... 596
Supplied parameters..596
Returned parameters: successful execution...597
Returned parameters: other conditions.. 597

UNREGISTER_INDICATION_SINK..597
VCB structure... 597
Supplied parameters..597
Returned parameters: successful execution...597
Returned parameters: parameter check... 598
Returned parameters: function not supported... 598
Returned parameters: other conditions.. 598

Chapter 4. NOF Indications.. 599
CONFIG_INDICATION...599

VCB structure... 599
DIRECTORY_INDICATION...600

VCB structure... 600
Parameters... 600

DLC_INDICATION.. 602
VCB structure... 602
Parameters... 603

 xxv

DLUR_LU_INDICATION... 603
VCB structure... 603
Parameters... 603

DLUR_PU_INDICATION...604
VCB structure... 604
Parameters... 604

DLUS_INDICATION..606
VCB structure... 606
Parameters... 607

DOWNSTREAM_LU_INDICATION... 608
VCB structure... 608
Parameters... 609

DOWNSTREAM_PU_INDICATION...611
VCB structure... 611
Parameters... 611

FOCAL_POINT_INDICATION.. 613
VCB structure... 613
Parameters... 613

ISR_INDICATION.. 614
VCB structure... 614
Parameters... 615

LOCAL_LU_INDICATION... 617
VCB structure... 617
Parameters... 618

LOCAL_TOPOLOGY_INDICATION... 620
VCB structure... 620
Parameters... 620

LS_INDICATION...621
VCB structure... 622
Parameters... 622

LU_0_TO_3_INDICATION..625
VCB structure... 625
Parameters... 626

MODE_INDICATION.. 628
VCB structure... 628
Parameters... 628

NN_TOPOLOGY_NODE_INDICATION... 629
VCB structure... 629
Parameters... 629

NN_TOPOLOGY_TG_INDICATION...630
VCB structure... 630
Parameters... 630

NOF_STATUS_INDICATION... 632
VCB structure... 632
Parameters... 632

PLU_INDICATION.. 633
VCB structure... 633
Parameters... 633

PORT_INDICATION... 634
VCB structure... 634
Parameters... 634

PU_INDICATION..635
VCB structure... 635
Parameters... 635

RAPI_CLIENT_INDICATION.. 637
VCB structure... 637
Parameters... 638

REGISTRATION_FAILURE... 639

xxvi

VCB structure... 639
Parameters... 639

RTP_INDICATION.. 640
VCB structure... 640
Parameters... 641

SERVER_INDICATION... 644
VCB structure... 644
Parameters... 644

SESSION_INDICATION... 645
VCB structure... 645
Parameters... 646

SNA_NET_INDICATION...648
VCB structure... 649

TN_REDIRECTION_INDICATION..649
VCB structure... 649
Parameters... 649

Appendix A. Return code values...653
Primary return codes... 653
Secondary return codes.. 654

Appendix B. Common return codes...661
Communications subsystem not active.. 661
Indication...661
Invalid function..662
Invalid verb segment... 662
Parameter check..662
State check.. 663
System error.. 663

Appendix C. How to send your comments to IBM.. 665
Email feedback template...665
If you have a technical problem..665

Appendix D. Notices...667
Trademarks.. 668

Bibliography.. 671
CS/AIX version 7.1 publications..671
IBM Redbooks..672
AIX operating system publications... 672
Systems Network Architecture (SNA) publications..673
Host configuration publications.. 673
z/OS Communications Server publications.. 673
TCP/IP publications... 673
X.25 publications...673
APPC publications... 674
Programming publications.. 674
Other IBM networking publications.. 674

Index.. 675

 xxvii

xxviii

Tables

1. Typographic Conventions..xxxiv

2. Escape Sequences for Modem Control Characters..126

 xxix

xxx

Figures

1. CS/AIX Components..3

2. Overall Structure of CS/AIX.. 582

 xxxi

xxxii

About this book

IBM Communications Server for Data Center Deployment on AIX NOF Programmer's Guide contains the
information required to develop C-language application programs that use the Node Operator Facility
(NOF) API to manage IBM Communications Server for Data Center Deployment on AIX resources. IBM
Communications Server for Data Center Deployment on AIX, program product number 5725-H32, is an
IBM®software product that enables a server running AIX®to exchange information with other nodes on an
SNA network.

This book applies to Version 7.1 of CS/AIX running on AIX Version 7.2 or later.

Who should use this book
This book is intended for experienced C programmers who write Systems Network Architecture (SNA)
transaction programs for systems with CS/AIX.

This book is intended for System Administrators and application programmers who use CS/AIX.

System Administrators
System Administrators install CS/AIX, configure the system for network connection, and maintain the
system. They should be familiar with the hardware on which CS/AIX operates and with the AIX
operating system. They must also be knowledgeable about the network to which the system is
connected and understand SNA concepts in general.

Application Programmers
Application programmers design and code transaction and application programs that use the CS/AIX
programming interfaces to send and receive data over an SNA network. They should be thoroughly
familiar with SNA, the remote program with which the transaction or application program
communicates, and the AIX or Linux operating system programming and operating environments.

More detailed information about writing application programs is provided in the manual for each API.
For additional information about CS/AIX publications, see the Bibliography.

How to use this book
This section explains how information is organized and presented in this book.

Organization of this book
This book is organized as follows:

• Chapter 1, “Introduction to the NOF API,” on page 1, provides an overview of the CS/AIX NOF API
and the functions it provides.

• Chapter 2, “Writing NOF applications,” on page 19, contains general information a programmer needs
when writing NOF applications and information about compiling and linking the applications.

• Chapter 3, “NOF API Verbs,” on page 35, provides a detailed description of each of the NOF verbs,
including parameters and return codes.

• Chapter 4, “NOF Indications,” on page 599, provides a detailed description of each of the indications
that a NOF application can register to receive.

• Appendix A, “Return code values,” on page 653, lists all the possible return codes in the NOF interface
in numerical order and gives their meanings.

• Appendix B, “Common return codes,” on page 661, provides information about return codes that are
common to all the NOF verbs.

Who should use this book

© Copyright IBM Corp. 1998, 2021 xxxiii

Typographic conventions
Table 1 on page xxxiv shows the typographic styles used in this document.

Table 1. Typographic Conventions

Special Element Sample of Typography

Document title IBM Communications Server for Data Center
Deployment on AIX NOF Programmer's Guide

File or path name sna.err

Directory name /var/sna

Header file nof_c.h

Program or application snaadmin

Command define_local_lu; cd

General reference to all verbs of a particular type DEFINE_* (indicates all of the NOF API verbs that
define resources)

Option or flag -I

Parameter opcode

Literal value or selection that the user can enter
(including default values)

255

Constant AP_MODE_READ_ONLY

Return value AP_INVALID_FORMAT; 0

Variable representing a supplied value a.b.c.d

Environment variable LD_RUN_PATH

Programming verb CONNECT_NODE

User input snaadmin
status_dependent_lu,pu_name=ETH0

Function, call, or entry point ioctl

Data structure NOF_CALLBACK

Hexadecimal value 0x20

Graphic conventions

This symbol is used to indicate the start of a section of text that applies only to the AIX or Linux operating
system. It applies to AIX servers and to the IBM Remote API Client running on AIX, Linux, Linux for Power
or Linux for IBM Z.

This symbol is used to indicate the start of a section of text that applies to the IBM Remote API Client on
Windows.

This symbol indicates the end of a section of operating system specific text. The information following this
symbol applies regardless of the operating system.

How to use this book

xxxiv IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Where to find more information
See the Bibliography for other books in the CS/AIX library, as well as books that contain additional
information about topics related to SNA and AIX workstations.

Where to find more information

About this book xxxv

Where to find more information

xxxvi IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Chapter 1. Introduction to the NOF API

This chapter provides an introduction to the CS/AIX NOF API. It includes the following information:

• Purpose of the NOF API
• Client/server operation
• NOF verbs and indications

For information about the CS/AIX components and resources accessed by the NOF API, see IBM
Communications Server for Data Center Deployment on AIX Quick Beginnings.

Purpose of the NOF API
The CS/AIX NOF API provides access to a standard set of commands, called NOF verbs, that can be used
to administer the CS/AIX system from within an application program. These verbs enable you to define
and delete resources, specify CS/AIX parameters such as diagnostics levels and file names, start and stop
defined resources, query the definition or current status of resources, and manage which servers on the
CS/AIX LAN can act as backup controllers if the controlling configuration file server is not available.

In a client/server system, you can use any NOF verbs in an application running on a server. Applications
running on Remote API Clients can use NOF verbs to query configuration or status information, but cannot
use other verbs to modify the configuration or to start or stop resources.

The NOF verbs provide the same functions as commands issued to the command-line administration
program snaadmin, or as records in a CS/AIX configuration file. For example, the NOF verb
DEFINE_LOCAL_LU is equivalent both to a define_local_lu command issued to the snaadmin
program, and to a define_local_lu record in a configuration file; all three of them perform the same
function, which is to specify the parameters of a CS/AIX local APPC LU.

You can use the Motif administration program xsnaadmin or the Web administration program to perform
the same function as a NOF verb or an administration command (for example, to define a local APPC LU).
However, this does not provide access to the full range of parameters included in some NOF verbs. For
more information about using the Motif administration program or the Web administration program, refer
to the IBM Communications Server for Data Center Deployment on AIX Administration Guide.

You can issue NOF verbs to any of the following targets:

• A running CS/AIX node - to manage its resources or to monitor its operation
• A server where the node is not running - to query the stored configuration or to modify it for use when

the node is next started
• The CS/AIX domain as a whole - to define, modify, or query the configuration of domain resources

(resources used to support particular user programs, such as CPI-C side information entries, which are
not associated with a particular node).

• The CS/AIX invokable TP data file - to define information that CS/AIX needs to start invokable (target)
TPs, or to define other information relating to a TP (such as the level of security required to access the
TP).

The NOF API enables you to do the following:

• Develop your own application programs to manage the CS/AIX system
• Develop application programs that use the other CS/AIX APIs so that they can also manage their own

resources (for example, an APPC application can check that the communications link to its partner TP is
active before attempting to allocate a conversation or can define the remote LU where its partner TP is
located).

Purpose of the NOF API

© Copyright IBM Corp. 1998, 2021 1

Node configuration file
Configuration information for each CS/AIX node is held in a text file on the computer where the node runs.
This file includes information about the node's resources, and specifies which resources will be active
when CS/AIX is started. When you start the node, the file provides an initial definition of the resources
that are available; you can then use the NOF API or the CS/AIX administration tools to modify the running
node's resources as your requirements change.

You can set up multiple configuration files, to store different CS/AIX configurations for use at different
times, and select which of these files to use when starting the CS/AIX software.

Configuration in an APPN network is a dynamic process; you can add, delete, or modify resources as
necessary while the CS/AIX software is running. The configuration file provides an initial definition of the
available resources and stores the current definition so that you can use it again when you need to restart
the node, but it is not necessary to define the entire configuration before starting the CS/AIX software.

Domain configuration file
Configuration information for CS/AIX domain resources is held in a single text file on the controller server.
You can set up multiple domain configuration files, to store different CS/AIX configurations for use at
different times, and select which of these files to use when starting the CS/AIX software on the controller
server.

Configuration in an APPN network is a dynamic process; you can add, delete, or modify resources as
necessary while the system is running. The domain configuration file provides an initial definition of the
available domain resources and enables you to store the current definition so that you can use it again
when you need to restart the system, but it is not necessary to define the entire domain configuration
before starting the CS/AIX software or to restart the software when you make changes.

Invokable TP data file
Information that CS/AIX needs to start invokable (target) TPs is held in the file /etc/sna/sna_tps (AIX)
or /etc/opt/ibm/sna/sna_tps (Linux). This file can also provide other information (such as the level
of security required to access the TP). The invokable TP data file resides on the computer where the TPs
run.

CS/AIX components
CS/AIX implements an APPN node to communicate with other nodes on the SNA network. This provides
logical unit (LU) 6.2 support for APPC and CPI-C capabilities, as well as LU 0, 1, 2, and 3 support for 3270
and LUA communications.

CS/AIX can operate as any of the APPN node types LEN, end, network, or branch network node,
depending on its configuration. Certain functions are supported only on particular node types, as defined
by the APPN architecture. These differences are indicated where necessary in this manual; where no
differences are indicated, the information applies to all node types.

Figure 1 on page 3, shows the components of CS/AIX and how they work together.

CS/AIX components

2 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data Center
Deployment on AIX NOF Programmer's Guide

Figure 1. CS/AIX Components

The local node, including its associated connectivity resources (DLCs, ports and LSs), is implemented as
CS/AIX components in the kernel of the AIX system.

The APPC transaction programs, CPI-C applications, LUA applications, and the Remote Command Facility
(RCF) are user-space programs. CS/AIX supports multiple APPC TPs, CPI-C applications, and LUA
applications, running concurrently.

Client/Server operation
The computers on the CS/AIX network are of two types: servers and clients. A server contains a CS/AIX
node and its associated connectivity components; a client does not contain these connectivity
components, but accesses them on the server by means of the network. Servers are AIX computers;
clients can be running AIX, Linux, or Windows. (An AIX or Linux computer can be either a server or a
client, but not both; you cannot install both the server and the client on the same computer.) Servers and
clients communicate across the network using Berkeley Software Distribution (BSD) Sockets.

Each CS/AIX network, referred to as a domain, is identified by a domain name. This name is specified
during the installation of each CS/AIX computer (server or client), so that all computers in a single CS/AIX
network have the same domain name. To install two separate CS/AIX domains on the same physical
network, you simply use two different domain names to identify the domain in which each computer
belongs. A single CS/AIX domain can correspond to a TCP/IP subnet, can be part of a TCP/IP subnet (so
that there are two or more separate CS/AIX domains in the same subnet), or can span multiple subnets.

Each server maintains information about its own node configuration in a node configuration file. You can
use the CS/AIX administration tools or the NOF API to examine the node's configuration. This can be done
either from this server or from any other computer in the domain, as long as the SNA software is running
(whether or not the node is started). You can also use the CS/AIX administration tools or the NOF API on

Client/Server operation

Chapter 1. Introduction to the NOF API 3

this server or on any other server to modify the node's configuration or to start or stop resources on the
node.

Information about the configuration of domain resources for the complete CS/AIX network is held in a
domain configuration file. If you have more than one server on the network, CS/AIX ensures that this
information is consistent across all servers.

Controller server and backup servers
If you are using CS/AIX with all programs on one computer or on a network that contains only one server,
you do not need to read this section.

At any time, one server on the network, known as the controller server, holds the controlling copy of the
CS/AIX domain configuration file. You can define other servers on the network to be backup servers; the
domain configuration file is copied to backup servers (either when they are started or when the controlling
copy is changed) so that all backup servers hold a copy of the latest information.

If the controller server fails or if the SNA software on that computer is stopped, a backup server takes
over as the controller. The domain configuration file on this server is used as the controlling copy and is
copied to other servers as necessary. When the controller server is restarted, it receives a copy of the
domain configuration from the backup server currently acting as controller and then takes over as the
controller.

In general, define at least one backup server in addition to the controller server. Any remaining servers
can be defined as additional backup servers or they can be left as peer servers. A peer server obtains
configuration information from the controller server as required but cannot act as a backup server.

If at any time the controller server and all backup servers are inactive, a node on a peer server can still
operate, and you can still change the node's configuration. However, you cannot access the domain
configuration file and therefore cannot access the configuration of domain resources (as opposed to node
resources). This means that you will not be able to allocate CPI-C conversations using symbolic
destination names defined in the configuration file.

There is one situation in which CS/AIX cannot maintain a consistent configuration of domain resources
across the network; it is your responsibility to maintain the configuration in this case. This situation occurs
when the network is split by a network failure into two noncommunicating domains, each containing one
or more backup servers. In this situation, there will be an acting controller server in each domain, which
will hold any changes made to the domain configuration file in that domain but will be unaware of any
changes made in the other domain. When the network connection is re-established, the domain
configuration file from the original controller server (or from the highest backup server available in either
of the two domains if the controller is inactive at this point) will become the domain configuration file
across the network; this will overwrite any changes made to the domain configuration file in the other
domain while the network was split. Because of this, do not attempt to make any changes to the domain
configuration file in either of the two domains while the network connection is broken. Changes can be
made to the configuration of individual nodes.

CS/AIX stores information about the controller server and backup servers in the file sna.net, known as
the SNA network data file. The controlling copy of this file is stored on the controller server; any changes
made to it are automatically copied to all other servers, in the same way that changes to the domain
configuration file are copied to backup servers. You cannot edit the contents of the file directly; instead,
CS/AIX provides NOF verbs to access the file.

For more information about the SNA network data file, refer to the IBM Communications Server for Data
Center Deployment on AIX Administration Command Reference.

CS/AIX clients can run either on AIX, Linux or Windows systems or within containers on these systems (or
AIX WPARs). CS/AIX Servers cannot run within containers since they have Unix kernel dependencies.

AIX or Linux clients
Clients may be running inside Containers on the AIX or Linux Operating System on inside AIX WPARs.

Client/Server operation

4 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data Center
Deployment on AIX NOF Programmer's Guide

A client computer does not contain any configuration file or the SNA network data file; it holds only the
information it needs to access servers on the CS/AIX network and relies on a server to provide the
necessary configuration information.

The SNA network information required is held in the file /etc/sna/sna_clnt.net (AIX)
or /etc/opt/ibm/sna/sna_clnt.net (Linux). For more information about this file, refer to the IBM
Communications Server for Data Center Deployment on AIX Administration Command Reference.

On a client, you can use the NOF API to query configuration, initialize or activate sessions, and manage
local logging and tracing options. You cannot modify a node's configuration, or start or stop resources on
the node.

Windows Clients
Clients may be running inside Containers on the Windows Operating System.

The CS/AIX Windows Client software can be installed on machines running Microsoft Windows 10 (64-
bit), Windows Server 2012, Windows Server 2016, or Windows Server 2019. Configuration information
required by Windows Clients is managed through the Windows Registry.

For more information about the Windows Registry, and about managing Windows clients, refer to the IBM
Communications Server for Data Center Deployment on AIX Administration Guide.

On a client, you can use the NOF API to query configuration, initialize or activate sessions, and manage
local logging and tracing options. You cannot modify a node's configuration, or start or stop resources on
the node.

NOF verbs to manage specific CS/AIX functions
The following sections list the NOF verbs that are relevant to particular CS/AIX functions. For more
information about individual verbs, see Chapter 3, “NOF API Verbs,” on page 35.

Managing the target (node or file) for NOF verbs
A NOF verb can be issued to a node, to the domain configuration file, or to the SNA network data file. To
access the target node or file, use one of the following verbs:

• OPEN_FILE
• CONNECT_NODE

When you issue the verbs shown above to access the target, you are initially restricted to issuing verbs
that query the configuration; you cannot issue verbs to modify it. If the NOF application is running on a
server (not on a client), you can obtain write access to the target node or file so that you can issue verbs
that modify the configuration. Use the following verb:

• SET_PROCESSING_MODE

To register for indications when the target configuration changes, use the following verb:

• REGISTER_INDICATION_SINK

To unregister when indications are no longer required, use the following verb:

• UNREGISTER_INDICATION_SINK

To release the target node or file when you have finished issuing NOF verbs, use one of the following
verbs:

• DISCONNECT_NODE, CLOSE_FILE

You can issue OPEN_FILE, CONNECT_NODE, DISCONNECT_NODE, and CLOSE_FILE verbs, and NOF
QUERY verbs, from an application running on a client, as well as from an application running on a server.
You cannot issue any other NOF verbs from the client.

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 5

Getting started
The first step is to define the CS/AIX node that runs on each computer, and its communications links to
other computers. To define these components, use the following verbs:

• DEFINE_NODE
• DEFINE_DLC, DEFINE_PORT, DEFINE_LS

After defining these components, activate them to establish the link to the remote system. (DLCs, ports,
and LSs can be defined to be "initially active" using the DEFINE_* verbs described previously, so that they
are started automatically when the node is started; in this case, it is not necessary to start them
manually.) To activate components, use the following verbs:

• INIT_NODE
• START_DLC, START_PORT, START_LS

The components must be started in the order shown because each component relies on the one before it.

To stop these components when access to the remote system is no longer required, use the following
verbs:

• STOP_LS, STOP_PORT, STOP_DLC

To obtain information about the configuration or current status of these components, use the following
verbs:

• QUERY_NODE
• QUERY_DLC, QUERY_PORT, QUERY_LS

To obtain information about the usage of an LS, use the following verb:

• QUERY_STATISTICS

To delete connectivity components when they are no longer required, use the following verbs:

• DELETE_DLC, DELETE_PORT, DELETE_LS

If you are communicating with many nodes on the same shared-access transport facility (SATF), you can
set up a connection network (CN) to represent these nodes, instead of having to define explicit LSs to
each node. CNs cannot be used if the local node is a LEN node.

To set up the CN, you first define a DLC and port to access each of the nodes on the SATF.

You then define a CN that includes all these ports; you do not need to define any LSs because a dynamic
LS to the CN will be set up as required. To define the CN, or to add ports to an existing CN, use the
following verb:

• DEFINE_CN

To obtain information about defined CNs, or about the ports on a CN, use the following verbs:

• QUERY_CN, QUERY_CN_PORT

To delete a CN when it is no longer required, or to remove ports from a CN without deleting the CN, use
the following verb:

• DELETE_CN

To stop the node, which deactivates all resources associated with it, use the following verb:

• TERM_NODE

To define default parameters used by the node, or to query the definition of these parameters, use the
following verbs:

• DEFINE_DEFAULTS, QUERY_DEFAULTS

To query the options and limits permitted by your CS/AIX license for the node, use the following verb:

• QUERY_NODE_LIMITS

NOF verbs to manage specific CS/AIX functions

6 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data Center
Deployment on AIX NOF Programmer's Guide

3270 communications
If CS/AIX users will be using 3270 emulation to communicate with host systems, you need to define the
communications link to the host. For more information, see “Getting started” on page 6. The definition of
the LS to the host must include the name of a local PU to own the LUs required for 3270 emulation and
must have the solicit_sscp_sessions parameter set to AP_YES.

You then need to define LUs that can be used for 3270 emulation. To do this, use the following verbs:

• DEFINE_LU_0_TO_3, DEFINE_LU_0_TO_3_RANGE

To obtain information about the configuration or current status of LUs, use the following verb:

• QUERY_LU_0_TO_3

To obtain information about the PU that owns an LU, use the following verb:

• QUERY_PU

To delete LUs when they are no longer required, use the following verbs:

• DELETE_LU_0_TO_3, DELETE_LU_0_TO_3_RANGE

If you want to provide LU pools (groups of LUs that can be assigned to user sessions as required, rather
than having an LU explicitly defined for each user session), use the following verbs to define a pool, to
obtain information about the definition, or to delete a pool or remove LUs from it when no longer required:

• DEFINE_LU_POOL, QUERY_LU_POOL, DELETE_LU_POOL

LUA communications
If applications running on CS/AIX will be using LUA to communicate with host programs, you need to
define the communications link to the host. For more information, see “Getting started” on page 6. The
definition of the LS to the host must include the name of a local PU to own the LUs, and must have the
solicit_sscp_sessions parameter set to AP_YES.

You then need to define LUs that can be used for LUA. To define the LUs, use the following verbs:

• DEFINE_LU_0_TO_3 to define an individual LU or DEFINE_LU_0_TO_3_RANGE to define multiple LUs
with a single verb

To delete LUs when they are no longer required, use the following verbs:

• DELETE_LU_0_TO_3 to delete an individual LU or DELETE_LU_0_TO_3_RANGE to delete multiple LUs
with a single verb

To obtain information about the configuration or current status of LUs, use the following verb:

• QUERY_LU_0_TO_3

To obtain information about the PU that owns an LU, use the following verb:

• QUERY_PU

If you want to provide LU pools (groups of LUs that can be assigned to applications as required, rather
than having LUs explicitly defined for each application), use the following verbs to define a pool, to obtain
information about the definition, or to delete a pool or remove LUs from it when no longer required:

• DEFINE_LU_POOL, QUERY_LU_POOL, DELETE_LU_POOL

If applications running on CS/AIX will be using LUA to communicate with applications on downstream
computers, you need to define the LUs on the downstream computer and map these to the LUs on the
CS/AIX node. To define the downstream LUs, use the following verbs:

• DEFINE_DOWNSTREAM_LU, DEFINE_DOWNSTREAM_LU_RANGE, DEFINE_DSPU_TEMPLATE

To obtain information about the configuration or current status of downstream LUs or about the
downstream PU that serves them, use the following verbs:

• QUERY_DOWNSTREAM_LU, QUERY_DOWNSTREAM_PU, QUERY_DSPU_TEMPLATE

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 7

To delete downstream LUs when they are no longer required, use the following verbs:

• DELETE_DOWNSTREAM_LU, DELETE_DOWNSTREAM_LU_RANGE, DELETE_DSPU_TEMPLATE

APPC communications
If applications running on CS/AIX will be using APPC to communicate with applications running on host or
peer computers, you need to define LUs that can be used for APPC.

APPC configuration in an APPN network is much simpler than in a pre-APPN SNA network. Many of the
required components, and the interactions between them, can be defined or determined dynamically
when sessions are started and do not need to be specified explicitly in the initial configuration.

Each node includes a default APPC local LU (the "control point LU"). An APPC application can use this LU,
or you can define additional LUs so that different applications can use different LUs. To define the LUs, use
the following verb:

• DEFINE_LOCAL_LU

To obtain information about the configuration or current status of LUs, including the control point LU, use
the following verb:

• QUERY_LOCAL_LU

Because APPN can locate a partner LU dynamically when a local application needs to start a session to it,
normally you do not need to define partner LUs. However, you may need to define partner LUs if you need
to enforce the use of particular APPC features such as conversation security. To define a partner LU, use
the following verb:

• DEFINE_PARTNER_LU

To obtain information about the current status of a partner LU or about its definition if it was explicitly
defined, use the following verbs:

• QUERY_PARTNER_LU, QUERY_PARTNER_LU_DEFINITION

If the local application communicates with its partner using one of the standard SNA-defined modes, you
do not need to define a mode. However, you may want to define additional modes for applications that
have particular requirements not covered by the standard modes. To define a mode, use the following
verb:

• DEFINE_MODE

To define or query the default mode, which specifies parameters that will be used for any unrecognized
mode name, use the following verbs:

• DEFINE_DEFAULTS, QUERY_DEFAULTS

The class of service (COS) used for a mode is normally one of the standard SNA-defined classes of
service. However, the node can be configured to support mapping each mode to a specific COS (the
mode_to_cos_map_supp parameter on the DEFINE_NODE verb). In this case, you may want to define
additional COSs for applications that have particular requirements not covered by the standard COSs. To
define a COS, use the following verb:

• DEFINE_COS

To specify the default COS to which any unrecognized modes will be mapped, use the following verb:

• DEFINE_MODE

To obtain information about the definition or current usage of a mode, about the COS used by a mode, or
about the definition of a COS, use the following verbs:

• QUERY_MODE_DEFINITION, QUERY_MODE, QUERY_MODE_TO_COS_MAPPING
• QUERY_COS, QUERY_COS_NODE_ROW, QUERY_COS_TG_ROW

NOF verbs to manage specific CS/AIX functions

8 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data Center
Deployment on AIX NOF Programmer's Guide

If the local and partner LUs use session-level security, you need to define the password used to establish
a session between the local LU and partner LU. To define the password, check the current definition, or
delete the password when it is no longer required, use the following verbs:

• DEFINE_LU_LU_PASSWORD, QUERY_LU_LU_PASSWORD, DELETE_LU_LU_PASSWORD

To delete local LUs, partner LUs, modes, or COSs when they are no longer required, use the following
verbs:

• DELETE_LOCAL_LU, DELETE_PARTNER_LU
• DELETE_MODE, DELETE_COS

CS/AIX negotiates session limits with the partner LU automatically when sessions are established. If you
need to manage session limits between a local LU and its partner LU explicitly, use the following verbs:

• INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT

To manage individual sessions and conversations, use the following verbs:

• QUERY_SESSION, QUERY_ISR_SESSION, QUERY_CONVERSATION
• ACTIVATE_SESSION, DEACTIVATE_SESSION, DEACTIVATE_CONV_GROUP

Normally you do not need to define CS/AIX invokable TPs if they are operator-started. If a TP is to be
automatically started by CS/AIX when a remote TP allocates a conversation to it, if it is to be operator-
started and a broadcast queued TP (which means that incoming conversation requests can be routed
dynamically to the TP wherever it is running), or if it is to be operator-started and requires a specific
Receive_Allocate timeout value, you need to specify it in the CS/AIX invokable TP data file. For more
information about this file, refer to the IBM Communications Server for Data Center Deployment on AIX
Administration Guide.

In addition, if a TP (either operator-started or auto-started) needs to be restricted to particular values for
conversation security, confirm synchronization, or conversation type (mapped or basic), or if you need to
limit the number of instances of the TP that can be running at any time, you need to define the TP. Use the
following verb:

• DEFINE_TP

To obtain information about the definition of a TP, about its current usage, or about currently active
invokable TPs, use the following verbs:

• QUERY_TP_DEFINITION, QUERY_TP, QUERY_AVAILABLE_TP

To delete a defined TP when it is no longer required, use the following verb:

• DELETE_TP

If the invokable TP requires conversation-level security, you need to define user IDs and passwords that
remote TPs can use to access CS/AIX TPs. To define user IDs and passwords, check the current
definitions, or delete user IDs and passwords when they are no longer required, use the following verbs:

• DEFINE_USERID_PASSWORD, QUERY_USERID_PASSWORD, DELETE_USERID_PASSWORD

To restrict the use of the TP to a specific list of authorized user IDs, check the current list of authorized
user IDs, or delete a list of user IDs when it is no longer required, use the following verbs:

• DEFINE_SECURITY_ACCESS_LIST, QUERY_SECURITY_ACCESS_LIST,
DELETE_SECURITY_ACCESS_LIST

CPI-C communications
CPI-C applications use the same resources as APPC applications; the information in “APPC
communications” on page 8, applies to CPI-C as well as to APPC.

In addition, you can set up side information entries for use by CPI-C applications; each entry defines a
particular partner application and the information required to access it. The local CPI-C application can
then identify its partner application simply by the name of a side information entry, instead of having to

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 9

specify explicit partner LU and TP names, mode name, and conversation security requirements. To define
side information entries, check the current definitions, or delete entries when they are no longer required,
use the following verbs:

• DEFINE_CPIC_SIDE_INFO, QUERY_CPIC_SIDE_INFO, DELETE_CPIC_SIDE_INFO

Managing HPR RTP connections
To define tuning parameters to be used when setting up RTP connections, use the following verb:

• DEFINE_RTP_TUNING

To check the tuning parameters that are currently defined for use when setting up RTP connections, or to
check details of currently active RTP connections, use the following verbs:

• QUERY_RTP_TUNING, QUERY_RTP_CONNECTION

Managing SNA gateway
If the node supports SNA gateway (the pu_conc_support parameter on the DEFINE_NODE verb), to enable
type 0-3 LUs on downstream computers to communicate with host systems using LUs defined on the
CS/AIX node, you must first define the following:

• A DLC, port, and LS from CS/AIX to the downstream computer. For information about defining these
components, see “Getting started” on page 6. The LS must be defined with the following parameters:

solicit_sscp_sessions = NO
dspu_services = PU_CONCENTRATION

dspu_name = the name of the PU serving the LUs on the downstream computer
pu_name = all zeros

• One or more type 0-3 LUs on the CS/AIX node (and optionally an LU pool containing these LUs) for
communications with the host. For information about defining LUs and LU pools, see “3270
communications” on page 7.

You then define the LUs on the downstream computer and map these to the LUs on the CS/AIX node. To
define the downstream LUs, use the following verbs:

• DEFINE_DOWNSTREAM_LU, DEFINE_DOWNSTREAM_LU_RANGE

To obtain information about the configuration or current status of downstream LUs or about the
downstream PU that serves them, use the following verbs:

• QUERY_DOWNSTREAM_LU, QUERY_DOWNSTREAM_PU

To delete downstream LUs when they are no longer required, use the following verbs:

• DELETE_DOWNSTREAM_LU, DELETE_DOWNSTREAM_LU_RANGE

Managing DLUR
If the node supports DLUR (the dlur_support parameter on the DEFINE_NODE verb), and LUs on the
CS/AIX node will be using DLUR to communicate with host systems, you need to define the PU on the
local CS/AIX node that owns these LUs. This is not the same as defining a PU for LUs that communicate
directly with the host (which is done using the DEFINE_LS verb).

To define the PU, use the following verb:

• DEFINE_INTERNAL_PU

To obtain information about the PU, use the following verb:

• QUERY_PU

To define and manage the LUs associated with this PU, see “3270 communications” on page 7 or “LUA
communications” on page 7, earlier in this section.

NOF verbs to manage specific CS/AIX functions

10 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

To start the PU (to request an ACTPU from the host) in order to use the LUs or to stop it when applications
are no longer using the LUs, use the following verbs:

• START_INTERNAL_PU, STOP_INTERNAL_PU

To delete the PU when it is no longer required, use the following verb:

• DELETE_INTERNAL_PU

If the local node is a network node, and LUs on downstream PUs will be using DLUR to communicate with
host systems, you need to define the communications link to the downstream PU, as described in “Getting
started” on page 6. The LS definition must specify that the local node provides DLUR services to the
downstream PU.

You do not need to define the downstream PUs; CS/AIX will obtain the necessary information dynamically
when communications links are established. To obtain information about downstream PUs and LUs
currently using DLUR, use the following verbs:

• QUERY_DOWNSTREAM_PU, QUERY_DOWNSTREAM_LU

To set up defaults to simplify DLUR configuration and reduce the information required on other DLUR
verbs, use the following verb:

• DEFINE_DLUR_DEFAULTS

To obtain information about PUs and LUs currently using DLUR (either on the local node or on downstream
PUs), or about the DLUS nodes they are using, use the following verbs:

• QUERY_DLUR_PU, QUERY_DLUR_LU, QUERY_DLUS

Managing TN server
If TN3270 users will be using the TN server feature on a CS/AIX node to communicate with host systems,
you need to define the communications link to the host. For more information, see “Getting started” on
page 6. The definition of the LS to the host must include the name of a local PU to own the 3270 LUs and
must have the solicit_sscp_sessions parameter set to AP_YES.

You then need to define LUs that can be used for 3270 emulation and optionally group these LUs into LU
pools. For more information about defining LUs and pools, see “3270 communications” on page 7.

To define parameters that apply to all TN Server users, use the following verb:

• DEFINE_TN3270_DEFAULTS

If you are using Secure Sockets Layer (SSL) client authentication, and checking clients against a certificate
revocation list on an external LDAP server, you need to configure details of how to access this server. In
addition, if the client users are permitted to use the TN3270 Express Logon feature, so that their security
certificate authorization replaces the standard user ID and password normally used for TN3270 security,
you need to configure the host Digital Certificate Access Server (DCAS) used to manage this feature. Use
the following verbs:

• DEFINE_TN3270_SSL_LDAP
• DEFINE_TN3270_EXPRESS_LOGON

To define the TN3270 users that can access TN server and assign them to CS/AIX 3270 LUs, use the
following verb:

• DEFINE_TN3270_ACCESS

To define the association between TN3270 display and printer LUs, so that a TN3270E client can connect
to the printer LU that is associated with a display LU without knowing the name of the printer LU, use the
following verb:

• DEFINE_TN3270_ASSOCIATION

To allow TN3270 clients to select a TN Server using SLP, use the following verb:

• DEFINE_TN3270_SLP

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 11

To obtain information about the configuration of TN Server and TN3270 users, use the following verbs:

• QUERY_TN3270_ACCESS_DEF, QUERY_TN3270_ASSOCIATION, QUERY_TN3270_DEFAULTS,
QUERY_TN3270_SSL_LDAP, QUERY_TN3270_EXPRESS_LOGON, QUERY_TN3270_SLP

To delete TN3270 users so that they can no longer use TN server for 3270 emulation, or to delete LU
association information, use the following verbs:

• DELETE_TN3270_ACCESS, DELETE_TN3270_ASSOCIATION

Managing TN Redirector
If Telnet users will be using the TN Redirector feature on a CS/AIX node to communicate with host
systems, you need to define these users and how they will access the host.

To define the TN3270 users that can access TN Redirector, use the following verb:

• DEFINE_TN_REDIRECT

If you are using Secure Sockets Layer (SSL) client authentication, and checking clients against a certificate
revocation list on an external LDAP server, you need to configure details of how to access this server. In
addition, if the client users are permitted to use the TN3270 Express Logon feature, so that their security
certificate authorization replaces the standard user ID and password normally used for TN3270 security,
you need to configure the host Digital Certificate Access Server (DCAS) used to manage this feature. Use
the following verbs:

• DEFINE_TN3270_SSL_LDAP

To obtain information about the configuration of TN Redirector and TN Redirector users, use the following
verbs:

• QUERY_TN_REDIRECT_DEF, QUERY_TN3270_SSL_LDAP

To delete TN Redirector users so that they can no longer use TN Redirector to access the host, use the
following verb:

• DELETE_TN_REDIRECT

Managing SNA management services functions
If applications running on CS/AIX will be using the MS API to communicate with remote MS applications,
you do not need to define any resources for this explicitly, because the node will locate the appropriate
remote applications as required. However, you can define the resources explicitly if you want to specify a
particular remote application to use.

To specify a default PU for use by NMVT-level applications (so that they access the NetView program at a
specific host), use the following verb:

• DEFINE_DEFAULT_PU

To specify a focal point application for use by MDS-level applications (instead of enabling the remote focal
point application to determine which nodes it manages), use the following verb:

• DEFINE_FOCAL_POINT

To obtain information about the focal point currently in use, or to delete a previously defined focal point,
use the following verbs:

• QUERY_FOCAL_POINT, DELETE_FOCAL_POINT

To obtain information about active applications (NMVT-level or MDS-level) using MS functions, use the
following verbs:

• QUERY_NMVT_APPLICATION, QUERY_MDS_APPLICATION

To obtain information about outstanding requests from MDS-level applications, or to obtain statistical
information about previous requests, use the following verbs:

NOF verbs to manage specific CS/AIX functions

12 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• QUERY_ACTIVE_TRANSACTION, QUERY_MDS_STATISTICS

Managing access to the CS/AIX system from the host NetView program
If you want to enable operators at the host NetView console to issue commands on the CS/AIX computer
using either the Service Point Command Facility (SPCF) or the UNIX Command Facility (UCF), you need to
define the access permissions for these operators.

To define these permissions and enable NetView operators to access SPCF or UCF or both, use the
following verb:

• DEFINE_RCF_ACCESS

To check the permissions currently defined, use the following verb:

• QUERY_RCF_ACCESS

To prevent operators from using either SPCF or UCF, use the following verb:

• DELETE_RCF_ACCESS

To remove access to one function but leave the other available, use the following verb:

• DEFINE_RCF_ACCESS

Managing diagnostics settings
The CS/AIX default setting for log messages is to log problem and exception messages but not audit
messages, and to use local logging (messages from each server are written to a file on that server) rather
than central logging (messages from all servers are sent to a central log file on the controller server).
Succinct logging is used (that is, logging of header parameters and message text, but not full details of
cause and action for each message). The error log file, used for problem and exception messages,
is /var/sna/sna.err; the audit log file, used for audit messages if these are enabled, is /var/sna/
sna.aud. Each of these files is backed up and reset when the file size reaches 10 megabytes. The default
settings for succinct logging, exception and audit logging, file names, and file sizes can all be overridden
using NOF verbs, as described in the following information.

The verbs to manage central logging and global logging options apply to clients as well as to servers.
However, other diagnostics settings on Windows clients are controlled by options in the Windows
Registry, and not by NOF verbs. For more information, refer to the IBM Communications Server for Data
Center Deployment on AIX Administration Guide.

CS/AIX also maintains a usage log file /var/sna/sna.usage, which is used to record information about
the current and peak usage of CS/AIX resources. This file is backed up and reset in the same way as the
error and audit log files, and the file name and file size can be specified in the same way.

To specify whether central logging is enabled, use the following verb:

• SET_CENTRAL_LOGGING

To specify whether exception messages or audit messages or both are logged, or to specify whether
succinct logging or full logging is to be used, either to establish global default settings for all servers or to
override the defaults for a particular server, use the following verbs:

• SET_GLOBAL_LOG_TYPE, SET_LOG_TYPE

To change the file names or directories used for log messages or to change the size at which files are
backed up and reset, use the following verb:

• SET_LOG_FILE

To check which server is currently defined as the central logger or to check whether central logging is
enabled, use the following verbs:

• QUERY_CENTRAL_LOGGER, QUERY_CENTRAL_LOGGING

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 13

To check the types of messages being recorded or to check whether succinct logging or full logging is
being used, either globally or on a particular server, use the following verbs:

• QUERY_GLOBAL_LOG_TYPE, QUERY_LOG_TYPE

To check the file, file size, or directory being used for a particular log type, use the following verb:

• QUERY_LOG_FILE

If you want to activate tracing to diagnose problems with connectivity components on a particular CS/AIX
node or to deactivate it after collecting the required data, use the following verbs:

• ADD_DLC_TRACE, REMOVE_DLC_TRACE

If you want to activate tracing to diagnose problems with other CS/AIX kernel components or to
deactivate it after collecting the required data, use the following verb:

• SET_TRACE_TYPE

If you want to activate tracing to diagnose problems with communications between clients and servers
across the CS/AIX LAN or to deactivate it after collecting the required data, use the following verb:

• SET_CS_TRACE

If you want to activate tracing to diagnose problems with the CS/AIX TN server feature or to deactivate it
after collecting the required data, use the following verbs:

• SET_TN_SERVER_TRACE
• SET_TN3270_SLP_TRACE

The default files used for trace data are as follows:

• /var/sna/sna1.trc and /var/sna/sna2.trc for tracing on a particular computer
• /var/sna/snacs1.trc and /var/sna/snacs2.trc for LAN tracing
• /var/sna/snatnsv1.trc and /var/sna/snatnsv2.trc for TN server tracing

If you want to use different files or directories for either of these trace types or to send all tracing of a
particular type to one file instead of two files, use the following verb:

• SET_TRACE_FILE

To check the current settings for a particular trace type or to check the files used for a particular trace
type, use the following verbs:

• QUERY_DLC_TRACE, QUERY_TRACE_TYPE, QUERY_CS_TRACE, QUERY_TN_SERVER_TRACE,
QUERY_TRACE_FILE, QUERY_TN3270_SLP_TRACE

Managing directory entries
If the local node is a LEN node, you need to set up entries in the local node's directory to identify the
adjacent nodes that CS/AIX will communicate with and the LUs associated with these nodes. If a
particular node contains a range of LUs with similar names, you can set up wildcard entries in the
directory to indicate that all LUs in the range are on the specified node.

To define a node and the LUs associated with it, use the following verb:

• DEFINE_ADJACENT_LEN_NODE

To obtain information about a specific node or LU entry in the database (however, this verb cannot be
used to return information about wildcard entries), use the following verb:

• QUERY_DIRECTORY_ENTRY

To obtain information about a specific LU entry or wildcard entry in the database, use the following verb:

• QUERY_DIRECTORY_LU

To obtain statistical information about directory entries, use the following verb:

NOF verbs to manage specific CS/AIX functions

14 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• QUERY_DIRECTORY_STATS

To delete a node and the LUs associated with it or to delete LUs from a node entry, use the following verb:

• DELETE_ADJACENT_LEN_NODE

If the local node is an end node or network node communicating with a LEN node, or if the local node is
the network node serving a LEN node, you need to set up directory entries for the LEN node and its LUs,
using the verbs described above. For communications with other node types, you do not need to set up
directory entries because the node will locate these resources dynamically as required (and add them to
the directory so that they can be used again).

However, you may want to set up entries for particular nodes or LUs so that the local node can
communicate with these resources without having to search for them. Because setting up entries for
particular nodes or LUs overrides the normal APPN resource location process, you can have problems at
this node or at other nodes in the network if the definitions are not correct. Do not define explicit entries
for resources at other nodes unless you are sure that the definitions are correct.

To define an individual node, LU, or wildcard entry for a range of LUs, use the following verb:

• DEFINE_DIRECTORY_ENTRY

To delete an individual node, LU, or wildcard entry from the directory, use the following verb:

• DELETE_DIRECTORY_ENTRY

Delete only directory entries that were explicitly defined using the verbs described previously (these
entries return an entry type of HOME on the QUERY_DIRECTORY_ENTRY verb). Do not use this verb to
delete cached entries (entries that have been set up dynamically as a result of network searches).

Querying the network topology
To obtain information (on a network node) about adjacent network nodes, use the following verb:

• QUERY_ADJACENT_NN

To obtain information about the TGs to adjacent network nodes, use the following verb:

• QUERY_LOCAL_TOPOLOGY

To obtain information (on a network node) about network nodes and virtual routing nodes (VRNs) in the
network, or about the TGs to these nodes, use the following verbs:

• QUERY_NN_TOPOLOGY_NODE, QUERY_NN_TOPOLOGY_TG

To obtain statistical information (on a network node) about the use of entries in the local node's topology
database, use the following verb:

• QUERY_NN_TOPOLOGY_STATS

Checking the communications path to a remote LU
To check that a particular target LU can be accessed (that the node owning the LU is active and that there
is a communications path to the LU), use the following verb:

• APING

Managing servers and clients on the CS/AIX LAN
To obtain a list of servers (nodes) on the CS/AIX LAN, use the following verb:

• QUERY_NODE_ALL

To obtain detailed information about a particular node, use the following verb:

• QUERY_NODE

NOF verbs to manage specific CS/AIX functions

Chapter 1. Introduction to the NOF API 15

To find out which servers are acting as the controlling configuration file server and backup servers, use the
following verb:

• QUERY_SNA_NET

To add new backup servers to the list or to remove existing servers from the list so that they can no longer
act as controller servers, use the following verbs:

• ADD_BACKUP, DELETE_BACKUP

To obtain a list of Remote API Clients (on AIX, Linux or Windows) using a particular server on the CS/AIX
LAN, use the following verb:

• QUERY_RAPI_CLIENTS

Managing configuration file header information
To add a descriptive comment string to the domain configuration file, use the following verb:

• DEFINE_DOMAIN_CONFIG_FILE

To obtain information about the CS/AIX version number for which the domain configuration file was
created or about the comment string stored in it, use the following verb:

• QUERY_DOMAIN_CONFIG_FILE

There are no corresponding verbs for the node configuration file because the header information in the
node configuration file is for CS/AIX internal use only; do not attempt to modify it.

Managing AIX resource usage
To set a limit on the amount of kernel memory that CS/AIX can use for internal data structures or to
specify the maximum amount of memory available for STREAMS buffers, use the following verbs:

• SET_KERNEL_MEMORY_LIMIT, SET_BUFFER_AVAILABILITY

To obtain information about the current limits and usage, use the following verbs:

• QUERY_KERNEL_MEMORY_LIMIT, QUERY_BUFFER_AVAILABILITY

NOF Indications
A NOF application can use the REGISTER_INDICATION_SINK verb to request information about changes
to the CS/AIX configuration or to the status of its resources. CS/AIX then sends an indication message to
the application each time a change occurs.

For more details of the indications that an application can request, see Chapter 4, “NOF Indications,” on
page 599.

Except for CONFIG_INDICATION, NOF_STATUS_INDICATION, and SNA_NET_INDICATION, each
indication is returned when a resource of the specified type changes its status. For example, if the
application registers for DLC indications, CS/AIX sends a DLC_INDICATION message to the application
each time a DLC becomes active or inactive.

An indication returns summary information about the change that has occurred. If necessary, the
application can then issue the appropriate QUERY_* verb to obtain more detailed information.

If the local node is short of resources, it can temporarily suppress indications and not send them to
applications. When the resource shortage condition clears, and the local node subsequently generates an
indication of a type that it has previously suppressed, it then sets a parameter on the indication to inform
the application that one or more previous indications of this type have been lost. The application should
then issue QUERY_* verbs for the appropriate resource type to determine the current state of resources.

For more information about registering to receive indications, see “REGISTER_INDICATION_SINK” on
page 553. For more information about individual indications, see Chapter 4, “NOF Indications,” on page
599.

NOF indications

16 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Configuration indications
An application can register to receive information about changes to the configuration of a particular target
(the domain configuration file, a running node, or an inactive node). This enables it to keep track of
changes that can be made by other NOF applications or by the administration programs. To do this, the
application registers as for other indications, specifying CONFIG_INDICATION as the requested indication
type.

No specific VCB structure is associated with this indication type. Instead, when a change to the
configuration occurs, CS/AIX indicates this change to the application by sending a copy of the completed
VCB from the NOF verb that made the change.

For more information about configuration indications, see “CONFIG_INDICATION” on page 599.

SNA network file indications
An application can register to receive information about changes to the SNA network file sna.net on the
controller server. This enables the application to keep track of changes to this file that can be made by
other NOF applications or by the command-line administration program. To do this, the application
registers as for other indications, specifying SNA_NET_INDICATION as the requested indication type.

Two VCB structures are associated with this indication type:

• ADD_BACKUP (indicating that a backup server has been added to the end of the file)
• DELETE_BACKUP (indicating that an unused backup server has been removed from the file)

Registering with a type of SNA_NET_INDICATION will return an ADD_BACKUP indication when a backup
server is added or a DELETE_BACKUP indication when a server is deleted; the application does not need
to register separately for each of these indications. In each case, the format of the indication is a copy of
the completed VCB from the NOF verb that made the change.

For more information about SNA network file indications, see “SNA_NET_INDICATION” on page 648.

NOF status indications
CS/AIX sends a NOF status indication to a registered NOF application when the application can no longer
access its target node or file (because the CS/AIX software on the target computer has been stopped or
because the communications path to this computer has been lost). If the application is registered to
receive indications from the controlling configuration file, this indication is also returned if another server
takes over as controller (and therefore the target file is no longer the controlling configuration file).

The application does not need to register explicitly to receive this indication; CS/AIX returns it to any
application that has registered for any type of NOF indications on the appropriate target. The indication is
returned on the callback routine that the application supplied to the REGISTER_INDICATION_SINK verb
(or to the first REGISTER_INDICATION_SINK verb, if the application has issued more than one).

After the application receives an indication that the target has failed, all subsequent verbs using the
relevant target handle will be rejected, except for DISCONNECT_NODE or CLOSE_FILE (to free the target
handle). In addition, any registrations for indications on this target handle will be lost; in order to continue
receiving indications when the target becomes available, the application must connect again to the target
and register again for the required indications.

For more information about NOF status indications, see Chapter 4, “NOF Indications,” on page 599.

NOF indications

Chapter 1. Introduction to the NOF API 17

NOF indications

18 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Chapter 2. Writing NOF applications

This chapter describes the following:

• Client/Server considerations

• AIX or Linux considerations

– NOF API entry points for AIX
– Compiling and linking the NOF application

• Windows considerations

– NOF API entry points for Windows
– Compiling and linking the NOF application

• Writing portable applications
• Target (node or file) for NOF verbs, and how they interact with the target
• Ordering and dependencies between NOF verbs
• NOF restrictions based on node configuration
• How to request single or multiple data entries with QUERY_* verbs

Client/Server considerations
In a client/server system, you can use any NOF verbs in an application running on a server. Applications
running on Remote API Clients can use NOF verbs as follows.

• They can use QUERY_* verbs to query configuration or status information.
• They can use verbs to activate sessions or initialize session limits, or to manage logging and Client/

Server tracing. The NOF application must run with the userid root, or with a userid that is a member of
the sys group (AIX) or sna group (Linux), in order to use these commands.

• They cannot use other verbs to modify the configuration or to start or stop resources. If your NOF
application needs to modify the configuration or to start or stop resources, you must write it for AIX and
run it on a server.

AIX or Linux considerations

This section describes operating system issues that you need to consider when writing NOF applications
for use in the AIX or Linux environment.

NOF API entry points for AIX or Linux
An application accesses the NOF API using the following entry point function calls:

Client/Server considerations

© Copyright IBM Corp. 1998, 2021 19

nof
Issues a NOF verb synchronously. CS/AIX does not return control to the application until verb
processing has finished. All NOF verbs except REGISTER_INDICATION_SINK and
UNREGISTER_INDICATION_SINK can be issued through this entry point.

An application can use this entry point only if the application can suspend while waiting for CS/AIX to
completely process a verb.

nof_async
Issues a NOF verb asynchronously. CS/AIX returns control to the application immediately, with a
returned value indicating whether verb processing is still in progress or has completed. If the returned
value indicates that verb processing is still in progress, CS/AIX uses an application-supplied callback
routine to return the results of the verb processing. In cases when CS/AIX is able to completely
process the request, the callback routine will not be invoked.

All NOF verbs can be issued through this entry point. The REGISTER_INDICATION_SINK and
UNREGISTER_INDICATION_SINK verbs must be issued through this entry point.

An application must use this entry point if either of the following conditions is true:

• The application needs to receive NOF indications.
• The application cannot suspend while waiting for CS/AIX to completely process a verb.

nof_async callback routine
When using the asynchronous NOF API entry point, the application must supply a pointer to a callback
routine. CS/AIX uses this callback routine both for completion of a verb and also for returning NOF
data and status indications.

The nof and nof_async entry points are defined in the NOF header file nof_c.h. Parameter types such
as AP_UINT32, used in these entry points and in the NOF VCBs, are defined in the common header file
values_c.h, which is included by the NOF header file nof_c.h. Both of these files are stored in /usr/
include/sna (AIX) or /opt/ibm/sna/include (Linux).

Synchronous entry point: nof
An application uses the nof entry point to issue a NOF verb synchronously. CS/AIX does not return
control to the application until verb processing has finished.

Function call
 void nof (
 AP_UINT32 target_handle,
 void * nofvcb
);

Supplied parameters
An application supplies the following parameters when it uses the nof entry point:

target_handle
An identifier that the application uses to identify the target CS/AIX node or file. This parameter is
supplied in one of the following ways:

• For the following verbs, this parameter is not supplied; set it to 0 (zero). If the verb completes
successfully, CS/AIX returns the target handle as one of the VCB parameters. The application then
uses the target handle for subsequent verbs.

– CONNECT_NODE (to access a running node, or to access the node on a server where the CS/AIX
software is started but the node is not yet started)

– OPEN_FILE (to access the domain configuration fileor the SNA network data file)
• For the following verbs, the application supplies a null value:

– QUERY_NODE_ALL (to obtain a list of running nodes)

AIX or Linux considerations

20 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

– QUERY_CENTRAL_LOGGER
• For all other NOF verbs, the application supplies the value that was returned on the

CONNECT_NODE or OPEN_FILE verb.

nofvcb
Pointer to a Verb Control Block (VCB) that contains the parameters for the verb being issued. The VCB
structure for each verb is described in Chapter 3, “NOF API Verbs,” on page 35. These structures are
defined in the NOF API header file /usr/include/sna/nof_c.h (AIX) or /opt/ibm/sna/
include/nof_c.h (Linux).

Note: The NOF VCBs contain many parameters marked as "reserved"; some of these are used
internally by the CS/AIX software, and others are not used in this version but may be used in future
versions. Your application must not attempt to access any of these reserved parameters; instead, it
must set the entire contents of the VCB to zero to ensure that all of these parameters are zero, before
it sets other parameters that are used by the verb. This ensures that CS/AIX will not misinterpret any
of its internally-used parameters, and also that your application will continue to work with future
CS/AIX versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(nofvcb, 0, sizeof(nofvcb));

Returned values
The nof entry point does not have a return value. When the call returns, the application should examine
the return code in the VCB to determine whether the verb completed successfully and to determine
parameters it needs for further verbs. In particular, when the CONNECT_NODE or OPEN_FILE verb
completes successfully, the VCB contains the target_handle that the application should use when issuing
subsequent verbs.

Using the synchronous entry point
Only one synchronous verb can be outstanding at any time for each target handle. A synchronous verb
fails with the primary return code AP_STATE_CHECK and secondary return code AP_SYNC_PENDING if
another synchronous verb for the same target handle is in progress.

Asynchronous entry point: nof_async
An application uses nof_async to issue a NOF verb asynchronously. The application also supplies a
pointer to a callback routine. CS/AIX returns control to the application immediately with a returned value
that indicates whether verb processing is still in progress or has completed. In most cases, verb
processing is still in progress when control returns to the application. In these cases, CS/AIX uses the
application-supplied callback routine to return the results of the verb processing at a later time. In some
cases, verb processing is complete when CS/AIX returns control to the application, so CS/AIX does not
use the application's callback routine.

Function call
 AP_UINT16 nof_async(
 AP_UINT32 target_handle,
 void * nofvcb,
 NOF_CALLBACK (*comp_proc),
 AP_CORR corr
);

 typedef void (*NOF_CALLBACK) (
 AP_UINT32 target_handle,
 void * nofvcb,
 AP_CORR corr
 AP_UINT32 indic_length
);

 typedef union ap_corr {
 void * corr_p;
 AP_UINT32 corr_l;

AIX or Linux considerations

Chapter 2. Writing NOF applications 21

 AP_INT32 corr_i;
 } AP_CORR;

For more information about the parameters in the NOF_CALLBACK structure, see “The callback routine
specified on the nof_async entry point” on page 23.

Supplied parameters
An application supplies the following parameters when it uses the nof_async entry point:

target_handle
This parameter is supplied in one of the following ways:

• For the following verbs, this parameter is not used; set it to 0 (zero). If the verb completes
successfully, CS/AIX returns the target handle as one of the VCB parameters. The application then
uses the target handle for subsequent verbs.

– CONNECT_NODE (to access a running node, or to access the node on a server where the CS/AIX
software is started but the node is not yet started)

– OPEN_FILE (to access the domain configuration fileor the SNA network data file)
• For the following verbs, the application supplies a null value:

– QUERY_NODE_ALL (to obtain a list of running nodes)
– QUERY_CENTRAL_LOGGER

• For all other NOF verbs, the application supplies the value that was returned on the
CONNECT_NODE or OPEN_FILE verb.

nofvcb
Pointer to a Verb Control Block (VCB) that contains the parameters for the verb being issued. The VCB
structure for each verb is described in Chapter 3, “NOF API Verbs,” on page 35. These structures are
defined in the NOF API header file /usr/include/sna/nof_c.h (AIX) or /opt/ibm/sna/
include/nof_c.h (Linux).

Note: The NOF VCBs contain many parameters marked as "reserved"; some of these are used
internally by the CS/AIX software, and others are not used in this version but may be used in future
versions. Your application must not attempt to access any of these reserved parameters; instead, it
must set the entire contents of the VCB to zero to ensure that all of these parameters are zero, before
it sets other parameters that are used by the verb. This ensures that CS/AIX will not misinterpret any
of its internally-used parameters, and also that your application will continue to work with future
CS/AIX versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(nofvcb, 0, sizeof(nofvcb));

comp_proc
The callback routine that CS/AIX will call when the verb completes. For more information about the
requirements for a callback routine, see “The callback routine specified on the nof_async entry point”
on page 23.

corr
An optional correlator for use by the application. This parameter is defined as a C union so that the
application can specify any of three different parameter types: pointer, 32-bit integer, or 16-bit
integer.

CS/AIX does not use this value, but passes it as a parameter to the callback routine when the verb
completes. This value enables the application to correlate the returned information with its other
processing.

Returned values
The asynchronous entry point returns one of the following values:

AIX or Linux considerations

22 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_COMPLETED
The verb has already completed. The application can examine the parameters in the VCB to determine
whether the verb completed successfully. CS/AIX does not call the supplied callback routine for this
verb.

AP_IN_PROGRESS
The verb has not yet completed. The application can continue with other processing, including issuing
other NOF verbs, provided that they do not depend on the completion of the current verb. However,
the application should not attempt to examine or modify the parameters in the VCB supplied to this
verb.

CS/AIX calls the supplied callback routine to indicate when the verb processing completes. The
application can then examine the VCB parameters.

Using the asynchronous entry point
When using the asynchronous entry point, note the following:

• If an application specifies a null pointer in the comp_proc parameter, the verb will complete
synchronously (as though the application issued the verb using the synchronous entry point).

• If the call to nof_async is made from within an application callback, specifying a null pointer in the
comp_proc parameter is not permitted. In such cases, CS/AIX rejects the verb with a primary return
code value of AP_PARAMETER_CHECK and a secondary return code value of AP_SYNC_NOT_ALLOWED.

• The application must not attempt to use or modify any parameters in the VCB until the callback routine
has been called.

• Multiple verbs do not necessarily complete in the order in which they were issued. In particular, if an
application issues an asynchronous verb followed by a synchronous verb, the completion of the
synchronous verb does not guarantee that the asynchronous verb has already completed.

The callback routine specified on the nof_async entry point
When using the asynchronous NOF API entry point, the application must supply a pointer to a callback
routine. CS/AIX uses this callback routine both for completion of a verb and also for returning NOF
indications. (The REGISTER_INDICATION_SINK verb is also issued as an asynchronous verb that
specifies a callback routine; the callback is called each time the indication is received. For other NOF
verbs, an indication is received when the verb completes.) The application must examine the opcode
parameter in the VCB to determine which event is contained in the callback routine.

This section describes how CS/AIX uses the callback routine and the functions that the callback routine
must perform.

Callback function
 NOF_CALLBACK (*comp_proc);
 typedef void (*NOF_CALLBACK) (
 AP_UINT32 target_handle,
 void * nofvcb,
 AP_CORR corr
 AP_UINT32 indic_length
);
 typedef union ap_corr {
 void * corr_p;
 AP_UINT32 corr_l;
 AP_INT32 corr_i;
 } AP_CORR;

Supplied parameters
CS/AIX calls the callback routine with the following parameters:

target_handle
For NOF indications, CS/AIX passes the target handle that was supplied with the
REGISTER_INDICATION_SINK verb. For completion of verbs, this parameter is undefined.

AIX or Linux considerations

Chapter 2. Writing NOF applications 23

nofvcb
One of the following:

• For NOF indications, a pointer to a VCB supplied by CS/AIX.
• For completion of verbs, a pointer to the VCB supplied by the application. The VCB now includes the

returned parameters set by CS/AIX.

corr
The correlator value supplied by the application. This value enables the application to correlate the
returned information with its other processing.

The callback routine need not use all of these parameters (except as described in “Using the callback
routine for indications” on page 24). The callback routine can perform all the necessary processing on
the returned parameters, or it can simply set a variable to inform the NOF application that the verb has
completed.

Returned values
The callback function does not return any values.

Using the callback routine for indications
Although the application allocates the VCBs for NOF verbs, CS/AIX allocates the VCBs for indications.
Therefore, the application has access to the VCB information only from within the callback routine; the
VCB pointer that CS/AIX supplies to the callback routine is not valid outside the callback routine. The
application must either complete all the required processing from within the callback routine, or make a
copy of any VCB data that it needs to use outside this routine.

Scope of target handle
Each application that needs to use NOF must issue the CONNECT_NODE verb to obtain its own handle. No
two NOF applications can use the same NOF target handle.

In particular, if the application that issued CONNECT_NODE later forks to create a child process, the child
process cannot issue any NOF verbs that use the target handle obtained by the parent process. However,
the child process can issue another CONNECT_NODE to obtain its own target handle.

Compiling and linking the NOF application

AIX applications
To compile and link 32-bit applications, use the following options:

-bimport:/usr/lib/sna/nof_r.exp -I /usr/include/sna

To compile and link 64-bit applications, use the following options:

-bimport:/usr/lib/sna/nof_r64_5.exp -I /usr/include/sna

Linux applications
Before compiling and linking a NOF application, specify the directory where shared libraries are stored, so
that the application can find them at run time. To do this, set the environment variable LD_RUN_PATH
to /opt/ibm/sna/lib, or to /opt/ibm/sna/lib64 if you are compiling a 64-bit application.

To compile and link 32-bit applications, use the following options:

-I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lnof -lsna_r -lpthread -lpLiS

AIX or Linux considerations

24 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

To compile and link 64-bit applications, use the following options:

-I /opt/ibm/sna/include -L /opt/ibm/sna/lib64 -lnof -lsna_r -lpthread -lpLiS

The option -lpLiS is required only if you will be running the application on a CS/AIX server; you do not
need to use it if you are building the application on an IBM Remote API Client and it will run only on the
client. As an alternative to using this option, you can set the the environment variable LD_PRELOAD
to /usr/lib/libpLiS.so before compiling and linking the application.

Windows considerations

This section describes operating system issues that you need to consider when writing NOF applications
for use on Windows clients.

Note that applications running on Remote API Clients on Windows can use NOF QUERY_* verbs to query
configuration or status information, but cannot use other verbs to modify the configuration or to start or
stop resources. If your NOF application needs to modify the configuration or to start or stop resources,
you must write it for AIX and run it on a server.

NOF API entry points for Windows
A Windows NOF application accesses the NOF API using the following entry point function calls:

nof
Issues a NOF verb synchronously. The Remote API does not return control to the application until
verb processing has finished.

An application can use this entry point only if the application can suspend while waiting for the
Remote API to completely process a verb.

nof_async
Issues a NOF verb asynchronously. The Remote API returns control to the application immediately,
with a returned value indicating whether verb processing is still in progress or has completed. If the
returned value indicates that verb processing is still in progress, it will later complete asynchronously;
the Remote API indicates the completion by signaling an event handle supplied by the application. In
cases when the Remote API is able to completely process the request, the event handle will not be
signaled.

An application must use this entry point if it cannot suspend while waiting for the Remote API to
completely process a verb.

The nof and nof_async entry points are defined in the NOF header file winnof.h; this file is installed in
the subdirectory in the subdirectory \sdk for 32-bit applications, or \sdk64 for 64-bit applications,
within the directory where you installed the Windows Client software. Parameter types such as
AP_UINT32, used in these entry points and in the NOF VCBs, are defined in the common header file
values_c.h, which is installed in the same directory and is included by the NOF header file winnof.h.

Synchronous entry point: nof
An application uses the nof entry point to issue a NOF verb synchronously. The Remote API does not
return control to the application until verb processing has finished.

Function call
 void WINAPI nof (
 AP_UINT32 target_handle,
 void * nofvcb
);

Windows considerations

Chapter 2. Writing NOF applications 25

Supplied parameters
An application supplies the following parameters when it uses the nof entry point:

target_handle
An identifier that the application uses to identify the target CS/AIX node or file. This parameter is
supplied in one of the following ways:

• For the following verbs, this parameter is not supplied; set it to 0 (zero). If the verb completes
successfully, the Remote API returns the target handle as one of the VCB parameters. The
application then uses the target handle for subsequent verbs.

– CONNECT_NODE (to access a running node, or to access the node on a server where the CS/AIX
software is started but the node is not yet started)

– OPEN_FILE (to access the domain configuration file or the SNA network data file)
• For the following verbs, the application supplies a null value:

– QUERY_NODE_ALL (to obtain a list of running nodes)
– QUERY_CENTRAL_LOGGER

• For all other NOF verbs, the application supplies the value that was returned on the
CONNECT_NODE or OPEN_FILE verb.

nofvcb
Pointer to a Verb Control Block (VCB) that contains the parameters for the verb being issued. The VCB
structure for each verb is described in Chapter 3, “NOF API Verbs,” on page 35. These structures are
defined in the NOF API header file nof_c.h.

Note: The NOF VCBs contain many parameters marked as "reserved"; some of these are used
internally by the CS/AIX software, and others are not used in this version but may be used in future
versions. Your application must not attempt to access any of these reserved parameters; instead, it
must set the entire contents of the VCB to zero to ensure that all of these parameters are zero, before
it sets other parameters that are used by the verb. This ensures that CS/AIX will not misinterpret any
of its internally-used parameters, and also that your application will continue to work with future
CS/AIX versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(nofvcb, 0, sizeof(nofvcb));

Returned values
The nof entry point does not have a return value. When the call returns, the application should examine
the return code in the VCB to determine whether the verb completed successfully and to determine
parameters it needs for further verbs. In particular, when the CONNECT_NODE or OPEN_FILE verb
completes successfully, the VCB contains the target_handle that the application should use when issuing
subsequent verbs.

Using the synchronous entry point
Only one synchronous verb can be outstanding at any time for each target handle. A synchronous verb
fails with the primary return code AP_STATE_CHECK and secondary return code AP_SYNC_PENDING if
another synchronous verb for the same target handle is in progress.

Asynchronous entry point: nof_async
An application uses nof_async to issue a NOF verb asynchronously. The application also supplies a
pointer to a callback routine. The Remote API returns control to the application immediately with a
returned value that indicates whether verb processing is still in progress or has completed. In most cases,
verb processing is still in progress when control returns to the application. In these cases, the Remote API
uses the application-supplied callback routine to return the results of the verb processing at a later time.
In some cases, verb processing is complete when the Remote API returns control to the application, so
the Remote API does not use the application's callback routine.

Windows considerations

26 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Function call
 AP_UINT16 WINAPI nof_async(
 AP_UINT32 target_handle,
 void * nofvcb,
 NOF_CALLBACK (*comp_proc),
 AP_CORR corr
);

 typedef void (*NOF_CALLBACK) (
 AP_UINT32 target_handle,
 void * nofvcb,
 AP_CORR corr
 AP_UINT32 indic_length
);

 typedef union ap_corr {
 void * corr_p;
 AP_UINT32 corr_l;
 AP_INT32 corr_i;
 } AP_CORR;

For more information about the parameters in the NOF_CALLBACK structure, see “The callback routine
specified on the nof_async entry point” on page 28.

Supplied parameters
An application supplies the following parameters when it uses the nof_async entry point:

target_handle
This parameter is supplied in one of the following ways:

• For the following verbs, this parameter is not used; set it to 0 (zero). If the verb completes
successfully, the Remote API returns the target handle as one of the VCB parameters. The
application then uses the target handle for subsequent verbs.

– CONNECT_NODE (to access a running node, or to access the node on a server where the CS/AIX
software is started but the node is not yet started)

– OPEN_FILE (to access the domain configuration file or the SNA network data file)
• For the following verbs, the application supplies a null value:

– QUERY_NODE_ALL (to obtain a list of running nodes)
– QUERY_CENTRAL_LOGGER

• For all other NOF verbs, the application supplies the value that was returned on the
CONNECT_NODE or OPEN_FILE verb.

nofvcb
Pointer to a Verb Control Block (VCB) that contains the parameters for the verb being issued. The VCB
structure for each verb is described in Chapter 3, “NOF API Verbs,” on page 35. These structures are
defined in the NOF API header file nof_c.h.

Note: The NOF VCBs contain many parameters marked as "reserved"; some of these are used
internally by the CS/AIX software, and others are not used in this version but may be used in future
versions. Your application must not attempt to access any of these reserved parameters; instead, it
must set the entire contents of the VCB to zero to ensure that all of these parameters are zero, before
it sets other parameters that are used by the verb. This ensures that CS/AIX will not misinterpret any
of its internally-used parameters, and also that your application will continue to work with future
CS/AIX versions in which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(nofvcb, 0, sizeof(nofvcb));

comp_proc
The callback routine that the Remote API will call when the verb completes. For more information
about the requirements for a callback routine, see “The callback routine specified on the nof_async
entry point” on page 28.

Windows considerations

Chapter 2. Writing NOF applications 27

corr
An optional correlator for use by the application. This parameter is defined as a C union so that the
application can specify any of three different parameter types: pointer, 32-bit integer, or 16-bit
integer.

The Remote API does not use this value, but passes it as a parameter to the callback routine when the
verb completes. This value enables the application to correlate the returned information with its other
processing.

Returned values
The asynchronous entry point returns one of the following values:

AP_COMPLETED
The verb has already completed. The application can examine the parameters in the VCB to determine
whether the verb completed successfully. The Remote API does not call the supplied callback routine
for this verb.

AP_IN_PROGRESS
The verb has not yet completed. The application can continue with other processing, including issuing
other NOF verbs, provided that they do not depend on the completion of the current verb. However,
the application should not attempt to examine or modify the parameters in the VCB supplied to this
verb.

The Remote API calls the supplied callback routine to indicate when the verb processing completes.
The application can then examine the VCB parameters.

Using the asynchronous entry point
When using the asynchronous entry point, note the following:

• If an application specifies a null pointer in the comp_proc parameter, the verb will complete
synchronously (as though the application issued the verb using the synchronous entry point).

• If the call to nof_async is made from within an application callback, specifying a null pointer in the
comp_proc parameter is not permitted. In such cases, the Remote API rejects the verb with a primary
return code value of AP_PARAMETER_CHECK and a secondary return code value of
AP_SYNC_NOT_ALLOWED.

• The application must not attempt to use or modify any parameters in the VCB until the callback routine
has been called.

• Multiple verbs do not necessarily complete in the order in which they were issued. In particular, if an
application issues an asynchronous verb followed by a synchronous verb, the completion of the
synchronous verb does not guarantee that the asynchronous verb has already completed.

The callback routine specified on the nof_async entry point
When using the asynchronous NOF API entry point, the application must supply a pointer to a callback
routine. The Remote API uses this callback routine to indicate verb completion. This section describes
how the Remote API uses the callback routine and the functions that the callback routine must perform.

Callback function
 NOF_CALLBACK (*comp_proc);
 typedef void (*NOF_CALLBACK) (
 AP_UINT32 target_handle,
 void * nofvcb,
 AP_CORR corr
 AP_UINT32 indic_length
);
 typedef union ap_corr {
 void * corr_p;
 AP_UINT32 corr_l;
 AP_INT32 corr_i;
 } AP_CORR;

Windows considerations

28 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Supplied parameters
The Remote API calls the callback routine with the following parameters:

target_handle
This parameter is undefined.

nofvcb
A a pointer to the VCB supplied by the application. The VCB now includes the returned parameters set
by the Remote API.

corr
The correlator value supplied by the application. This value enables the application to correlate the
returned information with its other processing.

The callback routine need not use all of these parameters. It can perform all the necessary processing on
the returned parameters, or it can simply set a variable to inform the NOF application that the verb has
completed.

Returned values
The callback function does not return any values.

Scope of target handle
Each application that needs to use NOF must issue the CONNECT_NODE verb to obtain its own handle. No
two NOF applications can use the same NOF target handle.

Compiling and linking the NOF application
This section provides information about compiling and linking NOF applications on Windows.

Compiler options for structure packing
The VCB structures for NOF verbs are not packed. Do not use compiler options that change this packing
method.

DWORD parameters are on DWORD boundaries, WORD parameters are on WORD boundaries, and BYTE
parameters are on BYTE boundaries.

Header files
The NOF header file to be included in Windows NOF applications is named nof_c.h. This file is installed
in the subdirectory \sdk for 32-bit applications, or \sdk64 for 64-bit applications, within the directory
where you installed the Remote API Client on Windows software.

Load-time linking
To link the application to NOF at load time, link the TP to the API library file \sdk\winnof32.lib for 32-
bit applications, or \sdk64\winnof32.lib for 64-bit applications.

Run-time linking
To link the application to NOF at run-time, include the following calls in the TP:

• LoadLibrary to load the NOF dynamic link library winnof32.dll
• GetProcAddress to specify each of the NOF entry points required (nof and/or nof_async)
• FreeLibrary when the library is no longer required

Windows considerations

Chapter 2. Writing NOF applications 29

Writing portable applications
The following guidelines are provided for writing CS/AIX NOF applications so that they will be portable to
other environments:

• Include the NOF header file without any path name prefix. This enables the application to be used in an
environment with a different file system. Use include options on the compiler to locate the file (see
“Compiling and linking the NOF application” on page 24 or “Compiling and linking the NOF application”
on page 29).

• Use the symbolic constant names for parameter values and return codes, not the numeric values shown
in the header file; this ensures that the correct value will be used regardless of the way these values are
stored in memory.

• Include a check for return codes other than those applicable to your current operating system (for
example using a "default" case in a switch statement), and provide appropriate diagnostics.

• Ensure that any parameters shown as reserved are set to 0 (zero).

Target for NOF verbs
A NOF verb can be directed to any of the following targets:

• A running node (to manage the node's resources)
• The node on a server where the CS/AIX software is running but where the node has not been started (to

start the node, to query the node's stored configuration, or to modify the configuration so that the
changes take effect when the node is restarted)

• The domain configuration file (to manage domain resources)
• The sna.net file (to manage the CS/AIX servers that can act as backup controllers if the controller

server is not available)

The target for a particular NOF verb is identified by the target_handle parameter used on the NOF call. An
application acquires a target handle using different NOF verbs depending on the target, as follows:

Running node or node on running server
The application issues CONNECT_NODE, specifying the name of the required node, with a null target
handle; CS/AIX returns a target handle for this node as one of the VCB parameters for
CONNECT_NODE.

Domain configuration file
The application issues OPEN_FILE with a null target handle; CS/AIX returns a target handle for the file
as one of the VCB parameters for OPEN_FILE.

sna.net file
The application issues OPEN_FILE with a null target handle; CS/AIX returns a target handle for the file
as one of the VCB parameters for OPEN_FILE.

Some NOF verbs can be issued only to particular target types:

• DEFINE_NODE cannot be issued to a running node; it must be issued to a server where the node is not
running.

• Verbs associated with node resources, such as DEFINE_LOCAL_LU, must be issued to a node.
• START_* and STOP_* verbs, to start and stop node resources, must be issued to a running node.
• Verbs associated with domain resources must be issued to the domain configuration file.
• Different QUERY_* verbs return information about the definition of a resource, on its current status, or

on both definition and status. Status information can only be obtained from a running node. Verbs that
return only status information cannot be issued to an inactive node, and verbs that return both
definition and status will return only definition information when issued to an inactive node. For
example, QUERY_PARTNER_LU_DEFINITION can be issued either to an inactive node (to determine the
stored configuration) or to a running node (to determine the current definition). However,
QUERY_PARTNER_LU (which returns information about the LU's current sessions) can be issued only to

Writing portable applications

30 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

a running node. QUERY_LS (which returns both the definition of the LS and its current status) can be
issued either to an inactive node or to a running node, but status information is not returned if you issue
it to an inactive node. The description of each QUERY_* verb in Chapter 3, “NOF API Verbs,” on page
35 includes information about the valid target types for the verb.

• Verbs associated with managing backup servers (ADD_BACKUP, DELETE_BACKUP, QUERY_SNA_NET,
and REGISTER_INDICATION_SINK or UNREGISTER_INDICATION_SINK for SNA network file
indications) must be issued to the sna.net file.

Processing modes
Each target handle used by an application has an associated processing mode that can be modified with
the NOF verb SET_PROCESSING_MODE. The mode controls file locking and access permissions for the
application.

For a NOF application running on a client, read-only mode is the only mode available. Only QUERY_* verbs
are enabled in this mode. All other verbs, which modify the configuration or status of a resource, will be
rejected. This enables the application to check the configuration or status of a resource but not to change
it.

For a NOF application running on a server, the following modes are available:

AP_MODE_READ_ONLY
Only QUERY_* verbs are enabled in this mode. All other verbs, which modify the configuration or
status of a resource, will be rejected.

This is the default mode when the target handle is first assigned; it enables the application to check
the configuration or status of a resource but not to change it.

AP_MODE_READ_WRITE
All NOF verbs are enabled in this mode, including those that change a resource's configuration or
status.

AP_MODE_COMMIT
This mode is only available if the target handle identifies the domain configuration file (not when
issuing verbs to a node). It obtains a lock on the file so that only this application can access it; this file
lock ensures that the file will not be modified by any other process during a sequence of verbs issued
by this application. The file lock also ensures that no changes are made to the file until the complete
sequence of verbs has been issued (until the application changes from AP_MODE_COMMIT mode to
one of the other modes).

Because this mode prevents any other program from accessing the file, it should be used only for as
long as necessary. The application should immediately issue all the verbs that it requires to modify the
file and then change to one of the other modes.

If the file lock cannot be obtained (for example, because another program is currently modifying the
file), the SET_PROCESSING_MODE verb will fail.

Note: To obtain read/write or commit access to the file, your NOF application must be running with a user
ID that is a member of the SNA administrators group system or sna (or running as root). If the user ID is
not a member of this group or root, the only valid processing mode is AP_MODE_READ_ONLY.

Ordering and dependencies between NOF verbs
The main restriction on the order of NOF verbs is that the first reference to a particular resource must be
in a DEFINE_* verb for that resource. This leads to the following dependencies:

• When creating a new node configuration file, the first verb issued must be DEFINE_NODE.
• A DLC must be defined before any port that refers to it.
• A port must be defined before any LS or CN that refers to it.
• A COS must be defined before any mode that refers to it.
• A PU name must be defined (as part of an LS definition) before a dependent LU that refers to this PU.

Ordering and dependencies between NOF verbs

Chapter 2. Writing NOF applications 31

• An LU must be defined before an LU pool that includes it.
• A downstream PU name (as part of an LS definition) and a host LU must be defined before a

downstream LU that refers to them.
• A resource must be defined before a START_* verb refers to it, and must be started before a STOP_*

verb refers to it.

In addition, when modifying a running node, using a DEFINE_* verb a second time (to modify the previous
definition) is not always valid. For some of these verbs, a second definition is never valid (the resource
must be deleted and then defined again); for others, a second definition is valid only if the resource is
currently inactive. The descriptions of individual DEFINE_* verbs in Chapter 3, “NOF API Verbs,” on page
35 provide information about whether a second definition is valid. When modifying the domain
configuration file, a second DEFINE_* verb can always be used to modify a previous definition.

When creating a new node configuration file, the first verb issued must be DEFINE_NODE. This must be
followed by DEFINE_* and SET_* verbs for all the resources associated with the node.

In the domain configuration file, there is no restriction on the ordering of domain resource records.

NOF restrictions based on node configuration
The DEFINE_NODE verb includes parameters that define the range of functions supported by a node.
Several NOF verbs relate to optional functions that a node can or can not support; these verbs are valid
only when issued to a node that supports the relevant functions.

This section summarizes the optional functions that affect which NOF verbs can be used. For more
information about these functions, see “DEFINE_NODE” on page 145.

APPN end node and LEN node restrictions
The CS/AIX local node can be an APPN network node, an APPN branch network node, an APPN end node,
or a LEN node.

The following NOF verbs are only valid at a network node, branch network node, or end node; the primary
return code AP_FUNCTION_NOT_SUPPORTED is returned if you attempt to issue them at a LEN node.

• DEFINE_CN
• DELETE_CN
• QUERY_CN
• QUERY_CN_PORT

The following NOF verbs are only valid at a network node or branch network node; the primary return
code AP_FUNCTION_NOT_SUPPORTED is returned if you attempt to issue them at an end node or LEN
node.

• QUERY_ADJACENT_NN
• QUERY_ISR_SESSION
• QUERY_NN_TOPOLOGY_NODE
• QUERY_NN_TOPOLOGY_STATS
• QUERY_NN_TOPOLOGY_TG
• REGISTER_INDICATION_SINK for any of the following indications:

– ISR_INDICATION
– NN_TOPOLOGY_NODE_INDICATION
– NN_TOPOLOGY_TG_INDICATION

NOF restrictions based on node configuration

32 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Multiple Domain Support (MDS) restrictions
The local node can be run with or without Multiple Domain Support (MDS). The following NOF verbs are
only valid at a node running with MDS; the primary return code AP_FUNCTION_NOT_SUPPORTED is
returned if you attempt to issue them at a node without MDS.

• QUERY_ACTIVE_TRANSACTION
• QUERY_MDS_APPLICATION
• QUERY_MDS_STATISTICS

SNA gateway and DLUR restrictions
The local node can be run with or without support for SNA gateway or DLUR or both.

The following NOF verbs are valid only if the node is running with SNA gateway enabled; the primary
return code AP_FUNCTION_NOT_SUPPORTED is returned if you attempt to issue them at a node without
SNA gateway.

• DEFINE_DOWNSTREAM_LU, DEFINE_DOWNSTREAM_LU_RANGE
• DELETE_DOWNSTREAM_LU, DELETE_DOWNSTREAM_LU_RANGE

The following NOF verbs are valid only if the node is running with DLUR enabled; the primary return code
AP_FUNCTION_NOT_SUPPORTED is returned if you attempt to issue them at a node without DLUR.

• DEFINE_DLUR_DEFAULTS
• DEFINE_INTERNAL_PU, DELETE_INTERNAL_PU
• START_INTERNAL_PU, STOP_INTERNAL_PU
• QUERY_DLUR_LU, QUERY_DLUR_PU, QUERY_DLUS

The following NOF verbs are valid only if the node is running with SNA gateway or DLUR or both enabled;
the primary return code AP_FUNCTION_NOT_SUPPORTED is returned if you attempt to issue them at a
node without either of these two functions.

• QUERY_DOWNSTREAM_LU, QUERY_DOWNSTREAM_PU

List options for QUERY_* Verbs
A NOF application can obtain information about a particular CS/AIX resource by issuing a QUERY_* verb
for the appropriate resource type. For example, it can obtain information about the configuration of an LS
by issuing QUERY_LS. These verbs can either return information about a specific resource (for example,
the configuration of a particular LS) or about many resources of the same type (for example, a summary of
all configured LSs), depending on the options used. In addition, some QUERY_* verbs have the option of
returning either summary or detailed information about the specified resources. This section explains
how to use these options.

Obtaining information about a single resource or multiple resources
You can think of the information returned by QUERY_* verbs as being stored in the form of a list, ordered
according to the name of the resource. For example, the information returned by QUERY_LS is in order of
LS name. The normal order of the list (for compatibility with SNMP list ordering) is as follows:

• By name length (shortest name first)
• By ASCII lexicographical ordering for names of the same length

Where the list ordering differs from this (for example, where the list is ordered by a numeric value), this
difference is indicated in the individual verb descriptions in Chapter 3, “NOF API Verbs,” on page 35.

This means that an application can obtain information about multiple resources by requesting the
complete list or a specified part of it. The following parameters on a QUERY_* verb determine which
entries from the list are returned:

List options for QUERY_* Verbs

Chapter 2. Writing NOF applications 33

buf_size
Size of the data buffer that the application supplies to receive the returned information.

num_entries
Maximum number of resources for which information should be returned. The application can specify
1 to request a specific entry rather than a range, a number greater than 1 to request a range, or 0
(zero) to request as many entries as possible.

list_options
The position in the list of the first entry required:

• First entry in the list
• Entries starting from a specific named entry
• Entries starting from the next entry after a specific named entry. (The name specified gives the

starting position according to the list ordering and need not exist in the list; for example, if the list
contains entries NODEA, NODEB, NODED, NODEF, and the application requests entries starting from
the first entry after NODEC, the first entry returned is NODED.)

In addition, if the list_options parameter does not request starting from the first entry, the name of a
specific entry in the list is used to indicate the starting position for the required entries.

The number of entries returned is the smallest of the following values:

• The num_entries parameter, if this is nonzero
• The maximum number of entries that the supplied data buffer can hold
• The number of entries between the specified starting position and the end of the list

In addition, the verb returns information about the total number of entries available and the size of the
buffer that would be required to return all the entries at once. If the application has not yet received all
the information it requires, it can then issue further verbs to obtain the remaining information.

These options enable the application to manage the information it receives, as follows:

• To obtain a specific entry, it sets the index value to the name of that entry, list_options to indicate "start
from the named entry", buf_size to at least the size of a single entry, and num_entries to 1.

• To obtain a complete list a few entries at a time, it first sets list_options to indicate "start from beginning
of list", and uses either buf_size or num_entries to limit the amount of information returned. If the
returned values indicate that there is more information available, it then issues another verb with
list_options indicating "start from the following entry" and sets the index value to the name of the last
entry received; this second verb then returns the next section of the list. The application repeats this
process until it has received all the required entries.

Obtaining summary or detailed information
Some QUERY_* verbs provide the option of returning either summary or detailed information about the
specified resources. For example, QUERY_LOCAL_LU can return just the LU name and LU alias (summary
information) or can also return additional information such as the LU address and session limit (detailed
information). The description of each QUERY_* verb in Chapter 3, “NOF API Verbs,” on page 35 indicates
whether the verb includes the option of returning summary or detailed information.

For the verbs that provide this option, the list_options parameter is used to indicate whether summary or
detailed information is required, as well as the starting position within the list. To specify these options,
you combine two values using a logical OR operation (one value to specify the starting position in the list
and one value to specify whether summary or detailed information is required) and set the list_options
parameter to the combination of these two values. For verbs that do not provide this option, you simply
set list_options to a single value to indicate the starting position in the list.

List options for QUERY_* Verbs

34 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Chapter 3. NOF API Verbs

This chapter provides the following information for each NOF API verb:

• Description of the verb's purpose and usage
• Whether the verb can be issued to an active node, an inactive node, the domain configuration file, or the

SNA network data file (unless otherwise stated, verbs may be issued either to an active node or to an
inactive node)

• Verb control block (VCB) structure, as defined in the NOF API header file nof_c.h
• Parameters supplied to the verb by the application
• Parameters returned to the application
• Error return codes for unsuccessful execution

Most parameters supplied to and returned by the NOF interface are hexadecimal values. To simplify
coding, these values are represented by meaningful symbolic constants defined in the header file
values_c.h, which is included by the NOF header file nof_c.h. For example, the opcode parameter of
the ACTIVATE_SESSION verb is the hexadecimal value represented by the symbolic constant
AP_ACTIVATE_SESSION. The file values_c.h also includes definitions of parameter types such as
AP_UINT16 that are used in the NOF VCBs.

It is important that you use the symbolic constant and not the hexadecimal value when setting values for
supplied parameters, or when testing values of returned parameters. This is because different AIX
systems store these values differently in memory, so the value shown may not be in the format recognized
by your system.

The error return codes described in this chapter are specific to each verb. Additional return codes, which
are common to all NOF API verbs, are described in Appendix B, “Common return codes,” on page 661.

NOF API indications, which the application can accept by registering using the
REGISTER_INDICATION_SINK verb, are described separately in Chapter 4, “NOF Indications,” on page
599.

Note: The NOF VCBs contain many parameters marked as "reserved"; some of these are used internally
by the CS/AIX software, and others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters; instead, it must set the entire
contents of the VCB to zero to ensure that all of these parameters are zero, before it sets other
parameters that are used by the verb. This ensures that CS/AIX will not misinterpret any of its internally-
used parameters, and also that your application will continue to work with future CS/AIX versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(nofvcb, 0, sizeof(nofvcb));

ACTIVATE_SESSION
The ACTIVATE_SESSION verb requests CS/AIX to activate a session between the local LU and a specified
partner LU, using a specified mode. You must issue an INITIALIZE_SESSION_LIMIT verb before issuing
an ACTIVATE_SESSION verb, unless cnos_permitted is set to AP_YES.

This verb must be issued to a running node.

This verb can be issued from a NOF application running on a client. If it runs on an AIX or Linux client, the
NOF application must run with the userid root, or with a userid that is a member of the sys group (AIX)
or sna group (Linux).

ACTIVATE_SESSION

© Copyright IBM Corp. 1998, 2021 35

VCB structure
typedef struct activate_session
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char mode_name[8]; /* mode name */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char polarity; /* requested session polarity */
 unsigned char session_id[8]; /* session ID */
 unsigned char cnos_permitted; /* is implicit CNOS permitted? */
 unsigned char reserv4[15]; /* reserved */
} ACTIVATE_SESSION;

Supplied parameters
The application supplies the following parameters:

opcode
AP_ACTIVATE_SESSION

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. This
parameter is used only if lu_name is set to zeros.

If both the LU name and the LU alias are set to all zeros, the verb is forwarded to the LU associated
with the CP (the default LU).

plu_alias
LU alias of the partner LU. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes. To indicate that the partner LU is
defined by its fully qualified LU name instead of its LU alias, set this parameter to 8 binary zeros.

mode_name
Name of the mode to be used by the LUs. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded on the right with EBCDIC spaces if the name is shorter than 8 bytes.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This parameter is used only if the
plu_alias field is set to zeros; it is ignored if plu_alias is specified.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

polarity
The polarity for the session. Possible values are:

• AP_POL_EITHER
• AP_POL_FIRST_SPEAKER
• AP_POL_BIDDER

If AP_POL_EITHER is set, ACTIVATE_SESSION activates a first speaker session if available, otherwise
a bidder session is activated. If AP_POL_FIRST_SPEAKER or AP_POL_BIDDER is set,
ACTIVATE_SESSION only succeeds if a session of the requested polarity is available.

ACTIVATE_SESSION

36 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cnos_permitted
Indicates that CNOS processing is permitted. Possible values are:
AP_YES

CNOS processing is permitted.
AP_NO

CNOS processing is not permitted.

If the activation of a new session is not possible because the session limits for the specified mode are
reset, and this parameter is set to AP_YES, implicit CNOS processing will initialize the session limits.
Execution of this command is suspended while CNOS processing is active.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Possible values are:
AP_AS_NEGOTIATED

The session was activated successfully; the session limit defined for the mode was negotiated
during the activation process.

AP_AS_SPECIFIED
The session was activated successfully; the session limit was not changed.

session_id
The 8-byte identifier of the activated session.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_EXCEEDS_MAX_ALLOWED

The session cannot be activated, because this would exceed the current session limit for this LU-
LU-mode combination.

AP_INVALID_LU_ALIAS
The lu_alias parameter did not match any defined local LU alias.

AP_INVALID_LU_NAME
The lu_name parameter did not match any defined local LU name.

AP_INVALID_PLU_NAME
The fqplu_name parameter did not match any defined partner LU name, or the plu_alias
parameter did not match any defined partner LU name.

AP_INVALID_CNOS_PERMITTED
The value specified in the cnos_permitted parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: activation failure
If the verb does not execute because of other errors, CS/AIX returns one of the following parameters.

ACTIVATE_SESSION

Chapter 3. NOF API Verbs 37

primary_rc
Possible values are:
AP_ACTIVATION_FAIL_NO_RETRY

The session could not be activated because of a condition that requires action (such as a
configuration mismatch or a session protocol error). Check the CS/AIX log file for information
about the error condition, and correct it before retrying this verb.

AP_ACTIVATION_FAIL_RETRY
The session could not be activated because of a temporary condition (such as a link failure). Retry
the verb, preferably after a timeout to allow the condition to clear. Check the CS/AIX log file for
information about the error condition.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

ADD_BACKUP
An application uses this verb to add a server to the list of backup servers in the sna.net file, so that this
server can act as the controlling configuration file server if the current controller becomes inactive. The
new server is added to the end of the list, so that it will only become the controller if all the other servers
listed in the file are inactive.

This verb must be issued to the sna.net file.

VCB structure
typedef struct add_backup
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char backup_name[128]; /* name of backup server to add */
 unsigned char reserv3[4]; /* reserved */
} ADD_BACKUP;

Supplied parameters
The application supplies the following parameters:

opcode
AP_ADD_BACKUP

backup_name
The name of the server being added to the list of backup servers.

If the server name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the server name.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

ADD_BACKUP

38 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_DUPLICATE_RECORD

The server name specified is already listed in the file.
AP_INVALID_TARGET

The target handle on the NOF API call specified a configuration file or a node. This verb must be
issued to the sna.net file.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

ADD_DLC_TRACE
This verb specifies tracing on SNA messages sent on a DLC. It can be used to activate tracing on a
particular DLC, port, LS, or HPR RTP connection, or on a particular session on a specified LS, and to
specify which types of messages are to be traced. It can also be used to activate tracing on all DLCs,
ports, link stations, and HPR RTP connections. For more information about how to use CS/AIX tracing, see
the IBM Communications Server for Data Center Deployment on AIX Administration Guide.

If multiple ADD_DLC_TRACE verbs relating to the same resource are issued, a message will be traced if it
matches any of the verbs currently active. For example:

• If you issue a verb to trace all messages for a port and its LSs, and then issue a second verb to trace only
messages with a specified LFSID for one of the LSs owned by the port, all messages for the LS will
continue to be traced (because they match the first verb). If you then use REMOVE_DLC_TRACE to
remove tracing for the port, messages on the LS with the specified LFSID will continue to be traced
(because they match the second verb which is still active), but other messages on this LS will not be
traced.

• If you issue a verb to trace XID messages on all resources, and then issue a second verb to trace SC and
DFC messages on a particular LS, all three message types will be traced for this LS.

Note: The SET_TRACE_TYPE verb includes an option to truncate each entry in trace files to a specified
length. This option applies to DLC tracing as well as to the kernel component tracing specified by
SET_TRACE_TYPE.

VCB structure
typedef struct add_dlc_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 DLC_TRACE_FILTER filter; /* resource to be traced */
} ADD_DLC_TRACE;

typedef struct dlc_trace_filter
{
 unsigned char resource_type; /* type of resource */
 unsigned char resource_name[8]; /* name of resource */
 SNA_LFSID lfsid; /* session identifier */

ADD_DLC_TRACE

Chapter 3. NOF API Verbs 39

 unsigned char message_type; /* type of messages */
} DLC_TRACE_FILTER;

typedef struct sna_lfsid
{
 union
 {
 AP_UINT16 session_id;
 struct
 {
 unsigned char sidh;
 unsigned char sidl;
 } s;
 } uu;
 AP_UINT16 odai;
} SNA_LFSID;

Supplied parameters
The application supplies the following parameters:

opcode
AP_ADD_DLC_TRACE

filter.resource_type
Specifies the resource to be traced, and optionally the specific message types to be traced for this
resource. Possible values are:
AP_ALL_RESOURCES

Set up tracing options for all DLCs, ports, link stations, and HPR RTP connections.
AP_DLC

Set up tracing options for the DLC named in resource_name, and for all ports and LSs that use this
DLC.

AP_PORT
Set up tracing options for the port named in resource_name, and for all LSs that use this port.

AP_LS
Set up tracing options for the LS named in resource_name.

AP_RTP_RESOURCE_TYPE
Specify tracing options for the RTP connection named in resource_name.

AP_PORT_DEFINED_LS
Set up tracing options for the port named in resource_name, and for all defined LSs (but not
implicit LSs) that use this port.

AP_PORT_IMPLICIT_LS
Set up tracing options for the port named in resource_name, and for all implicit LSs (but not
defined LSs) that use this port.

filter.resource_name
The name of the DLC, port, LS, or RTP connection for which tracing is being activated. This parameter
is reserved if resource_type is set to AP_ALL_RESOURCES.

If resource_type is set to AP_RTP_RESOURCE_TYPE, you can specify the name of a particular RTP
connection (this name begins with the @ character), or you can set this parameter to all zeros to
indicate that all RTP traffic is to be traced.

filter.lfsid
The Local Form Session Identifier for a session on the specified LS. This is only valid for resource_type
AP_LS, and indicates that only messages on this session are to be traced. The structure contains the
following three values, which are returned in the SESSION_STATS section of a QUERY_SESSION verb:

filter.lfsid.uu.s.sidh
Session ID high byte.

filter.lfsid.uu.s.sidl
Session ID low byte.

ADD_DLC_TRACE

40 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

filter.lfsid.odai
Origin Destination Assignor Indicator.

filter.message_type
The type of messages to trace for the specified resource or session. Set this parameter to
AP_TRACE_ALL to trace all messages, or specify one or more of the following values (combined using
a logical OR):
AP_TRACE_XID

XID messages
AP_TRACE_SC

Session Control RUs
AP_TRACE_DFC

Data Flow Control RUs
AP_TRACE_FMD

FMD messages
AP_TRACE_SEGS

Non-BBIU segments that do not contain an RH
AP_TRACE_CTL

Messages other then MUs and XIDs
AP_TRACE_NLP

Trace Network-Layer Protocol messages
AP_TRACE_NC

Trace Network Control messages

For tracing on an RTP connection, the values AP_TRACE_XID, AP_TRACE_NLP, and AP_TRACE_CTL
are ignored. At least one of the other values listed must be specified for RTP tracing.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RESOURCE_TYPE

The resource_type parameter specified a value that was not valid.
AP_INVALID_MESSAGE_TYPE

The message_type parameter specified a value that was not valid.
INVALID_RTP_CONNECTION

The resource_name parameter does not match any RTP connection.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

ADD_DLC_TRACE

Chapter 3. NOF API Verbs 41

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

APING
APING is the APPN version of the "ping" utility; it allows a management application to check the
communications path from a local LU to a remote LU in the network.

CS/AIX APING is implemented using an internally-defined APPC TP. This TP sends data to the partner LU,
and optionally receives data from the partner LU. If the TP completes successfully, the APING verb
returns information about the time taken to allocate a conversation to the partner LU and to send and
receive data.

The application must supply a VCB that is large enough to include a partner TP verification string of the
requested size as well as the basic APING VCB structure; the returned data includes this string appended
to the end of the basic structure.

This verb is intended for checking the path to an LU on a remote node. Using APING to check
communications with a partner LU on the local node will impact the performance of other programs on
the local computer, and is not recommended.

This verb must be issued to a running node.

VCB structure
typedef struct aping
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 AP_UINT32 sense_data; /* sense data */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char mode_name[8]; /* mode name */
 unsigned char tp_name[64]; /* destination TP name */
 unsigned char security; /* security level */
 unsigned char reserv3a[3]; /* reserved */
 unsigned char pwd[10]; /* password */
 unsigned char user_id[10]; /* user ID */
 AP_UINT16 dlen; /* length of data to send */
 AP_UINT16 consec; /* number of consecutive sends */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char echo; /* data echo flag */
 AP_UINT16 iterations; /* number of iterations */
 AP_UINT32 alloc_time; /* time taken for ALLOCATE */
 AP_UINT32 min_time; /* minimum send/receive time */
 AP_UINT32 avg_time; /* average send/receive time */
 AP_UINT32 max_time; /* maximum send/receive time */
 AP_UINT16 partner_ver_len; /* size of string to receive */
} APING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_APING

lu_name
LU name of the local LU. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the
name is shorter than 8 characters. To indicate that the LU is identified by its LU alias instead of its LU
name, set this parameter to 8 binary zeros and specify the LU alias in the following parameter.

APING

42 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

lu_alias
LU alias of the local LU. This parameter is used only if the lu_name field is set to 8 binary zeros, and is
ignored otherwise. The alias is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. To use the default LU (the LU associated with the CP), set both the lu_name and
lu_alias parameters to 8 binary zeros.

plu_alias
Partner LU alias. This should be the alias of an LU on a remote node; you are not recommended to use
APING with a partner LU on the local node.

The alias is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
bytes. To indicate that the LU is identified by its fully qualified name instead of its alias, set this
parameter to 8 binary zeros and specify the LU name in the fqplu_name parameter.

mode_name
Name of the mode used by the LU pair. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with spaces if the name is shorter than 8 characters.

tp_name
Name of the invoked TP (generally set to APINGD). This is a 64-byte string, padded on the right with
spaces.

security
Specifies whether conversation security information is required to start the TP. Possible values are:
AP_NONE

No security information is required.
AP_SAME

Security information may be verified by the TP that invoked this TP on behalf of a third TP.
AP_PGM

A user ID and password are required to start the TP.
AP_PGM_STRONG

A password and user ID are required to start the TP, but the password must not be sent in clear
text. If password substitution is not supported on the session, the aping fails. Otherwise, the
password is sent encrypted.

pwd
Password required to access the partner TP; this parameter is required only if the security parameter
is set to AP_PGM. This is a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC
spaces if the password is shorter than 10 bytes.

user_id
User ID required to access the partner TP; this parameter is required only if the security parameter is
set to AP_SAME or AP_PGM. This is a 10-byte type-AE EBCDIC character string, padded on the right
with EBCDIC spaces if the user ID is shorter than 10 bytes.

dlen
Length of the data string to be sent to the partner LU. (The NOF API application does not need to
provide a data string; the APING TP simply sends a string of zeros of the specified length.)

consec
Number of consecutive data strings sent to the partner LU during each iteration. The APING TP sends
this number of data strings, each containing the number of bytes specified by the dlen parameter. It
then requests either data or a confirmation message from the partner TP, depending on the setting of
the echo parameter.

fqplu_name
Fully qualified network name for the partner LU. This parameter is used only if the plu_alias field is set
to 8 binary zeros, and is ignored otherwise. This should be the name of an LU on a remote node; you
are not recommended to use APING with a partner LU on the local node.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

APING

Chapter 3. NOF API Verbs 43

echo
Specifies whether the APING TP requests data from the partner LU after sending data to it. Possible
values are:
AP_YES

After sending the specified number of data strings, APING waits to receive data from the partner
LU.

AP_NO
After sending the specified number of data strings, APING requests confirmation from the partner
LU, but does not receive data.

iterations
Number of times that the APING TP should perform the sequence of sending data to the partner LU
and requesting either data or confirmation.

partner_ver_len
Maximum length of the partner TP verification data string which can be received by the NOF API
application. The application must supply a VCB large enough to include this string as well as the basic
APING VCB structure, because the string will be appended to the returned VCB.

Returned parameters: successful execution
If the verb executes successfully, APING returns the following parameters:

primary_rc
AP_OK

alloc_time
The time in milliseconds to allocate a conversation to the partner (the time taken for the
MC_ALLOCATE verb issued by the APING TP to complete).

min_time
The minimum time in milliseconds required for a data-sending iteration (the shortest measured time
for a single iteration of sending data and receiving either data or confirmation). If iterations was set to
zero, this parameter is not used.

avg_time
The average time in milliseconds required for a data-sending iteration (the average time for a single
iteration of sending data and receiving either data or confirmation). If iterations was set to zero, this
parameter is not used.

max_time
The maximum time in milliseconds required for a data-sending iteration (the longest measured time
for a single iteration of sending data and receiving either data or confirmation). If iterations was set to
zero, this parameter is not used.

partner_ver_len
Length of verification string returned by the partner TP.

In addition to these returned parameters, the verification string returned by the partner TP is appended to
the end of the APING VCB. The length of this string is given by partner_ver_len. If partner_ver_len is zero,
then this string is not returned.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias.

APING

44 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LU_NAME
The lu_name parameter did not match any defined LU name.

AP_BAD_SECURITY
The security parameter was not set to a valid value.

AP_UNKNOWN_PARTNER_MODE
The value specified for plu_alias, fqplu_name, or mode_name did not match any defined partner
LU or mode.

AP_BAD_PARTNER_LU_ALIAS
The value specified for plu_alias did not match any defined partner LU.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: allocation failure
If the verb does not execute because CS/AIX cannot allocate the APPC conversation, CS/AIX returns the
following parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
Possible values are:
AP_ALLOCATION_FAILURE_NO_RETRY

The conversation cannot be allocated because of a permanent condition, such as a configuration
error or session protocol error. Check the sense_data parameter and the error log file for more
information. Do not attempt to retry the APING verb until the error has been corrected.

AP_ALLOCATION_FAILURE_RETRY
The conversation could not be allocated because of a temporary condition, such as a link failure.
Check the error log file for more information. Retry the APING verb, preferably after a timeout to
allow the condition to clear.

AP_SECURITY_NOT_VALID
The user ID or password specified was not accepted by the partner LU.

AP_TP_NAME_NOT_RECOGNIZED
The partner LU does not recognize the specified TP name.

AP_TRANS_PGM_NOT_AVAIL_NO_RETRY
The remote LU rejected the allocation request because it was unable to start the requested
partner TP. The condition is permanent. The reason for the error may be logged on the remote
node. Do not retry the APING verb until the cause of the error has been corrected.

AP_TRANS_PGM_NOT_AVAIL_RETRY
The remote LU rejected the allocation request because it was unable to start the requested
partner TP. The condition may be temporary, such as a timeout. The reason for the error may be
logged on the remote node. Retry the APING verb, preferably after a timeout to allow the condition
to clear.

sense_data
If the secondary_rc parameter is AP_ALLOCATION_FAILURE_NO_RETRY, this parameter contains the
SNA sense data associated with the error. For all other secondary_rc values, this parameter is
reserved.

Returned parameters: conversation failure
If the verb does not execute because the APPC conversation with the partner TP failed, CS/AIX returns
the following parameters:

APING

Chapter 3. NOF API Verbs 45

primary_rc
AP_CONV_FAILURE_NO_RETRY

The conversation was terminated because of a permanent condition, such as a session protocol
error. Check the error log file to determine the cause of the error. Do not retry the APING verb until
the error has been corrected.

primary_rc
AP_CONV_FAILURE_RETRY

The conversation was terminated because of a temporary error. Retry the APING verb. If the
problem occurs again, check the error log file to determine the cause of the error.

primary_rc
AP_DEALLOC_ABEND

The partner TP deallocated the conversation because of an error condition. The reason for the
error may be logged on the remote node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

CHANGE_SESSION_LIMIT
The CHANGE_SESSION_LIMIT verb requests CS/AIX to change the session limits for a particular LU-LU-
mode combination. Sessions may be activated or deactivated as a result of processing this verb.

This verb must be issued to a running node.

VCB structure
typedef struct change_session_limit
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner */
 /* LU name */
 unsigned char reserv3; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char reserv3a; /* reserved */
 unsigned char set_negotiable; /* set max negotiable limit? */
 AP_UINT16 plu_mode_session_limit; /* session limit */
 AP_UINT16 min_conwinners_source; /* minimum source contention */
 /* winner sessions */
 AP_UINT16 min_conwinners_target; /* minimum target contention */
 /* winner sessions */
 AP_UINT16 auto_act; /* auto activation limit */
 unsigned char responsible; /* who is responsible for */
 /* deactivating */
 unsigned char reserv4[3]; /* reserved */
 AP_UINT32 sense_data; /* sense data */
} CHANGE_SESSION_LIMIT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_CHANGE_SESSION_LIMIT

CHANGE_SESSION_LIMIT

46 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

plu_alias
LU alias of the partner LU.

This is an 8-byte ASCII string, using any locally displayable characters, padded on the right with
spaces if the name is shorter than 8 bytes. To indicate that the partner LU is defined by its fully
qualified LU name instead of its LU alias, set this parameter to 8 binary zeros.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This parameter is used only if the
plu_alias field is set to zeros; it is ignored if plu_alias is specified.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

mode_name
Name of the mode to be used by the LUs.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter), padded on the right with
EBCDIC spaces if the name is shorter than 8 bytes.

set_negotiable
Specifies whether the maximum negotiable session limit for this mode should be modified. Possible
values are:
AP_YES

Use the value specified by plu_mode_session_limit as the maximum negotiable session limit for
this LU-LU-mode combination.

AP_NO
Leave the maximum negotiable session limit as the value specified for the mode.

plu_mode_session_limit
Requested total session limit for this LU-LU-mode combination: the maximum number of parallel
sessions permitted between these two LUs using this mode. Specify a value in the range 1-32,767
(which must not exceed the session limit specified for the local LU on the DEFINE_LOCAL_LU verb).
This value may be negotiated with the partner LU.

min_conwinners_source
Minimum number of sessions using this mode for which the local LU is the contention winner. Specify
a value in the range 0-32,767. The sum of the min_conwinners_source and min_conwinners_target
parameters must not exceed the plu_mode_session_limit parameter.

min_conwinners_target
Minimum number of sessions using this mode for which the partner LU is the contention winner.
Specify a value in the range 0-32,767. The sum of the min_conwinners_source and
min_conwinners_target parameters must not exceed the plu_mode_session_limit parameter.

auto_act
Number of sessions to automatically activate after the session limit is changed. Specify a value in the
range 0-32,767 (which must not exceed the plu_mode_session_limit parameter or the session limit
specified for the local LU on the DEFINE_LOCAL_LU verb). The actual number of automatically
activated sessions is the minimum of this value and the negotiated minimum number of contention

CHANGE_SESSION_LIMIT

Chapter 3. NOF API Verbs 47

winner sessions for the local LU. When sessions are deactivated normally (specifying
AP_DEACT_NORMAL) below this limit, new sessions are activated up to this limit.

responsible
Indicates whether the local or partner LU is responsible for deactivating sessions after the session
limit is changed. Possible values are:
AP_SOURCE

The local LU is responsible.
AP_TARGET

The partner LU is responsible.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Possible values are:
AP_AS_NEGOTIATED

The session limits were changed, but one or more values were negotiated by the partner LU.
AP_AS_SPECIFIED

The session limits were changed as requested, without being negotiated by the partner LU.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_EXCEEDS_MAX_ALLOWED

The plu_mode_session_limit, min_conwinners_source, min_conwinners_target, or auto_act
parameter was set to a value outside the valid range.

AP_CANT_CHANGE_TO_ZERO
The plu_mode_session_limit parameter cannot be set to zero using this verb; use
RESET_SESSION_LIMIT instead.

AP_INVALID_LU_ALIAS
The lu_alias parameter did not match any defined local LU alias.

AP_INVALID_LU_NAME
The lu_name parameter did not match any defined local LU name.

AP_INVALID_MODE_NAME
The mode_name parameter did not match any defined mode name.

AP_INVALID_PLU_NAME
The fqplu_name parameter did not match any defined partner LU name.

AP_INVALID_RESPONSIBLE
The responsible parameter was not set to a valid value.

AP_INVALID_SET_NEGOTIABLE
The set_negotiable parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

CHANGE_SESSION_LIMIT

48 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_RESET

No sessions are currently active for this LU-LU-mode combination. Use
INITIALIZE_SESSION_LIMIT instead of CHANGE_SESSION_LIMIT to specify the limits.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: session allocation error
If the verb does not execute because of a session allocation error, CS/AIX returns the following
parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

A session could not be allocated because of a condition that requires corrective action. Check the
sense_data parameter and any logged messages to determine the reason for the failure, and take
any action required. Do not attempt to retry the verb until the condition has been corrected.

sense_data
The SNA sense data associated with the allocation failure.

Returned parameters: CNOS processing errors
If the verb does not execute because of an error, CS/AIX returns the following parameters.

primary_rc
AP_CONV_FAILURE_NO_RETRY

The session limits could not be changed because of a condition that requires action (such as a
configuration mismatch or a session protocol error). Check the CS/AIX log file for information
about the error condition, and correct it before retrying this verb.

primary_rc
AP_CNOS_PARTNER_LU_REJECT

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

The verb failed because the specified mode was being accessed by another administration
program (or internally by the CS/AIX software) for session activation or deactivation, or for session
limit processing. The application should retry the verb, preferably after a timeout to allow the race
condition to be cleared.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

CHANGE_SESSION_LIMIT

Chapter 3. NOF API Verbs 49

CLOSE_FILE
An application uses this verb to release its handle to the domain configuration file, or to the sna.net file,
when it has finished issuing NOF verbs to the file. The file which the application wishes to close is
identified by the target_handle parameter on the call.

The application should always issue CLOSE_FILE for any open file handles before it exits. After the verb
completes successfully, the target handle identifying the file is no longer valid.

This verb must be issued to the domain configuration fileor to the sna.net file.

VCB structure
 typedef struct close_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2 /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 } CLOSE_FILE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_CLOSE_FILE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_VERB_IN_PROGRESS

The specified file cannot be released because a previous verb issued for this target handle is still
outstanding. All verbs for the target file must be completed before attempting to close the file.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

CLOSE_FILE

50 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

CONNECT_NODE
An application uses this verb in order to establish communications with a CS/AIX node (active or inactive).
The verb returns a target handle identifying the node, which the application can then use on other NOF
verbs to indicate the target for the verb.

VCB structure
typedef struct connect_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char node_type; /* which node to connect to */
 unsigned char node_name[128]; /* name of Node */
 AP_UINT32 target_handle; /* handle for subsequent verbs */
 unsigned char node_status; /* node status */
 unsigned char reserv3[12]; /* reserved */
} CONNECT_NODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_CONNECT_NODE

node_type
To connect to a particular node in order to manage the node's configuration, set this parameter to
AP_SPECIFIED_NODE.

To connect to the node currently acting as the central logger, set this parameter to
AP_CENTRAL_LOGGER. This value is required if the application will be issuing the following verbs:

• SET_CENTRAL_LOGGING, QUERY_CENTRAL_LOGGING
• SET_GLOBAL_LOG_TYPE, QUERY_GLOBAL_LOG_TYPE
• SET_LOG_FILE, QUERY_LOG_FILE (if central logging is in use)

node_name
Name of the CS/AIX node to connect to. This parameter is reserved if node_type is set to
AP_CENTRAL_LOGGER.

If the node name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the node name.

If CS/AIX is running with all components on a single computer, you can set this parameter to all binary
zeros; there is no need to specify the node name. Otherwise, setting this parameter to all binary zeros
indicates the default local node (on the same CS/AIX server as the application).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

target_handle
Returned value for use on subsequent verbs.

node_status
Specifies the status of the node. Possible values are:

CONNECT_NODE

Chapter 3. NOF API Verbs 51

AP_NDE_STARTING
The node is in the process of being activated.

AP_NDE_STARTED
The node is active.

AP_NDE_STOPPING
The node is in the process of being deactivated.

AP_NDE_STOPPED
The node is not active.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_NODE_NAME

The value that was specified for the node_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_CONNECTION_NOT_MADE

An error occurred in connecting to the node.
AP_INVALID_VERSION

The application could not connect to the node, because there was a version mismatch between
the CS/AIX software on the computer where the application is running and the computer where
the target node is defined. If you are in the process of upgrading the network, so that different
computers are running different levels of the CS/AIX software, nodes running on the back-level
software can be managed only by applications running on the back-level software.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEACTIVATE_CONV_GROUP
The DEACTIVATE_CONV_GROUP verb requests the deactivation of the session corresponding to the
specified conversation group. Although this verb is part of the NOF API, it is primarily intended for use by
application programmers writing TPs that use the APPC API. The conversation group identifier is returned
by the APPC verbs [MC_]ALLOCATE, [MC_]GET_ATTRIBUTES, and RECEIVE_ALLOCATE.

This verb must be issued to a running node.

DEACTIVATE_CONV_GROUP

52 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct deactivate_conv_group
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 AP_UINT32 conv_group_id; /* conversation group identifier */
 unsigned char type; /* deactivation type */
 unsigned char reserv3[3]; /* reserved */
 AP_UINT32 sense_data; /* deactivation sense data */
} DEACTIVATE_CONV_GROUP;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_CONV_GROUP

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

conv_group_id
Conversation group identifier for the session to be deactivated.

type
Type of deactivation. Possible values are:
AP_DEACT_CLEANUP

Deactivate the session immediately, without waiting for sessions to end.
AP_DEACT_NORMAL

Do not deactivate the session until all conversations using the session have ended.
sense_data

If type is set to AP_DEACT_CLEANUP, this parameter specifies the sense data to be used when
deactivating the session. Otherwise this parameter is not used.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

DEACTIVATE_CONV_GROUP

Chapter 3. NOF API Verbs 53

secondary_rc
Possible values are:
AP_DEACT_CG_INVALID_CGID

The conv_group_id parameter did not match any valid conversation group ID.
AP_INVALID_CLEANUP_TYPE

The type parameter was not set to a valid value.
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias.
AP_INVALID_LU_NAME

The lu_name parameter did not match any defined LU name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEACTIVATE_LU_0_TO_3
The DEACTIVATE_LU_0_TO_3 verb requests CS/AIX to deactivate the session for a particular LU for use
with 3270 emulation or LUA (an LU of type 0, 1, 2, or 3). CS/AIX deactivates the session by sending a
TERM_SELF message to the host for the PLU-SLU session.

This verb must be issued to a running node.

VCB structure
typedef struct deactivate_lu_0_to_3
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2;
 unsigned char format;
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU Name */
} DEACTIVATE_LU_0_TO_3;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_LU_0_TO_3

lu_name
LU name of the LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the right
with spaces if the name is shorter than 8 bytes.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters. This return code can also
indicate that there was no active session for the specified LU (implying that the session has already been
deactivated).

primary_rc
AP_OK

DEACTIVATE_LU_0_TO_3

54 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The lu_name parameter did not match any defined LU name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEACTIVATE_SESSION
The DEACTIVATE_SESSION verb requests CS/AIX to deactivate a particular session, or all sessions on a
particular mode.

This verb must be issued to a running node.

VCB structure
typedef struct deactivate_session
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char session_id[8]; /* session identifier */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char mode_name[8]; /* mode name */
 unsigned char type; /* deactivation type */
 unsigned char reserv3[3]; /* reserved */
 AP_UINT32 sense_data; /* deactivation sense data */
 unsigned char fqplu_name[17]; /* fully qualified partner */
 /* LU name */
 unsigned char reserv4[20]; /* reserved */
} DEACTIVATE_SESSION;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_SESSION

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

DEACTIVATE_SESSION

Chapter 3. NOF API Verbs 55

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

session_id
8-byte identifier of the session to deactivate. If this field is set to 8 binary zeros, CS/AIX deactivates
all sessions for the partner LU and mode.

plu_alias
LU alias of the partner LU.

This is an 8-byte ASCII string, using any locally displayable characters, padded on the right with
spaces if the name is shorter than 8 bytes. To indicate that the partner LU is defined by its fully
qualified LU name instead of its LU alias, set this parameter to 8 binary zeros.

mode_name
Name of the mode to be used by the LUs.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter), padded on the right with
EBCDIC spaces if the name is shorter than 8 bytes.

type
Type of deactivation. Possible values are:
AP_DEACT_CLEANUP

Deactivate the session immediately, without waiting for sessions to end.
AP_DEACT_NORMAL

Do not deactivate the session until all conversations using the session have ended.
sense_data

If type is set to AP_DEACT_CLEANUP, this parameter specifies the sense data to be used when
deactivating the session. Otherwise this parameter is not used.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This parameter is used only if the
plu_alias field is set to zeros; it is ignored if plu_alias is specified.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters. This return code can also
indicate that the session ID did not match the session ID of an active session (implying that the session
has already been deactivated).

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CLEANUP_TYPE

The type parameter was not set to a valid value.
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias.

DEACTIVATE_SESSION

56 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LU_NAME
The lu_name parameter did not match any defined LU name.

AP_INVALID_MODE_NAME
The mode_name parameter did not match any defined mode name.

AP_INVALID_PLU_NAME
The fqplu_name parameter did not match any defined partner LU name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_ADJACENT_LEN_NODE
DEFINE_ADJACENT_LEN_NODE adds entries to the node directory database for an adjacent LEN node
and its associated LUs, or adds additional LU entries for a previously-defined LEN node.

This verb is equivalent to a series of DEFINE_DIRECTORY_ENTRY verbs for the LEN node and its
associated LUs; it provides a fast method of defining the LEN node's configuration with a single verb. To
query the directory entries created by this verb, use QUERY_DIRECTORY_ENTRY.

If this verb is issued to the network node acting as the server for the LEN node, the LEN node's resources
are added to the network node's directory database. This means that the network node will respond to
network searches for these resources, so that they are accessible to the entire network. If the verb is
issued to an end node, the LEN node's resources are accessible only to that end node.

VCB structure
typedef struct define_adjacent_len_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char cp_name[17]; /* CP name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char num_of_lus; /* number of LUs */
 unsigned char wildcard_lus; /* wildcard LUs */
 unsigned char reserv3[8]; /* reserved */
 unsigned char lu_names[10][8]; /* LU names */
} DEFINE_ADJACENT_LEN_NODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_ADJACENT_LEN_NODE

cp_name
The fully qualified name of the CP in the adjacent LEN node. This should match the name the LEN
node sends on its XIDs (if it supports them), and the adjacent CP name specified on the DEFINE_LS
for the link to the LEN node.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

DEFINE_ADJACENT_LEN_NODE

Chapter 3. NOF API Verbs 57

description
A null-terminated text string (0-31 characters followed by a null character) describing the adjacent
LEN node. This string is for information only; it is stored in the configuration and returned on the
QUERY_DIRECTORY_ENTRY verb, but CS/AIX does not make any other use of it.

num_of_lus
The number of LUs to be defined, in the range 0-10. To define an adjacent node with more than 10
LUs, use multiple DEFINE_ADJACENT_LEN_NODE verbs for the same CP name.

wildcard_lus
Indicates whether the specified LU names are wildcard entries or explicit LU names. Possible values
are:
AP_YES

The specified LU names are wildcard entries.
AP_NO

The specified LU names are explicit entries.
lu_names

The names of the LUs being defined on the LEN node. Each name is an 8-byte type-A EBCDIC
character string, right-padded with EBCDIC spaces, corresponding to the second part of the fully
qualified LU name (the first part of the fully qualified name is defined by the cp_name parameter
above).

To define the LU associated with the LEN node's control point (the CP LU or default LU), specify the
node's fully qualified CP name in the cp_name parameter, and include the "network name" part of this
name (the 8 characters after the EBCDIC dot) as one of the LU names.

You can specify a wildcard LU name to match multiple LU names, by specifying only the initial
characters of the name. For example, the wildcard LU name "LU" will match "LUNAME" or "LU01" (but
will not match "NAMELU"). However, all the LU names specified on a single verb must be of the same
type (wildcard or explicit), as defined by the wildcard_lus parameter. To add both types of LU names
for the same LEN node, use multiple DEFINE_ADJACENT_LEN_NODE verbs.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CP_NAME

The cp_name parameter contained a character that was not valid.
AP_INVALID_LU_NAME

One or more of the specified LU names contained a character that was not valid.
AP_INVALID_NUM_LUS

The num_of_lus parameter was not in the valid range.
AP_INVALID_WILDCARD_NAME

The wildcard_lus parameter was set to AP_YES, but one or more of the specified LU names was
already defined on a different parent node.

DEFINE_ADJACENT_LEN_NODE

58 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_CP_NAME

The specified CP name is already defined in a directory entry, and is not a LEN node.
AP_INVALID_LU_NAME

One or more of the specified LU names was already defined on a different parent node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_CN
DEFINE_CN defines a Connection Network (otherwise known as a Virtual Routing Node or VRN). The verb
provides the network qualified name of the connection network along with its Transmission Group (TG)
characteristics. Also provided is a list of the names of the local ports that can access this connection
network.

DEFINE_CN can be used to redefine an existing Connection Network. In particular, new ports can be
added to the list of ports which access the connection network by issuing another DEFINE_CN. (Ports can
be removed in the same way by issuing the DELETE_CN verb).

This verb is valid only at a network node or an end node, and not at a LEN node.

VCB structure
typedef struct define_cn
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char fqcn_name[17]; /* name of connection network */
 CN_DEF_DATA def_data; /* CN defined data */
 unsigned char port_name[8][8]; /* port names */
} DEFINE_CN;

typedef struct cn_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserve0[16]; /* reserved */
 unsigned char num_ports; /* number of ports on CN */
 unsigned char cn_type; /* reserved */
 unsigned char ipv6_addr_only; /* use IPv6 address */
 unsigned char reserve1[14]; /* reserved */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
} CN_DEF_DATA;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */
 unsigned char connect_cost; /* connection cost */
 unsigned char byte_cost; /* byte cost */
 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */
 unsigned char prop_delay; /* propagation delay */
 unsigned char modem_class; /* reserved */

DEFINE_CN

Chapter 3. NOF API Verbs 59

 unsigned char user_def_parm_1; /* user-defined parameter 1 */
 unsigned char user_def_parm_2; /* user-defined parameter 2 */
 unsigned char user_def_parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_CN

fqcn_name
Fully qualified name of the connection network. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the connection
network. This string is for information only; it is stored in the node's configuration file and returned on
the QUERY_CN verb, but CS/AIX does not make any other use of it.

def_data.num_ports
Number of ports included on this verb; each DEFINE_CN verb can specify up to 8 ports. To define a CN
with more than 8 ports, issue multiple DEFINE_CN verbs for the same CN name; the maximum total
number of ports on a CN is 239.

def_data.ipv6_address_only
When defining a Connection Network on an IPv6 network for HPR/IP, this parameter indicates if the IP
addressing for the Connection Network will use IPv6 DNS names only or IPv6 addresses only.
Possible values are:
YES

IP addressing for the Connection Network will use IPv6 addresses only.
NO

IP addressing for the Connection Network will use IPv6 DNS names only.
def_data.tg_chars.effect_cap

Actual bits per second rate (line speed). The value is encoded as a 1-byte floating point number,
represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte is
b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255, where 0 is the lowest cost
per connect time and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0 is the lowest cost per byte
and 255 is the highest.

def_data.tg_chars.security
Security level of the network. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.

DEFINE_CN

60 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_SEC_ENCRYPTED
Data is encrypted before transmission over the line.

AP_SEC_GUARDED_RADIATION
Data is transmitted over a line that is protected against physical and radiation tapping.

def_data.tg_chars.prop_delay
Propagation delay: the time that a signal takes to travel the length of the link. Specify one of the
following values, according to the type of link:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.
def_data.tg_chars.user_def_parm_1 through def_data.tg_chars.user_def_parm_3

User-defined parameters, which you can use to include other TG characteristics not covered by the
above parameters. Each of these parameters must be set to a value in the range 0-255.

port_name
Array of up to eight port names defined on the connection network. Each port name is an 8-byte ASCII
string, padded on the right with spaces if the name is shorter than 8 bytes, and must already have
been defined by a DEFINE_PORT verb. The port type must be a network type that supports
connection networks (Ethernet, Token Ring, Enterprise Extender). Additional ports may be defined on
the Connection Network by issuing another DEFINE_CN specifying the new port names.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_DEF_LINK_INVALID_SECURITY

The security parameter was not set to one of the valid values.
AP_EXCEEDS_MAX_ALLOWED

Adding the specified number of ports would exceed the maximum total number of ports on a CN.
AP_INVALID_CN_NAME

The fqcn_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_NUM_PORTS_SPECIFIED
The num_ports parameter was not set to a valid value.

DEFINE_CN

Chapter 3. NOF API Verbs 61

AP_INVALID_PORT_NAME
One or more of the port names specified did not match the name of a defined port.

AP_INVALID_PORT_TYPE
One or more of the specified ports cannot be on a CN because its DLC type is a point-to-point type
(such as SDLC) rather than a network type.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_PORT_ACTIVE

The specified port cannot be modified because it is currently active.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is a LEN node, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is a LEN node. This verb is valid only at a network node or an end node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_COS
DEFINE_COS adds a class of service definition or modifies a previously defined COS. The definition
specifies TG "rows" and node "rows", which associate a range of node and TG characteristics with weights
used for route calculation. The lower the weight the more favorable the route.

VCB structure
The DEFINE_COS verb contains a variable number of cos_tg_row and cos_node_row structures; the
number of each is specified by the num_of_node_rows and num_of_tg_rows parameters. The TG rows are
included at the end of the main DEFINE_COS structure, in ascending order of weight; they are followed by
the node rows, again in ascending order of weight.

typedef struct define_cos
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char cos_name[8]; /* class of service name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char transmission_priority; /* transmission priority */
 unsigned char reserv3[9]; /* reserved */

DEFINE_COS

62 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char num_of_node_rows; /* number of node rows */
 unsigned char num_of_tg_rows; /* number of TG rows */
} DEFINE_COS;

typedef struct cos_tg_row
{
 TG_DEFINED_CHARS minimum; /* minimum */
 TG_DEFINED_CHARS maximum; /* maximum */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_TG_ROW;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */
 unsigned char connect_cost; /* cost per connect time */
 unsigned char byte_cost; /* cost per byte */
 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */
 unsigned char prop_delay; /* propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* user defined parameter 1 */
 unsigned char user_def_parm_2; /* user defined parameter 2 */
 unsigned char user_def_parm_3; /* user defined parameter 3 */
} TG_DEFINED_CHARS;

typedef struct cos_node_row
{
 COS_NODE_STATUS minimum; /* minimum */
 COS_NODE_STATUS maximum; /* maximum */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_NODE_ROW;

typedef struct cos_node_status
{
 unsigned char rar; /* route additional resistance*/
 unsigned char status; /* node status */
 unsigned char reserv1[2]; /* reserved */
} COS_NODE_STATUS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_COS

cos_name
Class of service name. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

description
A null-terminated text string (0-31 characters followed by a null character) describing the COS. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_COS verb, but CS/AIX does not make any other use of it.

transmission_priority
Transmission priority. Possible values are:

AP_LOW

AP_MEDIUM

AP_HIGH

AP_NETWORK

num_of_node_rows
Number of node rows which follow the DEFINE_COS VCB (after the TG rows). The maximum is 8.

DEFINE_COS

Chapter 3. NOF API Verbs 63

num_of_tg_rows
Number of TG rows which follow the DEFINE_COS VCB. The maximum is 8.

Each TG row contains a set of minimum TG characteristics, a set of maximum TG characteristics, and
a weight. When computing the weights for a TG, its characteristics are checked against the minimum
and maximum characteristics defined for each TG row. The TG is then assigned the weight of the first
TG row which bounds all the TG's characteristics within the limits specified. If the TG characteristics
do not satisfy any of the listed TG rows, the TG is considered unsuitable for this COS, and is assigned
an infinite weight. The TG rows must be concatenated in ascending order of weight.

cos_tg_row.minimum.effect_cap
Minimum limit for actual bits per second rate (line speed). The value is encoded as a 1-byte floating
point number, represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte
is b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

cos_tg_row.minimum.connect_cost
Minimum limit for cost per connect time. Valid values are integer values in the range 0-255, where 0 is
the lowest cost per connect time and 255 is the highest.

cos_tg_row.minimum.byte_cost
Minimum limit for cost per byte. Valid values are integer values in the range 0-255, where 0 is the
lowest cost per byte and 255 is the highest.

cos_tg_row.minimum.security
Minimum level of security. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.
AP_SEC_GUARDED_RADIATION

Data is transmitted over a line that is protected against physical and radiation tapping.
cos_tg_row.minimum.prop_delay

Minimum limits for propagation delay: the time that a signal takes to travel the length of the link.
Specify one of the following values, according to the type of link:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.

DEFINE_COS

64 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cos_tg_row.minimum.user_def_parm_1 through cos_tg_row.user_def_parm_3
Minimum values for user-defined parameters, which you can use to include other TG characteristics
not covered by the above parameters. Each of these parameters must be set to a value in the range
0-255.

cos_tg_row.maximum.effect_cap
Maximum limit for actual bits per second rate (line speed). The value is encoded as a 1-byte floating
point number, represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte
is b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

cos_tg_row.maximum.connect_cost
Maximum limit for cost per connect time. Valid values are integer values in the range 0-255, where 0
is the lowest cost per connect time and 255 is the highest.

cos_tg_row.maximum.byte_cost
Maximum limit for cost per byte. Valid values are integer values in the range 0-255, where 0 is the
lowest cost per byte and 255 is the highest.

cos_tg_row.maximum.security
Maximum level of security. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.
AP_SEC_GUARDED_RADIATION

Data is transmitted over a line that is protected against physical and radiation tapping.
cos_tg_row.maximum.prop_delay

Maximum limits for propagation delay: the time that a signal takes to travel the length of the link.
Specify one of the following values, according to the type of link:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.
cos_tg_row.maximum.user_def_parm_1 through cos_tg_row.maximum.user_def_parm_3

Maximum values for user-defined parameters, which you can use to include other TG characteristics
not covered by the above parameters. Each of these parameters must be set to a value in the range
0-255.

cos_tg_row.weight
Weight associated with this TG row.

DEFINE_COS

Chapter 3. NOF API Verbs 65

Each node row contains a set of minimum node characteristics, a set of maximum node
characteristics, and a weight. When computing the weights for a node, its characteristics are checked
against the minimum and maximum characteristics defined for each node row. The node is then
assigned the weight of the first node row which bounds all the node's characteristics within the limits
specified. If the node characteristics do not satisfy any of the listed node rows, the node is considered
unsuitable for this COS, and is assigned an infinite weight. The node rows must be listed in ascending
order of weight.

cos_node_row.minimum.rar
Route additional resistance minimum. Values must be in the range 0-255.

cos_node_row.minimum.status
Specifies the minimum congestion status of the node. Possible values are:
AP_UNCONGESTED

The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

cos_node_row.maximum.rar
Route additional resistance maximum. Values must be in the range 0-255.

cos_node_row.maximum.status
Specifies the maximum congestion status of the node. Possible values are:
AP_UNCONGESTED

The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

cos_node_row.weight
Weight associated with this node row.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_COS_NAME

The cos_name parameter contained a character that was not valid.
AP_INVALID_NUMBER_OF_NODE_ROWS

The num_of_node_rows parameter was not in the valid range.
AP_INVALID_NUMBER_OF_TG_ROWS

The num_of_tg_rows parameter was not in the valid range.
AP_NODE_ROW_WGT_LESS_THAN_LAST

The node rows were not listed in ascending order of weight.
AP_TG_ROW_WGT_LESS_THAN_LAST

The TG rows were not listed in ascending order of weight.

DEFINE_COS

66 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_COS_TABLE_FULL

You cannot define a new COS because this would exceed the maximum number of COS definitions
permitted for the node (specified by the cos_cache_size parameter on DEFINE_NODE).

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_CPIC_SIDE_INFO
This verb adds or replaces a side information entry. A CPI-C side information entry associates a set of
conversation characteristics with a symbolic destination name. If there is already a side information entry
with the same symbolic destination name as the one supplied with this verb, it is overwritten with the
data supplied to this call.

Note the difference between this verb and the CPI-C function Set_CPIC_Side_Information. This verb
modifies the domain configuration file, so that it affects all CS/AIX CPI-C applications. The CPI-C function
modifies the application's own copy in memory of the side information table, and does not affect any
other CPI-C applications.

This verb must be issued to the domain configuration file.

VCB structure
typedef struct define_cpic_side_info
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserv2a[8]; /* reserved */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */
 CPIC_SIDE_INFO_DEF_DATA def_data;
} DEFINE_CPIC_SIDE_INFO;

typedef struct cpic_side_info_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 CPIC_SIDE_INFO side_info; /* CPIC side info */
 unsigned char user_data[24]; /* reserved */

} CPIC_SIDE_INFO_DEF_DATA;

typedef struct cpic_side_info
{
 unsigned char partner_lu_name[17]; /* Fully qualified */
 /* partner LU name */
 unsigned char reserved[3]; /* Reserved */
 AP_UINT32 tp_name_type; /* TP name type */

DEFINE_CPIC_SIDE_INFO

Chapter 3. NOF API Verbs 67

 unsigned char tp_name[64]; /* TP name */
 unsigned char mode_name[8]; /* Mode name */
 AP_UINT32 conversation_security_type; /* Conversation security */
 /* type */
 unsigned char security_user_id[10]; /* User ID */
 unsigned char security_password[10]; /* Password */
 unsigned char lu_alias[8]; /* LU alias */
} CPIC_SIDE_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_CPIC_SIDE_INFO

sym_dest_name
Symbolic destination name which identifies the side information entry. This is an 8-byte ASCII string,
padded on the right with spaces if necessary. The name can contain any displayable character.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the side
information entry. This string is for information only; it is stored in the configuration file and returned
on the QUERY_CPIC_SIDE_INFO verb, but CS/AIX does not make any other use of it.

def_data.side_info.partner_lu_name
Fully qualified name of the partner LU. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

def_data.side_info.tp_name_type
The type of the target TP (the valid characters for a TP name are determined by the TP type). Possible
values are:
XC_APPLICATION_TP

Application TP. All characters in the TP name must be valid ASCII characters.
XC_SNA_SERVICE_TP

Service TP. The TP name must be specified as an 8-character ASCII string representing the
hexadecimal digits of a 4-character name. For example, if the hexadecimal representation of the
name is 0x21F0F0F8, set the def_data.side_info.tp_name parameter to the 8-character string
`21F0F0F8'.

The first character (represented by two bytes) must be a hexadecimal value in the range 00-3F,
excluding 0E and 0F; the remaining characters (each represented by two bytes) must be valid
EBCDIC characters.

def_data.side_info.tp_name
TP name of the target TP. This is a 64-byte ASCII character string, padded on the right with ASCII
spaces.

def_data.side_info.mode_name
Name of the mode used to access the target TP. This is an 8-byte ASCII character string, padded on
the right with spaces.

def_data.side_info.conversation_security_type
Specifies whether the target TP uses conversation security. Possible values are:
XC_SECURITY_NONE

The target TP does not use conversation security.
XC_SECURITY_PROGRAM

The target TP uses conversation security. The security_user_id and security_password parameters
specified below will be used to access the target TP.

DEFINE_CPIC_SIDE_INFO

68 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

XC_SECURITY_PROGRAM_STRONG
As for XC_SECURITY_PROGRAM, except that the local node must not send the password across
the network in clear text format. This value can be used only if the remote system supports
password substitution.

XC_SECURITY_SAME
The target TP uses conversation security, and can accept an "already verified" indicator from the
local TP. (This indicates that the local TP was itself invoked by another TP, and has verified the
security user ID and password supplied by this TP.) The security_user_id parameter specified
below will be used to access the target TP; no password is required.

def_data.side_info.security_user_id
User ID used to access the partner TP. This parameter is not required if the conversation_security_type
parameter is set to XC_SECURITY_NONE.

def_data.side_info.security_password
Password used to access the partner TP. This parameter is required only if the
conversation_security_type parameter is set to XC_SECURITY_PROGRAM or
XC_SECURITY_PROGRAM_STRONG.

def_data.side_info.lu_alias
The alias of the local LU used to communicate with the target TP. This alias is a character string using
any locally displayable characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_SYM_DEST_NAME

The sym_dest_name parameter contained a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DEFAULT_PU
DEFINE_DEFAULT_PU specifies which PU is the default for handling CS/AIX management services data.
Only one default PU for each node can be defined at any time; a second DEFINE_DEFAULT_PU verb for a
different PU name overrides the previous definition.

DEFINE_DEFAULT_PU enables the user to define, redefine, or modify any field of a default PU. This verb
also enables the user to delete the default PU, by specifying a null PU name.

If an application issues the MS API verb TRANSFER_MS_DATA without specifying a PU name, then the
data is routed to the default PU defined for the local node, and sent on this PU's session with the host
SSCP. For more information about TRANSFER_MS_DATA, see the IBM Communications Server for Data
Center Deployment on AIX or Linux MS Programmer's Guide.

DEFINE_DEFAULT_PU

Chapter 3. NOF API Verbs 69

VCB structure
typedef struct define_default_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char reserv3[16]; /* reserved */
} DEFINE_DEFAULT_PU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULT_PU

pu_name
Name of the default PU; this must be a PU name defined by a previous DEFINE_LS verb. This is an 8-
byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if
necessary.

To delete the default PU, specify all zeros.

description
A null-terminated text string (0-31 characters followed by a null character) describing the PU. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_DEFAULT_PU verb, but CS/AIX does not make any other use of it.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DEFAULTS
DEFINE_DEFAULTS specifies default parameters used by the node.

VCB structure
typedef struct define_defaults
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 DEFAULT_CHARS default_chars; /* default parameters */
} DEFINE_DEFAULTS;

typedef struct default_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */

DEFINE_DEFAULTS

70 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char mode_name[8]; /* default mode name */
 unsigned char implicit_plu_forbidden; /* disallow implicit PLUs? */
 unsigned char specific_security_codes;/* generic security sense */
 /* codes? */
 AP_UINT16 limited_timeout; /* timeout for limited sessions*/
 unsigned char reserv[244]; /* reserved */
} DEFAULT_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULTS

default_chars.description
A null-terminated text string (0-31 characters followed by a null character) describing the default
parameters. This string is for information only; it is stored in the node's configuration file and returned
on the QUERY_DEFAULTS verb, but CS/AIX does not make any other use of it.

default_chars.mode_name
Name of the default mode. If an application specifies an unrecognized mode name when attempting
to start a session, the parameters from this mode will be used as a default definition for the
unrecognized mode.

This must be either a mode defined by a previous DEFINE_MODE verb or one of the SNA-defined
modes listed in “Purpose of the NOF API” on page 1. The name is an 8-byte type-A EBCDIC string
(starting with a letter), padded on the right with EBCDIC spaces if necessary.

default_chars.implicit_plu_forbidden
Specifies whether CS/AIX puts implicit definitions in place for unknown partner LUs. Possible values
are:
AP_YES

CS/AIX does not put implicit definitions in place for unknown partner LUs. All partner LUs must be
defined explicitly.

AP_NO
CS/AIX puts implicit definitions in place for unknown partner LUs.

default_chars.specific_security_codes
Specifies whether CS/AIX uses specific sense codes on a security authentication or authorization
failure. Specific sense codes are only returned to those partner LUs which have reported support for
them on the session. Possible values are:
AP_YES

CS/AIX uses specific sense codes.
AP_NO

CS/AIX does not use specific sense codes.
default_chars.limited_timeout

Specifies the timeout after which free limited-resource conwinner sessions are deactivated. Specify a
value in the range 0-65,535 seconds.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

DEFINE_DEFAULTS

Chapter 3. NOF API Verbs 71

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

The mode_name parameter did not match any defined mode name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DIRECTORY_ENTRY
DEFINE_DIRECTORY_ENTRY defines a new entry in the node directory database. This verb cannot be
used to modify existing entries. The verb provides a network qualified resource name along with a
resource type (network node, end node, LU or Wildcard).

When defining an adjacent node and its LUs, you are recommended to use
DEFINE_ADJACENT_LEN_NODE instead of DEFINE_DIRECTORY_ENTRY. This allows you to define the
node and its LUs with a single verb. (DEFINE_DIRECTORY_ENTRY defines only a single entry, so you need
to use multiple verbs to define entries for the adjacent node and for its LUs.)

Because the database is hierarchical, each entry includes the name of the parent resource; for an LU the
parent resource is the owning Control Point, and for an end node or LEN node it is the network node
server. However, when DEFINE_DIRECTORY_ENTRY is used on an end node or LEN node to define an
adjacent LEN node resource with which it communicates directly, the entry does not include a parent
resource name.

You can specify a "wildcard" LU name to match multiple LU names, by specifying only the initial
characters of the name. For example, the wildcard LU name APPN.LU will match APPN.LUNAME or
APPN.LU01 (but will not match APPN.NAMELU).

VCB structure
typedef struct define_directory_entry
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char resource_name[17]; /* network qualified resource name */
 unsigned char reserv1a; /* reserved */
 AP_UINT16 resource_type; /* resource type */
 unsigned char description[32]; /* resource description */
 unsigned char reserv3[16]; /* reserved */
 unsigned char parent_name[17]; /* fully qualified parent name */
 unsigned char reserv1b; /* reserved */
 AP_UINT16 parent_type; /* parent's resource type */
 unsigned char reserv4[8]; /* reserved */
} DEFINE_DIRECTORY_ENTRY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DIRECTORY_ENTRY

DEFINE_DIRECTORY_ENTRY

72 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

resource_name
Fully qualified name of the resource being registered. The name is a 17-byte EBCDIC string, right-
padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

resource_type
Specifies the type of the resource being defined. Possible values are:
AP_ENCP_RESOURCE

End node or LEN node
AP_NNCP_RESOURCE

Network node
AP_LU_RESOURCE

LU
AP_WILDCARD_LU_RESOURCE

Wildcard LU name.

For an LU or wildcard LU, the directory entry for the parent resource (the owning CP) must already be
defined.

description
A null-terminated text string (0-31 characters followed by a null character) describing the directory
entry. This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_DIRECTORY_ENTRY and QUERY_DIRECTORY_LU verbs, but CS/AIX does not make any other
use of it.

parent_name
Fully qualified name of the parent resource; for an LU the parent resource is the owning Control Point,
and for an end node or LEN node it is the network node server. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

This parameter should be set to all binary zeros in the following cases:

• When registering a network node CP
• When the verb is being issued to an end node or LEN node to define an adjacent LEN node CP with

which the local node communicates directly.

parent_type
Specifies the parent type of the resource being defined. Possible values are:
AP_ENCP_RESOURCE

End node (for an LU resource owned by an end node)
AP_NNCP_RESOURCE

Network node (for an LU resource owned by a network node, or for an EN or LEN resource).

Set this parameter to zero when no parent resource name is supplied.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

DEFINE_DIRECTORY_ENTRY

Chapter 3. NOF API Verbs 73

secondary_rc
Possible values are:
AP_INVALID_FQ_OWNING_CP_NAME

The parent_name parameter did not match the name of a defined resource.
AP_INVALID_LU_NAME

The resource_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_RESOURCE_TYPE
The resource_type parameter was not set to a valid value.

AP_INVALID_WILDCARD_NAME
The resource_type parameter was set to AP_WILDCARD_LU_RESOURCE, but the resource_name
parameter did not contain a valid wildcard entry.

AP_DUPLICATE
The resource_name parameter contained a wildcard entry that has already been defined.

AP_INVALID_RESOURCE_NAME
The resource_name parameter specified a node name that clashed with the name of the node to
which the verb was issued.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DLC
DEFINE_DLC defines a new DLC. It can also be used to modify the DLC-specific parameters of an existing
DLC, if the DLC is not currently active, but other parameters (such as DLC type, negotiable link support and
the valid port types) cannot be modified.

VCB structure
typedef struct define_dlc
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dlc_name[8]; /* name of DLC */
 DLC_DEF_DATA def_data; /* DLC defined data */
} DEFINE_DLC;

typedef struct dlc_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is the DLC initially active? */
 unsigned char reserv1[15]; /* reserved */
 unsigned char dlc_type; /* DLC type */
 unsigned char neg_ls_supp; /* negotiable link station support */
 unsigned char port_types; /* port types supported by DLC type */
 unsigned char hpr_only; /* only support HPR? */
 unsigned char reserv3; /* reserved */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char reserv4[4]; /* reserved */
 AP_UINT16 dlc_spec_data_len; /* Length of DLC specific data */
} DLC_DEF_DATA;

DEFINE_DLC

74 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

DLC-specific data for Token Ring, Ethernet, SDLC, QLLC:

typedef struct gdlc_dlc_cfg
{
 V0_MUX_INFO mux_info; /* Streams config info */
 unsigned char device[16]; /* GDLC device driver name */
 AP_UINT16 max_saps; /* Maximum number of SAPS supported */
 /* by this DLC */
 union
 {
 struct
 {
 AP_UINT16 support_level; /* adapter CCITT level (1980/1984) */
 } x25;
 struct
 {
 unsigned char ethernet_type; /* Standard Ethernet or IEEE 802.3 */
 } ether;
 } uu;
} GDLC_DLC_CFG;

DLC-specific data for Enterprise Extender (HPR/IP):

typedef struct ipdlc_dlc_spec_data
{
 V0_MUX_INFO mux_info; /* streams information */
 AP_UINT16 udp_port[5]; /* UDP port numbers for traffic */
 /* priorities LLC, Network, High, */
 /* Medium, Low */
 unsigned char ip_precedence[5]; /* IP precedence 0-7 for traffic */
 /* priorities */
 unsigned char no_dns_lookup; /* are all remote hosts specified by */
 /* numeric IP address? */
} IPDLC_DLC_SPEC_DATA;

For all DLC types:

typedef struct v0_mux_info
{
 AP_UINT16 dlc_type; /* DLC implementation type */
 unsigned char need_vrfy_fixup; /* reserved */
 unsigned char num_mux_ids; /* reserved */
 AP_UINT32 card_type; /* type of adapter card */
 AP_UINT32 adapter_number; /* DLC adapter number */
 AP_UINT32 oem_data_length; /* reserved */
 AP_INT32 mux_ids[5]; /* reserved */
} V0_MUX_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DLC

dlc_name
Name of the DLC. This is an 8-byte ASCII string, using any locally displayable characters, padded on
the right with spaces if the name is shorter than 8 bytes.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the DLC. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_DLC verb, but CS/AIX does not make any other use of it.

def_data.initially_active
Specifies whether this DLC is automatically started when the node is started. Possible values are:
AP_YES

The DLC is automatically started when the node is started.

DEFINE_DLC

Chapter 3. NOF API Verbs 75

AP_NO
The DLC is automatically started only if a port or LS that uses it is defined to be initially active;
otherwise it must be started manually.

def_data.dlc_type
Type of the DLC. You cannot change this parameter for an existing DLC; this parameter can be
specified only when creating a new DLC. Possible values are:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
def_data.neg_ls_supp

Specifies whether the DLC supports negotiable link stations. You cannot change this parameter for an
existing DLC; this parameter can be specified only when creating a new DLC. If dlc_type is set to
AP_QLLC, this must be set to AP_YES.

Possible values are:

AP_YES
Link stations using this DLC may be negotiable.

AP_NO
Link stations using this DLC must be defined as either primary or secondary; negotiable link
stations are not supported.

def_data.port_types
If dlc_type is set to AP_TR / AP_ETHERNET / AP_IP, set this parameter to AP_PORT_SATF. For all
other DLC types, this parameter is reserved.

def_data.hpr_only
Specifies whether the DLC supports only HPR traffic. If dlc_type is set to AP_IP, this must be set to
AP_YES. Possible values are:
AP_YES

This DLC is used for Enterprise Extender links, and supports only HPR traffic.
AP_NO

This DLC is used for link types other than Enterprise Extender and supports non-HPR traffic; it may
also support HPR traffic.

def_data.dlc_spec_data_len
Length, in bytes, of data specific to the type of the DLC. The DLC-specific data structures should be
included at the end of the basic VCB structure.

DLC-specific data for Token Ring, Ethernet, SDLC, QLLC:

gdlc_dlc_cfg.mux_info.dlc_type
Type of the DLC. Possible values are:
AP_IMPL_TR_GDLC

Token Ring
AP_IMPL_ETHER_GDLC

Ethernet
AP_IMPL_X25_GDLC

QLLC

DEFINE_DLC

76 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_IMPL_SDLC_GDLC
SDLC

gdlc_dlc_cfg.mux_info.card_type
Type of the adapter card. Possible values are:
AP_CARD_GDLC_TOKEN_RING

Token Ring
AP_CARD_GDLC_ETHERNET

Ethernet
AP_CARD_GDLC_QLLC

QLLC
AP_CARD_GDLC_SDLC

SDLC
gdlc_dlc_cfg.mux_info.adapter_number

Adapter number used by the DLC. If the server contains more than one adapter card for this DLC type,
specify zero for the first card, 1 for the second, and so on. Otherwise, set this parameter to zero.

gdlc_dlc_cfg.device
Name of the GDLC device driver. This is an ASCII string of 1-15 characters, terminated by a null
character.

gdlc_dlc_cfg.max_saps
Maximum number of SAPs that this DLC can support.

For QLLC:

gdlc_dlc_cfg.uu.x25.support_level
X.25 support level provided by the adapter. Possible values are:
AP_1980

1980 standard
AP_1984

1984 standard
AP_1988

1988 standard

For Ethernet:

gdlc_dlc_cfg.uu.ether.ethernet_type
Type of Ethernet network. Possible values are:
GDLC_ETHER_STANDARD

Standard Ethernet
GDLC_ETHER_8023

IEEE 802.3

DLC-specific data for Channel:

chnl_dlc_spec_data.mux_info.dlc_type
Type of the DLC. Set this to AP_CHANNEL.

chnl_dlc_spec_data.mux_info.card_type
Type of the adapter card. Possible values are:
AP_CARD_IBM_ESCON

AIX Enterprise System Connection Adapter.
AP_CARD_BLK_MUX

AIX Block Multiplexer Channel Adapter.
chnl_dlc_spec_data.mux_info.adapter_number

This parameter is reserved (set it to zero).

DLC-specific data for Enterprise Extender (HPR/IP):

DEFINE_DLC

Chapter 3. NOF API Verbs 77

ipdlc_dlc_spec_data.mux_info.dlc_type
Type of the DLC. Set this to AP_IP.

ipdlc_dlc_spec_data.mux_info.card_type
Type of the adapter card. Set this to AP_CARD_IP.

ipdlc_dlc_spec_data.mux_info.adapter_number
Reserved (set this parameter to zero).

ipdlc_dlc_spec_data.udp_port
Array of five UDP port numbers used by the DLC for different traffic priorities. These are normally set
to 12000 - 12004.
udp_port[0]

UDP port used for LLC commands.
udp_port[1]

UDP port used for network priority traffic.
udp_port[2]

UDP port used for high priority traffic.
udp_port[3]

UDP port used for medium priority traffic.
udp_port[4]

UDP port used for low priority traffic.
ipdlc_dlc_spec_data.ip_precedence

Array of five IP precedence values used by the DLC for different traffic priorities. Each entry in this
array is a value in the range 0 (minimum) - 7 (maximum).
ip_precedence[0]

IP precedence used for LLC commands. This is normally set to 6.
ip_precedence[1]

IP precedence used for network priority traffic. This is normally set to 6.
ip_precedence[2]

IP precedence used for high priority traffic. This is normally set to 4.
ip_precedence[3]

IP precedence used for medium priority traffic. This is normally set to 2.
ip_precedence[4]

IP precedence used for low priority traffic. This is normally set to 1.
ipdlc_dlc_spec_data.no_dns_lookup

Specifies whether remote host IP addresses require lookup at a Domain Name Server. Possible values
are:
AP_YES

Do not attempt to look up the hostname from the remote IP address when receiving an incoming
IP connection.

Use this option when the remote IP address cannot be resolved. In this case, the incoming
connection can be matched to a configured LS only if the LS is configured to use an explicit IP
address (either IPv4 or IPv6) rather than a hostname.

AP_NO
The remote host IP address on link stations defined for this DLC can be specified as a numeric
address (either IPv4 or IPv6), as a name (such as newbox.this.co.uk), or as an alias (such as
newbox). The node performs a Domain Name Server lookup to determine the remote host name
on all incoming calls where necessary.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

DEFINE_DLC

78 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DLC_NAME

The supplied dlc_name parameter contained a character that was not valid.
AP_INVALID_DLC_TYPE

The supplied dlc_type parameter was not one of the allowed values.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_DLC_ACTIVE

The specified DLC cannot be modified because it is currently active.
AP_INVALID_DLC_TYPE

You cannot change the DLC type, negotiable link support, or supported port types for an existing
DLC. They can be specified only when creating a new DLC.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DLUR_DEFAULTS
DEFINE_DLUR_DEFAULTS defines a default Dependent LU server (DLUS) and a backup default DLUS; if a
default DLUS or backup default DLUS is already defined, the verb overrides the existing definition. The
default DLUS name is used by DLUR when it initiates SSCP-PU activation for PUs that do not have an
explicitly specified associated DLUS. (To define a PU and its associated DLUS, use DEFINE_INTERNAL_PU
for a local PU, or DEFINE_LS for a downstream PU.)

The verb can also be used to revoke a default DLUS or backup default DLUS, so that none is defined.

VCB structure
typedef struct define_dlur_defaults
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

DEFINE_DLUR_DEFAULTS

Chapter 3. NOF API Verbs 79

 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char dlus_name[17]; /* DLUS name */
 unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
 unsigned char reserv3; /* reserved */
 unsigned char dlus_retry_timeout; /* retry timeout */
 unsigned char dlus_retry_limit; /* retry limit */
 unsigned char prefer_active_dlus; /* reserved */
 unsigned char persistent_pipe_support; /* reserved */
 unsigned char reserv4[14]; /* reserved */
} DEFINE_DLUR_DEFAULTS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DLUR_DEFAULTS

description
A null-terminated text string (0-31 characters followed by a null character) describing the DLUR
defaults. This string is for information only; it is stored in the node's configuration file, but CS/AIX does
not make any other use of it.

dlus_name
Name of DLUS node which will serve as the default. The name is a 17-byte EBCDIC string, right-
padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

To revoke the current default DLUS, so that no default DLUS is defined, set this parameter to 17 binary
zeros.

bkup_dlus_name
Name of DLUS node which will serve as the backup default. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

To revoke the current backup default DLUS, so that no backup default DLUS is defined, set this
parameter to 17 binary zeros.

dlus_retry_timeout
Reactivation timer for contacting a DLUS. If CS/AIX fails to contact the DLUS, this parameter specifies
the time in seconds between retries. Specify a value in the range 0x0001-0xFFFF.

dlus_retry_limit
Retry count for contacting a DLUS. This parameter is used to specify the number of times CS/AIX
should retry if it fails to contact the DLUS on the first attempt.

Specify a value in the range 0x0001-0xFFFE, or 0xFFFF to indicate that CS/AIX should retry
indefinitely until it contacts the DLUS.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

DEFINE_DLUR_DEFAULTS

80 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_DLUS_NAME
The supplied dlus_name parameter contained a character that was not valid or was not in the
correct format.

AP_INVALID_BKUP_DLUS_NAME
The supplied dlus_name parameter contained a character that was not valid or was not in the
correct format.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node's configuration does not support it,
CS/AIX returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DOMAIN_CONFIG_FILE
DEFINE_DOMAIN_CONFIG_FILE specifies a comment string to be included in the header of the domain
configuration file, or modifies an existing comment string.

There is no equivalent verb for a node configuration file, because the header for this file does not contain
a comment string; use the description parameter in the DEFINE_NODE verb to include comment
information in a node configuration file.

This verb must be issued to the domain configuration file.

VCB structure
typedef struct define_domain_config_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserv3[8]; /* Reserved */
 CONFIG_FILE_HEADER hdr; /* defined data */
} DEFINE_DOMAIN_CONFIG_FILE;

typedef struct config_file_header
{
 AP_UINT16 major_version; /* reserved */
 AP_UINT16 minor_version; /* reserved */
 AP_UINT16 update_release; /* reserved */
 AP_UINT32 revision_level; /* reserved */
 unsigned char comment[100]; /* optional comment string */
 unsigned char updating; /* reserved */
} CONFIG_FILE_HEADER;

Supplied parameters
The application supplies the following parameters:

DEFINE_DOMAIN_CONFIG_FILE

Chapter 3. NOF API Verbs 81

opcode
AP_DEFINE_DOMAIN_CONFIG_FILE

hdr.comment
An optional comment string to store information about the file. This is an ASCII string of 0-99
characters, followed by a null character. This parameter is for information only; CS/AIX returns it on
the QUERY_DOMAIN_CONFIG_FILE verb, but does not make any other use of it.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DOWNSTREAM_LU
DEFINE_DOWNSTREAM_LU defines a new downstream LU, and maps it to an upstream host LU or LU pool
(defined using DEFINE_LU_0_TO_3 or DEFINE_LU_POOL). This allows the downstream LU to access the
host computer using the SNA gateway feature of CS/AIX. This verb cannot be used to modify an existing
downstream LU.

This verb can also be used to activate a downstream LU that is already defined (for example, because the
downstream workstation has just been activated). To do this, reissue the DEFINE_DOWNSTREAM_LU verb
for that LU. Note that all parameters must be the same as in the original definition, because you cannot
modify the definition.

DEFINE_DOWNSTREAM_LU can also be used to define the downstream LU used by an application that
communicates with a CS/AIX Primary RUI application. For more information about Primary RUI, see IBM
Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide.

VCB structure
typedef struct define_downstream_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dslu_name[8]; /* Downstream LU name */
 DOWNSTREAM_LU_DEF_DATA def_data; /* Defined data */
} DEFINE_DOWNSTREAM_LU;

typedef struct downstream_lu_def_data
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* downstream LU nau address */
 unsigned char dspu_name[8]; /* Downstream PU name */
 unsigned char host_lu_name[8]; /* Host LU or Pool name */
 unsigned char allow_timeout; /* Allow timeout of host LU? */
 unsigned char delayed_logon; /* Allow delayed logon to */
 /* host LU */
 unsigned char reserv2[6]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

DEFINE_DOWNSTREAM_LU

82 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

opcode
AP_DEFINE_DOWNSTREAM_LU

dslu_name
Name of the downstream LU that is being defined. This is an 8-byte type-A EBCDIC string (starting
with a letter), padded on the right with EBCDIC spaces.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the
downstream LU. This string is for information only; it is stored in the node's configuration file and
returned on the QUERY_DOWNSTREAM_LU verb, but CS/AIX does not make any other use of it.

def_data.nau_address
Network accessible unit address of the downstream LU. This must be in the range 1-255.

def_data.dspu_name
Name of the downstream PU associated with this LU (as specified on the DEFINE_LS). This is an 8-
byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces.

def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU will be mapped onto. This is an 8-byte
type-A EBCDIC string, padded on the right with EBCDIC spaces.

For SNA gateway, the host LU cannot be a dependent LU type 6.2. However, if the downstream LU is
LU type 6.2, you can configure the host LU as an LU type 0-3 and specify that the model type for the
host LU is unknown.

If the downstream LU is used to communicate with a CS/AIX Primary RUI application instead of a
host, set this field to the string #PRIRUI# in EBCDIC.

def_data.allow_timeout
Specifies whether to allow the session between the downstream LU and the upstream LU to timeout if
the session is left inactive for the timeout period specified on the upstream LU definition. Possible
values are:
AP_YES

Allow the session this downstream LU has with the upstream LU to timeout.
AP_NO

Do not allow the session this downstream LU has with the upstream LU to timeout.

This field is ignored if the downstream LU is used to communicate with a CS/AIX Primary RUI
application instead of a host.

def_data.delayed_logon
Specifies whether to use delayed logon with this downstream LU (the upstream LU is not activated
until the user requests it). Possible values are:
AP_YES

Use delayed logon with this downstream LU; the upstream LU is not activated until the user
requests it.

AP_NO
Do not use delayed logon with this downstream LU.

This field is ignored if the downstream LU is used to communicate with a CS/AIX Primary RUI
application instead of a host.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

DEFINE_DOWNSTREAM_LU

Chapter 3. NOF API Verbs 83

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DNST_LU_NAME

The supplied dslu_name parameter contained a character that was not valid.
AP_INVALID_NAU_ADDRESS

The supplied NAU address was not in the valid range.
AP_INVALID_ALLOW_TIMEOUT

The supplied allow_timeout parameter value was not valid.
AP_INVALID_DELAYED_LOGON

The supplied delayed_logon parameter value was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The specified dspu_name parameter was not valid.
AP_PU_NOT_DEFINED

The specified dspu_name parameter did not match any defined PU name.
AP_INVALID_PU_TYPE

The PU specified by the dspu_name parameter is not a downstream PU that supports SNA
gateway.

AP_LU_ALREADY_DEFINED
An LU with the specified name has already been defined, and cannot be modified using this verb.

AP_DSLU_ACTIVE
The LU is already active.

AP_LU_NAU_ADDR_ALREADY_DEFD
An LU with the specified NAU address has already been defined.

AP_INVALID_HOST_LU_NAME
The specified host LU name was not valid.

AP_LU_NAME_POOL_NAME_CLASH
The specified LU name clashes with the name of an existing LU pool.

AP_PU_NOT_ACTIVE
The PU specified by the dspu_name parameter is not currently active.

AP_LU_ALREADY_ACTIVATING
An LU with the name specified by the dslu_name parameter is currently activating.

AP_LU_DEACTIVATING
An LU with the name specified by the dslu_name parameter is currently deactivating.

AP_LU_ALREADY_ACTIVE
An LU with the name specified by the dslu_name parameter is already active.

DEFINE_DOWNSTREAM_LU

84 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node's configuration does not support it,
CS/AIX returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway; this is defined by the pu_conc_support parameter
on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DOWNSTREAM_LU_RANGE
DEFINE_DOWNSTREAM_LU_RANGE defines a new range of downstream LUs, and maps them to an
upstream host LU or LU pool (defined using DEFINE_LU_0_TO_3 or DEFINE_LU_POOL). This allows the
downstream LUs to access the host computer using the SNA gateway feature of CS/AIX. This verb cannot
be used to modify existing downstream LUs.

The supplied parameters to this verb include a base name for the new LUs and the range of NAU
addresses. The new LU names are generated by combining the base name with the NAU addresses. For
example, a base name of LUNME combined with a NAU range of 11 to 14 would define the LUs
LUNME011, LUNME012, LUNME013 and LUNME014.

DEFINE_DOWNSTREAM_LU_RANGE can also be used to define downstream LUs used by applications
that communicate with a CS/AIX Primary RUI application. For more information about Primary RUI, see
IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide.

VCB structure
typedef struct define_downstream_lu_range
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dslu_base_name[5]; /* Downstream LU base name */
 unsigned char reserv3; /* reserved */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char min_nau; /* Minimum NAU address in range */
 unsigned char max_nau; /* Maximum NAU address in range */
 unsigned char dspu_name[8]; /* Downstream PU name */
 unsigned char host_lu_name[8]; /* Host LU or Pool name */
 unsigned char allow_timeout; /* Allow timeout of host LU? */
 unsigned char delayed_logon; /* Allow delayed logon to host LU */
 unsigned char reserv4[6]; /* reserved */
} DEFINE_DOWNSTREAM_LU_RANGE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DOWNSTREAM_LU_RANGE

DEFINE_DOWNSTREAM_LU_RANGE

Chapter 3. NOF API Verbs 85

dslu_base_name
Base name for the names of the new LUs. This is a 5-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the base name is less than 5 characters. CS/AIX generates
the LU name for each LU by appending the 3-digit decimal value of the NAU address to this name.

description
A null-terminated text string (0-31 characters followed by a null character) describing the
downstream LUs (the same string is used for each LU in the range). This string is for information only;
it is stored in the node's configuration file and returned on the QUERY_DOWNSTREAM_LU verb, but
CS/AIX does not make any other use of it.

min_nau
NAU address of the first LU, in the range 1-255.

max_nau
NAU address of the last LU, in the range 1-255.

dspu_name
Name of the downstream PU (as specified on the DEFINE_LS verb) which the downstream LUs in this
range will use. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the right with
EBCDIC spaces if necessary.

host_lu_name
Name of host LU or host LU pool that the downstream LUs in the given range will be mapped to. This is
an 8-byte type-A EBCDIC string, padded on the right with EBCDIC spaces if necessary.

If the downstream LUs are used to communicate with a CS/AIX Primary RUI application instead of a
host, set this field to the string #PRIRUI# in EBCDIC.

allow_timeout
Specifies whether to allow the sessions this range of downstream LUs have with the upstream LU to
timeout if the session is left inactive for the timeout period specified on the upstream LU definition.
Possible values are:
AP_YES

Allow the sessions this range of downstream LUs have with the upstream LU to timeout.
AP_NO

Do not allow the session this range of downstream LUs have with the upstream LU to timeout.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

delayed_logon
Specifies whether to use delayed logon with this range of downstream LUs (the upstream LU is not
activated until the user requests it). Possible values are:
AP_YES

Use delayed logon with this range of downstream LUs; the upstream LU is not activated until the
user requests it.

AP_NO
Do not use delayed logon with this range of downstream LUs.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

DEFINE_DOWNSTREAM_LU_RANGE

86 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DNST_LU_NAME

The supplied dslu_base_name parameter contained a character that was not valid.
AP_INVALID_NAU_ADDRESS

One or more of the supplied NAU addresses was not in the valid range.
AP_INVALID_ALLOW_TIMEOUT

The supplied allow_timeout parameter value was not valid.
AP_INVALID_DELAYED_LOGON

The supplied delayed_logon parameter value was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The specified dspu_name parameter was not valid.
AP_PU_NOT_DEFINED

The specified dspu_name parameter did not match any defined PU name.
AP_INVALID_PU_TYPE

The PU specified by the dspu_name parameter is not a downstream PU that supports SNA
gateway.

AP_LU_ALREADY_DEFINED
An LU has already been defined with a name that matches one of the names in the range. The
existing LU cannot be modified using this verb.

AP_DSLU_ACTIVE
An LU with a name that matches one of the names in the range is already active. The existing LU
cannot be modified using this verb.

AP_LU_NAU_ADDR_ALREADY_DEFD
An LU has already been defined with an NAU address that matches one of the addresses in the
range.

AP_INVALID_HOST_LU_NAME
The specified host LU name was not valid.

AP_LU_NAME_POOL_NAME_CLASH
One of the LU names in the range clashes with the name of an existing LU pool.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node's configuration does not support it,
CS/AIX returns the following parameters:

DEFINE_DOWNSTREAM_LU_RANGE

Chapter 3. NOF API Verbs 87

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway; this is defined by the pu_conc_support parameter
on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_DSPU_TEMPLATE
The DEFINE_DSPU_TEMPLATE verb defines a template for downstream LUs that use the CS/AIX SNA
gateway feature. This template is used to define downstream LUs on a group of downstream workstations
when a workstation connects over an implicit link (a link not previously defined).

DEFINE_DSPU_TEMPLATE can also be used to define downstream LUs that support applications
communicating with a Primary RUI application on the CS/AIX node. For more information about Primary
RUI, see IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's
Guide.

VCB structure
typedef struct define_dspu_template
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv3; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char template_name[8]; /* Name of template */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char modify_template; /* Modify existing template? */
 unsigned char reserv1[11]; /* reserved */
 AP_UINT16 max_instance; /* Max active template */
 /* instances */
 AP_UINT16 num_of_dslu_templates;/* number of DSLU templates*/
} DEFINE_DSPU_TEMPLATE;

typedef struct dslu_template
{
 unsigned char min_nau; /* Minimum NAU address in range*/
 unsigned char max_nau; /* Maximum NAU address in range*/
 unsigned char allow_timeout; /* Allow timeout of host LU? */
 unsigned char delayed_logon; /* Allow delayed logon to host */
 /* LU */
 unsigned char reserv1[8]; /* reserved */
 unsigned char host_lu[8]; /* Host LU or Pool name */
} DSLU_TEMPLATE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_DSPU_TEMPLATE

template_name
The name of the template for downstream LUs that are present on a group of downstream
workstations.

description
Resource description that is returned on the QUERY_DSPU_TEMPLATE verb.

DEFINE_DSPU_TEMPLATE

88 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

modify_template
Specifies whether this verb should add additional DSLU templates to an existing DSPU template or
should replace an existing DSPU template. Possible values are:
AP_MODIFY_DSPU_TEMPLATE

If the named DSPU template does not exist, then it is created. If the named DSPU template does
exist, then appended DSLU templates are added to the existing DSPU template.

AP_REPLACE_DSPU_TEMPLATE
A new template is created, overwriting any existing definition.

max_instance
The maximum number of instances of the template that can be active concurrently. When the limit is
reached, no new instances are created. Specify a value in the range 0-65,535, where 0 (zero)
indicates no limit.

num_of_dslu_templates
The number of downstream LU (DSLU) templates being defined by this verb.

The subrecord dslu_template contains the following parameters:

min_nau
NAU address of the first downstream PU, in the range 1-255.

max_nau
NAU address of the last downstream PU, in the range 1-255.

allow_timeout
Specifies whether to timeout host LUs used by the downstream LU if the session is left inactive for the
timeout period specified on the host LU definition. Possible values are:
AP_YES

CS/AIX is allowed to timeout host LUs used by this downstream LU.
AP_NO

CS/AIX is not allowed to timeout host LUs used by this downstream LU.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

delayed_logon
Specifies whether to delay connecting the downstream LU to the host LU until the first data is received
from the downstream LU. Possible values are:
AP_YES

CS/AIX delays connecting the downstream LU to the host LU. A simulated logon screen is sent to
the downstream LU.

AP_NO
CS/AIX does not delay connecting the downstream LU to the host LU.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

host_lu
Name of the host LU or host LU pool that the downstream LU uses. This name is an 8-byte type-A
character string.

If the downstream LUs are used to communicate with a CS/AIX Primary RUI application instead of a
host, set this field to the string #PRIRUI# in EBCDIC.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

DEFINE_DSPU_TEMPLATE

Chapter 3. NOF API Verbs 89

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TEMPLATE_NAME

The name specified for the template_name parameter was not valid.
AP_INVALID_NAU_ADDRESS

The min_nau or max_nau parameter was not valid.
AP_INVALID_NAU_RANGE

The address specified on the min_nau or max_nau parameters was not in the valid range.
AP_CLASHING_NAU_RANGE

The range of addresses specified by the min_nau parameter through the max_nau parameter in a
dslu_template subrecord clashes with a range specified by another dslu_template
subrecord in the template named by the template_name parameter.

AP_INVALID_NUM_DSPU_TEMPLATES
The value specified for the num_of_dslu_templates parameter was not in the valid range.

AP_INVALID_ALLOW_TIMEOUT
The value specified for the allow_timeout parameter was not valid.

AP_INVALID_DELAYED_LOGON
The value specified for the delayed_logon parameter was not valid.

AP_INVALID_MODIFY_TEMPLATE
The value specified for the modify_template parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_HOST_LU_NAME

The specified host_lu_name parameter value was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node's configuration does not support it,
CS/AIX returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway; this is defined by the pu_conc_support parameter
on the DEFINE_NODE verb.

DEFINE_DSPU_TEMPLATE

90 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661, lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_FOCAL_POINT
The DEFINE_FOCAL_POINT verb specifies the focal point for a particular Management Services category.
When a new focal point is specified, CS/AIX attempts to establish an implicit primary focal point
relationship with the specified focal point by sending an MS_CAPABILITIES request.

VCB structure
typedef struct define_focal_point
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserved; /* reserved */
 unsigned char ms_category[8]; /* management services category */
 unsigned char fp_fqcp_name[17]; /* Fully qualified focal */
 /* point cp name */
 unsigned char ms_appl_name[8]; /* Focal point application name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char backup; /* is focal point a backup */
 unsigned char reserv3[16]; /* reserved */
} DEFINE_FOCAL_POINT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_FOCAL_POINT

ms_category
Management Services category. This may be either one of the category names specified in the MS
Discipline-Specific Application Programs table of Systems Network Architecture: Management Services
Reference (see the Bibliography), padded with EBCDIC spaces (0x40), or a user-defined category. A
user-defined category name is an 8-byte type-1134 EBCDIC string, padded with EBCDIC spaces
(0x40) if necessary.

fp_fqcp_name
Fully qualified control point name of the focal point. The name is a 17-byte EBCDIC string, right-
padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

ms_appl_name
Focal point application name. This is normally an EBCDIC string, using type-1134 characters;
alternatively, it can be one of the MS Discipline-Specific Application Programs specified in Systems
Network Architecture: Management Services Reference (see the Bibliography). The string must be 8
characters long; pad on the right with EBCDIC space characters (0x40) if necessary.

description
A null-terminated text string (0-31 characters followed by a null character) describing the focal point.
This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_FOCAL_POINT verb, but CS/AIX does not make any other use of it.

backup
Indicates whether the specified application is the main focal point for this category, or a backup focal
point. Possible values are:

DEFINE_FOCAL_POINT

Chapter 3. NOF API Verbs 91

AP_YES
Backup focal point (used only if the main focal point is not available).

AP_NO
Main focal point.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

The focal point was defined as requested.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CATEGORY_NAME

The supplied category name contained a character that was not valid.
AP_INVALID_FP_NAME

The fully qualified name or the application name was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: replaced
If the verb does not execute successfully because it is followed by another verb specifying a different
focal point, CS/AIX returns the following parameters.

primary_rc
AP_REPLACED

Another DEFINE_FOCAL_POINT was issued to the same node while this verb was outstanding,
specifying a different focal point for the same MS category. This verb was abandoned; the node
will attempt to contact the focal point specified by the second verb.

Returned parameters: unsuccessful
If the verb does not execute successfully because the focal point relationship cannot be established,
CS/AIX returns the following parameters:

primary_rc
AP_UNSUCCESSFUL

DEFINE_FOCAL_POINT

92 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Possible values are:
AP_IMPLICIT_REQUEST_REJECTED

The specified focal point rejected the request.
AP_IMPLICIT_REQUEST_FAILED

The node could not send the request to the specified focal point; this may be because the
specified control point or application was not found.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_INTERNAL_PU
The DEFINE_INTERNAL_PU verb defines a PU on the local node that is served by DLUR. (To define a
downstream PU served by DLUR or SNA gateway, or to define a local PU that is directly attached to the
host, use DEFINE_LS instead of DEFINE_INTERNAL_PU.)

VCB structure
typedef struct define_internal_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pu_name[8]; /* internal PU name */
 INTERNAL_PU_DEF_DATA def_data; /* defined data */
} DEFINE_INTERNAL_PU;

typedef struct internal_pu_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is PU initially active? */
 unsigned char reserv1[15]; /* reserved */
 unsigned char dlus_name[17]; /* DLUS name */
 unsigned char bkup_dlus_name[17]; /* backup DLUS name */
 unsigned char pu_id[4]; /* PU identifier */
 AP_UINT16 dlus_retry_timeout; /* DLUS retry timeout */
 AP_UINT16 dlus_retry_limit; /* DLUS retry limit */
 unsigned char conventional_lu_compression; /* compression for LU 0-3? */
 unsigned char conventional_lu_cryptography; /* reserved */
 unsigned char pu_can_send_dddlu_offline; /* does the PU send NMVT */
 /* (power off) to host? */
 unsigned char reserv2[1]; /* reserved */
} INTERNAL_PU_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_INTERNAL_PU

pu_name
Name of the internal PU that is being defined. This is a type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

This name should match the PU name configured on the host. (CS/AIX sends both the PU name and
PU ID to the host to identify the PU. The host normally identifies the PU by its PU name, or by the PU
ID if it cannot find a matching PU name.)

DEFINE_INTERNAL_PU

Chapter 3. NOF API Verbs 93

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the internal PU.
This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_DLUR_PU and QUERY_PU verbs, but CS/AIX does not make any other use of it.

def_data.initially_active
Specifies whether this internal PU is automatically started when the node is started. Possible values
are:
AP_YES

The PU is automatically started when the node is started.
AP_NO

The PU is not automatically started; it must be started manually.
def_data.dlus_name

Name of DLUS node which DLUR will use when it initiates SSCP-PU activation. The name is a 17-byte
EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

To indicate that DLUR should use the global default DLUS, set this parameter to 17 binary zeros. In
this case, you must also use DEFINE_DLUR_DEFAULTS to define the global default DLUS.

def_data.bkup_dlus_name
Name of DLUS node which will serve as the backup DLUS for this PU. The name is a 17-byte EBCDIC
string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

To indicate that DLUR should use the global backup default DLUS, set this parameter to 17 binary
zeros. In this case, you must also use DEFINE_DLUR_DEFAULTS to define the global backup default
DLUS.

def_data.pu_id
PU identifier. This is a 4-byte hexadecimal string, consisting of a block number (3 hexadecimal digits)
and a node number (5 hexadecimal digits). The PU ID should match the pu_id configured at the host.
(CS/AIX sends both the PU name and PU ID to the host to identify the PU. The host normally identifies
the PU by its PU name, or by the PU ID if it cannot find a matching PU name.)

def_data.dlus_retry_timeout
Reactivation timer for contacting a DLUS. If CS/AIX fails to contact the DLUS, this parameter specifies
the time in seconds between retries. The interval between the first and second attempts is always 1
second.

Specify a value in the range 0x0001-0xFFFF. If zero is specified, then the defaults specified using the
DEFINE_DLUR_DEFAULTS verb are used.

def_data.dlus_retry_limit
Retry count for contacting a DLUS. This parameter is used to specify the number of times CS/AIX
should retry if it fails to contact the DLUS on the first attempt.

Specify a value in the range 0x0001-0xFFFE, or specify 0xFFFF to indicate that CS/AIX should retry
indefinitely until it contacts the DLUS.

def_data.conventional_lu_compression
Specifies whether data compression is requested for LU 0-3 sessions using this PU.

Possible values are:

AP_YES
Data compression should be used for LU 0-3 sessions using this PU if the host requests it.

AP_NO
Data compression should not be used for LU 0-3 sessions using this PU.

def_data.pu_can_send_dddlu_offline
Specifies whether the local PU should send NMVT (power off) messages to the host. If the host
system supports DDDLU (Dynamic Definition of Dependent LUs), CS/AIX sends NMVT (power off) to

DEFINE_INTERNAL_PU

94 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

the host when it has finished using a dynamically defined LU. This allows the host to save resources by
removing the definition when it is no longer required.

Possible values are:

AP_YES
The local PU sends NMVT (power off) messages to the host.

AP_NO
The local PU does not send NMVT (power off) messages to the host.

If the host supports DDDLU but does not support the NMVT (power off) message, this parameter must
be set to AP_NO.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The pu_name parameter contained a character that was not valid.
AP_INVALID_PU_ID

The pu_id parameter contained a character that was not valid.
AP_INVALID_DLUS_NAME

The dlus_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_BKUP_DLUS_NAME
The bkup_dlus_name parameter contained a character that was not valid or was not in the correct
format.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_ALREADY_DEFINED

A PU with the specified name has already been defined.

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

DEFINE_INTERNAL_PU

Chapter 3. NOF API Verbs 95

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LOCAL_LU
The DEFINE_LOCAL_LU verb defines a new local LU. It can also be used to modify the attach routing data,
disable parameter, or description of an existing LU (or of the default LU associated with the local node's
Control Point), but not any of the other parameters; when modifying an existing LU, all the other
parameters must be set to their currently defined values.

VCB structure
typedef struct define_local_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 LOCAL_LU_DEF_DATA def_data; /* defined data */
} DEFINE_LOCAL_LU;

typedef struct local_lu_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1; /* reserved */
 unsigned char security_list_name[14]; /* security access list name */
 unsigned char reserv3; /* reserved */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char nau_address; /* NAU address */
 unsigned char syncpt_support; /* is Syncpoint supported? */
 AP_UINT16 lu_session_limit; /* LU session limit */
 unsigned char default_pool; /* is LU in the pool of default */
 /* LUs? */
 unsigned char reserv2; /* reserved */
 unsigned char pu_name[8]; /* PU name */
 unsigned char lu_attributes; /* LU attributes */
 unsigned char sscp_id[6]; /* SSCP ID */
 unsigned char disable; /* disable or enable local LU */
 ROUTING_DATA attach_routing_data; /* routing data for incoming */
 /* attaches */
 unsigned char reserv6; /* reserved */
 unsigned char reserv4[7]; /* reserved */
 unsigned char reserv5[16]; /* reserved */
} LOCAL_LU_DEF_DATA;

typedef struct routing_data
{
 unsigned char sys_name[128]; /* Name of target system for TP */
 AP_INT32 timeout; /* timeout value in seconds */
 unsigned char back_level; /* reserved */
 unsigned char reserved[59]; /* reserved */
} ROUTING_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LOCAL_LU

lu_name
Name of the local LU. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces. It must not match any other local LU name, or the fully-qualified partner LU
name of any partner LU.

DEFINE_LOCAL_LU

96 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

To modify the attach routing data or description of the default LU associated with the local node's
Control Point, set this parameter to 8 binary zeros.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the local LU.
This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_LOCAL_LU verb, but CS/AIX does not make any other use of it.

def_data.security_list_name
Name of the security access list used by this local LU (defined using the
DEFINE_SECURITY_ACCESS_LIST verb). This parameter restricts the LU so that only the users named
in the specified list can use it. To specify that the LU is available for use by any user, set this parameter
to 14 binary zeros.

def_data.lu_alias
Alias of the local LU. This is an 8-byte ASCII string, using any locally displayable characters, padded
on the right to 8 bytes if necessary.

def_data.nau_address
Network accessible unit address of the LU. Specify zero if the LU is an independent LU, or an address
in the range 1-255 if the LU is a dependent LU.

def_data.syncpt_support
Specifies whether the LU supports Syncpoint functions. Set this to AP_YES only if you have a Sync
Point Manager (SPM) and Conversation Protected Resource Manager (C-PRM) in addition to the
standard CS/AIX product. Possible values are:
AP_YES

Syncpoint is supported.
AP_NO

Syncpoint is not supported.
def_data.lu_session_limit

The maximum total number of sessions (across all modes) supported by the LU.

For a dependent LU, this must be set to 1. For an independent LU, specify zero for no limit, or a value
in the range 1-65,535. If you specify an explicit limit, note the following:

• If the LU will be communicating with parallel-session remote LUs, the session limit must include
sufficient sessions for CNOS negotiation; a safe minimum is 3, or an additional 2 sessions for each
partner LU.

• The LU session limit must be greater than or equal to the sum of the session limits for all modes that
the LU will use.

def_data.default_pool
Specifies whether the LU is in the pool of default dependent LUs. For more information, see “Default
LUs” on page 99. Possible values are:
AP_YES

The LU is in the pool of default LUs, and can be used by applications that do not specify an LU
name.

AP_NO
The LU is not in the pool.

If the LU is an independent LU, this parameter is reserved.

def_data.pu_name
Name of the PU which this LU will use, as specified on the DEFINE_LS verb. This field is used only by
dependent LUs, and should be set to 8 binary zeros for independent LUs. The name is an 8-byte type-
A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if necessary.

def_data.lu_attributes
Identifies additional information about the LU. Possible values are:

DEFINE_LOCAL_LU

Chapter 3. NOF API Verbs 97

AP_NONE
No additional information identified.

AP_DISABLE_PWSUB
Disable password substitution support for the local LU. Password substitution means that
passwords are encrypted before transmission between the local and remote LUs, rather than
being sent as clear text. CS/AIX normally uses password substitution if the remote system
supports it.

This value is provided as a work-around for communications with some remote systems that do
not implement password substitution correctly. If you use this option, you should be aware that
this involves sending and receiving passwords in clear text (which may represent a security risk).
Do not set it unless there are problems with the remote system's implementation of password
substitution.

def_data.sscp_id
Specifies the ID of the SSCP permitted to activate this LU. This ID is a 6-byte binary string. This
parameter is used only by dependent LUs, and is set to all binary zeros if the LU is an independent LU
or if the LU can be activated by any SSCP.

def_data.disable
Specifies whether the local LU should be disabled or enabled. This field is only used for dependent
LU6.2 LUs, it is reserved otherwise. Possible values are:
AP_YES

Disable the local LU.
AP_NO

Enable the local LU.
def_data.attach_routing_data.sys_name

The system name of the target computer for incoming Allocate requests (requests from a partner TP
to start an APPC or CPI-C conversation) that arrive at this local LU.

If the target TP is a broadcast queued TP (that is, servers are informed of its location when it starts, so
that they can route incoming Allocate requests to it), or if it always runs on the same CS/AIX server as
the node that owns this LU, set this parameter to binary zeros. Otherwise, set it to the name of the
computer where the TP runs.

The name must be either an alias or a fully-qualified name; you cannot specify an IP address. If the
system name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the system name.

def_data.attach_routing_data.timeout
The timeout value for dynamic load requests. A request will time out if the invoked TP has not issued a
Receive_Allocate verb (APPC), or Accept_Conversation or Accept_Incoming (CPI-C), within this time.
Specify the timeout value in seconds, or -1 to indicate no timeout (dynamic load requests will wait
indefinitely).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

DEFINE_LOCAL_LU

98 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_DISABLE
The disable parameter was not set to a valid value.

AP_INVALID_LU_NAME
The supplied LU name contained a character that was not valid.

AP_INVALID_NAU_ADDRESS
The supplied NAU address was not in the valid range.

AP_INVALID_SESSION_LIMIT
The supplied session limit was not in the valid range.

AP_INVALID_TIMEOUT
The supplied timeout value was not in the valid range.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

Either the lu_name or lu_alias parameter contained a character that was not valid, or the LU name
matched the fully-qualified name of a partner LU.

AP_LU_ALREADY_DEFINED
An LU with this name has already been defined. You cannot use this verb to modify any
parameters of an existing LU except the attach routing data.

AP_PU_NOT_DEFINED
The pu_name parameter did not match any defined PU name.

AP_SECURITY_LIST_NOT_DEFINED
The security_list_name parameter did not match any defined security access list name.

AP_LU_ALIAS_ALREADY_USED
An LU with this alias has already been defined. You cannot use this verb to modify any parameters
of an existing LU except the attach routing data.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

Default LUs
You can set up the configuration of local LUs so that applications do not have to specify an LU name
explicitly when starting a conversation; the node will select a suitable default LU for the application to
use. The method for doing this depends on whether the applications require dependent or independent
LUs, as follows. You cannot provide this facility for both dependent and independent LUs.

• If the applications require dependent LUs, use the default_pool parameter on DEFINE_LOCAL_LU for
one or more dependent LUs, to specify that they can be used as default LUs. When an application
attempts to start a conversation without specifying a local LU name, CS/AIX will select an unused LU
from the pool of LUs defined as default LUs.

DEFINE_LOCAL_LU

Chapter 3. NOF API Verbs 99

• You can define LUs on more than one node as default LUs. An application requesting a default LU may
be assigned to any of these LUs as available; there is no requirement for the LU to be on the same
computer as the application. However, if you are defining partner LUs for the applications, these must
be defined on all nodes where default LUs are defined (so that the application can contact the correct
partner LU using any of the default local LUs).

• If the applications require independent LUs, do not use the default_pool parameter to define any local
LUs as default LUs. In this case, an application requesting a default LU will be assigned to the LU
associated with a local node's CP (this is an independent LU automatically defined by CS/AIX for each
node).

DEFINE_LS
DEFINE_LS is used to define a new link station (LS) or modify an existing one. Before issuing this verb, you
must issue the DEFINE_PORT verb to define the port that this LS uses. Link specific data is concatenated
to the basic structure.

You cannot use DEFINE_LS to modify the port used by an existing LS; the port_name specified on the verb
must match the previous definition of the LS. The LS can be modified only if it is not started.

VCB structure
typedef struct define_ls
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char ls_name[8]; /* name of link station */
 LS_DEF_DATA def_data; /* LS defined data */
} DEFINE_LS;

typedef struct ls_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is this LS initially active? */
 unsigned char reserv2; /* reserved */
 AP_UINT16 react_timer; /* timer for retrying failed LS */
 AP_UINT16 react_timer_retry; /* retry count for failed LS */
 AP_UINT16 activation_count; /* reserved */
 unsigned char restart_on_normal_deact; /* restart the link on any */
 /* failure */
 unsigned char reserv3[7]; /* reserved */
 unsigned char port_name[8]; /* name of associated port */
 unsigned char adj_cp_name[17]; /* adjacent CP name */
 unsigned char adj_cp_type; /* adjacent node type */
 LINK_ADDRESS dest_address; /* destination address */
 unsigned char auto_act_supp; /* auto-activate supported */
 unsigned char tg_number; /* pre-assigned TG number */
 unsigned char limited_resource; /* limited resource */
 unsigned char solicit_sscp_sessions; /* solicit SSCP sessions */
 unsigned char pu_name[8]; /* Local PU name (reserved if */
 /* solicit_sscp_sessions is set */
 /* to AP_NO) */
 unsigned char disable_remote_act; /* disable remote activation */
 unsigned char dspu_services; /* Services provided for */
 /* downstream PU */
 unsigned char dspu_name[8]; /* Downstream PU name (reserved */
 /* if dspu_services is AP_NONE) */
 unsigned char dlus_name[17]; /* DLUS name if dspu_services */
 /* set to AP_DLUR */
 unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
 /* dspu_services set to AP_DLUR */
 unsigned char hpr_supported; /* does the link support HPR? */
 unsigned char hpr_link_lvl_error; /* does the link use link-level */
 /* error recovery for HPR frms? */
 AP_UINT16 link_deact_timer; /* link deactivation timer */
 unsigned char reserv1; /* reserved */
 unsigned char default_nn_server; /* default LS to NN server? */
 unsigned char ls_attributes[4]; /* LS attributes */
 unsigned char adj_node_id[4]; /* adjacent node ID */

DEFINE_LS

100 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char local_node_id[4]; /* local node ID */
 unsigned char cp_cp_sess_support; /* CP-CP session support */
 unsigned char use_default_tg_chars; /* Use the default tg_chars */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
 AP_UINT16 target_pacing_count; /* target pacing count */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 unsigned char ls_role; /* link station role */
 unsigned char max_ifrm_rcvd; /* no. before acknowldgement */
 AP_UINT16 dlus_retry_timeout; /* seconds to recontact a DLUS */
 AP_UINT16 dlus_retry_limit; /* attempts to recontact a DLUS */
 unsigned char conventional_lu_compression; /* compression for LU 0-3? */
 unsigned char conventional_lu_cryptography; /* reserved */
 unsigned char reserv3a; /* reserved */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char branch_link_type; /* is link an up or down link */
 unsigned char adj_brnn_cp_support; /* adj CP allowed to be BrNN? */
 unsigned char mltg_pacing_algorithm; /* reserved */
 unsigned char reserv5; /* reserved */
 AP_UINT16 max_rcv_btu_size; /* reserved */
 unsigned char tg_sharing_prohibited; /* reserved */
 unsigned char link_spec_data_format; /* reserved */
 unsigned char pu_can_send_dddlu_offline; /* does the PU send NMVT */
 /* (power off) to host? */
 unsigned char reserv4[13]; /* reserved */
 AP_UINT16 link_spec_data_len; /* length of link specific data */
} LS_DEF_DATA;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */
 unsigned char connect_cost; /* connection cost */
 unsigned char byte_cost; /* byte cost */
 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */
 unsigned char prop_delay; /* propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* user-defined parameter 1 */
 unsigned char user_def_parm_2; /* user-defined parameter 2 */
 unsigned char user_def_parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

typedef struct link_address
{
 unsigned char format; /* type of link address */
 unsigned char reserve1; /* reserved */
 AP_UINT16 length; /* length */
 unsigned char address[135]; /* address */
} LINK_ADDRESS;

DLC-specific data for SDLC:

typedef struct sdl_link_spec_data
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 reserve8; /* reserved */
 AP_UINT16 reserve9; /* reserved */
 AP_UINT32 contact_timer; /* contact timer (fast poll, */
 /* in ms) */
 AP_UINT16 contact_timer_retry; /* contact timer retry */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT32 contact_timer2; /* contact timer (slow poll, */
 /* in ms) */
 AP_UINT16 contact_timer_retry2; /* contact timer 2 retry */
 AP_UINT16 reserve2; /* reserved */
 AP_UINT32 disc_timer; /* disconnect timer (in ms) */
 AP_UINT16 disc_timer_retry; /* disconnect timer retry */
 AP_UINT16 reserve3; /* reserved */
 AP_UINT32 nve_poll_timer; /* negative poll timer(fast poll) */
 AP_UINT16 nve_poll_timer_retry; /* negative poll timer retry */
 AP_UINT16 reserve4; /* reserved */
 AP_UINT32 nve_poll_timer2; /* negative poll timer(slow poll) */
 AP_UINT16 nve_poll_timer_retry2; /* negative poll timer 2 retry */
 AP_UINT16 reserve5; /* reserved */
 AP_UINT32 no_resp_timer; /* No response timer (T1 timer)) */
 /* (in ms) */

DEFINE_LS

Chapter 3. NOF API Verbs 101

 AP_UINT16 no_resp_timer_retry; /* No response timer retry */
 AP_UINT16 reserve6; /* reserved */
 AP_UINT32 rem_busy_timer; /* Remote busy timer (in ms) */
 AP_UINT16 rem_busy_timer_retry; /* Remote busy timer retry */
 unsigned char re_tx_threshold; /*I-frame retransmission threshold*/
 unsigned char repoll_threshold; /* Poll retransmission threshold */
 AP_UINT32 rr_timer; /* RR turnaround timer (in ms) */
 unsigned char group_address; /* reserved */
 unsigned char poll_frame; /* Poll frame to use when Primary */
 /* and contact polling secondary */
 /* XID, DISC, SNRM, SNRME, TEST */
 AP_UINT16 poll_on_iframe; /* Can LS send poll bit on */
 /* I-frame */
 AP_UINT16 stub_spec_data_len; /* length of stub specific data */
 STUB_SPEC_DATA stub_spec_data; /* stub specific data */
} SDL_LINK_SPEC_DATA;
typedef struct stub_spec_data
{
 AP_INT32 mux_id; /* reserved */
 unsigned char opt1; /* options flag 1 */
 unsigned char opt2; /* options flag 2 */
 unsigned char pad[2]; /* reserved */
 AP_UINT32 linesp; /* line speed in bps */
 AP_UINT16 rcv_pool_size; /* initial number of buffers for */
 /* rcv pool */
 AP_UINT16 poll_wait; /* seconds between polling HMOD */
 /* for errors */
 AP_UINT16 hmod_data_len; /* length of dial data string */
 unsigned char hmod_data[80]; /* dial data string */
 char x21_sequence[255]; /* X21 selection sequence */
 unsigned char x21_retry_count; /* X21 max call retries */
 AP_UINT16 x21_retry_delay; /* X21 delay between retries */
 AP_UINT16 v25_tx_delay; /* V25 pause before dialing */
 unsigned char cdstl; /* Wait for RI before DTR */
 unsigned char hex_hmod_data; /* reserved */
 unsigned char reserve1[2]; /* reserved */
} STUB_SPEC_DATA;

DLC-specific data for QLLC:

typedef struct vql_ls_spec_data
{
 V0_MUX_INFO mux_info; /* streams config info */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT16 reserve2; /* reserved */
 unsigned char vc_type; /* Virtual Circuit type */
 unsigned char req_rev_charge; /* request reverse charge if */
 /* non-zero */
 unsigned char loc_packet; /* loc->rem packet */
 /* size 2**locpacket */
 unsigned char rem_packet; /* rem->loc packet */
 /* size 2**rempacket */
 unsigned char loc_wsize; /* loc->rem window size */
 unsigned char rem_wsize; /* rem->loc window size */
 AP_UINT16 fac_len; /* reserved */
 unsigned char fac[128]; /* reserved */
 AP_UINT16 retry_limit; /* times to retry send QXID,QSM, */
 /* QDISC */
 AP_UINT16 retry_timeout; /* timeout for each of above tries*/
 AP_UINT16 idle_timeout; /* timeout for no Q msgs during */
 /* init */
 AP_UINT16 pvc_id; /* PVC logical channel identifier */
 AP_UINT16 sn_id_len; /* reserved */
 unsigned char sn_id[4]; /* reserved */
 AP_UINT16 cud_len; /* length of any call user data */
 /* to send */
 unsigned char cud[128]; /* actual call user data */
 AP_UINT32 xtras; /* reserved */
 AP_UINT32 xtra_len; /* reserved */
 unsigned char rx_thruput_class; /* Max Rx speed of calling DTE */
 unsigned char tx_thruput_class; /* Max Tx speed of calling DTE */
 /* Values for these fields are: */
 /* 0 - Default */
 /* 0x07 - 1200 */
 /* 0x08 - 2400 */
 /* 0x09 - 4800 */
 /* 0x0a - 9600 */
 /* 0x0b - 19200 */
 /* 0x0b - 48000 */
 unsigned char cugo; /* Closed User Group (outgoing) */

DEFINE_LS

102 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char cug; /* LS used by Closed User Group */
 AP_UINT16 cug_index; /* Index of CUG using this LS */
 AP_UINT16 nuid_length; /* Length of Network User ID */
 unsigned char nuid_data[109]; /* Network User ID */
 unsigned char reserve3[2]; /* Reserved field */
 unsigned char rpoa_count; /* Count of RPOA codes */
 AP_UINT16 rpoa_ids[30]; /* Array of RPOA codes */
} VQL_LS_SPEC_DATA;

DLC-specific data for Token Ring, Ethernet:

typedef struct gdlc_ls_cfg
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT16 reserve2; /* reserved */
 AP_UINT16 xid_timeout; /* XID timeout value */
 AP_UINT16 xid_retry_limit; /* XID retransmission limit */
 AP_UINT16 t1_timeout; /* T1 timeout value */
 AP_UINT16 t1_retry_limit; /* I-frame retransmission limit */
 AP_UINT16 ack_time; /* Acknowledgment timeout value */
 AP_UINT16 inact_time; /* Inactivity timeout value */
 AP_UINT16 force_time; /* Force halt time-out value */
 union
 {
 struct
 {
 AP_UINT16 pkt_prty; /* reserved */
 AP_UINT16 dyna_wnd; /* Dynamic window increment for */
 /* transmit window */
 } tr;
 } uu;
 unsigned char remote_name; /* unique name of remote SAP */
} GDLC_LS_CFG;

typedef struct llc_link_spec_data
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT16 reserve2; /* reserved */
 AP_UINT16 length; /* reserved */
 AP_UINT16 xid_timer; /* XID timeout value in seconds */
 AP_UINT16 xid_timer_retry; /* XID retry limit */
 AP_UINT16 test_timer; /* TEST timeout value in seconds */
 AP_UINT16 test_timer_retry; /* TEST retry limit */
 AP_UINT16 ack_timeout; /* acknowledgment timeout in ms */
 AP_UINT16 p_bit_timeout; /* POLL response timeout in ms */
 AP_UINT16 t2_timeout; /* acknowledgment delay in ms */
 AP_UINT16 rej_timeout; /* REJ response timeout in seconds*/
 AP_UINT16 busy_state_timeout; /* remote busy timeout in seconds */
 AP_UINT16 idle_timeout; /* idle RR interval in seconds */
 AP_UINT16 max_retry; /* retry limit for any response */
} LLC_LINK_SPEC_DATA;

DLC-specific data for Enterprise Extender (HPR/IP):

typedef struct ipdlc_link_spec_data
{
 V0_MUX_INFO mux_info; /* streams information */
 AP_UINT16 ack_timeout; /* ACK timer for command frames */
 AP_UINT16 max_retry; /* Retry limit for command frames */
 AP_UINT16 liveness_timeout; /* Liveness timer */
 unsigned char short_hold_mode; /* Run in short-hold mode */
 unsigned char remote_hostname[255]; /* Name of remote host to contact */
} IPDLC_LINK_SPEC_DATA;

Data for all DLC types:

typedef struct v0_mux_info
{
 AP_UINT16 dlc_type; /* DLC implementation type */
 unsigned char need_vrfy_fixup; /* reserved */
 unsigned char num_mux_ids; /* reserved */
 AP_UINT32 card_type; /* type of adapter card */
 AP_UINT32 adapter_number; /* DLC adapter number */
 AP_UINT32 oem_data_length; /* reserved */

DEFINE_LS

Chapter 3. NOF API Verbs 103

 AP_INT32 mux_ids[5]; /* reserved */
} V0_MUX_INFO;

For Token Ring or Ethernet, the address parameter in the link_address structure is replaced by the
following:

typedef struct tr_address
{
 unsigned char mac_address[6]; /* MAC address */
 unsigned char lsap_address; /* local SAP address */
} TR_ADDRESS;

For Enterprise Extender (HPR/IP), the address parameter in the link_address structure is replaced by
the following:

typedef struct ip_address_info
{
 unsigned char lsap; /* Local Service Access Point addr */
 unsigned char version; /* IPv4 or IPv6 */
 unsigned char address[272]; /* reserved */

} IP_ADDRESS_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LS

ls_name
Name of link station. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the LS. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_LS, QUERY_PU, and QUERY_DOWNSTREAM_PU verbs, but CS/AIX does not make any other
use of it.

def_data.initially_active
Specifies whether this LS is automatically started when the node is started. Possible values are:
AP_YES

The LS is automatically started when the node is started.
AP_NO

The LS is not automatically started; it must be started manually.

If the LS is a leased SDLC link or a QLLC PVC link, you are recommended to set this parameter to
AP_YES to ensure that the link is always available.

def_data.react_timer
Reactivation timer for reactivating a failed LS. If the react_timer_retry parameter below is nonzero, to
specify that CS/AIX should retry activating the LS if it fails, this parameter specifies the time in
seconds between retries. When the LS fails, or when an attempt to reactivate it fails, CS/AIX waits for
the specified time before retrying the activation. If react_timer_retry is zero, this parameter is ignored.

def_data.react_timer_retry
Retry count for reactivating a failed LS. This parameter is used to specify whether CS/AIX should
attempt to reactivate the LS if it fails while in use (or if an attempt to start the LS fails).

Specify zero to indicate that CS/AIX should not attempt to reactivate the LS, or specify the number of
retries to be made. A value of 65,535 indicates that CS/AIX should retry indefinitely until the LS is
activated.

CS/AIX waits for the time specified by the react_timer parameter above between successive retries. If
the retry count is reached without successfully reactivating the LS, or if a STOP_LS is issued while

DEFINE_LS

104 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

CS/AIX is retrying the activation, no further retries are made; the LS remains inactive unless START_LS
is issued for it.

If the auto_act_supp parameter is set to AP_YES, the reactivation timer fields are ignored; if the link
fails, CS/AIX does not attempt to reactivate it until the user application that was using the session
attempts to restart the session.

If the LS is a leased SDLC link or a QLLC PVC link, you are recommended to set this parameter to a
non-zero value to ensure that the link is always available.

def_data.restart_on_normal_deact
Specifies whether CS/AIX should attempt to reactivate the LS if it is deactivated normally by the
remote system. Possible values are:
AP_YES

If the remote system deactivates the LS normally, CS/AIX attempts to reactivate it, using the same
retry timer and count values as for reactivating a failed LS (the react_timer and react_timer_retry
parameters above).

AP_NO
If the remote system deactivates the LS normally, CS/AIX does not attempt to reactivate it.

If the LS is a host link (specified by the def_data.adj_cp_type parameter), or is automatically started
when the node is started (the initially_active parameter is set to AP_YES), this parameter is ignored;
CS/AIX always attempts to reactivate the LS if it is deactivated normally by the remote system (unless
react_timer_retry is zero).

def_data.port_name
Name of port associated with this link station. This is an 8-byte ASCII string, padded on the right with
spaces if the name is shorter than 8 bytes, which must match the name of a defined port.

def_data.adj_cp_name
Fully qualified name of the adjacent CP for this LS.

If the adj_cp_type parameter below is set to AP_NETWORK_NODE or AP_END_NODE, and preassigned
TG numbers are being used, set this parameter to the CP name defined at the adjacent node; if the
adjacent node sends a CP name during XID exchange, it will be checked against this value.

If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE, CS/AIX uses this value only as an identifier; set
it to any string (of the format described below) that does not match other CP names defined at this
node.

If adj_cp_type is set to any other value, or if preassigned TG numbers are not being used, there is no
need to specify this parameter; CS/AIX will check the CP name only if one is specified.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

def_data.adj_cp_type
Adjacent node type.

If the adjacent node is an APPN node, and preassigned TG numbers are not being used, this is
normally set to AP_APPN_NODE, indicating that the node type is unknown; CS/AIX will determine the
type during XID exchange.

If preassigned TG numbers are being used, you must specify the node type explicitly. You can also
specify it as an additional security check if preassigned TG numbers are not being used. In this case,
CS/AIX will reject a connection attempt from the adjacent node if its node type does not match the
one specified here. Use one of the following values:

AP_APPN_NODE
The node type is unknown. CS/AIX will determine the type during XID exchange.

AP_END_NODE
End node, Branch Network Node acting as an End Node from the local node's perspective, or up-
level LEN node (one that includes the Network Name CV in its XID3).

DEFINE_LS

Chapter 3. NOF API Verbs 105

AP_NETWORK_NODE
Network node, or Branch Network Node acting as a Network Node from the local node's
perspective.

If the adjacent node is not an APPN node, use one of the following values. These values are not valid
for an Enterprise Extender link, which must be to an APPN node.

AP_BACK_LEVEL_LEN_NODE
Back-level LEN node (one that does not include the Network Name CV in its XID3).

AP_HOST_XID3
Host node; CS/AIX should respond to a polling XID from the node with a format 3 XID.

AP_HOST_XID0
Host node; CS/AIX should respond to a polling XID from the node with a format 0 XID.

AP_DSPU_XID
Downstream PU; CS/AIX should include XID exchange in link activation. The dspu_name and
dspu_services fields must also be set.

AP_DSPU_NOXID
Downstream PU; CS/AIX should not include XID exchange in link activation. The dspu_name and
dspu_services fields must also be set.

If you want to run independent LU 6.2 traffic over this LS, you must set the adj_cp_type parameter to
AP_APPN_NODE, AP_END_NODE, AP_NETWORK_NODE, or AP_BACK_LEVEL_LEN_NODE.

def_data.dest_address.format
The type of link address specified. Possible values:
AP_IP_ADDRESS_INFO

IP address. Specify this value for an Enterprise Extender (HPR/IP) link.
AP_UNSPECIFIED

Unspecified address format. Specify this value for any link type other than Enterprise Extender
(HPR/IP).

def_data.dest_address.length
Length of the destination address field, as specified in the following parameter or parameters.

For Enterprise Extender (HPR/IP), this parameter and dest_address.address are reserved. Instead,
you specify the address using the remote_hostname parameter in the link-specific data.

For SDLC:

def_data.dest_address.address
Address of the secondary station on this LS.

• If the port that owns this LS is used only for incoming calls (out_link_act_lim on DEFINE_PORT is
zero), this parameter is reserved.

• If the port that owns this LS is switched primary and is used for outgoing calls (port_type is
AP_SWITCHED, ls_role is AP_LS_PRI, and out_link_act_lim on DEFINE_PORT is nonzero), either set
this parameter to 0xFF to accept whatever address is configured at the secondary station, or set it
to a 1-byte value in the range 0x01-0xFE which must match the value configured at the secondary
station.

• Otherwise, set it to a 1-byte value in the range 0x01-0xFE to identify the link station. If the port is
primary multi-drop (ls_role on DEFINE_PORT is AP_LS_PRI and tot_link_act_lim is greater than 1),
this address must be different for each LS on the port.

For QLLC:

def_data.dest_address.address
Address of the destination node for this LS. This parameter is used only for SVC outgoing calls
(defined by the vc_type parameter in the link-specific data, and by the link activation limit parameters
on DEFINE_PORT); it is ignored for incoming calls or for PVC.

DEFINE_LS

106 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The address is a string of 1-14 characters. The address is in X.25 (1980) format; later address formats
are not supported.

For Token Ring, Ethernet:

def_data.dest_address.mac_address
MAC address of adjacent node.

If you need to define a non-selective listening LS (one that can be used only for incoming calls, but
can have LUs defined on it to support dependent LU traffic), set this parameter to a null string. The LS
can then be used to receive incoming calls from any remote link station, but cannot be used for
outgoing calls. There is no need to define a non-selective listening LS if only independent LU traffic is
used, because an LS for independent LU traffic can be set up dynamically when required.

If the local and adjacent nodes are on LANs of different types (one Token Ring , the other Ethernet)
connected by a bridge, you will probably need to reverse the bit order of the bytes in the MAC address.
For more information, see “Bit ordering in MAC addresses” on page 125. If the two nodes are on the
same LAN, or on LANs of the same type connected by a bridge, no change is required.

def_data.dest_address.lsap_address
Local SAP address of adjacent node. This must be a multiple of 0x02.

For Enterprise Extender (HPR/IP):

def_data.dest_address.ip_address_info.lsap
For Enterprise Extender: Local SAP address of the port. Specify a multiple of 0x04 in the range
0x04-0xEC. The usual value is 0x04, but VTAM may use 0x08 in some circumstances.

If you need to use two or more ports with different LSAP addresses on the same TCP/IP interface, you
will need to create two or more Enterprise Extender DLCs, and then create a separate Enterprise
Extender port for each DLC with the same if_name but a different LSAP address.

def_data.dest_address.ip_address_info.version
For Enterprise Extender: Specifies whether the following field represents an IPv4 or IPv6 address.
Possible values:
IP_VERSION_4_HOSTNAME

The address field specifies an IPv4 address, or a hostname or alias that resolves to an IPv4
address.

IP_VERSION_6_HOSTNAME
The address field specifies an IPv6 address, or a hostname or alias that resolves to an IPv6
address.

For all link types:

def_data.auto_act_supp
Specifies whether the link can be activated automatically when required by a session. Possible values
are:
AP_YES

The link can be activated automatically.
AP_NO

The link cannot be activated automatically.

If this parameter is set to AP_YES:

• The reactivation timer fields are ignored. If the LS fails, CS/AIX does not attempt to reactivate it until
a dependent LU application that was using the session attempts to restart the session; an LS used
by independent LUs will not be reactivated by CS/AIX, and must be restarted manually.

• If the link is to an APPN node, the LS must have a preassigned TG number defined (see the following
parameter), and cp_cp_sess_support must be set to AP_NO.

• If either the local node or the adjacent node is an end node, the LS must also be defined as auto-
activatable at the adjacent node.

DEFINE_LS

Chapter 3. NOF API Verbs 107

def_data.tg_number
Preassigned TG number. This parameter is used only if the adjacent node is an APPN node
(adj_cp_type is either AP_NETWORK_NODE or AP_END_NODE); it is ignored otherwise.

This TG number is used to represent the link when the link is activated. The node will not accept any
other number from the adjacent node during activation of this link; if the adjacent node is using
preassigned TG numbers, the same TG number must be defined by the adjacent node on the adjacent
link station.

If the local node is a LEN node, or if the adjacent node is a LEN node and the link is to be auto-
activatable, set the TG number to 1. Otherwise, specify a number in the range 1-20, or zero to indicate
that the TG number is not preassigned and is negotiated when the link is activated.

If a preassigned TG number is defined, the adj_cp_name parameter must also be defined, and the
adj_cp_type parameter must be set to either AP_END_NODE or AP_NETWORK_NODE.

def_data.limited_resource
Specifies whether this link station is to be deactivated when there are no sessions using the link. Link
stations on a nonswitched port cannot be configured as limited resource. Possible values are:
AP_NO

The link is not a limited resource and will not be deactivated automatically.
AP_NO_SESSIONS

The link is a limited resource and will be deactivated automatically when no active sessions are
using it.

AP_INACTIVITY
The link is a limited resource and will be deactivated automatically when no active sessions are
using it, or when no data has flowed on the link for the time period specified by the
link_deact_timer field.

• If no SSCP-PU session is active across the link, the node deactivates the link immediately.
• If an SSCP-PU session is active but no traffic has flowed for the specified time period, the node

sends REQDISCONT(normal) to the host. The host is then responsible for deactivating all LUs
and the PU, at which time the local node will deactivate the link. However, the host may not
deactivate LUs with active PLU-SLU sessions; in this case, the link remains active until all these
sessions are deactivated (for example by the user logging out). This behavior can be changed by
using options in the ptf field of the DEFINE_NODE verb.

A limited resource link station may be configured for CP-CP session support, by setting this field to
AP_NO_SESSIONS and cp_cp_sess_support to AP_YES. In this case, if CP-CP sessions are brought up
over the link, CS/AIX will not treat the link as a limited resource (and so will not deactivate it).

def_data.solicit_sscp_sessions
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Specifies whether to request the adjacent node to initiate sessions between the SSCP and the local CP
and dependent LUs. This parameter is used only if the adjacent node is an APPN node (adj_cp_type is
either AP_NETWORK_NODE or AP_END_NODE); it is ignored otherwise. If the adjacent node is a host
(adj_cp_type is either AP_HOST_XID3 or AP_HOST_XID0), CS/AIX always requests the host to initiate
SSCP sessions.

Possible values are:

AP_YES
Request the adjacent node to initiate SSCP sessions.

AP_NO
Do not request the adjacent node to initiate SSCP sessions.

If the adjacent node is an APPN node and dspu_services is set to a value other than AP_NONE, this
parameter must be set to AP_NO.

def_data.pu_name
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

DEFINE_LS

108 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Name of the local PU that uses this link. This parameter is used only if adj_cp_type is set to
AP_HOST_XID3 or AP_HOST_XID0, or if solicit_sscp_sessions is set to AP_YES; it is ignored
otherwise. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces.

def_data.disable_remote_act
Specifies whether to prevent activation of the LS by the remote node. Possible values are:
AP_YES

The LS can only be activated by the local node; if the remote node attempts to activate it, CS/AIX
will reject the attempt.

AP_NO
The LS can be activated by the remote node.

def_data.dspu_services
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Specifies the services which the local node will provide to the downstream PU across this link. This
parameter is used only if the adjacent node is a downstream PU or an APPN node with
solicit_sscp_sessions set to AP_NO; it is reserved otherwise. Possible values are:

AP_PU_CONCENTRATION
Local node will provide SNA gateway for the downstream PU. The local node must be defined to
support SNA gateway.

AP_DLUR
Local node will provide DLUR services for the downstream PU. The local node must be defined to
support DLUR. (Not supported on end node.)

AP_NONE
Local node will provide no services for this downstream PU.

def_data.dspu_name
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Name of the downstream PU. The name is an 8-byte type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

This parameter is required when both of the following conditions are true; otherwise, it is reserved:

• The solicit_sscp_sessions parameter is set to AP_NO
• The dspu_services parameter is set to AP_PU_CONCENTRATION or AP_DLUR

If the downstream PU is used for DLUR, this name should match the PU name configured on the host.
(CS/AIX sends both the PU name and PU ID to the host to identify the PU. The host normally identifies
the PU by its PU name, or by the PU ID if it cannot find a matching PU name.)

def_data.dlus_name
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Name of the DLUS node from which DLUR solicits SSCP services when the link to the downstream
node is activated. This field is reserved if dspu_services is not set to AP_DLUR.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

To specify the global default DLUS, defined using the DEFINE_DLUR_DEFAULTS verb, set this
parameter to 17 binary zeros. If this parameter is set to zeros and there is no global default DLUS,
then DLUR will not initiate SSCP contact when the link is activated.

def_data.bkup_dlus_name
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Name of the backup DLUS node from which DLUR solicits SSCP services if the node specified by
dlus_name is not active. This field is reserved if dspu_services is not set to AP_DLUR.

DEFINE_LS

Chapter 3. NOF API Verbs 109

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

To specify the global backup default DLUS, defined using the DEFINE_DLUR_DEFAULTS verb, set this
parameter to 17 binary zeros.

def_data.hpr_supported
Specifies whether HPR is supported on this link. If the link is an Enterprise Extender (HPR/IP) link, this
parameter must be set to AP_YES. Otherwise, it must be set to AP_NO unless the adj_cp_type
parameter indicates that the link connects to an APPN node. Possible values are:
AP_YES

HPR is supported on this link.
AP_NO

HPR is not supported on this link.
def_data.hpr_link_lvl_error

Specifies whether HPR traffic should be sent on this link using link-level error recovery. This
parameter is ignored unless hpr_supported is set to AP_YES.

This parameter is reserved for SDLC / Enterprise Extender (HPR/IP) links.

Possible values are:

AP_YES
HPR traffic should be sent on this link using link-level error recovery.

AP_NO
HPR traffic should not be sent on this link using link-level error recovery.

def_data.link_deact_timer
Limited resource link deactivation timer, in seconds. A limited resource link is automatically
deactivated if no data flows over the link for the time specified by this parameter. This parameter is
not used if limited_resource is set to any value other than INACTIVITY.

The minimum value is 5; values in the range 1-4 will be interpreted as 5.

The value 0 (zero) indicates one of the following:

• If the hpr_supported parameter is set to AP_YES, the default deactivation timer value of 30 is used.
• If the hpr_supported parameter is set to AP_NO, no timeout is used (the link is not deactivated, as if

limited_resource were set to AP_NO).

def_data.default_nn_server
End node: Specifies whether this is a link supporting CP-CP sessions to a network node that can act as
the local node's network node server. When the local node has no CP-CP sessions to a network node
server and needs to establish them, it checks this parameter on its defined LSs to find a suitable LS to
activate. This allows you to specify which adjacent NNs are suitable to act as the NN server (for
example, to avoid using NNs that are accessed by expensive or slow links).

Possible values are:

AP_YES
This link supports CP-CP sessions to a network node that can act as the local node's NN server;
the local node can automatically activate this link if it needs to contact an NN server. The
cp_cp_sess_support parameter must be set to AP_YES.

AP_NO
This link should not be automatically activated in an attempt to contact a network node server.

If the local node is not an end node, this parameter is ignored.

def_data.ls_attributes
This array contains further information about the adjacent node, as described in the following
parameters:

DEFINE_LS

110 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

def_data.ls_attributes[0]
Host type. Set this to AP_SNA unless you are communicating with a host of one of the other types
listed below. Possible values are:
AP_SNA

Standard SNA host.
AP_FNA

Fujitsu Network Architecture (VTAM-F) host.
AP_HNA

Hitachi Network Architecture host.
def_data.ls_attributes[1]

Network Name CV suppression for a link to a back-level LEN node.

If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or AP_HOST_XID3, specify whether to suppress
inclusion of the Network Name CV in the format 3 XID sent to the LEN node, using one of the following
values:

AP_NO
Include the Network Name CV in the XID.

AP_SUPPRESS_CP_NAME
Do not include the Network Name CV.

If adj_cp_type is set to any other value, this parameter is ignored.

def_data.adj_node_id
Node ID of adjacent node. This is a 4-byte hexadecimal string, consisting of a block number (three
hexadecimal digits) and a node number (five hexadecimal digits). Set it to zeros to disable node ID
checking. If this link station is defined on a switched port, the node_id must be unique, and there may
only be one null node_id on each switched port.

def_data.local_node_id
Node ID sent in XIDs on this LS. This is a 4-byte hexadecimal string, consisting of a block number (3
hexadecimal digits) and a node number (5 hexadecimal digits). Set it to zeros to use the node ID
specified in the DEFINE_NODE verb.

def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported. This parameter is valid only if the adjacent node is
an end node or network node (adj_cp_type is AP_NETWORK_NODE, AP_END_NODE, or
AP_APPN_NODE); it is ignored otherwise. If both the local node and the adjacent node are network
nodes, this parameter should be set to AP_YES in order to use APPN functions between these nodes.

Possible values are:

AP_YES
CP-CP sessions are supported.

AP_NO
CP-CP sessions are not supported.

def_data.use_default_tg_chars
Specifies whether the default TG characteristics supplied on the DEFINE_PORT verb should be used.
The TG characteristics apply only if the link is to an APPN node; this parameter, and the parameters in
the tg_chars structure, are ignored otherwise. Possible values are:
AP_YES

Use the default TG characteristics; ignore the tg_chars structure on this verb.
AP_NO

Use the tg_chars structure on this verb.
def_data.tg_chars.effect_cap

Actual bits per second rate (line speed). The value is encoded as a 1-byte floating point number,
represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte is
b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

DEFINE_LS

Chapter 3. NOF API Verbs 111

For an Ethernet or Enterprise Extender (HPR/IP) link, ensure that you set this parameter to the true
'effective capacity' of the link, including any step-downs or bottlenecks in the path, and not just to the
theoretical capacity of the adapter used by the link. For example, a GigE adapter may be capable of
processing one gigabit, but if the link goes through an ethernet switch to a target box that uses
FastEthernet you should specify 100MBps or less.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255, where 0 is the lowest cost
per connect time and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0 is the lowest cost per byte
and 255 is the highest.

def_data.tg_chars.security
Security level of the network. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.
AP_SEC_GUARDED_RADIATION

Data is transmitted over a line that is protected against physical and radiation tapping.
def_data.tg_chars.prop_delay

Propagation delay: the time that a signal takes to travel the length of the link. Specify one of the
following values, according to the type of link:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.
def_data.tg_chars.user_def_parm_1 through def_data.tg_chars.user_def_parm_3

User-defined parameters, which you can use to include other TG characteristics not covered by the
above parameters. Each of these parameters must be set to a value in the range 1-255.

def_data.target_pacing_count
Numeric value between 1 and 32,767 inclusive indicating the desired pacing window size. (The
current version of CS/AIX does not make use of this value.)

DEFINE_LS

112 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station. This value is used to negotiate the
maximum BTU size that a pair of link stations can use to communicate with each other. The value
includes the length of the TH and RH (total 9 bytes) as well as the RU. Specify a value in the range
265-65535 (265-4105 for SDLC, 265-1496 for Ethernet, 265-17745 for Token Ring).

def_data.ls_role
Link station role. This is normally set to AP_USE_PORT_DEFAULTS, specifying that the LS role is to be
taken from the definition of the port that owns this LS.

If you need to override the port's LS role for an individual LS, specify one of the following values:

AP_LS_PRI
Primary

AP_LS_SEC
Secondary

AP_LS_NEG
Negotiable

For an Enterprise Extender (HPR/IP) port, you must use AP_USE_PORT_DEFAULTS; you cannot
override the port's LS role.

def_data.max_ifrm_rcvd
The maximum number of I-frames that can be received by this link station before an acknowledgment
is sent. Specify a value in the range 0-127. If 0 is specified, the value from the port definition is used.

def_data.dlus_retry_timeout
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

Reactivation timer for contacting a DLUS. If CS/AIX fails to contact the DLUS, this parameter specifies
the time in seconds between retries.

Specify a value in the range 0x0001-0xFFFF.

def_data.dlus_retry_limit
For an Enterprise Extender (HPR/IP) port, this parameter is reserved.

The interval in seconds between the second and subsequent attempts to contact the DLUS specified
by the dlus_name and bkup_dlus_name parameters. Specify a value in the range 0x0001-0xFFFE, or
specify 0xFFFF to indicate that CS/AIX should retry indefinitely until it contacts the DLUS. The interval
between the first and second attempts is always 1 second. If zero is specified, then the defaults
specified using the DEFINE_DLUR_DEFAULTS verb are used. This parameter is ignored if the
dspu_services parameter is not set to AP_DLUR.

def_data.conventional_lu_compression
Specifies whether data compression is requested for LU 0-3 sessions on this link. This parameter is
used only if this link carries LU 0-3 traffic; it does not apply to LU 6.2 sessions.

Possible values are:

AP_YES
Data compression should be used for LU 0-3 sessions on this link if the host requests it.

AP_NO
Data compression should not be used for LU 0-3 sessions on this link.

def_data.branch_link_type
This parameter applies only if the local node is a Branch Network Node; it is reserved if the local node
is any other type.

If the parameter def_data.adj_cp_type is set to AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, this parameter defines whether the link is an uplink or a downlink.
Possible values are:

AP_UPLINK
The link is an uplink.

DEFINE_LS

Chapter 3. NOF API Verbs 113

AP_DOWNLINK
The link is a downlink.

If def_data.adj_cp_type is set to AP_NETWORK_NODE, this parameter must be set to AP_UPLINK.

def_data.adj_brnn_cp_support
This parameter applies only if the local node is a Branch Network Node and the adjacent node is a
network node (the parameter def_data.adj_cp_type is set to AP_NETWORK_NODE, or it is set to
AP_APPN_NODE and the node type discovered during XID exchange is network node). It is reserved if
the local and remote nodes are any other type.

This parameter defines whether the adjacent node can be a Branch Network Node that is acting as a
Network Node from the point of view of the local node. Possible values are:

AP_BRNN_ALLOWED
The adjacent node is allowed (but not required) to be a Branch Network Node.

AP_BRNN_REQUIRED
The adjacent node must be a Branch Network Node.

AP_BRNN_PROHIBITED
The adjacent node must not be a Branch Network Node.

If def_data.adj_cp_type is set to AP_NETWORK_NODE and auto_act_supp is set to AP_YES, this
parameter must be set to AP_BRNN_REQUIRED or AP_BRNN_PROHIBITED.

def_data.pu_can_send_dddlu_offline
Specifies whether the local PU should send NMVT (power off) messages to the host. If the host
system supports DDDLU (Dynamic Definition of Dependent LUs), CS/AIX sends NMVT (power off) to
the host when it has finished using a dynamically defined LU. This allows the host to save resources by
removing the definition when it is no longer required.

This parameter is used only if this link is to a host (solicit_sscp_sessions is set to AP_YES and
dspu_services is not set to AP_NONE).

Possible values are:

AP_YES
The local PU sends NMVT (power off) messages to the host.

AP_NO
The local PU does not send NMVT (power off) messages to the host.

If the host supports DDDLU but does not support the NMVT (power off) message, this parameter must
be set to AP_NO.

def_data.link_spec_data_len
Length of the link-specific data. The data should be concatenated to the basic structure.

Link-specific data for SDLC:

mux_info.dlc_type
Type of the DLC. Set this to AP_IMPL_SDLC_SL.

contact_timer
Timeout required before a SNRM or XID is retransmitted in the event of nonacknowledgment (used for
primary SDLC only). This value must be greater than the no response (T1) timeout value no_resp_timer
described below. The timer is specified in milliseconds.

This timer is also used for special pre-activation polling.

contact_timer_retry
Number of times transmission and retransmission of a contact frame (such as SNRM) is allowed using
the normal poll timer before CS/AIX changes to the slow poll timer.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that the switch to
the slow poll should be made after the first timer expiry.

DEFINE_LS

114 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

contact_timer2
Slow poll contact timer in milliseconds. When the contact timer retry count expires, CS/AIX continues
to poll using this timer. This prevents leased (multi-drop) links from being flooded by poll frames for
absent stations.

contact_timer_retry2
The slow poll contact timer retry limit value corresponds to the number of times transmission and
retransmission of a contact frame (such as SNRM) is allowed on the slow cycle before an outage
message is sent to the DLC user.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first slow poll timer expiry.

disc_timer
Timeout required before a DISC is retransmitted in the event of nonacknowledgment (used for
primary SDLC only). The timer is specified in milliseconds.

disc_timer_retry
The Disconnect timer retry limit value corresponds to the number of times transmission and
retransmission of a DISC is allowed.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

nve_poll_timer
Timeout required before an adjacent secondary station (which has previously been removed from the
polling list because it has no data to send) is reinserted into the polling list. The timer is specified in
milliseconds.

nve_poll_timer_retry
Number of times a station is removed from the polling list on the normal poll timer before CS/AIX
switches to using the slow poll timer.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that the switch to
the slow poll should be made after the first timer expiry.

nve_poll_timer2
The slow negative poll timer in milliseconds. When the negative poll timer retry count expires, CS/AIX
continues to poll using this timer. This prevents leased (multi-drop) links from being flooded by poll
frames for idle stations.

nve_poll_timer_retry2
Number of times a station is removed from the polling list on the slow poll cycle before an outage
message is sent to the HLS. Specify a value in the range 1-65,535. This value is normally set to
0xFFFF, indicating infinite retry.

no_resp_timer
The maximum time a primary station waits (after having sent a frame with a poll bit) for a response
frame before trying to poll another station. This timer is restarted when a frame without the F-bit is
received and stopped only when a frame with an F-bit is received. The timeout should be set to a
value not less than twice the transmission time for the longest I-frame plus adjacent station frame
processing time.

The timer is specified in milliseconds.

no_resp_timer_retry
Number of times an adjacent secondary station is seen to fail to respond before the primary sends an
outage message to the DLC user.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

rem_busy_timer
Time allowed for an adjacent secondary station to be in an RNR condition. This is used in conjunction
with the retry limit value to provide the overall time before an outage message is sent. The timer is
specified in milliseconds.

DEFINE_LS

Chapter 3. NOF API Verbs 115

rem_busy_timer_retry
Used in conjunction with the timeout value to provide the overall timeout before an outage message is
sent.

A value of 0xFFFF is used to indicate an unlimited retry count. A value of 0x0001 indicates that an
outage should be generated after the first timer expiry.

re_tx_threshold
Maximum percentage of I-frames that may be retransmitted before a temporary transmission error is
triggered. Valid values are in the range 0-100. A value of 0 is mapped to 20 percent.

repoll_threshold
The maximum percentage polls that may be retried by the local primary link station before a
temporary transmission error is triggered. Valid values are in the range 0-100. A value of 0 is mapped
to a default which varies according to the details of the link. For incoming links, the default is 10
percent. For outgoing links, the default is 100, unless the no_resp_timer_retry value is between 1 and
100, in which case the value of no_resp_timer_retry is used.

rr_timer
The time in milliseconds to wait before turning the poll bit around when the SDLC component has no
work to do.

This field may be set to zero, or to a nonzero value if the immediate turn-around causes hardware
problems on the link. Higher values can also be used to optimize link usage, because often the higher-
level software will generate data in response to the data contained in an I-frame carrying the poll bit;
the pause allows the data to be received and processed.

poll_frame
The frame to use for pre-activation polling. This is normally XID, indicating that polling is in the control
of the DLC user. However, when CS/AIX is primary talking to an old secondary implementation, it may
be necessary to poll using some other frame. Possible values are: XID, DISC, SNRM, SNRME, TEST.

poll_on_iframe
Specifies whether this link station is permitted to send the poll bit on an I-frame. This allows CS/AIX
to work with certain SDLC implementations which do not handle receipt of I-frames carrying the poll
bit.

Possible values are:

AP_YES
This link station is allowed to send the poll bit on an I-frame.

AP_NO
This link station is not allowed to send the poll bit on an I-frame.

stub_spec_data_len
Length of the Stub specific data that follows. Set this to size of (STUB_SPEC_DATA).

stub_spec_data
Stub specific data. These fields are used only for switched outgoing links. The values specified in this
structure override those defined in the Stub specific data for the port that owns this LS; where fields in
this structure are shown as reserved, the values from the port are used instead. For switched
incoming links or leased links, the parameters defined in the Stub specific data for the port (not for the
LS) are used.

The structure contains the following fields:

stub_spec_data.opt1
HMOD port options flag 1. Set the appropriate bits of this field as follows (bit 7 is the most significant
bit):
bit 7

4-wire connection (2 wire connection if not set).
bit 6

Use NRZI (NRZ if not set)

DEFINE_LS

116 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The remaining bits are reserved.

stub_spec_data.opt2
Reserved.

stub_spec_data.linesp
The line speed for the line used on this port. For example, 2400 (0x00000960) for a 2400 baud line.
Valid values are in the range 600-38,400 baud. The exact meaning of this parameter depends on the
value set on the physical_link parameter.

• If physical_link is set to SDLC_PL_X21, then the stub_spec_data.linesp parameter is ignored.
• If physical_link is set to SDLC_PL_V25 or SDLC_PL_SMART_MODEM, then the value of the

stub_spec_data.linesp parameter is the speed at which the dial string is sent to the modem.

– If physical_link is set to any other value, then the value of the stub_spec_data.linesp parameter is
the speed of data transfer, only valid if external clocking is specified.

stub_spec_data.rcv_pool_size
Reserved.

stub_spec_data.poll_wait
Reserved.

stub_spec_data.hmod_data_len
Length of the dial data string that follows (in the hmod_data parameter). If no dial data is specified,
set this parameter to zero.

stub_spec_data.hmod_data
Dial data for outgoing calls. This parameter applies only to switched links; it is reserved if the port
associated with this LS is defined to be nonswitched.

This is an ASCII string, specifying the dial data to be passed to the modem to initiate the call.

The dial data may need to contain non-printable control characters; for example, it may have to be
terminated with a carriage return, equivalent to pressing the Enter key. In this case, include the
hexadecimal value of the control character in the string (for example, 0x0D for a carriage return). For
details of the hexadecimal values you can use to represent control characters, see “Modem control
characters” on page 126.

Support for dial data depends on the SDLC adapter and modem that you are using; if they do not
support dial data, set this parameter to a null string.

stub_spec_data.x21_sequence
X21 selection sequence to identify the remote link station. This parameter is only valid if physical_link
is set to SDLC_PL_X21. This string is limited to digits 0-9 and characters * (asterisk), + (plus), -
(hyphen), . (period) and / (slash). The string must end with + (plus sign). If the string is less than 255
characters long, then it must be null-terminated.

stub_spec_data.x21_retry_count
Number of times that an unsuccessful X21 call may be retried before it is abandoned. This parameter
is only valid if physical_link is set to SDLC_PL_X21. Valid values are in the range 0-15.

stub_spec_data.x21_retry_delay
Delay, in tenths of a second, before retrying an unsuccessful X21 call. This parameter is only valid if
physical_link is set to SDLC_PL_X21. Valid values are in the range 0-1200.

stub_spec_data.v25_tx_delay
Amount of time, in tenths of a second, that elapses between sending the DTR (data terminal ready)
signal and transmitting a dial string to the modem. This parameter is only valid if physical_link is set to
SDLC_PL_V25. Valid values are in the range 0-600, which is equal to 0.1 seconds to 1 minute. A value
of 0 is treated as 0.1 seconds.

stub_spec_data.cdstl
Connect Data Set to Line (CDSTL) indicates that Data Terminal Ready (DTR) should not be enabled
until after Ring Indicate (RI) has occurred. This parameter is only valid if physical_link is set to
SDLC_PL_X21. Possible values are:

DEFINE_LS

Chapter 3. NOF API Verbs 117

AP_YES
Do not enable DTR until RI has been signaled.

AP_NO
Enable DTR without waiting for RI.

Link-specific data for QLLC:

mux_info.dlc_type
Type of the DLC. Set this to AP_IMPL_NLI_QLLC.

vc_type
The Virtual Circuit type of the LS. Possible values are:
VQL_SVC

Switched Virtual Circuit
VQL_PVC

Permanent Virtual Circuit

If you define both SVC and PVC LSs between the same local node and remote node, unpredictable
results may occur if the SVC LS is started first (since it may not be possible to match the incoming call
to the correct LS). To avoid these problems, ensure that PVC LSs are activated before any SVC LSs
between the same pair of nodes.

req_rev_charge
Specifies whether X.25 should request reverse charging when attempting to contact the remote
system using this LS. Possible values are:
AP_YES

Request reverse charging.
AP_NO

Do not request reverse charging. If the X.25 network does not support facilities negotiation, this
parameter must be set to AP_NO.

If the X.25 network does not support facilities negotiation, this parameter must be set to AP_NO (also
see the fac parameter below).

loc_packet
Packet size used for sending data on switched virtual circuits from the local station to the remote
station. This parameter is used only if the vc_type parameter is set to VQL_SVC. The packet size you
specify is sent as an optional facility on the outgoing call.

The actual size used is 2 to the power of loc_packet; for example, setting loc_packet to 7 indicates a
packet size of 2 to the power of 7, which is 128. To indicate using the default packet size for the
network, set this parameter to zero. Check with the administrator of your X.25 network to determine
the correct value to use.

rem_packet
Packet size used for receiving data on switched virtual circuits from the remote station. This
parameter is used only if the vc_type parameter is set to VQL_SVC. The packet size you specify is sent
as an optional facility on the outgoing call.

The actual size used is 2 to the power of rem_packet (as for loc_packet above). To indicate using the
default packet size for the network, set this parameter to zero. Check with the administrator of your
X.25 network to determine the correct value to use.

loc_wsize
Window size used for sending data from the local station to the remote station. Specify a value in the
range 1-7, or zero to indicate using the default window size for the network. Check with the
administrator of your X.25 network to determine the correct value to use.

rem_wsize
Window size used for receiving data from the remote station. Specify a value in the range 1-7, or zero
to indicate using the default window size for the network. Check with the administrator of your X.25
network to determine the correct value to use.

DEFINE_LS

118 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

retry_limit
Number of times to retry sending a QXID, QSM, or QDISC message if no response is received within
the time specified by retry_timeout below.

Range is 1-255. If vc_type above is set to VQL_PVC, this parameter is ignored for QXID messages; XID
sending is retried indefinitely (so that an initially active LS can wait indefinitely for the remote station
to become active).

retry_timeout
Timeout in seconds for QXID, QSM, or QDISC messages. A message will be retried (up to the number
of times specified by retry_limit above) if no response is received within this time. Range is 1-255.

idle_timeout
Timeout in seconds used to detect a completely idle line. This value is used during connect processing
for SVCs when the local station is secondary and waiting for XIDs. If no message is received in this
time, CS/AIX assumes that the remote station has failed.

Range is 1-255. This field is ignored if vc_type above is set to VQL_PVC.

pvc_id
PVC identifier. Set this to a decimal number to identify which PVC (from the range of PVCs defined for
your X.25 provider software) is to be used for this LS. This field is reserved if vc_type above is set to
VQL_SVC.

cud_len
Length of the Call User Data that follows (in the cud parameter).

cud
Call User Data: this parameter identifies the protocol to be used over the underlying X.25 virtual
circuit, and is used only if the vc_type parameter is set to VQL_SVC. For most implementations, this
should be set to a single hex byte, which is 0xC3 to request that the called node supports the 1980
QLLC level, or 0xCB to request 1984 support. Some remote systems may require additional bytes;
check with the System Administrator of the remote system.

rx_thruput_class
Specifies the maximum line speed at which the calling DTE can receive data. Possible values are:
VQL_CLASS_DEFAULT

GDLC default throughput class
VQL_CLASS_1200

1200 bps throughput for received data
VQL_CLASS_2400

2400 bps throughput for received data
VQL_CLASS_4800

4800 bps throughput for received data
VQL_CLASS_9600

9600 bps throughput for received data
VQL_CLASS_19200

19,200 bps throughput for received data
VQL_CLASS_48000

48,000 bps throughput for received data.
tx_thruput_class

Specifies the maximum line speed at which the calling DTE can transmit data. Possible values are:
VQL_CLASS_DEFAULT

GDLC default throughput class
VQL_CLASS_1200

1200 bps throughput for transmitted data
VQL_CLASS_2400

2400 bps throughput for transmitted data

DEFINE_LS

Chapter 3. NOF API Verbs 119

VQL_CLASS_4800
4800 bps throughput for transmitted data

VQL_CLASS_9600
9600 bps throughput for transmitted data

VQL_CLASS_19200
19,200 bps throughput for transmitted data

VQL_CLASS_48000
48,000 bps throughput for transmitted data.

cugo
Specifies whether the call is made within a closed user group with outgoing access. Possible values
are:
AP_YES

The call is made within a closed user group with outgoing access.
AP_NO

The call is not made within a closed user group with outgoing access.
cug

Specifies whether the link station is used by a closed user group. This parameter is valid only when
cugo is set to AP_YES. Possible values are:
AP_YES

This link station is used by a closed user group. The group number is specified in cug_index.
AP_NO

This link station is not used by a closed user group.
cug_index

Specify a 4-digit decimal integer that identifies the closed user group within which the call is to be
placed. The network provider allocates identifying codes for any closed user groups to which you
subscribe. This parameter is valid only if cug is set to AP_YES. Specify a value in the range 0-9999.

nuid_length
The length of the data supplied in nuid_data. Specify a value in the range 0-109.

nuid_data
The network user ID you want to supply to the network when the call is placed. The length of the data
passed is specified in nuid_length.

rpoa_count
The number of RPOA (recognized private operating agency) codes specified in rpoa_ids. Specify a
value in the range 0-30.

rpoa_ids
Array of RPOA (recognized private operating agency) codes identifying the RPOA transit network
through an international gateway. The number of entries is specified by rpoa_count. Specify a value in
the range 0-30.

DLC-specific data for Token Ring, Ethernet:

gdlc_ls_cfg.mux_info.dlc_type
Type of the DLC. Possible values are:
AP_IMPL_TR_GDLC

Token Ring
AP_IMPL_ETHER_GDLC

Ethernet
gdlc_ls_cfg.xid_timeout

Timeout required before an XID is retransmitted when trying to contact a remote station. The timer is
specified in half-second increments (so a value of 8 indicates 4 seconds). Higher values may be
needed if the remote station is on a separate Token Ring connected by a bridge.

DEFINE_LS

120 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

gdlc_ls_cfg.xid_retry_limit
The XID retry limit value corresponds to the number of times transmission and retransmission of an
XID is allowed. Higher values may be needed if the remote station is on a separate Token Ring
connected by a bridge.

gdlc_ls_cfg.t1_timeout
Timeout required before an I-frame is retransmitted if no response is received. The timer is specified
in half-second increments (so a value of 8 indicates 4 seconds). Higher values may be needed if the
remote station is on a separate Token Ring connected by a bridge.

gdlc_ls_cfg.t1_retry_limit
The T1 retry limit value corresponds to the number of times transmission and retransmission of an I-
frame is allowed. The minimum is 1. Higher values may be needed if the remote station is on a
separate Token Ring connected by a bridge.

gdlc_ls_cfg.ack_time
Acknowledgment timeout: the maximum delay that can occur between receiving a frame and sending
an acknowledgment for it. The timeout is specified in half-second increments; range is 1-255 (0.5
second-127.5 seconds).

gdlc_ls_cfg.inact_time
Inactivity timeout: the local station assumes that it has lost connectivity to the remote station if no
data is received within this time. The timeout is specified in seconds; range is 1-255.

gdlc_ls_cfg.force_time
Force timeout: if no response to a normal disconnection is received in this time, the local station
causes a forced disconnection. The timeout is specified in seconds; range is 1-16,383.

gdlc_ls_cfg.uu.tr.pkt_priority
The ring access priority to be used for transmit packets. This parameter applies only to Token Ring; it
is reserved for Ethernet.

Allowed values are in the range 0-3, where 0 is the lowest and 3 is the highest.

gdlc_ls_cfg.uu.tr.dyna_wnd
Dynamic window increment. This parameter applies only to Token Ring; it is reserved for Ethernet.

The transmit window size is automatically reduced to 1 if packets are lost as a result of network
congestion; this parameter specifies the number of packets that must be received successfully before
the window can be increased. Each time the specified number of packets is received successfully, the
window size is increased by 1.

remote_name
If this link station calls or selectively listens for a partner link station, specify 1-8 locally displayable
characters that identify the name of the partner link station. This name must match the name defined
for the LS on the remote system.

local_name
A unique name for the physical adapter that connects the local node to the network. This name must
be unique throughout the network. Specify an 8-byte type-A EBCDIC string, padded to the right with
EBCDIC spaces.

When you start the link, CS/AIX checks the network to ensure that the name you specified is not
already in use by another node. If the name is already being used, CS/AIX generates an error
message. You must change this parameter value to specify a name that is not already being used.

Link-specific data for Enterprise Extender (HPR/IP):

ipdlc_link_spec_data.mux_info.dlc_type
Type of DLC. Set this to AP_IP.

ipdlc_link_spec_data.ack_timeout
Duration for the acknowledgment timer (sometimes called the T1 timer): the time in milliseconds
within which a response must be received for a command frame sent to the adjacent link station. If
the response is not received within this time, a duplicate frame is sent.

DEFINE_LS

Chapter 3. NOF API Verbs 121

A lower value for this parameter means that lost packets will be detected quickly, but may increase
network traffic.

Specify a value in the range 0-65535. This parameter should be set to a value greater than twice the
expected network latency. A typical value is 10000 milliseconds.

ipdlc_link_spec_data.max_retry
The maximum number of times that the local station will retry sending a command frame. If this retry
count is exceeded without receiving a response, the link is considered to have failed.

A lower value for this parameter means that link failures will be detected quickly, but may cause
unnecessary reporting of link failures if a few packets are lost.

Specify a value in the range 0-255. A typical value is 10 retries.

ipdlc_link_spec_data.liveness_timeout
Duration for the liveness timer (sometimes called the TL timer): the time in milliseconds for which the
link will be held active if there is no evidence that the remote station is still active.

A lower value for this parameter means that link failures will be detected quickly, but may increase
network traffic on idle active links.

Specify a value in the range 1-65535 milliseconds. A typical value is 10000 (10 seconds).

ipdlc_link_spec_data.short_hold_mode
Specifies whether the liveness protocol runs only if there has been no evidence that the remote
system is still active since data was last transmitted (AP_YES or AP_NO).

Setting this parameter to AP_YES allows links to stay active and idle without unnecessary data traffic,
but means that link failures are not detected until the local station attempts to send data. In general
this parameter should be set to AP_NO.

ipdlc_link_spec_data.remote_hostname
Remote host name of the destination node for this link. This can be any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you specify a name or alias, the AIX system must be able to resolve this to a fully qualified name
(either using the local TCP/IP configuration or using a Domain Name server).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_CANT_MODIFY_PORT_NAME

The ls_name parameter matched the name of an existing LS, but the port_name parameter did not
match the existing definition. You cannot modify the port name when changing the definition of an
existing LS.

DEFINE_LS

122 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_DEF_LINK_INVALID_SECURITY
The tg_chars.security parameter was not set to a valid value.

AP_INVALID_AUTO_ACT_SUPP
The auto_act_supp parameter was not set to a valid value, or was set to AP_YES when
cp_cp_sess_support was also set to AP_YES.

AP_INVALID_CP_NAME
The adj_cp_name parameter contained a character that was not valid, was not in the correct
format, or was not specified when required.

AP_INVALID_LIMITED_RESOURCE
The limited_resource parameter was not set to a valid value.

AP_INVALID_LINK_NAME
The ls_name parameter contained a character that was not valid.

AP_INVALID_LS_ROLE
The ls_role parameter was not set to a valid value.

AP_INVALID_NODE_TYPE
The adj_cp_type parameter was not set to a valid value.

AP_INVALID_PORT_NAME
The port_name parameter did not match the name of any defined port.

AP_INVALID_PU_NAME
The pu_name parameter did not match the name of any defined PU, or was set to a new value on
an already-defined LS.

AP_INVALID_DSPU_NAME
The dspu_name parameter did not match the name of any defined PU, or was set to a new value
on an already-defined LS.

AP_INVALID_DSPU_SERVICES
The dspu_services parameter was not set to a valid value, or was set when not expected.

AP_INVALID_SOLICIT_SSCP_SESS
The solicit_sscp_sess parameter was not set to a valid value.

AP_INVALID_TARGET_PACING_CNT
The target_pacing_count parameter was not set to a valid value.

AP_INVALID_DLUS_NAME
The dlus_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_BKUP_DLUS_NAME
The bkup_dlus_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_TG_NUMBER
The TG number supplied was not in the valid range.

AP_MISSING_CP_NAME
A TG number was defined, but no CP name was supplied.

AP_MISSING_CP_TYPE
A TG number was defined, but no CP type was supplied.

AP_MISSING_TG_NUMBER
The link was defined to be auto-activated, but no TG number was supplied.

AP_PARALLEL_TGS_NOT_SUPPORTED
This node cannot support more than one LS defined between it and the same adjacent node.

AP_INVALID_DLUS_RETRY_LIMIT
The value specified for dlus_retry_limit was not valid.

AP_INVALID_DLUS_RETRY_TIMEOUT
The value specified for dlus_retry_timeout was not valid.

DEFINE_LS

Chapter 3. NOF API Verbs 123

AP_INVALID_LS_ROLE
The value specified for the ls_role parameter is not valid.

AP_INVALID_NODE_TYPE_FOR_HPR
The node type specified for the adj_cp_type parameter does not support HPR.

AP_INVALID_BTU_SIZE
The value specified for the max_send_btu_size parameter was not valid.

AP_INVALID_MAX_IFRM_RCVD
The value specified for the max_ifrm_rcvd parameter was not valid.

AP_UNKNOWN_IP_HOST
This value applies only for an Enterprise Extender (HPR/IP) link. The string specified for the
remote_hostname parameter could not be resolved to a valid IP address.

AP_INVALID_IP_VERSION
This value applies only for an Enterprise Extender (HPR/IP) link. The value specified in the
ip_version parameter did not match the value specified for the owning IP port.

AP_INVALID_BRANCH_LINK_TYPE
The branch_link_type parameter was not set to a valid value.

AP_INVALID_BRNN_SUPPORT
The adj_brnn_cp_support parameter was not set to a valid value.

AP_BRNN_SUPPORT_MISSING
The adj_brnn_cp_support parameter was set to AP_BRNN_ALLOWED; this value is not valid
because the adjacent node is a Network Node and auto_act_supp is set to AP_YES.

AP_INVALID_UPLINK
The branch_link_type parameter was set to AP_UPLINK, but the definition of an existing LS
between the local and adjacent nodes specifies that it is a downlink. The branch link type must be
the same for all LSs between the same two nodes.

AP_INVALID_DOWNLINK
The branch_link_type parameter was set to AP_DOWNLINK, but the definition of an existing LS
between the local and adjacent nodes specifies that it is an uplink. The branch link type must be
the same for all LSs between the same two nodes.

AP_INVALID_LINK_SPEC_FORMAT
A reserved parameter was set to a nonzero value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_DUPLICATE_CP_NAME

A link to the CP name specified in the adj_cp_name parameter has already been defined.
AP_DUPLICATE_DEST_ADDR

A link to the destination address specified in the address parameter has already been defined.

For LLC2 link types: A link to the destination address specified by the combination of the
mac_address and lsap_address parameters has already been defined.

AP_DUPLICATE_ADJ_NODE_ID
The adj_node_id (node ID of adjacent node) has already been defined in another link station.

AP_INVALID_LINK_NAME
The link station value specified in the ls_name parameter was not valid.

DEFINE_LS

124 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_NUM_LS_SPECIFIED
The number of link stations specified was not valid.

AP_LOCAL_CP_NAME
The name specified for the adj_cp_name parameter is identical to the local CP name.

AP_LS_ACTIVE
The link station specified in the ls_name parameter is currently active.

AP_PU_ALREADY_DEFINED
The PU specified in the pu_name parameter has already been defined.

AP_DSPU_ALREADY_DEFINED
The downstream PU specified in the dspu_name parameter has already been defined.

AP_DSPU_SERVICES_NOT_SUPPORTED
AP_PU_CONCENTRATIONor AP_DLUR has been specified on the dspu_services parameter, but the
node does not support it.

AP_DUPLICATE_TG_NUMBER
The TG number specified in the tg_number parameter has already been defined.

AP_TG_NUMBER_IN_USE
The TG number specified for the tg_number parameter is already being used by another LS.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

Bit ordering in MAC addresses
Ethernet LANs use a different representation of MAC addresses from that used by Token Ring; the order of
the bits in each byte of the address on Ethernet is the reverse of the order on Token Ring. Normally, the
local and remote nodes are on the same LAN, or on LANs of the same type connected by a bridge; in this
case, they will both use the same representation of the MAC address, and no conversion is required.

If the two nodes are on LANs of different types (one Ethernet, the other Token Ring) connected by a
bridge, you will normally need to reverse the bit order of each byte of the address when specifying a
remote MAC address. To do this, take the following steps:

1. List the MAC address as six bytes, each byte represented by two hexadecimal digits.
2. List the MAC address as six bytes, each byte represented by two hexadecimal digits.
3. Convert each digit as shown below:

0 -> 0 8 -> 1

1 -> 8 9 -> 9

2 -> 4 A -> 5

3 -> C B -> D

4 -> 2 C -> 3

5 -> A D -> B

6 -> 6 E -> 7

7 -> E F -> F

Example of Bit Ordering in a MAC Address

Original address 1A 2B 3C 4D 5E 6F

DEFINE_LS

Chapter 3. NOF API Verbs 125

Swap digits A1 B2 C3 D4 E5 F6

Convert digits (the bit-reversed form of
the original address)

58 D4 3C B2 7A F6

Modem control characters
For SDLC, if you need to include one or more non-printable control characters in the hmod_data
parameter, you can do this by specifying the hexadecimal value of the control character, as listed in Table
2 on page 126.

Table 2. Escape Sequences for Modem Control Characters

Escape Sequence Decimal Value Hexadecimal Value

NUL 0 0x00

SOH 1 0x01

STX 2 0x02

ETX 3 0x03

EOT 4 0x04

ENQ 5 0x05

ACK 6 0x06

BEL 7 0x07

BS 8 0x08

HT 9 0x09

LF 10 0x0A

VT 11 0x0B

FF 12 0x0C

CR 13 0x0D

SO 14 0x0E

SI 15 0x0F

DLE 16 0x10

DC1 17 0x11

DC2 18 0x12

DC3 19 0x13

DC4 20 0x14

NAK 21 0x15

SYN 22 0x16

ETB 23 0x17

CAN 24 0x18

EM 25 0x19

SUB 26 0x1A

ESC 27 0x1B

FS 28 0x1C

DEFINE_LS

126 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Table 2. Escape Sequences for Modem Control Characters (continued)

Escape Sequence Decimal Value Hexadecimal Value

GS 29 0x1D

RS 30 0x1E

US 31 0x1F

SP 32 0x20

DEL 127 0x7F

DEFINE_LS_ROUTING
The DEFINE_LS_ROUTING verb defines the location of a partner LU using a link station.

Note: You cannot use DEFINE_LS_ROUTING with an Enterprise Extender (HPR/IP) link station. This is
because all traffic on this link type must flow over an RTP connection, which is not fixed to a particular link
station and can switch to a different path.

VCB structure
typedef struct define_ls_routing
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU Name */
 unsigned char lu_alias[8]; /* reserved */
 unsigned char fq_partner_lu[17]; /* partner lu name */
 unsigned char wildcard_fqplu; /* wildcard partner LU flag */
 unsigned char ls_name[8]; /* link to use */
 unsigned char reserv3[2]; /* reserved */
} DEFINE_LS_ROUTING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LS_ROUTING

lu_name
Name of the local LU that will communicate with the partner LU (specified by the fq_partner_lu
parameter) over the link specified by the ls_name parameter. This is an 8-byte type-A character string.

fq_partner_lu
Fully qualified name of the partner LU with which the local LU (specified by the lu_name parameter)
will communicate over the link specified by the ls_name parameter. Specify 3-17 characters that
consists of a 1-8 character network name, followed by a period, followed by a 1-8 character partner
LU name.

You can specify a partial or full wildcard partner LU name by specifying only part of the name and
setting the wildcard_fqplu parameter to AP_YES. For example:

• APPN.NEW matches APPN.NEW1, APPN.NEWLU, and so on
• APPN. matches any LU with a network name of APPN, regardless of its LU name
• APPN matches any LU with a network name beginning with APPN: APPN.NEW1, APPNNEW.LUTWO,

and so on.

To specify a full wildcard entry, so that all partner LUs will be accessed using the same link, set
wildcard_fqplu to AP_YES and set fq_partner_lu to a null string.

DEFINE_LS_ROUTING

Chapter 3. NOF API Verbs 127

wildcard_fqplu
Wildcard partner LU flag indicating whether the fq_partner_lu parameter contains a full or partial
wildcard. Possible values are:
AP_YES

The fq_partner_lu parameter contains a wildcard entry.
AP_NO

The fq_partner_lu parameter does not contain a wildcard entry.
ls_name

Name of the link station to use for communication between the local LU (specified by the lu_name
parameter) and the partner LU (specified in the fq_partner_lu parameter). Specify 1-8 locally
displayable characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The lu_name parameter contained a character that was not valid.
AP_INVALID_PLU_NAME

The fq_partner_lu parameter contained a character that was not valid or the name was not fully
qualified.

AP_INVALID_WILDCARD_NAME
The wildcard_fqplu parameter was specified but the fq_partner_lu parameter was not a valid
wildcard name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The local LU identified by the lu_name parameter does not exist.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LS_ROUTING

128 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

DEFINE_LU62_TIMEOUT
The DEFINE_LU62_TIMEOUT verb defines a timeout period for unused LU 6.2 sessions. Each timeout is
for a specified resource type and resource name. If a DEFINE_* verb is issued for a resource type and
name pair already defined, the command overwrites the previous definitions. New timeout periods are
only used for sessions activated after the definition is changed.

If more than one relevant timeout period is defined for a session, the shortest period applies.

VCB structure
typedef struct define_lu62_timeout
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char resource_type; /* resource type */
 unsigned char resource_name[17]; /* resource name */
 AP_UINT16 timeout; /* timeout */
} DEFINE_LU62_TIMEOUT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU62_TIMEOUT

resource_type
Specifies the type of timeout to be defined. Possible values are:
AP_GLOBAL_TIMEOUT

Timeout applies to all LU 6.2 sessions for the local node. The resource_name parameter should be
set to all zeros.

AP_LOCAL_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local LU specified in the resource_name parameter.

AP_PARTNER_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions to the partner LU specified in the resource_name parameter.

AP_MODE_TIMEOUT
Timeout applies to all LU 6.2 sessions on the mode specified in the resource_name parameter.

resource_name
Name of the resource being queried. This value can be one of the following:

• If resource_type is set to AP_GLOBAL_TIMEOUT, do not specify this parameter.
• If resource_type is set to AP_LOCAL_LU_TIMEOUT, specify 1-8 locally displayable type-A characters

as a local LU name.
• If resource_type is set to AP_PARTNER_LU_TIMEOUT, specify the fully qualified name of the partner

LU as follows: 17 locally displayable type-A characters consisting of a 1-8 character network name,
followed by a period, followed by a 1-8 character partner LU name.

• If resource_type is set to AP_MODE_TIMEOUT, specify 1-8 locally displayable type-A characters as a
mode name.

timeout
Timeout period in seconds. A value of 0 (zero) indicates that the session immediately becomes free.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

DEFINE_LU62_TIMEOUT

Chapter 3. NOF API Verbs 129

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RESOURCE_TYPE

The type of timeout defined was not valid.
AP_INVALID_LU_NAME

The resource_type parameter specified an LU name that was not valid.
AP_INVALID_PARTNER_LU

The resource_type parameter specified a partner LU name that was not valid.
AP_INVALID_MODE_NAME

The resource_type parameter specified a mode name that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LU_0_TO_3
The DEFINE_LU_0_TO_3 verb defines an LU for use with 3270 emulation or LUA (an LU of type 0, 1, 2, or
3), and optionally assigns the LU to an LU pool.

If this verb is used to modify an existing LU, only the description, priority, and lu_model parameters can be
changed; all other parameters must be set to their existing values.

VCB structure
typedef struct define_lu_0_to_3
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU name */
 LU_0_TO_3_DEF_DATA def_data; /* defined data */
} DEFINE_LU_0_TO_3;

typedef struct lu_0_to_3_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* LU NAU address */
 unsigned char pool_name[8]; /* LU Pool name */
 unsigned char pu_name[8]; /* PU name */
 unsigned char priority; /* LU priority */
 unsigned char lu_model; /* LU model (type) */
 unsigned char sscp_id[6]; /* SSCP ID */
 AP_UINT16 timeout; /* Timeout */
 unsigned char app_spec_def_data[16]; /* reserved */
 unsigned char model_name[7]; /* reserved */
 unsigned char term_method; /* session termination type */
 unsigned char disconnect_on_unbind; /* disconnect on UNBIND flag */

DEFINE_LU_0_TO_3

130 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char reserv3[15]; /* reserved */
} LU_0_TO_3_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3

lu_name
Name of the local LU. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the LU. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_LU_0_TO_3 verb, but CS/AIX does not make any other use of it.

def_data.nau_address
Network accessible unit address of the LU. This is a number in the range 1-255.

def_data.pool_name
Name of pool to which this LU belongs. This is a type-A EBCDIC string, padded on the right with
EBCDIC spaces if the name is shorter than 8 bytes. If a pool with the specified name is not already
defined, CS/AIX adds a new pool with this name and assigns the LU to it.

If the LU does not belong to a pool, set this field to 8 binary zeros.

def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) which this LU will use. This is an 8-byte type-A
EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if the name is shorter
than 8 bytes.

def_data.priority
LU priority when sending to the host. Possible values are:

AP_NETWORK

AP_HIGH

AP_MEDIUM

AP_LOW

def_data.lu_model
Type of the LU. Possible values are:

AP_3270_DISPLAY_MODEL_2

AP_3270_DISPLAY_MODEL_3

AP_3270_DISPLAY_MODEL_4

AP_3270_DISPLAY_MODEL_5

AP_PRINTER

AP_SCS_PRINTER

AP_RJE_WKSTN

AP_UNKNOWN (LU type will be determined when the session to the host is established)

If you are not using the LU for 3270 emulation, it is not necessary to specify an explicit LU type; set
this parameter to AP_UNKNOWN.

Depending on the value you specify, CS/AIX sends one of the following strings to the host in the
DDDLU NMVT, to match the values used in the standard VTAM tables:

• 3270002 for AP_3270_DISPLAY_MODEL_2

DEFINE_LU_0_TO_3

Chapter 3. NOF API Verbs 131

• 3270003 for AP_3270_DISPLAY_MODEL_3
• 3270004 for AP_3270_DISPLAY_MODEL_4
• 3270005 for AP_3270_DISPLAY_MODEL_5
• 3270DSC for AP_PRINTER
• 3270SCS for AP_SCS_PRINTER
• 3270000 for AP_RJE_WKSTN
• 327000n for AP_UNKNOWN with a TN3270 client, where n is the model number (2-5) provided by the

client
• 327000@ for AP_UNKNOWN with an LUA client

If the host system supports Dynamic Definition of Dependent LUs (DDDLUs), CS/AIX will define the LU
dynamically on the host when the communications link to the host is established. For a TN3270 client,
set this parameter to AP_UNKNOWN. CS/AIX then determines the LU model using a standard mapping
from the terminal type (device type) specified by the client; if you need to change this mapping, you
can do this using the tn3270dev.dat file as described in IBM Communications Server for Data Center
Deployment on AIX Administration Guide.

If the host does not support DDDLU, the LU must be included in the host configuration.

def_data.sscp_id
Specifies the ID of the SSCP permitted to activate this LU. Set this parameter to 0 (zero) if the LU can
be activated by any SSCP. If the LU is to be activated only by a specific SSCP, set the first four bytes of
this parameter to 0x05000000 and the last two bytes to the SSCP ID that identifies the SSCP that is
permitted to activate the LU.

def_data.timeout
Timeout for the LU specified in seconds. If the timeout is set to a nonzero value and the user of the LU
supports session inactivity timeouts, then the LU is deactivated after the PLU-SLU session is left
inactive for the specified period and one of the following conditions exist:

• The session passes over a limited resource link.
• Another application requests to use the LU before the session is used again.

If the timeout is set to 0 (zero), the LU is not deactivated.

Support for session inactivity timeouts depends on the application that is using the LU (such as a
3270 emulation program). If the LU is being used by SNA gateway, session inactivity timeouts are
supported only if allow_timeout is specified on the DEFINE_DOWNSTREAM_LU verb.

def_data.term_method
This parameter specifies how CS/AIX should attempt to end a PLU-SLU session to a host from this LU.
Possible values are:
AP_USE_NODE_DEFAULT

Use the node's default termination method, specified by the send_term_self parameter on
DEFINE_NODE.

AP_SEND_UNBIND
End the session by sending an UNBIND.

AP_SEND_TERM_SELF
End the session by sending a TERM_SELF.

def_data.disconnect_on_unbind
This parameter applies only when this LU is being used by a TN3270 client. It specifies whether to
end the session when the host sends an UNBIND instead of displaying the VTAM MSG10 or returning
to a host session manager. Possible values are:
AP_YES

End the session if the host sends an UNBIND that is not type 2 (BIND forthcoming).
AP_NO

Do not end the session if the host sends an UNBIND.

DEFINE_LU_0_TO_3

132 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The lu_name parameter contained a character that was not valid.
AP_INVALID_POOL_NAME

The pool_name parameter contained a character that was not valid.
AP_INVALID_NAU_ADDRESS

The nau_address parameter was not in the permitted range.
AP_INVALID_PRIORITY

The priority parameter was not set to a valid value.
AP_INVALID_TERM_METHOD

The term_method parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The pu_name parameter was not valid.
AP_PU_NOT_DEFINED

The pu_name parameter did not match any defined PU name.
AP_INVALID_PU_TYPE

The PU specified by the pu_name parameter is not a host PU.
AP_LU_NAME_POOL_NAME_CLASH

The LU name clashes with the name of an LU pool.
AP_LU_ALREADY_DEFINED

An LU with the specified name has already been defined.
AP_LU_NAU_ADDR_ALREADY_DEFD

An LU with the specified NAU address has already been defined.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

DEFINE_LU_0_TO_3

Chapter 3. NOF API Verbs 133

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LU_0_TO_3_RANGE
The DEFINE_LU_0_TO_3_RANGE verb defines a range of LUs for use with 3270 emulation or LUA (LUs of
type 0, 1, 2, or 3), and optionally assigns the LUs to an LU pool. This verb cannot be used to modify
existing LUs.

The supplied parameters to this verb include a base name for the new LUs and the range of NAU
addresses. The new LU names are generated by combining the base name with the NAU addresses. For
example, a base name of LUNME combined with a NAU range of 11 to 14 would define the LUs
LUNME011, LUNME012, LUNME013 and LUNME014.

VCB structure
typedef struct define_lu_0_to_3_range
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char base_name[6]; /* Base name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char min_nau; /* Minimum NAU address */
 unsigned char max_nau; /* Maximum NAU address */
 unsigned char pool_name[8]; /* LU Pool name */
 unsigned char pu_name[8]; /* PU name */
 unsigned char priority; /* LU priority */
 unsigned char lu_model; /* LU model (type) */
 unsigned char sscp_id[6]; /* SSCP ID */
 AP_UINT16 timeout; /* Timeout */
 unsigned char app_spec_def_data[16]; /* reserved */
 unsigned char reserv3[7]; /* reserved */
 unsigned char name_attributes; /* Extension type */
 unsigned char base_number; /* First extension number */
 unsigned char term_method; /* session termination type */
 unsigned char disconnect_on_unbind; /* disconnect on UNBIND flag */
 unsigned char reserv4[13]; /* reserved */
} DEFINE_LU_0_TO_3_RANGE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3_RANGE

base_name
Base name for the names of the new LUs. This is a 6-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the base name is less than 6 characters.

• If the name_attributes parameter is set to AP_USE_HEX_IN_NAME, this name may be up to 6
characters long. CS/AIX generates the LU name for each LU by appending a 2-digit hexadecimal
number to this name (starting from a base number specified by the base_number parameter).

• Otherwise, this name may be up to 5 characters long. CS/AIX generates the LU name for each LU by
appending a 3-digit decimal number to this name (taken from the NAU address or from a defined
base number, as specified by the name_attributes parameter).

description
A null-terminated text string (0-31 characters followed by a null character) describing the LUs; the
same string is used for each LU in the range. This string is for information only; it is stored in the

DEFINE_LU_0_TO_3_RANGE

134 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

node's configuration file and returned on the QUERY_LU_0_TO_3 verb, but CS/AIX does not make any
other use of it.

min_nau
NAU address of the first LU, in the range 1-255.

max_nau
NAU address of the last LU, in the range 1-255.

pool_name
Name of pool to which these LUs belong. This is an 8-byte type-A EBCDIC string, padded on the right
with EBCDIC spaces if the name is shorter than 8 bytes. If a pool with the specified name is not
already defined, CS/AIX adds a new pool with this name and assigns the LUs to it.

If the LUs do not belong to a pool, set this field to 8 binary zeros.

pu_name
Name of the PU (as specified on the DEFINE_LS verb) which these LUs will use. This is an 8-byte type-
A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces.

priority
LU priority when sending to the host. Possible values are:

AP_NETWORK

AP_HIGH

AP_MEDIUM

AP_LOW

lu_model
Type of the LUs. Possible values are:

AP_3270_DISPLAY_MODEL_2

AP_3270_DISPLAY_MODEL_3

AP_3270_DISPLAY_MODEL_4

AP_3270_DISPLAY_MODEL_5

AP_PRINTER

AP_SSCP_PRINTER

AP_RJE_WKSTN

AP_UNKNOWN (LU type will be determined when the session to the host is established)

If you are not using the LUs for 3270 emulation, it is not necessary to specify an explicit LU type; set
this parameter to AP_UNKNOWN.

Depending on the value you specify, CS/AIX sends one of the following strings to the host in the
DDDLU NMVT, to match the values used in the standard VTAM tables:

• 3270002 for AP_3270_DISPLAY_MODEL_2
• 3270003 for AP_3270_DISPLAY_MODEL_3
• 3270004 for AP_3270_DISPLAY_MODEL_4
• 3270005 for AP_3270_DISPLAY_MODEL_5
• 3270DSC for AP_PRINTER
• 3270SCS for AP_SCS_PRINTER
• 3270000 for AP_RJE_WKSTN
• 327000n for AP_UNKNOWN with a TN3270 client, where n is the model number (2-5) provided by the

client
• 327000@ for AP_UNKNOWN with an LUA client

DEFINE_LU_0_TO_3_RANGE

Chapter 3. NOF API Verbs 135

If the host system supports Dynamic Definition of Dependent LUs (DDDLUs), CS/AIX will define the LU
dynamically on the host when the communications link to the host is established. For a TN3270 client,
set this parameter to AP_UNKNOWN. CS/AIX then determines the LU model using a standard mapping
from the terminal type (device type) specified by the client; if you need to change this mapping, you
can do this using the tn3270dev.dat file as described in IBM Communications Server for Data Center
Deployment on AIX Administration Guide.

If the host does not support DDDLU, or if this parameter is set to AP_UNKNOWN, the LUs must be
included in the host configuration.

sscp_id
Specifies the ID of the SSCP permitted to activate this LU. Specify a value in the range 0-65,535. If
this parameter is set to 0 (zero), the LU can be activated by any SSCP.

timeout
Timeout for the LU specified in seconds. If the timeout is set to a nonzero value and the user of the LU
supports session inactivity timeouts, then the LU is deactivated after the PLU-SLU session is left
inactive for the specified period and one of the following conditions exist:

• The session passes over a limited resource link.
• Another application requests to use the LU before the session is used again.

If the timeout is set to 0 (zero), the LU is not deactivated.

Support for session inactivity timeouts depends on the application that is using the LU (such as a
3270 emulation program). If the LU is being used by SNA gateway, session inactivity timeouts are
supported only if allow_timeout is specified on the DEFINE_DOWNSTREAM_LU verb.

name_attributes
Attributes of the LUs to be defined. Possible values are:
AP_NONE

LU names have numbers corresponding to the NAU numbers. The numbers are specified in
decimal and the base_name parameter can only be up to 5 characters.

AP_USE_BASE_NUMBER
Start naming the LUs in the range from the value specified in the base_number parameter.

AP_USE_HEX_IN_NAME
Add the extension to the LU name in hex rather than decimal. The base_name parameter can
contain up to 6 characters if this value is specified.

AP_USE_TWO_DECIMAL_DIGITS
Add the extension to the LU name using two decimal digits (without this option 3 digits are used).
If this attribute is used then at most 99 LUs can be defined in this range. The base_name
parameter can contain up to 6 characters if this value is specified.

base_number
If AP_USE_BASE_NUMBER is specified in the name_attributes parameter, specify a number from which
to start naming the LUs in the range. This value will be used instead of the value of the min_nau
parameter.

term_method
This parameter specifies how CS/AIX should attempt to end a PLU-SLU session to a host from one of
these LUs. Possible values are:
AP_USE_NODE_DEFAULT

Use the node's default termination method, specified by the send_term_self parameter on
DEFINE_NODE.

AP_SEND_UNBIND
End the session by sending an UNBIND.

AP_SEND_TERM_SELF
End the session by sending a TERM_SELF.

DEFINE_LU_0_TO_3_RANGE

136 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

disconnect_on_unbind
This parameter applies only when an LU in this range is being used by a TN3270 client. It specifies
whether to end the session when the host sends an UNBIND instead of displaying the VTAM MSG10 or
returning to a host session manager. Possible values are:
AP_YES

End the session if the host sends an UNBIND that is not type 2 (BIND forthcoming).
AP_NO

Do not end the session if the host sends an UNBIND.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The base_name parameter contained a character that was not valid.
AP_INVALID_POOL_NAME

The pool_name parameter contained a character that was not valid.
AP_INVALID_NAU_ADDRESS

One or more of the LU addresses were not in the permitted range.
AP_INVALID_PRIORITY

The priority parameter was not set to a valid value.
AP_INVALID_TERM_METHOD

The term_method parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The pu_name parameter was not valid.
AP_PU_NOT_DEFINED

The pu_name parameter did not match any defined PU name.
AP_INVALID_PU_TYPE

The PU specified by the pu_name parameter is not a host PU.
AP_LU_NAME_POOL_NAME_CLASH

One of the LU names in the range clashes with the name of an LU pool.

DEFINE_LU_0_TO_3_RANGE

Chapter 3. NOF API Verbs 137

AP_LU_ALREADY_DEFINED
An LU has already been defined with the name of one of the LUs in the range.

AP_LU_NAU_ADDR_ALREADY_DEFD
An LU has already been defined with the address of one of the LUs in the range.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LU_LU_PASSWORD
DEFINE_LU_LU_PASSWORD provides a password which is used for session-level security verification
between a local LU and a partner LU.

VCB structure
typedef struct define_lu_lu_password
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner */
 /* LU name */
 unsigned char verification_protocol; /* verification protocol */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char reserv3[8]; /* reserved */
 unsigned char password[8]; /* password */
} DEFINE_LU_LU_PASSWORD;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_LU_PASSWORD

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

verification_protocol
Requested LU-LU verification protocol to use. Possible values are:

DEFINE_LU_LU_PASSWORD

138 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_BASIC
Use basic LU-LU verification protocols.

AP_ENHANCED
Use enhanced LU-LU verification protocols.

AP_EITHER
Basic or enhanced verification is accepted.

description
A null-terminated text string (0-31 characters followed by a null character) describing the password.
This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_LU_LU_PASSWORD verb, but CS/AIX does not make any other use of it.

password
Password. This is an 8-byte hexadecimal string, which must not be set to all blanks or all zeros. It
must match the equivalent parameter configured for the partner LU on the remote system (except that
the least significant bit of each byte is not used in session-level security verification and does not
need to match).

Whatever value the application supplies for this parameter is immediately replaced by the encrypted
version of the password. Therefore, the value supplied for the password parameter is never written
out.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias.
AP_INVALID_LU_NAME

The lu_name parameter did not match any defined local LU name.
AP_INVALID_PLU_NAME

The fqplu_name parameter did not match any defined partner LU name.
AP_INVALID_PASSWORD

The password parameter is blank or null.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_LU_LU_PASSWORD

Chapter 3. NOF API Verbs 139

DEFINE_LU_POOL
This verb is used to define an LU pool and assign LUs to it, or to assign additional LUs to an existing pool.
The LUs must be defined before adding them to the pool. You can also define a pool by specifying the pool
name when defining an LU; for more information, see “DEFINE_LU_0_TO_3” on page 130.

This verb cannot be used to modify an existing pool by removing LUs from it; the DELETE_LU_POOL verb is
used to do this.

VCB structure
typedef struct define_lu_pool
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pool_name[8]; /* LU pool name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char reserv3[4]; /* reserved */
 AP_UINT16 num_lus; /* number of LUs to add */
 unsigned char lu_names[10][8]; /* LU names */
} DEFINE_LU_POOL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_POOL

pool_name
Name of the LU pool. This is an 8-byte type-A EBCDIC string, padded on the right with EBCDIC spaces
if the name is shorter than 8 bytes. If a pool of this name is not already defined, CS/AIX creates it.

description
A null-terminated text string (0-31 characters followed by a null character) describing the pool. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_LU_POOL verb, but CS/AIX does not make any other use of it.

num_lus
Number of LUs to be added to the pool. This can be zero to define the pool without adding any LUs, or
1-10. To create a pool containing more than 10 LUs, issue multiple DEFINE_LU_POOL verbs for the
same pool name.

lu_names
Names of the LUs that are being assigned to the pool. Each of these LUs must already be defined to
CS/AIX as an LU of type 0-3. Each LU name is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

If a specified LU is currently assigned to a different pool, CS/AIX removes it from that pool (because
an LU cannot be in more than one pool) and assigns it to the pool specified by this verb.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

DEFINE_LU_POOL

140 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

One or more of the supplied LU names did not match any defined LU name.
AP_INVALID_POOL_NAME

The pool_name parameter contained a character that was not valid.
AP_INVALID_NUM_LUS

The num_lus parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LU_NAME_POOL_NAME_CLASH

The specified pool name clashes with the name of an LU.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_MODE
The DEFINE_MODE verb defines a mode (a set of networking characteristics to be used by a group of
sessions) or modifies a previously defined mode. You cannot modify the SNA-defined mode CPSVCMG or
change the COS name used by the SNA-defined mode SNASVCMG.

If you use this verb to modify an existing mode, the changes will apply to any new combination of local LU
and partner LU that start to use the mode after you have made the change. However, any combination of
LUs already using the mode will not pick up the changes until after the next locally or remotely initiated
CNOS command.

This verb can also be used to specify the default COS to which any unrecognized modes will be mapped. If
no default COS is specified, the SNA-defined COS #CONNECT is used.

VCB structure
typedef struct define_mode
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char mode_name[8]; /* mode name */
 AP_UINT16 reserv3; /* reserved */
 MODE_CHARS mode_chars; /* mode characteristics */
} DEFINE_MODE;

DEFINE_MODE

Chapter 3. NOF API Verbs 141

typedef struct mode_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 max_ru_size_upp; /* maximum RU size upper bound */
 unsigned char receive_pacing_win; /* receive pacing window */
 unsigned char default_ru_size; /* default RU size to maximize */
 /* performance */
 AP_UINT16 max_neg_sess_lim; /* maximum negotiable session limit*/
 AP_UINT16 plu_mode_session_limit; /* LU-mode session limit */
 AP_UINT16 min_conwin_src; /* minimum source contention winner*/
 /* sessions */
 unsigned char cos_name[8]; /* class of service name */
 unsigned char cryptography; /* reserved */
 unsigned char compression; /* data compression supported? */
 AP_UINT16 auto_act; /* initial auto-activation count */
 AP_UINT16 min_conloser_src; /* min source contention loser */
 AP_UINT16 max_ru_size_low; /* maximum RU size lower bound */
 AP_UINT16 max_receive_pacing_win; /* maximum receive pacing window */
 unsigned char max_compress_lvl; /* max level of data compression */
 unsigned char max_decompress_lvl; /* max level of data decompression */
 unsigned char comp_in_series; /* reserved */
 unsigned char reserv4[25]; /* reserved */
} MODE_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_MODE

mode_name
Name of the mode. This is an 8-byte type-A EBCDIC string, padded on the right with EBCDIC spaces if
the name is shorter than 8 bytes. The name must start with a letter, or can start with # for one of the
SNA-defined modes such as #INTER. For information about SNA-defined modes, see the IBM
Communications Server for Data Center Deployment on AIX Administration Guide.

To specify the default COS that will be used for any unrecognized mode names, set this parameter to 8
binary zeros. In this case, the mode_chars.cos_name parameter is taken as the default COS name; all
other parameters supplied on this verb are ignored.

mode_chars.description
A null-terminated text string (0-31 characters followed by a null character) describing the mode. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_MODE_DEFINITION and QUERY_MODE verbs, but CS/AIX does not make any other use of it.

mode_chars.max_ru_size_upp
Upper bound for the maximum size of RUs sent and received on sessions in this mode. The value is
used when the maximum RU size is negotiated during session activation.

Range: 256-61,440. If the default_ru_size parameter (see below) is set to AP_YES, this parameter is
ignored (and the value is not checked).

mode_chars.receive_pacing_win
Session pacing window for sessions using this mode; the range is 1-63. This value is used only for
fixed pacing (not for adaptive pacing), and specifies the maximum number of frames that can be
received from the partner LU before the local LU must send a response. CS/AIX always uses adaptive
pacing unless the adjacent node specifies that it is not supported.

mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be used. Possible values are:
AP_YES

CS/AIX ignores the max_ru_size_upp parameter, and sets the upper bound for the maximum RU
size to the largest value that can be accommodated in the link BTU size.

AP_NO
CS/AIX uses the max_ru_size_upp parameter to define the maximum RU size.

DEFINE_MODE

142 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

mode_chars.max_neg_sess_lim
Maximum number of sessions allowed on this mode between any local LU and partner LU. This value
may be lowered for a particular LU-LU-mode combination when issuing initialize_session_limit or
change_session_limit.

Range: 1-32,767. Zero indicates that CS/AIX should not initiate implicit CNOS exchange when an
application attempts to start a session using this mode; session limits must be specified explicitly
using initialize_session_limit.

mode_chars.plu_mode_session_limit
Default session limit for this mode. This limits the number of sessions on this mode between any one
local LU and partner LU pair. This value is used when CNOS (Change Number of Sessions) exchange is
initiated implicitly.

Specify a value in the range 1-32,767 (which must not exceed the value in max_neg_sess_lim). Zero
indicates that CS/AIX should not initiate implicit CNOS exchange when an application attempts to
start a session using this mode; session limits must be specified explicitly using
initialize_session_limit.

If you specify an explicit limit, the LU session limit for any LU that uses this mode must be greater than
or equal to the sum of the session limits for all modes that the LU will use.

mode_chars.min_conwin_src
Minimum number of contention winner sessions that a local LU using this mode can activate. This
value is used when CNOS (Change Number of Sessions) exchange is initiated either by the remote
system or implicitly by CS/AIX. Specify a value in the range 0-32,767. The sum of the min_conwin_src
and min_conloser_src parameters must not exceed plu_mode_session_limit.

mode_chars.cos_name
Name of the class of service to request when activating sessions on this mode.

If the node supports mode to COS mapping (as defined by the mode_to_cos_map_supp parameter on
DEFINE_NODE), the COS specified by this field must be either an SNA defined COS or a COS
previously defined by issuing a DEFINE_COS verb. Otherwise, this parameter is ignored.

The name is an 8-byte type-A character string, padded on the right with spaces if the name is shorter
than 8 characters.

mode_chars.compression
Specifies whether sessions activated using this mode can use compression. Possible values are:
AP_COMP_PROHIBITED

Compression is not supported for sessions using this mode.
AP_COMP_REQUESTED

Compression is supported and requested for sessions using this mode. (It is not mandatory;
compression will not be used if the BIND from the partner does not request it.)

mode_chars.auto_act
Number of sessions that will be activated automatically for this mode. This value is used when CNOS
(Change Number of Sessions) exchange is initiated implicitly. Specify a value in the range 0-32,767.

mode_chars.min_conloser_src
Minimum number of contention loser sessions that can be activated by any one local LU that uses this
mode. This value is used when CNOS (Change Number of Sessions) exchange is initiated implicitly.
Specify a value in the range 0-32,767. The sum of the min_conwin_src and min_conloser_src
parameters must not exceed plu_mode_session_limit.

mode_chars.max_ru_size_low
Lower bound for the maximum size of RUs sent and received on sessions that use this mode. Specify a
value in the range 256-61,440. The value 0 means that there is no lower bound.

The value is used when the maximum RU size is negotiated during session activation. This parameter
is ignored if the default_ru_size parameter is set to AP_YES.

DEFINE_MODE

Chapter 3. NOF API Verbs 143

mode_chars.max_receive_pacing_win
Maximum session pacing window for sessions in this mode. For adaptive pacing, this value is used to
limit the receive pacing window that the session will grant. For fixed pacing, this parameter is not
used. (CS/AIX always uses adaptive pacing unless the adjacent node specifies that it does not support
it.)

Specify a value in the range 0-32,767. The value zero means that there is no upper bound.

mode_chars.max_compress_lvl
Specifies the maximum level of compression that CS/AIX will attempt to negotiate for data flowing
from the local node. Possible values are:

• AP_NONE
• AP_RLE_COMPRESSION
• AP_LZ9_COMPRESSION
• AP_LZ10_COMPRESSION

If compression is negotiated using a non-extended BIND, which does not specify a maximum
compression level, RLE compression will be used.

mode_chars.max_decompress_lvl
Specifies the maximum level of decompression that CS/AIX will attempt to negotiate for data flowing
into the local node. Possible values are:

• AP_NONE
• AP_RLE_COMPRESSION
• AP_LZ9_COMPRESSION
• AP_LZ10_COMPRESSION

If compression is negotiated using a non-extended BIND, which does not specify a maximum
compression level, RLE compression will be used.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_CPSVCMG_ALREADY_DEFD

The SNA-defined mode CPSVCMG cannot be changed.
AP_INVALID_CNOS_SLIM

The plu_mode_session_limit parameter is not valid.
AP_INVALID_COMPRESSION

The compression parameter is not valid.
AP_INVALID_COS_NAME

The cos_name parameter did not match any defined COS name.
AP_INVALID_COS_SNASVCMG_MODE

The COS for the SNA-defined mode SNASVCMG cannot be changed.

DEFINE_MODE

144 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_DEFAULT_RU_SIZE
The default_ru_size parameter was not in the valid range.

AP_INVALID_MAX_COMPRESS_LVL
The max_compress_lvl parameter is not valid.

AP_INVALID_MAX_DECOMPRESS_LVL
The max_decompress_lvl parameter is not valid.

AP_INVALID_MAX_NEGOT_SESS_LIM
The max_neg_sess_lim parameter was not in the valid range.

AP_INVALID_MAX_RU_SIZE_UPPER
The max_ru_size_upp parameter was not in the valid range.

AP_INVALID_MIN_CONLOSERS
The min_conloser_src parameter was not in the valid range, or was greater than
plu_mode_session_limit.

AP_INVALID_MIN_CONWINNERS
The min_conwin_src parameter was not in the valid range, or was greater than
plu_mode_session_limit.

AP_INVALID_MIN_CONTENTION_SUM
The sum of the min_conwin_src and min_conloser_src parameters was greater than
plu_mode_session_limit.

AP_INVALID_MODE_NAME
The mode_name parameter contained a character that was not valid.

AP_INVALID_RECV_PACING_WINDOW
The receive_pacing_win parameter was not in the valid range.

AP_INVALID_SNASVCMG_MODE_LIMIT
The SNA-defined mode SNASVCMG must have a session limit of 2 and min_conwin_src of 1. You
cannot define SNASVCMG with different values for these parameters.

AP_MODE_SESS_LIM_EXCEEDS_NEG
The value specified for plu_mode_session_limit was larger than the value specified for
max_neg_sess_lim.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_NODE
An application issues this verb in order to define a new node, or to modify the parameters of an inactive
node.

This verb must be issued to a server where the node is not running. It cannot be issued to a running node.

VCB structure
typedef struct define_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char node_name[128]; /* name of Node */
 AP_UINT32 target_handle; /* handle for subsequent verbs */

DEFINE_NODE

Chapter 3. NOF API Verbs 145

 CP_CREATE_PARMS cp_create_parms; /* CP create parameters */
} DEFINE_NODE;

typedef struct cp_create_parms
{
 AP_UINT16 crt_parms_len; /* length of CP_CREATE_PARMS */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[2]; /* reserved */
 unsigned char ms_support; /* reserved */
 unsigned char queue_nmvts; /* reserved */
 unsigned char reserv3[12]; /* reserved */
 unsigned char node_type; /* node type */
 unsigned char fqcp_name[17]; /* fully qualified CP name */
 unsigned char cp_alias[8]; /* CP alias */
 unsigned char mode_to_cos_map_supp; /* mode to COS mapping support */
 unsigned char mds_supported; /* MDS and MS capabilities */
 unsigned char node_id[4]; /* node ID */
 AP_UINT16 max_locates; /* maximum locates node can process */
 AP_UINT16 dir_cache_size; /* directory cache size (reserved */
 /* is not NN) */
 AP_UINT16 max_dir_entries; /* maximum directory entries (zero */
 /* means unlimited) */
 AP_UINT16 locate_timeout; /* locate timeout in seconds */
 unsigned char reg_with_nn; /* register resources with NNS */
 unsigned char reg_with_cds; /* register resources with CDS */
 AP_UINT16 mds_send_alert_q_size;/* size of MDS send alert queue */
 AP_UINT16 cos_cache_size; /* number of cos definitions */
 AP_UINT16 tree_cache_size; /* Topology Database routing tree */
 /* cache size */
 AP_UINT16 tree_cache_use_limit; /* number of times a tree can be used*/
 AP_UINT16 max_tdm_nodes; /* max number of nodes that can be */
 /* stored in Topology Database */
 AP_UINT16 max_tdm_tgs; /* max number of TGs that can be */
 /* stored in Topology Database */
 AP_UINT32 max_isr_sessions; /* maximum ISR sessions */
 AP_UINT32 isr_sessions_upper_threshold; /* upper threshold for ISR */
 /* sessions */
 AP_UINT32 isr_sessions_lower_threshold; /* lower threshold for ISR */
 /* sessions */
 AP_UINT16 isr_max_ru_size; /* max RU size for ISR */
 AP_UINT16 isr_rcv_pac_window; /* ISR receive pacing window size */
 unsigned char store_endpt_rscvs; /* endpoint RSCV storage */
 unsigned char store_isr_rscvs; /* ISR RSCV storage */
 unsigned char store_dlur_rscvs; /* DLUR RSCV storage */
 unsigned char dlur_support; /* is DLUR supported? */
 unsigned char pu_conc_support; /* is PU conc supported? */
 unsigned char nn_rar; /* Route additional resistance */
 unsigned char hpr_support; /* Level of hpr support */
 unsigned char mobile; /* reserved */
 unsigned char discovery_support; /* reserved */
 unsigned char discovery_group_name[8]; /* reserved */
 unsigned char implicit_lu_0_to_3; /* reserved */
 unsigned char default_preference; /* reserved */
 unsigned char anynet_supported; /* reserved */
 AP_UINT16 max_ls_exception_events; /* Max # exception entries */
 unsigned char comp_in_series; /* reserved */
 unsigned char max_compress_lvl; /* reserved */
 unsigned char node_spec_data_len; /* reserved */
 unsigned char ptf[64]; /* program temporary fix array */
 unsigned char cos_table_version; /* version of COS tables to use */
 unsigned char send_term_self; /* default PLU-SLU session term */
 unsigned char disable_branch_awareness; /* disable BrNN awareness */
 unsigned char cplu_syncpt_support; /* syncpoint support on CP LU? */
 unsigned char cplu_attributes; /* attributes for CP LU */
 unsigned char reserved[95]; /* reserved */
} CP_CREATE_PARMS;

Supplied parameters
opcode

AP_DEFINE_NODE
node_name

Name of CS/AIX node that the application wishes to define.

If the node name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the node name.

DEFINE_NODE

146 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cp_create_parms.crt_parms_len
Length of create parameters structure.

cp_create_parms.description
A text string (0-31 characters followed by a null character) describing the node. This string is for
information only; it is stored in the node's configuration file and returned on the QUERY_NODE verb,
but CS/AIX does not make any other use of it.

cp_create_parms.node_type
One of the following node types:

AP_NETWORK_NODE

AP_BRANCH_NETWORK_NODE

AP_END_NODE

AP_LEN_NODE

cp_create_parms.fqcp_name
Node's fully qualified CP name. The name is a 17-byte EBCDIC string, right-padded with EBCDIC
spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character,
and a network name of up to 8 A-string characters.

cp_create_parms.cp_alias
Locally used CP alias. This alias can be used by APPC applications to access the CP LU. This is an 8-
byte ASCII string. All 8 bytes are significant and must be set.

cp_create_parms.mode_to_cos_map_supp
Specifies whether the node provides mode-to-COS mapping. This parameter is ignored for a network
node; mode-to-COS mapping is always supported. For a LEN node, mode-to-COS mapping is not
supported. Possible values are:
AP_YES

Mode-to-COS mapping is supported. A mode defined for this node must include an associated
COS name, which specifies either an SNA-defined COS or one defined using DEFINE_COS.

AP_NO
Mode-to-COS mapping is not supported. Default COS names will be used.

cp_create_parms.mds_supported
Specifies whether Management Services supports Multiple Domain Support and MS Capabilities.
Possible values are:
AP_YES

MDS is supported.
AP_NO

MDS is not supported.
cp_create_parms.node_id

Node identifier used in XID exchange. This is a 4-byte hexadecimal string, consisting of a block
number (3 hexadecimal digits) and a node number (5 hexadecimal digits).

cp_create_parms.max_locates
Maximum number of locate requests that the node can process simultaneously. When the number of
outstanding locate requests (requests for which a response has not yet been received) reaches this
limit, any further locate requests are rejected. The minimum is 8.

cp_create_parms.dir_cache_size
Network node only: Size of the directory cache. The minimum value is 3. You can use the information
returned on QUERY_DIRECTORY_STATS to help determine the appropriate size.

cp_create_parms.max_dir_entries
Maximum number of directory entries. Specify zero for no limit.

cp_create_parms.locate_timeout
Specifies the time in seconds before a network search will timeout. Specify zero for no timeout.

DEFINE_NODE

Chapter 3. NOF API Verbs 147

cp_create_parms.reg_with_nn
Specifies whether to register the node's resources with the network node server when the node is
started. Note that the valid values for this parameter are different depending on whether the node is
an End Node or a Branch Network Node.If the local node is a Network Node or a LEN Node, this
parameter is reserved.

Possible values for End Node:

AP_YES
Register resources with the NN. The end node's network node server will only forward directed
locates to it.

AP_NO
Do not register resources. The network node server will forward all broadcast searches to the end
node.

Possible values for Branch Network Node:

AP_REGISTER_NONE
The local node does not register any LUs with the NN Server. The NN Server will forward all
broadcast searches to the branch network node.

AP_REGISTER_ALL
The local node registers all domain independent LUs with the NN Server; it also registers all local
dependent LUs if the NN Server supports option set 1116. The NN Server will only forward
directed locates to it (unless it owns dependent LUs that could not be registered).

AP_REGISTER_LOCAL_ONLY
The local node registers all local independent LUs with the NN Server; it also registers all local
dependent LUs if the NN Server supports option set 1116. The NN Server will forward all
broadcast searches to the branch network node.

cp_create_parms.reg_with_cds
End node: Specifies whether the network node server is allowed to register end node resources with a
Central Directory server. This field is ignored if reg_with_nn is set to AP_NO.

Network node: Specifies whether local or domain resources can be optionally registered with Central
Directory server.

Possible values are:

AP_YES
Register resources with the CDS.

AP_NO
Do not register resources.

Branch network node: Specifies whether BrNN resources (local to the Branch Network Node or from
its domain) can be registered with Central Directory Server by the Network Server. This field is ignored
if reg_with_nn is set to AP_REGISTER_NONE.

Possible values are:

AP_YES
Register resources with the CDS.

AP_NO
Do not register resources.

cp_create_parms.mds_send_alert_q_size
Size of the MDS send alert queue. If the number of queued alerts reaches this limit, CS/AIX deletes
the oldest alert on the queue. CS/AIX uses the value 2 unless you specify a larger number.

cp_create_parms.cos_cache_size
Size of the COS Database weights cache. This value should be set to the maximum number of COS
definitions required. CS/AIX uses the value 8 unless you specify a larger number.

DEFINE_NODE

148 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cp_create_parms.tree_cache_size
Network node: Size of the Topology Database routing tree cache size. The minimum is 8. For an end
node or LEN node, this parameter is reserved.

cp_create_parms.tree_cache_use_limit
Network node: Maximum number of uses of a cached tree. Once this number is exceeded, the tree is
discarded and recomputed. This allows the node to balance sessions among equal weight routes. A
low value provides better load balancing at the expense of increased activation latency. The minimum
is 1. For an end node or LEN node, this parameter is reserved.

cp_create_parms.max_tdm_nodes
Network node: Maximum number of nodes that can be stored in Topology Database (zero means
unlimited). For an end node or LEN node, this parameter is reserved.

cp_create_parms.max_tdm_tgs
Network node: Maximum number of TGs that can be stored in Topology Database (zero means
unlimited). For an end node or LEN node, this parameter is reserved.

cp_create_parms.max_isr_sessions
Network node: Maximum number of ISR sessions the node can participate in at once. CS/AIX uses the
value 100 unless you specify a larger number. For an end node or LEN node, this parameter is
reserved.

cp_create_parms.isr_sessions_upper_threshold, cp_create_parms.isr_sessions_lower_threshold
Network node: These thresholds control the node's congestion status, which is reported to other
nodes in the network for use in route calculations. The node state changes from uncongested to
congested if the number of ISR sessions exceeds the upper threshold. The node state changes back
to uncongested once the number of ISR sessions dips below the lower threshold. The lower threshold
must be less than the upper threshold, and the upper threshold must be lower than max_isr_sessions.
For an end node or LEN node, this parameter is reserved.

cp_create_parms.isr_max_ru_size
Network node or BrNN: Maximum RU size supported for intermediate or DLUR LU-LU sessions. If the
supplied value is not a valid RU size (as described in Systems Network Architecture: Formats), CS/AIX
will round the value up to the next valid value.

End node: Maximum RU size supported for DLUR LU-LU sessions.

For a LEN node, this parameter is reserved.

cp_create_parms.isr_rcv_pac_window
Network node: Suggested receive pacing window size for intermediate sessions, in the range 1-63.
This value is only used on the secondary hop of intermediate sessions if the adjacent node does not
support adaptive pacing. For an end node or LEN node, this parameter is reserved.

cp_create_parms.store_endpt_rscvs
Specifies whether RSCVs should be stored for diagnostic purposes (AP_YES or AP_NO). If this field is
set to AP_YES, then an RSCV will be returned on the QUERY_SESSION verb. (Setting this value to
AP_YES means an RSCV will be stored for each endpoint session. This extra storage can be up to 256
bytes per session.)

cp_create_parms.store_isr_rscvs
Network node: Specifies whether RSCVs should be stored for diagnostic purposes (AP_YES or AP_NO).
If this field is set to AP_YES, then an RSCV will be returned on the QUERY_ISR_SESSION verb.
(Setting this value to AP_YES means an RSCV will be stored for each ISR session. This extra storage
can be up to 256 bytes per session.) For an end node or LEN node, this parameter is reserved.

cp_create_parms.store_dlur_rscvs
Specifies whether RSCVs should be stored for diagnostic purposes (AP_YES or AP_NO). If this field is
set to AP_YES, then an RSCV will be returned on the QUERY_DLUR_LU verb. (Setting this value to
AP_YES means an RSCV will be stored for each PLU-SLU session using DLUR. This extra storage can
be up to 256 bytes per session.)

cp_create_parms.dlur_support
Specifies whether DLUR is supported. For a LEN node, this parameter is reserved. Possible values are:

DEFINE_NODE

Chapter 3. NOF API Verbs 149

AP_YES
DLUR is supported.

AP_LIMITED_DLUR_MULTI_SUBNET | AP_YES
End Node or Branch Network Node: DLUR is supported, but will not be used to connect to a DLUS
in another subnet. If multi-subnet operation is not required, you should use this value instead of
AP_YES, to reduce network traffic and congestion at the network node.

This value is not supported for a Network Node.

AP_NO
DLUR is not supported.

cp_create_parms.pu_conc_support
Specifies whether SNA gateway is supported (AP_YES or AP_NO).

If the node will be used to run Primary RUI applications communicating with downstream LUs, this
parameter must be set to AP_YES.

cp_create_parms.nn_rar
The network node's route additional resistance, in the range 0-255.

cp_create_parms.hpr_support
Specifies the level of HPR (High Performance Routing) support provided by the node. Possible values
are:
AP_NONE

No support for HPR.
AP_BASE

This node can perform automatic network routing (ANR) but cannot act as an RTP (Rapid
Transport Protocol) end point for HPR sessions.

AP_RTP
This node can perform automatic network routing (ANR) and can act as an RTP (Rapid Transport
Protocol) end point for HPR sessions.

AP_CONTROL_FLOWS
This node can perform all HPR functions including control flows.

If the local node is a LEN node, this parameter should be set to AP_NONE. Otherwise the
recommended setting is AP_CONTROL_FLOWS.

If you are using Enterprise Extender (HPR/IP) links on this node, this parameter must be set to
AP_CONTROL_FLOWS.

cp_create_parms.max_ls_exception_events
The maximum number of LS exception events to be recorded by the node.

cp_create_parms.ptf
Array for configuring and controlling future program temporary fix (ptf) operation, as follows:

cp_create_parms.ptf[0]
REQDISCONT support and Mandatory Search Status support.

CS/AIX normally uses REQDISCONT to deactivate limited resource host links that are no longer
required by session traffic. This byte can be used to suppress use of REQDISCONT, or to modify the
settings used on REQDISCONT requests sent by CS/AIX. Set this byte to one of the following values:

AP_NONE
Use the normal REQDISCONT support.

AP_SUPPRESS_REQDISCONT
Do not use REQDISCONT.

AP_OVERRIDE_REQDISCONT
Use a modified version of REQDISCONT support. If REQDISCONT is specified, it must be
combined with one or both of the following values, using a logical OR operation:

DEFINE_NODE

150 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_REQDISCONT_TYPE
Use type "immediate" on REQDISCONT; if this value is not specified, CS/AIX uses type
"normal".

AP_REQDISCONT_RECONTACT
Use type "immediate recontact" on REQDISCONT; if this value is not specified, CS/AIX uses
type "no immediate recontact".

When CS/AIX is running as an End Node or as a Branch Network Node, it may choose whether or not
to invite network searches from its Network Node Server (NNS). Requesting network searches slows
broadcast search processing for the network as a whole, so is undesirable. However, if the local node
cannot register all its resources (LUs) with its NNS, requesting searches is the only way to make these
resources visible to the network.

Normally, CS/AIX determines whether all LUs can be registered, then intelligently requests network
searches from its NNS. If this node makes LUs accessible to the network in an unusual manner (for
example, if it is acting as a gateway for other nodes), combine the value above with the following value
to override the standard operation:

AP_SET_SEARCH_STATUS
Unconditionally request network searches from the NNS.

cp_create_parms.ptf[1]
ERP support. CS/AIX normally processes an ACTPU(ERP) as an ERP; this resets the PU-SSCP session,
but does not implicitly deactivate the subservient LU-SSCP and PLU-SLU sessions. SNA
implementations may legally process ACTPU(ERP) as if it were ACTPU(cold), implicitly deactivating
the subservient LU-SSCP and PLU-SLU sessions. Set this byte to one of the following values:
AP_NONE

Use the normal processing.
AP_OVERRIDE_ERP

Process all ACTPU requests as ACTPU(cold).
cp_create_parms.ptf[2]

LU 6.2 session activation and deactivation. CS/AIX normally does not include the ENQUEUE parameter
on the INIT_SELF message when activating a dependent LU 6.2 session, and uses the BIS protocol
prior to deactivating a limited resource LU 6.2 session.

To use the normal processing, set this parameter to AP_NONE.

To customize LU 6.2 session activation and deactivation, specify one of the following values:

AP_SUPPRESS_BIS
Do not use the BIS protocol. Limited resource LU 6.2 sessions are deactivated immediately using
UNBIND(cleanup).

AP_LU62_INIT_SELF_ENQUEUE
Use the old format of the INIT_SELF message, which includes the ENQUEUE parameter.

cp_create_parms.ptf[3]
APINGD support. CS/AIX normally includes a partner program for the APING connectivity tester. This
byte allows you to disable the APING Daemon within the node, so that requests by an APING program
arriving at the node will not be processed automatically. Set this byte to one of the following values:
AP_NONE

Include APINGD support within the node (the normal processing).
AP_EXTERNAL_APINGD

Disable APINGD within the node.
cp_create_parms.ptf[4]

LU 0-3 RU checks. This byte is used to provide workarounds for host systems that send non-standard
SNA data; it should be set to AP_NONE unless you have encountered the specific problem described
below.

To use CS/AIX's normal checking on LU 0-3 RUs, set this parameter to AP_NONE.

DEFINE_NODE

Chapter 3. NOF API Verbs 151

To relax specific checks on LU 0-3 RUs, specify the following value:

AP_ALLOW_BB_RQE
The SNA protocols state that BB !EB RUs on LU 0-3 PLU-SLU sessions must be RQD. Several hosts
send RQE BB !EB CD - a protocol violation which CS/AIX always tolerates. If this value is set,
CS/AIX will tolerate RQE BB !EB !CD EC RUs as well.

AP_SEND_ACTLU_POWER_ON
When an application is using an LU 0-3 LU (for example if RUI_INIT has been received for the LU)
and ACTLU is received, this option indicates that CS/AIX should respond with a +ve RSP ACTLU
containing the power on subvector. Without this flag CS/AIX sends an ACTLU RSP without this
subvector and a subsequent NOTIFY message indicating the power on condition.

cp_create_parms.ptf[5]
Security checking for received Attaches.

If a local invokable TP is defined not to require conversation security, or is not defined and therefore
defaults to not requiring conversation security, the invoking TP need not send a user ID and password
to access it. If the invoking TP supplies these parameters and they are included in the Attach message
that CS/AIX receives, CS/AIX normally checks the parameters (and rejects the Attach if they are not
valid) even though the invokable TP does not require conversation security. This parameter allows you
to disable the checking. Set this byte to one of the following values:

AP_NONE
Always check security parameters if they are included on a received Attach, regardless of the
security requirements of the invokable TP (the normal processing).

AP_LIMIT_TP_SECURITY
Do not check security parameters on a received Attach if the invokable TP does not require it.

cp_create_parms.ptf[6]
RTP options for HPR.

To use normal RTP processing, so that CS/AIX will use the best available RTP mechanism according to
the capability of the remote system, set this parameter to AP_NONE.

To customize RTP operation, specify one of the following values:

AP_NO_PROGRESSIVE_ARB
If this value is set, CS/AIX will advertise support for the standard and responsive mode ARB
algorithms but not for the progressive mode algorithm.

cp_create_parms.ptf[7]
DLUR unbind on DACTLU. CS/AIX does not normally end the PLU-SLU session when it receives a
DACTLU from the host for a session using DLUR. Set this byte to one of the following values:
AP_NONE

Use the normal processing.
AP_DLUR_UNBIND_ON_DACTLU

When DACTLU is received on a session using DLUR, end the PLU-SLU session.
cp_create_parms.ptf[8]

Suppress PU name on REQACTPU. CS/AIX identifies the PU name in the REQACTPU message when
activating DLUR PUs. Set this byte to one of the following values:
AP_NONE

Use the normal processing.
AP_SUPPRESS_PU_NAME_ON_REQACTPU

Suppress PU name when activating DLUR PUs.
AP_RETRY_CNOS_ON_BIND_NEG_RSP

During APPC session activation, the CNOS session activation can fail due to transitory conditions
on the partner system. Some conditions indicated by particular sense codes are always retried
(with a timer). Setting this flag ensures that CS/AIX will always retry failed CNOS session
activations.

DEFINE_NODE

152 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cp_create_parms.ptf[9]
RUI bracket race options, limited resource override options for connection networks, and TCP/IP
Information Control Vector options.

If an RUI application is using bracket protocols, and the host sends a BB (Begin Bracket) after the RUI
application has already sent one, CS/AIX normally rejects this with sense data of 0813 and does not
pass it to the application. Set this byte to one of the following values:

AP_NONE
Use the normal processing.

AP_LUA_PASSTHRU_BB_RACE
Pass the BB through to the RUI application. The application should send a negative response with
sense data of either 0813 or 0814.

A link in CS/AIX that uses a connection network is normally a limited resource. To override this,
combine the value above with the following value:

AP_CN_OVERRIDE_LIM_RES
Use the implicit_limited_resource parameter in the port associated with each connection network
link to determine whether it is a limited resource.

CS/AIX normally includes the TCP/IP Information Control Vector (0x64) in a NOTIFY request to the
host for a TN3270 or LUA session. This vector contains information that can be displayed on the host
console or used by the host (for example in billing): the TCP/IP address and port number used by the
client, and the IP name corresponding to the client address. For TN3270, the TN3270 server normally
performs a Domain Name Server (DNS) lookup to determine the client IP name.

If the client address is an IPv6 address but the host is running a back-level version of VTAM that
cannot interpret IPv6 addresses, the client address may be displayed incorrectly on the host console.

The following flags allow you to override this behavior. To do this, combine the value above with one of
the following values:

AP_NO_TCPIP_VECTOR
Do not include the TCP/IP Information Control Vector (0x64) in NOTIFY requests to the host for
either TN3270 or LUA.

Use this value if the host is running an older version of VTAM that does not support this control
vector.

AP_NO_TCPIP_NAME
Do not perform the DNS lookup, and send the CV64 control vector with the client IP address but
no IP name.

This value applies only to TN3270; no DNS lookup is required for LUA clients. Use this value if the
DNS environment is slow, or if you know that the clients are not included in the DNS data (for
example if they are DHCP clients without DDNS).

cp_create_parms.ptf[10]
Suppress Logical Unit of Work Identifiers (LUWIDs) in FMH-5 Attach messages. CS/AIX normally
includes the LUWID in the FMH-5 Attach message that it sends to start an APPC conversation. Set this
byte to one of the following values:
AP_NONE

Use the normal processing.
AP_DONT_SEND_LUWIDS

Do not include the LUWID in the FMH-5 Attach; specify the field length for this field as zero.
cp_create_parms.ptf[11]

LU management options.

To use normal LU processing, set this parameter to AP_NONE.

To customize LU management, specify one of the following values:

DEFINE_NODE

Chapter 3. NOF API Verbs 153

AP_DLUR_USE_REX_PACING
When the BIND from an upstream LU requests adaptive pacing with an unlimited pacing
window,CS/AIX normally indicates this by specifying a window size of 0 (zero). If the downstream
LU does not support adaptive pacing, it may incorrectly interpret this zero value as "no pacing", so
CS/AIX must specify a non-zero pacing window size instead. Set this option to use the REX stage
pacing value from the ACTLU as the pacing window size specified to the downstream LU.

AP_CLI_OVERWRITE_SYS_NAME
Set this option to maintain the association between an APPC application running on a client and
the pooled LU that it uses, so that subsequent conversations started by the partner application
can be routed to the correct client. When a client application accesses an LU in a pool, CS/AIX
changes the sys_name parameter on the LU to the hostname of the client computer where the
application is running. For more information about managing clients, refer to the IBM
Communications Server for Data Center Deployment on AIX Administration Guide.

AP_OVERWRITE_INTERNAL_PU_PARMS
Normally ,once a DLUR PU is defined, there is no way to modify configuration parameters on that
PU without first deleting it (and any associated LUs). Setting this flag permits CS/AIX to accept a
fresh definition of a DLUR PU using snaadmin providing also that the node is inactive. All non-
defaulted parameters must be defined (this is not equivalent to a snaadmin -c command).

cp_create_parms.cos_table_version
Specifies the version of the COS tables used by the node. Set this byte to one of the following values:
AP_VERSION_0_COS_TABLES

Use the COS tables originally defined in the APPN Architecture Reference.
AP_VERSION_1_COS_TABLES

Use the COS tables originally defined for HPR over ATM.
cp_create_parms.send_term_self

Specifies the default method for ending a PLU-SLU session to a host. The value you specify is used for
all type 0-3 LUs on the node, unless you override it by specifying a different value in the LU definition.
Specify one of the following values:
AP_YES

Send a TERM_SELF on receipt of a CLOSE_PLU_SLU_SEC_RQ.
AP_NO

Send an UNBIND on receipt of a CLOSE_PLU_SLU_SEC_RQ.
cp_create_parms.disable_branch_awareness

This parameter applies only if node_type is AP_NETWORK_NODE; it is reserved for other node types.

Specify whether the local node supports branch awareness, APPN Option Set 1120, using one of the
following values:

AP_YES
The local node does not support branch awareness. TGs between this node and served Branch
Network Nodes do not appear in the network topology, and the local node does not report itself as
being branch aware.

AP_NO
The local node supports branch awareness.

cp_create_parms.cplu_syncpt_support
Specifies whether the node's Control Point LU supports Syncpoint functions. This parameter is
equivalent to the syncpt_support parameter on DEFINE_LOCAL_LU, but applies only to the node's
Control Point LU (which does not have an explicit LU definition).

Set this parameter to AP_YES only if you have a Sync Point Manager (SPM) and Conversation
Protected Resource Manager (C-PRM) in addition to the standard CS/AIX product. Possible values are:

AP_YES
Syncpoint is supported.

DEFINE_NODE

154 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NO
Syncpoint is not supported.

cp_create_parms.cplu_attributes
Identifies additional information about the node's Control Point LU. This parameter is equivalent to
the lu_attributes parameter on DEFINE_LOCAL_LU, but applies only to the node's Control Point LU
(which does not have an explicit LU definition).

Possible values are:

AP_NONE
No additional information identified.

AP_DISABLE_PWSUB
Disable password substitution support for the control point LU. Password substitution means that
passwords are encrypted before transmission between the local and remote LUs, rather than
being sent as clear text. CS/AIX normally uses password substitution if the remote system
supports it.

This value is provided as a work-around for communications with some remote systems that do
not implement password substitution correctly. If you use this option, you should be aware that
this involves sending and receiving passwords in clear text (which may represent a security risk).
Do not set it unless there are problems with the remote system's implementation of password
substitution.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

target_handle
Returned value for use on subsequent verbs.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_ISR_THRESHOLDS

The ISR threshold parameters were not valid (lower threshold above upper, or upper threshold
above max_isr_sessions).

AP_INVALID_NODE_NAME
The node_name parameter contained a character that was not valid.

AP_INVALID_CP_NAME
The cp_alias or fqcp_name parameter contained a character that was not valid.

AP_INVALID_NODE_TYPE
The node_type parameter was not set to a valid value.

AP_PU_CONC_NOT_SUPPORTED
This version of CS/AIX does not support the SNA gateway feature.

AP_DLUR_NOT_SUPPORTED
This version of CS/AIX does not support the DLUR feature.

AP_INVALID_REG_WITH_NN
The reg_with_nn parameter was not set to a valid value.

DEFINE_NODE

Chapter 3. NOF API Verbs 155

AP_INVALID_COS_TABLE_VERSION
The cos_table_version parameter was not set to a valid value.

AP_INVALID_SEND_TERM_SELF
The send_term_self parameter was not set to a valid value.

AP_INVALID_DISABLE_BRANCH_AWRN
The disable_branch_awareness parameter was not set to a valid value.

AP_INVALID_DLUR_SUPPORT
The dlur_support parameter was not set to a valid value.

AP_INVALID_HPR_SUPPORT
The hpr_support parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_NODE_ALREADY_STARTED

The target node is active, so you cannot use this verb to modify its configuration. DEFINE_NODE
can be issued only to an inactive node.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_PARTNER_LU
The DEFINE_PARTNER_LU verb defines the parameters of a partner LU for LU-LU sessions between a
local LU and the partner LU, or modifies an existing partner LU. You cannot change the partner LU alias of
an existing partner LU.

There is normally no requirement to define partner LUs, because CS/AIX will set up an implicit definition
when the session to the partner LU is established; you should only need to define the LU if you need to
enforce non-default values for logical record size, conversation security support, or parallel session
support. You may also have an APPC application that uses a partner LU alias when allocating a session,
therefore you need to define a partner LU in order to map the alias to a fully-qualified partner LU name.

If the local node or the remote node (where the partner LU is located) is a LEN node, note that you need to
define a directory entry for the partner LU to allow CS/AIX to access it. This can be done using either
DEFINE_ADJACENT_LEN_NODE or DEFINE_DIRECTORY_ENTRY. If both the local and remote nodes are
network nodes, or if one is a network node and the other is an end node, the directory entry is not
required, because CS/AIX can locate the LU dynamically.

VCB structure
typedef struct define_partner_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

DEFINE_PARTNER_LU

156 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 PLU_CHARS plu_chars; /* partner LU characteristics */
} DEFINE_PARTNER_LU;

typedef struct plu_chars
{
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
 unsigned char preference; /* reserved */
 AP_UINT16 max_mc_ll_send_size; /* maximum MC send LL size */
 unsigned char conv_security_ver; /* already-verified security */
 /* supported? */
 unsigned char parallel_sess_supp; /* parallel sessions supported? */
 unsigned char reserv3[8]; /* reserved */
} PLU_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_PARTNER_LU

plu_chars.fqplu_name
Fully qualified LU name for the partner LU. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

The name must not match the fully-qualified partner LU name of any other partner LU, or the LU name
of any local LU.

plu_chars.plu_alias
LU alias of the partner LU. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes.

If the fqplu_name parameter above matches the fully qualified name of an existing partner LU, this
parameter must match the partner LU alias in the existing definition. You cannot change the partner
LU alias for an existing partner LU, or set up more than one LU alias for the same fully qualified name.

plu_chars.description
A null-terminated text string (0-31 characters followed by a null character) describing the partner LU.
This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_PARTNER_LU and QUERY_PARTNER_LU_DEFINITION verbs, but CS/AIX does not make any
other use of it.

plu_chars.plu_un_name
Uninterpreted name of the partner LU (the name of the LU as defined to the remote SSCP). The name
is an 8-byte EBCDIC character string.

To use the default uninterpreted name (the same as the network name taken from the fqplu_name
parameter above), set this parameter to 8 binary zeros. This parameter is only relevant if the partner
LU is on a host and dependent LU 6.2 is used to access it.

plu_chars.max_mc_ll_send_size
The maximum size of logical records that can be sent and received by mapped conversation services
at the partner LU. Specify a number in the range 1-32,767, or zero to specify no limit (in this case the
maximum is 32,767).

plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate user IDs on behalf of local LUs; that is,
whether the partner LU may set the already verified indicator in an Attach request. Possible values
are:
AP_YES

The partner LU can validate user IDs.

DEFINE_PARTNER_LU

Chapter 3. NOF API Verbs 157

AP_NO
The partner LU cannot validate user IDs.

plu_chars.parallel_sess_supp
Specifies whether the partner LU supports parallel sessions. Possible values are:
AP_YES

The partner LU supports parallel sessions.
AP_NO

The partner LU does not support parallel sessions.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_DEF_PLU_INVALID_FQ_NAME

The fqplu_name parameter contained a character that was not valid.
AP_INVALID_UNINT_PLU_NAME

The plu_un_name parameter contained a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_FQ_LU_NAME

The fqplu_name parameter matched the name of an existing local LU.
AP_PLU_ALIAS_CANT_BE_CHANGED

The plu_alias parameter of an existing partner LU cannot be changed.
AP_PLU_ALIAS_ALREADY_USED

The plu_alias parameter is already used for an existing partner LU with a different LU name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_PARTNER_LU

158 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

DEFINE_PORT
DEFINE_PORT is used to define a new port or modify an existing one. Before issuing this verb, you must
issue the DEFINE_DLC verb to define the DLC that this port uses.

You can modify an existing port only if it is not started. You cannot change the DLC used by an existing
port; the dlc_name specified when modifying an existing port must match the DLC that was specified on
the initial definition of the port.

If you are defining a port that will accept incoming calls, see “Incoming calls” on page 174.

VCB structure
typedef struct define_port
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char port_name[8]; /* name of port */
 PORT_DEF_DATA def_data; /* port defined data */
} DEFINE_PORT;

typedef struct port_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is the port initially active? */
 unsigned char reserv2[15]; /* reserved */
 unsigned char dlc_name[8]; /* DLC name associated with port */
 unsigned char port_type; /* port type */
 unsigned char port_attributes[4]; /* port attributes */
 unsigned char implicit_uplink_to_en; /* implicit EN links up or down? */
 unsigned char implicit_appn_links_len; /* reserved */
 unsigned char reserv3; /* reserved */
 AP_UINT32 port_number; /* port number */
 AP_UINT16 max_rcv_btu_size; /* max receive BTU size */
 AP_UINT16 tot_link_act_lim; /* total link activation limit */
 AP_UINT16 inb_link_act_lim; /* inbound link activation limit */
 AP_UINT16 out_link_act_lim; /* outbound link activation limit */
 unsigned char ls_role; /* initial link station role */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char mltg_pacing_algorithm; /* reserved */
 unsigned char implicit_tg_sharing_prohibited; /* reserved */
 unsigned char link_spec_data_format; /* reserved */
 unsigned char limit_enable; /* reserved */
 unsigned char reserv1[6]; /* reserved */
 unsigned char implicit_dspu_template[8]; /* implicit dspu template */
 AP_UINT16 implicit_ls_limit; /* implicit ls limit */
 unsigned char reserv4; /* reserved */
 unsigned char implicit_dspu_services; /* implicit DSPU support */
 AP_UINT16 implicit_deact_timer; /* deact timer for implicit LSs */
 AP_UINT16 act_xid_exchange_limit; /* activation XID exchange limit */
 AP_UINT16 nonact_xid_exchange_limit; /* non-activation XID */
 /* exchange limit */
 unsigned char ls_xmit_rcv_cap; /* LS transmit-receive capability */
 unsigned char max_ifrm_rcvd; /* maximum number of I-frames that*/
 /* can be received */
 AP_UINT16 target_pacing_count; /* Target pacing count */
 AP_UINT16 max_send_btu_size; /* Desired maximum send BTU size */
 LINK_ADDRESS dlc_data; /* DLC data */
 LINK_ADDRESS hpr_dlc_data; /* reserved */
 unsigned char implicit_cp_cp_sess_support; /* implicit links allow */
 /* CP-CP sessions */
 unsigned char implicit_limited_resource; /* implicit links are */
 /* limited resource */
 unsigned char implicit_hpr_support; /* Is HPR supported? */
 unsigned char implicit_link_lvl_error; /* Send HPR traffic on implicit */
 /* links using link-level error */
 /* recovery? */
 unsigned char retired1; /* reserved */
 TG_DEFINED_CHARS default_tg_chars; /* default TG chars */
 unsigned char discovery_supported; /* reserved */
 AP_UINT16 port_spec_data_len; /* length of port specification */

DEFINE_PORT

Chapter 3. NOF API Verbs 159

 /* data */
 AP_UINT16 link_spec_data_len; /* length of link specification */
 /* data */
} PORT_DEF_DATA;

typedef struct link_address
{
 unsigned char format; /* type of link address */
 unsigned char reserve1; /* reserved */
 AP_UINT16 length; /* length */
 unsigned char address[135]; /* address */
} LINK_ADDRESS;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */
 unsigned char connect_cost; /* connection cost */
 unsigned char byte_cost; /* byte cost */
 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */
 unsigned char prop_delay; /* propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* user-defined parameter 1 */
 unsigned char user_def_parm_2; /* user-defined parameter 2 */
 unsigned char user_def_parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Port-specific data for SDLC:

typedef struct sdl_port_spec_data
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT32 idle_timer; /* idle timer (in ms) */
 AP_UINT16 idle_timer_retry; /* idle timer retry */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT32 np_rcv_timer; /* non-productive receive timer (in ms)*/
 AP_UINT16 np_rcv_timer_retry; /* non-productive receive timer retry */
 unsigned char np_rcv_timer_fail; /* reserved */
 unsigned char reserve2; /* reserved */
 AP_UINT32 write_timer; /* write timer (in ms) */
 AP_UINT16 write_timer_retry; /* write timer retry */
 AP_UINT16 reserve3; /* reserved */
 AP_UINT32 link_conn_timer; /* link connection timer (in ms) */
 AP_UINT16 link_conn_timer_retry; /* link connection timer retry */
 AP_UINT16 reserve4; /* reserved */
 AP_UINT16 pri_fdplx; /* reserved */
 AP_UINT16 sec_fdplx; /* reserved */
 AP_UINT16 use_rej; /* Can REJ command be used on this port*/
 AP_UINT16 port_type; /* Port type */
 AP_UINT16 max_xid_size; /* max size of XIDs in MU_SEND_XID */
 AP_UINT16 max_retry_count; /* max number of times to retransmit */
 AP_UINT16 physical_link; /* line type of physical link */
 AP_UINT16 stub_spec_data_len; /* length of next field */
 STUB_SPEC_DATA stub_spec_data; /* data specific to HMOD stub */
} SDL_PORT_SPEC_DATA;

Link-specific data for SDLC:

typedef struct sdl_link_spec_data
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 reserve8; /* reserved */
 AP_UINT16 reserve9; /* reserved */
 AP_UINT32 contact_timer; /* contact timer (fast poll, in ms)*/
 AP_UINT16 contact_timer_retry; /* contact timer retry */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT32 contact_timer2; /* contact timer (slow poll, in ms)*/
 AP_UINT16 contact_timer_retry2; /* contact timer 2 retry */
 AP_UINT16 reserve2; /* reserved */
 AP_UINT32 disc_timer; /* disconnect timer (in ms) */
 AP_UINT16 disc_timer_retry; /* disconnect timer retry */
 AP_UINT16 reserve3; /* reserved */
 AP_UINT32 nve_poll_timer; /* negative poll timer (fast poll) */
 AP_UINT16 nve_poll_timer_retry; /* negative poll timer retry */
 AP_UINT16 reserve4; /* reserved */
 AP_UINT32 nve_poll_timer2; /* negative poll timer (slow poll) */

DEFINE_PORT

160 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT16 nve_poll_timer_retry2; /* negative poll timer 2 retry */
 AP_UINT16 reserve5; /* reserved */
 AP_UINT32 no_resp_timer; /* No response timer (T1 timer) */
 /* (in ms) */
 AP_UINT16 no_resp_timer_retry; /* No response timer retry */
 AP_UINT16 reserve6; /* reserved */
 AP_UINT32 rem_busy_timer; /* Remote busy timer (in ms) */
 AP_UINT16 rem_busy_timer_retry; /* Remote busy timer retry */
 unsigned char re_tx_threshold; /* I-frame retransmission threshold*/
 unsigned char repoll_threshold; /* Poll retransmission threshold */
 AP_UINT32 rr_timer; /* RR turnaround timer (in ms) */
 unsigned char group_address; /* reserved */
 unsigned char poll_frame; /* Poll frame to use when Primary */
 /* and polling secondary */
 /* XID, DISC, SNRM, SNRME, TEST */
 AP_UINT16 poll_on_iframe; /* Can LS send poll bit on I-frame */
 AP_UINT16 stub_spec_data_len; /* length of next field */
 STUB_SPEC_DATA stub_spec_data; /* data specific to HMOD stub */
} SDL_LINK_SPEC_DATA;

typedef struct stub_spec_data
{
 AP_INT32 mux_id; /* reserved */
 unsigned char opt1; /* options flag 1 */
 unsigned char opt2; /* options flag 2 */
 unsigned char pad[2]; /* reserved */
 AP_UINT32 linesp; /* line speed in bps */
 AP_UINT16 rcv_pool_size; /* initial number of buffers for rcv pool */
 AP_UINT16 poll_wait; /* seconds between polling HMOD for errors*/
 AP_UINT16 hmod_data_len; /* length of dial data string */
 unsigned char hmod_data[80]; /* dial data string */
 unsigned char x21_sequence[255] /* X21 selection sequence */
 unsigned char x21_retry_count; /* X21 max call retries */
 AP_UINT16 x21_retry_delay; /* X21 delay between retries */
 AP_UINT16 v25_tx_delay; /* V25 pause before dialling */
 unsigned char cdstl; /* Wait for RI before DTR */
 unsigned char hex_hmod_data; /* reserved */
 unsigned char reserve1[2]; /* reserved */
} STUB_SPEC_DATA;

Port-specific data for QLLC:

typedef struct vql_port_spec_data
{
 V0_MUX_INFO mux_info; /* streams config info */
 unsigned char driver_name[13]; /* reserved */
 unsigned char cud_mode; /* reserved */
 AP_UINT16 cud_len; /* reserved */
 unsigned char cud[16]; /* reserved */
 unsigned char add_mode; /* reserved */
 AP_UINT16 add_len; /* reserved */
 AP_UINT32 xtras; /* reserved */
 AP_UINT32 xtra_len; /* reserved */
} VQL_PORT_SPEC_DATA;

Link-specific data for QLLC:

typedef struct vql_ls_spec_data
{
 V0_MUX_INFO mux_info; /* streams config info */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT16 reserve2; /* reserved */
 unsigned char vc_type; /* Virtual Circuit type */
 unsigned char req_rev_charge; /* request reverse charge if */
 /* non-zero */
 unsigned char loc_packet; /* loc->rem packet */
 /* size 2**locpacket */
 unsigned char rem_packet; /* rem->loc packet */
 /* size 2**rempacket */
 unsigned char loc_wsize; /* loc->rem window size */
 unsigned char rem_wsize; /* rem->loc window size */
 AP_UINT16 fac_len; /* reserved */
 unsigned char fac[128]; /* reserved */
 AP_UINT16 retry_limit; /* times to retry send QXID,QSM, */
 /* QDISC */
 AP_UINT16 retry_timeout; /* timeout for each of above tries*/
 AP_UINT16 idle_timeout; /* timeout for no Q msgs during */
 /* init */

DEFINE_PORT

Chapter 3. NOF API Verbs 161

 AP_UINT16 pvc_id; /* PVC logical channel identifier */
 AP_UINT16 sn_id_len; /* reserved */
 unsigned char sn_id[4]; /* reserved */
 AP_UINT16 cud_len; /* length of any call user data */
 /* to send */
 unsigned char cud[128]; /* actual call user data */
 AP_UINT32 xtras; /* reserved */
 AP_UINT32 xtra_len; /* reserved */
 unsigned char rx_thruput_class; /* Max Rx speed of calling DTE */
 unsigned char tx_thruput_class; /* Max Tx speed of calling DTE */
 /* Values for these fields are: */
 /* 0 - Default */
 /* 0x07 - 1200 */
 /* 0x08 - 2400 */
 /* 0x09 - 4800 */
 /* 0x0a - 9600 */
 /* 0x0b - 19200 */
 /* 0x0b - 48000 */
 unsigned char cugo; /* Closed User Group (outgoing) */
 unsigned char cug; /* LS used by Closed User Group */
 AP_UINT16 cug_index; /* Index of CUG using this LS */
 AP_UINT16 nuid_length; /* Length of Network User ID */
 unsigned char nuid_data[109]; /* Network User ID */
 unsigned char reserve3[2]; /* Reserved field */
 unsigned char rpoa_count; /* Count of RPOA codes */
 AP_UINT16 rpoa_ids[30]; /* Array of RPOA codes */
} VQL_LS_SPEC_DATA;

Port-specific data for Token Ring, Ethernet:

typedef struct gdlc_sap_cfg
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 rem_wsize; /* reserved */
 unsigned char local_name[8]; /* Unique name of SAP on network */
} GDLC_SAP_CFG;

Link-specific data for Token Ring, Ethernet:

typedef struct gdlc_ls_cfg
{
 V0_MUX_INFO mux_info; /* Streams config info */
 AP_UINT16 reserve1; /* reserved */
 AP_UINT16 reserve2; /* reserved */
 AP_UINT16 loc_wsize; /* reserved */
 AP_UINT16 rem_wsize; /* reserved */
 AP_UINT16 xid_timeout; /* XID timeout value */
 AP_UINT16 xid_retry_limit; /* XID retransmission limit */
 AP_UINT16 t1_timeout; /* T1 timeout value */
 AP_UINT16 t1_retry_limit; /* I-frame retransmission limit */
 AP_UINT16 ack_time; /* Acknowledgment timeout value */
 AP_UINT16 inact_time; /* Inactivity timeout value */
 AP_UINT16 force_time; /* Force halt time-out value */
 union
 {
 struct
 {
 AP_UINT16 pkt_prty; /* reserved */
 AP_UINT16 dyna_wnd; /* Dynamic window increment for */
 /* transmit window */
 } tr;
 } uu;
} GDLC_LS_CFG;

Port-specific data for Enterprise Extender (HPR/IP):

typedef struct ipdlc_port_spec_data
{
 V0_MUX_INFO mux_info; /* streams information */
 unsigned char if_name[46]; /* Local interface id or IP address */
} IPDLC_PORT_SPEC_DATA;

Link-specific data for Enterprise Extender (HPR/IP):

typedef struct ipdlc_link_spec_data
{
 V0_MUX_INFO mux_info; /* streams information */

DEFINE_PORT

162 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT16 ack_timeout; /* ACK timer for command frames */
 AP_UINT16 max_retry; /* Retry limit for command frames */
 AP_UINT16 liveness_timeout; /* Liveness timer */
 unsigned char short_hold_mode; /* Run in short-hold mode */
 unsigned char remote_hostname[255]; /* Name of remote host to contact */
} IPDLC_LINK_SPEC_DATA;

Data for all DLC types:

typedef struct v0_mux_info
{
 AP_UINT16 dlc_type; /* DLC implementation type */
 unsigned char need_vrfy_fixup; /* reserved */
 unsigned char num_mux_ids; /* reserved */
 AP_UINT32 card_type; /* type of adapter card */
 AP_UINT32 adapter_number; /* DLC adapter number */
 AP_UINT32 oem_data_length; /* reserved */
 AP_INT32 mux_ids[5]; /* reserved */
} V0_MUX_INFO;

For Token Ring or Ethernet, the address parameter in the link_address structure is replaced by the
following:

typedef struct tr_address
{
 unsigned char mac_address[6]; /* reserved */
 unsigned char lsap_address; /* local SAP address */
} TR_ADDRESS;

For Enterprise Extender (HPR/IP), the address parameter in the link_address structure is replaced by
the following:

typedef struct ip_address_info
{
 unsigned char lsap; /* Local Service Access Point addr */
 unsigned char version; /* IPv4 or IPv6 */
 unsigned char address[272]; /* IP Address or hostname */

} IP_ADDRESS_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_PORT

port_name
Name of port being defined. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the port. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_PORT verb, but CS/AIX does not make any other use of it.

def_data.initially_active
Specifies whether this port is automatically started when the node is started. Possible values are:
AP_YES

The port is automatically started when the node is started.
AP_NO

The port is automatically started only if an LS that uses it is defined to be initially active; otherwise
it must be started manually.

def_data.dlc_name
Name of associated DLC. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes. The specified DLC must have
already been defined by a DEFINE_DLC verb.

DEFINE_PORT

Chapter 3. NOF API Verbs 163

def_data.port_type
Type of line used by the port.

For SDLC, the following values are allowed:

AP_PORT_SWITCHED
Switched line.

AP_PORT_NONSWITCHED
Nonswitched line.

For QLLC, this parameter must be set to AP_PORT_SWITCHED.

For Token Ring / Ethernet , this parameter must be set to AP_PORT_SATF (shared access transport
facility).

For Enterprise Extender (HPR/IP), this parameter must be set to AP_PORT_SATF (shared access
transport facility).

def_data.port_attributes
This is a one-bit parameter that may take the following values:
AP_NO

Incoming calls are resolved by CP name.
AP_RESOLVE_BY_LINK_ADDRESS

This specifies that an attempt is made to resolve incoming calls by using the link address on
CONNECT_IN before using the CP name (or node ID) carried on the received XID3 to resolve them.
This bit is ignored unless the port_type parameter is set to AP_PORT_SWITCHED.

def_data.implicit_uplink_to_en
This parameter applies only if the local node is a Branch Network Node; it is reserved if the local node
is any other type.

If the adjacent node is an end node, this parameter specifies whether implicit link stations off this port
are uplink or downlink. This parameter is ignored if there are existing links to the same adjacent node,
because in this case the existing links are used to determine the link type. Possible values are:

AP_YES
Implicit links to an End Node are uplinks.

AP_NO
Implicit links to an End Node are downlinks.

def_data.port_number
The number of the port.

For Enterprise Extender (HPR/IP), this parameter is reserved.

def_data.max_rcv_btu_size
Maximum BTU size that can be received. The value includes the length of the TH and RH (total 9
bytes) as well as the RU. Specify a value in the range 265-65535 (265-4105 for SDLC, 265-1496 for
Ethernet, 265-17745 for Token Ring).

def_data.tot_link_act_lim
Total link activation limit (the maximum number of links that can be active at any time using this port).

For an SDLC port with port_type set to AP_NONSWITCHED and ls_role set to AP_LS_PRIor
AP_LS_SEC, the range is 1-256 (a value greater than 1 defines a multi-drop primary link or a multi-PU
secondary link). For all other SDLC ports, this parameter must be set to 1.

def_data.inb_link_act_lim
Inbound link activation limit (the number of links reserved for inbound activation). The sum of
inb_link_act_lim and out_link_act_lim must not exceed tot_link_act_lim; the difference between
inb_link_act_lim and tot_link_act_lim defines the maximum number of links that can be activated
outbound at any time.

DEFINE_PORT

164 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

For an SDLC port with port_type set to AP_NONSWITCHED, this parameter must be zero. If port_type is
set to AP_SWITCHED, then the port must be defined to accept either incoming calls (inb_link_act_lim
= 1 and out_link_act_lim = 0) or outgoing calls (inb_link_act_lim = 0 and out_link_act_lim = 1).

def_data.out_link_act_lim
Outbound link activation limit (the number of links reserved for outbound activation). The sum of
inb_link_act_lim and out_link_act_lim must not exceed tot_link_act_lim; the difference between
out_link_act_lim and tot_link_act_lim defines the maximum number of links that can be activated
inbound at any time.

For an SDLC port with port_type set to AP_NONSWITCHED, this parameter must be equal to
tot_link_act_lim. If port_type is set to AP_SWITCHED, then the port must be defined to accept either
incoming calls (inb_link_act_lim = 1 and out_link_act_lim = 0) or outgoing calls (inb_link_act_lim = 0
and out_link_act_lim = 1).

def_data.ls_role
Link station role.

For SDLC or QLLC, the following values are allowed:

AP_LS_PRI
Primary

AP_LS_SEC
Secondary

AP_LS_NEG
Negotiable

For Token Ring / Ethernet/ Enterprise Extender (HPR/IP), this must be set to AP_LS_NEG.

def_data.implicit_dspu_template
Specifies the DSPU template, defined on the DEFINE_DSPU_TEMPLATE verb. This template is used for
definitions if the local node is to provide SNA gateway for an implicit link activated on this port. If the
template specified does not exist or is already at its instance limit when the link is activated,
activation will fail. This template name is an 8-byte string in a locally displayable character set.

If the implicit_dspu_services parameter is not set to AP_PU_CONCENTRATION, the
implicit_dspu_template parameter is reserved.

def_data.implicit_ls_limit
Specifies the maximum number of implicit link stations that can be active on this port simultaneously,
including dynamic links and links activated for Discovery. Specify a value in the range 1-65,534 or
specify 0 (zero) to indicate no limit. A value of AP_NO_IMPLICIT_LINKS indicates that no implicit
links are allowed.

def_data.implicit_dspu_services
Specifies the services that the local node will provide to the downstream PU across implicit links
activated on this port. Possible values are:
AP_DLUR

Local node will provide DLUR services for the downstream PU (using the default DLUS configured
through the DEFINE_DLUR_DEFAULTS verb).

AP_PU_CONCENTRATION
Local node will provide SNA gateway for the downstream PU. It will also put in place definitions as
specified by the DSPU template specified for the parameter implicit_dspu_template.

AP_NONE
Local node will provide no services for this downstream PU.

def_data.implicit_deact_timer
If implicit_hpr_support is set to AP_YES and implicit_limited_resource is set to AP_NO_SESSIONS, an
HPR-capable implicit link is automatically deactivated if no data flows on it for the time specified by
this parameter and no sessions are using the link.

DEFINE_PORT

Chapter 3. NOF API Verbs 165

Implicit limited resource link deactivation timer (in seconds). If implicit_limited_resource is set to
AP_INACTIVITY, an implicit link using this port will be deactivated if no data flows on it for the time
specified by this parameter.

The minimum value is 5; values in the range 1-4 will be interpreted as 5. Zero indicates no timeout
(the link is not deactivated, as though implicit_limited_resource were set to AP_NO). This parameter is
reserved if implicit_limited_resource is set to any value other than AP_INACTIVITY.

def_data.act_xid_exchange_limit
Activation XID exchange limit.

def_data.nonact_xid_exchange_limit
Non-activation XID exchange limit.

def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. Possible values are:
AP_LS_TWS

Two-way simultaneous
AP_LS_TWA

Two-way alternating

For Enterprise Extender (HPR/IP), this parameter must be set to AP_LS_TWS.

def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by the local link stations before an
acknowledgment is sent. Range: 1-127.

def_data.target_pacing_count
Numeric value between 1 and 32,767 inclusive indicating the desired pacing window size. (The
current version of CS/AIX does not make use of this value.)

def_data.max_send_btu_size
Maximum BTU size that can be sent from this port. This value is used to negotiate the maximum BTU
size that a pair of link stations can use to communicate with each other. The value includes the length
of the TH and RH (total 9 bytes) as well as the RU. Specify a value in the range 265-65535 (265-4105
for SDLC, 265-1496 for Ethernet, 265-17745 for Token Ring).

def_data.dlc_data.format
The type of link address specified for this port. Possible values:
AP_IP_ADDRESS_INFO

IP address. Specify this value for an Enterprise Extender (HPR/IP) port.
AP_UNSPECIFIED

Unspecified address format. Specify this value for any port type other than Enterprise Extender
(HPR/IP).

def_data.dlc_data.length
Length of the port address (in the following parameter).

def_data.dlc_data.address
Port address.

For SDLC, this is a 1-byte address. If ls_role is set to AP_LS_SEC, or if ls_role is set to AP_LS_NEG and
the local station becomes secondary after LS role negotiation, this address is used in the response to
an incoming call. If the local station is primary, or if the port is used only for outgoing calls, this
parameter is reserved.

For QLLC, this is a string of 1-14 bytes, specifying the local X.25 DTE address of the port. This address
must match the address configured in your X.25 driver for this network.

Note: If no address is specified on a QLLC port, an outgoing call request generated by CS/AIX will not
contain the X.25 calling address. Some hosts require this address as a security measure on incoming
calls, and may not accept the connection without it.

DEFINE_PORT

166 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

def_data.dlc_data.tr_address.lsap_address
For Token Ring or Ethernet: Local SAP address of the port. Specify a multiple of 0x02 in the range
0x04-0xEC.

(The first parameter in the address structure normally contains the MAC address, but this value is
used only on the LS and is reserved on the port.)

def_data.dlc_data.ip_address_info.lsap
For Enterprise Extender: Local SAP address of the port. Specify a multiple of 0x04 in the range
0x04-0xEC. The usual value is 0x04, but VTAM may use 0x08 in some circumstances.

If you need to use two or more ports with different LSAP addresses on the same TCP/IP interface, you
will need to create two or more Enterprise Extender DLCs, and then create a separate Enterprise
Extender port for each DLC with the same if_name but a different LSAP address.

def_data.dlc_data.ip_address_info.version
For Enterprise Extender: Specifies whether the following field represents an IPv4 or IPv6 address. All
link stations that use the port must use the same type of address. You cannot change this parameter if
one or more link stations already use this port. Possible values:
IP_VERSION_4_HOSTNAME

The address field specifies an IPv4 address, or a hostname or alias that resolves to an IPv4
address.

IP_VERSION_6_HOSTNAME
The address field specifies an IPv6 address, or a hostname or alias that resolves to an IPv6
address.

def_data.dlc_data.ip_address_info.address
For Enterprise Extender: IP address of the port. This can be any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit link stations using this port. Possible
values are:
AP_YES

CP-CP sessions are permitted for implicit LSs.
AP_NO

CP-CP sessions are not permitted for implicit LSs.
def_data.implicit_limited_resource

Specifies whether implicit link stations off this port should be defined as limited resources. Possible
values are:
AP_NO

Implicit links are not limited resources, and will not be deactivated automatically.
AP_NO_SESSIONS

Implicit links are limited resources, and will be deactivated automatically when no active sessions
are using them.

AP_INACTIVITY
Implicit links are limited resources, and will be deactivated automatically when no active sessions
are using them or when no data has flowed for the time period specified by the
implicit_deact_timer field.

• If no SSCP-PU session is active across the link, the node deactivates the link immediately.

DEFINE_PORT

Chapter 3. NOF API Verbs 167

• If an SSCP-PU session is active but no traffic has flowed for the specified time period, the node
sends REQDISCONT(normal) to the host. The host is then responsible for deactivating all LUs
and the PU, at which time the local node will deactivate the link. However, the host may not
deactivate LUs with active PLU-SLU sessions; in this case, the link remains active until all these
sessions are deactivated (for example by the user logging out). This behavior can be changed by
using options in the ptf field of the DEFINE_NODE verb.

def_data.implicit_hpr_support
Specifies whether High Performance Routing (HPR) is supported on implicit links. Possible values are:
AP_YES

HPR is supported on implicit links.
AP_NO

HPR is not supported on implicit links.

For Enterprise Extender (HPR/IP), this parameter must be set to AP_YES.

def_data.implicit_link_lvl_error
For SDLC, Enterprise Extender (HPR/IP), this parameter is reserved.

Specifies whether HPR traffic should be sent on implicit links using link-level error recovery (AP_YES
or AP_NO). The parameter is reserved if implicit_hpr_support is set to AP_NO.

def_data.default_tg_chars
Default TG characteristics. These are used for implicit link stations using this port, and as the default
TG characteristics for defined link stations that do not have TG characteristics explicitly defined. The
TG characteristics parameters are ignored if the LS is to a downstream PU.

For details of these parameters, see “DEFINE_LS” on page 100.

def_data.port_spec_data_len
Length of port-specific data. The data should be concatenated to the basic VCB structure.

def_data.link_spec_data_len
Length of link-specific data. The link-specific data should be concatenated immediately following the
port-specific data.

For details of these parameters, see “DEFINE_LS” on page 100; the values specified on
DEFINE_PORT are used as defaults for processing incoming calls (when the LS name is not initially
known).

For SDLC, the parameters in the stub_spec_data structure within this structure are reserved.

For QLLC, the parameters vc_type, loc_packet, rem_packet, rem_wsize, pvc_id, cud_len, and cud are
reserved for DEFINE_PORT; they are used only for DEFINE_LS.

Port-specific data for SDLC:

mux_info.dlc_type
Type of the DLC. Set this to AP_IMPL_SDLC_SL

idle_timer
Timer used to detect a completely inactive line. The line is considered idle when nothing (not even
frame data that is not valid) has been received in this time. The timer is specified in milliseconds.

idle_timer_retry
Number of times to rerun the idle timer before failure. This is used in conjunction with idle_timer to
provide the overall idle timeout period. This should be longer than either the nonproductive receive
timer or the contact and disconnect timers.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

np_rcv_timer
For SDLC secondary, the nonproductive receive timeout corresponds to the time allowed for receipt of
a valid frame from the primary. This is usually set in conjunction with the retry limit to give a long
timeout before outage (such as 60). The timer is specified in milliseconds.

DEFINE_PORT

168 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

np_rcv_timer_retry
The nonproductive receive retry limit is used in conjunction with the timeout value to provide the
overall time before an outage message is issued.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

write_timer
The write timer is the maximum time allowed to transmit a complete frame.

This parameter is usually set in conjunction with the value of the write_timer_retry parameter to give a
long timeout of about 30 seconds before the port is assumed to have failed. The timer is specified in
milliseconds.

write_timer_retry
The write timer retry limit is used in conjunction with the value of the write_timer parameter to provide
the overall time before the port is assumed to have failed.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

link_conn_timer
The link connection timeout together with the retry limit corresponds to the time interval after which
CS/AIX fails an attempt to activate an LS because it has not detected that DSR has been raised. The
timer is specified in milliseconds.

link_conn_timer_retry
The link connection retry limit specifies the number of times to test for link connection before failing
an attempt to activate an LS.

A value of 0xFFFF indicates an unlimited retry count. A value of 0x0001 indicates that an outage
should be generated after the first timer expiry.

use_rej
Specifies whether CS/AIX can send a REJ frame on receiving an I-frame with a sequence number that
is not valid on this port. (CS/AIX always accepts a REJ frame, regardless of the setting of this
parameter.) Possible values are:
AP_YES

CS/AIX can send a REJ frame.
AP_NO

CS/AIX cannot send a REJ frame; instead, it requests retransmission of frames through RR, RNR or
I-frames.

Use of REJ is only beneficial when full duplex protocol operation is being used. Some SDLC stations
may not recognize the REJ command; to connect to them, the value AP_NO must be set.

port_type
Type of the port.

If def_data.port_type above is AP_NONSWITCHED, set this parameter to AP_PORT_LEASED.

For a switched line (def_data.port_type is AP_SWITCHED):

• If the port is used for outgoing calls (inb_link_act_lim is zero), set this parameter to
AP_PORT_SW_DIAL (Dial-out capabilities).

• If the port is used for incoming calls (out_link_act_lim is zero), set this parameter to
AP_PORT_SW_ANSWER (Answer capabilities).

If the switched line's dial-out or answer capabilities are manual, not automatic, combine the value
above (using a logical OR) with AP_PORT_SW_MAN.

max_xid_size
The maximum size of an XID that will be sent or received on this link. This field is present to help
minimize buffer usage. A safe absolute maximum is 256 bytes.

DEFINE_PORT

Chapter 3. NOF API Verbs 169

max_retry_count
The maximum number of times that a frame or group of frames may be retransmitted on this port
before a problem is diagnosed. Usually set to about 5.

physical_link
The line type of the SDLC physical link. Possible values are:

• SDLC_PL_V25V.25
• SDLC_PL_V35V.35
• SDLC_PL_X21X.21
• SDLC_PL_SMART_MODEM Smart modem
• SDLC_PL_422A EIA422-A
• SDLC_PL_232D RS232
• SDLC_PL_V35V.35

stub_spec_data_len
Length of the Stub specific data that follows. Set this to size of (STUB_SPEC_DATA).

stub_spec_data.opt1
HMOD port options flag 1. Set the appropriate bits of this field as follows (bit 7 is the most significant
bit):
bit 7

4-wire connection (2 wire connection if not set).
bit 6

Use NRZI (NRZ if not set).
bit 5

Reserved (must be set to 0).
bit 4

Reserved (must be set to 0).
bit 3

Internal line speed clocking (external if not set). This option may be ignored if the underlying SDLC
hardware supports only external clocking.

bit 2
Reserved (must be set to 0).

bits 1, 0
Reserved (must be set to 0).

stub_spec_data.opt2
HMOD port options flag 2. Set the appropriate bits of this field as follows (bit 7 is the most significant
bit):
bit 7

Use DSRS (do not use if not set)
bit 6

Select Standby On (Select Standby Off if not set)
bit 5

Monitor DCD (do not monitor if not set)
bit 4

Stream flags on the line (do not stream if not set)
bits 3-0

Reserved
stub_spec_data.linesp

The line speed for the line used on this port. For example, 2400 (0x00000960) for a 2400 baud line.
Valid values are in the range 600-38400 baud.

DEFINE_PORT

170 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The exact meaning of this parameter depends on the value set on the physical_link parameter.

• If physical_link is set to SDLC_PL_X21, then the stub_spec_data.linesp parameter is ignored.
• If physical_link is set to SDLC_PL_V25 or SDLC_PL_SMART_MODEM, then the value of the

stub_spec_data.linesp parameter is the speed at which the dial string is sent to the modem.
• If physical_link is set to any other value, then the value of the stub_spec_data.linesp parameter is

the speed of data transfer. This value is valid only if external clocking is specified.

stub_spec_data.rcv_pool_size
The initial number of buffers reserved for receiving data on the port. Set this to the value 4.

stub_spec_data.poll_wait
The number of seconds for which the port waits between successive polls of the line for errors or for
raising of DSR. A suitable value is 1 second. Increase this value for better throughput if there is only
small likelihood of line errors and the line is leased.

stub_spec_data.hmod_data_len
Length of the dial data string that follows (in the hmod_data parameter). If no dial data is specified,
set this parameter to zero.

stub_spec_data.hmod_data
Dial data for incoming calls. (The dial string used to initiate outgoing calls is specified in the LS
definition.) This parameter applies only to switched links; it is reserved if the port is defined to be
nonswitched.

This is an ASCII string, specifying the dial string that must be passed to the modem to instruct it to
respond to incoming calls.

The dial data may need to contain non-printable control characters; for example, it may have to be
terminated with a carriage return, equivalent to pressing the Enter key. In this case, include the
hexadecimal value of the control character in the string (for example, 0x0D for a carriage return). For
details of the hexadecimal values you can use to represent control characters, see “Modem control
characters” on page 126.

Support for dial data depends on the SDLC adapter and modem that you are using; if they do not
support dial data, set this parameter to a null string.

stub_spec_data.x21_sequence
X21 selection sequence to identify the remote link station. This parameter is only valid if physical_link
is set to SDLC_PL_X21. This string is limited to digits 0-9 and characters * (asterisk), + (plus), -
(hyphen), . (period) and / (slash). The string must end with + (plus sign). If the string is less than 255
characters long, then it must be null-terminated.

stub_spec_data.x21_retry_count
Number of times that an unsuccessful X21 call may be retried before it is abandoned. This parameter
is only valid if physical_link is set to SDLC_PL_X21. Valid values are in the range 0-15.

stub_spec_data.x21_retry_delay
Delay, in tenths of a second, before retrying an unsuccessful X21 call. This parameter is only valid if
physical_link is set to SDLC_PL_X21. Valid values are in the range 0-1200.

stub_spec_data.v25_tx_delay
Amount of time, in tenths of a second, that elapses between sending the DTR (data terminal ready)
signal and transmitting a dial string to the modem. This parameter is only valid if physical_link is set to
SDLC_PL_V25. Valid values are in the range 0-600, which is equal to 0.1 seconds to 1 minute. A value
of 0 is treated as 0.1 seconds.

stub_spec_data.cdstl
Connect Data Set to Line (CDSTL) indicates that Data Terminal Ready (DTR) should not be enabled
until after Ring Indicate (RI) has occurred. This parameter is only valid if physical_link is set to
SDLC_PL_X21. Possible values are:
AP_YES

Do not enable DTR until RI has been signaled.

DEFINE_PORT

Chapter 3. NOF API Verbs 171

AP_NO
Enable DTR without waiting for RI.

Port-specific data for QLLC:

mux_info.dlc_type
Type of the DLC. Set this to AP_IMPL_NLI_QLLC.

Port-specific data for Token Ring or Ethernet:

gdlc_sap_cfg.mux_info.dlc_type
Type of the DLC. Possible values are:
AP_IMPL_TR_GDLC

Token Ring
AP_IMPL_ETHER_GDLC

Ethernet
gdlc_sap_cfg.max_ifrm_rcv

Maximum number of I-frames that can be received by the local link stations before an
acknowledgment is sent. Range: 1-127; this value should match the value specified for
max_ifrm_rcvd earlier in the port_def_data structure.

gdlc_sap_cfg.local_name
Unique name to identify the service access point (SAP) on the network. If no local name is specified
(indicated by using all spaces), then the SAP cannot be contacted using discovery. This is a type-A
EBCDIC character string, padded on the right with EBCDIC spaces if it is less than 8 characters.

Port-specific data for Enterprise Extender (HPR/IP):

mux_info.dlc_type
Type of the DLC. Set this to AP_IP.

if_name
Identifier for the local network adapter card to be used for the IP link, if you have access to multiple
IP networks. If you have access to only one IP network, you can leave this field set to binary zeros.

If you need to specify the interface, you can use any of the following.

• An interface identifier (such as eth0 or en0).
• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).

To determine the interface identifier, run the command ipconfig - a on the server where the card is
installed. This lists the interface identifiers and their associated IP addresses.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PORT_NAME

The port_name parameter was not valid.

DEFINE_PORT

172 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_DLC_NAME
The specified dlc_name did not match any defined DLC.

AP_INVALID_PORT_TYPE
The port_type parameter was not set to a valid value.

AP_INVALID_BTU_SIZE
The max_rcv_btu_size parameter was not set to a valid value.

AP_INVALID_LS_ROLE
The ls_role parameter was not set to a valid value.

AP_INVALID_LINK_ACTIVE_LIMIT
One of the activation limit parameters was not set to a valid value.

AP_INVALID_MAX_IFRM_RCVD
The max_ifrm_rcvd parameter was not set to a valid value.

AP_INVALID_LS_ROLE
The ls_role parameter was not set to a valid value.

AP_INVALID_DSPU_SERVICES
The implicit_dspu_services parameter was not set to a valid value.

AP_PU_CONC_NOT_SUPPORTED
The implicit_dspu_services parameter was set to a reserved value.

AP_INVALID_TEMPLATE_NAME
The DSPU template specified on the implicit_dspu_template parameter was not valid.

AP_INVALID_IP_VERSION
The version parameter was changed on an existing port used by one or more link stations. You
cannot change this parameter if the port has any link stations associated with it.

AP_UNKNOWN_IP_HOST
The string specified for the remote_hostname parameter could not be resolved to a valid IP
address.

AP_INVALID_SHARING_PROHIBITED
A reserved parameter was set to a nonzero value.

AP_INVALID_LINK_SPEC_FORMAT
A reserved parameter was set to a nonzero value.

AP_INVALID_IMPLICIT_UPLINK
The implicit_uplink_to_en parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_PORT_ACTIVE

The specified port cannot be modified because it is currently active.
AP_DUPLICATE_PORT_NUMBER

A port with the specified port_number has already been defined.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

DEFINE_PORT

Chapter 3. NOF API Verbs 173

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

Incoming calls
If you are configuring a port that will accept incoming calls (as defined by the tot_link_act_lim,
inb_link_act_lim, and out_link_act_lim parameters), there is generally no need to define an LS to be used
for these calls, because CS/AIX will define one dynamically when the incoming call is received. However, if
the incoming calls are from a host computer that supports dependent LUs or from a downstream
computer using SNA gateway, you need to define an LS explicitly, because the LS definition includes the
name of the PU associated with the dependent LUs or the name of the downstream PU.

When an incoming call arrives at the port, CS/AIX checks the address specified on the call against the
addresses specified for LSs defined on the port (if any), to determine if an LS has already been defined for
the call. If the address does not match, an LS is defined dynamically. To ensure that the explicit LS
definition (including the required PU name) is used, ensure that the address defined for this LS matches
the address that will be supplied by the host or the downstream computer on the incoming call. For Token
Ring / Ethernet, both the MAC and SAP addresses must match in order to select the correct LS.

DEFINE_RCF_ACCESS
DEFINE_RCF_ACCESS specifies access to the CS/AIX Remote Command Facility (RCF): the user ID used
to run UNIX Command Facility (UCF) commands, and the restrictions on which administration commands
can be issued using the Service Point Command Facility (SPCF). For more information about SPCF and
UCF, see the IBM Communications Server for Data Center Deployment on AIX Administration Guide. You
can use this verb to permit access to both SPCF and UCF, or to only one of them.

This verb must be issued to the domain configuration file; it can be used to specify the RCF access for the
first time, or to modify an existing definition. CS/AIX acts on these parameters during node startup; if
these parameters are changed while a node is running, the changes do not take effect on the server
where the node is running until the node is stopped and restarted.

VCB structure
typedef struct define_rcf_access
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char ucf_username[32]; /* UCF username */
 AP_UINT32 spcf_permissions; /* SPCF permissions */
 unsigned char reserv3[8]; /* Reserved */
} DEFINE_RCF_ACCESS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_RCF_ACCESS

ucf_username
Specifies the AIX user name of the UCF user. This parameter is a null-terminated ASCII string. Do not
specify the name root, because CS/AIX does not allow UCF commands to be run as root for security
reasons.

All UCF commands will be run using this user's user ID, with the default shell, default group ID, and
access permissions that are defined on the AIX system for this user.

DEFINE_RCF_ACCESS

174 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

To prohibit access to UCF, set this parameter to a null string.

spcf_permissions
Specifies the types of CS/AIX verbs that can be accessed using SPCF. Set this to AP_NONE to prevent
access to SPCF, or to one or more of the following values (combined using a logical OR):
AP_ALLOW_QUERY_LOCAL

QUERY_* verbs are permitted.
AP_ALLOW_DEFINE_LOCAL

DEFINE_*, SET_*, DELETE_*, ADD_*, and REMOVE_* verbs, and also INIT_NODE, are permitted.
AP_ALLOW_ACTION_LOCAL

"Action" verbs are permitted: START_*, STOP_*, ACTIVATE_*, DEACTIVATE_*, and also APING,
INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, and RESET_SESSION_LIMIT.

AP_ALLOW_QUERY_REMOTE
The QUERY_* verbs are allowed to be directed at any node in the domain.

AP_ALLOW_DEFINE_REMOTE
The DEFINE_*, SET_*, DELETE_*, ADD_*, REMOVE_*, and INIT_NODE verbs are allowed to be
directed at any node in the domain.

AP_ALLOW_ACTION_REMOTE
The START_*, STOP_*, ACTIVATE_*, DEACTIVATE_*, APING, INITIALIZE_SESSION_LIMIT,
CHANGE_SESSION_LIMIT, and RESET_SESSION_LIMIT verbs are allowed to be directed at any
node in the domain.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_UCF_USER_CANNOT_BE_ROOT

The ucf_username parameter specified the name root, which is not allowed.
AP_INVALID_SPCF_SECURITY

The spcf_permissions parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_RTP_TUNING
DEFINE_RTP_TUNING specifies parameters to be used when setting up RTP connections. After you issue
this verb, the parameters you specify will be used for all future RTP connections until you modify them by
issuing a new DEFINE_RTP_TUNING verb.

DEFINE_RTP_TUNING

Chapter 3. NOF API Verbs 175

VCB structure
typedef struct define_rtp_tuning
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char path_switch_attempts; /* number of path switch attempts */
 unsigned char short_req_retry_limit; /* short request timer retry limit */
 AP_UINT16 path_switch_times[4]; /* path switch times */
 AP_UINT32 refifo_cap; /* maximum for refifo timer */
 AP_UINT32 srt_cap; /* maximum for short request timer */
 AP_UINT16 path_switch_delay; /* minimum delay before path switch*/
 unsigned char reserved[78]; /* reserved */
} DEFINE_RTP_TUNING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_RTP_TUNING

path_switch_attempts
Number of path switch attempts to set on new RTP connections. Specify a value in the range 1-255. If
you specify 0(zero), CS/AIX uses the default value of 6.

short_req_retry_limit
Number of times a Status Request is sent before CS/AIX determines that an RTP connection is
disconnected and starts Path Switch processing. Specify a value in the range 1-255. If you specify
0(zero), CS/AIX uses the default value of 6.

path_switch_times
Length of time in seconds for which CS/AIX attempts to path switch a disconnected RTP connection.
This parameter is specified as four separate time limits for each of the valid transmission priorities in
order: AP_LOW, AP_MEDIUM, AP_HIGH, and AP_NETWORK. Each of these must be in the range
1-65535. The value you specify for each transmission priority must not exceed the value for any lower
transmission priority.

If you specify 0(zero) for any of these values, CS/AIX uses the corresponding default value as follows:

• 480 seconds (8 minutes) for AP_LOW
• 240 seconds (4 minutes) for AP_MEDIUM
• 120 seconds (2 minutes) for AP_HIGH
• 60 seconds (1 minute) for AP_NETWORK

refifo_cap
The RTP protocol uses a timer called the Re-FIFO Timer. The value of this timer is calculated as part of
the protocol, but this parameter specifies a maximum value in milliseconds beyond which the timer
cannot increase. In some situations, setting this maximum value can improve performance. Setting a
value of 0 (zero) means that the timer is not limited and can take any value calculated by the protocol.

The default value for this parameter is 4000 milliseconds, with a minimum value of 5 milliseconds. If
you specify a value in the range 1-4, the value of 5 will be used.

srt_cap
The RTP protocol uses a timer called the Short Request Timer. The value of this timer is calculated as
part of the protocol, but this parameter specifies a maximum value in milliseconds beyond which the
timer cannot increase. In some situations, setting this maximum value can improve performance.
Setting a value of 0 (zero) means that the timer is not limited and can take any value calculated by the
protocol.

The default value for this parameter is 8000 milliseconds, with a minimum value of 5 milliseconds. If
you specify a value in the range 1-4, the value of 5 will be used.

DEFINE_RTP_TUNING

176 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

path_switch_delay
Minimum delay in seconds before a path switch occurs. Specifying a delay avoids unnecessary path
switch attempts caused by transient delays in network traffic, in particular when there is no other
route available.

Specify a value in the range 0-65535. The default value is zero, indicating that a path switch attempt
can occur as soon as the protocol indicates it is required.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PATH_SWITCH_TIMES

The path_switch_times parameter was not valid; for example, you may have specified a value for
one transmission priority that exceeds the value specified for a lower transmission priority.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_SECURITY_ACCESS_LIST
DEFINE_SECURITY_ACCESS_LIST defines a list of users who can access a particular local LU or invokable
TP, so that access to that LU or TP is restricted to the named users. It can also be used to add user names
to an existing security access list. The user names in the list are either AIX login IDs or user IDs defined
using the DEFINE_USERID_PASSWORD verb.

If you want to allow access to a local LU using AIX login IDs as the user names, you must disable
password substitution for the local LU. However, you should be aware that this involves sending and
receiving passwords in clear text (which may represent a security risk). For information on disabling
password substitution, see “DEFINE_LOCAL_LU” on page 96.

To restrict access for a particular local LU or invokable TP, you need to do the following.

1. Ensure that each authorized user of the LU or TP is defined, either as an AIX login ID on the computer
where the LU or TP runs, or as a user ID specified using the DEFINE_USERID_PASSWORD verb.

2. Use the DEFINE_SECURITY_ACCESS_LIST verb to define a security access list containing all of these
user IDs.

3. Specify the name of this security access list on the DEFINE_LOCAL_LU or DEFINE_TP verb that defines
the LU or TP.

When an incoming Allocate request arrives for a local LU or an invokable TP that has a security access list
defined, the invoking application must indicate that conversation security is to be used, and specify a user
ID. In addition to the standard conversation security checking (against user IDs specified using the
DEFINE_USERID_PASSWORD verb, or against AIX login IDs on the computer where the LU or TP runs),

DEFINE_SECURITY_ACCESS_LIST

Chapter 3. NOF API Verbs 177

CS/AIX checks the user ID in the incoming allocate request against the security access list defined for the
LU or TP, and rejects the conversation if the user ID does not match. If both the LU and the TP have
security access lists defined, the user ID must be in both lists.

If a local LU or an invokable TP does not have a security access list defined, but is still configured to
require conversation security, the standard conversation security checking still applies.

VCB structure
The DEFINE_SECURITY_ACCESS_LIST verb contains a variable number of security_user_data
structures; these define the user names to be added to the security access list. The user name structures
are included at the end of the def_data structure; the number of these structures is specified by the
num_users parameter.

typedef struct define_security_access_list
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char list_name[14]; /* name of this list */
 unsigned char reserv3[2]; /* reserved */
 SECURITY_LIST_DEF def_data; /* security access list */
} DEFINE_SECURITY_ACCESS_LIST;

typedef struct security_list_def
{
 unsigned char description[32]; /* description */
 unsigned char reserv3[16]; /* reserved */
 AP_UINT32 num_users; /* number of users being added */
 unsigned char reserv2[16]; /* reserved */
} SECURITY_LIST_DEF;

typedef struct security_user_data
{
 AP_UINT16 sub_overlay_size; /* reserved */
 unsigned char user_name[10]; /* user name */
} SECURITY_USER_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_SECURITY_ACCESS_LIST

list_name
Name of the security access list. This is an ASCII string, padded on the right with spaces.

If this name matches an existing security access list, the users defined by this verb are added to the
list; otherwise a new list is created.

def_data.description
A null-terminated text string (0-31 characters followed by a null character) describing the security
access list. This string is for information only; it is stored in the node's configuration file and returned
on the QUERY_SECURITY_ACCESS_LIST verb, but CS/AIX does not make any other use of it.

def_data.num_users
Number of user names being defined by this verb. Each user must be specified by a
security_user_data structure following the def_data structure.

For each user name in the list, up to the number specified in num_users, a security_user_data
structure is required with the following information:

user_name
Name of the user.

DEFINE_SECURITY_ACCESS_LIST

178 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

This can be either of the following:

• An AIX login ID defined on the CS/AIX computer (if password substitution is disabled as described
earlier in this section)

• A user ID defined using the DEFINE_USERID_PASSWORD verb

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_NAME

The list_name parameter contained a character that was not valid.
AP_INVALID_USER_NAME

One or more of the specified user names was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN3270_ACCESS
DEFINE_TN3270_ACCESS defines TN3270 access details for a particular client (or default TN3270
access details for all clients) using the TN3270 Server feature of CS/AIX. (To define access details for a
client using TN Redirector, use DEFINE_TN_REDIRECT.)

Each verb specifies details for one or more sessions. Each session is uniquely identified by the client
address and the server port number. The DEFINE_TN3270_ACCESS verb can be used to define a new
client, to define new sessions for use by an existing client, or to modify the session parameters. (To delete
sessions from an existing client, use DELETE_TN3270_ACCESS.)

VCB structure
The DEFINE_TN3270_ACCESS verb contains a variable number of tn3270_session_def_data
structures; these define the user's sessions. The session structures are included at the end of the
def_data structure; the number of these structures is specified by the num_sessions parameter.

typedef struct define_tn3270_access
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 default_record; /* is this the DEFAULT record? */
 unsigned char client_address[256]; /* address of TN3270 user */
 TN3270_ACCESS_DEF_DATA def_data;
} DEFINE_TN3270_ACCESS;

DEFINE_TN3270_ACCESS

Chapter 3. NOF API Verbs 179

typedef struct tn3270_access_def_data
{
 unsigned char description[32]; /* Description - null terminated */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 address_format; /* Format of client address */
 AP_UINT32 num_sessions; /* Number of sessions being added */
 unsigned char reserv3[64]; /* reserved */
} TN3270_ACCESS_DEF_DATA;

typedef struct tn3270_session_def_data
{
 AP_UINT16 sub_overlay_size; /* reserved */
 unsigned char description[32]; /* Session description */
 unsigned char tn3270_support; /* Level of TN3270 support */
 unsigned char allow_specific_lu; /* Allow access to specific LUs */
 unsigned char printer_lu_name[8]; /* Generic printer LU/pool */
 /* accessed */
 unsigned char reserv1[6]; /* reserved */
 AP_UINT16 port_number; /* TCP/IP port used to access */
 /* server */
 unsigned char lu_name[8]; /* Generic display LU/pool */
 /* accessed */
 unsigned char session_type; /* Unused in current version */
 unsigned char model_override; /* Unused in current version */
 unsigned char ssl_enabled; /* Is this an SSL session? */
 unsigned char security_level; /* SSL encryption strength */
 unsigned char cert_key_label[80]; /* Certificate key label */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
 unsigned char allow_ssl_timeout_to_nonssl;
 /* Allow non-SSL clients on SSL? */
 unsigned char reserv3[17];
 AP_UINT32 reserv4; /* reserved */
} TN3270_SESSION_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_ACCESS

default_record
Specifies whether this verb defines a default record, which will be used by any TN3270 user not
explicitly identified by a TCP/IP address. If a TN3270 user attempts to contact the TN server node,
and the user's TCP/IP address does not match any DEFINE_TN3270_ACCESS record in the
configuration but there is a default record defined, the parameters from this record will be used.
Possible values are:
AP_YES

This verb defines a default record. The client_address and address_format parameters are
reserved.

AP_NO
This verb defines a normal TN3270 user record.

A default record provides access to the TN server function for any TN3270 user that can determine
the TCP/IP address of the computer where the TN server is running. To restrict the use of TN server to
a specific group of users, either do not include the default record, or leave it with no 3270 LU or LU
pool configured so that it cannot be used.

You can also set up a default record for most users, but explicitly exclude one or more TCP/IP
addresses. To do this, define the addresses to be excluded as TN server users, and leave them with no
3270 LU or LU pool configured.

client_address
The TCP/IP address of the computer on which the TN3270 program runs. This is a null-terminated
ASCII string, which can be any of the following; the address_format parameter indicates whether it is
an IP address or a name.

DEFINE_TN3270_ACCESS

180 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you use a name or alias, the following restrictions apply:

• The AIX system must be able to resolve the name or alias to a fully qualified name (either using the
local TCP/IP configuration or using a Domain Name server).

• Each name or alias must expand to a unique fully qualified name; you should not configure two
names for users of the same TN server node that will be resolved to the same fully qualified name.

• Fully-qualified names are not case-sensitive; for example, Newbox.THIS.CO.UK is equivalent to
newbox.this.co.uk.

def_data.description
An optional text string (0-31 characters followed by a null character). The string is for information
only; it is stored in the configuration file and returned on a query_tn3270_access_def structure for
a QUERY_TN3270_ACCESS_DEF verb, but CS/AIX does not make use of it. You can use it to store
additional information to help distinguish between users.

def_data.address_format
Specifies the format of the client_address parameter. Possible values are:
AP_ADDRESS_IP

IP address (either IPv4 or IPv6)
AP_ADDRESS_FQN

Alias or fully qualified name
def_data.num_sessions

The number of sessions being defined or modified by this verb. Each TN3270 user may access the
same TN server node with multiple sessions, by using a different TCP/IP port for each session. Each
session must be specified by a tn3270_session_def_data structure following the
tn3270_access_def_data structure.

For each session, a tn3270_session_data structure is required with the following information:

description
An optional text string (0-31 characters followed by a null character). The string is for information
only; it is stored in the configuration file and returned on aquery_tn3270_access_def structure for
a QUERY_TN3270_ACCESS_DEF verb, but CS/AIX does not make use of it.

tn3270_support
Specifies the level of TN3270 support. Possible values are:
AP_TN3270

Specifies that TN3270E protocols are disabled.
AP_TN3270E

Specifies that TN3270E protocols are enabled.

TN3270 and TN3287 protocols are always enabled.

For an AS/400 TN3270 client, this parameter must be set to AP_TN3270E.

allow_specific_lu
Indicates whether access to specific LUs is allowed. Possible values are:
AP_YES

Access to specific LUs is allowed.
AP_NO

Access to specific LUs is not allowed.

DEFINE_TN3270_ACCESS

Chapter 3. NOF API Verbs 181

printer_lu_name
Name of the printer LU or LU pool that this session uses for connections requesting a generic printer
LU. This is a type-A EBCDIC string padded on the right with EBCDIC spaces. It must match the name
of a LU type 0-3 printer LU defined on this node, or an LU pool containing LUs on this node.

If a single printer LU is specified, this printer LU should not be associated with any display LU by the
DEFINE_TN3270_ASSOCIATION verb. If a printer LU pool is specified, none of the printer LUs in the
pool should be associated with display LUs. Allowing a single LU to be accessed as both a generic
printer LU and as an associated printer LU may result in the LU not being available as an associated
printer LU because it is already in use. (These rules are not enforced by the NOF API.)

This field has no effect on specific printer LU sessions.

port_number
The number of the server TCP/IP port that the TN3270 program uses to access the TN server node. If
the port number matches an existing port number defined for one of this TN3270 user's sessions, the
information for that session is replaced; otherwise a new session is added.

If the TN3270 program uses TCP/IP port number 23 (the port number used by the Telnet daemon
program on the AIX computer), you will need to set up an additional initialization file to share this port
number between TN server and the Telnet daemon program. For more information, see “Using the
Telnet Daemon's TCP/IP Port” on page 185.

If two or more session structures use the same port_number (for the same client_address or a
different one), the listen_local_address parameter must be specified on all of them or none of them;
you cannot specify it on some sessions but leave it unspecified on others.

lu_name
Name of the LU or LU pool that this session uses for connections requesting a generic display LU. This
is a type-A EBCDIC string padded on the right with EBCDIC spaces. It must match the name of a type
0-3 display LU defined on this node, or an LU pool containing LUs on this node.

If you specify an LU name, a TN3270 program with the specified TCP/IP address will be able to use
only one session at a time by connecting to the specified server port number on this TN server node. If
you specify an LU pool, the program can use multiple generic display LU sessions (or multiple copies
of the program can access generic display LU sessions using this TN server), up to the number of LUs
on this node that are available from the pool.

This parameter has no effect on specific display LU sessions.

ssl_enabled
Indicates whether this session uses Secure Sockets Layer (SSL) to access the server.

This parameter is reserved if you have not installed the additional software required to support SSL on
the server. You can check this by using the NOF verb QUERY_NODE_LIMITS and checking the value of
the ssl_support parameter.

Possible values are:

AP_NO
This session does not use SSL.

AP_YES
This session uses SSL.

AP_YES_WITH_CLI_AUTH
This session uses SSL, and the TN Server requires it to use client authentication. The client must
send a valid certificate (information identifying it as a valid client authorized to use the TN Server).

As well as checking that the certificate is valid, the TN Server may also need to check the
certificate against a certificate revocation list on an external LDAP server, to ensure that the user's
authorization has not been revoked. In this case, you need to use DEFINE_TN3270_SSL_LDAP to
specify how to access this server. If the user is permitted to use the TN3270 Express Logon
feature, you also need to use DEFINE_TN3270_EXPRESS_LOGON to set up this feature.

Note:

DEFINE_TN3270_ACCESS

182 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

1. If this session's port_number parameter indicates that it uses the Telnet daemon's TCP/IP port, do
not use SSL for this session. If you use SSL on a session that uses the Telnet daemon's TCP/IP port,
Telnet clients will not be able to use telnet to access the CS/AIX computer while the node is
active.

2. If you have large numbers of clients that use the same port, and are migrating them from non-SSL
to SSL configuration, you can set up the configuration to accept both SSL and non-SSL connections
on the same port while the migration is in progress. See the allow_ssl_timeout_to_nonssl
parameter below.

security_level
Indicates the SSL security level required for this session. The session will use the highest security
level that both client and server can support; if the client cannot support the requested level of
security or higher, the session will not be started.

If the ssl_enabled parameter is set to AP_NO, this parameter is reserved.

Possible values are:

AP_SSL_AUTHENTICATE_MIN
Certificates must be exchanged; encryption is not required (but can be used if the client requests
it).

AP_SSL_AUTHENTICATE_ONLY
Certificates must be exchanged, but encryption will not be used. This option is typically used to
avoid the overhead of encryption when the client is connecting across a secure intranet.

AP_SSL_40_BIT_MIN
Use at least 40-bit encryption.

AP_SSL_56_BIT_MIN
Use at least 56-bit encryption.

AP_SSL_128_BIT_MIN
Use at least 128-bit encryption.

AP_SSL_168_BIT_MIN
Use at least 168-bit encryption.

AP_SSL_256_BIT_MIN
Use at least 256-bit encryption.

Note: Using encryption requires additional software to be installed with CS/AIX; see IBM
Communications Server for Data Center Deployment on AIX Quick Beginnings for more information.
Depending on your location, you may not be able to use all the encryption levels listed because the
software required to support them is not available in your country.

cert_key_label
The label identifying a certificate and key pair for use with SSL on this session. This must match a
label specified when the SSL keyring database was set up; see IBM Communications Server for Data
Center Deployment on AIX Quick Beginnings for more information.

The label is a null-terminated ASCII character string. To use the default SSL certificate and key pair,
specified when the SSL keyring database was set up, set this parameter to a null string.

listen_local_address
The address on the local TN Server computer to which TN3270 clients will connect.

• If TN3270 clients are to be able to connect on any local address, or if there is only one valid local
address on the TN Server, set this parameter to all binary zeros. In this case, any
tn3270_session_data structure that uses the same port_number as this one (for the same
client_address or a different one) must also have this parameter set to all binary zeros.

• If you need to restrict TN3270 clients to a particular local address, specify it as a null-terminated
ASCII string. The address can be either of the following:

– An IPv4 dotted-decimal address (such as 193.1.11.100).

DEFINE_TN3270_ACCESS

Chapter 3. NOF API Verbs 183

– An IPv6 colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

If you specify an address, any tn3270_session_data structure that uses the same port_number
as this one (for the same client_address or a different one) must also have a value specified for this
parameter, although the address need not be the same for all sessions.

Note: If you specify a local address for one or more sessions, this client record will not be displayed in
the Motif administration program, so you cannot use that program to view or manage it. You can still
manage it using the command-line administration program, snaadmin, or a NOF application.

allow_ssl_timeout_to_nonssl
This parameter does not apply if ssl_enabled is set to AP_NO. Indicates whether non-SSL TN3270
clients can access the server using this session record even though it is configured to use SSL.
Possible values are:
AP_YES

TN3270 clients not using SSL can access the server. There will be a 5-second delay on startup
while the server waits for SSL negotiation to begin; after this, the server will assume that the client
is not using SSL and revert to normal TN3270 communications.

AP_NO
Only TN3270 clients using SSL can access the server.

Note: This option is provided for migration purposes: if you have large numbers of clients that use the
same port, and are migrating them from non-SSL to SSL configuration, you can set up the
configuration to accept both SSL and non-SSL connections on the same port while the migration is in
progress.

Allowing non-SSL clients to use SSL resources may be a security exposure, so this option is not
intended for long-term use. You should set this parameter to AP_YES only for brief periods while
migration is in progress, and then set it to AP_NO when migration is complete.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_UNKNOWN_CLIENT_ADDRESS

The specified name or alias could not be mapped to a fully qualified name.
AP_CLIENT_ADDRESS_CLASH

The fully qualified name, resolved from the client_address parameter, clashes with one that has
already been defined.

AP_DUPLICATE_PORT_NUMBER
Another TN3270 access session record uses the same port_number parameter as this one, but
the listen_local_address parameters are set inconsistently. The listen_local_address must be
specified on all records with the same port number, or on none of them; it cannot be specified on
one but not specified on another.

AP_TCPIP_PORT_IN_USE
The TCP/IP port number cannot be used by TN server because it is already in use by a different
program.

DEFINE_TN3270_ACCESS

184 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_TN3270_SUPPORT
The tn3270_support parameter for one or more sessions was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

Using the Telnet Daemon's TCP/IP Port
If you are setting up TN server for use with a TN3270 program that uses TCP/IP port number 23, you will
need to set up the AIX computer where the node owning this TN server runs, to share this port number
between TN server and the Telnet daemon program. To do this, take the following steps:

1. Ensure that the CS/AIX software is stopped on the AIX computer.
2. Log on to the AIX computer as root.
3. Edit the file /etc/inetd.conf, and find the line beginning with telnet. Make a note of the full

pathname for the Telnet daemon executable program, and any supplied parameters for this program,
which are included at the end of this line; typically these are /etc/telnetd and telnetd. Comment
out this line by inserting a # character at the start of the line, and save the file.

4. Create an ASCII text file /etc/snainetd.conf. This file should consist of a single line containing the
Telnet daemon executable pathname and parameters, as determined in step 3, for example:

/etc/telnetd telnetd
5. Use the AIX ps command to find the process ID of the Internet daemon program inetd.
6. Use the AIX kill command to stop this process, by issuing the following command:

kill processid

processid is the process ID that you found in step 5.
7. Start the CS/AIX Internet daemon program, by issuing the following command:

snainetd
8. Restart the Internet daemon program, by issuing the following command:

inetd
9. Restart the CS/AIX software, and then restart the node.

Steps 5, 6, 7, and 8 must be repeated each time you restart the AIX computer. You may want to set up a
shell script containing these commands, so that it can be run at startup.

Note: If you have set up a session to use the Telnet daemon's TCP/IP port, do not use SSL for this session.
If you use SSL on a session that uses the Telnet daemon's TCP/IP port, Telnet clients will not be able to
use telnet to access the CS/AIX computer while the node is active.

DEFINE_TN3270_ASSOCIATION
DEFINE_TN3270_ASSOCIATION defines an association between a display LU and a printer LU. This
association allows a TN3270E client to connect to the printer LU that is associated with a display LU
without knowing the name of the printer LU. The DEFINE_TN3270_ASSOCIATION verb can be used to
define a new association or to overwrite an existing association for a particular display LU.

VCB structure
typedef struct define_tn3270_association
{

DEFINE_TN3270_ASSOCIATION

Chapter 3. NOF API Verbs 185

 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char display_lu_name[8]; /* Display LU name */
 TN3270_ASSOCIATION_DEF_DATA def_data; /* association definition */
} DEFINE_TN3270_ASSOCIATION;

typedef struct tn3270_association_def_data
{
 unsigned char description[32]; /* description */
 unsigned char reserve0[16]; /* reserved */
 unsigned char printer_lu_name[8]; /* Printer LU name */
 unsigned char reserv2[8]; /* reserved */
} TN3270_ASSOCIATION_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_ASSOCIATION

display_lu_name
Name of the display LU to be associated with the printer that was specified by the
def_data.printer_lu_name parameter. This is a type-A EBCDIC string padded on the right with EBCDIC
spaces.

The specified display LU should be a display LU defined on the local node, but this is not enforced by
the NOF API.

def_data.description
Description of the association being defined. This parameter is optional.

def_data.printer_lu_name
Name of the printer LU to be associated with the display LU that was specified by the display_lu_name
parameter. This is a type-A EBCDIC string padded on the right with EBCDIC spaces.

The specified printer LU should be a printer LU defined on the local node.

It is not possible for a single printer LU to be shared by two TN3270E emulators; no two TN3270
associations can specify the same printer LU.

The printer LU should not be accessible as a generic printer LU; otherwise it may not be available as
an associated printer LU because it is already in use. Therefore, the associated printer LU should not
be configured (directly or indirectly as a member of an LU pool) as the printer_lu_name in a
DEFINE_TN3270_ACCESS verb.

(These rules are not enforced by the NOF API.)

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

DEFINE_TN3270_ASSOCIATION

186 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LU_NAME
Either the supplied display LU name or the supplied printer LU name was not a valid EBCDIC
string.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN3270_DEFAULTS
DEFINE_TN3270_DEFAULTS defines TN3270 parameters used on all client sessions.

If you are using Secure Sockets Layer (SSL) client authentication, and checking clients against a certificate
revocation list on an external LDAP server, you also need to configure details of how to access this server.
To do this, use the DEFINE_TN3270_SSL_LDAP verb.

VCB structure
typedef struct define_tn3270_defaults
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN3270_DEFAULTS_DEF_DATA def_data; /* TN3270 defaults */
} DEFINE_TN3270_DEFAULTS;

typedef struct tn3270_defaults_def_data
{
 unsigned char force_responses; /* force printer responses? */
 unsigned char keepalive_method; /* method for sending keep-alives */
 AP_UINT32 keepalive_interval; /* interval between keep-alives */
 unsigned char reserv2[32]; /* reserved */
} TN3270_DEFAULTS_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_DEFAULTS

def_data.force_responses
Controls client responses on printer sessions. Possible values are:
AP_YES

Always request definite responses from the client printer sessions. Some 3270 emulators are
unable to print large jobs if definite responses are not requested. If necessary, set force_responses
to AP_YES to avoid problems.

AP_NO
Request responses matching SNA traffic.

def_data.keepalive_method
Method for sending keep-alive messages. Keep-alive messages are messages sent to TN3270 clients
when there is no other activity on the connection, to keep the TCP/IP connections to the clients active;
this ensures that failed connections and clients can be detected. If there is no traffic at all on a TCP/IP
connection, failure of the connection or of the client may never be detected, which wastes TN server
resources and prevents LUs from being used for other sessions.

DEFINE_TN3270_DEFAULTS

Chapter 3. NOF API Verbs 187

Possible values are:

AP_NONE
Do not send keep-alive messages.

AP_TN3270_NOP
Send Telnet NOP messages.

AP_TN3270_TM
Send Telnet DO TIMING-MARK messages.

def_data.keepalive_interval
Interval (in seconds) between consecutive keep-alive messages. The interval should be long enough
to minimize network traffic, especially if there are typically many idle client connections. The shorter
the keep-alive interval, the quicker failures are detected, but the more network traffic is generated. If
the keep-alive interval is too short and there are many clients, this traffic can be significant.

Typical values are in the range 600-7200 (10 minutes to 2 hours). The value 0 (zero) is not valid when
the keepalive_method parameter is set to AP_TN3270_NOP or AP_TN3270_TM.

Because of the way TCP/IP operates, the keepalive interval that you configure is not the exact time
that it will take for the server to recognize that a client has disappeared. The exact time depends on
various factors, but will be no more than twice the configured timeout plus a few extra minutes (the
exact number depends on how TCP/IP is configured).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_KEEPALIVE

The keepalive_method parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN3270_EXPRESS_LOGON
DEFINE_TN3270_EXPRESS_LOGON sets up the TN3270 Express Logon feature. This feature means that
TN3270 client users who connect to CS/AIX TN Server or TN Redirector using the Secure Sockets Layer
(SSL) client authentication feature do not need to supply the user ID and password normally used for
TN3270 security. Instead, their security certificate is checked against a Digital Certificate Access Server
(DCAS) at the host, which supplies the required user ID and password.

DEFINE_TN3270_EXPRESS_LOGON

188 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct define_tn3270_express_logon
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dcas_server[256]; /* IP hostname of DCAS server */
 AP_UINT16 dcas_port; /* port number to access server */
 unsigned char enabled; /* is Express Logon enabled? */
 unsigned char reserv3[33]; /* reserved */
} DEFINE_TN3270_EXPRESS_LOGON;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_EXPRESS_LOGON

dcas_server
The TCP/IP address of the host DCAS server that handles Express Logon authorization. This can be
specified as any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you use a name or alias, the AIX system must be able to resolve the name or alias to a fully-
qualified name (either using the local TCP/IP configuration or using a Domain Name server). Fully-
qualified names are not case-sensitive; for example, Newbox.THIS.CO.UK is equivalent to
newbox.this.co.uk.

dcas_port
The TCP/IP port number used to access the DCAS server.

enabled
Specifies whether the TN3270 Express Logon function is enabled. Possible values are:
AP_YES

The function is enabled, so TN3270 clients can access the host without needing to specify a user
ID and password.

AP_NO
The function is not enabled, so TN3270 clients must specify a user ID and password.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN3270_EXPRESS_LOGON

Chapter 3. NOF API Verbs 189

DEFINE_TN3270_SLP
DEFINE_TN3270_SLP specifies whether CS/AIX TN Server provides Service Location Protocol (SLP)
support, and defines how the TN Server advertises its services for use by TN3270 clients. It may also
specify one or more scopes, which specify the range of TN3270 SLP clients and Directory Agents to which
the service is advertised.

SLP allows the TN Server to advertise the services it provides, and to advertise its current load (the
percentage of its host LUs that are currently in use). An SLP-capable client with a choice of two or more
TN Servers can then determine the least loaded server that provides the services it requires.

Note: The server on which the TN Server runs must support IPv4 addressing: that is, it must have an IPv4
address (although it may also have an IPv6 address). This is because SLP uses UDP broadcasts, which are
not available in an installation that supports only IPv6.

If you use SLP, you must use DEFINE_TN3270_ACCESS to define at least one default TN3270 access
record (to allow access to TN Server from any TN3270 client not explicitly named in the configuration).
CS/AIX uses SLP to advertise these default records, which define a service that any client can access; it
does not use SLP to advertise TN3270 access records for explicitly-named clients.

The DEFINE_TN3270_SLP verb can be used to define the SLP parameters for the first time, to modify the
parameters (for example to change the scopes to which the service is advertised), or to specify that SLP is
not supported.

VCB structure
typedef struct define_tn3270_slp
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN3270_SLP slp_config; /* verb data */
} DEFINE_TN3270_SLP;

typedef struct tn3270_slp
{
 unsigned char enable_load_balancing; /* Use this feature? */
 unsigned char reserve1; /* Reserved */
 AP_UINT16 load_advertisement_freq; /* Frequency of calculating load */
 AP_UINT16 load_change_threshold; /* Change in load required to */
 /* readvertise */
 AP_INT16 load_factor; /* Percentage factor to apply to */
 /* load */
 unsigned char num_scopes; /* count of SLP scope names */
 TN3270_SLP_SCOPE slp_scopes[10]; /* A set of scopes for the */
 /* TN3270 SLP/SA */
 unsigned char reserved[64]; /* Reserved */
} TN3270_SLP;

typedef struct tn3270_slp_scope
{
 unsigned char scope[32]; /* Scope (null-terminated string) */
} TN3270_SLP_SCOPE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_SLP

slp_config.enable_load_balancing
Specifies whether TN Server provides SLP support. Possible values are:

DEFINE_TN3270_SLP

190 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
TN Server provides SLP support. You must define at least one default TN Server access record
(using DEFINE_TN3270_ACCESS).

AP_NO
TN Server does not provide SLP support. All other parameters for this verb are reserved.

slp_config.load_advertisement_freq
Specifies the time interval (in seconds) at which CS/AIX recalculates the load on TN Server, to
determine whether the load has changed significantly and needs to be re-advertised. Allowed values
are in the range 1 - 32767.

slp_config.load_change_threshold
Specifies the change in load that is considered significant and requires re-advertising of the current
load. When CS/AIX recalculates the load on TN Server, it checks whether the current load differs from
the advertised load by more than this amount (either higher or lower), and advertises the new load
only if the difference is significant.

Specify a percentage in the range 0 - 99. For example, if the last advertised load value is 30%, a value
of 10 indicates that CS/AIX re-advertises the load only if the current load becomes higher than 40% or
lower than 20%.

slp_config.load_factor
Specifies a factor that CS/AIX should apply to the advertised load, to provide better balancing
between TN Servers of different capacities. For example, if one TN Server is running on a faster
computer with more available memory than another TN Server, you will probably want clients to
choose the first TN Server when both have the same load (in terms of the percentage of their host LUs
that are in use). In this case, specify a lower load_factor for the first TN Server and a higher one for
the second TN Server, so that the second TN Server's advertised load is higher even when the actual
percentage load is the same.

Specify a percentage in the range -100 - 100. The advertised load is calculated by adding 100 to this
value and multiplying the actual percentage load by the result. For example, if you specify -80, the
advertised load is the actual load multiplied by(-80 + 100) or 20%; if you specify 50, the
advertised load is the actual load multiplied by(50 + 100) or 150%.

slp_config.num_scopes
The number of SLP scopes specified in the slp_config.slp_scopes array.

slp_config.slp_scopes
In a large SLP network with many TN Servers and TN3270 clients, you may need to restrict the range
of TN Servers that each client can access. To do this, you can define a number of scopes, each of
which identifies a logical segment of the network. Each client and each Directory Agent is assigned to
a particular scope; a TN Server advertises its services only to clients and Directory Agents that have
the correct scope.

To advertise the TN Server's services to any TN3270 client or Directory Agent, set each element of
this array to a null string.

To restrict the TN Server to a specific scope or scopes, specify 1-10 scope names for which this TN
Server provides services. Each scope name is an ASCII string (terminated by a null character); all
clients and Directory Agents that are to have access to the TN Server must have a scope name defined
that matches a scope name defined for the TN Server. Any unused scope names must be set to null
strings.

The names LOCAL and REMOTE are reserved and must not be used for scope names.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

DEFINE_TN3270_SLP

Chapter 3. NOF API Verbs 191

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LOAD_BALANCING

The enable_load_balancing parameter was not set to a valid value.
AP_INVALID_LOAD_FACTOR

The load_factor parameter was not within the valid range.
AP_INVALID_FREQUENCY

The load_advertisement_freq parameter was not within the valid range.
AP_INVALID_NUM_SCOPES

The num_scopes parameter was not within the valid range.
AP_INVALID_THRESHOLD

The load_change_threshold parameter was not within the valid range.
AP_INVALID_SCOPE

A scope name was set to a reserved value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN3270_SSL_LDAP
DEFINE_TN3270_SSL_LDAP defines how to access a certificate revocation list for use with the Secure
Sockets Layer (SSL) client authentication feature. The revocation list is held on an external LDAP server,
and contains details of individual Telnet clients that are no longer authorized to use TN Server or TN
Redirector (for example because the user's security information has been discovered by an unauthorized
party, or because the user no longer works for the authorized organization).

If this feature is in use, a TN3270 client connecting to CS/AIX TN Server or TN Redirector must supply a
certificate (information identifying it as a valid client authorized to use the server). The server then checks
this certificate against the revocation list to ensure that it is still valid.

This verb can be used to define access to the LDAP server, to modify the access information (for example
to change a user ID and password), or to specify that CS/AIX does not use a revocation list on an external
LDAP server.

The verb must be issued to an inactive node; you cannot modify the LDAP server access information while
the node is running.

VCB structure
typedef struct define_tn3270_ssl_ldap
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
} DEFINE_TN3270_SSL_LDAP;

DEFINE_TN3270_SSL_LDAP

192 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The define_tn3270_ssl_ldap structure must be followed immediately by a
tn3270_ssl_ldap_def_data structure, concatenated to the end of the VCB, as follows.

typedef struct tn3270_ssl_ldap_def_data
{
 AP_UINT16 overlay_size; /* reserved */
 unsigned char auth_type; /* type of authorization checking */
 unsigned char reserv1; /* reserved */
 unsigned char ldap_addr[256]; /* address of LDAP server */
 AP_UINT16 ldap_port; /* port number to access server */
 unsigned char ldap_user[1024]; /* user ID on LDAP server */
 unsigned char ldap_password[128]; /* password on LDAP server */
 unsigned char reserv2[256]; /* reserved */
} TN3270_SSL_LDAP_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN3270_SSL_LDAP

def_data.auth_type
Specifies the type of authorization checking performed by the TN Server or TN Redirector. Possible
values are:
AP_LOCAL_ONLY

The server checks client certificates locally, but does not use an external certificate revocation list.
The parameters ldap_addr - ldap_password are reserved.

AP_LOCAL_X500
The server checks certificates locally, and also checks against an external certificate revocation
list. The remaining parameters in this data structure specify the location of this list.

def_data.ldap_addr
The TCP/IP address of the LDAP server that holds the certificate revocation list. This can be specified
as any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you use a name or alias, the AIX system must be able to resolve the name or alias to a fully qualified
name (either using the local TCP/IP configuration or using a Domain Name server). Fully-qualified
names are not case-sensitive; for example, Newbox.THIS.CO.UK is equivalent to
newbox.this.co.uk.

def_data.ldap_port
The TCP/IP port number used to access the LDAP server. The range is 0-65535.

def_data.ldap_user
The user name used to access the certificate revocation list on the LDAP server. Check with the
system administrator of the LDAP server to determine how to specify this parameter.

def_data.ldap_password
The password used to access the certificate revocation list on the LDAP server. Check with the system
administrator of the LDAP server to determine how to specify this parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

DEFINE_TN3270_SSL_LDAP

Chapter 3. NOF API Verbs 193

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_AUTH_TYPE

The auth_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node does not support it, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The AIX Certificate and SSL Base Runtime fileset is not installed. This fileset must be installed if
you want to use the SSL functions of TN Server or TN Redirector. See IBM Communications Server
for Data Center Deployment on AIX Quick Beginnings for more information about installing the
correct CS/AIX filesets.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TN_REDIRECT
DEFINE_TN_REDIRECT defines access details for a particular Telnet client (or default access details for
all clients) using the TN Redirector feature of CS/AIX. It can be used to define a new client, or to modify
the existing definition. (To define access details for a client using TN3270 Server, use
DEFINE_TN3270_ACCESS.)

VCB structure
typedef struct define_tn_redirect
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN_REDIRECT_ADDRESS addr; /* Uniquely defines record */
 TN_REDIRECT_DEF_DATA def_data; /* verb data */
} DEFINE_TN_REDIRECT;

typedef struct tn_redirect_address
{
 AP_UINT16 default_record; /* Is this the default record ? */
 unsigned char address_format; /* IP address or fully-qualified name */
 unsigned char client_address[256]; /* Client address */
 AP_UINT16 port_number; /* Port number that client connects on */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
 unsigned char reserved[34]; /* reserved */
} TN_REDIRECT_ADDRESS;

typedef struct tn_redirect_def_data
{
 unsigned char description[32]; /* Description - null terminated */

DEFINE_TN_REDIRECT

194 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char reserve0[16]; /* Reserved */
 unsigned char cli_ssl_enabled; /* Is the client session SSL? */
 unsigned char host_ssl_enabled; /* Is the host session SSL? */
 unsigned char host_address_format; /* Type of IP address for the host */
 unsigned char reserv1; /* Reserved */
 unsigned char host_address[256]; /* Host address */
 AP_UINT16 host_port_number; /* Port number to connect to host */
 unsigned char cli_conn_security_level; /* SSL encryption strength */
 unsigned char serv_conn_security_level; /* SSL encryption strength */
 unsigned char cli_conn_cert_key_label[80]; /* Key label for certificate */
 unsigned char serv_conn_cert_key_label[80]; /* Key label for certificate */
 unsigned char reserved[46]; /* Reserved */
} TN_REDIRECT_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TN_REDIRECT

addr.default_record
Specifies whether this verb defines a default record, which will be used by any Telnet client not
explicitly identified by a TCP/IP address. If a Telnet client attempts to contact the TN Redirector node,
and the user's TCP/IP address does not match any DEFINE_TN_REDIRECT record in the configuration
but there is a default record defined for the port number used by the client, the parameters from this
record will be used. Possible values are:
AP_YES

This verb defines a default record. The client_address and address_format parameters are
reserved.

AP_NO
This verb defines a normal TN Redirector user record.

A default record provides access to the TN Redirector function for any Telnet client that can determine
the TCP/IP address of the computer where the TN server is running. To restrict the use of TN
Redirector to a specific group of users, either do not include the default record, or leave it with no host
address configured so that it cannot be used.

You can also set up a default record for most users, but explicitly exclude one or more TCP/IP
addresses. To do this, define the addresses to be excluded as TN Redirector users, and leave them
with no host address configured.

addr.address_format
Specifies the format of the client_address parameter. Possible values are:
AP_ADDRESS_IP

IP address (either IPv4 or IPv6)
AP_ADDRESS_FQN

Alias or fully qualified name
addr.client_address

The TCP/IP address of the computer on which the Telnet client runs. This is a null-terminated ASCII
string, which can be any of the following; the address_format parameter indicates whether it is an IP
address or a name.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you use a name or alias, the following restrictions apply:

DEFINE_TN_REDIRECT

Chapter 3. NOF API Verbs 195

• The AIX system must be able to resolve the name or alias to a fully qualified name (either using the
local TCP/IP configuration or using a Domain Name server).

• Each name or alias must expand to a unique fully qualified name; you should not configure two
names for users of the same TN Redirector node that will be resolved to the same fully qualified
name.

• Fully-qualified names are not case-sensitive; for example, Newbox.THIS.CO.UK is equivalent to
newbox.this.co.uk.

addr.port_number
The number of the server TCP/IP port that the Telnet client uses to access the TN Redirector node.

If the default_record parameter specifies that this is a default TN Redirector access record, this
parameter must not match the port address used by a default TN3270 Server access record (defined
using DEFINE_TN3270_ACCESS). You can define only one of the two types of default record for each
port number.

If two or more tn_redirect_address structures use the same port_number (for the same
client_address or a different one), the listen_local_address parameter must be specified on all of them
or none of them; you cannot specify it on some sessions but leave it unspecified on others.

addr.listen_local_address
The address on the local TN Server computer to which TN3270 clients will connect.

• If TN3270 clients are to be able to connect on any local address, or if there is only one valid local
address on the TN Server, set this parameter to all binary zeros. In this case, any
tn_redirect_address structure that uses the same port_number as this one (for the same
client_address or a different one) must also have this parameter set to all binary zeros.

• If you need to restrict TN3270 clients to a particular local address, specify it as a null-terminated
ASCII string. The address can be either of the following:

– An IPv4 dotted-decimal address (such as 193.1.11.100).
– An IPv6 colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

In this case, any tn_redirect_address structure that uses the same port_number as this one
(for the same client_address or a different one) must also have a value specified for this parameter,
although the address need not be the same for all sessions.

Note: If you specify a local address for one or more sessions, this client record will not be displayed in
the Motif administration program, so you cannot use that program to view or manage it. You can still
manage it using the command-line administration program, snaadmin, or a NOF application.

def_data.description
An optional text string (0-31 characters followed by a null character). The string is for information
only; it is stored in the configuration file and returned on a QUERY_TN_REDIRECT_DEF verb, but
CS/AIX does not make use of it. You can use it to store additional information to help distinguish
between users.

def_data.cli_ssl_enabled
Indicates whether the client uses Secure Sockets Layer (SSL) to access the TN Redirector.

This parameter is reserved if you have not installed the additional software required to support SSL on
the server. You can check this by using the NOF verb QUERY_NODE_LIMITS and checking the value of
the ssl_support parameter.

Possible values are:

AP_NO
The client does not use SSL.

AP_YES
The client uses SSL.

DEFINE_TN_REDIRECT

196 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES_WITH_CLI_AUTH
The client uses SSL, and the TN Redirector requires it to use client authentication. The client must
send a valid certificate (information identifying it as a valid client authorized to use the TN
Redirector).

As well as checking that the certificate is valid, the TN Redirector may also need to check the
certificate against a certificate revocation list on an external LDAP server, to ensure that the user's
authorization has not been revoked. In this case, you also need to use
DEFINE_TN3270_SSL_LDAP to specify how to access this server.

def_data.host_ssl_enabled
Indicates whether the TN Redirector uses Secure Sockets Layer (SSL) to access the host on behalf of
this client.

This parameter is reserved if you have not installed the additional software required to support SSL on
the server. You can check this by using the NOF verb QUERY_NODE_LIMITS and checking the value of
the ssl_support parameter.

Possible values are:

AP_NO
The host does not use SSL.

AP_YES
The host uses SSL.

def_data.host_address_format
Specifies the format of the host_address parameter. Possible values are:
AP_ADDRESS_IP

IP address (either IPv4 or IPv6)
AP_ADDRESS_FQN

Alias or fully qualified name
def_data.host_address

The TCP/IP address of the host computer with which the client communicates. This is a null-
terminated ASCII string, which can be any of the following; the host_address_format parameter
indicates whether it is an IP address or a name.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

If you use a name or alias, the AIX system must be able to resolve the name or alias to a fully qualified
name (either using the local TCP/IP configuration or using a Domain Name server). Fully-qualified
names are not case-sensitive; for example, Newbox.THIS.CO.UK is equivalent to
newbox.this.co.uk.

def_data.host_port_number
The number of the TCP/IP port that the TN Redirector node uses to access the host.

def_data.cli_conn_security_level
Indicates the SSL security level required for the client connection on this session. The session will use
the highest security level that both client and server can support; if the client cannot support the
requested level of security or higher, the session will not be started.

If the cli_ssl_enabled parameter is set to AP_NO, this parameter is reserved.

Possible values are:

AP_SSL_AUTHENTICATE_MIN
Certificates must be exchanged; encryption is not required (but can be used if the client requests
it).

DEFINE_TN_REDIRECT

Chapter 3. NOF API Verbs 197

AP_SSL_AUTHENTICATE_ONLY
Certificates must be exchanged, but encryption will not be used. This option is typically used to
avoid the overhead of encryption when the client is connecting across a secure intranet.

AP_SSL_40_BIT_MIN
Use at least 40-bit encryption.

AP_SSL_56_BIT_MIN
Use at least 56-bit encryption.

AP_SSL_128_BIT_MIN
Use at least 128-bit encryption.

AP_SSL_168_BIT_MIN
Use at least 168-bit encryption.

AP_SSL_256_BIT_MIN
Use at least 256-bit encryption.

Note: Using encryption requires additional software to be installed with CS/AIX; see IBM
Communications Server for Data Center Deployment on AIX Quick Beginnings for more information.
Depending on your location, you may not be able to use all the encryption levels listed because the
software required to support them is not available in your country.

def_data.serv_conn_security_level
Indicates the SSL security level required for the host connection on this session. The session will use
the highest security level that both the host and CS/AIX can support; if the host cannot support the
requested level of security or higher, the session will not be started.

If the host_ssl_enabled parameter is set to AP_NO, this parameter is reserved.

Possible values are:

AP_SSL_AUTHENTICATE_MIN
Certificates must be exchanged; encryption is not required (but can be used if the host requests
it).

AP_SSL_AUTHENTICATE_ONLY
Certificates must be exchanged, but encryption will not be used. This option is typically used to
avoid the overhead of encryption when the host connection is across a secure intranet.

AP_SSL_40_BIT_MIN
Use at least 40-bit encryption.

AP_SSL_56_BIT_MIN
Use at least 56-bit encryption.

AP_SSL_128_BIT_MIN
Use at least 128-bit encryption.

AP_SSL_168_BIT_MIN
Use at least 168-bit encryption.

AP_SSL_256_BIT_MIN
Use at least 256-bit encryption.

Note: Using encryption requires additional software to be installed with CS/AIX; see IBM
Communications Server for Data Center Deployment on AIX Quick Beginnings for more information.
Depending on your location, you may not be able to use all the encryption levels listed because the
software required to support them is not available in your country.

def_data.cli_conn_cert_key_label
The label identifying a certificate and key pair for use with SSL on the client session. This must match
a label specified when the SSL keyring database was set up; see IBM Communications Server for Data
Center Deployment on AIX Quick Beginnings for more information.

If the cli_ssl_enabled parameter is set to AP_NO, this parameter is reserved.

DEFINE_TN_REDIRECT

198 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The label is a null-terminated ASCII character string. To use the default SSL certificate and key pair,
specified when the SSL keyring database was set up, set this parameter to a null string.

def_data.serv_conn_cert_key_label
The label identifying a certificate and key pair for use with SSL on the host session. This must match a
label specified when the SSL keyring database was set up; see IBM Communications Server for Data
Center Deployment on AIX Quick Beginnings for more information.

If the host_ssl_enabled parameter is set to AP_NO, this parameter is reserved.

The label is a null-terminated ASCII character string. To use the default SSL certificate and key pair,
specified when the SSL keyring database was set up, set this parameter to a null string.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_UNKNOWN_CLIENT_ADDRESS

The specified name or alias could not be mapped to a fully qualified name.
AP_CLIENT_CLASH

The combination of port number and fully qualified name (resolved from the client_address
parameter) clashes with one that has already been defined.

AP_DUPLICATE_PORT_NUMBER
Another TN Redirector record uses the same port_number parameter as this one, but the
listen_local_address parameters are set inconsistently. The listen_local_address must be
specified on all records with the same port number, or on none of them; it cannot be specified on
one but not specified on another.

AP_TCPIP_PORT_IN_USE
The TCP/IP port number cannot be used by TN Redirector because it is already in use by a
different program.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TP
The DEFINE_TP verb provides information that CS/AIX needs to start a TP as a result of an incoming
attach from a partner LU. This verb can also be used to modify one or more fields on a previously defined
TP.

The standard parameters for invoked TPs are defined in the invokable TP information file (for more
information, see the IBM Communications Server for Data Center Deployment on AIX Administration
Guide). DEFINE_TP is required only if you need to specify additional parameters that cannot be set in the

DEFINE_TP

Chapter 3. NOF API Verbs 199

file: to restrict the TP to use particular options for conversation security, confirm synchronization, or
conversation type (mapped or basic), or to restrict the number of instances of the TP that can be running
at any time.

VCB structure
typedef struct define_tp
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char tp_name[64]; /* TP name */
 TP_CHARS tp_chars; /* TP characteristics */
} DEFINE_TP;

typedef struct tp_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char security_list_name[14]; /* security access list name */
 unsigned char reserv1[2]; /* reserved */
 unsigned char conv_type; /* conversation type */
 unsigned char security_rqd; /* security support */
 unsigned char sync_level; /* synchronisation level support */
 unsigned char dynamic_load; /* dynamic load (AP_YES) */
 unsigned char enabled; /* is the TP enabled? */
 unsigned char pip_allowed; /* program initialization */
 /* parameters supported */
 unsigned char reserv3[10]; /* reserved */
 AP_UINT16 tp_instance_limit; /* limit on currently active TP */
 /* instances */
 AP_UINT16 incoming_alloc_timeout; /* incoming allocation timeout */
 AP_UINT16 rcv_alloc_timeout; /* receive allocation timeout */
 AP_UINT16 tp_data_len; /* reserved */
 unsigned char tp_data[120]; /* reserved */
} TP_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TP

tp_name
Name of the TP being defined.

tp_chars.description
A null-terminated text string (0-31 characters followed by a null character) describing the TP. This
string is for information only; it is stored in the node's configuration file and returned on the
QUERY_TP_DEFINITION and QUERY_TP verbs, but CS/AIX does not make any other use of it.

tp_chars.security_list_name
Name of the security access list used by this TP (defined using the DEFINE_SECURITY_ACCESS_LIST
verb). This parameter restricts the TP so that only the users named in the specified list can allocate
conversations with it. If you specify a security access list, the tp_chars.security_rqd parameter must
be set to AP_YES.

To specify that the TP is available for use by any user, set this parameter to 14 binary zeros.

tp_chars.conv_type
Specifies the type(s) of conversation supported by this TP. Possible values are:
AP_BASIC

The TP supports only basic conversations.
AP_MAPPED

The TP supports only mapped conversations.

DEFINE_TP

200 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_EITHER
The TP supports either basic or mapped conversations.

tp_chars.security_rqd
Specifies whether conversation security information is required to start the TP. Possible values are:
AP_YES

A user ID and password are required to start the TP.
AP_NO

No security information is required.
tp_chars.sync_level

Specifies the values of synchronization level supported by the TP. Possible values are:
AP_NONE

The TP supports only sync_level NONE.
AP_CONFIRM_SYNC_LEVEL

The TP supports only sync_level CONFIRM.
AP_EITHER

The TP supports either sync_level NONE or CONFIRM.
AP_SYNCPT_REQUIRED

The TP supports only sync_level SYNCPT (syncpoint is required).
AP_SYNCPT_NEGOTIABLE

The TP supports any of the three sync_level values NONE, CONFIRM, and SYNCPT.
tp_chars.dynamic_load

This parameter must be set to AP_YES.
tp_chars.enabled

Specifies whether the TP can be attached successfully. Possible values are:
AP_YES

TP can be attached.
AP_NO

TP cannot be attached.
tp_chars.pip_allowed

Specifies whether the TP can receive Program Initialization Parameters (PIP). Possible values are:
AP_YES

TP can receive PIP.
AP_NO

TP cannot receive PIP.
tp_chars.tp_instance_limit

Limit on the number of instances of this TP that can be active at any one time. A value of zero means
no limit.

tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming Attach will be queued waiting for a
RECEIVE_ALLOCATE. The value 0 (zero) implies that there is no timeout; the incoming Attach will be
queued indefinitely.

tp_chars.rcv_alloc_timeout
Number of seconds that a RECEIVE_ALLOCATE verb is queued waiting for an incoming Attach. The
value 0 (zero) implies that there is no timeout; the RECEIVE_ALLOCATE verb will be queued
indefinitely.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

DEFINE_TP

Chapter 3. NOF API Verbs 201

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_SYSTEM_TP_CANT_BE_CHANGED

The specified TP name is the name of a TP used internally by CS/AIX you cannot define or modify a
TP with this name.

AP_INVALID_CONV_TYPE
The conv_type parameter was not set to a valid value.

AP_INVALID_SYNC_LEVEL
The sync_level parameter was not set to a valid value.

AP_INVALID_DYNAMIC_LOAD
The dynamic_load parameter was not set to a valid value.

AP_INVALID_ENABLED
The enabled parameter was not set to a valid value.

AP_INVALID_PIP_ALLOWED
The pip_allowed parameter was not set to a valid value.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_SECURITY_LIST_NOT_DEFINED

The security_list_name parameter did not match any defined security list name.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_TP_LOAD_INFO
DEFINE_TP_LOAD_INFO defines or changes an entry that describes information to be used when a
transaction program is loaded. An application must issue OPEN_FILE with a requested role of
AP_TP_LOAD_INFO before issuing the DEFINE_TP_LOAD_INFO verb.

VCB structure
typedef struct define_tp_load_info
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char tp_name[64]; /* TP name */
 unsigned char lu_alias[8]; /* LU alias */

DEFINE_TP_LOAD_INFO

202 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 TP_LOAD_INFO_DEF_DATA def_data; /* defined data */
} DEFINE_TP_LOAD_INFO;

typedef struct tp_load_info_def_data
{
 unsigned char description[32]; /* Description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char user_id[64]; /* User ID */
 unsigned char group_id[64]; /* Group ID */
 AP_UINT32 timeout; /* Timeout value */
 unsigned char type; /* TP type */
 unsigned char style; /* reserved */
AP_UINT16 ltv_length; /* Length of LTV data */
} TP_LOAD_INFO_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_TP_LOAD_INFO

tp_name
The TP name of the TP load info entry to be defined. This is a 64-byte EBCDIC string, padded on the
right with spaces if the name is shorter than 64 characters.

lu_alias
The LU alias of the TP load info entry to be defined. This is an 8-byte ASCII character string.

Note: This parameter can be used only if the TP is an APPC TP. If the TP is a CPI-C application, this
parameter is reserved and must be set to all zeros. CPI-C does not support accepting incoming
Attaches from a particular local LU; specifying an LU alias (even a blank LU alias) for a CPI-C
application will cause errors in routing the incoming Attach to the TP.

def_data.description
A null-terminated text string (0-32 characters followed by a null character) describing the TP load
info. This string is for information only; it is stored in the node's configuration file and returned on the
QUERY_TP verb, but CS/AIX does not make any other use of it.

def_data.user_id
User ID required to access and run the TP.

def_data.group_id
Group ID required to access and run the TP.

def_data.timeout
Timeout in seconds after the TP is loaded.

def_data.type
Specifies the TP type. Possible values are:

AP_TP_TYPE_QUEUED

AP_TP_TYPE_QUEUED_BROADCAST

AP_TP_TYPE_NON_QUEUED

def_data.ltv_length
Length of the block of LTV data that is appended to this verb. Each LTV structure is specified in
TP_LOAD_INFO_LTV.

TP_LOAD_INFO_LTV
The LTV data is specified as a series of non-byte-aligned LTVs each of which consists of the following:

• A 2-byte length field with a maximum value of 258 bytes. This field is in line format and is read or
written using NB_PUT_SHORT or NB_GET_SHORT.

• A 1-byte type field set to one of the following possible values:

DEFINE_TP_LOAD_INFO

Chapter 3. NOF API Verbs 203

AP_TYPE_TP_PATH
Path. The value string specifies the full path name of the TP executable.

AP_TYPE_TP_ARGUMENTS
Arguments. The value string specifies a command-line argument required by the TP.

AP_TYPE_TP_STDIN
Standard input. The value string specifies the full path name of the standard input file or device.
If this LTV is not specified, the default is /dev/null.

AP_TYPE_TP_STDOUT
Standard output. The value string specifies the full path name of the standard output file or
device. If this LTV is not specified, the default is /dev/null.

AP_TYPE_TP_STDERR
Standard error. The value string specifies the full path name of the standard error file or device.
If this LTV is not specified, the default is /dev/null.

AP_TYPE_TP_ENV
Environment. The value string specifies an environment variables required by the TP, in the form
VARIABLE = VALUE.

If the TP is a CPI-C application, note that you cannot set the environment variable APPCLLU
using this LTV. The local LU cannot be specified in the TP load information for an automatically-
loaded CPI-C application.

• A value field consisting of up to 255 bytes of ASCII data.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TP_TYPE

The type parameter was not set to a valid value.
AP_INVALID_LTV_LENGTH

An LTV length parameter was not set to a valid value.
AP_INVALID_LTV_TYPE

The LTV type parameter was not set to a valid value.
AP_INVALID_LTV_VALUE

An LTV value parameter contained data that was not valid.
AP_INVALID_TP_STYLE

The TP style parameter contains a value that is not valid.
AP_INVALID_TP_NAME

The TP name parameter contains EBCDIC spaces.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

DEFINE_TP_LOAD_INFO

204 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DEFINE_USERID_PASSWORD
DEFINE_USERID_PASSWORD defines a user ID / password pair for use with APPC and CPI-C conversation
security, or adds profiles for a defined user ID and password.

VCB structure
typedef struct define_userid_password
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 define_type; /* what the define type is */
 unsigned char user_id[10]; /* user id */
 unsigned char reserv3[8]; /* reserved */
 USERID_PASSWORD_CHARS password_chars; /* password characteristics */
} DEFINE_USERID_PASSWORD;

typedef struct userid_password_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 profile_count; /* number of profiles */
 AP_UINT16 reserv1; /* reserved */
 unsigned char password[10]; /* password */
 unsigned char profiles[10][10]; /* profiles */
} USERID_PASSWORD_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DEFINE_USERID_PASSWORD

define_type
Specifies how this verb is being used. Possible values are:
AP_ADD_USER

Add a new user, or change the password for an existing user.
AP_ADD_PROFILES

Add to the profiles for an existing user.
user_id

User identifier. This is a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC
spaces.

Some CPI-C implementations have a maximum user ID length of 8 characters. If you specify a user ID
of 9 or 10 characters, CPI-C applications running on other systems may not be able to access
applications on the CS/AIX system using this user ID and password.

password_chars.description
A null-terminated text string (0-31 characters followed by a null character) describing the user ID and
password. This string is for information only; it is stored in the node's configuration file and returned
on the QUERY_USERID_PASSWORD verb, but CS/AIX does not make any other use of it.

password_chars.profile_count
Number of profiles. This parameter is normally set to zero; see password_chars.profiles below for
more information.

DEFINE_USERID_PASSWORD

Chapter 3. NOF API Verbs 205

password_chars.password
User's password. This is a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC
spaces.

Some CPI-C implementations have a maximum password length of 8 characters. If you specify a
password of 9 or 10 characters, CPI-C applications running on other systems may not be able to
access applications on the CS/AIX system using this user ID and password.

Whatever value the application supplies for this parameter is immediately replaced by the encrypted
version of the password. Therefore, the value supplied for the password_chars.password parameter is
never written out.

password_chars.profiles
Profile names associated with the user ID and password. Each of these is a 10-byte type-AE EBCDIC
character string, padded on the right with EBCDIC spaces.

If a remote TP uses this user ID and password to contact the local TP, and specifies a profile on the
Attach, this must match one of the profile names defined here. Check with the remote System
Administrator to determine if a profile will be used; for each profile that will be used, specify the
profile name as one of the profiles parameters on this verb. In most cases, profile names are not used,
and so there is no need to specify them on this verb; set password_chars.profile_count to zero and do
not specify any profiles.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PASSWORD

The password parameter contained a character that was not valid.
AP_INVALID_PROFILE

One or more of the specified profiles was not valid.
AP_INVALID_UPDATE_TYPE

The define_type parameter was not set to a valid value.
AP_INVALID_USERID

The user_id parameter contained a character that was not valid.
AP_NO_PROFILES

The verb was used to add profiles to an existing user, but no profiles were specified.
AP_TOO_MANY_PROFILES

The profile_count parameter was not set to a valid value.
AP_UNKNOWN_USER

The verb was used to add profiles to an existing user, but the user_id parameter did not match an
existing user ID.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

DEFINE_USERID_PASSWORD

206 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_ADJACENT_LEN_NODE
DELETE_ADJACENT_LEN_NODE removes entries in the node directory database for an adjacent LEN node
and its associated LUs, or removes LU entries for the LEN node without removing the LEN node itself. It is
equivalent to issuing a series of DELETE_DIRECTORY_ENTRY verbs for the LEN node and its associated
LUs.

VCB structure
typedef struct delete_adjacent_len_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char cp_name[17]; /* CP name */
 unsigned char num_of_lus; /* number of LUs */
 unsigned char lu_names[10][8]; /* LU names */
 unsigned char wildcard_lus; /* wildcard LUs */
} DELETE_ADJACENT_LEN_NODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_ADJACENT_LEN_NODE

cp_name
The fully qualified name of the CP in the adjacent LEN node. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

num_of_lus
The number of LUs to be deleted, in the range 1 to 10. To delete the entire LEN node definition,
specify zero.

lu_names
The names of the LUs on the LEN node to be deleted. Each name is an 8-byte type-A EBCDIC
character string, right-padded with EBCDIC spaces. Do not specify any LU names if you are deleting
the entire LEN node definition (if num_of_lus is zero).

You can specify a "wildcard" LU name to match multiple LU names, by specifying only the initial
characters of the name. For example, the wildcard LU name APPN.LU will match APPN.LUNAME or
APPN.LU01 (but will not match APPN.NAMELU). However, all the LU names specified on a single verb
must be of the same type (wildcard or explicit), as defined by the wildcard_lus parameter below. To
remove both types of LU names from the same LEN node, use multiple
DELETE_ADJACENT_LEN_NODE verbs.

wildcard_lus
Indicates whether the specified LU names are wildcard entries or explicit LU names. Possible values
are:
AP_YES

The specified LU names are wildcard entries.
AP_NO

The specified LU names are explicit entries.

DELETE_ADJACENT_LEN_NODE

Chapter 3. NOF API Verbs 207

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CP_NAME

The cp_name parameter contained a character that was not valid.
AP_INVALID_LU_NAME

One or more of the specified LU names contained a character that was not valid.
AP_INVALID_NUM_LUS

The num_of_lus parameter was not in the valid range.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_CP_NAME

The specified CP name does not exist.
AP_INVALID_LU_NAME

One or more of the specified LU names does not exist.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_BACKUP
An application uses this verb to delete a server from the list of backup servers in the sna.net file, so that
this server can no longer act as the controlling configuration file server.

You can use this verb to delete any server in the list, including the controller server, whether or not the
SNA software is running on the server you are deleting. The only restriction is that the list must always
contain at least one server on which the SNA software is running (so that this server can take over as the
controller server); you cannot delete a server if it is the only server in the list or if it is the only server listed
on which the SNA software is running.

This verb must be issued to the sna.net file.

VCB structure
typedef struct delete_backup
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */

DELETE_BACKUP

208 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char backup_name[128]; /* name of server to delete */
 unsigned char reserv3[4]; /* reserved */
} DELETE_BACKUP;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_BACKUP

backup_name
The name of the server being deleted from the list of backup servers.

If the server name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the server name.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_RECORD_NOT_FOUND

The server name specified is not listed in the file.
AP_CANT_DELETE_LAST_BACKUP

The server name cannot be deleted from the list, because it is the only server listed on which the
SNA software is running (and hence the only server that can currently act as the controller). Before
attempting to delete it, either start the SNA software on one or more of the other servers listed, or
add one or more new backup servers (using ADD_BACKUP) and ensure that the SNA software is
started on these servers.

AP_INVALID_TARGET
The target handle on the NOF API call specified a configuration file or a node. This verb must be
issued to the sna.net file.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_CN
DELETE_CN deletes a connection network, or deletes selected ports from a connection network.

DELETE_CN

Chapter 3. NOF API Verbs 209

This verb is valid only at a network node or an end node, and not at a LEN node.

VCB structure
typedef struct delete_cn
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char fqcn_name[17]; /* name of Connection Network */
 unsigned char reserv1; /* reserved */
 AP_UINT16 num_ports; /* number of ports to delete */
 unsigned char port_name[8][8]; /* names of ports to delete */
} DELETE_CN;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_CN

fqcn_name
Fully qualified name of the connection network. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

num_ports
Specify zero to delete the connection network, or the number of ports to be deleted if you are
removing ports instead of deleting the connection network.

port_name
If you are removing ports (if num_ports is nonzero), specify the names of the ports to be deleted. Each
port name is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
bytes. If you are deleting the connection network (if num_ports is zero), these names must be set to
binary zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CN_NAME

The fully-qualified CN name specified did not match any defined CN name.
AP_INVALID_NUM_PORTS_SPECIFIED

The num_ports parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

DELETE_CN

210 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: function not supported
If the verb does not execute successfully because the local node is a LEN node, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is a LEN node. This verb is valid only at a network node or an end node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_COS
DELETE_COS deletes a class of service entry. Only locally defined classes of service can be deleted; the
default classes of service defined by SNA cannot be deleted.

If the node supports mode to COS mapping (as defined by the mode_to_cos_map_supp parameter on
DEFINE_NODE) and the configuration includes modes that are mapped to the COS that you are deleting,
CS/AIX will remap these modes to the default COS (specified by a DEFINE_MODE verb with a null mode
name) or to the SNA-defined COS #CONNECT if no default COS is specified.

VCB structure
typedef struct delete_cos
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char cos_name[8]; /* class of service name */
} DELETE_COS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_COS

cos_name
Class of service name. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

DELETE_COS

Chapter 3. NOF API Verbs 211

AP_COS_NAME_NOT_DEFD
The supplied name is not the name of a COS defined on the CS/AIX system.

AP_SNA_DEFD_COS_CANT_BE_DELETED
The supplied name is the name of one of the SNA-defined classes of service, which cannot be
deleted.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_CPIC_SIDE_INFO
This verb deletes an entry from the side information table.

Note the difference between this verb and the CPI-C function Delete_CPIC_Side_Information. This
verb modifies a configuration file, so that it affects all CS/AIX CPI-C applications. The CPI-C function
modifies the application's own copy in memory of the side information table, and does not affect any
other CPI-C applications.

This verb must be issued to the domain configuration file.

VCB structure
typedef struct delete_cpic_side_info
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserv2a[8]; /* reserved */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */
} DELETE_CPIC_SIDE_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_CPIC_SIDE_INFO

sym_dest_name
Symbolic destination name which identifies the side information entry. This is an 8-byte ASCII string,
consisting of uppercase A-Z and digits 0-9, padded on the right with spaces if necessary.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

DELETE_CPIC_SIDE_INFO

212 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
AP_INVALID_SYM_DEST_NAME

The sym_dest_name parameter was not the name of a defined CPI-C side information entry.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_DIRECTORY_ENTRY
DELETE_DIRECTORY_ENTRY deletes an entry in the Network Directory. You cannot delete the entry for an
end node CP from the directory of its network node server.

If the entry for a parent resource is deleted, then all entries for child resources associated with it are also
deleted. For example, if you delete the entry for a network node that is the parent of an end node, then
the entries for the end node and all LUs associated with both nodes (including wildcard LU entries) are
deleted as well as the entry for the network node.

VCB structure
typedef struct delete_directory_entry
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char resource_name[17]; /* fully qualified resource name */
 unsigned char reserv3; /* reserved */
 AP_UINT16 resource_type; /* resource type */
} DELETE_DIRECTORY_ENTRY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_DIRECTORY_ENTRY

resource_name
Fully qualified name of the resource to be deleted. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

resource_type
Specifies the type of the resource to be deleted. Possible values are:
AP_ENCP_RESOURCE

End node or LEN node
AP_NNCP_RESOURCE

Network node
AP_LU_RESOURCE

LU
AP_WILDCARD_LU_RESOURCE

Wildcard LU name.

DELETE_DIRECTORY_ENTRY

Chapter 3. NOF API Verbs 213

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_FQ_LU_NAME

The resource_name parameter was not the name of a defined directory entry.
AP_INVALID_RESOURCE_TYPE

The resource_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_CANT_DELETE_ADJ_ENDNODE

The specified entry is for an end node, and the node to which this verb was issued is its network
node server. You cannot delete this end node entry.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_DLC
DELETE_DLC deletes a DLC. This verb also deletes the following:

• All ports, link stations and connection network TGs associated with the DLC
• All PUs associated with LSs on the DLC, all LUs owned by these PUs, and all LU-LU passwords

associated with these LUs.

VCB structure
typedef struct delete_dlc
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

DELETE_DLC

214 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char dlc_name[8]; /* name of DLC */
} DELETE_DLC;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_DLC

dlc_name
Name of DLC to be deleted. This is an 8-byte ASCII string, padded on the right with spaces if the name
is shorter than 8 bytes.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

The supplied DLC name was not the name of a DLC defined on the CS/AIX system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_ACTIVE

The DLC cannot be deleted because it is currently active. Use the STOP_DLC verb to stop it before
attempting to delete it.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_DOWNSTREAM_LU
This verb is used to delete a downstream LU.

DELETE_DOWNSTREAM_LU

Chapter 3. NOF API Verbs 215

VCB structure
typedef struct delete_downstream_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dslu_name[8]; /* Downstream LU name */
} DELETE_DOWNSTREAM_LU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU

dslu_name
Name of the downstream LU that is being deleted. This is an 8-byte type A EBCDIC string (starting
with a letter), padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

The dslu_name parameter contained a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The dslu_name parameter did not match any defined downstream LU name.
AP_DSLU_ACTIVE

The LU cannot be deleted because it is currently active.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

DELETE_DOWNSTREAM_LU

216 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway; this is defined by the pu_conc_support parameter
on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_DOWNSTREAM_LU_RANGE
This verb is used to delete a range of downstream LUs.

The supplied parameters to this verb include a base name for the LUs and the range of NAU addresses.
The LU names to be deleted are determined by combining the base name with the NAU addresses. For
example, a base name of LUNME combined with a NAU range of 11 to 14 would delete the LUs
LUNME011, LUNME012, LUNME013, and LUNME014.

All LUs with names in the specified range are deleted; CS/AIX does not return an error if one or more
names in the range do not exist.

VCB structure
typedef struct delete_downstream_lu_range
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dslu_base_name[5]; /* LU base name */
 unsigned char min_nau; /* Minimum NAU address in range */
 unsigned char max_nau; /* Maximum NAU address in range */
} DELETE_DOWNSTREAM_LU_RANGE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU_RANGE

dslu_base_name
Base name for the names of the LUs. This is a 5-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the base name is less than 5 characters. CS/AIX
determines the names of the LUs to be deleted by appending the 3-digit decimal value of each NAU
address to this name.

min_nau
NAU address of the first LU, in the range 1-255.

max_nau
NAU address of the last LU, in the range 1-255.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

DELETE_DOWNSTREAM_LU_RANGE

Chapter 3. NOF API Verbs 217

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_NAU_ADDRESS

The min_nau or max_nau parameter was not valid.
AP_INVALID_LU_NAME

The dslu_base_name parameter contained a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

There were no LUs defined with names in the specified range.
AP_DSLU_ACTIVE

One or more of the LUs in the range cannot be deleted because it is currently active.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway; this is defined by the pu_conc_support parameter
on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_DSPU_TEMPLATE
The DELETE_DSPU_TEMPLATE verb deletes a specific downstream physical unit (DSPU) template that
was previously defined using a DEFINE_DSPU_TEMPLATE verb, or deletes one or more downstream LU
(DSLU) templates from a DSPU template.

DELETE_DSPU_TEMPLATE

218 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct delete_dspu_template
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char template_name[8]; /* name of template */
 AP_UINT16 num_of_dslu_templates; /* number of dslu templates */
 unsigned char reserv1[10]; /* reserved */
} DELETE_DSPU_TEMPLATE;

typedef struct dslu_template
}
 unsigned char min_nau; /* Minimum NAU address in range */
 unsigned char max_nau; /* Maximum NAU address in range */
 unsigned char allow_timeout; /* Allow timeout of host LU? */
 unsigned char delayed_logon; /* Allow delayed logon to host */
 /* LU */
 unsigned char reserv1[8]; /* reserved */
 unsigned char host_lu[8]; /* Host LU or Pool name */
} DSLU_TEMPLATE;

Supplied parameters
Supplied parameters are:

opcode
AP_DELETE_DSPU_TEMPLATE

template_name
Name of the DSPU template to be deleted, or the DSPU template containing the DSLU templates to be
deleted. Specify 1-8 locally displayable characters.

num_of_dslu_templates
Number of DSLU templates to be deleted. Specify a value in the range 1-255, or specify 0 (zero) to
delete the entire DSPU template.

For each DSLU template to be deleted, up to the number specified in num_of_dslu_templates, append a
DSLU_TEMPLATE structure to the end of the DELETE_DSPU_TEMPLATE structure, containing the following
parameters:

min_nau
Minimum NAU address in the range of DSLU templates to be deleted. Specify a value in the range
1-255.

max_nau
Maximum NAU address in the range of DSLU templates to be deleted. Specify a value in the range
1-255.

allow_timeout
Specifies whether CS/AIX is allowed to timeout host LUs used by this downstream LU if the session is
left inactive for the timeout period specified on the host LU definition. Possible values are:
AP_YES

CS/AIX is allowed to timeout host LUs used by this downstream LU.
AP_NO

CS/AIX is not allowed to timeout host LUs used by this downstream LU.
delayed_logon

Specifies whether CS/AIX delays connecting the downstream LU to the host LU until the first data is
received from the downstream LU. Instead, a simulated logon screen is sent to the downstream LU.
Possible values are:

DELETE_DSPU_TEMPLATE

Chapter 3. NOF API Verbs 219

AP_YES
CS/AIX delays connecting the downstream LU to the host LU until the first data is received from
the downstream LU.

AP_NO
CS/AIX does not delay connecting the downstream LU to the host LU until the first data is received
from the downstream LU.

host_lu
Name of the host LU or host LU pool onto which all the downstream LUs within the range will be
mapped.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TEMPLATE_NAME

The template specified by the template_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_FOCAL_POINT
The DELETE_FOCAL_POINT verb removes the definition of a focal point for a specified MS category
(either the main focal point for that category or a backup focal point). If the defined focal point application
is active and acting as the current focal point for that category, CS/AIX sends an MS_CAPABILITIES
message to the focal point to revoke it so that it no longer acts as the focal point.

VCB structure
typedef struct delete_focal_point
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserved; /* reserved */
 unsigned char ms_category[8]; /* management services category */
 unsigned char type; /* type of focal point */
} DELETE_FOCAL_POINT;

Supplied parameters
The application supplies the following parameters:

DELETE_FOCAL_POINT

220 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

opcode
AP_DELETE_FOCAL_POINT

ms_category
Management Services category. This may be either one of the category names specified in the MS
Discipline-Specific Application Programs table of Systems Network Architecture: Management Services
Reference (see the Bibliography), padded with EBCDIC spaces (0x40), or a user-defined category. A
user-defined category name is an 8-byte type-1134 EBCDIC string, padded with EBCDIC spaces
(0x40) if necessary.

type
Specifies the type of the focal point that is being deleted. Possible values are:
AP_ACTIVE

The currently active focal point (which may be of any type) is revoked.
AP_IMPLICIT

The implicit definition (defined using DEFINE_FOCAL_POINT with backup set to AP_NO) is
removed. If this focal point is currently active, then it is revoked.

AP_BACKUP
The backup definition (defined using DEFINE_FOCAL_POINT with backup set to AP_YES) is
removed. If this focal point is currently active, then it is revoked.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CATEGORY_NAME

The supplied category name contained a character that was not valid.
AP_INVALID_TYPE

The type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_FOCAL_POINT

Chapter 3. NOF API Verbs 221

DELETE_INTERNAL_PU
DELETE_INTERNAL_PU deletes a DLUR-served local PU. The PU can be deleted only if it does not have an
active SSCP-PU session.

VCB structure
typedef struct delete_internal_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pu_name[8]; /* internal PU name */
} DELETE_INTERNAL_PU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_INTERNAL_PU

pu_name
Name of the internal PU that is being deleted. This is an 8-byte type-A EBCDIC string (starting with a
letter), padded on the right with EBCDIC spaces.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

The pu_name parameter was not the name of a defined internal PU.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_PU_NOT_RESET

The PU cannot be deleted because it still has an active PU-SSCP session.
AP_INVALID_PU_TYPE

The specified PU is a remote PU and not an internal PU.

DELETE_INTERNAL_PU

222 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The node does not support DLUR; this is defined by the dlur_support parameter on DEFINE_NODE.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LOCAL_LU
The DELETE_LOCAL_LU verb deletes a local LU, and also deletes any LU-LU passwords associated with
the local LU.

VCB structure
typedef struct delete_local_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
} DELETE_LOCAL_LU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LOCAL_LU

lu_name
Name of the local LU to be deleted. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_CANT_DELETE_CP_LU

The supplied LU name was blank (indicating the LU associated with the CP); this LU cannot be
deleted.

DELETE_LOCAL_LU

Chapter 3. NOF API Verbs 223

AP_INVALID_LU_NAME
The supplied LU name is not the name of a local LU defined on the CS/AIX system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LS
DELETE_LS deletes a defined Link Station (LS). This verb also deletes the PU associated with the LS, all
LUs owned by this PU, and all LU-LU passwords associated with these LUs. The LS cannot be deleted if it
is active.

VCB structure
typedef struct delete_ls
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char ls_name[8]; /* name of link station */
} DELETE_LS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LS

ls_name
Name of link station being deleted. This is an 8-byte ASCII string, padded on the right with spaces if
the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME

The supplied LS name contains a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

DELETE_LS

224 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_LS_ACTIVE

The LS cannot be deleted because it is currently active.
AP_INVALID_LINK_NAME

The supplied LS name is not the name of an LS defined on the CS/AIX system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LS_ROUTING
The DELETE_LS_ROUTING verb deletes the association of a partner LU to a link station that was
previously defined using the DEFINE_LS_ROUTING verb.

VCB structure
typedef struct delete_ls_routing
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU Name */
 unsigned char lu_alias[8]; /* reserved */
 unsigned char fq_partner_lu[17]; /* partner lu name */
 unsigned char wildcard_fqplu; /* wildcard partner LU flag */
 unsigned char reserv3[2]; /* reserved */
} DELETE_LS_ROUTING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LS_ROUTING

lu_name
Name of the local LU that communicated with the partner LU (specified by the fq_partner_lu
parameter). Specify 1-8 locally displayable characters.

fq_partner_lu
Fully qualified name of the partner LU to be removed from the local LU's LS routing data. Specify 3-17
locally displayable characters that consist of a 1-8 character network name, followed by a period,
followed by a 1-8 character partner LU name.

To delete a wildcard entry, specify the same wildcard LU name that you used to define the entry. You
cannot use wildcards to delete more than one explicitly-defined entry.

DELETE_LS_ROUTING

Chapter 3. NOF API Verbs 225

wildcard_fqplu
Wildcard partner LU flag indicating whether the fq_partner_lu parameter contains a full or partial
wildcard. This flag is used to delete a wildcard entry; you cannot use wildcards to delete more than
one explicitly-defined entry. Possible values are:
AP_YES

The fq_partner_lu parameter contains a wildcard entry.
AP_NO

The fq_partner_lu parameter does not contain a wildcard entry.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LOCAL_LU

The lu_name parameter contained a character that was not valid.
AP_INVALID_PARTNER_LU

The fq_partner_lu parameter contained a character that was not valid.
AP_INVALID_WILDCARD_NAME

The wildcard_fqplu parameter was set to AP_YES, but the fq_partner_lu parameter was not a valid
wildcard name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_INVALID_LOCAL_LU

The lu_name parameter did not match an existing LS routing record.
AP_INVALID_PARTNER_LU

The fq_partner_lu parameter did not match an existing LS routing record for the specified local LU.
AP_INVALID_WILDCARD_NAME

The wildcard_fqplu parameter was set to YES, but no matching entry was found.
AP_INVALID_RESOURCE_NAME

No LS routing entry that matched the supplied parameters was found.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

DELETE_LS_ROUTING

226 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LU62_TIMEOUT
The DELETE_LU62_TIMEOUT verb deletes a definition of an LU type 6.2 session timeout that was defined
previously with a DEFINE_LU62_TIMEOUT verb.

VCB structure
typedef struct delete_lu62_timeout
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char resource_type; /* resource type */
 unsigned char resource_name[17]; /* resource name */
} DELETE_LU62_TIMEOUT;

Supplied parameters
Supplied parameters are:

opcode
AP_DELETE_LU62_TIMEOUT

resource_type
Specifies the type of timeout being deleted. Possible values are:
AP_GLOBAL_TIMEOUT

Delete timeouts that apply to all LU 6.2 sessions for the local node.
AP_LOCAL_LU_TIMEOUT

Delete timeouts that apply to all LU 6.2 sessions for the local LU specified in the resource_name
parameter.

AP_PARTNER_LU_TIMEOUT
Delete timeouts that apply to all LU 6.2 sessions to the partner LU specified in the resource_name
parameter.

AP_MODE_TIMEOUT
Delete timeouts that apply to all LU 6.2 sessions on the mode specified in the resource_name
parameter.

resource_name
Name of the resource whose timeout is being deleted. This value can be one of the following:

• If resource_type is set to AP_GLOBAL_TIMEOUT, do not specify this parameter.
• If resource_type is set to AP_LOCAL_LU_TIMEOUT, specify 1-8 locally displayable type-A characters

as a local LU name.
• If resource_type is set to AP_PARTNER_LU_TIMEOUT, specify the fully qualified name of the partner

LU as follows: 17 locally displayable type-A characters consisting of a 1-8 character network name,
followed by a period, followed by a 1-8 character partner LU name.

• If resource_type is set to AP_MODE_TIMEOUT, specify 1-8 locally displayable type-A characters as a
mode name.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

DELETE_LU62_TIMEOUT

Chapter 3. NOF API Verbs 227

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RESOURCE_TYPE

The value specified in the resource_type parameter was not valid.
AP_INVALID_LU_NAME

The LU name specified in the resource_name parameter was not valid.
AP_INVALID_PARTNER_LU

The partner LU name specified in the resource_name parameter was not valid.
AP_INVALID_MODE_NAME

The mode name specified in the resource_name parameter was not valid.
AP_GLOBAL_TIMEOUT_NOT_DEFINED

The value AP_GLOBAL_TIMEOUT was specified for the resource_type parameter but there is no
defined global timeout.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LU_0_TO_3
This verb is used to delete an LU used for 3270 emulation or LUA (an LU of type 0-3).

VCB structure
typedef struct delete_lu_0_to_3
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU name */
} DELETE_LU_0_TO_3;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3

lu_name
Name of the local LU to be deleted. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

DELETE_LU_0_TO_3

228 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

The supplied LU name contained a character that was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

The supplied LU name is not the name of an LU defined on the CS/AIX system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LU_0_TO_3_RANGE
This verb is used to delete a range of LUs used for 3270 emulation or LUA (type 0-3 LUs).

The supplied parameters to this verb include a base name for the LUs and the range of NAU addresses.
The LU names to be deleted are determined by combining the base name with the NAU addresses. For
example, a base name of LUNME combined with a NAU range of 11-14 would delete the LUs LUNME011,
LUNME012, LUNME013, and LUNME014.

All LUs with names in the specified range are deleted; CS/AIX does not return an error if one or more
names in the range do not exist.

VCB structure
typedef struct delete_lu_0_to_3_range
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char base_name[6]; /* Base name */
 unsigned char min_nau; /* Minimum NAU address in range */
 unsigned char max_nau; /* Maximum NAU address in range */
 unsigned char name_attributes; /* Extension type */

DELETE_LU_0_TO_3_RANGE

Chapter 3. NOF API Verbs 229

 unsigned char base_number; /* First extension number */
 unsigned char reserv5[16]; /* reserved */
} DELETE_LU_0_TO_3_RANGE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3_RANGE

base_name
Base name for the names of the LUs. This is a type-A EBCDIC string (starting with a letter), padded on
the right with EBCDIC spaces if the base name is less than 6 characters. It may be either 5 bytes or 6
bytes long, as determined by the name_attributes parameter. CS/AIX determines the names of the LUs
to be deleted by appending the decimal value of each NAU address (or a number in the range starting
from the base_number parameter) to this name.

min_nau
NAU address of the first LU, in the range 1-255.

max_nau
NAU address of the last LU, in the range 1-255.

name_attributes
Specifies the extension type of the LUs. Possible values are:
AP_NONE

LU names have numbers that correspond to the NAU numbers. The numbers are specified in
decimal and the base_name parameter can contain only five characters.

AP_USE_BASE_NUMBER
Start deleting the LUs in the range from the value specified in the base_number parameter.

AP_USE_HEX_IN_NAME
The extension to the LU name is in hex rather than decimal. The base_name parameter can
contain 6 characters if this value is specified.

base_number
If AP_USE_BASE_NUMBER is specified in the name_attributes parameter, specify a number from which
to start deleting the LUs in the range. This value will be used instead of the value of the min_nau
parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_NAU_ADDRESS

The min_nau or max_nau parameter was not valid.
AP_INVALID_LU_NAME

The base_name parameter contained a character that was not valid.

DELETE_LU_0_TO_3_RANGE

230 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

There were no LUs defined with names in the specified range.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LU_LU_PASSWORD
DELETE_LU_LU_PASSWORD deletes an LU-LU password associated with a local LU. LU-LU passwords are
deleted automatically when the local LU is deleted; you need only use this verb if you need to remove the
password but leave the LU configured.

VCB structure
typedef struct delete_lu_lu_password
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv3; /* reserved */
} DELETE_LU_LU_PASSWORD;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_LU_LU_PASSWORD

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

DELETE_LU_LU_PASSWORD

Chapter 3. NOF API Verbs 231

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

The fqplu_name parameter was not valid.
AP_INVALID_LU_NAME

The lu_name parameter was not valid.
AP_INVALID_LU_ALIAS

The lu_alias parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_LU_POOL
DELETE_LU_POOL is used to do one of the following:

• Remove one or more LUs from a pool
• Remove all LUs from a pool and delete the pool

This verb does not delete the LUs; they remain defined, but are not associated with any pool.

VCB structure
typedef struct delete_lu_pool
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pool_name[8]; /* LU pool name */
 AP_UINT16 num_lus; /* Number of specified LUs */
 unsigned char lu_names[10][8]; /* LU names */
} DELETE_LU_POOL;

Supplied parameters
The application supplies the following parameters:

DELETE_LU_POOL

232 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

opcode
AP_DELETE_LU_POOL

pool_name
Name of the LU pool. This is an 8-byte EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

num_lus
The number of LUs to be removed (the number of LU names in the lu_names list). The range is 1-10
when removing LUs from a pool without deleting it. To remove all LUs from the pool and delete the
pool, specify zero.

lu_names
To remove one or more LUs from the pool without deleting the pool, specify the names of the LUs to
be removed. The number of names specified must match the num_lus parameter. Each name is an 8-
byte type A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if the name
is shorter than 8 characters.

If num_lus is set to zero, to remove all LUs from the pool and delete the pool, this parameter is not
used.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_POOL_NAME

The supplied pool name was not valid.
AP_INVALID_LU_NAME

One or more of the specified LU names did not match the name of an LU in the pool.
AP_INVALID_NUM_LUS

The supplied num_lus parameter was not in the valid range.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_MODE
DELETE_MODE deletes the definition of a mode. You cannot delete SNA-defined modes such as
SNASVCMG and CPSVCMG.

VCB structure
typedef struct delete_mode
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */

DELETE_MODE

Chapter 3. NOF API Verbs 233

 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char mode_name[8]; /* mode name */
} DELETE_MODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_MODE

mode_name
Name of the mode. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the right
with EBCDIC spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_CP_OR_SNA_SVCMG_UNDELETABLE

The specified mode name is one of the SNA-defined mode names, and cannot be deleted.
AP_MODE_NAME_NOT_DEFD

The specified mode name is not the name of a mode defined on the CS/AIX system.
AP_DEL_MODE_DEFAULT_SPCD

The specified mode was defined as the default mode using the DEFINE_DEFAULTS verb, so it
cannot be deleted.

AP_MODE_UNDELETABLE
The specified mode name is one of the SNA-defined mode names, and cannot be deleted.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_PARTNER_LU
The DELETE_PARTNER_LU verb deletes a partner LU definition.

VCB structure
typedef struct delete_partner_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

DELETE_PARTNER_LU

234 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
} DELETE_PARTNER_LU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_PARTNER_LU

fqplu_name
Fully qualified LU name for the partner LU to be deleted. The name is a 17-byte EBCDIC string, right-
padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PLU_NAME

The supplied fqplu_name parameter did not match any defined partner LU name.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_PORT
DELETE_PORT deletes a port. This verb also deletes the following:

• All link stations and connection network TGs associated with the port.
• All PUs associated with LSs on the port, all LUs owned by these PUs, and all LU-LU passwords

associated with these LUs.

The port must be inactive when the verb is issued.

VCB structure
typedef struct delete_port
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char port_name[8]; /* name of port */
} DELETE_PORT;

DELETE_PORT

Chapter 3. NOF API Verbs 235

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_PORT

port_name
Name of port being deleted. This is an 8-byte ASCII string, right-padded with spaces if the name is
shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

The specified port name was not the name of a port defined on the CS/AIX system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE

The specified port cannot be deleted because it is currently active.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_RCF_ACCESS
DELETE_RCF_ACCESS prevents access to the CS/AIX Remote Command Facility (RCF), which was
previously specified using DEFINE_RCF_ACCESS. For more information about RCF, see the IBM
Communications Server for Data Center Deployment on AIX Administration Guide.

This verb prevents access to both SPCF and UCF. To allow access to one of them but prevent access to the
other, use DEFINE_RCF_ACCESS.

This verb must be issued to the domain configuration file. CS/AIX acts on the RCF access parameters
during node startup; if RCF access is deleted while a node is running, the change does not take effect on
the server where the node is running until the node is stopped and restarted.

DELETE_RCF_ACCESS

236 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct delete_rcf_access
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
} DELETE_RCF_ACCESS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_DELETE_RCF_ACCESS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_SECURITY_ACCESS_LIST
DELETE_SECURITY_ACCESS_LIST is used to do one of the following:

• Delete a security access list.
• Delete one or more users from a security access list but leave the list configured.

You can delete a user name from the security access list regardless of whether there are active
conversations that were set up using that user name. Deleting the user name does not affect the active
conversations, but the invoking program will not be able to set up any further conversations using the
deleted user name.

VCB structure
The DELETE_SECURITY_ACCESS_LIST verb contains a variable number of security_user_name
structures; these define the user names to be deleted from the security access list. The user name
structures are included at the end of the delete_security_access_list structure; the number of
these structures is specified by the num_users parameter.

typedef struct delete_security_access_list
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char list_name[14]; /* name of this list */
 unsigned char reserv3[2]; /* reserved */
 AP_UINT32 num_users; /* number of users to delete */
} DELETE_SECURITY_ACCESS_LIST;

typedef struct security_user_name
{

DELETE_SECURITY_ACCESS_LIST

Chapter 3. NOF API Verbs 237

 unsigned char user_name[10]; /* user name to delete */
} SECURITY_USER_NAME;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_SECURITY_ACCESS_LIST

list_name
The name of the security access list being deleted, or the list from which user names are being
deleted. This is an ASCII string of 1-14 characters, padded on the right with spaces if the name is
shorter than 14 characters, which must match a previously-defined security access list name.

num_users
The number of user names to be deleted from the security access list, as follows:

• To delete one or more user names from the list but leave other user names configured, specify the
number of user names that are being deleted. Each of these must be defined by a user name
structure, as described below.

• To delete the entire security access list, specify zero in this parameter and do not include any user
names.

For each user name to be deleted, up to the number specified in num_users, append a
SECURITY_USER_NAME structure to the end of the DELETE_SECURITY_ACCESS_LIST structure,
containing the following parameter:

user_name
The user name being deleted. This must match a user name that is currently defined for this security
access list.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_NAME

The specified security access list name was not defined as a security access list name.
AP_INVALID_USER_NAME

One or more of the specified user names did not match the name of a user defined for this security
access list.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_TN3270_ACCESS
DELETE_TN3270_ACCESS is used to do one of the following:

DELETE_TN3270_ACCESS

238 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• Delete a TN3270 Server user, so that this user can no longer use TN server to access a host.
• Delete one or more of the user's sessions but leave the user configured.

VCB structure
typedef struct delete_tn3270_access
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 default_record; /* is this the DEFAULT record? */
 unsigned char client_address[256]; /* address of TN3270 user */
 AP_UINT32 num_sessions; /* number of sessions to delete */
 unsigned char delete_options; /* delete all sessions / delete */
 /* user? */
} DELETE_TN3270_ACCESS;

typedef struct tn3270_session_name
{
 AP_UINT16 port_number; /* TCP/IP port num of session */
 /* to delete */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
} TN3270_SESSION_NAME;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_TN3270_ACCESS

default_record
Specifies whether this verb refers to the default TN3270 user record that is used by any TN3270 user
not explicitly identified by a TCP/IP address (deleting this record means that such users cannot access
TN server). Possible values are:
AP_YES

This verb refers to the default TN3270 user record. The client_address parameter is reserved.
AP_NO

This verb refers to a normal TN3270 user record.
client_address

The TCP/IP address of the TN3270 user to be deleted, as specified on the DEFINE_TN3270_ACCESS
verb. This is a null-terminated ASCII string, which can be any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

num_sessions
The number of sessions to be deleted, as follows:

• To delete one or more of the user's sessions but leave other sessions configured, specify the
number of sessions that are being deleted. Each of these must be defined by its TCP/IP port
number, as described below.

• To delete all sessions, or to delete the user, specify zero in this parameter and do not include any
TCP/IP port numbers. Specify the type of deletion required in the delete_options parameter below.

DELETE_TN3270_ACCESS

Chapter 3. NOF API Verbs 239

delete_options
If the num_sessions parameter (see above) is nonzero, this parameter is ignored. If num_sessions is
zero, specify one of the following values:
AP_ALL_SESSIONS

Delete all sessions but leave the TN3270 user configured.
AP_DELETE_USER

Delete the user and all the user's sessions.

For each session to be deleted, up to the number specified in num_sessions, append a
TN3270_SESSION_NAME structure to the end of the DELETE_TN3270_ACCESS structure, containing
the following parameters:

tn3270_session_name.port_number
The TCP/IP port number used for the session. This must match a port number defined for this TN3270
user.

tn3270_session_name.listen_local_address
The address on the local TN Server computer to which TN3270 clients connect.

• If this parameter was not specified when configuring the session, specify it as all binary zeros.
• If the address was specified when configuring the session, specify the same address in this

parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CLIENT_ADDRESS

The specified client address did not match the TCP/IP address defined for any TN3270 user.
AP_INVALID_PORT_NUMBER

The specified TCP/IP port number did not match any TCP/IP port number defined for this user.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_TN3270_ASSOCIATION
DELETE_TN3270_ASSOCIATION deletes an association between a display LU and a printer LU, given the
display LU name.

DELETE_TN3270_ASSOCIATION

240 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct delete_tn3270_association
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char display_lu_name[8]; /* Display LU name */
} DELETE_TN3270_ASSOCIATION;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_TN3270_ASSOCIATION

display_lu_name
Specifies the name of the display LU whose association is to be deleted. This is an EBCDIC string
padded on the right with EBCDIC spaces.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

The display LU name was not a valid EBCDIC string.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME

No association is defined for the specified display LU.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_TN3270_ASSOCIATION

Chapter 3. NOF API Verbs 241

DELETE_TN_REDIRECT
DELETE_TN_REDIRECT is used to delete a TN Redirector user, so that this user can no longer use TN
Redirector to access a host.

VCB structure
typedef struct delete_tn_redirect
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN_REDIRECT_ADDRESS addr; /* Uniquely defines record */
} DELETE_TN_REDIRECT;

typedef struct tn_redirect_address
{
 AP_UINT16 default_record; /* Is this the default record ? */
 unsigned char address_format; /* IP address or fully-qualified name */
 unsigned char client_address[256]; /* Client address */
 AP_UINT16 port_number; /* Port number that client connects on */
 unsigned char listen_local_address[46]; /* Local addr client connects to */
 unsigned char reserved[34]; /* reserved */
} TN_REDIRECT_ADDRESS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_TN_REDIRECT

addr.default_record
Specifies whether this verb refers to the default TN Redirector user record that is used by any TN
Redirector user not explicitly identified by a TCP/IP address (deleting this record means that such
users cannot access TN Redirector). Possible values are:
AP_YES

This verb refers to a default record. The client_address and address_format parameters are
reserved.

AP_NO
This verb refers to a normal TN Redirector user record.

addr.address_format
Specifies the format of the client_address parameter. Possible values are:
AP_ADDRESS_IP

IP address (either IPv4 or IPv6)
AP_ADDRESS_FQN

Alias or fully qualified name
addr.client_address

The TCP/IP address of the computer on which the Telnet client runs. This is a null-terminated ASCII
string, which can be any of the following; the address_format parameter indicates whether it is an IP
address or a name.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

DELETE_TN_REDIRECT

242 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If you use a name or alias, the AIX system must be able to resolve the name or alias to a fully qualified
name (either using the local TCP/IP configuration or using a Domain Name server).

addr.port_number
The number of the server TCP/IP port that the Telnet client uses to access the TN server node.

addr.listen_local_address
The address on the local TN Server computer to which TN3270 clients connect.

• If this parameter was not specified when configuring the TN redirection record, specify it as all
binary zeros.

• If the address was specified when configuring the TN redirection record, specify the same address
in this parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CLIENT_ADDRESS

The specified addressing information did not match any defined TN Redirector user.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_TP
DELETE_TP deletes a TP definition.

VCB structure
typedef struct delete_tp
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char tp_name[64]; /* TP name */
} DELETE_TP;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_TP

DELETE_TP

Chapter 3. NOF API Verbs 243

tp_name
Name of the TP to be deleted.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TP_NAME

The tp_name parameter did not match the name of a defined TP.
AP_SYSTEM_TP_CANT_BE_DELETED

The specified TP name is the name of a TP used internally by CS/AIX you cannot delete it.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_TP_LOAD_INFO
The DELETE_TP_LOAD_INFO verb deletes a TP load information entry.

VCB structure
typedef struct delete_tp_load_info
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char tp_name[64]; /* TP name */
 unsigned char lu_alias[8]; /* LU alias */
} DELETE_TP_LOAD_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_TP_LOAD_INFO

tp_name
The TP name of the TP load info entry to be deleted. This is a 64-byte EBCDIC string, padded on the
right with spaces if the name is shorter than 64 characters.

lu_alias
The LU alias of the TP load info entry to be deleted. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 bytes.

DELETE_TP_LOAD_INFO

244 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

This parameter can be used only if the TP is an APPC application; it is reserved if the TP is a CPI-C
application.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TP_NAME

The tp_name parameter did not match the name of a defined TP.
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias specified for a TP load info entry for the
TP name specified.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_USERID_PASSWORD
DELETE_USERID_PASSWORD deletes a password associated with a user ID, or removes profiles for a user
ID and password.

VCB structure
typedef struct delete_userid_password
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 delete_type; /* type of delete */
 unsigned char user_id[10]; /* user id */
 USERID_PASSWORD_CHARS password_chars; /* password characteristics */
} DELETE_USERID_PASSWORD;

typedef struct userid_password_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 profile_count; /* number of profiles */
 AP_UINT16 reserv1; /* reserved */
 unsigned char password[10]; /* password */
 unsigned char profiles[10][10]; /* profiles */
} USERID_PASSWORD_CHARS;

DELETE_USERID_PASSWORD

Chapter 3. NOF API Verbs 245

Supplied parameters
The application supplies the following parameters:

opcode
AP_DELETE_USERID_PASSWORD

delete_type
Specifies how this verb is being used. Possible values are:
AP_REMOVE_USER

Delete the user, password, and all associated profiles.
AP_REMOVE_PROFILES

Delete the specified profiles.
user_id

User identifier. This is a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC
spaces if the name is shorter than 10 characters.

password_chars.description
This parameter is ignored.

password_chars.profile_count
Number of profiles to be deleted. If delete_type is set to AP_REMOVE_USER, this parameter is
reserved.

password_chars.password
This parameter is ignored.

password_chars.profiles
Profiles associated with user. Each of these is a 10-byte type-AE EBCDIC character string, padded on
the right with EBCDIC spaces if the profile name is shorter than 10 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_NO_PROFILES

The delete_type parameter was set to AP_REMOVE_PROFILES, but no profiles were specified.
AP_UNKNOWN_USER

The user_id parameter did not match a defined user ID.
AP_INVALID_UPDATE_TYPE

The delete_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DELETE_USERID_PASSWORD

246 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

DISCONNECT_NODE
An application uses this verb to release its handle to a CS/AIX node when it has finished issuing NOF
verbs to the node. The node from which the application wishes to disconnect is identified by the
target_handle parameter on the call. After the verb completes successfully, the target handle identifying
the node is no longer valid.

The application should always issue DISCONNECT_NODE for any open node handles before it exits, to
allow CS/AIX to free the resources associated with the application.

This verb may be issued to release a target handle for a running node, or for a server where the node is
not running.

VCB structure
typedef struct disconnect_node
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
} DISCONNECT_NODE;

Supplied parameters
opcode

AP_DISCONNECT_NODE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_VERB_IN_PROGRESS

The specified target handle cannot be released because a previous verb issued for this handle is
still outstanding. All verbs for the target handle must be completed before attempting to
disconnect from the node.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

DISCONNECT_NODE

Chapter 3. NOF API Verbs 247

INIT_NODE
This verb starts a previously-defined node. The application must first issue CONNECT_NODE to obtain a
target handle for the node; it then uses this target handle on the INIT_NODE call to identify the node to
start.

This verb must be issued to a server where the node is not running.

VCB structure
typedef struct init_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
} INIT_NODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_INIT_NODE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter check, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_NODE_NAME

The node name specified in the configuration file does not match the name of the CS/AIX
computer to which the verb was issued.

AP_NOT_SERVER
The node name specified in the configuration file matches the name of the CS/AIX computer, but
the specified computer is a client (not a server) and cannot run the node.

AP_DLUR_NOT_SUPPORTED
The configuration of the node specifies that DLUR is supported, but the node is defined as a LEN
node. DLUR cannot be supported on a LEN node.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

INIT_NODE

248 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Possible values are:
AP_NODE_ALREADY_STARTED

The specified node has already been started.
AP_RESOURCE_NOT_LOADED

The node was not started because CS/AIX detected one or more errors while attempting to load
its configuration. Check the error log file for messages giving more details of the errors.

AP_INVALID_VERSION
The node was not started because there was a version mismatch between components of the
CS/AIX software. If you have upgraded your CS/AIX license to include additional functions or
users, check that you are using the correct version of the licensing software.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

INITIALIZE_SESSION_LIMIT
The INITIALIZE_SESSION_LIMIT verb initializes the session limits for a combination of local LU, partner
LU, and mode.

You must issue this verb before you issue an ACTIVATE_SESSION verb.

This verb can be issued from a NOF application running on a client. If it runs on an AIX or Linux client, the
NOF application must run with the userid root, or with a userid that is a member of the sys group (AIX)
or sna group (Linux).

VCB structure
typedef struct initialize_session_limit
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char plu_alias[8]; /* partner */
 unsigned char fqplu_name[17]; /* fully qualified partner */
 /* LU name */
 unsigned char reserv3; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char reserv3a; /* reserved */
 unsigned char set_negotiable; /* set max negotiable limit? */
 AP_UINT16 plu_mode_session_limit; /* session limit */
 AP_UINT16 min_conwinners_source; /* minimum source contention */
 /* winner sessions */
 AP_UINT16 min_conwinners_target; /* minimum target contention */
 /* winner sessions */
 AP_UINT16 auto_act; /* auto activation limit */
 unsigned char reserv4[4]; /* reserved */
 AP_UINT32 sense_data; /* sense data */
} INITIALIZE_SESSION_LIMIT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_INITIALIZE_SESSION_LIMIT

INITIALIZE_SESSION_LIMIT

Chapter 3. NOF API Verbs 249

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

plu_alias
LU alias of the partner LU. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes. To indicate that the partner LU is
defined by its fully qualified LU name instead of its LU alias, set this parameter to 8 binary zeros.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This parameter is used only if the
plu_alias field is set to zeros; it is ignored if plu_alias is specified.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

mode_name
Name of the mode to be used by the LUs. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded on the right with EBCDIC spaces if the name is shorter than 8 bytes.

set_negotiable
Specifies whether the maximum negotiable session limit for this mode, as defined by DEFINE_MODE,
should be modified. Possible values are:
AP_YES

Use the value specified by plu_mode_session_limit as the maximum negotiable session limit for
this LU-LU-mode combination.

AP_NO
Leave the maximum negotiable session limit as the value specified for the mode.

plu_mode_session_limit
Requested total session limit for this LU-LU-mode combination: the maximum number of parallel
sessions permitted between these two LUs using this mode. Specify a value in the range 1-32,767
(which must not exceed the session limit specified for the local LU on the DEFINE_LOCAL_LU verb).
This value may be negotiated with the partner LU.

min_conwinners_source
Minimum number of sessions using this mode for which the local LU is the contention winner. Specify
a value in the range 0-32,767. The sum of the min_conwinners_source and min_conwinners_target
parameters must not exceed the plu_mode_session_limit parameter.

min_conwinners_target
Minimum number of sessions using this mode for which the partner LU is the contention winner.
Specify a value in the range 0-32,767. The sum of the min_conwinners_source and
min_conwinners_target parameters must not exceed the plu_mode_session_limit parameter.

auto_act
Number of sessions to activate automatically. Specify a value in the range 0-32,767 (which must not
exceed the plu_mode_session_limit parameter or the session limit specified for the local LU on the
DEFINE_LOCAL_LU verb). The actual number of automatically activated sessions is the minimum of
this value and the negotiated minimum number of contention winner sessions for the local LU.

INITIALIZE_SESSION_LIMIT

250 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Possible values are:
AP_AS_NEGOTIATED

The session limits were initialized, but one or more values were negotiated by the partner LU.
AP_AS_SPECIFIED

The session limits were initialized as requested, without being negotiated by the partner LU.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_EXCEEDS_MAX_ALLOWED

The plu_mode_session_limit, min_conwinners_source, min_conwinners_target, or auto_act
parameter was set to a value outside the valid range.

AP_CANT_CHANGE_TO_ZERO
The plu_mode_session_limit parameter cannot be set to zero using this verb; use
RESET_SESSION_LIMIT instead.

AP_INVALID_LU_ALIAS
The lu_alias parameter did not match any defined local LU alias.

AP_INVALID_LU_NAME
The lu_name parameter did not match any defined local LU name.

AP_INVALID_MODE_NAME
The mode_name parameter did not match any defined mode name.

AP_INVALID_PLU_NAME
The fqplu_name parameter did not match any defined partner LU name.

AP_INVALID_SET_NEGOTIABLE
The set_negotiable parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_NOT_RESET

One or more sessions are currently active for this LU-LU-mode combination. Use
CHANGE_SESSION_LIMIT instead of INITIALIZE_SESSION_LIMIT to specify the limits.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

INITIALIZE_SESSION_LIMIT

Chapter 3. NOF API Verbs 251

Returned parameters: session allocation error
If the verb does not execute because of a session allocation error, CS/AIX returns the following
parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

A session could not be allocated because of a condition that requires corrective action. Check the
sense_data parameter and any logged messages to determine the reason for the failure, and take
any action required. Do not attempt to retry the verb until the condition has been corrected.

sense_data
The SNA sense data associated with the allocation failure.

Returned parameters: CNOS processing errors
If the verb does not execute because of an error, CS/AIX returns the following parameters.

primary_rc
AP_CONV_FAILURE_NO_RETRY

The session limits could not be initialized because of a condition that requires action (such as a
configuration mismatch or a session protocol error). Check the CS/AIX log file for information
about the error condition, and correct it before retrying this verb.

primary_rc
AP_CNOS_PARTNER_LU_REJECT

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

The verb failed because the specified mode was being accessed by another administration
program (or internally by the CS/AIX software) for session activation or deactivation, or for session
limit processing. The application should retry the verb, preferably after a timeout to allow the race
condition to be cleared.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

OPEN_FILE
An application uses this verb to access the CS/AIX domain configuration file in order to manage domain
resources, or to access the sna.net file in order to manage backup servers on the CS/AIX LAN.

This verb must be issued with a null target handle. If it completes successfully, CS/AIX returns a handle
identifying the file, which the application can then use on other NOF verbs to indicate the target for the
verb.

VCB structure
typedef struct open_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 CONFIG_FILE file_info; /* definition of file requested */
 AP_UINT32 target_handle; /* handle for subsequent verbs */

OPEN_FILE

252 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char reserv3[4]; /* reserved */
} OPEN_FILE;

typedef struct config_file
{
 unsigned char requested_role; /* config file requested */
 unsigned char role_supplied; /* config file returned */
 unsigned char system_name[128]; /* computer name where file */
 /* located */
 unsigned char file_name[81]; /* file name */
} CONFIG_FILE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_OPEN_FILE

file_info.requested_role
The type of file to be opened. Possible values are:
AP_CONTROLLER

Open the controlling copy of the domain configuration file. This value must be used if the
application intends to issue verbs that modify the configuration of domain resources.

AP_BACKUP
Open the controlling copy of the domain configuration file if available, otherwise a backup copy.
This value may be used if the application intends to issue only QUERY_* verbs; if it needs to
modify the configuration, it must use AP_CONTROLLER, because it will not be able to obtain write
access to a backup configuration file.

AP_SNA_NET
Open the sna.net file on the controller server.

AP_TP_LOAD_INFO
Open a connection to the file on the local machine that contains information about how to load
transaction programs (TPs).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

target_handle
Returned value for use on subsequent verbs directed to this file.

file_info.role_supplied
If requested_role was set to AP_BACKUP, this parameter indicates whether the file handle returned is
for the controlling configuration file or a backup file. Possible values are:
AP_CONTROLLER

Controlling configuration file.
AP_BACKUP

Backup configuration file.

For all other values of requested_role, this parameter is undefined.

file_info.system_name
Name of the CS/AIX computer where the file is located.

file_info.file_name
Name of the file. This parameter is an ASCII string of 1-80 characters, followed by a null (0x00)
character.

OPEN_FILE

Chapter 3. NOF API Verbs 253

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_FILE_NAME

The file_name parameter did not specify a valid configuration file name.
AP_INVALID_FILE_INFO

One of the parameters in the file_info structure was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_CONNECTION_NOT_MADE

CS/AIX could not set up the local communications path to the file.
AP_FILE_BAD_RECORD

CS/AIX detected an error in the configuration file. Check the error log file for a message giving
more details of the error.

AP_FILE_ROLE_UNAVAILABLE
The application requested a controlling or backup configuration file, or the sna.net file, but no
controller or backup server was available. This is normally a temporary condition, occurring when
a new server is taking over as controller.

If the application is registered to receive server indications, it can check the flags parameter on
these indications to determine when a new server has successfully taken over as controller, and
then retry the OPEN_FILE verb. For more information, see “SERVER_INDICATION” on page 644.
Alternatively, it can simply retry OPEN_FILE at intervals until it succeeds.

AP_INVALID_VERSION
The CS/AIX version number in the configuration file header does not match the version of the
CS/AIX software you are using. Check that you have the correct file.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

PATH_SWITCH
PATH_SWITCH requests that CS/AIX switch a currently active Rapid Transport Protocol (RTP) connection
to another path. If CS/AIX cannot find a better path, it leaves the connection unchanged.

PATH_SWITCH

254 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct path_switch
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char rtp_connection_name[8]; /* RTP connection name */
} PATH_SWITCH;

Supplied parameters
The application supplies the following parameters:

opcode
AP_PATH_SWITCH

rtp_connection_name
The RTP connection for which a change in path is requested. This is an 8-byte string in a locally
displayable character set. All eight bytes are significant and must be set.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_RTP_CONNECTION

The value specified for the rtp_connection_name parameter did not match the name of an existing
RTP connection.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PATH_SWITCH_IN_PROGRESS

CS/AIX is currently changing the path for the RTP connection specified by the
rtp_connection_name parameter.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: path switch disabled
If the verb does not execute because the RTP partner node has disabled path switch by setting the path
switch timer to zero, CS/AIX returns the following parameter:

PATH_SWITCH

Chapter 3. NOF API Verbs 255

primary_rc
AP_PATH_SWITCH_DISABLED

secondary_rc
(No secondary return code is returned.)

Returned parameters: path switch failure
If the verb does not execute because the path switch attempt fails, CS/AIX returns the following
parameter:

primary_rc
AP_UNSUCCESSFUL

secondary_rc
(No secondary return code is returned.)

Returned parameters: node check
If the verb does not execute because the system has not been built with RTP support, CS/AIX returns the
following parameter:

primary_rc
AP_INVALID_VERB

secondary_rc
(No secondary return code is returned.)

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_ACTIVE_TRANSACTION
QUERY_ACTIVE_TRANSACTION returns information about active Multiple Domain Support (MDS)
transactions known to the CS/AIX Management Services component. An active transaction is an MDS
request for which a reply has not yet been received.

This verb may be used to obtain information about a single transaction, or on multiple transactions,
depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_active_transaction
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char fq_req_loc_cp_name[17]; /* fq cp name of transaction */
 /* requestor */
 unsigned char req_agent_appl_name[8]; /* appl name of transaction */
 /* requestor */
 unsigned char seq_num_dt[17]; /* sequence number date/time */
} QUERY_ACTIVE_TRANSACTION;

QUERY_ACTIVE_TRANSACTION

256 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

typedef struct active_transaction_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char fq_origin_cp_name[17]; /* cp name of transaction origin */
 unsigned char origin_ms_appl_name[8]; /* appl name of transaction */
 /* origin */
 unsigned char fq_dest_cp_name[17]; /* cp name of transaction */
 /* destination */
 unsigned char dest_ms_appl_name[8]; /* appl name of transaction dest */
 unsigned char fq_req_loc_cp_name[17]; /* fq cp name of transaction */
 /* requestor */
 unsigned char req_agent_appl_name[8]; /* appl name of transaction */
 /* requestor */
 unsigned char seq_num_dt[17]; /* sequence number date/time */
 unsigned char reserva[20]; /* reserved */
} ACTIVE_TRANSACTION_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_ACTIVE_TRANSACTION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of transactions for which data should be returned. To request data for a specific
transaction rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the fq_req_loc_cp_name, req_agent_appl_name, and seq_num_dt
parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the fq_req_loc_cp_name,
req_agent_appl_name, and seq_num_dt parameters.

The list is ordered by fq_req_loc_cp_name, then by req_agent_appl_name, and finally in numerical
order of seq_num_dt. For more information about how the list is ordered and how the application can
obtain specific entries from it, see “List options for QUERY_* Verbs” on page 33.

fq_req_loc_cp_name
Fully qualified control point name of the transaction requestor. This parameter is ignored if list_options
is set to AP_FIRST_IN_LIST. The name is a 17-byte EBCDIC string, right-padded with EBCDIC
spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character,
and a network name of up to 8 A-string characters.

req_agent_appl_name
Application name of the transaction requestor. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST.

This name is normally an EBCDIC string, using type-1134 characters (uppercase A-Z and numerals
0-9); alternatively, it can be one of the MS Discipline-Specific Application Programs specified in SNA
Management Services Reference. The string must be 8 characters long; pad on the right with EBCDIC
space characters (0x40) if necessary.

QUERY_ACTIVE_TRANSACTION

Chapter 3. NOF API Verbs 257

seq_num_dt
Sequence number date/time correlator (17 bytes long) of the original transaction, as defined in the
IBM SNA Formats manual. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

active_transaction_data.overlay_size
The size of the returned active_transaction_data structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
active_transaction_data structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

active_transaction_data.fq_origin_cp_name
Fully qualified control point name of the origin for the transaction. The name is a 17-byte EBCDIC
string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

active_transaction_data.origin_ms_appl_name
Application name of the origin for the transaction. This name is normally an 8-character EBCDIC
string, using type-1134 characters (uppercase A-Z and numerals 0-9); alternatively, it can be one of
the MS Discipline-Specific Application Programs specified in Systems Network Architecture:
Management Services Reference (see the Bibliography).

active_transaction_data.fq_dest_cp_name
Fully qualified control point name of the destination for the transaction. The name is a 17-byte
EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

active_transaction_data.dest_ms_appl_name
Application name of the destination application for the transaction. This name is normally an 8-
character EBCDIC string, using type-1134 characters (uppercase A-Z and numerals 0-9); alternatively,
it can be one of the MS Discipline-Specific Application Programs specified in Systems Network
Architecture: Management Services Reference (see the Bibliography).

active_transaction_data.fq_req_loc_cp_name
Fully qualified control point name of the transaction requestor. The name is a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

QUERY_ACTIVE_TRANSACTION

258 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

active_transaction_data.req_agent_appl_name
Application name of the transaction requestor. This name is normally an 8-character EBCDIC string,
using type-1134 characters (uppercase A-Z and numerals 0-9); alternatively, it can be one of the MS
Discipline-Specific Application Programs specified in Systems Network Architecture: Management
Services Reference (see the Bibliography).

active_transaction_data.seq_num_dt
Sequence number date/time correlator (17 bytes long) of the original transaction, as defined in the
IBM SNA Formats manual.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_ACTIVE_TRANSACTION

The control point name, application name, or sequence number correlator did not match that of an
active transaction.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_ADJACENT_NN
The QUERY_ADJACENT_NN verb returns information about adjacent network nodes (the network nodes
to which CP-CP sessions are active or have been active at some time). It can be used only if the CS/AIX
node is a network node, and is not valid if it is an end node or LEN node.

This verb can be used to obtain information about a specific adjacent network node, or about multiple
adjacent network nodes, depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_adjacent_nn
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */

QUERY_ADJACENT_NN

Chapter 3. NOF API Verbs 259

 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char adj_nncp_name[17]; /* CP name of adjacent Network Node */
} QUERY_ADJACENT_NN;

typedef struct adj_nncp_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char adj_nncp_name[17]; /* CP name of adjacent network node */
 unsigned char cp_cp_sess_status; /* CP-CP session status */
 AP_UINT32 out_of_seq_tdus; /* out of sequence TDUs */
 AP_UINT32 last_frsn_sent; /* last FRSN sent */
 AP_UINT32 last_frsn_rcvd; /* last FRSN received */
 unsigned char reserva[20]; /* reserved */
} ADJ_NNCP_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_ADJACENT_NN

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of adjacent NNs for which data should be returned. To request data for a specific
adjacent NN rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list of adjacent NNs from which CS/AIX should begin to return data. Possible values
are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the adj_nncp_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the adj_nncp_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

adj_nncp_name
Fully qualified name of the adjacent NN for which information is required, or the name to be used as
an index into the list of adjacent NNs. This value is ignored if list_options is set to
AP_FIRST_IN_LIST.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

QUERY_ADJACENT_NN

260 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

adj_nncp_data.overlay_size
The size of the returned adj_nncp_data structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each adj_nncp_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

adj_nncp_data.adj_nncp_name
Fully qualified name of the adjacent NN. The name is a 17-byte EBCDIC string, padded on the right
with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

adj_nncp_data.cp_cp_sess_status
Status of the CP-CP session to the adjacent NN. Possible values are:
AP_ACTIVE

The session is active.
AP_CONWINNER_ACTIVE

The session (a contention-winner session) is active.
AP_CONLOSER_ACTIVE

The session (a contention-loser session) is active.
AP_INACTIVE

The session is inactive.
adj_nncp_data.out_of_seq_tdus

Number of out-of-sequence TDUs received from this node.
adj_nncp_data.last_frsn_sent

The last Flow Reduction Sequence Number (FRSN) sent to this node.
adj_nncp_data.last_frsn_rcvd

The last Flow Reduction Sequence Number (FRSN) received from this node.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

QUERY_ADJACENT_NN

Chapter 3. NOF API Verbs 261

AP_INVALID_ADJ_NNCP_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the adj_nncp_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is not a network node, CS/AIX returns
the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is an end node or LEN node. This verb is valid only at a network node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_AVAILABLE_TP
QUERY_AVAILABLE_TP returns information about active invokable TPs (APPC applications that have
issued the RECEIVE_ALLOCATE verb, or CPI-C applications that have issued the Accept_Conversation or
Accept_Incoming call). This verb can be used to obtain information about a specific TP or about multiple
TPs, depending on the options used. This verb returns information about all such TPs that are running,
whether or not they currently have an APPC verb or CPI-C call outstanding to accept a new incoming
conversation.

This verb must be issued to a running node.

VCB structure
typedef struct query_available_tp
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3[3]; /* reserved */
 unsigned char tp_name[64]; /* TP name */
 unsigned char system_name[128]; /* computer name where TP is */
 /* running */
} QUERY_AVAILABLE_TP;

typedef struct available_tp_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char tp_name[64]; /* TP name */
 unsigned char reserv4[4]; /* reserved */
 unsigned char system_name[128]; /* computer name where TP is */
 /* running */
} AVAILABLE_TP_DATA;

QUERY_AVAILABLE_TP

262 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_AVAILABLE_TP

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of TPs for which data should be returned. To request data for a specific TP rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list of TPs from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of TP name and system name.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of TP name and
system name.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

system_name
The computer name for which TP information is required. The system name is an ASCII string of
1-128 characters, which must match a CS/AIX computer name. This value is ignored if list_options is
set to AP_FIRST_IN_LIST.

If the computer name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the computer name.

If CS/AIX is running with all programs on a single computer, there is no need to specify the computer
name (it can be left as all binary zeros). For a client/server system, specify the computer name to list
only TPs on the specified computer, or leave it as all binary zeros to list TPs on all computers.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

QUERY_AVAILABLE_TP

Chapter 3. NOF API Verbs 263

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

available_tp_data.overlay_size
The size of the returned available_tp_data structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each available_tp_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

available_tp_data.tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters.

available_tp_data.system_name
Name of the computer where the TP is running.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.
AP_UNKNOWN_TP

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the tp_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_BUFFER_AVAILABILITY
This verb returns information about the amount of STREAMS buffers that CS/AIX is currently using, the
maximum amount it has used, and the maximum amount available (specified using the
SET_BUFFER_AVAILABILITY verb). This allows you to check STREAMS buffer usage and set the limit
appropriately, to ensure that sufficient buffers are available for CS/AIX components and for other
programs on the AIX computer. The verb also returns additional internal values relating to buffer usage,
for use by CS/AIX support personnel.

VCB structure
typedef struct query_buffer_availability
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */

QUERY_BUFFER_AVAILABILITY

264 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 reset_max_values; /* set stored max values to */
 /* current */
 AP_UINT32 buf_avail; /* maximum buffer space */
 /* available */
 AP_UINT32 buf_total_count; /* current buffer usage - count */
 AP_UINT32 buf_total_bytes; /* current buffer usage - bytes */
 AP_UINT32 buf_rsrv_count; /* buffers reserved - count */
 AP_UINT32 buf_rsrv_bytes[2]; /* buffers reserved - bytes */
 AP_UINT32 buf_res_use_count; /* usage of reserved buffers */
 /* - count */
 AP_UINT32 buf_res_use_bytes; /* usage of reserved buffers */
 /* - bytes */
 AP_UINT32 peak_usage; /* peak usage */
 AP_UINT32 peak_decay; /* peak decay */
 unsigned char throttle_status; /* throttle status */
 unsigned char buf_use_status; /* congestion status */
 AP_UINT32 max_buf_total_count; /* maximum buffer usage - count */
 AP_UINT32 max_buf_total_bytes; /* maximum buffer usage - bytes */
 AP_UINT32 max_buf_rsrv_count; /* max buffers reserved - count */
 AP_UINT32 max_buf_rsrv_bytes[2]; /* max buffers reserved - bytes */
 AP_UINT32 max_buf_res_use_count; /* max rsrv buffer usage - count */
 AP_UINT32 max_buf_res_use_bytes; /* max rsrv buffer usage - bytes */
 AP_UINT32 max_peak_usage; /* maximum peak usage */
 unsigned char max_throttle_status; /* maximum throttle status */
 unsigned char max_buf_use_status; /* maximum congestion status */
 unsigned char debug_param[32]; /* reserved */
 unsigned char reserv3[8]; /* reserved */
} QUERY_BUFFER_AVAILABILITY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_BUFFER_AVAILABILITY

reset_max_values
Specify whether CS/AIX should reset the values for the max_* parameters (after returning them on
this verb) to match the current values of these parameters. This ensures that a subsequent
QUERY_BUFFER_AVAILABILITY verb will return the maximum values reached since this verb, rather
than the maximum values reached since the system was started (or since the values for the max_*
parameters were last reset). Possible values are:
AP_YES

Reset the values for the max_* parameters to match the current values.
AP_NO

Do not reset the values for the max_* parameters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters. Values returned in other fields
are for use by CS/AIX support personnel.

primary_rc
AP_OK

secondary_rc
Not used.

buf_avail
The maximum amount of STREAMS buffer space available to CS/AIX, in bytes, as defined by a
SET_BUFFER_AVAILABILITY verb.

buf_total_count
The number of buffers currently allocated to CS/AIX components.

buf_total_bytes
The total amount of storage in buffers currently allocated to CS/AIX components.

QUERY_BUFFER_AVAILABILITY

Chapter 3. NOF API Verbs 265

buf_rsrv_count
The total number of buffers reserved.

buf_rsrv_bytes
The total amount of storage in buffers reserved, in bytes.

buf_res_use_count
The number of reserved buffers in use.

buf_res_use_bytes
The number of bytes in the reserved buffers currently in use.

peak_usage
Peak buffer usage - smoothed percentage of buffers that are actually used.

peak_decay
Smoothing parameter.

throttle_status
Adaptive pacing status.

buf_use_status
Congestion status. Possible values are:

• AP_CONGESTED
• AP_UNCONGESTED

max_buf_total_count
The maximum number of buffers that have been allocated to CS/AIX components at any time.

max_buf_total_bytes
The maximum amount of buffer storage that has been allocated to CS/AIX components at any time.

max_buf_rsrv_count
The maximum number of buffers that can be reserved.

max_buf_rsrv_bytes
The maximum amount of buffer storage that can be reserved, in bytes.

max_buf_res_use_count
The maximum number of reserved buffers that can be in use.

max_buf_res_use_bytes
The maximum number of bytes of reserved buffers that can be in use at any time.

max_peak_usage
Maximum peak buffer usage - smoothed percentage of buffers actually used.

max_throttle_status
Maximum adaptive pacing status.

max_buf_use_status
Maximum congestion status. Possible values are:

• AP_CONGESTED
• AP_UNCONGESTED

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CENTRAL_LOGGER
This verb returns the name of the node currently defined as the central logger (the node holding the
central log file to which CS/AIX log messages from all servers are sent). This verb does not return
information about whether central logging is active; use QUERY_CENTRAL_LOGGING to determine this.

This verb must be issued with a null target handle.

QUERY_CENTRAL_LOGGER

266 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct query_central_logger
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserv3[4]; /* reserved */
 unsigned char node_name[128]; /* name of central logger */
} QUERY_CENTRAL_LOGGER;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_CENTRAL_LOGGER

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

node_name
The name of the node defined as the central logger.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_NO_CENTRAL_LOG

No controller server is currently active.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CENTRAL_LOGGING
This verb returns information about whether CS/AIX log messages are sent to a central file from all
servers, or to a separate file on each server. For more information, see “SET_LOG_FILE” on page 568.

This verb must be issued to the node that is currently acting as the central logger; for information about
accessing this node, see “CONNECT_NODE” on page 51.

VCB structure
typedef struct query_central_logging
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */

QUERY_CENTRAL_LOGGING

Chapter 3. NOF API Verbs 267

 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char enabled; /* is central logging enabled? */
 unsigned char reserv3[3]; /* reserved */
} QUERY_CENTRAL_LOGGING;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_CENTRAL_LOGGING

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

enabled
Specifies whether central logging is enabled or disabled. Possible values are:
AP_YES

Central logging is enabled. All log messages are sent to a single file on the node currently acting as
the central logger.

AP_NO
Central logging is disabled. Log messages from each server are sent to a file on that server
(specified using the SET_LOG_FILE verb).

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_NOT_CENTRAL_LOGGER

The verb was issued to a node that is not the central logger.

State check
If the command does not execute because of a state error, CS/AIX returns the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_NO_CENTRAL_LOG

No controller server is currently active.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CENTRAL_LOGGING

268 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_CN
QUERY_CN returns information about adjacent Connection Networks. This information is structured as
"determined data" (data gathered dynamically during execution) and "defined data" (the data supplied by
the application on DEFINE_CN).

This verb can be used to obtain information about a specific connection network, or about multiple
connection networks, depending on the options used. It can be issued only at a network node or an end
node; it is not valid at a LEN node.

VCB structure
typedef struct query_cn
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char fqcn_name[17]; /* Name of Connection Network */
} QUERY_CN;

typedef struct cn_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char fqcn_name[17]; /* Name of Connection Network */
 unsigned char reserv1; /* reserved */
 CN_DET_DATA det_data; /* Determined data */
 CN_DEF_DATA def_data; /* Defined data */
} CN_DATA;

typedef struct cn_det_data
{
 AP_UINT16 num_act_ports; /* number of active ports */
 unsigned char reserva[20]; /* reserved */
} CN_DET_DATA;

typedef struct cn_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserve0[16]; /* reserved */
 unsigned char num_ports; /* number of ports on CN */
 unsigned char cn_type; /* reserved */
 unsigned char ipv6_addr_only; /* use IPv6 address */
 unsigned char reserve1[14]; /* reserved */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
} CN_DEF_DATA;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* effective capacity */
 unsigned char reserve1[5]; /* reserved */
 unsigned char connect_cost; /* connection cost */
 unsigned char byte_cost; /* byte cost */
 unsigned char reserve2; /* reserved */
 unsigned char security; /* security */
 unsigned char prop_delay; /* propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* user-defined parameter 1 */
 unsigned char user_def_parm_2; /* user-defined parameter 2 */
 unsigned char user_def_parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

QUERY_CN

Chapter 3. NOF API Verbs 269

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_CN

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of CNs for which data should be returned. To request data for a specific CN rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list of CNs from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the fqcn_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the fqcn_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

fqcn_name
Fully qualified name of the CN for which information is required, or the name to be used as an index
into the list of CNs. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

QUERY_CN

270 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cn_data.overlay_size
The size of the returned cn_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each cn_data structure in turn,
it must use this value to move to the correct offset for the next data structure, and must not use the C
sizeof() operator. This is because the size of the returned overlay may increase in future releases of
CS/AIX; using the returned overlay size ensures that your application will continue to work with future
releases.

cn_data.fqcn_name
Fully qualified name of the CN. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

cn_data.det_data.num_act_ports
The number of active ports on the connection network.

cn_data.def_data.description
A null-terminated text string describing the CN, as specified in the definition of the CN.

cn_data.def_data.num_ports
The total number of ports on the connection network.

cn_data.def_data.ipv6_addr_only
For a Connection Network on an IPv6 network for HPR/IP, this parameter indicates if the IP
addressing for the Connection Network uses IPv6 DNS names only or IPv6 addresses only. Possible
values are:
YES

IP addressing for the Connection Network uses IPv6 addresses only.
NO

IP addressing for the Connection Network uses IPv6 DNS names only.
cn_data.def_data.tg_chars.effect_cap

Actual bits per second rate (line speed). The value is encoded as a 1-byte floating point number,
represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte is eeeeemmm.
Each unit of effective capacity is equal to 300 bits per second.

cn_data.def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255, where 0 is the lowest cost
per connect time and 255 is the highest.

cn_data.def_data.tg_chars.byte_cost
Cost per byte. Values are integers in the range 0-255, where zero is the lowest cost per byte and 255
is the highest.

cn_data.def_data.tg_chars.security
Security level of the network. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.

QUERY_CN

Chapter 3. NOF API Verbs 271

AP_SEC_GUARDED_RADIATION
Data is transmitted over a line that is protected against physical and radiation tapping.

AP_SEC_MAXIMUM
Maximum security.

cn_data.def_data.tg_chars.prop_delay
Propagation delay: the time that a signal takes to travel the length of the link. Possible values are:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.
cn_data.def_data.tg_chars.user_def_parm_1 through def_data.tg_chars.user_def_parm_3

User-defined parameters, which include other TG characteristics not covered by the above
parameters. Each of these parameters is set to a value in the range 0-255.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CN_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the fqcn_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is a LEN node, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is a LEN node. This verb is valid only at a network node or an end node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CN

272 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_CN_PORT
QUERY_CN_PORT returns information about ports defined on an adjacent Connection Network.

This verb can be used to obtain information about a specific port, or about multiple ports, depending on
the options used. It can be issued only at a network node or an end node; it is not valid at a LEN node.

VCB structure
typedef struct query_cn_port
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char fqcn_name[17]; /* Name of Connection Network */
 unsigned char port_name[8]; /* port name */
} QUERY_CN_PORT;

typedef struct cn_port_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char fqcn_name[17]; /* Name of Connection Network */
 unsigned char port_name[8]; /* name of port */
 unsigned char tg_num; /* transmission group number */
 unsigned char reserva[20]; /* reserved */
} CN_PORT_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_CN_PORT

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of ports for which data should be returned. To request data for a specific port
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list of ports from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the port_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the port_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

QUERY_CN_PORT

Chapter 3. NOF API Verbs 273

fqcn_name
Fully qualified name of the CN on which the required port is defined, or the CN for which a list of ports
is required.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

port_name
Name of the port for which information is required, or the name to be used as an index into the list of
ports. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

cn_port_data.overlay_size
The size of the returned cn_port_data structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each cn_port_data structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

cn_port_data.fqcn_name
Fully qualified name of the CN. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

cn_port_data.port_name
Name of the port. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 characters.

cn_port_data.tg_num
Transmission group number for the specified port.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

QUERY_CN_PORT

274 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Possible values are:
AP_INVALID_CN_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the fqcn_name parameter was not valid.

AP_INVALID_PORT_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the port_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is a LEN node, CS/AIX returns the
following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is a LEN node. This verb is valid only at a network node or an end node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CONVERSATION
QUERY_CONVERSATION returns information about conversations using a particular local LU.

This verb can be used to obtain information about a specific conversation or a range of conversations,
depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_conversation
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU Name */
 unsigned char lu_alias[8]; /* LU Alias */
 AP_UINT32 conv_id; /* Conversation ID */
 unsigned char session_id[8]; /* Session ID */
 unsigned char reserv4[12]; /* reserved */
} QUERY_CONVERSATION;

typedef struct conv_summary
{
 AP_UINT16 overlay_size; /* overlay size */
 AP_UINT32 conv_id; /* conversation ID */
 unsigned char local_tp_name[64]; /* local TP name */

QUERY_CONVERSATION

Chapter 3. NOF API Verbs 275

 unsigned char partner_tp_name[64]; /* partner TP name */
 unsigned char tp_id[8]; /* TP ID */
 unsigned char sess_id[8]; /* Session ID */
 AP_UINT32 conv_start_time; /* Conversation start time */
 AP_UINT32 bytes_sent; /* Number of bytes sent */
 AP_UINT32 bytes_received; /* Number of bytes received */
 unsigned char conv_state; /* conversation state */
 unsigned char duplex_type; /* full- or half-duplex conv? */
} CONV_SUMMARY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_CONVERSATION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of conversations for which data should be returned. To request data for a specific
conversation rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of local LU and conversation ID.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of local LU and
conversation ID.

The combination of the local LU (lu_name or lu_alias) and conversation ID (conv_id) specified is used
as an index into the list of sessions if the list_options parameter is set to AP_LIST_INCLUSIVE or
AP_LIST_FROM_NEXT.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters. To specify that the LU is identified by its alias rather than its LU name, set
this parameter to 8 binary zeros and specify the LU alias in the following parameter. To specify the LU
associated with the local CP (the default LU), set both lu_name and lu_alias to binary zeros.

lu_alias
Locally defined LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. This parameter is used only if lu_name is set to 8 binary zeros; it is ignored
otherwise. To specify the LU associated with the local CP (the default LU), set both lu_name and
lu_alias to binary zeros.

conv_id
Identifier of the conversation for which information is required, or the conversation ID to be used as
an index into the list of conversations. The conversation ID was returned by the ALLOCATE verb in the
invoking TP, or by the RECEIVE_ALLOCATE verb in the invoked TP.

This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

QUERY_CONVERSATION

276 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

session_id
8-byte identifier of the session. To list only information about conversations associated with a specific
session, specify the session identifier. To obtain a complete list for all sessions, set this field to binary
zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

conv_summary.overlay_size
The size of the returned conv_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each conv_summary structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

conv_summary.conv_id
Conversation identifier. The conversation ID was returned by the ALLOCATE verb in the invoking TP, or
by the RECEIVE_ALLOCATE verb in the invoked TP.

conv_summary.local_tp_name
The name of the local TP in the conversation.

conv_summary.partner_tp_name
The name of the partner TP in the conversation. This parameter is returned only if the conversation
was started by the local TP; it is reserved if the conversation was started by the remote TP.

conv_summary.tp_id
The TP identifier of the conversation.

conv_summary.session_id
The session identifier of the session allocated to the conversation.

conv_summary.conv_start_time
The elapsed time in hundredths of seconds between the time when the CS/AIX node was started and
the time when the conversation was started.

conv_summary.bytes_sent
The number of bytes that have been sent from the local TP to the partner TP since the start of the
conversation.

conv_summary.bytes_received
The number of bytes that have been received from the partner TP by the local TP since the start of the
conversation.

QUERY_CONVERSATION

Chapter 3. NOF API Verbs 277

conv_summary.conv_state
The current state of the conversation. Values for a half-duplex conversation:

• AP_CONFIRM_STATE
• AP_CONFIRM_DEALL_STATE
• AP_CONFIRM_SEND_STATE
• AP_END_CONV_STATE
• AP_PEND_DEALL_STATE
• AP_PEND_POST_STATE
• AP_POST_ON_RECEIPT_STATE
• AP_RECEIVE_STATE
• AP_RESET_STATE
• AP_SEND_STATE
• AP_SEND_PENDING_STATE

Values for a full-duplex conversation:

• AP_RESET_STATE
• AP_SEND_ONLY_STATE
• AP_SEND_RECEIVE_STATE
• AP_RECEIVE_ONLY_STATE

conv_summary.duplex_type
The duplex type of the conversation. Values:

• AP_HALF_DUPLEX
• AP_FULL_DUPLEX

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_BAD_CONV_ID

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied value, but the conv_id parameter was not valid.

AP_INVALID_LU_ALIAS
The specified lu_alias parameter was not valid.

AP_INVALID_LU_NAME
The specified lu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CONVERSATION

278 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_COS
QUERY_COS returns route calculation information for a specific class of service (COS).

This verb can be used to obtain information about a specific COS or about multiple COSs, depending on
the options used.

VCB structure
typedef struct query_cos
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char cos_name[8]; /* cos name */
} QUERY_COS;

typedef struct cos_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char cos_name[8]; /* cos name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char transmission_priority; /* transmission priority */
 AP_UINT16 num_of_node_rows; /* number of node rows */
 AP_UINT16 num_of_tg_rows; /* number of tg rows */
 AP_UINT32 trees; /* number of tree caches for COS */
 AP_UINT32 calcs; /* number of route calculations */
 /* for this COS */
 AP_UINT32 rejs; /* number of route rejects for */
 /* COS */
 unsigned char reserva[20]; /* reserved */
} COS_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_COS

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of COSs for which data should be returned. To request data for a specific COS
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list of COSs from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the cos_name parameter.

QUERY_COS

Chapter 3. NOF API Verbs 279

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the cos_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

cos_name
Class of service name for which data is required, or the name to be used as an index into the list. This
value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte type-A EBCDIC
string (starting with a letter), padded on the right with EBCDIC spaces if the name is shorter than 8
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

cos_data.overlay_size
The size of the returned cos_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each cos_data structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

cos_data.cos_name
Class of service name. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

cos_data.description
A null-terminated text string describing the COS, as specified in the definition of the COS.

cos_data.transmission_priority
Transmission priority. Possible values are:

AP_LOW

AP_MEDIUM

AP_HIGH

AP_NETWORK (the highest priority)

cos_data.num_of_node_rows
Number of node rows defined for this COS.

QUERY_COS

280 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cos_data.num_of_tg_rows
Number of TG rows defined for this COS.

cos_data.trees
Number of route tree caches built for this COS since the last initialization.

cos_data.calcs
Number of session activation requests (and therefore route calculations) specifying this class of
service.

cos_data.rejs
Number of session activation requests that failed because there was no acceptable route from this
node to the named destination through the network. A route is only acceptable if it is made up entirely
of active TGs and nodes that can provide the specified class of service.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_COS_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the cos_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_COS_NODE_ROW
QUERY_COS_NODE_ROW returns node row information for a specified class of service as previously
defined by DEFINE_COS (or implicitly by the node for the SNA-defined COSs).

This verb can be used to obtain information about a specific COS node row, or about multiple COS node
rows, depending on the options used.

VCB structure
typedef struct query_cos_node_row
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char cos_name[8]; /* cos name */
 AP_UINT16 node_row_index; /* node row index */
} QUERY_COS_NODE_ROW;

QUERY_COS_NODE_ROW

Chapter 3. NOF API Verbs 281

typedef struct cos_node_row_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char cos_name[8]; /* cos name */
 AP_UINT16 node_row_index; /* node row index */
 COS_NODE_ROW node_row; /* cos node row information */
} COS_NODE_ROW_DATA;

typedef struct cos_node_row
{
 COS_NODE_STATUS minimum; /* minimum */
 COS_NODE_STATUS maximum; /* maximum */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_NODE_ROW;

typedef struct cos_node_status
{
 unsigned char rar; /* route additional resistance */
 unsigned char status; /* node status */
 unsigned char reserv1[2]; /* reserved */
} COS_NODE_STATUS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_COS_NODE_ROW

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of COS node rows for which data should be returned. To request data for a specific
COS node row rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list of COS node rows from which CS/AIX should begin to return data. Possible
values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of the cos_name and node_row_index parameters.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of the cos_name
and node_row_index parameters.

The list is ordered by cos_name, and then by node_row_index for each COS. For more information
about how the application can obtain specific entries from the list, see “List options for QUERY_*
Verbs” on page 33.

cos_name
Class of service name for which node row information is required, or the name to be used as an index
into the list. This value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte
type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if the name is
shorter than 8 characters.

QUERY_COS_NODE_ROW

282 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

node_row_index
Node row number for which information is required, or the number to be used as an index into the list.
This value is ignored if list_options is set to AP_FIRST_IN_LIST. Use QUERY_COS to determine the
number of node rows associated with this COS.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

cos_node_row_data.overlay_size
The size of the returned cos_node_row_data structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each cos_node_row_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

cos_node_row_data.cos_name
Class of service name. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces if the name is shorter than 8 characters.

cos_node_row_data.node_row_index
Node row index.

cos_node_row_data.node_row.minimum.rar
Route additional resistance minimum, in the range 0-255.

cos_node_row_data.node_row.minimum.status
Specifies the minimum congestion status of the node. This parameter may be set to
AP_UNCONGESTED, to any one of the other values listed, or to two or more of the other values
combined using a logical OR. Possible values are:
AP_UNCONGESTED

The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified for the node.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum specified.

QUERY_COS_NODE_ROW

Chapter 3. NOF API Verbs 283

AP_QUIESCING
A STOP_NODE of type AP_QUIESCE or AP_QUIESCE_ISR has been issued.

cos_node_row_data.node_row.maximum.rar
Route additional resistance maximum, in the range 0-255.

cos_node_row_data.node_row.maximum.status
Specifies the maximum congestion status of the node. This parameter may be set to
AP_UNCONGESTED, to any one of the other values listed, or to two or more of the other values
combined using a logical OR. Possible values are:
AP_UNCONGESTED

The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified for the node.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum specified.

AP_QUIESCING
A STOP_NODE of type AP_QUIESCE or AP_QUIESCE_ISR has been issued.

cos_node_row_data.node_row.weight
Weight associated with this node row.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_COS_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the cos_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_COS_TG_ROW
QUERY_COS_TG_ROW returns TG row information for a specified class of service as previously defined by
DEFINE_COS (or implicitly by the node for the SNA-defined COSs).

This verb can be used to obtain information about a specific COS TG row, or about multiple COS TG rows,
depending on the options used.

QUERY_COS_TG_ROW

284 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct query_cos_tg_row
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char cos_name[8]; /* cos name */
 AP_UINT16 tg_row_index; /* TG row index */
} QUERY_COS_TG_ROW;

typedef struct cos_tg_row_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char cos_name[8]; /* cos name */
 AP_UINT16 tg_row_index; /* TG row index */
 COS_TG_ROW tg_row; /* TG row information */
} COS_TG_ROW_DATA;

typedef struct cos_tg_row
{
 TG_DEFINED_CHARS minimum; /* minimum */
 TG_DEFINED_CHARS maximum; /* maximum */
 unsigned char weight; /* weight */
 unsigned char reserv1; /* reserved */
} COS_TG_ROW;

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* Effective capacity */
 unsigned char reserve1[5]; /* Reserved */
 unsigned char connect_cost; /* Connection Cost */
 unsigned char byte_cost; /* Byte cost */
 unsigned char reserve2; /* Reserved */
 unsigned char security; /* Security */
 unsigned char prop_delay; /* Propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* User-defined parameter 1 */
 unsigned char user_def_parm_2; /* User-defined parameter 2 */
 unsigned char user_def_parm_3; /* User-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_COS_TG_ROW

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of COS TG rows for which data should be returned. To request data for a specific
COS TG row rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

QUERY_COS_TG_ROW

Chapter 3. NOF API Verbs 285

list_options
The position in the list of COS TG rows from which CS/AIX should begin to return data. Possible values
are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of the cos_name and tg_row_index parameters.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of the cos_name
and tg_row_index parameters.

The list is ordered by cos_name, and then by tg_row_index for each COS. For more information about
how the list is ordered and how the application can obtain specific entries from it, see “List options for
QUERY_* Verbs” on page 33.

cos_name
Class of service name for which data is required, or the name to be used as an index into the list. The
name is an 8-byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC
spaces if the name is shorter than 8 characters. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST.

tg_row_index
TG row number for which data is required, or the number to be used as an index into the list (the first
row has an index of zero). This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

cos_tg_row_data.overlay_size
The size of the returned cos_tg_row_data structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each cos_tg_row_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

cos_tg_row_data.cos_name
Class of service name. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces if the name is shorter than 8 characters.

QUERY_COS_TG_ROW

286 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cos_tg_row_data.tg_row_index
TG row index (the first row has an index of zero).

cos_tg_row_data.tg_row.minimum.effect_cap
Minimum limit for actual bits per second rate (line speed). The value is encoded as a 1-byte floating
point number, represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte
is b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

cos_tg_row_data.tg_row.minimum.connect_cost
Minimum limit for cost per connect time; an integer value in the range 0-255, where 0 is the lowest
cost per connect time and 255 is the highest.

cos_tg_row_data.tg_row.minimum.byte_cost
Minimum limit for cost per byte; an integer value in the range 0-255, where zero is the lowest cost per
byte and 255 is the highest.

cos_tg_row_data.tg_row.minimum.security
Minimum level of security. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.
AP_SEC_GUARDED_RADIATION

Data is transmitted over a line that is protected against physical and radiation tapping.
cos_tg_row_data.tg_row.minimum.prop_delay

Minimum limits for propagation delay: the time that a signal takes to travel the length of the link.
Possible values are:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN). If the verb was issued to a running node,
this value will be returned if the DEFINE_COS specified either AP_PROP_DELAY_LAN or
AP_PROP_DELAY_MINIMUM.

AP_PROP_DELAY_TELEPHONE
Delay is in the range 480-49,512 microseconds (typical for a telephone network).

AP_PROP_DELAY_PKT_SWITCHED_NET
Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).

AP_PROP_DELAY_SATELLITE
Delay is greater than 245,760 microseconds (typical for a satellite link).

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row_data.tg_row.minimum.user_def_parm_1 through
cos_tg_row_data.tg_row.minimum.user_def_parm_3

Minimum values for user-defined parameters, which include other TG characteristics not covered by
the above parameters. Each of these parameters is set to a value in the range 0-255.

QUERY_COS_TG_ROW

Chapter 3. NOF API Verbs 287

cos_tg_row_data.tg_row.maximum.effect_cap
Maximum limit for actual bits per second rate (line speed). The value is encoded as a 1-byte floating
point number, represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte
is eeeeemmm. Each unit of effective capacity is equal to 300 bits per second.

cos_tg_row_data.tg_row.maximum.connect_cost
Maximum limit for cost per connect time; an integer value in the range 0-255, where 0 is the lowest
cost per connect time and 255 is the highest.

cos_tg_row_data.tg_row.maximum.byte_cost
Maximum limit for cost per byte; an integer value in the range 0-255, where 0 is the lowest cost per
byte and 255 is the highest.

cos_tg_row_data.tg_row.maximum.security
Maximum level of security. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.
AP_SEC_ENCRYPTED

Data is encrypted before transmission over the line.
AP_SEC_GUARDED_RADIATION

Data is transmitted over a line that is protected against physical and radiation tapping.
AP_SEC_MAXIMUM

Maximum security.
cos_tg_row_data.tg_row.maximum.prop_delay

Maximum limits for propagation delay: the time that a signal takes to travel the length of the link.
Possible values are:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link). If the verb was issued to a
running node, this value will be returned if the DEFINE_COS specified either
AP_PROP_DELAY_SATELLITE or AP_PROP_DELAY_MAXIMUM.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row_data.tg_row.maximum.user_def_parm_1 through
cos_tg_row_data.tg_row.maximum.user_def_parm_3

Maximum values for user-defined parameters, which include other TG characteristics not covered by
the above parameters. Each of these parameters is set to a value in the range 0-255.

cos_tg_row_data.tg_row.weight
Weight associated with this TG row.

QUERY_COS_TG_ROW

288 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_COS_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the cos_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CPIC_SIDE_INFO
This verb returns the side information entry for a given symbolic destination name, or for multiple
symbolic destination names, depending on the options used.

Note the difference between this verb and the CPI-C function Extract_CPIC_Side_Information. This
verb queries a configuration file, so that it returns the default information used by all CS/AIX CPI-C
applications. The CPI-C function queries the application's own copy in memory of the side information
table, which the application may have modified using the other CPI-C side information functions.

This verb must be issued to the domain configuration file.

VCB structure
typedef struct query_cpic_side_info
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */
} QUERY_CPIC_SIDE_INFO;

typedef struct cpic_side_info_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char sym_dest_name[8]; /* Symbolic destination name */
 unsigned char reserv1[2]; /* reserved */
 CPIC_SIDE_INFO_DEF_DATA def_data;
} CPIC_SIDE_INFO_DATA;

typedef struct cpic_side_info_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 CPIC_SIDE_INFO side_info; /* CPIC side info */

QUERY_CPIC_SIDE_INFO

Chapter 3. NOF API Verbs 289

 unsigned char user_data[24]; /* reserved */
} CPIC_SIDE_INFO_DEF_DATA;

typedef struct cpic_side_info
{
 unsigned char partner_lu_name[17]; /* Fully qualified partner */
 /* LU name */
 unsigned char reserved[3]; /* Reserved */
 AP_UINT32 tp_name_type; /* TP name type */
 unsigned char tp_name[64]; /* TP name */
 unsigned char mode_name[8]; /* Mode name */
 AP_UINT32 conversation_security_type; /* Conversation security */
 /* type */
 unsigned char security_user_id[10]; /* User ID */
 unsigned char security_password[10]; /* Password */
 unsigned char lu_alias[8]; /* LU alias */
} CPIC_SIDE_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_CPIC_SIDE_INFO

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of symbolic destination names for which data should be returned. To request data
for a specific symbolic destination name rather than a range, specify the value 1. To return as many
entries as possible, specify zero; in this case, CS/AIX will return the maximum number of entries that
can be accommodated in the supplied data buffer.

list_options
The position in the list of symbolic destination names from which CS/AIX should begin to return data.
Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the sym_dest_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the sym_dest_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

sym_dest_name
Symbolic destination name for which data is required, or the name to be used as an index into the list.
This value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an ASCII string,
consisting of uppercase A-Z and numerals 0-9, padded on the right with spaces if the name is shorter
than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

QUERY_CPIC_SIDE_INFO

290 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

cpic_side_info_data.overlay_size
The size of the returned cpic_side_info_data structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each cpic_side_info_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

cpic_side_info_data.sym_dest_name
Symbolic destination name for the returned side information entry.

cpic_side_info_data.def_data.description
A null-terminated text string describing the side information entry, as specified in the definition of the
side information entry.

cpic_side_info_data.def_data.side_info.partner_lu_name
Fully qualified name of the partner LU. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

cpic_side_info_data.def_data.side_info.tp_name_type
The type of the target TP (the valid characters for a TP name are determined by the TP type). Possible
values are:
XC_APPLICATION_TP

Application TP. All characters in the TP name must be valid ASCII characters.
XC_SNA_SERVICE_TP

Service TP. The TP name must be specified as an 8-character ASCII string representing the
hexadecimal digits of a 4-character name. For example, if the hexadecimal representation of the
name is 0x21F0F0F8, set the def_data.side_info.tp_name parameter to the 8-character string
`21F0F0F8'.

The first character (represented by two bytes) must be a hexadecimal value in the range
0x0-0x3F, excluding 0x0E and 0x0F; the remaining characters (each represented by two bytes)
must be valid EBCDIC characters.

cpic_side_info_data.def_data.side_info.tp_name
TP name of the target TP. This is a 64-byte ASCII character string, right-padded with spaces.

cpic_side_info_data.def_data.side_info.mode_name
Name of the mode used to access the target TP. This is an 8-byte ASCII character string, right-padded
with spaces.

cpic_side_info_data.def_data.side_info.conversation_security_type
Specifies whether the target TP uses conversation security. Possible values are:
XC_SECURITY_NONE

The target TP does not use conversation security.

QUERY_CPIC_SIDE_INFO

Chapter 3. NOF API Verbs 291

XC_SECURITY_PROGRAM
The target TP uses conversation security. The security_user_id and security_password parameters
specified below will be used to access the target TP.

XC_SECURITY_PROGRAM_STRONG
As for XC_SECURITY_PROGRAM, except that the local node must not send the password across
the network in clear text format. This value can be used only if the remote system supports
password substitution.

XC_SECURITY_SAME
The target TP uses conversation security, and can accept an "already verified" indicator from the
local TP. (This indicates that the local TP was itself invoked by another TP, and has verified the
security user ID and password supplied by this TP.) The security_user_id parameter specified
below will be used to access the target TP; no password is required.

cpic_side_info_data.def_data.side_info.security_user_id
User ID used to access the partner TP. This parameter is not used if the conversation_security_type
parameter is set to XC_SECURITY_NONE.

cpic_side_info_data.def_data.side_info.security_password
Password used to access the partner TP. This parameter is used only if the conversation_security_type
parameter is set to XC_SECURITY_PROGRAM or XC_SECURITY_PROGRAM_STRONG.

cpic_side_info_data.def_data.side_info.lu_alias
The alias of the local LU used to communicate with the target TP. This alias is a character string using
any locally displayable characters.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_SYM_DEST_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the sym_dest_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_CPIC_SIDE_INFO

292 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_CS_TRACE
This verb returns information about the current tracing options for data sent between computers on the
CS/AIX LAN. For more information about tracing options, see the IBM Communications Server for Data
Center Deployment on AIX Administration Guide.

This verb must be issued to a running node.

VCB structure
typedef struct query_cs_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dest_sys[128]; /* node to which messages are traced */
 unsigned char reserv4[4]; /* reserved */
 AP_UINT16 trace_flags; /* trace flags */
 AP_UINT16 trace_direction; /* direction (send/rcv/both) to trace */
 unsigned char reserv3[8]; /* Reserved */
} QUERY_CS_TRACE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_CS_TRACE

dest_sys
The server name for which tracing options are being queried. This is an ASCII string, padded on the
right with spaces if the name is shorter than 128 characters.

To query tracing options on messages flowing between the computer to which this verb is issued
(identified by the target_handle parameter on the NOF API call) and one other server on the LAN,
specify the name of the other server here.

If the computer name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the computer name.

To query the default tracing options (set by a SET_CS_TRACE verb with no destination system name
specified), set this parameter to all ASCII space characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

trace_flags
The types of tracing currently active. For more information about these trace types, see
“SET_CS_TRACE” on page 563.

If no tracing is active, or if tracing of all types is active, this is one of the following values:

AP_NO_TRACE
No tracing.

AP_ALL_TRACE
Tracing of all types.

QUERY_CS_TRACE

Chapter 3. NOF API Verbs 293

If tracing is being used on specific interfaces, this parameter is set to one or more values from the list
below, combined using a logical OR operation.

AP_CS_ADMIN_MSG
Internal messages relating to client/server topology

AP_CS_DATAGRAM
Datagram messages

AP_CS_DATA
Data messages

trace_direction
Specifies the direction or directions in which tracing is active. This parameter is not used if trace_flags
is set to AP_NO_TRACE. Possible values are:
AP_CS_SEND

Messages flowing from the target computer to the computer defined by dest_sys are traced.
AP_CS_RECEIVE

Messages flowing from the computer defined by dest_sys to the target computer are traced.
AP_CS_BOTH

Messages flowing in both directions are traced.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_NAME_NOT_FOUND

The server specified by the dest_sys parameter did not exist or was not started.
AP_LOCAL_SYSTEM

The server specified by the dest_sys parameter is the same as the target node to which this verb
was issued.

AP_INVALID_TARGET
The verb was issued on a standalone server. This verb can only be issued on a client/server
system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DEFAULT_PU
QUERY_DEFAULT_PU allows the user to query the default PU (defined using DEFINE_DEFAULT_PU).

VCB structure
typedef struct query_default_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

QUERY_DEFAULT_PU

294 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char def_pu_name[8]; /* default PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char def_pu_sess[8]; /* PU name of active default session */
 unsigned char reserv3[16]; /* reserved */
} QUERY_DEFAULT_PU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DEFAULT_PU

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

def_pu_name
Name of the PU specified on the most recent DEFINE_DEFAULT_PU verb. This is an 8-byte type-A
EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces. If this field is set to all
binary zeros, this indicates that no DEFINE_DEFAULT_PU verb has been issued or that the default PU
has been deleted by issuing a DEFINE_DEFAULT_PU verb with the pu_name parameter specified as all
zeros.

description
A null-terminated text string describing the default PU, as specified in the definition of the default PU.

def_pu_sess
Name of the PU associated with the currently active default PU session.

This parameter normally contains the same value as the def_pu_name field. However, if a default PU
has been defined, but the session associated with it is not active, CS/AIX continues to use the session
associated with the previous default PU until the session associated with the defined default PU
becomes active. In this case, this parameter specifies the name of the previous default PU, and is
different from the def_pu_name field.

If there are no active PU sessions, this field will be set to all binary zeros.

Returned parameters: node not started
If the verb does not execute because the node has not yet been started, CS/AIX returns the following
parameters:

primary_rc
AP_NODE_NOT_STARTED

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DEFAULTS
QUERY_DEFAULTS allows the user to query the default parameters defined for the node (defined using
DEFINE_DEFAULTS).

VCB structure
typedef struct query_defaults
{

QUERY_DEFAULTS

Chapter 3. NOF API Verbs 295

 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 DEFAULT_CHARS default_chars; /* default parameters */
} QUERY_DEFAULTS;

typedef struct default_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char mode_name[8]; /* default mode name */
 unsigned char implicit_plu_forbidden; /* disallow implicit PLUs? */
 unsigned char specific_security_codes;/*generic security sensecodes?*/
 AP_UINT16 limited_timeout; /* timeout for limited sessions */
 unsigned char reserv[244]; /* reserved */
} DEFAULT_CHARS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_DEFAULTS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

default_chars.description
A null-terminated text string describing the default parameters, as specified in DEFINE_DEFAULTS.

default_chars.mode_name
Name of the default mode. If an application specifies an unrecognized mode name when attempting
to start a session, the parameters from this mode will be used as a default definition for the
unrecognized mode.

The mode name is an 8-byte type-A EBCDIC string. If no default mode name has been specified using
the DEFINE_DEFAULTS verb, this parameter is set to 8 binary zeros.

default_chars.implicit_plu_forbidden
Indicates whether CS/AIX puts implicit definitions in place for unknown partner LUs. Possible values
are:
AP_YES

CS/AIX does not put implicit definitions in place for unknown partner LUs. All partner LUs must be
defined explicitly.

AP_NO
CS/AIX puts implicit definitions in place for unknown partner LUs.

default_chars.specific_security_codes
Indicates whether CS/AIX uses specific sense codes on a security authentication or authorization
failure. Specific sense codes are only returned to those partner LUs which have reported support for
them on the session. Possible values are:
AP_YES

CS/AIX uses specific sense codes.
AP_NO

CS/AIX does not use specific sense codes.
default_chars.limited_timeout

Specifies the timeout after which free limited-resource conwinner sessions are deactivated. The range
is 0-65,535 seconds.

QUERY_DEFAULTS

296 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: node not started
If the verb does not execute because the node has not yet been started, CS/AIX returns the following
parameter:

primary_rc
AP_NODE_NOT_STARTED

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DIRECTORY_ENTRY
QUERY_DIRECTORY_ENTRY returns information about resources in the directory database. It can return
either summary or detailed information, about a specific resource or multiple resources, depending on the
options used.

If the verb is issued to a running node, it returns information both on resources that have been defined
explicitly (using DEFINE_DIRECTORY_ENTRY, or DEFINE_ADJACENT_LEN_NODE) and on resources that
have been located dynamically. If the node is not running, only explicitly defined entries are returned.

When the verb is issued to an end node, the directory contains only information about the end node and
its resources, and not about other nodes. The first entry returned is for the end node itself, followed by its
LUs. (No entry is returned for the end node's network node server.)

When the verb is issued to a network node, the directory may contain information about multiple network
nodes and their associated end nodes and LUs. For each network node, the information returned is in the
following order:

1. The network node.
2. The LUs owned by this node.
3. The first end node associated with the network node.
4. The LUs owned by this end node.
5. Any other end nodes associated with the network node, each followed by its LUs.

VCB structure
typedef struct query_directory_entry
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char resource_name[17]; /* network qualified resource */
 /* name */
 unsigned char reserv4; /* reserved */
 AP_UINT16 resource_type; /* Resource type */
 unsigned char parent_name[17]; /* parent name filter */
 unsigned char reserv5; /* reserved */
 AP_UINT16 parent_type; /* parent type */
 unsigned char reserv6[24]; /* reserved */
} QUERY_DIRECTORY_ENTRY;

typedef struct directory_entry_summary
{
 AP_UINT16 overlay_size; /* size of this entry */

QUERY_DIRECTORY_ENTRY

Chapter 3. NOF API Verbs 297

 unsigned char resource_name[17]; /* network qualified resource */
 /* name */
 unsigned char reserve1; /* reserved */
 AP_UINT16 resource_type; /* Resource type */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 real_owning_cp_type; /* CP type of real owner */
 unsigned char real_owning_cp_name[17]; /* CP name of real owner */
 unsigned char reserve2; /* reserved */
} DIRECTORY_ENTRY_SUMMARY;

typedef struct directory_entry_detail
{
 AP_UINT16 overlay_size; /* size of this entry */
 unsigned char resource_name[17]; /* network qualified res name */
 unsigned char reserv1a; /* reserved */
 AP_UINT16 resource_type; /* Resource type */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char parent_name[17]; /* Network qualified parent name */
 unsigned char reserv1b; /* reserved */
 AP_UINT16 parent_type; /* Parent resource type */
 unsigned char entry_type; /* Type of the directory entry */
 unsigned char location; /* Resource location */
 AP_UINT16 real_owning_cp_type; /* CP type of real owner */
 unsigned char real_owning_cp_name[17]; /* CP name of real owner */
 unsigned char reserv1c; /* reserved */
 AP_UINT16 supplier_cp_type; /* CP type of supplier */
 unsigned char supplier_cp_name[17]; /* CP name of supplier */
 unsigned char reserva; /* reserved */
} DIRECTORY_ENTRY_DETAIL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DIRECTORY_ENTRY

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of resources for which data should be returned. To request data for a specific
resource rather than a range, specify the value 1. To return as many entries as possible, specify zero;
in this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the parent_name, resource_name, and
resource_type parameters.

QUERY_DIRECTORY_ENTRY

298 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the
parent_name, resource_name, and resource_type parameters.

The list is ordered by parent_name, then by resource_name, and lastly by resource_type. For more
information about how the list is ordered and how the application can obtain specific entries from it,
see “List options for QUERY_* Verbs” on page 33.

resource_name
Fully qualified name of the resource for which information is required, or the name to be used as an
index into the list of resources. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

resource_type
Type of resource for which information is required. This value is ignored if list_options is set to
AP_FIRST_IN_LIST. Possible values are:
AP_ENCP_RESOURCE

End node or LEN node
AP_NNCP_RESOURCE

Network node
AP_LU_RESOURCE

LU
parent_name

Fully qualified resource name of the parent resource; for an LU the parent resource is the owning
Control Point, and for an end node or LEN node it is the network node server. To return only entries
belonging to the specified parent, set this parameter to the name of the parent resource and
parent_type to the parent's resource type; to return all entries, set both parameters to binary zeros.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

parent_type
Resource type of the parent resource. To return only entries belonging to the specified parent, set this
parameter to the type of the parent resource; to return all entries, set this parameter to zero. Possible
values are:
AP_ENCP_RESOURCE

End node (for an LU resource owned by an end node)
AP_NNCP_RESOURCE

Network node (for an LU resource owned by a network node, or for an EN or LEN resource)

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

QUERY_DIRECTORY_ENTRY

Chapter 3. NOF API Verbs 299

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

directory_entry_summary.overlay_size
The size of the returned directory_entry_summary structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
directory_entry_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

directory_entry_summary.resource_name
Fully qualified name of the resource. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters

directory_entry_summary.resource_type
Type of the resource. This is one of the following:
AP_ENCP_RESOURCE

End node or LEN node
AP_NNCP_RESOURCE

Network node
AP_LU_RESOURCE

LU
directory_entry_summary.description

A null-terminated text string describing the directory entry, as specified in the definition of the
directory entry.

directory_entry_summary.real_owning_cp_type
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies whether the real CP that owns the resource identified by this directory entry is the parent
resource or another node. This is one of the following:

AP_NONE
The real owner is the parent resource.

AP_ENCP_RESOURCE
The real owner is an end node that is not the parent resource. For example, if the resource is
owned by an End Node in the domain of a Branch Network Node (BrNN), the directory of this
BrNN's Network Node Server includes the BrNN as the parent resource, but the real owning CP is
the End Node.

directory_entry_summary.real_owning_cp_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the real_owning_cp_type parameter indicates that the real owner of the resource is not the parent,
this parameter specifies the fully qualified name of the CP that owns the resource; otherwise it is
reserved.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

QUERY_DIRECTORY_ENTRY

300 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

directory_entry_detail.overlay_size
The size of the returned directory_entry_detail structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
directory_entry_detail structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

directory_entry_detail.resource_name
Fully qualified name of the resource. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

directory_entry_detail.resource_type
Type of the resource. This is one of the following:
AP_ENCP_RESOURCE

End node or LEN node
AP_NNCP_RESOURCE

Network node
AP_LU_RESOURCE

LU
directory_entry_detail.description

A null-terminated text string describing the directory entry, as specified in the definition of the
directory entry.

directory_entry_detail.parent_name
Fully qualified resource name of the parent resource; for an LU the parent resource is the owning
Control Point, and for an end node or LEN node it is the network node server. This parameter is not
used for a network node resource.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

directory_entry_detail.parent_type
Resource type of the parent resource. For a network node resource, this parameter is not used.
Otherwise, it is one of the following:
AP_ENCP_RESOURCE

End node (for an LU resource owned by an end node)
AP_NNCP_RESOURCE

Network node (for an LU resource owned by a network node, or for an EN or LEN resource)
directory_entry_detail.entry_type

Specifies the type of the directory entry. This is one of the following:
AP_HOME

Local resource.
AP_CACHE

Cached entry.
AP_REGISTER

Registered resource (NN only).
directory_entry_detail.location

Specifies the location of the resource. This is one of the following.
AP_LOCAL

The resource is at the local node.

QUERY_DIRECTORY_ENTRY

Chapter 3. NOF API Verbs 301

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

directory_entry_detail.real_owning_cp_type
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies whether the real CP that owns the resource identified by this directory entry is the parent
resource or another node. This is one of the following:

AP_NONE
The real owner is the parent resource.

AP_ENCP_RESOURCE
The real owner is an end node that is not the parent resource. For example, if the resource is
owned by an End Node in the domain of a Branch Network Node (BrNN), the directory of this
BrNN's Network Node Server includes the BrNN as the parent resource, but the real owning CP is
the End Node.

directory_entry_detail.real_owning_cp_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the real_owning_cp_type parameter indicates that the real owner of the resource is not the parent,
this parameter specifies the fully qualified name of the CP that owns the resource; otherwise it is
reserved.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

directory_entry_detail.supplier_cp_type
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies whether this directory entry was registered by another node that is not the owning CP of the
resource. This is one of the following:

AP_NONE
The directory entry was not registered, or was registered by its owning CP.

AP_ENCP_RESOURCE
The directory entry was registered by a node that is not its owning CP. For example, if the resource
is owned by an End Node in the domain of a Branch Network Node (BrNN) that is itself in the
domain of the local node, the BrNN is the supplier because it registers the resource with the local
node, but the real owning CP is the End Node.

directory_entry_detail.supplier_cp_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the supplier_cp_type parameter indicates that the directory entry was registered by a node that is
not the owning resource, this parameter specifies the fully qualified name of the CP that supplied the
registration; otherwise it is reserved.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

QUERY_DIRECTORY_ENTRY

302 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RES_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the resource_name parameter was not valid.

AP_INVALID_RES_TYPE
The resouce_type parameter was not set to a valid value.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DIRECTORY_LU
QUERY_DIRECTORY_LU returns a list of LUs from the directory database. It can be used to obtain
information about a specific LU, or about multiple LUs, depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_directory_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[17]; /* network qualified lu name */
} QUERY_DIRECTORY_LU;

typedef struct directory_lu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[17]; /* network qualified lu name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} DIRECTORY_LU_SUMMARY;

typedef struct directory_lu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[17]; /* network qualified lu name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char server_name[17]; /* network qualified server name */
 unsigned char lu_owner_name[17]; /* network qualified lu owner name */
 unsigned char location; /* Resource location */
 unsigned char entry_type; /* Type of the directory entry */
 unsigned char wild_card; /* type of wildcard entry */
 unsigned char apparent_lu_owner_name[17]; /* name of apparent LU owner */

QUERY_DIRECTORY_LU

Chapter 3. NOF API Verbs 303

 unsigned char reserva[3]; /* reserved */
} DIRECTORY_LU_DETAIL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DIRECTORY_LU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of LUs for which data should be returned. To request data for a specific LU rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the lu_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the lu_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
Fully qualified name of the LU for which information is required, or the name to be used as an index
into the list of LUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

QUERY_DIRECTORY_LU

304 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

directory_lu_summary.overlay_size
The size of the returned directory_lu_summary structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each directory_lu_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

directory_lu_summary.lu_name
Fully qualified name of the LU. The name is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

directory_lu_summary.description
A null-terminated text string describing the directory entry, as specified in the definition of the
directory entry.

directory_lu_detail.overlay_size
The size of the returned directory_lu_detail structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each directory_lu_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

directory_lu_detail.lu_name
Fully qualified name of the LU. The name is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

directory_lu_detail.description
A null-terminated text string describing the directory entry, as specified in the definition of the
directory entry.

directory_lu_detail.server_name
Fully qualified name of the node that serves the LU. The name is a 17-byte EBCDIC string, padded on
the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

directory_lu_detail.lu_owner_name
Fully qualified name of the node that owns the LU. The name is a 17-byte EBCDIC string, padded on
the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

directory_lu_detail.location
Specifies the location of the resource. This is one of the following.
AP_LOCAL

The resource is at the local node.
AP_DOMAIN

The resource belongs to an attached end node.

QUERY_DIRECTORY_LU

Chapter 3. NOF API Verbs 305

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

directory_lu_detail.entry_type
Specifies the type of the resource. This is one of the following:
AP_HOME

Local resource.
AP_CACHE

Cached entry.
AP_REGISTER

Registered resource (NN only).
directory_lu_detail.wild_card

Specifies whether the LU entry is for an explicit name, or for a wildcard value that will match a range of
names. This is one of the following:
AP_EXPLICIT

The entry is an explicit LU name.
AP_FULL_WILDCARD

The entry is a full wildcard value that will match any LU name.
AP_PARTIAL_WILDCARD

The entry is a partial wildcard; the nonblank characters in the name will be used to match against
an LU name.

AP_OTHER
Unknown type of LU entry.

directory_lu_detail.apparent_lu_owner_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the apparent owning CP of this LU is not the real owning CP, this parameter specifies the fully
qualified name of the apparent owning CP; otherwise it is reserved. For example, if the resource is
owned by an End Node in the domain of a Branch Network Node (BrNN), the directory of this BrNN's
Network Node Server includes the BrNN as the apparent owner, but the real owning CP is the End
Node.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

QUERY_DIRECTORY_LU

306 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DIRECTORY_STATS
QUERY_DIRECTORY_STATS returns directory database statistics, which can be used to gauge the level of
network locate traffic. For a network node, it returns information about the usage of the directory cache;
you can use this information to determine the appropriate cache size, which is specified on the
DEFINE_NODE verb.

This verb must be issued to a running node.

VCB structure
typedef struct query_directory_stats
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 max_caches; /* maximum number of cache */
 /* entries */
 AP_UINT32 cur_caches; /* cache entry count */
 AP_UINT32 cur_home_entries; /* home entry count */
 AP_UINT32 cur_reg_entries; /* registered entry count */
 AP_UINT32 cur_directory_entries; /* current number of directory */
 /* entries */
 AP_UINT32 cache_hits; /* count of cache finds */
 AP_UINT32 cache_misses; /* count of resources found */
 /* by broadcast search */
 /* (not in cache) */
 AP_UINT32 in_locates; /* locates in */
 AP_UINT32 in_bcast_locates; /* broadcast locates in */
 AP_UINT32 out_locates; /* locates out */
 AP_UINT32 out_bcast_locates; /* broadcast locates out */
 AP_UINT32 not_found_locates; /* unsuccessful locates */
 AP_UINT32 not_found_bcast_locates; /* unsuccessful broadcast */
 /* locates */
 AP_UINT32 locates_outstanding; /* total outstanding locates */
 unsigned char reserva[20]; /* reserved */
} QUERY_DIRECTORY_STATS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_DIRECTORY_STATS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

max_caches
For a network node, the maximum number of cache entries allowed.

cur_caches
For a network node, the current number of cache entries.

cur_home_entries
Current® number of home entries.

QUERY_DIRECTORY_STATS

Chapter 3. NOF API Verbs 307

cur_reg_entries
Current number of registered entries.

cur_directory_entries
Total number of entries currently in the directory.

cache_hits
For a network node, the number of successful cache finds. The count is increased every time a
resource is found in the local directory cache.

cache_misses
For a network node, the number of times a resource has been found by a broadcast search. The count
is increased every time a resource is not found in the local directory cache but is then found using a
broadcast search.

Note: The two counts cache_hits and cache_misses are maintained such that the size of the directory
cache (specified on DEFINE_NODE) can be tuned. An increasing cache_misses over time indicates
that the directory cache size is too small. A regularly increasing cache_hits with a steady
cache_misses indicates that the cache is about the right size.

in_locates
Number of directed locates received.

in_bcast_locates
For a network node, the number of broadcast locates received.

out_locates
Number of directed locates sent.

out_bcast_locates
For a network node, the number of broadcast locates sent.

not_found_locates
Number of directed locates returned “not found”.

not_found_bcast_locates
For a network node, the number of broadcast locates returned “not found”.

locates_outstanding
Current number of outstanding locates, both directed and broadcast.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLC
QUERY_DLC returns information about DLCs. This information is structured as "determined data" (data
gathered dynamically during execution) and "defined data" (data supplied on DEFINE_DLC).

This verb can be used to obtain either summary or detailed information, about a specific DLC or about
multiple DLCs, depending on the options used.

VCB structure
typedef struct query_dlc
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */

QUERY_DLC

308 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char dlc_name[8]; /* name of DLC */
} QUERY_DLC;

typedef struct dlc_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dlc_name[8]; /* name of DLC */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char state; /* State of the DLC */
 unsigned char dlc_type; /* DLC type */
} DLC_SUMMARY;

typedef struct dlc_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dlc_name[8]; /* name of DLC */
 unsigned char reserv2[2]; /* reserved */
 DLC_DET_DATA det_data; /* Determined data */
 DLC_DEF_DATA def_data; /* Defined data */
} DLC_DETAIL;

typedef struct dlc_det_data
{
 unsigned char state; /* State of the DLC */
 unsigned char reserv3[3]; /* reserved */
 unsigned char reserva[20]; /* reserved */
} DLC_DET_DATA;

typedef struct dlc_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is DLC initially active? */
 unsigned char reserv1[15]; /* reserved */
 unsigned char dlc_type; /* DLC type */
 unsigned char neg_ls_supp; /* negotiable link station support */
 unsigned char port_types; /* port types supported by DLC type */
 unsigned char hpr_only; /* only support HPR? */
 unsigned char reserv3; /* reserved */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char reserv4[4]; /* reserved */
 AP_UINT16 dlc_spec_data_len; /* Length of DLC specific data */
} DLC_DEF_DATA;

For more details of the DLC-specific data, see “DEFINE_DLC” on page 74. The data structure for this data
follows the dlc_def_data structure, but is padded to start on a 4-byte boundary.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLC

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of DLCs for which data should be returned. To request data for a specific DLC rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

QUERY_DLC

Chapter 3. NOF API Verbs 309

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the dlc_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the dlc_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

dlc_name
DLC name for which information is required, or the name to be used as an index into the list of DLCs.
This parameter is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte ASCII
string, padded on the right with spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

dlc_summary.overlay_size
The size of the returned dlc_summary structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each dlc_summary structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

dlc_summary.dlc_name
DLC name. The name is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 characters.

QUERY_DLC

310 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

dlc_summary.description
A null-terminated text string describing the DLC, as specified in the definition of the DLC.

dlc_summary.state
State of the DLC. This is one of the following:
AP_ACTIVE

The DLC is active.
AP_NOT_ACTIVE

The DLC is not active.
AP_PENDING_INACTIVE

STOP_DLC is in progress.
dlc_summary.dlc_type

Type of DLC. This is one of the following:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
dlc_detail.overlay_size

The size of the returned dlc_detail structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each dlc_detail structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

dlc_detail.dlc_name
DLC name. The name is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 characters.

dlc_detail.det_data.state
State of the DLC. This is one of the following:
AP_ACTIVE

The DLC is active.
AP_NOT_ACTIVE

The DLC is not active.
AP_PENDING_INACTIVE

STOP_DLC is in progress.
dlc_detail.def_data.description

A null-terminated text string describing the DLC, as specified in the definition of the DLC.
dlc_detail.def_data.initially_active

Specifies whether this DLC is automatically started when the node is started. Possible values are:
AP_YES

The DLC is automatically started when the node is started.
AP_NO

The DLC is not automatically started; it must be started manually.

QUERY_DLC

Chapter 3. NOF API Verbs 311

dlc_detail.def_data.dlc_type
Type of DLC. This is one of the following:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
dlc_detail.def_data.neg_ls_supp

Specifies whether the DLC supports negotiable link stations. Possible values are:
AP_YES

Link stations using this DLC may be negotiable.
AP_NO

Link stations using this DLC must be defined as either primary or secondary; negotiable link
stations are not supported.

dlc_detail.def_data.port_types
If dlc_type is set to AP_TR / AP_ETHERNET/ AP_IP, this parameter will be set to AP_PORT_SATF. For
other DLC types, this parameter is reserved.

dlc_detail.def_data.hpr_only
Specifies whether the DLC is used for Enterprise Extender links and therefore supports only HPR
traffic. Possible values are:
AP_YES

This DLC is used for Enterprise Extender links, and supports only HPR traffic.
AP_NO

This DLC is not used for Enterprise Extender links, and supports non-HPR traffic; it may also
support HPR traffic.

dlc_detail.def_data.dlc_spec_data_len
Unpadded length, in bytes, of data specific to the type of DLC. The data structure for this data follows
the def_data structure, but is padded to start on a 4-byte boundary. For more details of the DLC-
specific data, see “DEFINE_DLC” on page 74.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DLC_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the dlc_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

QUERY_DLC

312 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLC_TRACE
QUERY_DLC_TRACE returns information about DLC line tracing, which was set up using ADD_DLC_TRACE
verbs.

This verb can be used to obtain information about tracing on all resources, on a specific resource type, or
on a specific resource, depending on the options used.

VCB structure
typedef struct query_dlc_trace
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char list_type; /* type of listing required */
 DLC_TRACE_FILTER filter_entry; /* resource to start at */
} QUERY_DLC_TRACE;

typedef struct dlc_trace_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 DLC_TRACE_FILTER filter; /* DLC trace filter information */
} DLC_TRACE_DATA;

typedef struct dlc_trace_filter
{
 unsigned char resource_type; /* type of resource */
 unsigned char resource_name[8]; /* name of resource */
 SNA_LFSID lfsid; /* session identifier */
 unsigned char message_type; /* type of messages */
} DLC_TRACE_FILTER;

typedef struct sna_lfsid
{
 union
 {
 AP_UINT16 session_id;
 struct
 {
 unsigned char sidh;
 unsigned char sidl;
 } s;
 } uu;
 AP_UINT16 odai;
} SNA_LFSID;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLC_TRACE

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

QUERY_DLC_TRACE

Chapter 3. NOF API Verbs 313

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of DLC_TRACE entries for which data should be returned. To request data for a
specific entry rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list of DLC_TRACE entries from which CS/AIX should begin to return data. Possible
values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the filter_entry structure.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the filter_entry structure.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

list_type
The type of resource for which to list tracing options. Possible values are:
AP_ALL_DLC_TRACES

List all specified tracing options (for any resource type).
AP_ALL_RESOURCES

List the tracing options specified for all resources (defined using ADD_DLC_TRACE with a resource
type of AP_ALL_RESOURCES).

AP_DLC
List tracing options for DLC resources.

AP_PORT
List tracing options for port resources for which all LSs are traced.

AP_LS
List tracing options for LS resources.

AP_RTP_RESOURCE_TYPE
List tracing options for RTP connection resources.

AP_PORT_DEFINED_LS
List tracing options for port resources for which only defined LSs (not implicit LSs) are traced.

AP_PORT_IMPLICIT_LS
List tracing options for port resources for which only implicit LSs (not defined LSs) are traced.

filter_entry.resource_type
Specifies the resource type of the entry to be returned, or the entry to be used as an index into the list.
This parameter is used only if list_type is set to AP_ALL_DLC_TRACES and list_options is not set to
AP_FIRST_IN_LIST. Possible values are:
AP_ALL_RESOURCES

The required entry specifies the options used for tracing all DLCs, ports, and LSs.
AP_DLC

The required entry specifies tracing options for the DLC named in resource_name, and for all ports
and LSs that use this DLC.

AP_PORT
The required entry specifies tracing options for the port named in resource_name, and for all LSs
that use this port.

QUERY_DLC_TRACE

314 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LS
The required entry specifies tracing options for the LS named in resource_name.

AP_RTP_RESOURCE_TYPE
The required entry specifies tracing options for the RTP connection named in the resource_name
parameter.

AP_PORT_DEFINED_LS
The required entry specifies tracing options for the port named in resource_name, and for all
defined LSs (but not implicit LSs) that use this port.

AP_PORT_IMPLICIT_LS
The required entry specifies tracing options for the port named in resource_name, and for all
implicit LSs (but not defined LSs) that use this port.

filter_entry.resource_name
The name of the entry to be returned, or the entry to be used as an index into the list. This parameter
is ignored if list_options is set to AP_FIRST_IN_LIST, or if resource_type is set to
AP_ALL_RESOURCES.

filter_entry.lfsid
The Local Form Session Identifier for a session on the specified LS. This is only valid for resource_type
AP_LS, and indicates that the required entry specifies messages on a particular session for the
specified LS. The structure contains the following three values, which are returned in the
SESSION_STATS section of a QUERY_SESSION verb:

filter_entry.lfsid.uu.s.sidh
Session ID high byte.

filter_entry.lfsid.uu.s.sidl
Session ID low byte.

filter_entry.lfsid.odai
Origin Destination Assignor Indicator.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer contains the following parameters:

overlay_size
The size of the returned dlc_trace_data structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each dlc_trace_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

QUERY_DLC_TRACE

Chapter 3. NOF API Verbs 315

dlc_trace_filter.resource_type
The type of resource being traced. This can take one of the following values:
ALL_RESOURCES

The entry specifies tracing options for all resources.
AP_DLC

The entry specifies tracing options for the DLC named in resource_name, and for all ports and LSs
that use this DLC.

AP_PORT
The entry specifies tracing options for the port named in resource_name, and for all LSs that use
this port.

AP_LS
The entry specifies tracing options for the LS named in resource_name (or for a particular LFSID on
this LS).

AP_RTP_RESOURCE_TYPE
The entry specifies tracing options for the RTP connection named in resource_name.

AP_PORT_DEFINED_LS
The entry specifies tracing options for the port named in resource_name, and for all defined LSs
(but not implicit LSs) that use this port.

AP_PORT_IMPLICIT_LS
The entry specifies tracing options for the port named in resource_name, and for all implicit LSs
(but not defined LSs) that use this port.

dlc_trace_filter.resource_name
The name of the DLC, port, or LS being traced.

dlc_trace_filter.lfsid
The Local Form Session Identifier for a session on the specified LS. This is only valid for resource_type
AP_LS, and indicates that only messages on this session are to be traced. The structure contains the
following three values, which are returned in the SESSION_STATS section of a QUERY_SESSION verb:

dlc_trace_filter.lfsid.uu.s.sidh
Session ID high byte.

dlc_trace_filter.lfsid.uu.s.sidl
Session ID low byte.

dlc_trace_filter.lfsid.odai
Origin Destination Assignor Indicator.

dlc_trace_filter.message_type
The type of messages being traced for the specified resource or session. This parameter is set to
AP_TRACE_ALL to trace all messages, or to one or more of the following values (combined using a
logical OR):
AP_TRACE_XID

XID messages
AP_TRACE_SC

Session Control RUs
AP_TRACE_DFC

Data Flow Control RUs
AP_TRACE_FMD

FMD messages
AP_TRACE_NLP

(this message type is currently not used)
AP_TRACE_NC

(this message type is currently not used)
AP_TRACE_SEGS

Non-BBIU segments that do not contain an RH

QUERY_DLC_TRACE

316 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_TRACE_CTL
Messages other then MUs and XIDs

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns one of the following.

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_TYPE

The list_type parameter specified a value that was not valid.
AP_INVALID_RESOURCE_TYPE

The resource_type parameter specified a value that was not valid.
AP_ALL_RESOURCES_NOT_DEFINED

The resource_type parameter was set to AP_ALL_RESOURCES, but there is no DLC_TRACE entry
defined for tracing options on all resources.

AP_INVALID_RTP_CONNECTION
The RTP connection named in the resource_name parameter does not have any tracing options
set.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLUR_DEFAULTS
The QUERY_DLUR_DEFAULTS verb allows the user to query the defaults defined using the
DEFINE_DLUR_DEFAULTS verb.

VCB structure
typedef struct query_dlur_defaults
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char dlus_name[17]; /* DLUS name */
 unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
 unsigned char reserv3; /* reserved */
 AP_UINT16 dlus_retry_timeout; /* DLUS retry timeout */
 AP_UINT16 dlus_retry_limit; /* DLUS retry limit */
 unsigned char prefer_active_dlus; /* reserved */
 unsigned char persistent_pipe_support; /* reserved */
 unsigned char reserv4[14]; /* reserved */
} QUERY_DLUR_DEFAULTS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_DEFAULTS

QUERY_DLUR_DEFAULTS

Chapter 3. NOF API Verbs 317

description
Resource description. The length of this parameter is a multiple of four bytes and is nonzero.

dlus_name
Name of the DLUS node that is the default. This name is set to all zeros or a 17-byte EBCDIC string,
right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an
EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

bkup_dlus_name
Name of the DLUS node that serves as the backup default. This name is set to all zeros or a 17-byte
EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact a DLUS. The interval
between the initial attempt and the first retry is always one second.

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. A value of 0xFFFF indicates that
CS/AIX retries indefinitely.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc
AP_OK

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLUR_LU
QUERY_DLUR_LU returns information about active LUs that are using the DLUR feature of CS/AIX. This
verb can be used to obtain information about a specific LU, or about multiple LUs, depending on the
options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_dlur_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */

QUERY_DLUR_LU

318 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char pu_name[8]; /* PU name filter */
 unsigned char filter; /* local / downstream filter */
} QUERY_DLUR_LU;

typedef struct dlur_lu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[8]; /* LU name */
} DLUR_LU_SUMMARY;

typedef struct dlur_lu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[8]; /* LU name */
 unsigned char pu_name[8]; /* PU name of owning PU */
 unsigned char dlus_name[17]; /* DLUS name if SSCP-LU session */
 /* active */
 unsigned char lu_location; /* downstream or local LU */
 unsigned char nau_address; /* NAU address of LU */
 unsigned char plu_name[17]; /* PLU name if PLU-SLU session */
 /* active */
 unsigned char reserv1[27]; /* reserved */
 unsigned char rscv_len; /* length of appended RSCV */
} DLUR_LU_DETAIL;

Note: The DLUR_LU_DETAIL structure may be followed by a Route Selection Control Vector (RSCV) as
defined by SNA Formats. This control vector defines the session route through the network and is carried
on the BIND. This RSCV is included only if the node's configuration (specified using DEFINE_NODE)
indicates that RSCVs should be stored for DLUR sessions and if the PLU-SLU session is active.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_LU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of DLUR LUs for which data should be returned. To request data for a specific LU
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the pu_name and lu_name parameters.

QUERY_DLUR_LU

Chapter 3. NOF API Verbs 319

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the pu_name
and lu_name parameters.

The list is ordered by pu_name and then by lu_name. For more information about how the application
can obtain specific entries from the list, see “List options for QUERY_* Verbs” on page 33.

lu_name
Name of the LU for which information is required, or the name to be used as an index into the list of
LUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte EBCDIC
type-A string, padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

pu_name
PU name for which LU information is required. To list only information about LUs associated with a
specific PU, specify the PU name. To obtain a complete list for all PUs, set this field to binary zeros.
The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC spaces if the name is
shorter than 8 characters.

filter
Specifies whether to filter the returned LUs according to their location. Allowed values for network
node:
AP_INTERNAL

Return information only for internal LUs.
AP_DOWNSTREAM

Return information only for downstream LUs.
AP_NONE

Return information about all LUs irrespective of location.

For end node, this parameter is reserved (downstream DLUR LUs are not supported).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

dlur_lu_summary.overlay_size
The size of the returned dlur_lu_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each dlur_lu_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

QUERY_DLUR_LU

320 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

dlur_lu_summary.lu_name
Name of the LU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

dlur_lu_detail.overlay_size
The size of the returned dlur_lu_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each dur_lu_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

dlur_lu_detail.lu_name
Name of the LU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

dlur_lu_detail.pu_name
Name of PU associated with the LU. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

dlur_lu_detail.dlus_name
If the SSCP-LU session is active, this field contains the name of the DLUS node used by the LU;
otherwise it is set to 17 binary zeros. The name is a 17-byte EBCDIC string, right-padded with EBCDIC
spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character,
and a network name of up to 8 A-string characters.

dlur_lu_detail.lu_location
Location of LU.

This is set to one of the following.

AP_INTERNAL
LU is on the local node.

AP_DOWNSTREAM
LU is on a downstream node (network node only).

dlur_lu_detail.nau_address
Network accessible unit address of the LU.

dlur_lu_detail.plu_name
If the PLU-SLU session is active, this field contains the name of the PLU; otherwise it is set to 17
binary zeros. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

dlur_lu_detail.rscv_len
Length of the RSCV that is appended to the dlur_lu_detail structure. If the node's configuration
specifies that DLUR RSCVs are not stored, or if the PLU-SLU session is not active, this length is set to
zero and no RSCV is included.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

QUERY_DLUR_LU

Chapter 3. NOF API Verbs 321

AP_INVALID_FILTER_OPTION
The filter parameter was not set to a valid value.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLUR_PU
QUERY_DLUR_PU returns information about PUs that use the DLUR feature of CS/AIX.

This verb can be used to obtain information about a specific PU, or about multiple PUs, depending on the
options used.

If this verb is issued to an inactive node, it returns information only about PUs defined at the local node; if
it is issued to a running node, it also returns information about active downstream PUs using DLUR at this
node.

VCB structure
typedef struct query_dlur_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char pu_name[8]; /* PU name */
 unsigned char dlus_name[17]; /* fully-qualified DLUS name */
 unsigned char filter; /* local / downstream filter */
} QUERY_DLUR_PU;

typedef struct dlur_pu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char pu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} DLUR_PU_SUMMARY;

typedef struct dlur_pu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */

QUERY_DLUR_PU

322 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char pu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is the PU initially active? */
 unsigned char reserv1[15]; /* reserved */
 unsigned char defined_dlus_name[17]; /* defined DLUS name */
 unsigned char bkup_dlus_name[17]; /* backup DLUS name */
 unsigned char pu_id[4]; /* PU identifier */
 unsigned char pu_location; /* downstream or local PU */
 unsigned char active_dlus_name[17]; /* active DLUS name */
 unsigned char ans_support; /* auto network shutdown support*/
 unsigned char pu_status; /* status of the PU */
 unsigned char dlus_session_status; /* status of the DLUS pipe */
 unsigned char reserv3; /* reserved */
 FQPCID fqpcid; /* FQPCID used on pipe */
 AP_UINT16 dlus_retry_timeout; /* DLUR retry timeout */
 AP_UINT16 dlus_retry_limit; /* DLUR retry limit */
} DLUR_PU_DETAIL;

typedef struct fqpcid
{
 unsigned char pcid[8]; /* procedure correlator identifier */
 unsigned char fqcp_name[17]; /* originator's network qualified */
 /* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUR_PU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of DLUR PUs for which data should be returned. To request data for a specific PU
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the pu_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the pu_name parameter.

The list is ordered by pu_name. For more information about how the application can obtain specific
entries from the list, see “List options for QUERY_* Verbs” on page 33.

QUERY_DLUR_PU

Chapter 3. NOF API Verbs 323

pu_name
Name of the PU for which information is required, or the name to be used as an index into the list of
PUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte EBCDIC
type-A string, padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

dlus_name
DLUS name for which PU information is required. To list only information about PUs associated with a
specific DLUS, specify the DLUS name; a PU will be listed only if it has an SSCP-PU session to the
specified DLUS node. To obtain a complete list for all DLUSs, set this field to binary zeros.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

filter
Specifies whether to filter the returned PUs according to their location.

Allowed values for network node are:

AP_INTERNAL
Return information only for internal PUs.

AP_DOWNSTREAM
Return information only for downstream PUs.

AP_NONE
Return information about all PUs irrespective of location.

For end node, this parameter is reserved (downstream DLUR PUs are not supported).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

dlur_pu_summary.overlay_size
The size of the returned dlur_pu_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each dlur_pu_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

dlur_pu_summary.pu_name
Name of the PU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

QUERY_DLUR_PU

324 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

dlur_pu_summary.description
A null-terminated text string describing the PU, as specified in the definition of the PU. If the PU is an
active downstream PU, rather than a defined internal PU, this parameter is reserved.

dlur_pu_detail.overlay_size
The size of the returned dlur_pu_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each dlur_pu_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

dlur_pu_detail.pu_name
Name of the PU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

dlur_pu_detail.description
A null-terminated text string describing the PU, as specified in the definition of the PU. If the PU is an
active downstream PU, rather than a defined internal PU, this parameter is reserved.

dlur_pu_detail.initially_active
Specifies whether this PU is automatically started when the node is started. For a downstream PU,
this parameter is reserved. Possible values for an internal PU are:
AP_YES

The PU is automatically started when the node is started.
AP_NO

The PU is not automatically started; it must be started manually.
dlur_pu_detail.defined_dlus_name

Name of DLUS node, defined by either a DEFINE_INTERNAL_PU verb or a DEFINE_LS verb (with
dspu_services set to AP_DLUR).

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

dlur_pu_detail.bkup_dlus_name
Name of backup DLUS node, defined by either a DEFINE_INTERNAL_PU verb or a DEFINE_LS verb
(with dspu_services set to AP_DLUR).

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

dlur_pu_detail.pu_id
PU identifier, either defined on DEFINE_INTERNAL_PU or obtained in an XID from a downstream PU.
This is a 4-byte hexadecimal string, consisting of a block number (3 hexadecimal digits) and a node
number (5 hexadecimal digits).

dlur_pu_detail.pu_location
Location of PU.

This is set to one of the following.

AP_INTERNAL
PU is on the local node.

AP_DOWNSTREAM
PU is on a downstream node (network node only).

dlur_pu_detail.active_dlus_name
Name of DLUS node that the PU is currently using. If the SSCP-PU session is not active, this field will
be set to all binary zeros.

QUERY_DLUR_PU

Chapter 3. NOF API Verbs 325

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

dlur_pu_detail.ans_support
Auto Network Shutdown support, as sent to DLUR from the DLUS at SSCP-PU activation. It specifies
whether link-level contact should be continued if the subarea node initiates an auto network
shutdown procedure for the SSCP controlling the PU. Possible values are:
AP_CONT

Continue link-level contact
AP_STOP

Stop link-level contact.

This field is reserved if the SSCP-LU session is inactive.

dlur_pu_detail.pu_status
Status of the PU (as seen by DLUR). Possible values are:
AP_RESET

The PU is in reset state.
AP_PEND_ACTPU

The PU is waiting for an ACTPU from the host.
AP_PEND_ACTPU_RSP

Having forwarded an ACTPU to the PU, DLUR is now waiting for the PU to respond to it.
AP_ACTIVE

The PU is active.
AP_PEND_DACTPU_RSP

Having forwarded a DACTPU to the PU, DLUR is waiting for the PU to respond to it.
AP_PEND_INOP

DLUR is waiting for all necessary events to complete before it deactivates the PU.
dlur_pu_detail.dlus_session_status

Status of the DLUS pipe currently being used by the PU. Possible values are:
AP_PENDING_ACTIVE

The pipe is in the process of being activated.
AP_ACTIVE

The pipe is active.
AP_PENDING_INACTIVE

The pipe is in the process of being deactivated.
AP_INACTIVE

The pipe is not active.
dlur_pu_detail.fqpcid.pcid

Procedure Correlator ID used on the pipe. This is an 8-byte hexadecimal string. If the SSCP-PU
session is not active this field will be set to binary zeros.

dlur_pu_detail.fqpcid.fqcp_name
Fully qualified Control Point name used on the pipe. If the SSCP-PU session is not active this field will
be set to binary zeros.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

The combination of the pcid and fqcp_name parameters uniquely identify each PU whose sessions are
being routed using DLUR. The fqcp_name parameter is the CP name of either the DLUR or DLUS node,
depending on which node initiated the SSCP-PU session activation.

QUERY_DLUR_PU

326 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

dlur_pu_detail.dlus_retry_timeout
The interval in seconds between the second and subsequent attempts to contact the DLUS specified
by the def_data.dlus_name and def_data.bkup_dlus_name parameters. The interval between the first
and second attempts is always 1 second. If zero is specified, then the defaults specified using the
DEFINE_DLUR_DEFAULTS verb are used. .

dlur_pu_detail.dlus_retry_limit
Number of attempts to recontact a DLUS after an initial failure. A value of zero indicates that the value
from the DEFINE_DLUR_DEFAULTS verb is used. If 0xFFFF is returned, CS/AIX will retry indefinitely.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the pu_name parameter was not valid.

AP_INVALID_FILTER_OPTION
The filter parameter was not set to a valid value.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DLUS
QUERY_DLUS returns information about DLUS nodes known to the DLUR feature of CS/AIX. This verb
returns pipe statistics (SSCP-PU and SSCP-LU session statistics); the QUERY_ISR_SESSION verb may be
used to obtain PLU-SLU session statistics.

This verb can be used to obtain information about a specific DLUS, or about multiple DLUSs, depending on
the options used.

If this verb is issued to an inactive node, it returns information only on DLUS nodes defined using
DEFINE_INTERNAL_PU or DEFINE_DLUR_DEFAULTS; if it is issued to a running node, it also returns
information about active DLUS nodes. It does not return information about the backup DLUS that was
defined using DEFINE_DLUR_DEFAULTS, unless this DLUS is active.

QUERY_DLUS

Chapter 3. NOF API Verbs 327

VCB structure
typedef struct query_dlus
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char dlus_name[17]; /* fully-qualified DLUS name */
} QUERY_DLUS;

typedef struct dlus_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dlus_name[17]; /* fully qualified DLUS name */
 unsigned char is_default; /* is the DLUS the default */
 unsigned char is_backup_default; /* is DLUS the backup default */
 unsigned char pipe_state; /* state of CPSVRMGR pipe */
 AP_UINT16 num_active_pus; /* num of active PUs using pipe */
 PIPE_STATS pipe_stats; /* pipe statistics */
 unsigned char persistent_pipe_support; /* reserved */
 unsigned char persistent_pipe; /* reserved */
} DLUS_DATA;

typedef struct pipe_stats
{
 AP_UINT32 reqactpu_sent; /* REQACTPUs sent to DLUS */
 AP_UINT32 reqactpu_rsp_received; /* RSP(REQACTPU)s received */
 /* from DLUS */
 AP_UINT32 actpu_received; /* ACTPUs received from DLUS */
 AP_UINT32 actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
 AP_UINT32 reqdactpu_sent; /* REQDACTPUs sent to DLUS */
 AP_UINT32 reqdactpu_rsp_received; /* RSP(REQDACTPU)s received */
 /* from DLUS */
 AP_UINT32 dactpu_received; /* DACTPUs received from DLUS */
 AP_UINT32 dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
 AP_UINT32 actlu_received; /* ACTLUs received from DLUS */
 AP_UINT32 actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
 AP_UINT32 dactlu_received; /* DACTLUs received from DLUS */
 AP_UINT32 dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
 AP_UINT32 sscp_pu_mus_rcvd; /* MUs for SSCP-PU sessions rcvd */
 AP_UINT32 sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
 AP_UINT32 sscp_lu_mus_rcvd; /* MUs for SSCP-LU sessions rcvd */
 AP_UINT32 sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */
} PIPE_STATS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DLUS

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of DLUSs for which data should be returned. To request data for a specific DLUS
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

QUERY_DLUS

328 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the dlus_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the dlus_name parameter.

The list is ordered by dlus_name. For more information about how the application can obtain specific
entries from the list, see “List options for QUERY_* Verbs” on page 33.

dlus_name
Name of the DLUS for which information is required, or the name to be used as an index into the list of
DLUSs. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

dlus_data.overlay_size
The size of the returned dlus_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each dlus_data structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

dlus_data.dlus_name
Name of DLUS. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of
a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

dlus_data.is_default
Specifies whether the DLUS node has been designated as the default by a DEFINE_DLUR_DEFAULTS
verb (AP_YES or AP_NO).

QUERY_DLUS

Chapter 3. NOF API Verbs 329

dlus_data.is_backup_default
Specifies whether the DLUS node has been designated as the backup default by a
DEFINE_DLUR_DEFAULTS verb (AP_YES or AP_NO).

dlus_data.pipe_state
State of the pipe to the DLUS. Possible values are:
AP_PENDING_ACTIVE

The pipe is in the process of being activated.
AP_ACTIVE

The pipe is active.
AP_PENDING_INACTIVE

The pipe is in the process of being deactivated.
AP_INACTIVE

The pipe is not active.
dlus_data.num_active_pus

Number of PUs currently using the pipe to the DLUS.
dlus_data.pipe_stats.reqactpu_sent

Number of REQACTPUs sent to DLUS over the pipe.
dlus_data.pipe_stats.reqactpu_rsp_received

Number of RSP(REQACTPU)s received from DLUS over the pipe.
dlus_data.pipe_stats.actpu_received

Number of ACTPUs received from DLUS over the pipe.
dlus_data.pipe_stats.actpu_rsp_sent

Number of RSP(ACTPU)s sent to DLUS over the pipe.
dlus_data.pipe_stats.reqdactpu_sent

Number of REQDACTPUs sent to DLUS over the pipe.
dlus_data.pipe_stats.reqdactpu_rsp_received

Number of RSP(REQDACTPU)s received from DLUS over the pipe.
dlus_data.pipe_stats.dactpu_received

Number of DACTPUs received from DLUS over the pipe.
dlus_data.pipe_stats.dactpu_rsp_sent

Number of RSP(DACTPU)s sent to DLUS over the pipe.
dlus_data.pipe_stats.actlu_received

Number of ACTLUs received from DLUS over the pipe.
dlus_data.pipe_stats.actlu_rsp_sent

Number of RSP(ACTLU)s sent to DLUS over the pipe.
dlus_data.pipe_stats.dactlu_received

Number of DACTLUs received from DLUS over the pipe.
dlus_data.pipe_stats.dactlu_rsp_sent

Number of RSP(DACTLU)s sent to DLUS over the pipe.
dlus_data.pipe_stats.sscp_pu_mus_rcvd

Number of SSCP-PU MUs received from DLUS over the pipe.
dlus_data.pipe_stats.sscp_pu_mus_sent

Number of SSCP-PU MUs sent to DLUS over the pipe.
dlus_data.pipe_stats.sscp_lu_mus_rcvd

Number of SSCP-LU MUs received from DLUS over the pipe.
dlus_data.pipe_stats.sscp_lu_mus_sent

Number of SSCP-LU MUs sent to DLUS over the pipe.

QUERY_DLUS

330 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DLUS_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the dlus_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support DLUR; this is defined by the dlur_support parameter on the
DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DOMAIN_CONFIG_FILE
QUERY_DOMAIN_CONFIG_FILE returns the header information included in the CS/AIX domain
configuration file (the CS/AIX version number, the revision level of the file, and an optional comment string
supplied on DEFINE_DOMAIN_CONFIG_FILE).

This verb must be issued to the domain configuration file.

VCB structure
typedef struct query_domain_config_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char reserv3[8]; /* Reserved */
 CONFIG_FILE_HEADER hdr;
} QUERY_DOMAIN_CONFIG_FILE;

typedef struct config_file_header
{
 AP_UINT16 major_version; /* major version number */
 AP_UINT16 minor_version; /* minor version number */
 AP_UINT16 update_release; /* update release */
 AP_UINT32 revision_level; /* file revision number */
 unsigned char comment[100]; /* optional comment string */
 AP_UINT16 updating; /* reserved */
} CONFIG_FILE_HEADER;

QUERY_DOMAIN_CONFIG_FILE

Chapter 3. NOF API Verbs 331

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_DOMAIN_CONFIG_FILE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

hdr.major_version, hdr.minor_version, hdr.update_release
The internal version identifier of the release of CS/AIX that was used to create this file.

hdr.revision_level
The revision level of the file (stored internally by CS/AIX).

hdr.comment
An optional comment string containing information about the file. This is an ASCII string of 0-99
characters, followed by a null character.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DOWNSTREAM_LU
QUERY_DOWNSTREAM_LU returns information about downstream LUs that use SNA gateway or DLUR or
both. It also returns information about downstream LUs used by applications that communicates with a
CS/AIX Primary RUI application. For more information about Primary RUI, see IBM Communications
Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide.

The returned information is structured as determined data (data gathered dynamically during execution,
returned only if the node is active) and defined data (data supplied on DEFINE_DOWNSTREAM_LU). For
DLUR-supported LUs, implicitly defined data is put in place when the downstream LU is activated.

This verb can be used to obtain information about a specific LU, or about multiple LUs, depending on the
options used.

VCB structure
typedef struct query_downstream_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char dspu_name[8]; /* Downstream PU name filter */
 unsigned char dslu_name[8]; /* Downstream LU name */
 unsigned char dspu_services; /* services provided to LU */
} QUERY_DOWNSTREAM_LU;

typedef struct downstream_lu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */

QUERY_DOWNSTREAM_LU

332 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char dspu_name[8]; /* PU name */
 unsigned char dslu_name[8]; /* LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char dspu_services; /* Type of services provided */
 /* to downstream LU */
 unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
} DOWNSTREAM_LU_SUMMARY;

typedef struct downstream_lu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dslu_name[8]; /* LU name */
 unsigned char reserv1[2]; /* reserved */
 DOWNSTREAM_LU_DET_DATA det_data; /* Determined data */
 DOWNSTREAM_LU_DEF_DATA def_data; /* Defined data */
} DOWNSTREAM_LU_DETAIL;

typedef struct downstream_lu_det_data
{
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
 unsigned char dspu_services; /* Type of service provided to */
 /* downstream node */
 unsigned char reserv1; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 SESSION_STATS ds_plu_stats; /* Downstream PLU-SLU session */
 /* statistics */
 SESSION_STATS us_plu_stats; /* Upstream PLU-SLU session */
 /* statistics */
 unsigned char host_lu_name[8]; /* Determined host LU name */
 unsigned char host_pu_name[8]; /* Determined host PU name */

 unsigned char reserva[4]; /* reserved */
} DOWNSTREAM_LU_DET_DATA;

typedef struct downstream_lu_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* downstream LU nau address */
 unsigned char dspu_name[8]; /* Downstream PU name */
 unsigned char host_lu_name[8]; /* Host LU or Pool name */
 unsigned char allow_timeout; /* Allow timeout of host LU */
 unsigned char delayed_logon; /* Allow delayed logon to */
 /* host LU */
 unsigned char reserv2[6]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window size*/
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window size*/
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

QUERY_DOWNSTREAM_LU

Chapter 3. NOF API Verbs 333

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DOWNSTREAM_LU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of downstream LUs for which data should be returned. To request data for a
specific LU rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the dspu_name and dslu_name parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the dspu_name
and dslu_name parameters.

The list is ordered by dspu_name and then by dslu_name. For more information about how the
application can obtain specific entries from the list, see “List options for QUERY_* Verbs” on page 33.

dspu_name
PU name for which LU information is required (as specified on DEFINE_LS). To list only information
about LUs associated with a specific PU, specify the PU name. To obtain a complete list for all PUs, set
this field to binary zeros. The name is an 8-byte EBCDIC type-A string, padded on the right with
EBCDIC spaces if the name is shorter than 8 characters.

dslu_name
Name of the LU for which information is required, or the name to be used as an index into the list of
LUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. The name is an 8-byte EBCDIC
type-A string, padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

dspu_services
DSPU services filter. When the verb is issued to a running node, this parameter specifies whether to
filter the returned information by the type of services provided to the LUs. Possible values are:
AP_PU_CONCENTRATION

Return information only on downstream LUs served by SNA gateway.
AP_DLUR

Return information only on downstream LUs served by DLUR.
AP_NONE

Return information about all downstream LUs.

QUERY_DOWNSTREAM_LU

334 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

When the node is not running, this parameter is ignored; CS/AIX returns information about all
downstream LUs.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

downstream_lu_summary.overlay_size
The size of the returned downstream_lu_summary structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
downstream_lu_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

downstream_lu_summary.dspu_name
Name of the PU associated with the LU. The name is an 8-byte EBCDIC type-A string, padded on the
right with EBCDIC spaces if the name is shorter than 8 characters.

downstream_lu_summary.dslu_name
Name of the LU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

downstream_lu_summary.description
A null-terminated text string describing the downstream LU, as specified in the definition of the
downstream LU.

For a DLUR-supported LU, this parameter is reserved.

downstream_lu_summary.dspu_services
When the verb is issued to a running node, this parameter specifies the services provided by the local
node to the downstream LU.

Possible values are:

AP_PU_CONCENTRATION
Downstream LU is served by SNA gateway.

AP_DLUR
Downstream LU is served by DLUR.

downstream_lu_summary.nau_address
Network accessible unit address of the LU.

downstream_lu_summary.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:

QUERY_DOWNSTREAM_LU

Chapter 3. NOF API Verbs 335

AP_YES
The session is active.

AP_NO
The session is not active.

downstream_lu_summary.plu_sess_active
Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
downstream_lu_detail.overlay_size

The size of the returned downstream_lu_detail structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each downstream_lu_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

downstream_lu_detail.dslu_name
Name of the LU. The name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC
spaces if the name is shorter than 8 characters.

downstream_lu_detail.det_data.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
downstream_lu_detail.det_data.plu_sess_active

Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
downstream_lu_detail.det_data.dspu_services

When the verb is issued to a running node, this parameter specifies the services provided by the local
node to the downstream LU.

Possible values are:

AP_PU_CONCENTRATION
Downstream LU is served by SNA gateway.

AP_DLUR
Downstream LU is served by DLUR.

A session_stats structure is included for each of the three sessions (LU-SSCP session,
downstream PLU-SLU session, and upstream PLU-SLU session). The fields in this structure are as
follows:

rcv_ru_size
Maximum receive RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

send_ru_size
Maximum send RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

QUERY_DOWNSTREAM_LU

336 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_send_pac_win
Current size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

max_rcv_pac_win
Maximum size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_rcv_pac_win
Current size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

send_data_frames
Number of normal flow data frames sent.

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

sidh
Session ID high byte. (In the upstream PLU-SLU session statistics for an LU served by SNA gateway,
this parameter is reserved.)

sidl
Session ID low byte. (In the upstream PLU-SLU session statistics for an LU served by SNA gateway,
this parameter is reserved.)

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station. (In the upstream PLU-SLU session statistics for an LU
served by SNA gateway, this parameter is reserved.)

ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters. (In the upstream PLU-SLU session statistics for
an LU served by SNA gateway, this parameter is reserved.)

pacing_type
The type of receive pacing in use on this session. Possible values are:

• AP_NONE
• AP_PACING_FIXED

downstream_lu_detail.det_data.host_lu_name
Name of the host LU to which the downstream LU is mapped, or to which it was mapped when the
PLU-SLU session was last active. This parameter value may differ from def_data.host_lu_name
because def_data.host_lu_name can be the name of a host LU pool.

QUERY_DOWNSTREAM_LU

Chapter 3. NOF API Verbs 337

If the downstream LU is used to communicate with a CS/AIX Primary RUI application instead of a
host, this field is set to the string #PRIRUI# in EBCDIC.

downstream_lu_detail.det_data.host_pu_name
Name of the host PU to which the downstream LU is mapped, or to which it was mapped when the
PLU-SLU session was last active.

downstream_lu_detail.def_data.description
A null-terminated text string describing the downstream LU, as specified in the definition of the
downstream LU. For a DLUR-supported LU, this parameter is reserved.

downstream_lu_detail.def_data.nau_address
Network accessible unit address of the downstream LU.

downstream_lu_detail.def_data.dspu_name
Name of the downstream PU associated with this LU (as specified on the DEFINE_LS verb). This is an
8-byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if the
name is shorter than 8 characters.

downstream_lu_detail.def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU uses. This is an 8-byte EBCDIC string,
padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

If the downstream LU is used to communicate with a CS/AIX Primary RUI application instead of a
host, this field is set to the string #PRIRUI# in EBCDIC.

This field is reserved for DLUR-served downstream LUs.

downstream_lu_detail.allow_timeout
Specifies whether this downstream LU allows its session with the upstream LU to timeout. Possible
values are:
AP_YES

This downstream LU allows its session with the upstream LU to timeout.
AP_NO

This downstream LU does not allow its session with the upstream LU to timeout.

This field is ignored if the downstream LU is used to communicate with a CS/AIX Primary RUI
application instead of a host.

downstream_lu_detail.delayed_logon
Specifies whether this downstream LU uses delayed logon (the upstream LU is not activated until the
user requests that it be activated). Possible values are:
AP_YES

This downstream LU uses delayed logon.
AP_NO

This downstream LU does not use delayed logon.

This field is ignored if the downstream LU is used to communicate with a CS/AIX Primary RUI
application instead of a host.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

QUERY_DOWNSTREAM_LU

338 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_PU_TYPE

The PU specified by the dspu_name parameter is not a downstream PU.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway or DLUR; this is defined by the pu_conc_supportand
dlur_support parameters on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DOWNSTREAM_PU
QUERY_DOWNSTREAM_PU returns information about downstream PUs that use SNA gateway or DLUR or
both. This verb can be used to obtain information about a specific PU or about multiple PUs, depending on
the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_downstream_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char dspu_name[8]; /* Downstream PU name filter */
 unsigned char dspu_services; /* services provided to PU */
} QUERY_DOWNSTREAM_PU;

typedef struct downstream_pu_data
{

QUERY_DOWNSTREAM_PU

Chapter 3. NOF API Verbs 339

 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dspu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char ls_name[8]; /* Link name */
 unsigned char pu_sscp_sess_active; /* Is the PU-SSCP session active */
 unsigned char dspu_services; /* DSPU service type */
 SESSION_STATS pu_sscp_stats; /* SSCP-PU session statistics */
 unsigned char reserva[20]; /* reserved */
} DOWNSTREAM_PU_DATA;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window */
 /* size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID)*/
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DOWNSTREAM_PU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of downstream PUs for which data should be returned. To request data for a
specific PU rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the dspu_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the dspu_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

dspu_name
Name of the PU for which information is required (as specified on DEFINE_LS), or the name to be used
as an index into the list of PUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. The

QUERY_DOWNSTREAM_PU

340 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

name is an 8-byte EBCDIC type-A string, padded on the right with EBCDIC spaces if the name is
shorter than 8 characters.

dspu_services
DSPU services filter. Specifies whether to filter the returned information by the type of services
provided to the PUs. Possible values are:
AP_PU_CONCENTRATION

Return information only on downstream PUs served by SNA gateway.
AP_DLUR

Return information only on downstream PUs served by DLUR.
AP_NONE

Return information about all downstream PUs.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

downstream_pu_data.overlay_size
The size of the returned downstream_pu_data structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each downstream_pu_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

downstream_pu_data.dspu_name
Name of the downstream PU. The name is an 8-byte EBCDIC type-A string, padded on the right with
EBCDIC spaces if the name is shorter than 8 characters.

downstream_pu_data.description
A null-terminated text string describing the LS to the downstream PU, as specified in the definition of
the LS.

downstream_pu_data.ls_name
Name of the LS used to access the downstream PU. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 characters.

downstream_pu_data.pu_sscp_sess_active
Specifies whether the PU-SSCP session to the downstream PU is active. Possible values are:
AP_YES

The session is active.

QUERY_DOWNSTREAM_PU

Chapter 3. NOF API Verbs 341

AP_NO
The session is not active.

downstream_pu_data.dspu_services
Specifies the type of services provided to the PU.

Possible values are:

AP_PU_CONCENTRATION
Downstream PU is served by SNA gateway.

AP_DLUR
Downstream PU is served by DLUR.

downstream_pu_data.pu_sscp_stats.rcv_ru_size
Maximum receive RU size; this field is reserved (and set to zero) if the downstream PU is served by
SNA gateway.

downstream_pu_data.pu_sscp_stats.send_ru_size
Maximum send RU size; this field is reserved (and set to zero) if the downstream PU is served by SNA
gateway.

downstream_pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_pu_data.pu_sscp_stats.max_send_pac_win
Reserved (always set to zero).

downstream_pu_data.pu_sscp_stats.cur_send_pac_win
Reserved (always set to zero).

downstream_pu_data.pu_sscp_stats.max_rcv_pac_win
Reserved (always set to zero).

downstream_pu_data.pu_sscp_stats.cur_rcv_pac_win
Reserved (always set to zero).

downstream_pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_pu_data.pu_sscp_stats.sidh
Session ID high byte.

downstream_pu_data.pu_sscp_stats.sidl
Session ID low byte.

downstream_pu_data.pu_sscp_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

downstream_pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

QUERY_DOWNSTREAM_PU

342 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

downstream_pu_data.pacing_type
The type of receive pacing in use on the PU-SSCP. This parameter will always be set to AP_NONE.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the dspu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support SNA gateway or DLUR; this is defined by the pu_conc_support and
dlur_support parameters on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_DSPU_TEMPLATE
The QUERY_DSPU_TEMPLATE verb returns information about defined downstream PU templates used for
SNA gateway over implicit links.

This verb can be used to obtain information about a specific downstream PU template, or about a number
of downstream PU templates, depending on the options used. To obtain information about a specific
downstream PU template or multiple downstream PU templates, set the template_name parameter. The
template_name parameter is ignored if the list_options parameter is set to AP_FIRST_IN_LIST.

VCB structure
typedef struct query_dspu_template
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv1; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */

QUERY_DSPU_TEMPLATE

Chapter 3. NOF API Verbs 343

 unsigned char template_name[8]; /* name of DSPU template */
} QUERY_DSPU_TEMPLATE;

typedef struct dspu_template_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char template_name[8]; /* name of DSPU template */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char reserv1[12]; /* reserved */
 AP_UINT16 max_instance; /* max active template instance */
 AP_UINT16 active_instance; /* current active instances */
 unsigned char num_of_dslu_templates; /* number of DSLU templates */
} DSPU_TEMPLATE_DATA;

Each dspu_template_data structure is followed by one or more downstream LU templates; the number
of the downstream LU templates is specified by the number_of_dslu_templates parameter. Each
downstream LU template has the following format:

typedef struct dslu_template_data
{
 AP_UINT16 overlay_size; /* size of this entry */
 unsigned char reserv1[2]; /* reserved */
 DSLU_TEMPLATE dslu_template; /* downstream LU template */
} DSLU_TEMPLATE_DATA;

typedef struct dslu_template
{
 unsigned char min_nau; /* minimum NAU address in range */
 unsigned char max_nau; /* maximum NAU address in range */
 unsigned char allow_timeout; /* allow timeout of host LU? */
 unsigned char delayed_logon; /* allow delayed logon to host LU */
 unsigned char reserv1[8]; /* reserved */
 unsigned char host_lu[8]; /* host LU or pool name */
} DSLU_TEMPLATE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_DSPU_TEMPLATE

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of templates for which data should be returned. To request data for a specific
template rather than a range, specify the value 1. To return as many entries as possible, specify zero;
in this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the template_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the template_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

QUERY_DSPU_TEMPLATE

344 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

template_name
Name of the DSPU template for which information is required, or the name to be used as an index into
the list. This is an 8-byte string in a locally displayable character set. This parameter is ignored if
list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This may be higher than num_entries.

dspu_template_data.overlay_size
The number of bytes in this entry, including any downstream LU templates, and the offset to the next
entry returned (if any).

When your application needs to go through the returned buffer to find each dspu_template_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

dspu_template_data.template_name
Name of the DSPU template.

dspu_template_data.description
Resource description, as defined on the DEFINE_DSPU_TEMPLATE verb.

dspu_template_data.max_instance
The maximum number of instances of the template which can be active simultaneously.

dspu_template_data.active_instance
The number of instances of the template which are currently active.

dspu_template_data.num_of_dslu_templates
Number of downstream LU templates for this downstream PU template. Following this parameter are
num_of_dslu_templates entries, one for each DSLU template.

dslu_template_data.overlay_size
The number of bytes in this entry, and the offset to the next entry returned (if any).

When your application needs to go through the returned buffer to find each dslu_template_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

dslu_template_data.min_nau
Minimum NAU address in the range of DSLU templates.

dslu_template_data.max_nau
Maximum NAU address in the range of DSLU templates.

QUERY_DSPU_TEMPLATE

Chapter 3. NOF API Verbs 345

dslu_template_data.allow_timeout
Indicates whether CS/AIX is allowed to timeout host LUs used by this downstream LU if the session is
left inactive for the timeout period specified on the host LU definition. Possible values are:
AP_YES

CS/AIX is allowed to timeout host LUs used by this downstream LU.
AP_NO

CS/AIX is not allowed to timeout host LUs used by this downstream LU.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

dslu_template_data.delayed_logon
Indicates whether CS/AIX delays connecting the downstream LU to the host LU until the first data is
received from the downstream LU. Instead, a simulated logon screen is sent to the downstream LU.
Possible values are:
AP_YES

CS/AIX delays connecting the downstream LU to the host LU.
AP_NO

CS/AIX does not delay connecting the downstream LU to the host LU.

This field is ignored if the downstream LUs are used to communicate with a CS/AIX Primary RUI
application instead of a host.

dslu_template_data.host_lu_name
Name of the host LU or host LU pool onto which all the downstream LUs within the range will be
mapped.

If the downstream LUs are used to communicate with a CS/AIX Primary RUI application instead of a
host, this field is set to the string #PRIRUI# in EBCDIC.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TEMPLATE_NAME

The template specified in the template_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_FOCAL_POINT
QUERY_FOCAL_POINT returns information about the focal point for a specific Management Services
category, or about multiple focal points, depending on the options used.

VCB structure
typedef struct query_focal_point
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */

QUERY_FOCAL_POINT

346 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char ms_category[8]; /* name of MS category */
} QUERY_FOCAL_POINT;

typedef struct fp_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char ms_appl_name[8]; /* focal point application name */
 unsigned char ms_category[8]; /* focal point category */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char fp_fqcp_name[17]; /* focal point fully qualified */
 /* cp name */
 unsigned char bkup_appl_name[8]; /* backup focal point */
 /* application name */
 unsigned char bkup_fp_fqcp_name[17]; /* backup fp fully qualified cp */
 /* name */
 unsigned char implicit_appl_name[8]; /* implicit focal point appl name */
 unsigned char implicit_fp_fqcp_name[17]; /* implicit fp fully qualified */
 /* cp name */
 unsigned char fp_type; /* focal point type */
 unsigned char fp_status; /* focal point status */
 unsigned char fp_routing; /* type of MDS routing to use */
 unsigned char reserva[20]; /* reserved */
 AP_UINT16 number_of_appls; /* number of applications */
} FP_DATA;

Each fp_data structure is followed by one or more application names; the number of these is specified
by the number_of_appls parameter. Each application name has the following format:

 unsigned char appl_name[8]; /* application name */

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_FOCAL_POINT

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of entries for which data should be returned. To request data for a specific entry
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list of focal points from which CS/AIX should begin to return data. Possible values
are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the ms_category parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the ms_category parameter.

QUERY_FOCAL_POINT

Chapter 3. NOF API Verbs 347

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

ms_category
Management Services category. This parameter is not used if list_options is set to
AP_FIRST_IN_LIST.

This may be either one of the category names specified in the MS Discipline-Specific Application
Programs table of Systems Network Architecture: Management Services Reference (see the
Bibliography), padded with EBCDIC spaces (0x40), or a user-defined category. A user-defined
category name is an 8-byte type-1134 EBCDIC string, padded with EBCDIC spaces (0x40) if
necessary.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

fp_data.overlay_size
The size of the returned fp_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each fp_data structure in turn,
it must use this value to move to the correct offset for the next data structure, and must not use the C
sizeof() operator. This is because the size of the returned overlay may increase in future releases of
CS/AIX; using the returned overlay size ensures that your application will continue to work with future
releases.

fp_data.ms_appl_name
Name of the currently active focal point application. This is either one of the MS Discipline-Specific
Application Programs specified in the Systems Network Architecture: Management Services Reference
(see the Bibliography), or an EBCDIC string, using type-1134 characters, padded on the right with
spaces if the name is shorter than 8 characters.

fp_data.ms_category
Management Services category. This is either one of the category names specified in the Systems
Network Architecture: Management Services Reference (see the Bibliography), or an EBCDIC string,
using type-1134 characters, padded on the right with spaces if the name is shorter than 8 characters.

fp_data.description
A null-terminated text string describing the focal point, as specified in the definition of the focal point.

fp_data.fp_fqcp_name
Fully qualified control point name of the currently active focal point. This name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters,
an EBCDIC dot (period) character, and a network name of 1-8 A-string characters.

QUERY_FOCAL_POINT

348 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

fp_data.bkup_appl_name
Backup focal point application name. This is either one of the MS Discipline-Specific Application
Programs specified in the Systems Network Architecture: Management Services Reference (see the
Bibliography), or an EBCDIC string, using type-1134 characters, padded on the right with spaces if the
name is shorter than 8 characters.

fp_data.bkup_fp_fqcp_name
Fully qualified control point name of the backup focal point. This name is a 17-byte EBCDIC string,
padded on the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an
EBCDIC dot (period) character, and a network name of 1-8 A-string characters.

fp_data.implicit_appl_name
Name of the implicit focal point application (specified using DEFINE_FOCAL_POINT). This is either
one of the MS Discipline-Specific Application Programs specified in the Systems Network Architecture:
Management Services Reference (see the Bibliography), or an EBCDIC string, using type-1134
characters, padded on the right with spaces if the name is shorter than 8 characters.

fp_data.implicit_fp_fqcp_name
Fully qualified control point name of the implicit focal point (specified using DEFINE_FOCAL_POINT).
This name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

fp_data.fp_type
Type of focal point. Refer to the IBM Systems Network Architecture: Management Services Reference
(see the Bibliography) for further detail. This is one of the following:

AP_EXPLICIT_PRIMARY_FP

AP_IMPLICIT_PRIMARY_FP

AP_BACKUP_FP

AP_DEFAULT_PRIMARY_FP

AP_DOMAIN_FP

AP_HOST_FP

AP_NO_FP

fp_data.fp_status
Status of the focal point. This is one of the following:
AP_ACTIVE

The focal point is currently active.
AP_NOT_ACTIVE

The focal point is currently not active.
AP_PENDING

The focal point is pending active. This occurs after an implicit request has been sent to the focal
point and before the response has been received.

AP_NEVER_ACTIVE
No focal point information is available for the specified category although application registrations
for the category have been accepted.

fp_data.fp_routing
Specifies whether applications should use default or direct routing to route traffic to the focal point.
This is one of the following:
AP_DEFAULT

The MDS_MU should be delivered to the focal point using default routing.
AP_DIRECT

The MDS_MU should be routed on a session directly to the focal point.

QUERY_FOCAL_POINT

Chapter 3. NOF API Verbs 349

fp_data.number_of_appls
Number of applications registered for this focal point category.

appl_name
Name of application registered for focal point category. This is either one of the MS Discipline-Specific
Application Programs specified in the Systems Network Architecture: Management Services Reference
(see the Bibliography), or an EBCDIC string, using type-1134 characters, padded on the right with
spaces if the name is shorter than 8 characters.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_MS_CATEGORY

The list_options parameter was set to AP_LIST_INCLUSIVE, to list all entries starting from the
supplied name, but the ms_category parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_GLOBAL_LOG_TYPE
This verb allows a NOF application to determine the types of information that CS/AIX records in log files.
It specifies default values that are used on all servers (unless they are overridden on a particular server by
SET_LOG_TYPE); QUERY_LOG_TYPE can be used to determine the values being used on a particular
server.

CS/AIX logs messages for the following types of event:

Problem
An abnormal event that degrades the system in a way perceptible to a user (such as abnormal
termination of a session).

Exception
An abnormal event that may degrade the system but that is not immediately perceptible to a user
(such as receiving a message that is not valid from the remote system).

Audit
A normal event (such as starting a session).

QUERY_GLOBAL_LOG_TYPE

350 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Problem and exception messages are logged to the error log file; audit messages are logged to the audit
log file. Problem messages are always logged and cannot be disabled, but you can specify whether to log
each of the other two message types. For each of the two files (audit and error), you can specify whether
to use succinct logging (including only the text of the message and a summary of the message source) or
full logging (including full details of the message source, cause, and any action required).

This verb must be issued to the node currently acting as the central logger; for more information, see
“CONNECT_NODE” on page 51.

VCB structure
typedef struct query_global_log_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char audit; /* audit logging on or off */
 unsigned char exception; /* exception logging on or off */
 unsigned char succinct_audits; /* use succinct logging in audit file? */
 unsigned char succinct_errors; /* use succinct logging in error file? */
 unsigned char reserv3[4]; /* reserved */
} QUERY_GLOBAL_LOG_TYPE;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_GLOBAL_LOG_TYPE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

audit
This parameter indicates whether audit messages are recorded. Possible values are:
AP_YES

Audit messages are recorded.
AP_NO

Audit messages are not recorded.
exception

This parameter indicates whether exception messages are recorded. Possible values are:
AP_YES

Exception messages are recorded.
AP_NO

Exception messages are not recorded.
succinct_audits

This parameter indicates whether succinct logging or full logging is used in the audit log file. Possible
values are:
AP_YES

Succinct logging: each message in the log file contains a summary of the message header
information (such as the message number, log type, and system name) and the message text

QUERY_GLOBAL_LOG_TYPE

Chapter 3. NOF API Verbs 351

string and parameters. To obtain more details of the cause of the log and any action required, you
can use the snahelp utility.

AP_NO
Full logging: each message in the log file includes a full listing of the message header information,
the message text string and parameters, and additional information about the cause of the log and
any action required.

If you are using central logging, the choice of succinct or full logging for messages from all computers
is determined by the setting of this parameter on the server acting as the central logger; this setting
may either be from the SET_GLOBAL_LOG_TYPE verb, or from a SET_LOG_TYPE verb issued to that
server to override the default.

succinct_errors
This parameter indicates whether succinct logging or full logging is used in the error log file; this
applies to both exception logs and problem logs. The possible values and their meanings are the same
as for the succinct_audits parameter.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_NOT_CENTRAL_LOGGER

The verb was issued to a node that is not the central logger.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_ISR_SESSION
QUERY_ISR_SESSION returns list information about the sessions for which a network node is providing
intermediate session routing.

This verb can be used to obtain information about a specific session, or about a number of sessions,
depending on the options used. It can be used only if the CS/AIX node is a network node, and is not valid
if it is an end node or LEN node.

This list is ordered by fqpcid.pcid first and then by EBCDIC lexicographical ordering on fqpcid.fqcp_name.
The format of the fqpcid structure is an 8-byte PCID (Procedure Correlator Identifier) and the network
qualified CP name of the session originator.

This verb must be issued to a running node.

VCB structure
typedef struct query_isr_session
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char session_type; /* is this query for DLUR or regular*/
 /* ISR sessions? */

QUERY_ISR_SESSION

352 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
} QUERY_ISR_SESSION;

typedef struct isr_session_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
} ISR_SESSION_SUMMARY;

typedef struct isr_session_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 AP_UINT16 sub_overlay_size; /* offset to appended RSCV */
 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
 unsigned char trans_pri; /* Transmission priority: */
 unsigned char cos_name[8]; /* Class of Service name */
 unsigned char ltd_res; /* Session spans a limited resource */
 unsigned char reserv1[2]; /* reserved */
 EXTENDED_SESSION_STATS pri_ext_sess_stats; /* primary hop session stats */
 EXTENDED_SESSION_STATS sec_ext_sess_stats; /* secondary hop session stats */
 unsigned char sess_lu_type; /* session LU type */
 unsigned char sess_lu_level; /* session LU level */
 unsigned char pri_tg_number; /* Primary session TG number */
 unsigned char sec_tg_number; /* Secondary session TG number */
 AP_UINT32 rtp_tcid; /* RTP TC identifier */
 AP_UINT32 time_active; /* time elapsed since activation */
 unsigned char isr_state; /* current state of ISR session */
 unsigned char reserv2[11]; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char pri_lu_name[17]; /* primary LU name */
 unsigned char sec_lu_name[17]; /* secondary LU name */
 unsigned char pri_adj_cp_name[17]; /* primary stage adjacent CP name */
 unsigned char sec_adj_cp_name[17]; /* secondary stage adjacent CP name */
 unsigned char reserv3[3]; /* reserved */
 unsigned char rscv_len; /* length of following RSCV */
} ISR_SESSION_DETAIL;

The ISR session detail structure may be followed by a Route Selection Control Vector (RSCV) as defined
by SNA Formats. This control vector defines the session route through the network and is carried on the
BIND. This RSCV is included only if the node's configuration (specified using DEFINE_NODE) indicates
that RSCVs should be stored for ISR sessions.

typedef struct fqpcid
{
 unsigned char pcid[8]; /* procedure correlator identifier */
 unsigned char fqcp_name[17]; /* originator's network qualified */
 /* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct extended_session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 send_rpc; /* send residual pacing count */
 AP_UINT16 max_rcv_pac_win; /* maximum rcv pacing window size */
 AP_UINT16 cur_rcv_pac_win; /* current rcv pacing window size */
 AP_UINT16 rcv_rpc; /* receive residual pacing count */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 send_fmd_data_bytes; /* number of fmd data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 AP_UINT32 rcv_fmd_data_bytes; /* number of fmd data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */

QUERY_ISR_SESSION

Chapter 3. NOF API Verbs 353

 unsigned char ls_name[8]; /* link station name */
 unsigned char pacing_type; /* type of pacing in use */
 unsigned char reserv1[100]; /* reserved */
} EXTENDED_SESSION_STATS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_ISR_SESSION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of sessions for which data should be returned. To request data for a specific
session rather than a range, specify the value 1. To return as many entries as possible, specify zero; in
this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the pcid and fqcp_name parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the pcid and fqcp_name
parameters.

The list is ordered by pcid (numerically), and then by fqcp_name. For more information about how the
application can obtain specific entries from the list, see “List options for QUERY_* Verbs” on page 33.

session_type
Specifies whether DLUR-maintained sessions or regular ISR sessions are being queried. Possible
values are:
AP_DLUR_SESSIONS

DLUR-maintained sessions are being queried.
AP_ISR_SESSIONS

Regular ISR sessions are being queried.
fqpcid.pcid

Procedure Correlator ID. This is an 8-byte hexadecimal string. This value is ignored if list_options is set
to AP_FIRST_IN_LIST.

fqpcid.fqcp_name
Fully qualified control point name of the session for which information is required, or the name to be
used as an index into the list of sessions. This value is ignored if list_options is set to
AP_FIRST_IN_LIST.

QUERY_ISR_SESSION

354 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

isr_session_summary.overlay_size
The size of the returned isr_session_summary structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each isr_session_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

isr_session_summary.fqpcid.pcid
Procedure Correlator ID.

isr_session_summary.fqpcid.fqcp_name
Fully qualified CP name. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

isr_session_detail.overlay_size
The size of the returned isr_session_detail structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each isr_session_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

isr_session_detail.fqpcid.pcid
Procedure Correlator ID.

isr_session_detail.fqpcid.fqcp_name
Fully qualified CP name. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

isr_session_detail.trans_pri
Transmission priority. This parameter has one of the following values:

QUERY_ISR_SESSION

Chapter 3. NOF API Verbs 355

• AP_LOW AP_MEDIUM
• AP_HIGH AP_NETWORK

isr_session_detail.cos_name
Class of service name. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces.

isr_session_detail.ltd_res
Specifies whether the session uses a limited resource link. Possible values are:
AP_YES

Session uses a limited resource link.
AP_NO

Session does not use a limited resource link.

For each of the two sessions (primary and secondary), the extended_session_stats structure
contains the following fields, each preceded by isr_session_detail.pri_ext_sess_stats.*_* for the primary
session and isr_session_detail.sec_ext_sess_stats.*_* for the secondary session:

rcv_ru_size
Maximum receive RU size.

send_ru_size
Maximum send RU size.

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window.

cur_send_pac_win
Current size of the send pacing window.

send_rpc
Send residual pacing count.

max_rcv_pac_win
Maximum size of the receive pacing window.

cur_rcv_pac_win
Current size of the receive pacing window.

rcv_rpc
Receive residual pacing count.

send_data_frames
Number of normal flow data frames sent.

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

send_fmd_data_bytes
Number of normal flow FMD data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

QUERY_ISR_SESSION

356 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

rcv_fmd_data_bytes
Number of normal flow FMD data bytes received.

sidh
Session ID high byte.

sidl
Session ID low byte.

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

ls_name
Link station name or name of the RTP connection associated with statistics. This is an 8-byte string in
a locally displayable character set. All 8 bytes are significant. This field can be used to correlate the
intermediate session statistics with a particular link station.

pacing_type
Receive pacing type in use on the session. Possible values are:

• AP_NONE
• AP_PACING_FIXED
• AP_PACING_ADAPTIVE

The following parameters are also returned (these parameters are not part of the session_stats
structure):

isr_session.detail.sess_lu_type
The LU type of the session specified on the BIND. Possible values are (LU type 5 is intentionally
omitted):

• AP_LU_TYPE_0
• AP_LU_TYPE_1
• AP_LU_TYPE_2
• AP_LU_TYPE_3
• AP_LU_TYPE_4
• AP_LU_TYPE_6
• AP_LU_TYPE_7
• AP_LU_TYPE_UNKNOWN

isr_session.detail.sess_lu_level
The LU level of the session. Possible values are:

• AP_LU_LEVEL_0
• AP_LU_LEVEL_1
• AP_LU_LEVEL_2
• AP_LU_LEVEL_UNKNOWN

For LU types other than 6, this parameter is set to AP_LU_LEVEL_0. The value
AP_LU_LEVEL_UNKNOWN is always returned unless collection of names has been enabled using
DEFINE_ISR_STATS.

isr_session.detail.pri_tg_number
The TG number associated with the link traversed by the primary session hop. If the primary session
stage traverses an RTP connection, zero is returned. The value zero is always returned unless
collection of names has been enabled using DEFINE_ISR_STATS.

QUERY_ISR_SESSION

Chapter 3. NOF API Verbs 357

isr_session.detail.sec_tg_number
The TG number associated with the link traversed by the secondary session hop. If the secondary
session stage traverses an RTP connection, zero is returned. The value zero is always returned unless
collection of names has been enabled using DEFINE_ISR_STATS.

isr_session.detail.rtp_tcid
Total TC ID for the RTP connection. This is returned in cases where this ISR session forms part of an
ANR/ISR boundary. In other cases, this parameter is set to zero. The value zero is always returned
unless collection of names has been enabled using DEFINE_ISR_STATS.

isr_session.detail.time_active
The elapsed time since the activation of the session, in hundredths of a second. The value zero is
always returned unless collection of names has been enabled using DEFINE_ISR_STATS.

isr_session.detail.isr_state
The current state of the session. Possible values are:

• AP_ISR_INACTIVE
• AP_ISR_PENDING_ACTIVE
• AP_ISR_ACTIVE
• AP_ISR_PENDING_INACTIVE

isr_session.detail.mode_name
The mode name for the session. This is an 8-byte alphanumeric type-A EBCDIC string starting with a
letter, padded on the right with EBCDIC spaces. All binary zeros are returned unless collection of
names has been enabled using DEFINE_ISR_STATS.

isr_session.detail.pri_lu_name
The primary LU name of the session. This name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. The name consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and an LU name of 1-8 A-string characters. If this name is not available, all binary zeros are
returned in this field. All binary zeros are always returned unless collection of names has been
enabled using DEFINE_ISR_STATS.

isr_session.detail.sec_lu_name
The secondary LU name of the session. This name is a 17-byte EBCDIC string, padded on the right
with EBCDIC spaces. The name consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and an LU name of 1-8 A-string characters. If this name is not available, all binary
zeros are returned in this field. All binary zeros are always returned unless collection of names has
been enabled using DEFINE_ISR_STATS.

isr_session.detail.pri_adj_cp_name
The primary stage adjacent CP name of this session. If the primary session traverses an RTP
connection, the CP name of the remote RTP endpoint is returned. This name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. The name consists of a network ID of 1-8 A-string
characters, an EBCDIC dot (period) character, and a CP name of 1-8 A-string characters. If this name
is not available, all binary zeros are returned in this field. All binary zeros are always returned unless
collection of names has been enabled using DEFINE_ISR_STATS.

isr_session.detail.sec_adj_cp_name
The secondary stage adjacent CP name of this session. If the secondary session traverses an RTP
connection, the CP name of the remote RTP endpoint is returned. This name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. The name consists of a network ID of 1-8 A-string
characters, an EBCDIC dot (period) character, and a CP name of 1-8 A-string characters. If this name
is not available, all binary zeros are returned in this field. All binary zeros are always returned unless
collection of names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.rscv_len
Length of the RSCV which is appended to the session_detail structure. (If none is appended, then
the length is zero.)

QUERY_ISR_SESSION

358 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_FQPCID

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the pcid parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is not a network node, CS/AIX returns
the following parameters:

primary_rc
AP_INVALID_VERB

The local node is not a network node. This verb can be used only at a network node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_KERNEL_MEMORY_LIMIT
This verb returns information about the amount of kernel memory that CS/AIX is currently using, the
maximum amount it has used, and the configured limit. This allows you to check memory usage and set
the limit appropriately, to ensure that sufficient memory is available for CS/AIX components and for other
programs on the AIX computer.

You can specify the kernel memory limit when starting the CS/AIX software (for more information, see the
IBM Communications Server for Data Center Deployment on AIX Administration Guide), or modify it later
when the node is running (using the SET_KERNEL_MEMORY_LIMIT verb).

VCB structure
typedef struct query_kernel_memory_limit
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 limit; /* kernel memory limit, 0 => no limit */
 AP_UINT32 actual; /* current amount of memory allocated */
 AP_UINT32 max_used; /* maximum amount of memory allocated */
 unsigned char reset_max_used; /* set max_used = actual */
 unsigned char reserv3[8]; /* Reserved */
} QUERY_KERNEL_MEMORY_LIMIT;

Supplied parameters
The application supplies the following parameters:

QUERY_KERNEL_MEMORY_LIMIT

Chapter 3. NOF API Verbs 359

opcode
AP_QUERY_KERNEL_MEMORY_LIMIT

reset_max_used
Specify whether CS/AIX should reset the max_used value (after returning it on this verb) to match the
amount of memory currently allocated. This ensures that a subsequent
QUERY_KERNEL_MEMORY_LIMIT verb will return the maximum amount used since this verb, rather
than the maximum amount used since the system was started (or since the max_used value was last
reset). Possible values are:
AP_YES

Reset the max_used value to match the current memory allocation.
AP_NO

Do not reset the max_used value.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

limit
The maximum amount of kernel memory, in bytes, that CS/AIX is permitted to use at any time. If a
CS/AIX component attempts to allocate kernel memory that would take the total amount of memory
currently allocated to CS/AIX components above this limit, the allocation attempt will fail. A value of
zero indicates no limit.

actual
The amount of kernel memory, in bytes, currently allocated to CS/AIX components.

max_used
The maximum amount of kernel memory, in bytes, that has been allocated to CS/AIX components at
any time since the max_used parameter was last reset (as described for reset_max_used above), or
since the CS/AIX software was started.

reset_max_used
Specifies whether CS/AIX resets the max_used value (after returning it on this command) to match
the amount of memory currently allocated. This ensures that a subsequent
QUERY_KERNEL_MEMORY_LIMIT verb will return the maximum amount used since this command
was issued, rather than the maximum amount used since the system was started (or since the
max_used value was last reset). Possible values are:
AP_YES

CS/AIX resets the max_used value to match the current memory allocation.
AP_NO

CS/AIX does not reset the max_used value.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LOCAL_LU
QUERY_LOCAL_LU returns information about local LUs.

This verb can be used to obtain either summary or detailed information, about a specific LU or about
multiple LUs, depending on the options used. It can also obtain information about the LU associated with
the CP (the default LU).

QUERY_LOCAL_LU

360 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct query_local_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char pu_name[8]; /* PU name filter */
} QUERY_LOCAL_LU;

typedef struct local_lu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} LOCAL_LU_SUMMARY;

typedef struct local_lu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[8]; /* LU name */
 LOCAL_LU_DEF_DATA def_data; /* defined data */
 LOCAL_LU_DET_DATA det_data; /* determined data */
} LOCAL_LU_DETAIL;

typedef struct local_lu_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1; /* reserved */
 unsigned char security_list_name[14]; /* security access list name */
 unsigned char reserv3; /* reserved */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char nau_address; /* NAU address */
 unsigned char syncpt_support; /* is Syncpoint supported? */
 AP_UINT16 lu_session_limit; /* LU session limit */
 unsigned char default_pool; /* is LU in the pool of default */
 /* LUs? */
 unsigned char reserv2; /* reserved */
 unsigned char pu_name[8]; /* PU name */
 unsigned char lu_attributes; /* LU attributes */
 unsigned char sscp_id[6] /* SSCP ID */
 unsigned char disable; /* disable or enable local LU */
 ROUTING_DATA attach_routing_data; /* routing data for incoming */
 /* attaches */
 unsigned char reserv6; /* reserved */
 unsigned char reserv4[7]; /* reserved */
 unsigned char reserv5[16]; /* reserved */
} LOCAL_LU_DEF_DATA;

typedef struct local_lu_det_data
{
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char appl_conn_active; /* reserved */
 unsigned char reserv1[2]; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 unsigned char sscp_id[6]; /* SSCP ID */
} LOCAL_LU_DET_DATA;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send Ru size */

QUERY_LOCAL_LU

Chapter 3. NOF API Verbs 361

 AP_UINT16 max_send_btu_size; /* max send BTU size */
 AP_UINT16 max_rcv_btu_size; /* max rcv BTU size */
 AP_UINT16 max_send_pac_win; /* max send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing win size */
 AP_UINT16 max_rcv_pac_win; /* max receive pacing win size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing */
 /* window size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num of fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* num data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num of fmd data frames recvd */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received*/
 unsigned char sidh; /* session ID high byte */
 unsigned char sidl; /* session ID low byte */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name; /* link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

typedef struct routing_data
{
 unsigned char sys_name[128]; /* Name of target system for TP */
 AP_INT32 timeout; /* timeout value in seconds */
 unsigned char back_level; /* reserved */
 unsigned char reserved[59]; /* reserved */
} ROUTING_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LOCAL_LU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of LUs for which data should be returned. To request data for a specific LU rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the lu_name or lu_alias parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the lu_name or lu_alias parameter.

If AP_FIRST_IN_LIST is specified, you can also include the following option, using a logical OR
operation:

QUERY_LOCAL_LU

362 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LIST_BY_ALIAS
The list is returned in order of LU alias rather than LU name. This option is only valid if
AP_FIRST_IN_LIST is also specified. (For AP_LIST_FROM_NEXT or AP_LIST_INCLUSIVE, the
list is in order of LU alias or LU name, depending on which was specified as the index into the list.)

For more information about how the application can obtain specific entries from the list, see “List
options for QUERY_* Verbs” on page 33. The list is in EBCDIC lexicographical order (irrespective of the
length of each name).

lu_name
Fully qualified name of the LU for which information is required, or the name to be used as an index
into the list of LUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. To identify the LU
by its alias instead of its name, set this parameter to 8 binary zeros, and specify the alias in the
lu_alias parameter; to identify the default LU, set both lu_name and lu_alias to 8 binary zeros.

The name is an 8-byte EBCDIC string, padded on the right with EBCDIC spaces if the name is shorter
than 8 characters.

lu_alias
LU alias of the LU for which information is required, or the name to be used as an index into the list of
LUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
characters. To identify the LU by its LU name instead of its alias, set this parameter to 8 binary zeros,
and specify the name in the lu_name parameter; to identify the default LU, set both lu_name and
lu_alias to 8 binary zeros.

pu_name
PU name filter. To return information only on LUs associated with a specific PU, specify the PU name;
to return information without filtering on PU name, set this parameter to 8 binary zeros.

The name is an 8-byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC
spaces.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

local_lu_summary.overlay_size
The size of the returned local_lu_summary structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each local_lu_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase

QUERY_LOCAL_LU

Chapter 3. NOF API Verbs 363

in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

local_lu_summary.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

local_lu_summary.lu_alias
LU alias. This is an 8-byte ASCII character string.

local_lu_summary.description
A null-terminated text string describing the local LU, as specified in the definition of the LU.

local_lu_detail.overlay_size
The size of the returned local_lu_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each local_lu_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

local_lu_detail.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

local_lu_detail.def_data.description
A null-terminated text string describing the local LU, as specified in the definition of the LU.

local_lu_detail.def_data.security_list_name
Name of the security access list used by this local LU (defined using the
DEFINE_SECURITY_ACCESS_LIST verb). If this parameter is set to 14 binary zeros, the LU is available
for use by any user.

local_lu_detail.def_data.lu_alias
LU alias. This is an 8-byte ASCII character string.

local_lu_detail.def_data.nau_address
Network accessible unit address of the LU. This is in the range 1-255 if the LU is a dependent LU, or
zero if the LU is an independent LU.

local_lu_detail.def_data.syncpt_support
Specifies whether the LU supports Syncpoint functions. Possible values are:
AP_YES

Syncpoint is supported.
AP_NO

Syncpoint is not supported.
local_lu_detail.def_data.lu_session_limit

Maximum total number of sessions (across all modes) for the local LU. A value of zero indicates that
there is no limit.

local_lu_detail.def_data.default_pool
Specifies whether the LU is in the pool of default dependent LUs. When an application attempts to
start a conversation without specifying a local LU name, CS/AIX will select an unused LU from this
pool. Possible values are:
AP_YES

The LU is in the pool of default LUs, and can be used by applications that do not specify an LU
name.

AP_NO
The LU is not in the pool.

If the LU is an independent LU, this parameter is reserved.

QUERY_LOCAL_LU

364 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

local_lu_detail.def_data.pu_name
For dependent LUs, this parameter identifies the PU that this LU will use. This is an 8-byte type-A
EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces if necessary. For
independent LUs, this field is not used; it is set to 8 binary zeros.

local_lu_detail.def_data.lu_attributes
Configured LU attributes. Possible values are:
AP_NONE

No additional information identified.
AP_DISABLE_PWSUB

Disable password substitution support for the local LU. Password substitution means that
passwords are encrypted before transmission between the local and remote LUs, rather than
being sent as clear text. CS/AIX normally uses password substitution if the remote system
supports it.

This value is provided as a work-around for communications with some remote systems that do
not implement password substitution correctly. If you use this option, you should be aware that
this involves sending and receiving passwords in clear text (which may represent a security risk).
The option should not be set unless there are problems with the remote system's implementation
of password substitution.

local_lu_detail.def_data.sscp_id
Specifies the ID of the SSCP permitted to activate this LU. It is a 6-byte binary field. This parameter is
used only by dependent LUs, and is set to all binary zeros for independent LUs or if the LU can be
activated by any SSCP.

local_lu_detail.def_data.attach_routing_data.sys_name
The name of the target computer for incoming Allocate requests (requests from a partner TP to start
an APPC or CPI-C conversation) that arrive at this local LU. This identifies the computer where the
target TP runs.

If this parameter is set to binary zeros, CS/AIX routes the incoming Allocate request dynamically to a
running copy of the TP, if available, or attempts to start the TP on the same computer as the local LU.

local_lu_detail.def_data.attach_routing_data.timeout
The timeout value (in seconds) for dynamic load requests. A request will time out if the invoked TP has
not issued a Receive_Allocate verb (APPC), or Accept_Conversation or Accept_Incoming (CPI-C),
within this time. A value of -1 indicates no timeout (dynamic load requests will wait indefinitely).

The following parameters are used only for dependent LUs. For independent LUs, they are reserved (set to
binary zeros); you can obtain the equivalent information by issuing the QUERY_SESSION verb for the
appropriate session between this LU and the partner LU.

local_lu_detail.det_data.lu_sscp_session_active
Specifies whether the LU-SSCP session is active. Possible values are:
AP_YES

The LU-SSCP session is active.
AP_NO

The LU-SSCP session is not active.
local_lu_detail.det_data.lu_sscp_stats

Statistics for the LU-SSCP session.
local_lu_detail.det_data.lu_sscp_stats.rcv_ru_size

This parameter is always reserved.
local_lu_detail.det_data.lu_sscp_stats.send_ru_size

This parameter is always reserved.
local_lu_detail.det_data.lu_sscp_stats.max_send_btu_size

Maximum basic transmission unit (BTU) size that can be sent.
local_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size

Maximum BTU size that can be received.

QUERY_LOCAL_LU

Chapter 3. NOF API Verbs 365

local_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This parameter is always set to zero.

local_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This parameter is always set to zero.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This parameter is always set to zero.

local_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This parameter is always set to zero.

local_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent

local_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow function management data (FMD) frames sent.

local_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

local_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

local_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

local_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

local_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

local_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the ACTLU sets this
parameter to zero if the local node contains the primary link station, and sets it to one if the ACTLU
sender is the node containing the secondary link station.

local_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with the statistics This is an 8-byte string in a locally displayable
character set. All eight bytes are significant. This parameter can be used to correlate this session with
the link over which the session flows.

local_lu_detail.det_data.lu_sscp_stats.pacing_type
Receive pacing type in use on the LU-SSCP session. This parameter is set to AP_NONE.

local_lu_detail.det_data.sscp_id
This parameter is a 6-byte field containing the SSCP ID received in the ACTPU for the PU used by this
LU.

This parameter is reserved if lu_sscp_sess_active is not set to AP_YES.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_ALIAS

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_alias parameter was not valid.

QUERY_LOCAL_LU

366 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LOCAL_TOPOLOGY
All APPN nodes maintain a local topology database which holds information about the TGs to all adjacent
nodes. QUERY_LOCAL_TOPOLOGY allows information about these TGs to be returned.

This verb can be used to obtain either summary or detailed information, about a specific TG or about
multiple TGs, depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_local_topology
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
} QUERY_LOCAL_TOPOLOGY;

typedef struct local_topology_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
} LOCAL_TOPOLOGY_SUMMARY;

typedef struct local_topology_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
 unsigned char reserv1; /* reserved */
 LINK_ADDRESS dlc_data; /* DLC signalling data */
 AP_UINT32 rsn; /* resource sequence number */
 unsigned char status; /* tg status */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
 unsigned char cp_cp_session_active; /* CP-CP sessions active? */
 unsigned char branch_link_type; /* Up or down link? */
 unsigned char branch_tg; /* Branch TG? */
 unsigned char appended_data_format; /* Format of appended data */
 unsigned char appended_data_len; /* Length of appended data */

QUERY_LOCAL_TOPOLOGY

Chapter 3. NOF API Verbs 367

 unsigned char reserva[11]; /* reserved */
} LOCAL_TOPOLOGY_DETAIL;

typedef struct link_address
{
 unsigned char format; /* type of link address */
 unsigned char reserve1; /* reserved */
 AP_UINT16 length; /* length */
 unsigned char address[32]; /* address */
} LINK_ADDRESS;

For details of the TG_DEFINED_CHARS structure, see “DEFINE_LS” on page 100.

If the list_options parameter specifies detailed information, a TG Descriptor CV may be appended to the
returned information. See the descriptions of the parameters
local_topology_detail.appended_data_format and local_topology_detail.appended_data_len for more
information.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LOCAL_TOPOLOGY

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of entries for which data should be returned. To request a specific entry rather than
a range, specify the value 1. To return as many entries as possible, specify zero; in this case, CS/AIX
will return the maximum number of entries that can be accommodated in the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the dest, dest_type, and tg_num parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the dest,
dest_type, and tg_num parameters.

The list is ordered by dest, then by dest_type (in the order AP_NETWORK_NODE, AP_END_NODE,
AP_VRN), and lastly in numerical order of tg_num. For more information about how the list is ordered
and how the application can obtain specific entries from it, see “List options for QUERY_* Verbs” on
page 33.

dest
Fully qualified destination node name of the TG for which information is required, or the name to be
used as an index into the list of TGs. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

QUERY_LOCAL_TOPOLOGY

368 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

dest_type
Node type of the destination node for this TG. This value is ignored if list_options is set to
AP_FIRST_IN_LIST. Possible values are:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
AP_END_NODE

End node or LEN node.
AP_LEARN_NODE

Unknown node type.
tg_num

Number associated with the TG. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

local_topology_summary.overlay_size
The size of the returned local_topology_summary structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
local_topology_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

local_topology_summary.dest
Fully qualified destination node name of the TG. The name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

local_topology_summary.dest_type
Node type of the destination node for this TG. This is one of the following:
AP_NETWORK_NODE

Network node.

QUERY_LOCAL_TOPOLOGY

Chapter 3. NOF API Verbs 369

AP_VRN
Virtual routing node.

AP_END_NODE
End node or LEN node.

local_topology_summary.tg_num
Number associated with the TG.

local_topology_detail.overlay_size
The size of the returned local_topology_detail structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
local_topology_detail structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

local_topology_detail.dest
Fully qualified destination node name of the TG. The name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

local_topology_detail.dest_type
Node type of the destination node for this TG. This is one of the following:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
AP_END_NODE

End node or LEN node.
local_topology_detail.tg_num

Number associated with the TG.
local_topology_detail.dlc_data.length

If dest_type is AP_VRN, this field specifies the length of the DLC address of the connection to the VRN.
Otherwise, this field is not used and is set to zero.

local_topology_detail.dlc_data.address
If dest_type is AP_VRN, this field specifies the DLC address (in hexadecimal) of the connection to the
VRN. The number of bytes in the address is given by the preceding field, length; the remaining bytes in
the field are undefined. Otherwise, this field is not used.

For Token Ring or Ethernet, the address is in two parts: a 6-byte MAC address and a 1-byte local SAP
address. The bit ordering of the MAC address may not be in the expected format; for information
about converting between the two address formats, see “Bit ordering in MAC addresses” on page 125.

local_topology_detail.rsn
Resource Sequence Number. This is assigned by the network node that owns this resource.

local_topology_detail.status
Specifies the status of the TG. This may be one or more of the following, combined by a logical OR
operation.

AP_TG_OPERATIVE

AP_TG_CP_CP_SESSIONS

AP_TG_QUIESCING

AP_TG_HPR

AP_TG_RTP

QUERY_LOCAL_TOPOLOGY

370 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

local_topology_detail.tg_chars
TG characteristics. For more information about these parameters, see “DEFINE_LS” on page 100.

local_topology_detail.cp_cp_session_active
Specifies whether the owning node's contention winner CP-CP session is active. Possible values are:
AP_YES

The CP-CP session is active.
AP_NO

The CP-CP session is not active.
AP_UNKNOWN

The CP-CP session status is unknown.
local_topology_detail.branch_link_type

This parameter applies only if the node is a Branch Network Node; it is reserved otherwise.

Specifies the branch link type of this TG. Possible values are:

AP_UPLINK
The TG is an uplink.

AP_DOWNLINK
The TG is a downlink to an End Node.

AP_DOWNLINK_TO_BRNN
The TG is a downlink to a Branch Network Node that appears as an End Node from the perspective
of the local node.

AP_OTHERLINK
The TG is a link to a VRN.

local_topology_detail.branch_tg
This parameter applies only if the node is a Network Node; it is reserved otherwise.

Specifies whether the TG is a branch TG. Possible values are:

AP_YES
The TG is a branch TG.

AP_NO
The TG is not a branch TG.

AP_UNKNOWN
The TG type is unknown.

local_topology_detail.appended_data_format
Specifies the format of data appended to this NOF VCB structure.

If the parameter local_topology_detail.appended_data_len is set to a non-zero value, indicating that
appended data is included, this parameter is set to the following value:

AP_TG_DESCRIPTOR_CV
The appended data contains a TG Descriptor CV, as defined by SNA Formats.

If local_topology_detail.appended_data_len is zero, indicating that no appended data is included, this
parameter is reserved.

local_topology_detail.appended_data_len
Specifies the length of the TG Descriptor CV data appended to this NOF VCB structure. If this
parameter is set to zero, no appended data is included.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

QUERY_LOCAL_TOPOLOGY

Chapter 3. NOF API Verbs 371

secondary_rc
Possible values are:
AP_INVALID_TG

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the tg_num parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LOG_FILE
This verb allows the application to determine the name of the file that CS/AIX uses to record audit, error,
or usage log messages, the name of the backup log file, and the file size at which log information is copied
to the backup file.

VCB structure
typedef struct query_log_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char log_file_type; /* type of log file */
 unsigned char file_name[81]; /* file name */
 unsigned char backup_file_name[81]; /* backup file name */
 AP_UINT32 file_size; /* log file size */
 unsigned char succinct; /* reserved */
 unsigned char reserv3[3]; /* reserved */
} QUERY_LOG_FILE;

Supplied parameters
opcode

AP_QUERY_LOG_FILE
log_file_type

The type of log file being queried. Possible values are:
AP_AUDIT_FILE

Audit log file (audit messages only).
AP_ERROR_FILE

Error log file (problem and exception messages).
AP_USAGE_FILE

Usage log file (information on current and peak usage of CS/AIX resources).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

QUERY_LOG_FILE

372 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Not used.

file_name
Name of the log file. This parameter is an ASCII string of 1-80 characters, followed by a null (0x00)
character.

If no path is included, the file is stored in the default directory for diagnostics files, /var/sna; if a
path is included, this is either a full path (starting with a / character) or the path relative to the default
directory.

backup_file_name
Name of the backup log file. This parameter is an ASCII string of 1-80 characters, followed by a null
(0x00) character.

When the log file reaches the size specified by file_size below, CS/AIX copies the current contents of
the log file to this file and then clears the log file. You can also request a backup at any time using the
SET_LOG_FILE verb.

If no path is included, the file is stored in the default directory for diagnostics files, /var/sna; if a
path is included, this is either a full path (starting with a / character) or the path relative to the default
directory.

file_size
The maximum size of the log file specified by log_file_type. When a message written to the file causes
the file size to exceed this limit, CS/AIX clears the backup log file, copies the current contents of the
log file to the backup log file, and then clears the log file. This means that the maximum amount of
disk space taken up by log files is approximately twice the value of file_size.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FILE_TYPE

The log_file_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LOG_TYPE
This verb allows a NOF application to determine the types of information that CS/AIX records in log files
on a particular server, and whether these are the default settings specified on SET_GLOBAL_LOG_TYPE or
local settings specified by a previous SET_LOG_TYPE verb.

CS/AIX logs messages for the following types of event:

Problem
An abnormal event that degrades the system in a way perceptible to a user (such as abnormal
termination of a session).

Exception
An abnormal event that may degrade the system but that is not immediately perceptible to a user
(such as receiving a message that is not valid from the remote system).

QUERY_LOG_TYPE

Chapter 3. NOF API Verbs 373

Audit
A normal event (such as starting a session).

Problem and exception messages are logged to the error log file; audit messages are logged to the audit
log file. Problem messages are always logged and cannot be disabled, but you can specify whether to log
each of the other two message types. For each of the two files (audit and error), you can specify whether
to use succinct logging (including only the text of the message and a summary of the message source) or
full logging (including full details of the message source, cause, and any action required).

VCB structure
typedef struct query_log_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char override; /* overriding global settings? */
 unsigned char audit; /* audit logging on or off */
 unsigned char exception; /* exception logging on or off */
 unsigned char succinct_audits; /* use succinct logging in audit file? */
 unsigned char succinct_errors; /* use succinct logging in error file? */
 unsigned char reserv3[3]; /* reserved */
} QUERY_LOG_TYPE;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_LOG_TYPE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

override
Specifies whether the log types and succinct or full logging options returned on this verb are the
global log types specified on SET_GLOBAL_LOG_TYPE, or local values specified on SET_LOG_TYPE.
Possible values are:
AP_YES

The audit, exception, and succinct_* parameters returned are local settings overriding the global
settings.

AP_NO
The audit, exception, and succinct_* parameters returned are the global settings, which are not
being overridden.

audit
This parameter indicates whether audit messages are recorded. Possible values are:
AP_YES

Audit messages are recorded.
AP_NO

Audit messages are not recorded.
exception

This parameter indicates whether exception messages are recorded. Possible values are:

QUERY_LOG_TYPE

374 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
Exception messages are recorded.

AP_NO
Exception messages are not recorded.

succinct_audits
This parameter indicates whether succinct logging or full logging is used in the audit log file. Possible
values are:
AP_YES

Succinct logging: each message in the log file contains a summary of the message header
information (such as the message number, log type, and system name) and the message text
string and parameters. To obtain more details of the cause of the log and any action required, you
can use the snahelp utility.

AP_NO
Full logging: each message in the log file includes a full listing of the message header information,
the message text string and parameters, and additional information about the cause of the log and
any action required.

If you are using central logging, the choice of succinct or full logging for messages from all computers
is determined by the setting of this parameter on the server acting as the central logger; this setting
may either be from the SET_GLOBAL_LOG_TYPE verb, or from a SET_LOG_TYPE verb issued to that
server to override the default.

succinct_errors
This parameter indicates whether succinct logging or full logging is used in the error log file; this
applies to both exception logs and problem logs. The possible values and their meanings are the same
as for the succinct_audits parameter.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LS
QUERY_LS returns a list of information about the link stations defined at the node. This information is
structured as "determined data" (data gathered dynamically during execution, returned only if the node is
active) and "defined data" (data supplied on DEFINE_LS).

This verb can be used to obtain either summary or detailed information, about a specific LS or about
multiple LSs, depending on the options used.

VCB structure
typedef struct query_ls
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char ls_name[8]; /* name of link station */
 unsigned char port_name[8]; /* port used by link station */
} QUERY_LS;

QUERY_LS

Chapter 3. NOF API Verbs 375

typedef struct ls_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char ls_name[8]; /* link station name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char dlc_type; /* DLC type */
 unsigned char state; /* link station state */
 AP_UINT16 act_sess_count; /* currently active sessions */
 /* count */
 unsigned char det_adj_cp_name[17]; /* determined adjacent CP name */
 unsigned char det_adj_cp_type; /* determined adjacent node type*/
 unsigned char port_name[8]; /* port name */
 unsigned char adj_cp_name[17]; /* adjacent CP name */
 unsigned char adj_cp_type; /* adjacent node type */
} LS_SUMMARY;

typedef struct ls_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char ls_name[8]; /* link station name */
 LS_DET_DATA det_data; /* determined data */
 LS_DEF_DATA def_data; /* defined data */
} LS_DETAIL;

typedef struct ls_det_data
{
 AP_UINT16 act_sess_count; /* currently active sessions */
 /* count */
 unsigned char dlc_type; /* DLC type */
 unsigned char state; /* link station state */
 unsigned char sub_state; /* link station sub state */
 unsigned char det_adj_cp_name[17]; /* adjacent CP name */
 unsigned char det_adj_cp_type; /* adjacent node type */
 unsigned char dlc_name[8]; /* name of DLC */
 unsigned char dynamic; /* specifies whether LS is */
 /* dynamic */
 unsigned char migration; /* supports migration partners */
 unsigned char tg_num; /* TG number */
 LS_STATS ls_stats; /* link station statistics */
 AP_UINT32 start_time; /* time LS started */
 AP_UINT32 stop_time; /* time LS stopped */
 AP_UINT32 up_time; /* total time LS active */
 AP_UINT32 current_state_time; /* time in current state */
 unsigned char deact_cause; /* deactivation cause */
 unsigned char hpr_support; /* TG HPR support */
 unsigned char anr_label[2]; /* local ANR label */
 unsigned char hpr_link_lvl_error; /* HPR link-level error */
 unsigned char auto_act; /* auto-activation supported */
 unsigned char ls_role; /* LS role */
 unsigned char ls_type; /* LS type (defined,dynamic,..) */
 unsigned char node_id[4]; /* determined node ID */
 AP_UINT16 active_isr_count; /* active isr count */
 AP_UINT16 active_lu_sess_count; /* count of active LU sessions */
 AP_UINT16 active_sscp_sess_count; /* count of active SSCP sessions*/
 ANR_LABEL reverse_anr_label; /* Reverse ANR label */
 LINK_ADDRESS local_address; /* Local address */
 AP_UINT16 max_send_btu_size; /* Max send BTU size */
 unsigned char brnn_link_type; /* type of branch link */
 unsigned char adj_cp_is_brnn; /* is adjacent node a BrNN? */
 unsigned char mltg_member; /* reserved */
 unsigned char tg_sharing; /* reserved */
 unsigned char reservb[62]; /* reserved */
} LS_DET_DATA;

typedef struct ls_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is this LS initially active? */
 unsigned char reserv2; /* reserved */
 AP_UINT16 react_timer; /* timer for retrying failed LS */
 AP_UINT16 react_timer_retry; /* retry count for failed LS */
 AP_UINT16 activation_count; /* reserved */
 unsigned char restart_on_normal_deact; /* restart the link on any */
 /* failure */
 unsigned char reserv3[7]; /* reserved */
 unsigned char port_name[8]; /* name of associated port */
 unsigned char adj_cp_name[17]; /* adjacent CP name */

QUERY_LS

376 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char adj_cp_type; /* adjacent node type */
 LINK_ADDRESS dest_address; /* destination address */
 unsigned char auto_act_supp; /* auto-activate supported */
 unsigned char tg_number; /* pre-assigned TG number */
 unsigned char limited_resource; /* limited resource */
 unsigned char solicit_sscp_sessions; /* solicit SSCP sessions */
 unsigned char pu_name[8]; /* Local PU name (reserved if */
 /* solicit_sscp_sessions is */
 /* set to AP_NO) */
 unsigned char disable_remote_act; /* disable remote activation */
 unsigned char dspu_services; /* Services provided for */
 /* downstream PU */
 unsigned char dspu_name[8]; /* Downstream PU name (reserved */
 /* if dspu_services is AP_NONE)*/
 unsigned char dlus_name[17]; /* DLUS name if dspu_services */
 /* is AP_DLUR */
 unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */
 /* dspu_services is AP_DLUR */
 unsigned char hpr_supported; /* does the link support HPR? */
 unsigned char hpr_link_lvl_error; /* does link use link-level */
 /* recovery for HPR frames? */
 AP_UINT16 link_deact_timer; /* deact timer for limited */
 /* resource */
 unsigned char reserv1; /* reserved */
 unsigned char default_nn_server; /* default LS to NN server? */
 unsigned char ls_attributes[4]; /* LS attributes */
 unsigned char adj_node_id[4]; /* adjacent node ID */
 unsigned char local_node_id[4]; /* local node ID */
 unsigned char cp_cp_sess_support; /* CP-CP session support */
 unsigned char use_default_tg_chars; /* Use default tg_chars */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
 AP_UINT16 target_pacing_count; /* target pacing count */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 ls_role; /* link station role */
 unsigned char max_ifrm_rcvd; /* no. before acknowledgment */
 AP_UINT16 dlus_retry_timeout; /* seconds to recontact a DLUS */
 AP_UINT16 dlus_retry_limit; /* attempts to recontact a DLUS */
 unsigned char conventional_lu_compression; /* compression for LU 0-3? */
 unsigned char conventional_lu_cryptography; /* reserved */
 unsigned char reserv3a; /* reserved */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char branch_link_type; /* is link an up or down link */
 unsigned char adj_brnn_cp_support; /* adj CP allowed to be BrNN? */
 unsigned char mltg_pacing_algorithm; /* reserved */
 unsigned char reserv5; /* reserved */
 AP_UINT16 max_rcv_btu_size; /* reserved */
 unsigned char tg_sharing_prohibited; /* reserved */
 unsigned char link_spec_data_format; /* reserved */
 unsigned char pu_can_send_dddlu_offline; /* does the PU send NMVT */
 /* (power off) to the host? */
 unsigned char reserv4[13]; /* reserved */
 AP_UINT16 link_spec_data_len; /* length of link specific data */
} LS_DEF_DATA;

typedef struct link_address
{
 unsigned char format; /* type of link address */
 unsigned char reserve1; /* reserved */
 AP_UINT16 length; /* length */
 unsigned char address[32]; /* address */
} LINK_ADDRESS;

For Token Ring or Ethernet, the address parameter in the link_address structure is replaced by the
following:

typedef struct tr_address
{
 unsigned char mac_address[6]; /* MAC address */
 unsigned char lsap_address; /* local SAP address */
} TR_ADDRESS;

QUERY_LS

Chapter 3. NOF API Verbs 377

For Enterprise Extender (HPR/IP), the address parameter in the link_address structure is replaced by
the following:

typedef struct ip_address_info
{
 unsigned char lsap; /* Local Service Access Point addr */
 unsigned char version; /* IPv4 or IPv6 */
 unsigned char address[272]; /* IP Address or hostname */

} IP_ADDRESS_INFO;

For all link types:

typedef struct tg_defined_chars
{
 unsigned char effect_cap; /* Effective capacity */
 unsigned char reserve1[5]; /* Reserved */
 unsigned char connect_cost; /* Connection Cost */
 unsigned char byte_cost; /* Byte cost */
 unsigned char reserve2; /* Reserved */
 unsigned char security; /* Security */
 unsigned char prop_delay; /* Propagation delay */
 unsigned char modem_class; /* reserved */
 unsigned char user_def_parm_1; /* User-defined parameter 1 */
 unsigned char user_def_parm_2; /* User-defined parameter 2 */
 unsigned char user_def_parm_3; /* User-defined parameter 3 */
} TG_DEFINED_CHARS;

typedef struct ls_stats
{
 AP_UINT32 in_xid_bytes; /* number of XID bytes received */
 AP_UINT32 in_msg_bytes; /* number of message bytes received */
 AP_UINT32 in_xid_frames; /* number of XID frames received */
 AP_UINT32 in_msg_frames; /* number of message frames received*/
 AP_UINT32 out_xid_bytes; /* number of XID bytes sent */
 AP_UINT32 out_msg_bytes; /* number of message bytes sent */
 AP_UINT32 out_xid_frames; /* number of XID frames sent */
 AP_UINT32 out_msg_frames; /* number of message frames sent */
 AP_UINT32 in_invalid_sna_frames; /* number of invalid frames */
 /* received */
 AP_UINT32 in_session_control_frames; /* number of control frames */
 /* received */
 AP_UINT32 out_session_control_frames; /* number of control frames */
 /* sent */
 AP_UINT32 echo_rsps; /* reserved */
 AP_UINT32 current_delay; /* reserved */
 AP_UINT32 max_delay; /* reserved */
 AP_UINT32 min_delay; /* reserved */
 AP_UINT32 max_delay_time; /* reserved */
 AP_UINT32 good_xids; /* successful XID on LS count */
 AP_UINT32 bad_xids; /* unsuccessful XID on LS count */
} LS_STATS;

For more details of the link-specific data, see “DEFINE_LS” on page 100. The data structure for this data
follows the ls_def_data structure, but is padded to start on a 4-byte boundary.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LS

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of LSs for which data should be returned. To request data for a specific LS rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,

QUERY_LS

378 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the ls_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the ls_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

ls_name
Link station name. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 characters. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

port_name
Port name filter. To return information only on LSs associated with a specific port, specify the name of
the port. This is an 8-byte ASCII string), padded on the right with spaces if the name is shorter than 8
characters. To return information about all LSs without filtering on the port name, set this parameter
to 8 binary zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

ls_summary.overlay_size
The size of the returned ls_summary structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each ls_summary structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future

QUERY_LS

Chapter 3. NOF API Verbs 379

releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

ls_summary.ls_name
Link station name. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 characters.

ls_summary.description
A null-terminated text string describing the LS, as specified in the definition of the LS.

ls_summary.dlc_type
Type of DLC. This is one of the following:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
ls_summary.state

State of this link station. This is one of the following:
AP_ACTIVE

The LS is active.
AP_NOT_ACTIVE

The LS is not active.
AP_PENDING_ACTIVE

The LS is being activated.
AP_PENDING_INACTIVE

The LS is being deactivated.
AP_PENDING_ACTIVE_BY_LR

The LS has failed (or an attempt to activate it has failed), and CS/AIX is attempting to reactivate it.
ls_summary.act_sess_count

The total number of active sessions (both endpoint and intermediate) using the link.
ls_summary.det_adj_cp_name

Fully qualified name of the adjacent control point. The name is a 17-byte EBCDIC string, padded on
the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

This name is normally determined during activation; it is null if the LS is inactive. However, for an LS to
a back-level LEN node (specified by the adj_cp_type parameter on DEFINE_LS), this name is taken
from the LS definition and is not determined during activation.

ls_summary.det_adj_cp_type
Type of the adjacent node. This is one of the following:
AP_APPN_NODE

Node type is unknown, or LS is inactive.
AP_END_NODE

End node, Branch Network Node acting as an End Node from the local node's perspective, or up-
level LEN node (one that includes the Network Name CV in its XID3).

AP_NETWORK_NODE
Network node, or Branch Network Node acting as a Network Node from the local node's
perspective.

QUERY_LS

380 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_VRN
Virtual routing node.

The node type is normally determined during activation; it is null if the LS is inactive. However, for an
LS to a back-level LEN node (specified by the adj_cp_type parameter on DEFINE_LS), the node type is
taken from the LS definition and is not determined during activation.

ls_summary.port_name
Name of the port associated with this link station. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 characters.

ls_summary.adj_cp_name
Fully qualified name of the adjacent control point; this parameter is null for an implicit link. The name
is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a network ID of
1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8 A-string
characters.

ls_summary.adj_cp_type
Type of the adjacent node, determined during link activation. This is one of the following:
AP_APPN_NODE

Node type is unknown, or LS is inactive.
AP_END_NODE

End node, Branch Network Node acting as an End Node from the local node's perspective, or up-
level LEN node (one that includes the Network Name CV in its XID3).

AP_NETWORK_NODE
Network node, or Branch Network Node acting as a Network Node from the local node's
perspective.

AP_BACK_LEVEL_LEN_NODE
Back-level LEN node (one that does not include the Network Name CV in its XID3).

AP_HOST_XID3
Host node; CS/AIX should respond to a polling XID from the node with a format 3 XID.

AP_HOST_XID0
Host node; CS/AIX should respond to a polling XID from the node with a format 0 XID.

AP_DSPU_XID
Downstream PU; CS/AIX should include XID exchange in link activation. The dspu_name and
dspu_services fields must also be set.

AP_DSPU_NOXID
Downstream PU; CS/AIX should not include XID exchange in link activation. The dspu_name and
dspu_services fields must also be set.

AP_VRN
Virtual routing node.

ls_detail.overlay_size
The size of the returned ls_detail structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each ls_detail structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

ls_detail.ls_name
Link station name. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 characters.

ls_detail.det_data.act_sess_count
The total number of active sessions (both endpoint and intermediate) using the link.

QUERY_LS

Chapter 3. NOF API Verbs 381

ls_detail.det_data.dlc_type
Type of DLC. This is one of the following:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
ls_detail.det_data.state

State of this link station. This is one of the following:
AP_ACTIVE

The LS is active.
AP_NOT_ACTIVE

The LS is not active.
AP_PENDING_ACTIVE

The LS is being activated.
AP_PENDING_INACTIVE

The LS is being deactivated.
AP_PENDING_ACTIVE_BY_LR

The LS has failed (or an attempt to activate it has failed), and CS/AIX is attempting to reactivate it.
ls_detail.det_data.sub_state

This field provides more detailed information about the state of this link station. Possible values are:

AP_SENT_CONNECT_OUT

AP_PENDING_XID_EXCHANGE

AP_SENT_ACTIVATE_AS

AP_SENT_SET_MODE

AP_ACTIVE

AP_SENT_DEACTIVATE_AS_ORDERLY

AP_SENT_DISCONNECT

AP_WAITING_STATS

AP_RESET

ls_detail.det_data.det_adj_cp_name
Fully qualified name of the adjacent control point. The name is a 17-byte EBCDIC string, padded on
the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

This name is normally determined during activation; it is null if the LS is inactive. However, for an LS to
a back-level LEN node (specified by the adj_cp_type parameter on DEFINE_LS), this name is taken
from the LS definition and is not determined during activation.

ls_detail.det_data.det_adj_cp_type
Type of the adjacent node. This is one of the following:
AP_END_NODE

End node, or Branch Network Node acting as an End Node from the local node's perspective.

QUERY_LS

382 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NETWORK_NODE
Network node, or Branch Network Node acting as a Network Node from the local node's
perspective.

AP_LEARN_NODE
Node type is unknown.

The node type is normally determined during activation; it is null if the LS is inactive. However, for an
LS to a back-level LEN node (specified by the adj_cp_type parameter on DEFINE_LS), the node type is
taken from the LS definition and is not determined during activation.

ls_detail.det_data.dlc_name
Name of the DLC. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 characters.

ls_detail.det_data.dynamic
Specifies whether the link was defined dynamically. Possible values are:
AP_YES

The link was defined dynamically (in response to a connection request from the adjacent node, or
to connect dynamically to another node across a Connection Network).

AP_NO
The link was defined explicitly (by DEFINE_LS).

ls_detail.det_data.migration
Specifies whether the adjacent node is a migration level node (such as a Low Entry Networking or LEN
node), or a full APPN network node or end node. Possible values are:
AP_YES

The adjacent node is a migration-level node.
AP_NO

The adjacent node is a network node or end node.
AP_UNKNOWN

The adjacent node level is unknown.
ls_detail.det_data.tg_num

Number associated with the TG.
ls_detail.det_data.ls_stats.in_xid_bytes

Total number of XID (Exchange Identification) bytes received on this link station.
ls_detail.det_data.ls_stats.in_msg_bytes

Total number of data bytes received on this link station.
ls_detail.det_data.ls_stats.in_xid_frames

Total number of XID (Exchange Identification) frames received on this link station.
ls_detail.det_data.ls_stats.in_msg_frames

Total number of data frames received on this link station.
ls_detail.det_data.ls_stats.out_xid_bytes

Total number of XID (Exchange Identification) bytes sent on this link station.
ls_detail.det_data.ls_stats.out_msg_bytes

Total number of data bytes sent on this link station.
ls_detail.det_data.ls_stats.out_xid_frames

Total number of XID (Exchange Identification) frames sent on this link station.
ls_detail.det_data.ls_stats.out_msg_frames

Total number of data frames sent on this link station.
ls_detail.det_data.ls_stats.in_invalid_sna_frames

Total number of not valid SNA frames received on this link station.
ls_detail.det_data.ls_stats.in_session_control_frames

Total number of session control frames received on this link station.

QUERY_LS

Chapter 3. NOF API Verbs 383

ls_detail.det_data.ls_stats.out_session_control_frames
Total number of session control frames sent on this link station.

ls_detail.det_data.ls_stats.good_xids
Total number of successful XID exchanges that have occurred on this link station since it was started.

ls_detail.det_data.ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have occurred on this link station since it was
started.

ls_detail.det_data.start_time
Time since system startup (in hundredths of a second) when the link station was last activated (that
is, when the mode setting commands completed).

ls_detail.det_data.stop_time
Time since system startup (in hundredths of a second) when the link station was last deactivated.

ls_detail.det_data.up_time
Total time (in hundredths of a second) that this link station has been active since system startup.

ls_detail.det_data.current_state_time
Total time (in hundredths of a second) that this link station has been in its current state.

ls_detail.det_data.deact_cause
The cause of the last deactivation of the link station. Possible values are:
AP_NONE

The link station has never been deactivated.
AP_DEACT_OPER_ORDERLY

The link station was deactivated as a result of an orderly STOP command from an operator.
AP_DEACT_OPER_IMMEDIATE

The link station was deactivated as a result of an immediate STOP command from an operator.
AP_DEACT_AUTOMATIC

The link station was deactivated automatically, for example because there were no more sessions
using the link station.

AP_DEACT_FAILURE
The link station was deactivated because of a failure.

ls_detail.det_data.hpr_support
Level of High Performance Routing (HPR) supported on this transmission group (TG), taking account of
the capabilities of the local and adjacent nodes. Possible values are:
AP_NONE

This TG does not support HPR protocols.
AP_BASE

This TG supports base level HPR.
AP_RTP

This TG supports Rapid Transport Protocols (RTP).
ls_detail.det_data.anr_label

The HPR automatic network routing (ANR) label allocated to the local link.
ls_detail.det_data.hpr_link_lvl_error

For SDLC, this parameter is reserved.

For other port types, this parameter specifies whether link-level error recovery is being used for HPR
traffic on the link.

ls_detail.det_data.auto_act
Specifies whether the link currently allows remote activation or activation on demand. This is set to
AP_NONE if neither is allowed, or to one or both of the following values (combined using a logical OR):
AP_AUTO_ACT

The link can be activated on demand by the local node when a session requires it.

QUERY_LS

384 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_REMOTE_ACT
The link can be activated by the remote node.

ls_detail.det_data.ls_role
The LS role of this link. This is normally taken from the definition of the port that owns the LS (or from
the definition of the LS, if this overrides the LS role in the port definition). However, if the LS role is
defined to be negotiable, it will be negotiated to either primary or secondary while the LS is active; if
this verb is used to query an active LS, the returned LS role is the negotiated role currently in use and
not the defined role. Possible values are:
AP_LS_PRI

Primary.
AP_LS_SEC

Secondary.
AP_LS_NEG

Negotiable.
ls_detail.det_data.ls_type

Specifies how this link was defined or discovered. Possible values are:
AP_LS_DEFINED

The link station was defined explicitly by a CS/AIX administration program.
AP_LS_DYNAMIC

The link station was created when the local node connected to another node through a connection
network.

AP_LS_TEMPORARY
The link station was created temporarily to process an incoming call, but has not yet become
active.

AP_LS_IMPLICIT
The link station was defined implicitly when CS/AIX received an incoming call that it could not
match to a defined link station.

AP_LS_DLUS_DEFINED
The link station is a dynamic link station to a DLUR-served downstream PU, and was defined when
the local node received an ACTPU from a DLUS.

ls_detail.det_data.node_id
Node ID received from adjacent node during XID exchange. This is a 4-byte hexadecimal string.

ls_detail.det_data.active_isr_count
Number of active intermediate sessions using the link.

ls_detail.det_data.active_lu_sess_count
The count of active LU-LU sessions using this link.

ls_detail.det_data.active_sscp_sess_count
The count of active PU-SSCP sessions using this link.

ls_detail.det_data.reverse_anr_label
The Reverse Automatic Network Routing (ANR) label for this link station.

For SDLC:

ls_detail.det_data.local_address
The local address of this link station.

For QLLC:

ls_detail.det_data.local_address
The local address of this link station.

For Token Ring, Ethernet:

ls_detail.det_data.local_address.mac_address
MAC address of the local link station.

QUERY_LS

Chapter 3. NOF API Verbs 385

ls_detail.det_data.local_address.lsap_address
Local SAP address of the local link station.

For Enterprise Extender:

ls_detail.det_data.local_address.ip_address_info.lsap
For Enterprise Extender: Local SAP address of the port. Specify a multiple of 0x04 in the range
0x04-0xEC. The usual value is 0x04, but VTAM may use 0x08 in some circumstances.

If you need to use two or more ports with different LSAP addresses on the same TCP/IP interface, you
will need to create two or more Enterprise Extender DLCs, and then create a separate Enterprise
Extender port for each DLC with the same if_name but a different LSAP address.

ls_detail.det_data.local_address.ip_address_info.version
For Enterprise Extender: Specifies whether the following field represents an IPv4 or IPv6 address.
Possible values:
IP_VERSION_4_HOSTNAME

The address field specifies an IPv4 address, or a hostname or alias that resolves to an IPv4
address.

IP_VERSION_6_HOSTNAME
The address field specifies an IPv6 address, or a hostname or alias that resolves to an IPv6
address.

ls_detail.det_data.local_address.ip_address_info.address
For Enterprise Extender: IP address of the port. This can be any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

ls_detail.det_data.max_send_btu_size
Maximum BTU size that can be sent on this link, as determined by negotiation with the adjacent node.
If the link activation has not yet been attempted, a zero value is returned.

ls_detail.det_data.brnn_link_type
This parameter applies only if the local node is a Branch Network Node; it is reserved otherwise.

Specifies the branch link type of this link. Possible values are:

AP_UPLINK
The link is an uplink.

AP_DOWNLINK
The link is a downlink.

AP_OTHERLINK
The link is to a VRN.

AP_UNKNOWN_LINK_TYPE
The branch link type is unknown.

AP_BRNN_NOT_SUPPORTED
The link supports PU 2.0 traffic only.

ls_detail.det_data.adj_cp_is_brnn
Specifies whether the adjacent node is a Branch Network Node. Possible values are:
AP_YES

The adjacent node is a Branch Network Node.
AP_NO

The adjacent node is not a Branch Network Node.

QUERY_LS

386 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_UNKNOWN
The adjacent node type is unknown.

ls_detail.def_data.description
A null-terminated text string describing the LS, as specified in the definition of the LS.

ls_detail.def_data.initially_active
Specifies whether this LS is automatically started when the node is started. Possible values are:
AP_YES

The LS is automatically started when the node is started.
AP_NO

The LS is not automatically started; it must be started manually.
ls_detail.def_data.react_timer

Reactivation timer for reactivating a failed LS. If the react_timer_retry parameter below is nonzero, to
specify that CS/AIX should retry activating the LS if it fails, this parameter specifies the time in
seconds between retries. When the LS fails, or when an attempt to reactivate it fails, CS/AIX waits for
the specified time before retrying the activation. If react_timer_retry is zero, this parameter is ignored.

ls_detail.def_data.react_timer_retry
Retry count for reactivating a failed LS. This parameter is used to specify whether CS/AIX should
attempt to reactivate the LS if it fails while in use (or if an attempt to start the LS fails).

Zero indicates that CS/AIX should not attempt to reactivate the LS; a nonzero value specifies the
number of retries to be made. A value of 65,535 indicates that CS/AIX should retry indefinitely until
the LS is activated.

CS/AIX waits for the time specified by the react_timer parameter above between successive retries. If
the retry count is reached without successfully reactivating the LS, or if a STOP_LS is issued while
CS/AIX is retrying the activation, no further retries are made; the LS remains inactive unless START_LS
is issued for it.

If the auto_act_supp parameter is set to AP_YES, the reactivation timer fields are ignored; if the link
fails, CS/AIX does not attempt to reactivate it until the user application that was using the session
attempts to restart the session.

ls_detail.def_data.restart_on_normal_deact
Specifies whether CS/AIX should attempt to reactivate the LS if it is deactivated normally by the
remote system. Possible values are:
AP_YES

If the remote system deactivates the LS normally, CS/AIX attempts to reactivate it, using the same
retry timer and count values as for reactivating a failed LS (the react_timer and react_timer_retry
parameters above).

AP_NO
If the remote system deactivates the LS normally, CS/AIX does not attempt to reactivate it.

If the LS is a host link (specified by the adj_cp_type parameter), or is automatically started when the
node is started (the initially_active parameter is set to AP_YES), this parameter is ignored; CS/AIX
always attempts to reactivate the LS if it is deactivated normally by the remote system (unless
react_timer_retry is zero).

ls_detail.def_data.port_name
Name of the port associated with this link station. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 characters. If the link is to a VRN, this field specifies the
name of the actual port used to connect to the VRN (as specified in the DEFINE_CN verb).

ls_detail.def_data.adj_cp_name
Fully qualified name of the adjacent control point. This parameter is used only if adj_cp_type specifies
that the adjacent node is an APPN node or a back-level LEN node.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

QUERY_LS

Chapter 3. NOF API Verbs 387

ls_detail.def_data.adj_cp_type
Adjacent node type. This is one of the following:
AP_APPN_NODE

APPN-capable node; the node type will be learned during XID exchange.
AP_NETWORK_NODE

Network node, or Branch Network Node acting as a Network Node from the local node's
perspective.

AP_END_NODE
End node, Branch Network Node acting as an End Node from the local node's perspective, or up-
level LEN node (one that includes the Network Name CV in its XID3).

AP_BACK_LEVEL_LEN_NODE
Back-level LEN node (one that does not include the Network Name CV in its XID3).

AP_HOST_XID3
Host node; CS/AIX responds to a polling XID from the node with a format 3 XID.

AP_HOST_XID0
Host node; CS/AIX responds to a polling XID from the node with a format 0 XID.

AP_DSPU_XID
Downstream PU; CS/AIX includes XID exchange in link activation.

AP_DSPU_NOXID
Downstream PU; CS/AIX does not include XID exchange in link activation.

For SDLC:

ls_detail.def_data.dest_address
Address of the secondary link station.

The value of this parameter depends on how the port that owns this LS is configured, as follows:

• If the port is used only for incoming calls (out_link_act_lim on DEFINE_PORT is 0), this parameter is
reserved.

• If the port is switched primary and is used for outgoing calls (port_type is PORT_SWITCHED, ls_role
is LS_PRI, and out_link_act_lim on DEFINE_PORT is a nonzero value), this parameter is set to
either 0xFF to accept whatever address is configured at the secondary station, or to a 1-byte value
in the range 0x01-0xFE (this value must match the value configured at the secondary station).

• For all other port configurations, this parameter is set to a 1-byte value in the range 0x01-0xFE to
identify the link station. If the port is primary multi-drop (ls_role on DEFINE_PORT is LS_PRI and
tot_link_act_lim is greater than 1), this address must be different for each LS on the port.

For QLLC:

ls_detail.def_data.dest_address
Destination address of link station on the adjacent node. This parameter is used only for SVC outgoing
calls (defined by the vc_type parameter in the link-specific data, and by the link activation limit
parameters on DEFINE_PORT); it is ignored for incoming calls or for PVC.

For Token Ring, Ethernet:

ls_detail.def_data.dest_address.mac_address
MAC address of link station on adjacent node.

If this parameter is null, the LS is a non-selective listening LS (one that can be used only for incoming
calls, but can have LUs defined on it to support dependent LU traffic). The LS can be used to receive
incoming calls from any remote link station, but cannot be used for outgoing calls.

If the local and adjacent nodes are on LANs of different types (one Token Ring, the other Ethernet)
connected by a bridge, you will probably need to reverse the bit order of the bytes in the MAC address.
For more information, see “Bit ordering in MAC addresses” on page 125. If the two nodes are on the
same LAN, or on LANs of the same type connected by a bridge, no change is required.

QUERY_LS

388 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

ls_detail.def_data.dest_address.lsap_address
Local SAP address of link station on adjacent node.

For Enterprise Extender (HPR/IP):

ls_detail.def_data.dest_address.ip_address_info.lsap
Local SAP address of link station on adjacent node. Specify a multiple of 0x04 in the range
0x04-0xEC. The usual value is 0x04, but VTAM may use 0x08 in some circumstances.

ls_detail.def_data.dest_address.ip_address_info.version
Specifies whether the following field represents an IPv4 or IPv6 address. Possible values:
IP_VERSION_4_HOSTNAME

The address field specifies an IPv4 address, or a hostname or alias that resolves to an IPv4
address.

IP_VERSION_6_HOSTNAME
The address field specifies an IPv6 address, or a hostname or alias that resolves to an IPv6
address.

ls_detail.def_data.dest_address.ip_address_info.address
IP address of link station on adjacent node. This can be either of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).

For all link types:

ls_detail.def_data.auto_act_supp
Specifies whether the link can be activated automatically when required by a session. Possible values
are:
AP_YES

The link can be activated automatically.
AP_NO

The link cannot be activated automatically.
ls_detail.def_data.tg_number

Preassigned TG number, used to represent the link when the link is activated. This parameter is used
only if the adjacent node is an APPN node (adj_cp_type is either AP_NETWORK_NODE or
AP_END_NODE); it is ignored otherwise. Zero indicates that the TG number is not preassigned and is
negotiated when the link is activated.

ls_detail.def_data.limited_resource
Specifies whether this link station is to be deactivated when there are no sessions using the link.
Possible values are:
AP_NO

The link is not a limited resource and will not be deactivated automatically.
AP_NO_SESSIONS

The link is a limited resource and will be deactivated automatically when no active sessions are
using it.

AP_INACTIVITY
The link is a limited resource and will be deactivated automatically when no active sessions are
using it, or when no data has flowed on the link for the time period specified by the
link_deact_timer field.

ls_detail.def_data.solicit_sscp_sessions
Specifies whether to request the adjacent node to initiate sessions between the SSCP and the local CP
and dependent LUs. This parameter is used only if the adjacent node is an APPN node (adj_cp_type is
either AP_NETWORK_NODE or AP_END_NODE); it is ignored otherwise. If the adjacent node is a host
(adj_cp_type is either AP_HOST_XID3 or AP_HOST_XID0), CS/AIX always requests the host to initiate
SSCP sessions.

QUERY_LS

Chapter 3. NOF API Verbs 389

This parameter is not used for Enterprise Extender (HPR/IP) links.

Possible values are:

AP_YES
Request the adjacent node to initiate SSCP sessions.

AP_NO
Do not request the adjacent node to initiate SSCP sessions.

ls_detail.def_data.pu_name
Name of the local PU that uses this link. This parameter is used only if adj_cp_type is set to
AP_HOST_XID3 or AP_HOST_XID0, or if solicit_sscp_sessions is set to AP_YES; it is reserved
otherwise.

This parameter is not used for Enterprise Extender (HPR/IP) links.

The PU name is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces.

ls_detail.def_data.disable_remote_act
Specifies whether the LS can be activated by a remote node. Possible values are:
AP_YES

The LS can only be activated by the local node; if the remote node attempts to activate it, CS/AIX
will reject the attempt.

AP_NO
The LS can be activated by the remote node.

ls_detail.def_data.dspu_services
Specifies the services which the local node will provide to the downstream PU across this link. This
parameter is used only if the adjacent node is a downstream PU or an APPN node with
solicit_sscp_sessions set to AP_NO; it is reserved otherwise. Possible values are:
AP_PU_CONCENTRATION

Local node will provide SNA gateway for the downstream PU.
AP_DLUR

Local node will provide DLUR services for the downstream PU.
AP_NONE

Local node will provide no services for this downstream PU.
ls_detail.def_data.dspu_name

Name of the downstream PU. This parameter is required if solicit_sscp_sessions is set to AP_NO and
dspu_services is set to AP_PU_CONCENTRATION or AP_DLUR; it is reserved otherwise. The name is an
8-byte type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces.

ls_detail.def_data.dlus_name
Name of the DLUS node from which DLUR solicits SSCP services when the link to the downstream
node is activated. This field is reserved if dspu_services is not set to AP_DLUR.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

A string of 17 binary zeros indicates the global default DLUS, defined using the
DEFINE_DLUR_DEFAULTS verb. If this parameter is set to zeros and there is no global default DLUS,
then DLUR will not initiate SSCP contact when the link is activated.

ls_detail.def_data.bkup_dlus_name
Name of the DLUS node from which DLUR solicits SSCP services when the link to the downstream
node is activated. This field is reserved if dspu_services is not set to AP_DLUR.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

QUERY_LS

390 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

A string of 17 binary zeros indicates the global backup default DLUS, defined using the
DEFINE_DLUR_DEFAULTS verb.

ls_detail.def_data.hpr_supported
Specifies whether HPR is supported on this link. Possible values are:
AP_YES

HPR is supported on this link.
AP_NO

HPR is not supported on this link.
ls_detail.def_data.hpr_link_lvl_error

For SDLC, this parameter is reserved.

For other port types, this parameter specifies whether link-level error recovery is supported for HPR
traffic on the link.

This parameter is reserved if the ls_detail.def_data.hpr_supported parameter is set to AP_NO. Possible
values are:

AP_YES
The HPR link-level error recovery tower is supported on this link.

AP_NO
The HPR link-level error recovery tower is not supported on this link.

ls_detail.def_data.link_deact_timer
Limited resource link deactivation timer (in seconds, minimum 5). If limited_resource is set to
AP_INACTIVITY, the link will be deactivated if no data flows on it for the time specified by this
parameter. A value of zero indicates no timeout (the link is not deactivated, as though
limited_resource were set to AP_NO), and that values in the range 1-4 are interpreted as 5.

ls_detail.def_data.default_nn_server
End node: Specifies whether this is a link supporting CP-CP sessions to a network node that can act as
the local node's network node server. When the local node has no CP-CP sessions to a network node
server and needs to establish them, it checks this parameter on its defined LSs to find a suitable LS to
activate. This allows you to specify which adjacent NNs are suitable to act as the NN server (for
example, to avoid using NNs that are accessed by expensive or slow links).

Possible values are:

AP_YES
This link supports CP-CP sessions to a network node that can act as the local node's NN server;
the local node can automatically activate this link if it needs to contact an NN server.

AP_NO
This link should not be automatically activated in an attempt to contact a network node server.

If the local node is not an end node, this parameter is reserved.

ls_detail.def_data.ls_attributes
This array contains further information about the adjacent node, as described in the following
parameters:

ls_detail.def_data.ls_attributes[0]
Host type (normally standard SNA). Possible values are:
AP_SNA

Standard SNA host.
AP_FNA

Fujitsu Network Architecture (VTAM-F) host.
AP_HNA

Hitachi Network Architecture host.
ls_detail.def_data.ls_attributes[1]

Network Name CV suppression for a link to a back-level LEN node.

QUERY_LS

Chapter 3. NOF API Verbs 391

If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE, this parameter specifies whether to suppress
inclusion of the Network Name CV in the format 3 XID sent to the LEN node. Possible values are:

AP_NO
Include the Network Name CV in the XID.

AP_SUPPRESS_CP_NAME
Do not include the Network name CV.

If adj_cp_type is set to any other value, this parameter is reserved.

ls_detail.def_data.adj_node_id
Node ID of adjacent node. This is a 4-byte hexadecimal string; a value of 4 zeros indicates that node
ID checking is disabled.

ls_detail.def_data.local_node_id
Node ID sent in XIDs on this LS. This is a 4-byte hexadecimal string, consisting of a block number (3
hexadecimal digits) and a node number (5 hexadecimal digits). A value of all zeros indicates that
CS/AIX uses the node ID specified in the DEFINE_NODE verb.

ls_detail.def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported. Possible values are:
AP_YES

CP-CP sessions are supported.
AP_NO

CP-CP sessions are not supported.
ls_detail.def_data.use_default_tg_chars

Specifies whether the default TG characteristics supplied on the DEFINE_PORT verb are used.
Possible values are:
AP_YES

Use the default TG characteristics; ignore the tg_chars structure on this verb.
AP_NO

Use the tg_chars structure on this verb.
ls_detail.def_data.tg_chars.effect_cap

Actual bits per second rate (line speed). The value is encoded as a 1-byte floating point number,
represented by the formula 0.1 mmm * 2 eeeee where the bit representation of the byte is
b'eeeeemmm'. Each unit of effective capacity is equal to 300 bits per second.

ls_detail.def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255, where 0 is the lowest cost
per connect time and 255 is the highest.

ls_detail.def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0 is the lowest cost per byte
and 255 is the highest.

ls_detail.def_data.tg_chars.security
Security level of the network. Possible values are:
AP_SEC_NONSECURE

No security.
AP_SEC_PUBLIC_SWITCHED_NETWORK

Data is transmitted over a public switched network.
AP_SEC_UNDERGROUND_CABLE

Data is transmitted over secure underground cable.
AP_SEC_SECURE_CONDUIT

Data is transmitted over a line in a secure conduit that is not guarded.
AP_SEC_GUARDED_CONDUIT

Data is transmitted over a line in a conduit that is protected against physical tapping.

QUERY_LS

392 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_SEC_ENCRYPTED
Data is encrypted before transmission over the line.

AP_SEC_GUARDED_RADIATION
Data is transmitted over a line that is protected against physical and radiation tapping.

AP_SEC_MAXIMUM
Maximum security.

ls_detail.def_data.tg_chars.prop_delay
Propagation delay: the time that a signal takes to travel the length of the link. Possible values are:
AP_PROP_DELAY_MINIMUM

Minimum propagation delay.
AP_PROP_DELAY_LAN

Delay is less than 480 microseconds (typical for a LAN).
AP_PROP_DELAY_TELEPHONE

Delay is in the range 480-49,512 microseconds (typical for a telephone network).
AP_PROP_DELAY_PKT_SWITCHED_NET

Delay is in the range 49,512-245,760 microseconds (typical for a packet-switched network).
AP_PROP_DELAY_SATELLITE

Delay is greater than 245,760 microseconds (typical for a satellite link).
AP_PROP_DELAY_MAXIMUM

Maximum propagation delay.
ls_detail.def_data.tg_chars.user_def_parm_1 through def_data.tg_chars.user_def_parm_3

User-defined parameters, which include other TG characteristics not covered by the above
parameters. Each of these parameters is set to a value in the range 0-255.

ls_detail.def_data.target_pacing_count
Numeric value between 1 and 32,767 inclusive indicating the desired pacing window size. (The
current version of CS/AIX does not make use of this value.)

ls_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

ls_detail.def_data.ls_role
Link station role. This is normally set to AP_USE_PORT_DEFAULTS, specifying that the LS role is taken
from the definition of the port that owns this LS.

If the LS has been defined with a specific LS role overriding the port definition, this is one of the
following values:

AP_LS_PRI
Primary

AP_LS_SEC
Secondary

AP_LS_NEG
Negotiable

ls_detail.def_data.max_ifrm_rcvd
Maximum of I-frames that can be received by this link station before an acknowledgment is sent. This
value is in the range 0-127. When this field is zero, the value of max_ifrm_rcvd from DEFINE_PORT is
used as default.

ls_detail.def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the DLUS specified in the
ls_detail.def_data.dlus_name and ls_detail.def_data.bkup_dlus_name parameters. The interval
between the initial attempt and the first retry is always one second. If zero is returned, the default
value configured with DEFINE_DLUR_DEFAULTS is used. This parameter is ignored if
ls_detail.def_data.dspu_services is not set to AP_DLUR.

QUERY_LS

Chapter 3. NOF API Verbs 393

ls_detail.def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS specified in the
ls_detail.def_data.dlus_name and ls_detail.def_data.bkup_dlus_name parameters. If zero is returned,
the default value configured through DEFINE_DLUR_DEFAULTS is used. If 0x0FFFF is returned,
CS/AIX retries indefinitely. This parameter is ignored if ls_detail.def_data.dspu_services is not set to
AP_DLUR.

def_data.conventional_lu_compression
Specifies whether data compression is requested for LU 0-3 sessions on this link. This parameter is
used only if this link carries LU 0-3 traffic; it does not apply to LU 6.2 sessions.

Possible values are:

AP_YES
Data compression should be used for LU 0-3 sessions on this link if the host requests it.

AP_NO
Data compression should not be used for LU 0-3 sessions on this link.

ls_detail.def_data.branch_link_type
This parameter applies only if the local node is a Branch Network Node; it is reserved if the local node
is any other type.

If the parameter def_data.adj_cp_type is set to AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE,
or AP_BACK_LEVEL_LEN_NODE, this parameter defines whether the link is an uplink or a downlink.
Possible values are:

AP_UPLINK
The link is an uplink.

AP_DOWNLINK
The link is a downlink.

ls_detail.def_data.adj_brnn_cp_support
This parameter applies only if the local node is a Branch Network Node and the adjacent node is a
network node (the parameter def_data.adj_cp_type is set to AP_NETWORK_NODE, or it is set to
AP_APPN_NODE and the node type discovered during XID exchange is network node). It is reserved if
the local and remote nodes are any other type.

This parameter defines whether the adjacent node can be a Branch Network Node that is acting as a
Network Node from the point of view of the local node. Possible values are:

AP_BRNN_ALLOWED
The adjacent node is allowed (but not required) to be a Branch Network Node.

AP_BRNN_REQUIRED
The adjacent node must be a Branch Network Node.

AP_BRNN_PROHIBITED
The adjacent node must not be a Branch Network Node.

ls_detail.def_data.pu_can_send_dddlu_offline
Specifies whether the local PU should send NMVT (power off) messages to the host. If the host
system supports DDDLU (Dynamic Definition of Dependent LUs), CS/AIX sends NMVT (power off) to
the host when it has finished using a dynamically defined LU. This allows the host to save resources by
removing the definition when it is no longer required.

This parameter is used only if this link is to a host (solicit_sscp_sessions is set to AP_YES and
dspu_services is not set to AP_NONE).

Possible values are:

AP_YES
The local PU sends NMVT (power off) messages to the host.

AP_NO
The local PU does not send NMVT (power off) messages to the host.

QUERY_LS

394 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If the host supports DDDLU but does not support the NMVT (power off) message, this parameter must
be set to AP_NO.

ls_detail.def_data.link_spec_data_len
Length of link-specific data that is passed unchanged to link station component during initialization.
The data structure for this data follows the ls_def_data structure, but is padded to start on a 4-byte
boundary. For more details of the link-specific data, see “DEFINE_LS” on page 100.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LINK_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the ls_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LS_ROUTING
The QUERY_LS_ROUTING verb returns information for local LUs about the location of a partner LU using a
link station. If information is requested about more than one local LU, the information is returned based
on the Management Information Base (MIB) order of the local LU names, then on the MIB order of partner
LU names associated with each local LU name. Wildcard partner LU names can be interspersed with
entries that do not contain wildcards.

VCB structure
typedef struct query_ls_routing
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* buffer pointer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* list options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU Name */
 unsigned char lu_alias[8]; /* reserved */
 unsigned char fq_partner_lu[17]; /* partner lu name */
 unsigned char wildcard_fqplu; /* wildcard partner LU flag */
 unsigned char reserv4[2]; /* reserved */
} QUERY_LS_ROUTING;

typedef struct ls_routing_data
{
 AP_UINT16 overlay_size;

QUERY_LS_ROUTING

Chapter 3. NOF API Verbs 395

 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* reserved */
 unsigned char fq_partner_lu[17]; /* partner lu */
 unsigned char wildcard_fqplu; /* wildcard partner LU flag */
 unsigned char ls_name[8]; /* link to use */
 unsigned char reserv3[2]; /* reserved */
} LS_ROUTING_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LS_ROUTING

num_entries
Maximum number of LS routing entries for which data should be returned. To request data for a
specific LS rather than a range, specify the value 1. To return as many entries as possible, specify zero;
in this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list of LS routing entries from which CS/AIX begins to return data.

Specify one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the lu_name and fq_partner_lu parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the lu_name,
fq_partner_lu, and wildcard_fqplu parameters.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
Name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than eight bytes. This parameter is ignored if list_options is set
to AP_FIRST_IN_LIST.

lu_alias
This parameter is reserved; set it to binary zeros.

fq_partner_lu
Fully qualified name of the partner LU, as defined to CS/AIX. The name is a 17-byte EBCDIC string,
padded on the right with EBCDIC spaces. This parameter is used to qualify the entry to return within
the list of partner LU names for the specified local LU. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST.

If this parameter is set to binary zeros and list_options is set to AP_LIST_FROM_NEXT, the returned
list starts at the first partner LU name for the LU identified by the lu_name parameter.

wildcard_fqplu
Wildcard partner LU flag indicating whether the fq_partner_lu parameter contains a full or partial
wildcard. This flag is used only to identify the first record to return. It cannot be used to specify that
only entries matching the wildcard specification are to be returned. Possible values are:
AP_YES

The fq_partner_lu parameter contains a wildcard entry.
AP_NO

The fq_partner_lu parameter does not contain a wildcard entry.

QUERY_LS_ROUTING

396 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

lu_name
Name of the local LU.

fq_partner_lu
Fully qualified name of the partner LU.

wildcard_fqplu
Flag indicating whether the fq_partner_lu parameter contains a full or partial wildcard. Possible values
are:
AP_YES

The fq_partner_lu parameter contains a full or partial wildcard.
AP_NO

The fq_partner_lu parameter does not contain a full or partial wildcard.
ls_name

Name of the link station used for sessions between the LU specified in the lu_name parameter and the
partner LU specified in the fq_plu_name parameter.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, but the value specified for the
lu_name paraemter did not match any exisiting LS routing data record.

AP_INVALID_PARTNER_LU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE, but the value specified by the
fq_partner_lu parameter did not match any existing LS routing data record for the specified
partner LU name.

AP_INVALID_WILDCARD_NAME
The wildcard_fqplu parameter was set to AP_YES, but the fq_partner_lu parameter was not a valid
wildcard name.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LU_0_TO_3
QUERY_LU_0_TO_3 returns information about local LUs of type 0, 1, 2, or 3. This information is structured
as "determined data" (data gathered dynamically during execution, returned only if the node is active) and
"defined data" (the data supplied by the application on DEFINE_LU_0_TO_3).

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 397

This verb can be used to obtain either summary or detailed information, about a specific LU or about
multiple LUs, depending on the options used.

VCB structure
typedef struct query_lu_0_to_3
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char pu_name[8]; /* PU name filter */
 unsigned char lu_name[8]; /* LU name */
 unsigned char host_attachment; /* host attachment filter */
} QUERY_LU_0_TO_3;

typedef struct lu_0_to_3_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char pu_name[8]; /* PU name */
 unsigned char lu_name[8]; /* LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char appl_conn_active; /* Is connection to appl active */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
 unsigned char host_attachment; /* LU's host attachment */
} LU_0_TO_3_SUMMARY;

typedef struct lu_0_to_3_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char lu_name[8]; /* LU name */
 unsigned char reserv1[2]; /* reserved */
 LU_0_TO_3_DET_DATA det_data; /* Determined data */
 LU_0_TO_3_DEF_DATA def_data; /* Defined data */
} LU_0_TO_3_DETAIL;

typedef struct lu_0_to_3_det_data
{
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char appl_conn_active; /* Application is using LU */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
 unsigned char host_attachment; /* Host attachment */
 SESSION_STATS lu_sscp_stats; /* reserved */
 SESSION_STATS plu_stats; /* reserved */
 unsigned char plu_name[8]; /* PLU name */
 unsigned char session_id[8]; /* Internal ID of PLU-SLU sess */
 unsigned char app_spec_det_data[360]; /* Application specified data */
 unsigned char app_type; /* Type of application using LU */
 unsigned char sscp_id[6]; /* sscp id */
 unsigned char bind_lu_type; /* LU type from BIND message */
 unsigned char compression; /* data compression level */
 unsigned char cryptography; /* reserved */
 unsigned char reserva[10]; /* reserved */
} LU_0_TO_3_DET_DATA;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window */

QUERY_LU_0_TO_3

398 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 /* size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID)*/
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

typedef struct lu_0_to_3_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* LU NAU address */
 unsigned char pool_name[8]; /* LU Pool name */
 unsigned char pu_name[8]; /* PU name */
 unsigned char priority; /* LU priority */
 unsigned char lu_model; /* LU model (type) */
 unsigned char sscp_id[6]; /* SSCP ID */
 AP_UINT16 timeout; /* Timeout */
 unsigned char app_spec_def_data[16]; /* application-specified data */
 unsigned char model_name[7]; /* reserved */
 unsigned char term_method; /* session termination type */
 unsigned char disconnect_on_unbind; /* disconnect on UNBIND flag */
 unsigned char reserv3[15]; /* reserved */
} LU_0_TO_3_DEF_DATA;

If the app_type parameter in the lu_0_to_3_det_data structure is set to AP_LUA_APPLICATION, the
app_spec_det_data field contains the following structure:

typedef struct lua_session_user_info
{
 unsigned char user_ip_address[40]; /* IP address of LUA application */
 unsigned char user_host_address[256]; /* Host name of LUA application */
 unsigned char reserved[24]; /* reserved */
} SESSION_USER_INFO;

If the app_type parameter in the lu_0_to_3_det_data structure is set to AP_FMI_APPLICATION, the
app_spec_det_data field contains the following structure:

typedef struct session_user_info
{
 unsigned char user_name[32]; /* 3270 user name */
 unsigned char system_name[128]; /* computer name */
 AP_UINT32 user_pid; /* process ID */
 AP_UINT32 user_type; /* type of application using LU */
 AP_UINT32 user_uid; /* user ID */
 AP_UINT32 user_gid; /* group ID */
 unsigned char user_gname[32]; /* group name */
 unsigned char reserv4[32]; /* reserved */
} SESSION_USER_INFO;

If the app_type parameter in the lu_0_to_3_det_data structure is set to AP_PU_CONCENTRATION, the
app_spec_det_data field contains the same structure as the 3270 structure above except that the
app_type parameter is set to AP_PU_CONCENTRATION and the user_name through user_gname
parameters are replaced by a pu_conc_downstream_lu parameter.

If the app_type parameter in the lu_0_to_3_det_data structure is set to AP_LUA_APPLICATION, the
app_spec_det_data field contains the same structure as the 3270 structure above except that the
app_type parameter is set to AP_LUA_APPLICATION and the user_name through user_gname parameters
are not returned.

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 399

If the app_type parameter in the lu_0_to_3_det_data structure is set to AP_TN_SERVER, the
app_spec_det_data field contains the following structure:

typedef struct tn_server_session_user_info
{
 unsigned char user_ip_address[40]; /* user's IP address */
 AP_UINT16 port_number; /* TCP/IP port number */
 AP_UINT16 cb_number; /* reserved */
 AP_UINT16 cfg_default; /* using the default record? */
 unsigned char cfg_address[68]; /* address from config record */
 AP_UINT16 cfg_format; /* format of address */
 unsigned char tn3270_level; /* TN3270 level used: */
 /* AP_LEVEL_TN3270 */
 /* AP_LEVEL_TN3270E */
 unsigned char lu_select; /* method of LU selection: */
 /* AP_GENERIC_LU */
 /* AP_SPECIFIC_LU */
 /* AP_ASSOCIATED_LU */
 unsigned char request_lu_name[8]; /* requested LU name or */
 /* associated display LU name */
 /* (in EBCDIC) */
 unsigned char cipher_spec; /* SSL cipher specification */
 unsigned char reserv3[21]; /* reserved */
} TN_SERVER_SESSION_USER_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU_0_TO_3

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of LUs for which data should be returned. To request data for a specific LU rather
than a range, specify the value 1. To return as many entries as possible, specify 0; in this case, CS/AIX
will return the maximum number of entries that can be accommodated in the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the lu_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the lu_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

pu_name
PU name for which LU information is required. To list only information about LUs associated with a
specific PU, specify the PU name. To obtain a complete list for all PUs, set this field to binary zeros.

QUERY_LU_0_TO_3

400 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

lu_name
Name of the local LU. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces if the name is shorter than 8 characters. This parameter is ignored if
list_options is set to AP_FIRST_IN_LIST.

host_attachment
Host attachment filter. If the verb is issued to a running node, this parameter specifies whether to
filter the returned information by whether the LUs are attached to the host directly or using DLUR or
PU Concentration. Possible values are:
AP_DIRECT_ATTACHED

Return information only on LUs directly attached to the host system.
AP_DLUR_ATTACHED

Return information only on LUs supported by DLUR on the local node.
AP_DLUR

Return information only on LUs supported by passthrough DLUR from a downstream node. This
option is valid only if the local node is a Network Node.

AP_PU_CONCENTRATION
Return information only on LUs supported by SNA gateway from a downstream node.

AP_NONE
Return information about all LUs regardless of host attachment.

If the node is not running, this parameter is ignored; CS/AIX returns information about all LUs
regardless of host attachment.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

lu_0_to_3_summary.overlay_size
The size of the returned lu_0_to_3_summary structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each lu_0_to_3_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

lu_0_to_3_summary.pu_name
Name of the local PU used by the LU. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 401

lu_0_to_3_summary.lu_name
Name of the local LU. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces if the name is shorter than 8 characters.

lu_0_to_3_summary.description
A null-terminated text string describing the LU, as specified in the definition of the LU.

lu_0_to_3_summary.nau_address
Network accessible unit address of the LU. This is in the range 1-255.

lu_0_to_3_summary.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is inactive.
lu_0_to_3_summary.appl_conn_active

Specifies whether an application is using the LU. Possible values are:
AP_YES

An application is using the LU.
AP_NO

No application is using the LU.
lu_0_to_3_summary.plu_sess_active

Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is inactive.
lu_0_to_3_summary.host_attachment

LU host attachment type.

When the verb is issued to a running node, this parameter takes one of the following values:

AP_DIRECT_ATTACHED
LU is directly attached to the host system.

AP_DLUR_ATTACHED
LU is supported by DLUR on the local node.

AP_DLUR
LU is supported by passthrough DLUR from a downstream node.

AP_PU_CONCENTRATION
LU is supported by SNA gateway from a downstream node.

lu_0_to_3_detail.overlay_size
The size of the returned lu_0_to_3_detail structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each lu_0_to_3_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

lu_0_to_3_detail.lu_name
Name of the local LU. This is an 8-byte type-A EBCDIC string (starting with a letter), padded on the
right with EBCDIC spaces if the name is shorter than 8 characters.

lu_0_to_3_detail.det_data.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:

QUERY_LU_0_TO_3

402 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
The session is active.

AP_NO
The session is inactive.

lu_0_to_3_detail.det_data.appl_conn_active
Specifies whether an application is using the LU. Possible values are:
AP_YES

An application is using the LU.
AP_NO

No application is using the LU.
lu_0_to_3_detail.det_data.plu_sess_active

Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is inactive.
lu_0_to_3_detail.det_data.host_attachment

LU host attachment type.

When the verb is issued to a running node, this parameter takes one of the following values:

AP_DIRECT_ATTACHED
LU is directly attached to the host system.

AP_DLUR_ATTACHED
LU is supported by DLUR on the local node.

AP_DLUR
LU is supported by passthrough DLUR from a downstream node.

AP_PU_CONCENTRATION
LU is supported by SNA gateway from a downstream node.

For each of the two sessions (LU-SSCP session and PLU-SLU session), the session_stats structure
contains the following parameters:

rcv_ru_size
Maximum receive RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

send_ru_size
Maximum send RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_send_pac_win
Current size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

max_rcv_pac_win
Maximum size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_rcv_pac_win
Current size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 403

send_data_frames
Number of normal flow data frames sent.

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

sidh
Session ID high byte.

sidl
Session ID low byte.

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

pacing_type
Receive pacing type in use on the PLU-SLU session. Possible values are:

• AP_NONE
• AP_PACING_FIXED

lu_0_to_3_detail.det_data.plu_name
Name of the primary LU. This is an 8-byte type-A EBCDIC string, right-padded with spaces if the name
is shorter than 8 characters. This name is reserved if the PLU-SLU session is inactive.

lu_0_to_3_detail.det_data.session_id
Eight byte internal identifier of the PLU-SLU session.

lu_0_to_3_detail.det_data.app_spec_det_data
The format of the data in this field depends on the value of the app_type field below, as follows:

• If app_type is set to AP_NONE, this field is reserved.
• If app_type is set to AP_PU_CONCENTRATION, the first 8 bytes of this field contain the LU name of

the downstream LU currently using this local LU. This is an EBCDIC string, right-padded with spaces
if the name is shorter than 8 characters. The remaining bytes are reserved.

• If app_type is set to AP_LUA_APPLICATION, this field is replaced by the
lua_session_user_info structure, as described below.

• If app_type is set to AP_FMI_APPLICATION, this field is replaced by the session_user_info
structure, as described below.

If app_type is set to AP_LUA_APPLICATION, the app_spec_det_datafield is replaced by the
lua_session_user_info structure, containing information about the LUA application using this LU. The
structure consists of the following fields:

user_ip_address
The IP address of the computer (client or server) where the LUA application is running. This is a null-
terminated ASCII string, which can be either of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).

QUERY_LU_0_TO_3

404 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab
or 2001:db8::1428:57ab).

user_host_address
The name of the computer (client or server) where the LUA application is running. This is a null-
terminated ASCII string, representing an IP hostname (such as newbox.this.co.uk).

If app_type is set to AP_FMI_APPLICATION, the app_spec_det_datafield is replaced by the
session_user_info structure, containing information about the user of this LU. The structure consists
of the following fields:

user_name
The AIX user name with which the 3270 emulation program using this LU is running. This is an ASCII
string of 1-32 characters.

system_name
The computer name on which the program is running.

user_pid
The process ID of the program using the LU.

user_type
The type of session (3270 display session, 3270 printer session) using the LU. Possible values are:

AP_3270_DISPLAY_MODEL_2

AP_3270_DISPLAY_MODEL_3

AP_3270_DISPLAY_MODEL_4

AP_3270_DISPLAY_MODEL_5

AP_PRINTER

AP_SCS_PRINTER

AP_UNKNOWN

user_uid
The AIX user ID with which the program is running.

user_gid
The AIX group ID with which the program is running.

user_gname
The AIX group name with which the program is running. This is an ASCII string of 1-32 characters.

If app_type is set to AP_TN_SERVER, this field is replaced by the tn_server_session_user_info
structure, containing information about the TN3270 program that is using this LU. The structure consists
of the following fields:

user_ip_address
The IP address of the computer where the TN3270 program is running. This is a null-terminated
ASCII string, which can be either of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).

port_number
The TCP/IP port number that the TN3270 program uses to access TN server.

cb_number
TN server control block number.

cfg_default
Specifies whether the TN3270 program is using an explicitly-defined TN server user record, or is using
the configured default record. For more information about configuring a default TN server user record,
see “DEFINE_TN3270_ACCESS” on page 179. Possible values are:

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 405

AP_YES
The program is using the default record. The cfg_address and cfg_format parameters below are
reserved.

AP_NO
The program is using an explicitly-defined record.

cfg_address
The TCP/IP address of the computer on which the TN3270 program runs, as defined in the
configuration record that this user is using. This can be any of the following; the format is indicated by
the cfg_format parameter.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

cfg_format
Specifies the format of the cfg_address parameter. Possible values are:
AP_ADDRESS_IP

IP address
AP_ADDRESS_FQN

Alias or fully qualified name
tn3270_level

Level of TN3270 support. Possible values are:
AP_LEVEL_TN3270

TN3270E protocols are disabled.
AP_LEVEL_TN3270E

TN3270E protocols are enabled.
lu_select

Method of LU selection. Possible values are:
AP_GENERIC_LU

The TN3270 program selected a generic display or printer LU.
AP_SPECIFIC_LU

The TN3270 program selected this LU specifically.
AP_ASSOCIATED_LU

This is a printer LU that has been associated with a display LU by a
DEFINE_TN3270_ASSOCIATION verb, or a display LU that has been associated with a printer LU
by a DEFINE_TN3270_ASSOCIATION verb. The LU is in use by the TN3270 through its
association.

request_lu_name
Requested LU name or associated display LU name. This is an 8-byte type-A EBCDIC string, padded
on the right with spaces if the name is shorter than 8 characters.

cipher_spec
Indicates the type of SSL security and the encryption level in use for this session. Possible values are:
AP_SSL_NO_SSL

SSL is not being used.
AP_TLS_RSA_WITH_NULL_NULL AP_TLS_RSA_WITH_NULL_SHA AP_TLS_RSA_WITH_NULL_MD5

Certificates are exchanged, but no encryption is used.
AP_TLS_RSA_WITH_DES_CBC_SHA

DES 56-bit encryption (deprecated).

QUERY_LU_0_TO_3

406 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_TLS_AES_128_CCM_8_SHA256 AP_TLS_AES_128_CCM_SHA256
AP_TLS_AES_128_GCM_SHA256 AP_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
AP_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
AP_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
AP_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
AP_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
AP_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 AP_TLS_RSA_WITH_AES_128_CBC_SHA
AP_TLS_RSA_WITH_AES_128_CBC_SHA256 AP_TLS_RSA_WITH_AES_128_GCM_SHA256

128-bit encryption.
AP_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
AP_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA AP_TLS_RSA_WITH_3DES_EDE_CBC_SHA

Triple-DES 168-bit encryption.
AP_TLS_AES_256_GCM_SHA384 AP_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
AP_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
AP_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
AP_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
AP_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
AP_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 AP_TLS_RSA_WITH_AES_256_CBC_SHA
AP_TLS_RSA_WITH_AES_256_CBC_SHA256 AP_TLS_RSA_WITH_AES_256_GCM_SHA384
AP_TLS_CHACHA20_POLY1305_SHA256

256-bit encryption (recommended).
lu_0_to_3_detail.det_data.app_type

The type of application, if any, that is using the LU. Possible values are:
AP_NONE

The LU is not in use.
AP_LUA_APPLICATION

The LU is being used by an LUA application.
AP_PU_CONCENTRATION

The LU is being used by a downstream LU using SNA gateway.
AP_FMI_APPLICATION

The LU is being used by a 3270 emulation program.
AP_TN_SERVER

The LU is being used by a TN3270 program accessing TN server.
lu_0_to_3_detail.det_data.sscp_id

A 6-byte field containing the SSCP ID received in the ACTPU for the PU used by this LU. If
lu_sscp_sess_active is AP_NO, this parameter will be all zeros.

lu_0_to_3_detail.det_data.bind_lu_type
Specifies the LU type of the LU which issued the original BIND (if there is an active LU-LU session).
Possible values are:
AP_LU_TYPE_0

LU type 0.
AP_LU_TYPE_1

LU type 1.
AP_LU_TYPE_2

LU type 2.
AP_LU_TYPE_3

LU type 3.
AP_LU_TYPE_6

Downstream dependent LU 6.2.
AP_LU_TYPE_UNKNOWN

There is no active LU-LU session.

QUERY_LU_0_TO_3

Chapter 3. NOF API Verbs 407

lu_0_to_3_detail.det_data.compression
Compression level in use on the PLU-SLU session, if any. Possible values are:
AP_NO

Data flowing on the PLU-SLU session is not compressed by CS/AIX, or there is no active PLU-SLU
session.

AP_YES
CS/AIX performs compression and decompression on PLU-SLU session data. RLE compression is
used on data flowing upstream to the primary LU, and LZ9 compression is used on data flowing
downstream from the primary LU.

AP_PASSTHRU
Compression on this session is performed by the session endpoints (the host LU and the local
application or downstream LU), and not by CS/AIX.

lu_0_to_3_detail.def_data.description
A null-terminated text string describing the LU, as specified in the definition of the LU.

lu_0_to_3_detail.def_data.nau_address
Network accessible unit address of the LU, in the range 1-255.

lu_0_to_3_detail.def_data.pool_name
Name of the LU pool to which this LU belongs. This is an 8-byte EBCDIC string, padded on the right
with spaces if the name is shorter than 8 characters. If the LU does not belong to a pool, this field is
set to 8 binary zeros.

lu_0_to_3_detail.def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) which this LU will use. This is an 8-byte type-A
EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters.

lu_0_to_3_detail.def_data.priority
LU priority when sending to the host. This is set to one of the following:

• AP_NETWORK
• AP_HIGH
• AP_MEDIUM
• AP_LOW

lu_0_to_3_detail.def_data.lu_model
Type of the LU. This is set to one of the following:

AP_3270_DISPLAY_MODEL_2

AP_3270_DISPLAY_MODEL_3

AP_3270_DISPLAY_MODEL_4

AP_3270_DISPLAY_MODEL_5

AP_PRINTER

AP_SCS_PRINTER

AP_UNKNOWN

lu_0_to_3_detail.def_data.sscp_id
Specifies the ID of the SSCP permitted to activate this LU. This is a 6-byte binary field. If this
parameter is set to binary zeros, the LU may be activated by any SSCP.

lu_0_to_3_detail.def_data.timeout
Timeout for the LU, specified in seconds. If a timeout is supplied and the user of the LU specified
allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in the case of SNA gateway, on the downstream LU
definition), then the LU will be deactivated after the PLU-SLU session is left inactive for this period and
one of the following conditions applies:

• The session passes over a limited resource link.
• Another application wishes to use the LU before the session is used again.

QUERY_LU_0_TO_3

408 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If the timeout is set to zero, the LU will not be deactivated.

lu_0_to_3_detail.def_data.term_method
This parameter specifies how CS/AIX should attempt to end a PLU-SLU session to a host from this LU.
Possible values are:
AP_USE_NODE_DEFAULT

Use the node's default termination method, specified by the send_term_self parameter on
DEFINE_NODE.

AP_SEND_UNBIND
End the session by sending an UNBIND.

AP_SEND_TERM_SELF
End the session by sending a TERM_SELF.

lu_0_to_3_detail.def_data.disconnect_on_unbind
This parameter applies only when this LU is being used by a TN3270 client. It specifies whether to
end the session when the host sends an UNBIND instead of displaying the VTAM MSG10 or returning
to a host session manager. Possible values are:
AP_YES

End the session if the host sends an UNBIND that is not type 2 (BIND forthcoming).
AP_NO

Do not end the session if the host sends an UNBIND.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LU_LU_PASSWORD
QUERY_LU_LU_PASSWORD returns information about passwords used for session-level security
verification between a local LU and a partner LU. It can be used to obtain information about the password
for a specific partner LU or about passwords for multiple partner LUs, depending on the options used.

VCB structure
typedef struct query_lu_lu_password
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */

QUERY_LU_LU_PASSWORD

Chapter 3. NOF API Verbs 409

 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries * */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully-qual. partner LU name */
} QUERY_LU_LU_PASSWORD;

typedef struct password_info
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully-qual. partner LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char password[8]; /* password */
 unsigned char protocol_defined; /* protocol defined */
 unsigned char protocol_in_use; /* protocol in use */
} PASSWORD_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU_LU_PASSWORD

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of partner LUs for which password information should be returned. To request a
specific entry rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the plu_alias or fqplu_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the plu_alias or fqplu_name
parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. To indicate that the LU is identified
by its LU alias instead of its LU name, set this parameter to 8 binary zeros, and specify the LU alias in
the lu_alias parameter.

QUERY_LU_LU_PASSWORD

410 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

lu_alias
Locally defined LU alias. This is an 8-byte ASCII character string. This parameter is used only if
lu_name is set to all zeros; it is ignored otherwise. To indicate the LU associated with the CP (the
default LU), set both lu_name and lu_alias to all zeros.

plu_alias
Partner LU alias. This is an 8-byte ASCII character string. If list_options is set to AP_FIRST_IN_LIST,
this parameter is ignored; otherwise you must specify either the LU alias or the fully qualified LU name
for the partner LU. To indicate that the partner LU is identified by its fully qualified LU name instead of
its LU alias, set this parameter to 8 binary zeros, and specify the LU alias in the fqplu_name parameter.

fqplu_name
Fully qualified network name for the partner LU. If list_options is set to AP_FIRST_IN_LIST, this
parameter is ignored; otherwise you must specify either the LU alias or the fully qualified LU name for
the partner LU. This parameter is used only if plu_alias is set to all zeros; it is ignored otherwise.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

password_info.overlay_size
The size of the returned password_info structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each password_info
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

password_info.plu_alias
Partner LU alias. This is an 8-byte ASCII character string.

password_info.fqplu_name
Fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

password_info.description
A null-terminated text string describing the LU-LU password, as specified in the definition of the
password.

QUERY_LU_LU_PASSWORD

Chapter 3. NOF API Verbs 411

password_info.password
An encrypted version of the password supplied on a DEFINE_LU_LU_PASSWORD verb. This is an 8-
byte hexadecimal string.

password_info.protocol_defined
Requested LU-LU verification protocol defined for use with this partner LU. Possible values are:
AP_BASIC

Basic security protocols requested.
AP_ENHANCED

Enhanced security protocols requested.
AP_EITHER

Basic or enhanced security accepted.
password_info.protocol_in_use

LU-LU verification protocol in use with this partner LU. Possible values are:
AP_BASIC

Basic security protocols in use.
AP_ENHANCED

Enhanced security protocols in use.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_ALIAS

The supplied lu_alias parameter did not match the alias of any configured LU.
AP_INVALID_LU_NAME

The supplied lu_name parameter did not match the name of any configured LU.
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LU_POOL
QUERY_LU_POOL returns information about LU pools and the LUs that belong to them.

This verb can be used to obtain information about a specific LU or pool, or about multiple LUs or pools,
depending on the options used.

VCB structure
typedef struct query_lu_pool
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */

QUERY_LU_POOL

412 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char pool_name[8]; /* Pool name */
 unsigned char lu_name[8]; /* LU name */
} QUERY_LU_POOL;

typedef struct lu_pool_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char pool_name[8]; /* Pool name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 num_active_lus; /* number of active lus */
 AP_UINT16 num_avail_lus; /* number of available lus */
} LU_POOL_SUMMARY;

typedef struct lu_pool_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char pool_name[8]; /* Pool name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char appl_conn_active; /* Is appl connection open */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
} LU_POOL_DETAIL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU_POOL

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of entries for which data should be returned. If list_options is set to AP_SUMMARY,
each entry is a single LU pool; if list_options is set to AP_DETAIL, each entry is an LU in a pool (or an
entry indicating an empty LU pool).

To request a specific entry rather than a range, specify the value 1. To return as many entries as
possible, specify zero; in this case, CS/AIX will return the maximum number of entries that can be
accommodated in the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only (list LU pools).
AP_DETAIL

Detailed information (list individual LUs in LU pools).

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the pool_name and lu_name parameters.

QUERY_LU_POOL

Chapter 3. NOF API Verbs 413

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the pool_name
and lu_name parameters.

The list is ordered by pool_name and then by lu_name. For more information about how the list is
ordered and how the application can obtain specific entries from it, see “List options for QUERY_*
Verbs” on page 33.

pool_name
Name of LU pool. This value is ignored if list_options is set to AP_FIRST_IN_LIST. This is an 8-byte
EBCDIC type-A string, padded on the right with spaces if the name is shorter than 8 characters.

lu_name
LU name. This value is ignored if list_options is set to AP_FIRST_IN_LIST or AP_SUMMARY. This is an
8-byte type-A EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters.

To obtain information about all LUs in a pool, set pool_name to the name of the pool, set num_entries
to 0, and set lu_name to 8 binary zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

lu_pool_summary.overlay_size
The size of the returned lu_pool_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each lu_pool_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

lu_pool_summary.pool_name
Name of LU pool. This is an 8-byte EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

lu_pool_summary.description
A null-terminated text string describing the LU pool, as specified in the definition of the pool.

lu_pool_summary.num_active_lus
Number of LUs in the pool that are active.

lu_pool_summary.num_avail_lus
Number of LUs in the pool that are available for activation by a forced open request. It includes all LUs
whose PU is active or whose host link can be auto-activated, and whose connection is free.

QUERY_LU_POOL

414 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

This count does not take account of the LU model_type, model_name and the DDDLU support of the
PU. If the open request specifies a particular value for model_type, some LUs that are included in this
count may not be available because they do not have the correct model type.

lu_pool_detail.overlay_size
The size of the returned lu_pool_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each lu_pool_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

lu_pool_detail.pool_name
Name of LU pool to which the LU belongs. This is an 8-byte EBCDIC string, padded on the right with
spaces if the name is shorter than 8 characters.

lu_pool_detail.description
A null-terminated text string describing the LU pool, as specified in the definition of the pool.

lu_pool_detail.lu_name
LU name of the LU. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the
name is shorter than 8 characters. If a single lu_pool_detail structure is returned for a particular
pool name with a string of 8 binary zeros for the LU name, this indicates that the specified pool is
empty.

lu_pool_detail.lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is inactive.
lu_pool_detail.appl_conn_active

Specifies whether an application is using the LU. Possible values are:
AP_YES

An application is using the LU.
AP_NO

No application is using the LU.
lu_pool_detail.plu_sess_active

Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is inactive.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

QUERY_LU_POOL

Chapter 3. NOF API Verbs 415

AP_INVALID_POOL_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the pool_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_LU62_TIMEOUT
The QUERY_LU62_TIMEOUT verb returns information about the definition of an LU type 6.2 session
timeout that was defined previously with a DEFINE_LU62_TIMEOUT verb.

The information is returned as a list. To obtain information about a specific timeout, or about several
timeout values, specify values for the resource_type and resource_name parameters. If the list_options
parameter is set to AP_FIRST_IN_LIST, the resource_type and resource_name parameters are ignored.
The returned list is ordered on resource_type and then on resource_name.

For resource_type, the ordering is:

1. Global timeouts
2. Local LU timeouts
3. Partner LU timeouts
4. Mode timeouts

For resource_name, the ordering is by:

1. Name length
2. By ASCII lexicographical ordering for names of the same length

If the list_options parameter is set to AP_LIST_FROM_NEXT, the returned list starts for the next entry
according to the defined ordering (whether or not the specified entry exists).

VCB structure
typedef struct query_lu62_timeout
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2;
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* buffer pointer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* list options */
 unsigned char reserv3; /* reserved */
 unsigned char resource_type; /* resource type */
 unsigned char resource_name[17]; /* resource name */
} QUERY_LU62_TIMEOUT;

typedef struct lu62_timeout_data
{
 AP_UINT16 overlay_size; /* overlay size */
 unsigned char resource_type; /* resource type */
 unsigned char resource_name[17]; /* resource name */

QUERY_LU62_TIMEOUT

416 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT16 timeout; /* timeout */
} LU62_TIMEOUT_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_LU62_TIMEOUT

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of entries for which data should be returned. To request data for a specific entry
rather than a range, specify the value 1. To return as many entries as possible, specify 0; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list of entries from which CS/AIX begins to return data. The list is ordered by
resource_type in the order AP_GLOBAL_TIMEOUT, AP_LOCAL_LU_TIMEOUT,
AP_PARTNER_LU_TIMEOUT, AP_MODE_TIMEOUT, then by resource_name in order of the name length,
then by ASCII lexicographical ordering for names of the same length.

Possible values are:

AP_FIRST_IN_LIST
Start at the first entry in the list

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the resource_type and resource_name
parameters

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the
resource_type and resource_name parameters

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

resource_type
Specifies the type of timeout being queried. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST.

Possible values are:

AP_GLOBAL_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local node.

AP_LOCAL_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local LU specified in the resource_name parameter.

AP_PARTNER_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions to the partner LU specified in the resource_name parameter.

AP_MODE_TIMEOUT
Timeout applies to all LU 6.2 sessions using the mode specified in the resource_name parameter.

resource_name
Name of the resource being queried. This value can be one of the following:

• If resource_type is set to AP_GLOBAL_TIMEOUT, do not specify this parameter.
• If resource_type is set to AP_LOCAL_LU_TIMEOUT, only the first 8 bytes of resource_name are valid

and should be set to the name of the local LU. This is an 8-byte alphanumeric type-A EBCDIC string

QUERY_LU62_TIMEOUT

Chapter 3. NOF API Verbs 417

starting with a letter, padded to the right with EBCDIC spaces. Set the remaining nine bytes to all
zeros.

• If resource_type is set to AP_PARTNER_LU_TIMEOUT, all 17 bytes of resource_name are valid and
should be set to the fully-qualified name of the partner LU which is padded on the right with EBCDIC
spaces. The name consists of a 1-8 type-A character network name, followed by an EBCDIC dot
(period) character, followed by a 1-8 type-A character partner LU name.

• If resource_type is set to AP_MODE_TIMEOUT, only the first 8 bytes of resource_name are valid and
should be set to the name of the mode. This is an 8-byte alphanumeric type-A EBCDIC string
starting with a letter, padded to the right with EBCDIC spaces. Set he remaining 9 bytes to all zeros.

This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

resource_type
The type of the timeout. Possible values are:
AP_GLOBAL_TIMEOUT

Timeout applies to all LU 6.2 sessions for the local node. The resource_name parameter is set to
all zeros.

AP_LOCAL_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions for the local LU indicated by the resource_name parameter.

AP_PARTNER_LU_TIMEOUT
Timeout applies to all LU 6.2 sessions to the partner LU indicated by the resource_name
parameter.

AP_MODE_TIMEOUT
Timeout applies to all LU 6.2 sessions using the mode indicated by the resource_name parameter.

resource_name
Name of the resource. This name is a local LU, a partner LU, or a mode, depending on the value of the
resource_type parameter. This parameter is set to zeros if resource_type is set to
AP_GLOBAL_TIMEOUT.

timeout
Timeout period in seconds. A value of 0 (zero) indicates that the session times out immediately after it
becomes free.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

QUERY_LU62_TIMEOUT

418 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RESOURCE_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name and type, but the combination of resource_type and resource_name did not match
any that are configured.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_MDS_APPLICATION
QUERY_MDS_APPLICATION returns a list of applications that have registered for MDS-level messages by
issuing the MS verb REGISTER_MS_APPLICATION. For more information about this verb, see the IBM
Communications Server for Data Center Deployment on AIX or Linux MS Programmer's Guide.

This verb can be used to obtain information about a specific application or about multiple applications,
depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_mds_application
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char application[8]; /* application */
} QUERY_MDS_APPLICATION;

typedef struct mds_application_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char application[8]; /* application name */
 AP_UINT16 max_rcv_size; /* max data size appl can receive */
 unsigned char reserva[20]; /* reserved */
} MDS_APPLICATION_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_MDS_APPLICATION

QUERY_MDS_APPLICATION

Chapter 3. NOF API Verbs 419

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of applications for which data should be returned. To request data for a specific
application rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list of applications from which CS/AIX should begin to return data. Possible values
are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the application parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the application parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

application
Application name for which information is required, or the name to be used as an index into the list.
This parameter is ignored if list_options is set to AP_FIRST_IN_LIST. This is an 8-byte type-A
EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

mds_application_data.overlay_size
The size of the returned mds_application_data structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each mds_application_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

QUERY_MDS_APPLICATION

420 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

mds_application_data.application
Name of registered application. This is an 8-byte type-A EBCDIC string, padded on the right with
spaces if the name is shorter than 8 characters.

mds_application_data.max_rcv_size
The maximum number of bytes that the application can receive in one message (this is specified when
an application registers with MDS). For more information about MDS-level application registration,
refer to the IBM Communications Server for Data Center Deployment on AIX or Linux MS Programmer's
Guide.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_APPLICATION_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the application parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_MDS_STATISTICS
QUERY_MDS_STATISTICS returns Management Services statistics. This verb can be used to gauge the
level of MDS routing traffic. The information can also be used to determine the required size of the send
alert queue, which is configured using the DEFINE_NODE verb.

This verb must be issued to a running node.

VCB structure
typedef struct query_mds_statistics
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 alerts_sent; /* number of alert sends */
 AP_UINT32 alert_errors_rcvd; /* error messages received */

QUERY_MDS_STATISTICS

Chapter 3. NOF API Verbs 421

 /* for alert sends */
 AP_UINT32 uncorrelated_alert_errors; /* uncorrelated alert errors */
 /* received */
 AP_UINT32 mds_mus_rcvd_local; /* number of MDS_MUs received */
 /* from local applications */
 AP_UINT32 mds_mus_rcvd_remote; /* number of MDS_MUs received */
 /* from remote applications */
 AP_UINT32 mds_mus_delivered_local; /* number of MDS_MUs delivered */
 /* to local applications */
 AP_UINT32 mds_mus_delivered_remote; /* number of MDS_MUs delivered */
 /* to remote applications */
 AP_UINT32 parse_errors; /* number of MDS_MUs received */
 /* with parse errors */
 AP_UINT32 failed_deliveries; /* number of MDS_MUs where */
 /* delivery failed */
 AP_UINT32 ds_searches_performed; /* number of DS searches */
 /* performed */
 AP_UINT32 unverified_errors; /* number of unverified errors */
 unsigned char reserva[20]; /* reserved */
} QUERY_MDS_STATISTICS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_MDS_STATISTICS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

alerts_sent
Number of locally originated alerts sent using the MDS transport system.

alert_errors_rcvd
Number of error messages received by MDS indicating a delivery failure for a message containing an
alert.

uncorrelated_errors_rcvd
Number of error messages received by MDS indicating a delivery failure for a message containing an
alert. Delivery failure occurs when the error message could not be correlated to an alert on the MDS
send alert queue. MDS maintains a fixed-size queue where it caches alerts sent to the problem
determination focal point. Once the queue reaches maximum size, the oldest alert will be discarded
and replaced by the new alert. If a delivery error message is received, MDS attempts to correlate the
error message to a cached alert so that the alert may be held until the problem determination focal
point is restored.

Note: The two counts alert_errors_rcvd and uncorrelated_errors_rcvd can be used to check that the
size of the send alert queue (specified on DEFINE_NODE) is appropriate. If the value of
uncorrelated_errors_rcvd increases over time, this indicates that the send alert queue size is too
small.

mds_mus_rcvd_local
Number of MDS_MUs received from local applications.

mds_mus_rcvd_remote
Number of MDS_MUs received from remote nodes using the MDS_RECEIVE and MSU_HANDLER
transaction programs.

mds_mus_delivered_local
Number of MDS_MUs successfully delivered to local applications.

mds_mus_delivered_remote
Number of MDS_MUs successfully delivered to a remote node using the MDS_SEND transaction
program.

QUERY_MDS_STATISTICS

422 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

parse_errors
Number of MDS_MUs received which contained header format errors.

failed_deliveries
Number of MDS_MUs this node failed to deliver.

ds_searches_performed
Number of Directory Services searches used to locate the next hop for an MDS_MU. (Significant for
network nodes only).

unverified_errors
Number of routing errors due to using unverified (local Directory Services search) data for determining
the next hop for an MDS_MU. Each time one of these errors occurs, Directory Services must repeat the
search using either a Central Directory Search or a broadcast search mechanism. (Significant for
network nodes only).

Returned parameters: function not supported
If the verb does not execute successfully because the local node configuration does not support it, CS/AIX
returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support MS network management functions; this is defined by the
mds_supported parameter on the DEFINE_NODE verb.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_MODE
QUERY_MODE returns information about modes that a local LU is using, or has used, with partner LUs.

This verb can be used to obtain information about a specific partner LU-mode combination or about
multiple modes, and about modes for which sessions are currently active or about all modes that have
been used, depending on the options used. This verb returns information about current usage of the
modes and LUs, not about their definition; use QUERY_MODE_DEFINITION to obtain the definition of the
modes and LUs.

This verb must be issued to a running node.

VCB structure
typedef struct query_mode
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char mode_name[8]; /* mode name */
 unsigned char active_sessions; /* active sessions only filter */
} QUERY_MODE;

QUERY_MODE

Chapter 3. NOF API Verbs 423

typedef struct mode_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char mode_name[8]; /* mode name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 sess_limit; /* current session limit */
 AP_UINT16 act_sess_count; /* currently active sessions count */
 unsigned char fqplu_name[17]; /* fully-qualified partner LU name */
 unsigned char reserv1[3]; /* reserved */
} MODE_SUMMARY;

typedef struct mode_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char mode_name[8]; /* mode name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 sess_limit; /* session limit */
 AP_UINT16 act_sess_count; /* currently active sessions count */
 unsigned char fqplu_name[17]; /* fully-qualified partner LU name */
 unsigned char reserv1[3]; /* reserved */
 AP_UINT16 min_conwinners_source; /* minimum conwinner sess limit */
 AP_UINT16 min_conwinners_target; /* minimum conloser sess limit */
 unsigned char drain_source; /* drain source? */
 unsigned char drain_partner; /* drain partner? */
 AP_UINT16 auto_act; /* auto activated conwinner */
 /* session limit */
 AP_UINT16 act_cw_count; /* active conwinner sessions count */
 AP_UINT16 act_cl_count; /* active conloser sessions count */
 unsigned char sync_level; /* synchronization level */
 unsigned char default_ru_size; /* default RU size to maximize */
 /* performance */
 AP_UINT16 max_neg_sess_limit; /* maximum negotiated session limit*/
 AP_UINT16 max_rcv_ru_size; /* maximum receive RU size */
 AP_UINT16 pending_session_count; /* pending sess count for mode */
 AP_UINT16 termination_count; /* termination count for mode */
 AP_UINT16 implicit; /* implicit or explicit entry */
 unsigned char reserva[15]; /* reserved */
} MODE_DETAIL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of modes for which data should be returned. To request data for a specific mode
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

QUERY_MODE

424 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_FIRST_IN_LIST
Start at the first entry in the list (the first partner LU and mode for the specified local LU).

AP_LIST_INCLUSIVE
Start at the entry specified by the supplied partner LU name and mode name.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the supplied partner LU name and
mode name.

For AP_FIRST_IN_LIST, the entry used as the index into the list is defined by the combination of
lu_name (or lu_alias) and fqplu_name (or plu_alias). If fqplu_name or plu_alias is not specified, the
entry used as the index is lu_name (or lu_alias).

For AP_LIST_INCLUSIVE or AP_LIST_FROM_NEXT, the entry used as the index into the list is
defined by the combination of lu_name (or lu_alias), fqplu_name (or plu_alias) and mode_name
specified. For more information about how the list is ordered and how the application can obtain
specific entries from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters. To specify that the LU is identified by its alias rather than its LU name, set
this parameter to 8 binary zeros and specify the LU alias in the following parameter.

lu_alias
Locally defined LU alias. This parameter is used only if lu_name is set to 8 binary zeros; it is ignored
otherwise.

The alias is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
bytes. To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to
binary zeros.

plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes. If list_options is set to AP_FIRST_IN_LIST, this parameter is ignored; otherwise you
must specify either the LU alias or the fully qualified LU name for the partner LU. To specify that the LU
is identified by its LU name rather than its alias, set this parameter to 8 binary zeros and specify the LU
name in the following parameter.

fqplu_name
Fully qualified network name for the partner LU. If list_options is set to AP_FIRST_IN_LIST, this
parameter is ignored; otherwise you must specify either the LU alias or the fully qualified LU name for
the partner LU. This parameter is used only if plu_alias is set to 8 binary zeros; it is ignored otherwise.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

mode_name
Mode name which designates the network properties for a group of sessions. This is an 8-byte type-A
EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters. This
parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

active_sessions
Specifies whether to return information only on modes for which sessions are active, or on all modes.
Possible values are:
AP_YES

Return information only on modes for which sessions are currently active.
AP_NO

Return information about all modes for which sessions are active or have been active.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

QUERY_MODE

Chapter 3. NOF API Verbs 425

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

mode_summary.overlay_size
The size of the returned mode_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each mode_summary structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

mode_summary.mode_name
Mode name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

mode_summary.description
A null-terminated text string describing the mode, as specified in the definition of the mode.

mode_summary.sess_limit
Current session limit.

mode_summary.act_sess_count
Total number of active sessions between the specified local LU and partner LU using the mode.

mode_summary.fqplu_name
Fully qualified name of the partner LU. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

mode_detail.overlay_size
The size of the returned mode_detail structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each mode_detail structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

mode_detail.mode_name
Mode name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

mode_detail.description
A null-terminated text string describing the mode, as specified in the definition of the mode.

mode_detail.sess_limit
Current session limit.

QUERY_MODE

426 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

mode_detail.act_sess_count
Total number of active sessions between the specified local LU and partner LU using the mode.

mode_detail.fqplu_name
Fully qualified name of the partner LU. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

mode_detail.min_conwinners_source
Specifies the minimum number of sessions on which the local LU is the contention winner.

mode_detail.min_conwinners_target
Specifies the minimum number of sessions on which the local LU is the contention loser.

mode_detail.drain_source
Specifies whether the local LU satisfies waiting session requests before deactivating a session when
session limits are changed or reset. Possible values are:
AP_YES

Waiting session requests will be satisfied before sessions are deactivated.
AP_NO

Waiting session requests will not be satisfied.
mode_detail.drain_partner

Specifies whether the partner LU satisfies waiting session requests before deactivating a session
when session limits are changed or reset. Possible values are:
AP_YES

Waiting session requests will be satisfied before sessions are deactivated.
AP_NO

Waiting session requests will not be satisfied.
mode_detail.auto_act

Number of contention winner sessions that are automatically activated following the CNOS exchange
with the partner LU.

mode_detail.act_cw_count
Number of active contention winner sessions using this mode. (The local LU does not need to "bid"
before using one of these sessions.)

mode_detail.act_cl_count
Number of active, contention loser sessions using this mode. (The local LU must "bid" before using
one of these sessions.)

mode_detail.sync_level
Specifies the synchronization level supported by the mode. Possible values are:
AP_CONFIRM

The mode supports synchronization using the CONFIRM and CONFIRMED verbs.
AP_SYNCPT

The mode supports Syncpoint functions.
AP_NONE

The mode does not support synchronization.
mode_detail.default_ru_size

Specifies whether the default upper bound for the maximum RU size will be used. Possible values are:
AP_YES

CS/AIX ignores the maximum RU size specified in the definition of the mode, and sets the upper
bound for the maximum RU size to the largest value that can be accommodated in the link BTU
size.

AP_NO
CS/AIX uses the maximum RU size specified in the definition of the mode.

QUERY_MODE

Chapter 3. NOF API Verbs 427

mode_detail.max_neg_sess_limit
Maximum negotiable session limit. Specifies the maximum session limit that a local LU can use with
this mode name during its CNOS processing as the target LU.

mode_detail.max_rcv_ru_size
Maximum received RU size.

mode_detail.pending_session_count
Specifies the number of sessions pending (waiting for session activation to complete).

mode_detail.termination_count
If a previous CNOS verb has set the mode session limit to zero, but sessions are still active because
conversations were using them or waiting to use them, this parameter specifies the number of
sessions that have not yet been deactivated.

mode_detail.implicit
Specifies whether the entry was created by an implicit or explicit definition. Possible values are:
AP_YES

The entry is an implicit entry.
AP_NO

The entry is an explicit entry.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.
AP_INVALID_LU_ALIAS

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_alias parameter was not valid.

AP_INVALID_LU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

AP_INVALID_MODE_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the mode_name parameter was not valid.

AP_INVALID_PLU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but one of the following conditions applies:

• The fqplu_name parameter does not match the name of any of this local LU's partners.
• No sessions have been active (since the node was last started) for the specified combination of

local LU, partner LU, and mode.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_MODE

428 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_MODE_DEFINITION
QUERY_MODE_DEFINITION returns information about modes defined using DEFINE_MODE, or about
SNA-defined modes.

This verb can be used to obtain either summary or detailed information, about a specific mode or about
multiple modes, depending on the options used. It returns information about the definition of the modes,
not about their current usage; use QUERY_MODE to obtain information about the current usage of a mode
by local and partner LUs.

This verb cannot be used to return information about the default COS name that will be used for any
unrecognized mode names; use QUERY_MODE_TO_COS_MAPPING to do this.

VCB structure
typedef struct query_mode_definition
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char mode_name[8]; /* mode name */
} QUERY_MODE_DEFINITION;

typedef struct mode_def_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char mode_name[8]; /* mode name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} MODE_DEF_SUMMARY;

typedef struct mode_def_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char mode_name[8]; /* mode name */
 MODE_CHARS mode_chars; /* mode characteristics */
} MODE_DEF_DETAIL;

typedef struct mode_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 max_ru_size_upp; /* maximum RU size upper bound*/
 unsigned char receive_pacing_win; /* receive pacing window */
 unsigned char default_ru_size; /* default RU size to */
 /* maximize performance */
 AP_UINT16 max_neg_sess_lim; /* maximum negotiable session */
 /* limit */
 AP_UINT16 plu_mode_session_limit; /* LU-mode session limit */
 AP_UINT16 min_conwin_src; /* minimum source contention */
 /* winner sessions */
 unsigned char cos_name[8]; /* class of service name */
 unsigned char cryptography; /* cryptography (reserved) */
 unsigned char compression; /* data compression supported? */
 AP_UINT16 auto_act; /* number of sessions to be */
 /* activated automatically */
 AP_UINT16 min_conloser_src; /* minimum source contention */
 /* loser */
 AP_UINT16 max_ru_size_low; /* maximum RU size lower bound*/
 AP_UINT16 max_receive_pacing_win; /* maximum receive pacing */
 /* window */
 unsigned char max_compress_lvl; /* max level of data compression */
 unsigned char max_decompress_lvl; /* max level of data decompression */
 unsigned char comp_in_series; /* reserved */

QUERY_MODE_DEFINITION

Chapter 3. NOF API Verbs 429

 unsigned char reserv4[25]; /* reserved */
} MODE_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE_DEFINITION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of modes for which data should be returned. To request data for a specific mode
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the mode_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the mode_name parameter.

For more information about how the application can obtain specific entries from the list, see “List
options for QUERY_* Verbs” on page 33. This verb differs from other QUERY_* verbs in that the modes
are listed in the order they are created.

mode_name
Mode name which designates the network properties for a group of sessions. This parameter is
ignored if list_options is set to AP_FIRST_IN_LIST. This is an 8-byte type-A EBCDIC string, padded
on the right with spaces if the name is shorter than 8 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

QUERY_MODE_DEFINITION

430 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

mode_def_summary.overlay_size
The size of the returned mode_def_summary structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each mode_def_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

mode_def_summary.mode_name
Mode name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

mode_def_summary.description
A null-terminated text string describing the mode, as specified in the definition of the mode.

mode_def_detail.overlay_size
The size of the returned mode_def_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each mode_def_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

mode_def_detail.mode_name
Mode name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

mode_def_detail.mode_chars.description
A null-terminated text string describing the mode, as specified in the definition of the mode.

mode_def_detail.mode_chars.max_ru_size_upp
Upper boundary for the maximum RU size to be used on sessions with this mode name. The value is
used when the maximum RU size is negotiated during session activation.

Range: 256-61,440. This field is ignored if the default_ru_size parameter (see below) is set to
AP_YES.

mode_def_detail.mode_chars.receive_pacing_win
Session pacing window for sessions using this mode. For fixed pacing, this is the maximum number of
frames that can be received from the partner LU before the local LU must send a response; for
adaptive pacing, this value is used as an initial receive window size. CS/AIX always uses adaptive
pacing unless the adjacent node specifies that it is not supported.

Range is 1-63, or zero to specify no pacing window (that is, an unlimited number of frames can be
received, and no response is required).

mode_def_detail.mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be used. Possible values are:
AP_YES

CS/AIX ignores the max_ru_size_upp parameter, and sets the upper bound for the maximum RU
size to the largest value that can be accommodated in the link BTU size.

QUERY_MODE_DEFINITION

Chapter 3. NOF API Verbs 431

AP_NO
CS/AIX uses the max_ru_size_upp parameter to define the maximum RU size.

mode_def_detail.mode_chars.max_neg_sess_lim
Maximum number of sessions allowed on this mode between any local LU and partner LU. Range:
1-32,767, or zero to specify no implicit CNOS exchange.

mode_def_detail.mode_chars.plu_mode_session_limit
Default session limit for this mode. This limits the number of sessions on this mode between any one
local LU and partner LU pair. This value is used when CNOS (Change Number of Sessions) exchange is
initiated implicitly. Range: 1-32,767, or zero to specify no implicit CNOS exchange.

mode_def_detail.mode_chars.min_conwin_src
Minimum number of contention winner sessions that a local LU using this mode can activate. This
value is used when CNOS (Change Number of Sessions) exchange is initiated implicitly. Range:
1-32,767, or zero to specify no implicit CNOS exchange.

mode_def_detail.mode_chars.cos_name
Name of the class of service to request when activating sessions on this mode. This is an 8-byte type-
A EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters.

mode_def_detail.mode_chars.compression
Specifies whether sessions activated using this mode can use compression. Possible values are:
AP_COMP_PROHIBITED

Compression is not supported for sessions using this mode.
AP_COMP_REQUESTED

Compression is supported and requested for sessions using this mode. (It is not mandatory;
compression will not be used if the BIND from the partner does not request it.)

mode_def_detail.mode_chars.auto_act
Specifies how many sessions will be activated automatically for this mode. This value is used when
CNOS (Change Number of Sessions) exchange is initiated implicitly. This value is in the range
0-32,767.

mode_def_detail.mode_chars.min_conloser_src
Minimum number of contention loser sessions that can be activated by any one local LU that uses this
mode. This value is used when CNOS (Change Number of Sessions) exchange is initiated implicitly.
This value is in the range 0-32,767.

mode_def_detail.mode_chars.max_ru_size_low
Lower bound for the maximum size of RUs sent and received on sessions that use this mode.

This value is in the range 256-61,440 or zero, which means that there is no lower bound.

mode_def_detail.mode_chars.max_receive_pacing_win
Maximum session pacing window for sessions in this mode. For adaptive pacing, this value is used to
limit the receive pacing window that the session will grant. For fixed pacing, this parameter is not
used. (CS/AIX always uses adaptive pacing unless the adjacent node specifies that it does not support
it.)

This value is in the range 0-32,767 or zero, which means there is no limit for the pacing window.

mode_def_detail.mode_chars.max_compress_lvl
Specifies the maximum level of compression that CS/AIX will attempt to negotiate for data flowing
from the local node. Possible values are:

• AP_NONE
• AP_RLE_COMPRESSION
• AP_LZ9_COMPRESSION
• AP_LZ10_COMPRESSION

If compression is negotiated using a non-extended BIND, which does not specify a maximum
compression level, RLE compression will be used.

QUERY_MODE_DEFINITION

432 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

mode_def_detail.mode_chars.max_decompress_lvl
Specifies the maximum level of decompression that CS/AIX will attempt to negotiate for data flowing
into the local node. Possible values are:

• AP_NONE
• AP_RLE_COMPRESSION
• AP_LZ9_COMPRESSION
• AP_LZ10_COMPRESSION

If compression is negotiated using a non-extended BIND, which does not specify a maximum
compression level, RLE compression will be used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_MODE_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the mode_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_MODE_TO_COS_MAPPING
QUERY_MODE_TO_COS_MAPPING returns information about the COS (class of service) associated with a
particular mode. This verb can be used to obtain information about a specific mode or about multiple
modes, depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_mode_to_cos_mapping
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char mode_name[8]; /* mode name */
} QUERY_MODE_TO_COS_MAPPING;

QUERY_MODE_TO_COS_MAPPING

Chapter 3. NOF API Verbs 433

typedef struct mode_to_cos_mapping_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char mode_name[8]; /* mode name */
 unsigned char cos_name[8]; /* cos name */
 unsigned char reserva[20]; /* reserved */
} MODE_TO_COS_MAPPING_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_MODE_TO_COS_MAPPING

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of modes for which data should be returned. To request data for a specific mode
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list of modes from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the mode_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the mode_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

mode_name
Mode name for which information is required, or the name to be used as an index into the list. This
value is ignored if list_options is set to AP_FIRST_IN_LIST.

The mode name is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters. To return information about the default COS that is used for any
unrecognized mode names, set this parameter to 8 binary zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

QUERY_MODE_TO_COS_MAPPING

434 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

mode_to_cos_mapping_data.overlay_size
The size of the returned mode_to_cos_mapping_data structure, and therefore the offset to the
start of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
mode_to_cos_mapping_data structure in turn, it must use this value to move to the correct offset
for the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

mode_to_cos_mapping_data.mode_name
Mode name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

mode_to_cos_mapping_data.cos_name
Class of service name associated with the mode name. This is an 8-byte type-A EBCDIC string,
padded on the right with spaces if the name is shorter than 8 characters.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_MODE_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the mode_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NMVT_APPLICATION
QUERY_NMVT_APPLICATION returns a list of applications that have registered for NMVT-level messages
by issuing the MS verb REGISTER_NMVT_APPLICATION. For more information about this verb, see the
IBM Communications Server for Data Center Deployment on AIX or Linux MS Programmer's Guide.

This verb can be used to obtain information about a specific application or about multiple applications,
depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_nmvt_application
{
 AP_UINT16 opcode; /* Verb operation code */

QUERY_NMVT_APPLICATION

Chapter 3. NOF API Verbs 435

 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required*/
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char application[8]; /* application */
} QUERY_NMVT_APPLICATION;

typedef struct nmvt_application_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char application[8]; /* application name */
 AP_UINT16 ms_vector_key_type; /* MS vector key accepted */
 /* by appl */
 unsigned char conversion_required; /* is conversion to MDS_MU */
 /* required */
 unsigned char reserv[5]; /* reserved */
 unsigned char reserva[20]; /* reserved */
} NMVT_APPLICATION_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_NMVT_APPLICATION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of applications for which data should be returned. To request data for a specific
application rather than a range, specify the value 1. To return as many entries as possible, specify
zero; in this case, CS/AIX will return the maximum number of entries that can be accommodated in
the supplied data buffer.

list_options
The position in the list of applications from which CS/AIX should begin to return data. Possible values
are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the application parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the application parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

application
Application name. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST. The name is
an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is shorter than 8
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

QUERY_NMVT_APPLICATION

436 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

nmvt_application_data.overlay_size
The size of the returned nmvt_application_data structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
nmvt_application_data structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

nmvt_application_data.application
Name of the registered application. This is an 8-byte type-A EBCDIC string, padded on the right with
spaces if the name is shorter than 8 characters.

nmvt_application_data.ms_vector_key_type
MS vector key accepted by the application. When the application registers for NMVT messages, it
specifies which MS vector keys it will accept.

nmvt_application_data.conversion_required
Specifies whether the registered application requires incoming messages to be converted from NMVT
to MDS_MU format. When the application registers for NMVT messages, it specifies whether this
conversion is required. Possible values are:
AP_YES

Incoming messages are converted to MDS_MU format.
AP_NO

Incoming messages are not converted.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_APPLICATION_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the application parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

QUERY_NMVT_APPLICATION

Chapter 3. NOF API Verbs 437

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NN_TOPOLOGY_NODE
Each network node maintains a network topology database which holds information about all the network
nodes, virtual routing nodes (VRNs), and network node to network node TGs in the network.
QUERY_NN_TOPOLOGY_NODE returns information about the network node and VRN entries in this
database.

This verb can be used to obtain either summary or detailed information, about a specific node or about
multiple nodes, depending on the options used. It can be issued only to a network node; it is not valid at
an end node or a LEN node.

This verb must be issued to a running node.

VCB structure
typedef struct query_nn_topology_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char node_name[17]; /* network qualified node name */
 unsigned char node_type; /* node type */
 AP_UINT32 frsn; /* flow reduction sequence number */
} QUERY_NN_TOPOLOGY_NODE;

If the frsn field is set to a non-zero value then only node entries with FRSNs equal to or greater than the
one specified will be returned. If it is set to zero then all node entries are returned.

typedef struct nn_topology_node_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char node_name[17]; /* network qualified node name */
 unsigned char node_type; /* node type */
} NN_TOPOLOGY_NODE_SUMMARY;

typedef struct nn_topology_node_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char node_name[17]; /* network qualified node name */
 unsigned char node_type; /* node type */
 AP_UINT16 days_left; /* days left until entry purged */
 unsigned char reserv1[2]; /* reserved */
 AP_UINT32 frsn; /* flow reduction sequence number */
 AP_UINT32 rsn; /* resource sequence number */
 unsigned char rar; /* route additional resistance */
 unsigned char status; /* node status */
 unsigned char function_support; /* function support */
 unsigned char reserv2; /* reserved */
 unsigned char branch_aware; /* is the node branch aware? */
 unsigned char reserva[19]; /* reserved */
} NN_TOPOLOGY_NODE_DETAIL;

Supplied parameters
The application supplies the following parameters:

QUERY_NN_TOPOLOGY_NODE

438 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

opcode
AP_QUERY_NN_TOPOLOGY_NODE

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of nodes for which data should be returned. To request data for a specific node
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of the node_name, node_type, and frsn parameters.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of the node_name,
node_type, and frsn parameters.

The list is ordered by node_name, then by node_type (in the order AP_NETWORK_NODE, AP_VRN),
and lastly in numerical order of frsn. For more information about how the list is ordered and how
the application can obtain specific entries from it, see “List options for QUERY_* Verbs” on page
33.

node_name
Fully qualified name of the node for which information is required, or the name to be used as an index
into the list of nodes. This value is ignored if list_options is set to AP_FIRST_IN_LIST

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

node_type
Type of the node. This value is ignored if list_options is set to AP_FIRST_IN_LIST. Possible values
are:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
AP_LEARN_NODE

Node type is unknown.
frsn

Flow Reduction Sequence Number (FRSN). Specify zero to return information about all nodes, or a
nonzero value to return information about nodes with a FRSN greater than or equal to this value.

QUERY_NN_TOPOLOGY_NODE

Chapter 3. NOF API Verbs 439

This parameter can be used to ensure that consistent information is obtained when the application
needs to issue several verbs to obtain all the information. The application should take the following
steps:

To Obtain Consistent Information Using the frsn Parameter

1. Issue QUERY_NODE to get the node's current FRSN.
2. Issue as many QUERY_NN_TOPOLOGY_NODE verbs as necessary to get all the database entries,

with the frsn parameter set to zero.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned in step 1.
4. If the two FRSNs are different, the database has changed. Add 1 to the FRSN obtained in step 1,

and issue further QUERY_NN_TOPOLOGY_NODE verbs with the frsn parameter set to this new
value. These verbs will return only the entries that have changed.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

nn_topology_node_summary.overlay_size
The size of the returned nn_topology_node_summary structure, and therefore the offset to the
start of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
nn_topology_node_summary structure in turn, it must use this value to move to the correct offset
for the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

nn_topology_node_summary.node_name
Fully qualified name of the node. This is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

nn_topology_node_summary.node_type
Type of the node. This is one of the following:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.

QUERY_NN_TOPOLOGY_NODE

440 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

nn_topology_node_detail.node_name
Fully qualified name of the node. This is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

nn_topology_node_detail.node_type
Type of the node. This is one of the following:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.
nn_topology_node_detail.overlay_size

The size of the returned nn_topology_node_detail structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
nn_topology_node_detail structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

nn_topology_node_detail.days_left
Number of days before this node entry will be deleted from the Topology Database. For the local node
entry, this value is set to zero, indicating that this entry is never deleted.

nn_topology_node_detail.frsn
Flow Reduction Sequence Number (FRSN). Indicates the last time that this resource was updated at
the local node.

nn_topology_node_detail.rsn
Resource Sequence Number. This is assigned by the network node that owns this resource.

nn_topology_node_detail.rar
The node's route additional resistance. Values are in the range 0-255.

nn_topology_node_detail.status
Specifies the status of the node. This parameter may be set to AP_UNCONGESTED, to any one of the
other values listed, or to two or more of the other values combined using a logical OR. Possible values
are:
AP_UNCONGESTED

The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified for the node.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum specified.

AP_QUIESCING
A STOP_NODE of type AP_QUIESCE or AP_QUIESCE_ISR has been issued.

nn_topology_node_detail.function_support
Specifies which functions are supported. This may be one or more of the following, combined using a
logical OR.
AP_BORDER_NODE

Border Node

QUERY_NN_TOPOLOGY_NODE

Chapter 3. NOF API Verbs 441

AP_EXTENDED_BORDER_NODE
Return border node function is supported.

AP_CDS
Central Directory server

AP_GATEWAY
Gateway Node

AP_INTERCHANGE_NODE
Interchange node function is supported.

AP_ISR
Intermediate Session Routing.

AP_HPR
Node supports the base functions of High Performance Routing (HPR).

AP_RTP_TOWER
Node supports the Rapid Transport Protocol tower of HPR.

AP_CONTROL_OVER_RTP_TOWER
Node supports HPR control flows over the Rapid Transport Protocol tower.

nn_topology_node_detail.branch_aware
Specifies whether the node supports branch awareness, APPN Option Set 1120.
AP_NO

The node does not support option set 1120.
AP_YES

The node supports option set 1120.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_NODE

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the node_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is not a network node, CS/AIX returns
the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is not a network node. This verb can be used only at a network node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NN_TOPOLOGY_NODE

442 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_NN_TOPOLOGY_STATS
QUERY_NN_TOPOLOGY_STATS returns statistical information about the topology database. It can be used
only if the CS/AIX node is a network node, and is not valid if it is an end node.

This verb must be issued to a running node.

VCB structure
typedef struct query_nn_topology_stats
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 max_nodes; /* max number of nodes in database */
 AP_UINT32 cur_num_nodes; /* current number of nodes in */
 /* database */
 AP_UINT32 node_in_tdus; /* number of TDUs received */
 AP_UINT32 node_out_tdus; /* number of TDUs sent */
 AP_UINT32 node_low_rsns; /* node updates received with low */
 /* RSNs */
 AP_UINT32 node_equal_rsns; /* node updates in with equal RSNs */
 AP_UINT32 node_good_high_rsns; /* node updates in with high RSNs */
 AP_UINT32 node_bad_high_rsns; /* node updates in with high and */
 /* odd RSNs */
 AP_UINT32 node_state_updates; /* number of node updates sent */
 AP_UINT32 node_errors; /* number of node entry errors found*/
 AP_UINT32 node_timer_updates; /* number of node records built */
 /* due to timer updates */
 AP_UINT32 node_purges; /* number of node records purged */
 AP_UINT32 tg_low_rsns; /* TG updates received with low RSNs*/
 AP_UINT32 tg_equal_rsns; /* TG updates in with equal RSNs */
 AP_UINT32 tg_good_high_rsns; /* TG updates in with high RSNs */
 AP_UINT32 tg_bad_high_rsns; /* TG updates in with high and */
 /* odd RSNs */
 AP_UINT32 tg_state_updates; /* number of TG updates sent */
 AP_UINT32 tg_errors; /* number of TG entry errors found */
 AP_UINT32 tg_timer_updates; /* number of node records built */
 /* due to timer updates */
 AP_UINT32 tg_purges; /* number of node records purged */
 AP_UINT32 total_route_calcs; /* number of routes calculated */
 /* for COS */
 AP_UINT32 total_route_rejs; /* number of failed route */
 /* calculations */
 AP_UINT32 total_tree_cache_hits; /* total number of tree cache hits */
 AP_UINT32 total_tree_cache_misses; /* total number of tree cache */
 /* misses */
 AP_UINT32 total_tdu_wars; /* total number TDU war detections */
 unsigned char reserva[16]; /* reserved */
} QUERY_NN_TOPOLOGY_STATS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_NN_TOPOLOGY_STATS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

max_nodes
Maximum number of node records in the Topology Database. This value was specified on
DEFINE_NODE. A value of zero indicates no limit.

QUERY_NN_TOPOLOGY_STATS

Chapter 3. NOF API Verbs 443

cur_num_nodes
Current number of nodes in this node's topology database. If this value exceeds the maximum
number of nodes allowed, an Alert is issued.

node_in_tdus
Total number of Topology Database Updates (TDUs) received by this node.

node_out_tdus
Total number of Topology Database Updates (TDUs) built by this node to be sent to all adjacent
network nodes since the last initialization.

node_low_rsns
Total number of topology node updates received by this node with RSN less than the current RSN.
Both even and odd RSNs are included in this count. (These TDUs are not errors, but result when TDUs
are broadcast to all adjacent network nodes. No update to this node's topology database occurs, but
this node will send a TDU with its higher RSN to the adjacent node that sent this low RSN.)

node_equal_rsns
Total number of topology node updates received by this node with RSN equal to the current RSN. Both
even and odd RSNs are included in this count. (These TDUs are not errors, but result when TDUs are
broadcast to all adjacent network nodes. No update to this node's topology database occurs.)

node_good_high_rsns
Total number of topology node updates received by this node with RSN greater than the current RSN.
The node updates its topology and broadcasts a TDU to all adjacent network nodes. It is not required
to send a TDU to the sender of this update because that node already has the update.

node_bad_high_rsns
Total number of topology node updates received by this node with an odd RSN greater than the
current RSN. These updates represent a topology inconsistency detected by one of the APPN network
nodes. The node updates its topology and broadcasts the TDU to all adjacent network nodes.

node_state_updates
Total number of topology node updates built as a result of internally detected node state changes that
affect APPN topology and routing. Updates are sent via TDUs to all adjacent network nodes.

node_errors
Total number of topology node update inconsistencies detected by this node. This occurs when this
node attempts to update its topology database and detects a data inconsistency. This node will create
a TDU with the current RSN incremented to the next odd number and broadcast it to all adjacent
network nodes.

node_timer_updates
Total number of topology node updates built for this node's resource due to timer updates. Updates
are sent via TDUs to all adjacent network nodes. These updates ensure that other network nodes do
not delete this node's resource from their topology database.

node_purges
Total number of topology node records purged from this node's topology database. This occurs when
a node record has not been updated in a specified amount of time. The owning node is responsible for
broadcasting updates for its resource that it wants kept in the network topology.

tg_low_rsns
Total number of topology TG updates received by this node with RSN less than the current RSN. Both
even and odd RSNs are included in this count. (These TDUs are not errors, but result when TDUs are
broadcast to all adjacent network nodes. No update to this node's topology database occurs, but this
node will send a TDU with its higher RSN to the adjacent node that sent this low RSN.)

tg_equal_rsns
Total number of topology TG updates received by this node with RSN equal to the current RSN. Both
even and odd RSNs are included in this count. (These TDUs are not errors, but result when TDUs are
broadcast to all adjacent network nodes. No update to this node's topology database occurs.)

tg_good_high_rsns
Total number of topology TG updates received by this node with RSN greater than the current RSN.
The node updates its topology and broadcasts a TDU to all adjacent network nodes.

QUERY_NN_TOPOLOGY_STATS

444 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

tg_bad_high_rsns
Total number of topology TG updates received by this node with an odd RSN greater than the current
RSN. These updates represent a topology inconsistency detected by one of the APPN network nodes.
The node updates its topology and broadcasts the TDU to all adjacent network nodes.

tg_state_updates
Total number of topology TG updates built as a result of internally detected node state changes that
affect APPN topology and routing. Updates are sent via TDUs to all adjacent network nodes.

tg_errors
Total number of topology TG update inconsistencies detected by this node. This occurs when this
node attempts to update its topology database and detects a data inconsistency. This node will create
a TDU with the current RSN incremented to the next odd number and broadcast it to all adjacent
network nodes.

tg_timer_updates
Total number of topology TG updates built for this node's resource due to timer updates. Updates are
sent via TDUs to all adjacent network nodes. These updates ensure that other network nodes do not
delete this node's resource from their topology database.

tg_purges
Total number of topology TG records purged from this node's topology database. This occurs when a
TG record has not been updated in a specified amount of time. The owning node is responsible for
broadcasting updates for its resource that it wants kept in the network topology.

total_route_calcs
Number of routes calculated for all class of services since the last initialization.

total_route_rejs
Number of route requests for all class of services that could not be calculated since the last
initialization.

total_tree_cache_hits
Number of route computations that were satisfied by a cached routing tree. This number may be
greater than the total number of computed routes, since each route may require inspection of several
trees.

total_tree_cache_misses
Number of route computations that were not satisfied by a cached routing tree, so that a new routing
tree had to be built.

total_tdu_wars
Number of TDU wars the local node has detected and prevented.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is not a network node, CS/AIX returns
the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is not a network node. This verb can be used only at a network node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NN_TOPOLOGY_TG
Each network node maintains a network topology database which holds information about all the network
nodes, VRNs and network node to network node TGs in the network. QUERY_NN_TOPOLOGY_TG returns
information about the TG entries in this database.

QUERY_NN_TOPOLOGY_TG

Chapter 3. NOF API Verbs 445

This verb can be used to obtain either summary or detailed information, about a specific TG or about
multiple TGs, depending on the options used. It can be issued only to a network node; it is not valid at an
end node or a LEN node.

This verb must be issued to a running node.

VCB structure
typedef struct query_nn_topology_tg
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char owner[17]; /* node that owns the TG */
 unsigned char owner_type; /* type of node that owns the TG */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
 unsigned char reserv1; /* reserved */
 AP_UINT32 frsn; /* flow reduction sequence number */
} QUERY_NN_TOPOLOGY_TG;

typedef struct topology_tg_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char owner[17]; /* node that owns the TG */
 unsigned char owner_type; /* type of node that owns the TG */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
 unsigned char reserv3[1]; /* reserved */
 AP_UINT32 frsn; /* flow reduction sequence number */
} TOPOLOGY_TG_SUMMARY;

typedef struct topology_tg_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char owner[17]; /* node that owns the TG */
 unsigned char owner_type; /* type of node that owns the TG */
 unsigned char dest[17]; /* TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
 unsigned char reserv3[1]; /* reserved */
 AP_UINT32 frsn; /* flow reduction sequence number */
 AP_UINT16 days_left; /* days left until entry purged */
 LINK_ADDRESS dlc_data; /* DLC signalling data */
 AP_UINT32 rsn; /* resource sequence number */
 unsigned char status; /* tg status */
 TG_DEFINED_CHARS tg_chars; /* TG characteristics */
 unsigned char subarea_number; /* subarea number */
 unsigned char tg_type; /* TG type */
 unsigned char intersubnet_tg; /* TG between subnets */
 unsigned char cp_cp_session_active; /* Are CP-CP sessions active? */
 unsigned char branch_tg; /* TG branch aware? */
 unsigned char multilink_tg; /* reserved */
 unsigned char appended_data_format; /* format of appended data */
 unsigned char appended_data_len; /* length of appended data */
 unsigned char reserva[9]; /* reserved */
} TOPOLOGY_TG_DETAIL;

typedef struct link_address
{
 unsigned char format; /* type of link address */
 unsigned char reserve1; /* reserved */
 AP_UINT16 length; /* length */

QUERY_NN_TOPOLOGY_TG

446 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char address[32]; /* address */
} LINK_ADDRESS;

For details of the TG_DEFINED_CHARS structure, see “DEFINE_LS” on page 100.

If the frsn field is set to a non-zero value then only node entries with that FRSN or greater will be returned.
If it is set to zero then all node entries are returned.

If the list_options parameter specifies detailed information, a TG Descriptor CV may be appended to the
returned information. See the descriptions of the parameters topology_tg_detail.appended_data_format
and topology_tg_detail.appended_data_len for more information.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_NN_TOPOLOGY_TG

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of TGs for which data should be returned. To request data for a specific TG rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of owner, destination, TG number, and FRSN.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of owner,
destination, TG number, and FRSN.

The combination of the owner, owner_type, dest, dest_type, tg_num, and frsn parameters specified is
used as an index into the list of TGs if the list_options parameter is set to AP_LIST_INCLUSIVE or
AP_LIST_FROM_NEXT.

The list is ordered by owner, owner_type (in the order AP_NETWORK_NODE, AP_VRN), dest, dest_type
(in the order AP_NETWORK_NODE, AP_VRN), tg_num (numerically), and lastly frsn (numerically). For
more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

owner
Name of the node that owns the TG. This value is ignored if list_options is set to AP_FIRST_IN_LIST.
The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

QUERY_NN_TOPOLOGY_TG

Chapter 3. NOF API Verbs 447

owner_type
Type of the node that owns the TG. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST. Possible values are:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
AP_LEARN_NODE

Node type is unknown.
dest

Name of the destination node for the TG. This value is ignored if list_options is set to
AP_FIRST_IN_LIST. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

dest_type
Type of the destination node for the TG. This value is ignored if list_options is set to
AP_FIRST_IN_LIST. Possible values are:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
AP_LEARN_NODE

Node type is unknown.
tg_num

Number associated with the TG.
frsn

Flow Reduction Sequence Number (FRSN). Specify zero to return information about all TGs, or a
nonzero value to return information about TGs with a FRSN greater than or equal to this value.

This parameter can be used to ensure that consistent information is obtained when the application
needs to issue several verbs to obtain all the information. The application should take the following
steps:

To Obtain Consistent Information Using the frsn Parameter

1. Issue QUERY_NODE to get the node's current FRSN.
2. Issue as many QUERY_NN_TOPOLOGY_TG verbs as necessary to get all the database entries, with

the frsn parameter set to zero.
3. Issue QUERY_NODE again and compare the new FRSN with the one returned in step 1.
4. If the two FRSNs are different, the database has changed. Add 1 to the FRSN obtained in step 1,

and issue further QUERY_NN_TOPOLOGY_TG verbs with the frsn parameter set to this new value.
These verbs will return only the entries that have changed.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

QUERY_NN_TOPOLOGY_TG

448 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

topology_tg_summary.overlay_size
The size of the returned topology_tg_summary structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each topology_tg_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

topology_tg_summary.owner
Name of the node that owns the TG. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

topology_tg_summary.owner_type
Type of the node that owns the TG. Possible values are:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.
topology_tg_summary.dest

Name of the destination node for the TG. The name is a 17-byte EBCDIC string, padded on the right
with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

topology_tg_summary.dest_type
Type of the destination node for the TG. Possible values are:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.
topology_tg_summary.tg_num

Number associated with the TG.
topology_tg_summary.frsn

Flow Reduction Sequence Number (FRSN), indicating the last time that this resource was updated at
the local node.

topology_tg_detail.overlay_size
The size of the returned topology_tg_detail structure, and therefore the offset to the start of the
next entry in the data buffer.

QUERY_NN_TOPOLOGY_TG

Chapter 3. NOF API Verbs 449

When your application needs to go through the returned buffer to find each topology_tg_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

topology_tg_detail.owner
Name of the node that owns the TG. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

topology_tg_detail.owner_type
Type of the node that owns the TG. Possible values are:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.
topology_tg_detail.dest

Name of the destination node for the TG. The name is a 17-byte EBCDIC string, padded on the right
with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period)
character, and a network name of 1-8 A-string characters.

topology_tg_detail.dest_type
Type of the destination node for the TG. Possible values are:
AP_NETWORK_NODE

Network node.
AP_END_NODE

End node.
AP_VRN

Virtual routing node.
topology_tg_detail.tg_num

Number associated with the TG.
topology_tg_detail.frsn

Flow Reduction Sequence Number (FRSN), indicating the last time that this resource was updated at
the local node.

topology_tg_detail.days_left
Number of days before this TG entry will be deleted from the Topology Database.

topology_tg_detail.dlc_data.length
If dest_type or owner_type is AP_VRN, this field specifies the length of the DLC address in the following
field. Otherwise, this field is not used.

topology_tg_detail.dlc_data.address
If dest_type or owner_type is AP_VRN, this field specifies the DLC address (in hexadecimal) of the
connection to the VRN. The number of bytes in the address is given by the preceding field, length; the
remaining bytes in the field are undefined. Otherwise, this field is not used.

For Token Ring or Ethernet, the address is in two parts: a 6-byte MAC address and a 1-byte local SAP
address. The bit ordering of the MAC address may not be in the expected format; for information
about converting between the two address formats, see “Bit ordering in MAC addresses” on page 125.

For Enterprise Extender (HPR/IP), see “QUERY_LS” on page 375 for details of the address format.

topology_tg_detail.rsn
Resource Sequence Number. This is assigned by the network node that owns this resource.

QUERY_NN_TOPOLOGY_TG

450 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

topology_tg_detail.status
Specifies the status of the TG. This may be one or more of the following, combined using a logical OR
operation.

AP_NONE

AP_TG_OPERATIVE

AP_TG_QUIESCING

AP_TG_CP_CP_SESSIONS

AP_HPR

AP_RTP

topology_tg_detail.tg_chars
TG characteristics. For details of these parameters, see “DEFINE_LS” on page 100.

topology_tg_detail.subarea_number
If the owner of the destination of the TG is subarea capable, this parameter contains the subarea
number of the type-4 or type-5 node that owns the link station associated with the TG on the subarea
capable node. Otherwise, this parameter is set to all binary zeros.

topology_tg_detail.tg_type
Type of the TG. Possible values are:
AP_APPN_OR_BOUNDARY_TG

APPN TG or boundary function based TG.
AP_INTERCHANGE_TG

Interchange TG.
AP_VIRTUAL_ROUTE_BASED_TG

Virtual route based TG.
AP_UNKNOWN

The TG type is unknown.
topology_tg_detail.intersubnet_tg

Specifies whether the TG is an intersubnetwork TG. Possible values are:
AP_YES

The TG is an intersubnetwork TG.
AP_NO

The TG is not an intersubnetwork TG.
topology_tg_detail.cp_cp_session_active

Specifies whether the owning node's contention winner CP-CP session is active. Possible values are:
AP_YES

The CP-CP session is active.
AP_NO

The CP-CP session is not active.
AP_UNKNOWN

The CP-CP session status is unknown.
topology_tg_detail.branch_tg

Specifies whether the TG is a branch TG. Possible values are:
AP_YES

The TG is a branch TG.
AP_NO

The TG is not a branch TG.
AP_UNKNOWN

The TG type is unknown.

QUERY_NN_TOPOLOGY_TG

Chapter 3. NOF API Verbs 451

topology_tg_detail.appended_data_format
Specifies the format of data appended to this NOF VCB structure.

If the parameter topology_tg_detail.appended_data_len is set to a non-zero value, indicating that
appended data is included, this parameter is set to the following value:

AP_TG_DESCRIPTOR_CV
The appended data contains a TG Descriptor CV, as defined by SNA Formats.

If topology_tg_detail.appended_data_len is zero, indicating that no appended data is included, this
parameter is reserved.

topology_tg_detail.appended_data_len
Specifies the length of the TG Descriptor CV data appended to this NOF VCB structure. If this
parameter is set to zero, no appended data is included.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TG

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the tg_num parameter was not valid.

AP_INVALID_ORIGIN_NODE
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the owner parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node is not a network node, CS/AIX returns
the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node is not a network node. This verb can be used only at a network node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NODE
QUERY_NODE returns information about the definition of a CS/AIX node, and on its status if it is active.

VCB structure
typedef struct query_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */

QUERY_NODE

452 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 CP_CREATE_PARMS cp_create_parms; /* create parameters */
 AP_UINT32 up_time; /* time since node started */
 AP_UINT32 mem_size; /* reserved */
 AP_UINT32 mem_used; /* reserved */
 AP_UINT32 mem_warning_threshold; /* reserved */
 AP_UINT32 mem_critical_threshold; /* reserved */
 unsigned char nn_functions_supported; /* NN functions supported */
 unsigned char functions_supported; /* functions supported */
 unsigned char en_functions_supported; /* EN functions supported */
 unsigned char nn_status; /* node status */
 AP_UINT32 nn_frsn; /* NN flow reduction sequence */
 /* number */
 AP_UINT32 nn_rsn; /* Resource sequence number */
 AP_UINT16 def_ls_good_xids; /* Good XIDS for defined link */
 /* stations */
 AP_UINT16 def_ls_bad_xids; /* Bad XIDS for defined link */
 /* stations */
 AP_UINT16 dyn_ls_good_xids; /* Good XIDS for dynamic link */
 /* stations */
 AP_UINT16 dyn_ls_bad_xids; /* Bad XIDS for dynamic link */
 /* stations */
 unsigned char dlur_release_level; /* Current DLUR release level */
 unsigned char nns_dlus_served_lu_reg_supp; /* NNS supports DLUS-served */
 /* LU registration? */
 unsigned char nns_en_reg_diff_owning_cp; /* NNS supports option 1123? */
 unsigned char reserva[17]; /* reserved */
 unsigned char fq_nn_server_name[17]; /* fully qualified NN server */
 /* name */
 AP_UINT32 current_isr_sessions; /* number of ISR sessions */
 unsigned char nn_functions2; /* further NN fns supported */
 unsigned char branch_ntwk_arch_version; /* level of BrNN support */
 unsigned char reservb[28]; /* reserved */
} QUERY_NODE;

typedef struct cp_create_parms
{
 AP_UINT16 crt_parms_len; /* length of CP_CREATE_PARMS */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[2]; /* reserved */
 unsigned char ms_support; /* reserved */
 unsigned char queue_nmvts; /* reserved */
 unsigned char reserv3[12]; /* reserved */
 unsigned char node_type; /* node type */
 unsigned char fqcp_name[17]; /* fully qualified CP name */
 unsigned char cp_alias[8]; /* CP alias */
 unsigned char mode_to_cos_map_supp; /* mode to COS mapping support */
 unsigned char mds_supported; /* MDS and MS capabilities */
 unsigned char node_id[4]; /* node ID */
 AP_UINT16 max_locates; /* maximum locates node can process*/
 AP_UINT16 dir_cache_size; /* directory cache size */
 AP_UINT16 max_dir_entries; /* maximum directory entries */
 /* (0 means unlimited) */
 AP_UINT16 locate_timeout; /* locate timeout in seconds */
 unsigned char reg_with_nn; /* register resources with NNs */
 unsigned char reg_with_cds; /* register resources with CDS */
 AP_UINT16 mds_send_alert_q_size; /* size of MDS send alert queue */
 AP_UINT16 cos_cache_size; /* number of cos definitions */
 AP_UINT16 tree_cache_size; /* Topology Database routing tree */
 /* cache size */
 AP_UINT16 tree_cache_use_limit; /* number of times a tree can be */
 /* used */
 AP_UINT16 max_tdm_nodes; /* max number of nodes that can be */
 /* stored in Topology Database */
 AP_UINT16 max_tdm_tgs; /* max number of TGs that can be */
 /* stored in Topology Database */
 AP_UINT32 max_isr_sessions; /* maximum ISR sessions */
 AP_UINT32 isr_sessions_upper_threshold; /* upper threshold for ISR */
 /* sessions */
 AP_UINT32 isr_sessions_lower_threshold; /* lower threshold for ISR */
 /* sessions */
 AP_UINT16 isr_max_ru_size; /* max RU size for ISR */
 AP_UINT16 isr_rcv_pac_window; /* ISR receive pacing window size */
 unsigned char store_endpt_rscvs; /* endpoint RSCV storage */
 unsigned char store_isr_rscvs; /* ISR RSCV storage */
 unsigned char store_dlur_rscvs; /* DLUR RSCV storage */
 unsigned char dlur_support; /* is DLUR supported? */
 unsigned char pu_conc_support; /* is PU conc supported? */
 unsigned char nn_rar; /* route additional resistance */

QUERY_NODE

Chapter 3. NOF API Verbs 453

 unsigned char hpr_support; /* level of HPR support */
 unsigned char mobile; /* reserved */
 unsigned char discovery_support; /* reserved */
 unsigned char discovery_group_name[8];/* reserved */
 unsigned char implicit_lu_0_to_3; /* reserved */
 unsigned char default_preference; /* reserved */
 unsigned char anynet_supported; /* reserved */
 AP_UINT16 max_ls_exception_events; /* max # exception entries */
 unsigned char reserv2[1]; /* reserved */
 unsigned char max_compress_lvl; /* Max compressson level (reserved)*/
 unsigned char node_spec_data_len; /* reserved */
 unsigned char ptf[64]; /* program temporary fix array */
 unsigned char cos_table_version; /* version of COS tables to use */
 unsigned char send_term_self; /* default PLU-SLU session term */
 unsigned char disable_branch_awareness; /* disable BrNN awareness */
 unsigned char cplu_syncpt_support; /* syncpoint support on CP LU? */
 unsigned char cplu_attributes; /* attributes for CP LU */
 unsigned char reserved[95]; /* reserved */
} CP_CREATE_PARMS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_NODE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

cp_create_parms.crt_parms_len
Length of create parameters structure.

cp_create_parms.description
A null-terminated text string describing the node, as specified in the definition of the node.

cp_create_parms.node_type
Type of node. Possible values are:

AP_NETWORK_NODE

AP_BRANCH_NETWORK_NODE

AP_END_NODE

AP_LEN_NODE

cp_create_parms.fqcp_name
Fully qualified name of the node. This is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

cp_create_parms.cp_alias
Locally used CP alias. This is an 8-byte ASCII string. All 8 bytes are significant.

cp_create_parms.mode_to_cos_map_supp
Specifies whether mode-to-COS mapping is supported by the node. This parameter is ignored for a
network node; mode-to-COS mapping is always supported. For a LEN node, mode-to-COS mapping is
not supported. Possible values are:
AP_YES

Mode-to-COS mapping is supported.
AP_NO

Mode-to-COS mapping is not supported.

QUERY_NODE

454 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cp_create_parms.mds_supported
Specifies whether Management Services supports Multiple Domain Support and MS Capabilities.
Possible values are:
AP_YES

MDS is supported.
AP_NO

MDS is not supported.
cp_create_parms.node_id

Node identifier used in XID exchange. This is a 4-byte hexadecimal string.
cp_create_parms.max_locates

Maximum number of locates that the node can process.
cp_create_parms.dir_cache_size

Network node only: Size of the directory cache.
cp_create_parms.max_dir_entries

Maximum number of directory entries. Zero indicates no limit.
cp_create_parms.locate_timeout

Specifies the time in seconds before a network search will time out. Zero indicates no timeout.
cp_create_parms.reg_with_nn

End node only: Specifies whether to register the node's resources with the network node server when
the node is started. Possible values are:
AP_YES

Register resources with the NN. The end node's network node server will only forward directed
locates to it.

AP_NO
Do not register resources. The network node server will forward all broadcast searches to the end
node.

cp_create_parms.reg_with_cds
End node: Specifies whether the network node server is allowed to register end node resources with a
Central Directory server. This field is ignored if reg_with_nn is set to AP_NO.

Network node: Specifies whether local or domain resources can be optionally registered with Central
Directory server (AP_YES or AP_NO).

Possible values are:

AP_YES
Register resources with the CDS.

AP_NO
Do not register resources.

cp_create_parms.mds_send_alert_q_size
Size of the MDS send alert queue. If the number of queued alerts reaches this limit, CS/AIX deletes
the oldest alert on the queue.

cp_create_parms.cos_cache_size
Network node: Size of the COS Database weights cache (the maximum number of COS definitions
required). For an end node or LEN node, this parameter is reserved.

cp_create_parms.tree_cache_size
Network node: Size of the Topology Database routing tree cache. The minimum is 8. For an end node
or LEN node, this parameter is reserved.

cp_create_parms.tree_cache_use_limit
Network node: Maximum number of uses of a cached tree. When this number is exceeded, the tree is
discarded and recomputed. This enables the node to balance sessions among equal weight routes. A
low value provides better load balancing at the expense of increased activation latency. The minimum
number of uses is 1. For an end nodeor LEN node, this parameter is reserved.

QUERY_NODE

Chapter 3. NOF API Verbs 455

cp_create_parms.max_tdm_nodes
Network node: Maximum number of nodes that can be stored in Topology Database. A value of 0
(zero) indicates an unlimited number of nodes. For an end nodeor LEN node, this parameter is
reserved.

cp_create_parms.max_tdm_tgs
Network node: Maximum number of TGs that can be stored in Topology Database. A value of 0 (zero)
indicates an unlimited number of nodes. For an end nodeor LEN node, this parameter is reserved.

cp_create_parms.max_isr_sessions
Network node: Maximum number of ISR sessions the node can participate in at once. CS/AIX uses the
value 100 unless a larger number has been specified. For an end nodeor LEN node, this parameter is
reserved.

cp_create_parms.isr_sessions_upper_threshold and cp_create_parms.isr_sessions_lower_threshold
Network node: These thresholds control the node's congestion status, which is reported to other
nodes in the network for use in route calculations. The node state changes from uncongested to
congested if the number of ISR sessions exceeds the upper threshold. The node state changes back
to uncongested when the number of ISR sessions dips below the lower threshold. For an end node or
LEN node, these parameters are reserved.

cp_create_parms.isr_max_ru_size
Network node or BrNN: Maximum RU size supported for intermediate or DLUR LU-LU sessions.

End node: Maximum RU size supported for DLUR LU-LU sessions.

For a LEN node, this parameter is reserved.

cp_create_parms.isr_rcv_pac_window
Network node: Suggested receive pacing window size for intermediate sessions, in the range 1-63.
This value is only used on the secondary hop of intermediate sessions if the adjacent node does not
support adaptive pacing. For an end node or LEN node, this parameter is reserved.

cp_create_parms.store_endpt_rscvs
Specifies whether RSCVs should be stored for diagnostic purposes. Possible values are:
AP_YES

Store RSCVs.
AP_NO

Do not store RSCVs.

If this field is set to AP_YES, then an RSCV will be returned on the QUERY_SESSION verb. (Setting this
value to AP_YES means an RSCV will be stored for each endpoint session. This extra storage can be
up to 256 bytes per session.)

cp_create_parms.store_isr_rscvs
Network node: Specifies whether RSCVs should be stored for diagnostic purposes (AP_YES or AP_NO).
If this field is set to AP_YES, then an RSCV will be returned on the QUERY_ISR_SESSION verb.
(Setting this value to AP_YES means an RSCV will be stored for each ISR session. This extra storage
can be up to 256 bytes per session.) For an end nodeor LEN node, this parameter is reserved.

cp_create_parms.store_dlur_rscvs
Specifies whether RSCVs should be stored for diagnostic purposes (AP_YES or AP_NO). If this field is
set to AP_YES, then an RSCV will be returned on the QUERY_DLUR_LU verb. (Setting this value to
AP_YES means an RSCV will be stored for each PLU-SLU session. This extra storage can be up to 256
bytes per session.)

cp_create_parms.dlur_support
Specifies whether DLUR is supported. For a LEN node, this parameter is reserved. Possible values are:
AP_YES

DLUR is supported.
AP_LIMITED_DLUR_MULTI_SUBNET | AP_YES

End Node or Branch Network Node: DLUR is supported, but will not be used to connect to a DLUS
in another subnet.

QUERY_NODE

456 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

This value is not supported for a Network Node.

AP_NO
DLUR is not supported.

cp_create_parms.pu_conc_support
Specifies whether SNA gateway is supported (AP_YES or AP_NO).

cp_create_parms.nn_rar
The network node's route additional resistance.

cp_create_parms.hpr_support
Specifies the level of HPR (High Performance Routing) support provided by the node. Possible values
are:
AP_NONE

No support for HPR.
AP_BASE

This node can perform automatic network routing (ANR) but cannot act as an RTP (Rapid
Transport Protocol) end point for HPR sessions.

AP_RTP
This node can perform automatic network routing (ANR) and can act as an RTP (Rapid Transport
Protocol) end point for HPR sessions.

AP_CONTROL_FLOWS
This node can perform all HPR functions including control flows.

cp_create_parms.max_ls_exception_events
The maximum number of LS exception events recorded by the node.

cp_create_parms.ptf
Array for configuring and controlling future program temporary fix (ptf) operation, as follows:

cp_create_parms.ptf[0]
REQDISCONT support and Mandatory Search Status support.

CS/AIX normally uses REQDISCONT to deactivate limited resource host links that are no longer
required by session traffic. This byte can be used to suppress use of REQDISCONT, or to modify the
settings used on REQDISCONT requests sent by CS/AIX. Possible values:

AP_NONE
Use the normal REQDISCONT support.

AP_SUPPRESS_REQDISCONT
Do not use REQDISCONT.

AP_OVERRIDE_REQDISCONT
Use a modified version of REQDISCONT support. If REQDISCONT is specified, it must be
combined with one or both of the following values, using a logical OR operation:
AP_REQDISCONT_TYPE

Use type "immediate" on REQDISCONT; if this value is not specified, CS/AIX uses type
"normal".

AP_REQDISCONT_RECONTACT
Use type "immediate recontact" on REQDISCONT; if this value is not specified, CS/AIX uses
type "no immediate recontact".

When CS/AIX is running as an End Nodeor as a Branch Network Node, it may choose whether or not to
invite network searches from its Network Node Server (NNS). Requesting network searches slows
broadcast search processing for the network as a whole, so is undesirable. However, if the local node
cannot register all its resources (LUs) with its NNS, requesting searches is the only way to make these
resources visible to the network.

Normally, CS/AIX determines whether all LUs can be registered, then intelligently requests network
searches from its NNS. If this node makes LUs accessible to the network in an unusual manner (for

QUERY_NODE

Chapter 3. NOF API Verbs 457

example, if it is acting as a gateway for other nodes), the value above is combined with the following
value to override the standard operation:

AP_SET_SEARCH_STATUS
Unconditionally request network searches from the NNS.

cp_create_parms.ptf[1]
ERP support. CS/AIX normally processes an ACTPU(ERP) as an ERP; this resets the PU-SSCP session,
but does not implicitly deactivate the subservient LU-SSCP and PLU-SLU sessions. SNA
implementations may legally process ACTPU(ERP) as if it were ACTPU(cold), implicitly deactivating
the subservient LU-SSCP and PLU-SLU sessions. Possible values:
AP_NONE

Use the normal processing.
AP_OVERRIDE_ERP

Process all ACTPU requests as ACTPU(cold).
cp_create_parms.ptf[2]

LU 6.2 session activation and deactivation. CS/AIX normally does not include the ENQUEUE parameter
on the INIT_SELF message when activating a dependent LU 6.2 session, and uses the BIS protocol
prior to deactivating a limited resource LU 6.2 session. Possible values:
AP_NONE

Use the normal processing.
AP_SUPPRESS_BIS

Do not use the BIS protocol. Limited resource LU 6.2 sessions are deactivated immediately using
UNBIND(cleanup).

AP_LU62_INIT_SELF_ENQUEUE
Use the old format of the INIT_SELF message, which includes the ENQUEUE parameter.

cp_create_parms.ptf[3]
APINGD support. CS/AIX normally includes a partner program for the APING connectivity tester. This
byte allows you to disable the APING Daemon within the node, so that requests by an APING program
arriving at the node will not be processed automatically. Possible values:
AP_NONE

Include APINGD support within the node (the normal processing).
AP_EXTERNAL_APINGD

Disable APINGD within the node.
cp_create_parms.ptf[4]

LU 0-3 RU checks. This byte is used to provide workarounds for host systems that send non-standard
SNA data; it should be set to AP_NONE unless you have encountered the specific problem described
below.

The value AP_NONE indicates CS/AIX's normal checking on LU 0-3 RUs.

If specific checks on LU 0-3 RUs have been relaxed, the following value is returned:

AP_ALLOW_BB_RQE
The SNA protocols state that BB !EB RUs on LU 0-3 PLU-SLU sessions must be RQD. Several hosts
send RQE BB !EB CD - a protocol violation which CS/AIX always tolerates. If this value is set,
CS/AIX will tolerate RQE BB !EB !CD EC RUs as well.

AP_SEND_ACTLU_POWER_ON
When an application is using an LU 0-3 LU (for example if RUI_INIT has been received for the LU)
and ACTLU is received, this option indicates that CS/AIX should respond with a +ve RSP ACTLU
containing the power on subvector. Without this flag CS/AIX sends an ACTLU RSP without this
subvector and a subsequent NOTIFY message indicating the power on condition.

cp_create_parms.ptf[5]
Security checking for received Attaches.

QUERY_NODE

458 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If a local invokable TP is defined not to require conversation security, or is not defined and therefore
defaults to not requiring conversation security, the invoking TP need not send a user ID and password
to access it. If the invoking TP supplies these parameters and they are included in the Attach message
that CS/AIX receives, CS/AIX normally checks the parameters (and rejects the Attach if they are not
valid) even though the invokable TP does not require conversation security. This parameter allows you
to disable the checking. Possible values:

AP_NONE
Always check security parameters if they are included on a received Attach, regardless of the
security requirements of the invokable TP (the normal processing).

AP_LIMIT_TP_SECURITY
Do not check security parameters on a received Attach if the invokable TP does not require it.

cp_create_parms.ptf[6]
RTP options for HPR.

The value AP_NONE indicates CS/AIX's normal RTP processing.

For customized RTP operation, one of the following values is returned:

AP_NO_PROGRESSIVE_ARB
If this value is set, CS/AIX will advertise support for the standard and responsive mode ARB
algorithms but not for the progressive mode algorithm.

cp_create_parms.ptf[7]
DLUR unbind on DACTLU. CS/AIX does not normally end the PLU-SLU session when it receives a
DACTLU from the host for a session using DLUR. This parameter allows you to force ending of the PLU-
SLU session. Possible values:
AP_NONE

Use the normal processing.
AP_DLUR_UNBIND_ON_DACTLU

When DACTLU is received on a session using DLUR, end the PLU-SLU session.
cp_create_parms.ptf[8]

Suppress PU name on REQACTPU. CS/AIX normally identifies the PU name in the REQACTPU message
when activating DLUR PUs. Possible values:
AP_NONE

Use the normal processing.
AP_SUPPRESS_PU_NAME_ON_REQACTPU

Suppress PU name when activating DLUR PUs.
AP_RETRY_CNOS_ON_BIND_NEG_RSP

During APPC session activation, the CNOS session activation can fail due to transitory conditions
on the partner system. Some conditions indicated by particular sense codes are always retried
(with a timer). This flag indicates that CS/AIX will always retry failed CNOS session activations.

cp_create_parms.ptf[9]
RUI bracket race options, limited resource override options for connection networks, and TCP/IP
Information Control Vector options.

If an RUI application is using bracket protocols, and the host sends a BB (Begin Bracket) after the RUI
application has already sent one, CS/AIX normally rejects this with sense data of 0813 and does not
pass it to the application. Possible values:

AP_NONE
Use the normal processing.

AP_LUA_PASSTHRU_BB_RACE
Pass the BB through to the RUI application. The application should send a negative response with
sense data of either 0813 or 0814.

A link in CS/AIX that uses a connection network is normally a limited resource. The following value
overrides this default:

QUERY_NODE

Chapter 3. NOF API Verbs 459

AP_CN_OVERRIDE_LIM_RES
Use the implicit_limited_resource parameter in the port associated with each connection network
link to determine whether it is a limited resource.

CS/AIX normally includes the TCP/IP Information Control Vector (0x64) in a NOTIFY request to the
host for a TN3270 or LUA session. This vector contains information that can be displayed on the host
console or used by the host (for example in billing): the TCP/IP address and port number used by the
client, and the IP name corresponding to the client address. For TN3270, the TN3270 server normally
performs a Domain Name Server (DNS) lookup to determine the client IP name.

If the client address is an IPv6 address but the host is running a back-level version of VTAM that
cannot interpret IPv6 addresses, the client address may be displayed incorrectly on the host console.

The following flags allow you to override this behavior.

AP_NO_TCPIP_VECTOR
Do not include the TCP/IP Information Control Vector (0x64) in NOTIFY requests to the host for
either TN3270 or LUA.

Use this value if the host is running an older version of VTAM that does not support this control
vector.

AP_NO_TCPIP_NAME
Do not perform the DNS lookup, and send the CV64 control vector with the client IP address but
no IP name.

This value applies only to TN3270; no DNS lookup is required for LUA clients. Use this value if the
DNS environment is slow, or if you know that the clients are not included in the DNS data (for
example if they are DHCP clients without DDNS).

cp_create_parms.ptf[10]
Suppress Logical Unit of Work Identifiers (LUWIDs) in FMH-5 Attach messages. CS/AIX normally
includes the LUWID in the FMH-5 Attach message that it sends to start an APPC conversation.

The following flag allows you to override this behavior.

AP_DONT_SEND_LUWIDS
Do not include the LUWID in the FMH-5 Attach; specify the field length for this field as zero.

cp_create_parms.ptf[11]
LU management options. Possible values:
AP_NONE

Use the normal processing.
AP_DLUR_USE_REX_PACING

When the BIND from an upstream LU requests adaptive pacing with an unlimited pacing
window,CS/AIX normally indicates this by specifying a window size of 0 (zero). If the downstream
LU does not support adaptive pacing, it may incorrectly interpret this zero value as "no pacing", so
CS/AIX must specify a non-zero pacing window size instead. This option indicates that CS/AIX
uses the REX stage pacing value from the ACTLU as the pacing window size specified to the
downstream LU.

AP_CLI_OVERWRITE_SYS_NAME
This option indicates that CS/AIX maintains the association between an APPC application running
on a client and the pooled LU that it uses, so that subsequent conversations started by the partner
application can be routed to the correct client. When a client application accesses an LU in a pool,
CS/AIX changes the sys_name parameter on the LU to the hostname of the client computer where
the application is running. For more information about managing clients, refer to the IBM
Communications Server for Data Center Deployment on AIX Administration Guide.

AP_OVERWRITE_INTERNAL_PU_PARMS
Normally ,once a DLUR PU is defined, there is no way to modify configuration parameters on that
PU without first deleting it (and any associated LUs). This flag permits CS/AIX to accept a fresh
definition of a DLUR PU using snaadmin providing also that the node is inactive. All non-defaulted
parameters must be defined (this is not equivalent to a snaadmin -c command).

QUERY_NODE

460 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

cp_create_parms.cos_table_version
Specifies the version of the COS tables used by the node. Possible values:
AP_VERSION_0_COS_TABLES

Use the COS tables originally defined in the APPN Architecture Reference.
AP_VERSION_1_COS_TABLES

Use the COS tables originally defined for HPR over ATM.
cp_create_parms.send_term_self

Specifies the default method for ending a PLU-SLU session to a host. The value you specify is used for
all type 0-3 LUs on the node, unless you override it by specifying a different value in the LU definition.
Possible values:
AP_YES

Send a TERM_SELF on receipt of a CLOSE_PLU_SLU_SEC_RQ.
AP_NO

Send an UNBIND on receipt of a CLOSE_PLU_SLU_SEC_RQ.
cp_create_parms.disable_branch_awareness

This parameter applies only if node_type is AP_NETWORK_NODE; it is reserved for other node types.

Specifies whether the local node supports branch awareness, APPN Option Set 1120. Possible values:

AP_YES
The local node does not support branch awareness. TGs between this node and served Branch
Network Nodes do not appear in the network topology, and the local node does not report itself as
being branch aware.

AP_NO
The local node supports branch awareness.

cp_create_parms.cplu_syncpt_support
Specifies whether the node's Control Point LU supports Syncpoint functions. This parameter is
equivalent to the syncpt_support parameter on DEFINE_LOCAL_LU, but applies only to the node's
Control Point LU (which does not have an explicit LU definition).

Set this parameter to AP_YES only if you have a Sync Point Manager (SPM) and Conversation
Protected Resource Manager (C-PRM) in addition to the standard CS/AIX product. Possible values are:

AP_YES
Syncpoint is supported.

AP_NO
Syncpoint is not supported.

cp_create_parms.cplu_attributes
Identifies additional information about the node's Control Point LU. This parameter is equivalent to
the lu_attributes parameter on DEFINE_LOCAL_LU, but applies only to the node's Control Point LU
(which does not have an explicit LU definition).

Possible values are:

AP_NONE
No additional information identified.

AP_DISABLE_PWSUB
Disable password substitution support for the control point LU. Password substitution means that
passwords are encrypted before transmission between the local and remote LUs, rather than
being sent as clear text. CS/AIX normally uses password substitution if the remote system
supports it.

This value is provided as a work-around for communications with some remote systems that do
not implement password substitution correctly. If you use this option, you should be aware that
this involves sending and receiving passwords in clear text (which may represent a security risk).
The option should not be set unless there are problems with the remote system's implementation
of password substitution.

QUERY_NODE

Chapter 3. NOF API Verbs 461

up_time
Time (in hundredths of a second) since the node was started (or restarted). A value of zero indicates
that the node is not running.

nn_functions_supported
Network node only: Specifies the network node functions supported. This may be one or more of the
following, combined using a logical OR.
AP_RCV_REG_CHAR

Node supports receiving registered characteristics.
AP_GATEWAY

Node is a gateway node.
AP_CDS

Node supports Central Directory server function.
AP_TREE_CACHING

Node supports route tree cache.
AP_TREE_UPDATES

Node supports incremental tree updates. If this is supported, tree caching must also be
supported.

AP_ISR
Node supports Intermediate Session Routing.

functions_supported
Specifies the functions supported. This may be one or more of the following, combined using a logical
OR.

AP_NEGOTIABLE_LS

AP_SEGMENT_REASSEMBLY

AP_BIND_REASSEMBLY

AP_PARALLEL_TGS

AP_CALL_IN

AP_ADAPTIVE_PACING

AP_TOPOLOGY_AWARENESS

en_functions_supported
End node only: Specifies the end node functions supported. This may be one or more of the following,
combined using a logical OR.
AP_SEGMENT_GENERATION

Node supports segment generation.
AP_MODE_TO_COS_MAP

Node supports mode name to COS name mapping.
AP_LOCATE_CDINIT

Node supports generation of locates and cross-domain initiate GDS variables for locating remote
LUs.

AP_REG_WITH_NN
Node will register its LUs with the adjacent serving network node.

AP_REG_CHARS_WITH_NN
Node supports send register characteristics. If this function is supported, send registered names
must also be supported.

nn_status
Network node only: Specifies the status of the node. This parameter may be set to AP_UNCONGESTED,
to any one of the other values listed, or to two or more of the other values combined using a logical
OR. Possible values are:

QUERY_NODE

462 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_UNCONGESTED
The number of ISR sessions is below the isr_sessions_upper_threshold value in the node's
configuration.

AP_CONGESTED
The number of ISR sessions exceeds the threshold value.

AP_IRR_DEPLETED
The number of ISR sessions has reached the maximum specified for the node.

AP_ERR_DEPLETED
The number of endpoint sessions has reached the maximum specified.

AP_QUIESCING
A STOP_NODE of type AP_QUIESCE or AP_QUIESCE_ISR has been issued.

nn_frsn
Network node only: The network node's current Flow Reduction Sequence Number (FRSN).

nn_rsn
Network node only: Resource sequence number.

def_ls_good_xids
Total number of successful XID exchanges that have occurred on all defined link stations since the
node was last started.

def_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all defined link stations since the
node was last started.

dyn_ls_good_xids
Total number of successful XID exchanges that have occurred on all dynamic link stations since the
node was last started.

dyn_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all dynamic link stations since the
node was last started.

dlur_release_level
Release level of the DLUR architecture supported by the node. This is set to the value 1 (the only
release level of DLUR currently defined); future versions may incorporate later release levels of the
DLUR architecture, and so may return different values.

nns_dlus_served_lu_reg_supp
This parameter applies only if the local node is an end node or a Branch Network Node; it is reserved
otherwise.

Specifies whether the network node server supports DLUS-served LU registration. Possible values are:

AP_YES
The network node server supports registration of DLUS-served LUs.

AP_NO
The network node server does not support registration of DLUS-served LUs.

AP_UNKNOWN
The node does not have a network node server.

nns_en_reg_diff_owning_cp
This parameter applies only if the local node is a Branch Network Node; it is reserved otherwise.

Specifies whether the network node server supports option set 1123 - End Node Resource
Registration With Different Owning CP Name NNS(BrNN) Support.

AP_YES
The network node server supports option set 1123.

AP_NO
The network node server does not support option set 1123.

QUERY_NODE

Chapter 3. NOF API Verbs 463

AP_UNKNOWN
The node does not have a network node server.

fq_nn_server_name
End node only. Name of the network node server for the node.

current_isr_sessions
This parameter applies only if the local node is a Network Nodeor a Branch Network Node; it is
reserved otherwise.

Number of ISR sessions routed through this node.

nn_functions_2
This parameter applies only if the local node is a Network Node; it is reserved otherwise.

Specifies whether the node supports branch awareness, APPN Option Set 1120.

AP_NONE
The network node server does not support option set 1120.

AP_BRANCH_AWARENESS
The node supports option set 1120.

branch_ntwk_arch_version
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies the version of the Branch Network Architecture supported. This is set to 1, or 0 (zero) if the
node does not support the Branch Network Architecture.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NODE_ALL
QUERY_NODE_ALL returns information about nodes on the CS/AIX LAN. This verb returns only each
node's name and configuration file role, and does not provide detailed information about the node's
configuration. The application can use QUERY_NODE for a particular node name to obtain detailed
information about that node.

This verb must be issued with a null target handle.

VCB structure
typedef struct query_node_all
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char node_name[128]; /* node name */
} QUERY_NODE_ALL;

typedef struct node_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char node_name[128]; /* node name */
 unsigned char config_role; /* server's config file role */

QUERY_NODE_ALL

464 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char reserv3[12]; /* reserved */
} NODE_SUMMARY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_NODE_ALL

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of nodes for which data should be returned. To request data for a specific node
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list of nodes.
AP_LIST_INCLUSIVE

Start at the entry specified by the node_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the node_name parameter.

The list is not ordered by node name. However, the order remains the same for subsequent
QUERY_NODE_ALL verbs, so the application can obtain a complete list in several sections by using
multiple verbs in the normal way. For more information about how the application can obtain specific
entries from the list, see “List options for QUERY_* Verbs” on page 33.

node_name
Name of the node to be used as an index into the list. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST.

This is an ASCII string of 1-128 characters, padded on the right with spaces if the name is shorter
than 128 characters.

If the computer name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the computer name.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

QUERY_NODE_ALL

Chapter 3. NOF API Verbs 465

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

node_summary.overlay_size
The size of the returned node_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each node_summary structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

node_summary.node_name
The name of the CS/AIX node.

node_summary.config_role
The configuration file role of the server where the node is running. For more information about
configuration file roles, refer to the IBM Communications Server for Data Center Deployment on AIX
Administration Guide. Possible values are:
AP_ROLE_CONTROLLERR

The server holds the controlling configuration file.
AP_ROLE_BACKUP

The server holds a backup configuration file.
AP_ROLE_NONE

The server does not share its copy of the configuration file.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_NODE_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the node_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_NODE_LIMITS
QUERY_NODE_LIMITS returns information about the functions that your CS/AIX license allows you to use
on a particular node, and about your usage of these functions. These are divided into the following
categories:

• Node options, which specify the CS/AIX features that you can use

QUERY_NODE_LIMITS

466 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• Node resource usage, which specifies the current and peak usage of CS/AIX resources.

You can use the information returned by this verb to check whether your usage of CS/AIX resources is
within the limits permitted by your license. For more information about licensing requirements, see IBM
Communications Server for Data Center Deployment on AIX Quick Beginnings.

The information returned by this verb is also written to the usage log file at intervals. For more information
about this file, see IBM Communications Server for Data Center Deployment on AIX Diagnostics Guide.

VCB structure
typedef struct query_node_limits
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 NODE_RESOURCE_LIMITS max_limits; /* reserved */
 NODE_RESOURCE_LIMITS curr_usage; /* current usage of LUs/sessions/users*/
 NODE_OPTIONS node_options; /* permitted functions */
 unsigned char reserv4[4]; /* reserved */
 NODE_RESOURCE_LIMITS max_usage; /* highest usage counts */
} QUERY_NODE_LIMITS;

typedef struct node_resource_limits
{
 AP_INT32 lu62_tps; /* APPC/CPI-C applications */
 AP_INT32 lua_tps; /* LUA applications */
 AP_INT32 fmapi_tps; /* reserved */
 AP_INT32 link_stations; /* Active link stations */
 AP_INT32 tn3270_connections; /* TN3270 server connections */
 AP_INT32 tn_redirector_connections; /* TN redirector connections */
 AP_INT32 v4_sna_channels; /* reserved */
 AP_INT32 v4_gsna_channels; /* reserved */
 AP_INT32 data_sessions; /* Active PLU-SLU sessions */
 AP_INT32 reserv1[11]; /* Reserved */
} NODE_RESOURCE_LIMITS;

typedef struct node_options
{
 unsigned char network_node; /* is Network Node supported? */
 unsigned char end_node; /* is End Node supported? */
 unsigned char len_node; /* is LEN Node supported? */
 unsigned char dlur_support; /* is DLUR supported? */
 unsigned char pu_conc_support; /* is PU Conc supported? */
 unsigned char tn_server_support; /* is TN Server supported? */
 unsigned char hpr_support; /* level of HPR support */
 unsigned char back_level_client; /* reserved */
 unsigned char reserv2; /* reserved */
 unsigned char ssl_support; /* is SSL supported? */
 unsigned char branch_network_node; /* is BrNN supported? */
 unsigned char reserv1[21]; /* reserved */
} NODE_OPTIONS;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_NODE_LIMITS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

curr_usage.lu62_tps
The number of APPC and CPI-C applications currently active on this node.

QUERY_NODE_LIMITS

Chapter 3. NOF API Verbs 467

curr_usage.lua_tps
The number of LUA applications currently active on this node.

curr_usage.link_stations
The number of link stations currently active on this node.

curr_usage.tn3270_connections
The number of connections from TN3270 clients currently active on this node.

curr_usage.tn_redirector_connections
The number of connections from TN Redirector clients currently active on this node.

curr_usage.data_sessions
The number of PLU-SLU sessions currently active on this node.

max_usage.lu62_tps
The maximum number of APPC and CPI-C applications that have been active on this node at any time
since the AIX computer was restarted.

max_usage.lua_tps
The maximum number of LUA applications that have been active on this node at any time since the
AIX computer was restarted.

max_usage.link_stations
The maximum number of link stations that have been active on this node at any time since the AIX
computer was restarted.

max_usage.tn3270_connections
The maximum number of connections from TN3270 clients that have been active on this node at any
time since the AIX computer was restarted.

max_usage.tn_redirector_connections
The maximum number of connections from TN Redirector clients that have been active on this node at
any time since the AIX computer was restarted.

max_usage.data_sessions
The maximum number of PLU-SLU sessions that have been active on this node at any time since the
AIX computer was restarted.

node_options.network_node
Specifies whether your license allows you to define this node as a network node. Possible values are:
AP_YES

Network node is supported.
AP_NO

Network node is not supported.
node_options.end_node

Specifies whether your license allows you to define this node as an end node. Possible values are:
AP_YES

End node is supported.
AP_NO

End node is not supported.
node_options.len_node

Specifies whether your license allows you to define this node as a LEN node. Possible values are:
AP_YES

LEN node is supported.
AP_NO

LEN node is not supported.
node_options.dlur_support

This parameter is reserved.

Specifies whether your license allows you to use Dependent LU Requester (DLUR) on this node.
Possible values are:

QUERY_NODE_LIMITS

468 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
DLUR is supported.

AP_NO
DLUR is not supported.

node_options.pu_conc_support
Specifies whether your license allows you to use SNA gateway on this node. Possible values are:
AP_YES

SNA gateway is supported.
AP_NO

SNA gateway is not supported.
node_options.tn_server_support

Specifies whether your license allows you to use TN server on this node. Possible values are:
AP_YES

TN server is supported.
AP_NO

TN server is not supported.
node_options.hpr_support

Specifies whether your license allows you to use HPR (High Performance Routing) on this node.
Possible values are:
AP_YES

HPR is supported.
AP_NO

HPR is not supported.
node_options.ssl_support

Specifies whether the Secure Sockets Layer software is installed on the node (for use with TN Server).
Possible values are:
AP_YES

The SSL software is installed.
AP_NO

The SSL software is not installed.
node_options.branch_network_node

Specifies whether your license allows you to define this node as a branch network node. Possible
values are:
AP_YES

Branch network node is supported.
AP_NO

Branch network node is not supported.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_PARTNER_LU
QUERY_PARTNER_LU returns information about partner LUs that a local LU is currently using, or has used.
This verb returns information about usage of the partner LUs, not about their definition; use
QUERY_PARTNER_LU_DEFINITION to obtain the definition of the partner LUs.

This verb can be used to obtain either summary or detailed information, about a specific LU or about
multiple LUs, depending on the options used.

QUERY_PARTNER_LU

Chapter 3. NOF API Verbs 469

This verb must be issued to a running node.

VCB structure
typedef struct query_partner_lu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char active_sessions; /* active sessions only filter */
} QUERY_PARTNER_LU;

typedef struct plu_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv1; /* reserved */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 act_sess_count; /* currently active sessions count */
 unsigned char partner_cp_name[17]; /* partner LU CP name */
 unsigned char partner_lu_located; /* CP name resolved? */
} PLU_SUMMARY;

typedef struct plu_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv1; /* reserved */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 act_sess_count; /* currently active sessions count */
 unsigned char partner_cp_name[17]; /* partner LU CP name */
 unsigned char partner_lu_located; /* CP name resolved? */
 unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
 unsigned char parallel_sess_supp; /* parallel sessions supported? */
 unsigned char conv_security; /* conversation security */
 AP_UINT16 max_mc_ll_send_size; /* maximum send LL size for mapped */
 /* conversations */
 unsigned char implicit; /* implicit or explicit entry */
 unsigned char security_details; /* session security details */
 unsigned char duplex_support; /* full-duplex support */
 unsigned char preference; /* reserved */
 unsigned char reserva[16]; /* reserved */
} PLU_DETAIL;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_PARTNER_LU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

QUERY_PARTNER_LU

470 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

num_entries
Maximum number of LUs for which data should be returned. To request data for a specific LU rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list of partner LUs associated with the specified local LU.

AP_LIST_INCLUSIVE
Start at the entry specified by the combination of local and partner LU names.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the combination of local and
partner LU names.

AP_LIST_BY_ALIAS
The list is returned in order of LU alias rather than LU name. This option is only valid if
AP_FIRST_IN_LIST is also specified. (For AP_LIST_FROM_NEXT or AP_LIST_INCLUSIVE, the
list is in order of LU alias or LU name, depending on which was specified as the index into the list.)

The combination of the local LU (lu_name or lu_alias) and partner LU (plu_alias or fqplu_name)
specified is used as an index into the list of partner LUs if the list_options parameter is set to
AP_LIST_INCLUSIVE or AP_LIST_FROM_NEXT.

The list is ordered by fqplu_name. For more information about how the list is ordered and how the
application can obtain specific entries from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name of the local LU. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the
name is shorter than 8 characters. To indicate that the LU is identified by its LU alias instead of its LU
name, set this parameter to 8 binary zeros and specify the LU alias in the following parameter.

lu_alias
LU alias of the local LU. This parameter is used only if the lu_name field is set to 8 binary zeros, and is
ignored otherwise. The alias is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. To indicate the LU associated with the local CP (the default LU), set both
lu_name and lu_alias to binary zeros.

plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes. If list_options is set to AP_FIRST_IN_LIST, this parameter is ignored; otherwise you
must specify either the LU alias or the fully qualified LU name for the partner LU. To indicate that the
LU is identified by its fully qualified name instead of its alias, set this parameter to 8 binary zeros and
specify the LU name in the following parameter.

fqplu_name
17-byte fully qualified network name for the partner LU. If list_options is set to AP_FIRST_IN_LIST,
this parameter is ignored; otherwise you must specify either the LU alias or the fully qualified LU name
for the partner LU. This parameter is used only if the plu_alias field is set to 8 binary zeros, and is
ignored otherwise.

QUERY_PARTNER_LU

Chapter 3. NOF API Verbs 471

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

active_sessions
Specifies whether to return information only on partner LUs for which sessions are active, or on all
partner LUs. Possible values are:
AP_YES

Return information only on partner LUs for which sessions are currently active.
AP_NO

Return information about all partner LUs for which sessions are active or have been active.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

plu_summary.overlay_size
The size of the returned plu_summary structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each plu_summary structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

plu_summary.plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

plu_summary.fqplu_name
17-byte fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, padded
on the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

plu_summary.description
A null-terminated text string describing the partner LU, as specified in the definition of the partner LU.

plu_summary.act_sess_count
Total number of active sessions between the local LU and the partner LU.

plu_summary.partner_cp_name
17-byte fully qualified network name for the CP associated with the partner LU. This parameter is not
used if partner_lu_located below is set to AP_NO.

QUERY_PARTNER_LU

472 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

plu_summary.partner_lu_located
Specifies whether the local node has located the CP where the partner LU is located. Possible values
are:
AP_YES

The partner LU has been located. The partner_cp_name parameter contains the CP name of the
partner LU.

AP_NO
The partner LU has not yet been located. The partner_cp_name parameter should not be checked.

plu_detail.overlay_size
The size of the returned plu_detail structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each plu_detail structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

plu_detail.plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

plu_detail.fqplu_name
17-byte fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, padded
on the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

plu_detail.description
A null-terminated text string describing the partner LU, as specified in the definition of the partner LU.

plu_detail.act_sess_count
Total number of active sessions between the local LU and the partner LU.

plu_detail.partner_cp_name
17-byte fully qualified network name for the CP associated with the partner LU. This parameter is not
used if partner_lu_located below is set to AP_NO.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

plu_detail.partner_lu_located
Specifies whether the local node has located the CP where the partner LU is located. Possible values
are:
AP_YES

The partner LU has been located. The partner_cp_name parameter contains the CP name of the
partner LU.

AP_NO
The partner LU has not yet been located. The partner_cp_name parameter should not be checked.

plu_detail.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC character string.

plu_detail.parallel_sess_supp
Specifies whether parallel sessions are supported. Possible values are:
AP_YES

Parallel sessions are supported.

QUERY_PARTNER_LU

Chapter 3. NOF API Verbs 473

AP_NO
Parallel sessions are not supported.

plu_detail.conv_security
Specifies whether conversation security information can be sent to this partner LU. Possible values
are:
AP_YES

Conversation security information supplied by a local TP is sent to the partner LU.
AP_NO

Conversation security information supplied by a local TP is not sent to the partner LU.
AP_UNKNOWN

No sessions are active with the partner LU.
plu_detail.max_mc_ll_send_size

Maximum logical record size, in bytes, that can be sent to the partner LU. This may be in the range
1-32,767, or zero to indicate no limit (in which case the maximum is 32,767). Data records that are
larger than this are broken down into several LL records before being sent to the partner LU.

plu_detail.implicit
Specifies whether the entry was created by an implicit or explicit definition. Possible values are:
AP_YES

The entry is an implicit entry.
AP_NO

The entry is an explicit entry.
plu_detail.security_details

Returns the conversation security support as negotiated on the BIND. Possible values are:
AP_CONVERSATION_LEVEL_SECURITY

Conversation security information will be accepted on requests to or from the partner LU to
allocate a conversation. The specific types of conversation security support are described by the
following values.

AP_ALREADY_VERIFIED
Both the local and partner LU agree to accept Already Verified requests to allocate a conversation.
An Already Verified request needs to carry only a user ID. It does not need to carry a password.

AP_PERSISTENT_VERIFICATION
Persistent Verification is supported on the session between the local and partner LUs. Once the
initial request (carrying a user ID and usually a password) for a conversation has been verified,
subsequent requests for a conversation need to carry only the user ID.

AP_PASSWORD_SUBSTITUTION
The local and partner LU support Password Substitution conversation security. When a request to
allocate a conversation is issued, the request carries an encrypted form of the password. If
Password Substitution is not supported, the password is carried in clear text (nonencrypted)
format. If the session does not support Password Substitution, an Allocate or Send_Conversation
with security type set to AP_PGM_STRONG will fail.

AP_UNKNOWN
No sessions are active with the partner LU.

plu_detail.duplex_support
Returns the conversation duplex support as negotiated on the BIND. Possible values are:
AP_HALF_DUPLEX

Only half-duplex conversations are supported.
AP_FULL_DUPLEX

Both full-duplex and half-duplex sessions are supported. Expedited data is also supported.
AP_UNKNOWN

The conversation duplex support is not known because no sessions are active with the partner LU.

QUERY_PARTNER_LU

474 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

preference
This parameter is reserved.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LU_ALIAS

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_alias parameter was not valid.

AP_INVALID_LU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the lu_name parameter was not valid.

AP_INVALID_PLU_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but one of the following conditions applies:

• The fqplu_name parameter does not match the name of any of this local LU's partners.
• No sessions have been active (since the node was last started) for the specified combination of

local LU and partner LU.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_PARTNER_LU_DEFINITION
QUERY_PARTNER_LU_DEFINITION returns information about partner LUs for a local LU. This verb returns
information about the definition of the LUs, not about their current usage; use QUERY_PARTNER_LU to
obtain the usage information.

This verb can be used to obtain either summary or detailed information, about a specific LU or about
multiple LUs, depending on the options used.

VCB structure
typedef struct query_partner_lu_definition
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char plu_alias[8]; /* partner LU alias */

QUERY_PARTNER_LU_DEFINITION

Chapter 3. NOF API Verbs 475

 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
} QUERY_PARTNER_LU_DEFINITION;

typedef struct partner_lu_def_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} PARTNER_LU_DEF_SUMMARY;

typedef struct partner_lu_def_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv1; /* reserved */
 PLU_CHARS plu_chars; /* partner LU characteristics */
} PARTNER_LU_DEF_DETAIL;

typedef struct plu_chars
{
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 unsigned char plu_un_name[8]; /* partner LU uninterpreted name */
 unsigned char preference; /* reserved */
 AP_UINT16 max_mc_ll_send_size; /* maximum MC send LL size */
 unsigned char conv_security_ver; /* already-verified security */
 /* supported? */
 unsigned char parallel_sess_supp; /* parallel sessions supported? */
 unsigned char reserv3[8]; /* reserved */
} PLU_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_PARTNER_LU_DEFINITION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of LUs for which data should be returned. To request data for a specific LU rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

QUERY_PARTNER_LU_DEFINITION

476 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LIST_INCLUSIVE
Start at the entry specified by the plu_alias or fqplu_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the plu_alias or fqplu_name
parameter.

If AP_FIRST_IN_LIST is specified, you can also include the following option, using a logical OR
operation:

AP_LIST_BY_ALIAS
The list is returned in order of LU alias rather than LU name. This option is only valid if
AP_FIRST_IN_LIST is also specified. (For AP_LIST_FROM_NEXT or AP_LIST_INCLUSIVE, the
list is in order of LU alias or LU name, depending on which was specified as the index into the list.)

For more information about how the application can obtain specific entries from the list, see “List
options for QUERY_* Verbs” on page 33.

plu_alias
Partner LU alias. The name is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. If list_options is set to AP_FIRST_IN_LIST, this parameter is ignored;
otherwise you must specify either the LU alias or the fully qualified LU name for the partner LU. To
indicate that the partner LU is defined by its fully qualified name instead of its alias, set this parameter
to 8 binary zeros and specify the name in the following parameter.

fqplu_name
Fully qualified name of the partner LU for which information is required, or the name to be used as an
index into the list of LUs. If list_options is set to AP_FIRST_IN_LIST, this parameter is ignored;
otherwise you must specify either the LU alias or the fully qualified LU name for the partner LU. This
parameter is used only if the plu_alias parameter is set to zeros, and is ignored otherwise.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

partner_lu_def_summary.overlay_size
The size of the returned partner_lu_def_summary structure, and therefore the offset to the start
of the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
partner_lu_def_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the

QUERY_PARTNER_LU_DEFINITION

Chapter 3. NOF API Verbs 477

returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

partner_lu_def_summary.plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

partner_lu_def_summary.fqplu_name
Fully qualified network name for the partner LU. This name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

partner_lu_def_summary.description
A null-terminated text string describing the partner LU, as specified in the definition of the partner LU.

partner_lu_def_detail.overlay_size
The size of the returned partner_lu_def_detail structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
partner_lu_def_detail structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

partner_lu_def_detail.plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

partner_lu_def_detail.fqplu_name
Fully qualified network name for the partner LU. This name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

partner_lu_def_detail.plu_chars.fqplu_name
Fully qualified network name for the partner LU. This name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot
(period) character, and a network name of 1-8 A-string characters.

partner_lu_def_detail.plu_chars.plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

partner_lu_def_detail.plu_chars.description
A null-terminated text string describing the partner LU, as specified in the definition of the partner LU.

partner_lu_def_detail.plu_chars.plu_un_name
Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC string, padded on the right
with spaces if the name is shorter than 8 characters.

partner_lu_def_detail.plu_chars.preference
This parameter is reserved.

partner_lu_def_detail.plu_chars.max_mc_ll_send_size
Maximum logical record length, in bytes, that can be sent to the partner LU. This may be in the range
1-32,767, or zero to indicate no limit (in which case the maximum is 32,767). Data records that are
larger than this are broken down into several LL records before being sent to the partner LU.

partner_lu_def_detail.plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate user IDs on behalf of local LUs; that is,
whether the partner LU may set the already-verified indicator in an Attach request. Possible values
are:
AP_YES

The partner LU is authorized to validate user IDs.
AP_NO

The partner LU is authorized to validate user IDs.

QUERY_PARTNER_LU_DEFINITION

478 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

partner_lu_def_detail.plu_chars.parallel_sess_supp
Specifies whether parallel sessions are supported. Possible values are:
AP_YES

Parallel sessions are supported.
AP_NO

Parallel sessions are not supported.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PLU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the plu_alias or fqplu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_PORT
QUERY_PORT returns a list of information about a node's ports. This information is structured as
"determined data" (data gathered dynamically during execution) and "defined data" (the data supplied by
the application on DEFINE_PORT).

This verb can be used to obtain either summary or detailed information, about a specific port or about
multiple ports, depending on the options used.

VCB structure
typedef struct query_port
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char port_name[8]; /* port name */
 unsigned char dlc_name[8]; /* DLC name filter */
} QUERY_PORT;

typedef struct port_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char port_name[8]; /* port name */
 unsigned char description[32]; /* resource description */

QUERY_PORT

Chapter 3. NOF API Verbs 479

 unsigned char reserv2[16]; /* reserved */
 unsigned char port_state; /* port state */
 unsigned char reserv1[1]; /* reserved */
 unsigned char dlc_name[8]; /* name of DLC */
} PORT_SUMMARY;

typedef struct port_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char port_name[8]; /* port name */
 unsigned char reserv1[2]; /* reserved */
 PORT_DET_DATA det_data; /* determined data */
 PORT_DEF_DATA def_data; /* defined data */
} PORT_DETAIL;

typedef struct port_det_data
{
 unsigned char port_state; /* port state */
 unsigned char dlc_type; /* DLC type */
 unsigned char port_sim_rim; /* port initialization options */
 unsigned char reserv1; /* reserved */
 AP_UINT16 def_ls_good_xids; /* number of successful XIDs */
 AP_UINT16 def_ls_bad_xids; /* number of unsuccessful XIDs */
 AP_UINT16 dyn_ls_good_xids; /* successful XIDs on dynamic */
 /* LS count */
 AP_UINT16 dyn_ls_bad_xids; /* failed XIDs on dynamic LS */
 /* count */
 AP_UINT16 num_implicit_links; /* number of implicit links */
 unsigned char neg_ls_supp; /* negotiable? */
 unsigned char abm_ls_supp; /* ABM support? */
 AP_UINT32 start_time; /* Start time of the port */
 unsigned char reserva[12]; /* reserved */
} PORT_DET_DATA;

typedef struct port_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char initially_active; /* is the port initially active? */
 unsigned char reserv2[15]; /* reserved */
 unsigned char dlc_name[8]; /* DLC name associated with port */
 unsigned char port_type; /* port type */
 unsigned char port_attributes[4]; /* port attributes */
 unsigned char implicit_uplink_to_en; /* implicit EN links up or down? */
 unsigned char implicit_appn_links_len; /* reserved */
 unsigned char reserv3; /* reserved */
 AP_UINT32 port_number; /* port number */
 AP_UINT16 max_rcv_btu_size; /* max receive BTU size */
 AP_UINT16 tot_link_act_lim; /* total link activation limit */
 AP_UINT16 inb_link_act_lim; /* inbound link activation limit */
 AP_UINT16 out_link_act_lim; /* outbound link activation limit*/
 unsigned char ls_role; /* initial link station role */
 unsigned char retry_flags; /* reserved */
 AP_UINT16 max_activation_attempts; /* reserved */
 AP_UINT16 activation_delay_timer; /* reserved */
 unsigned char mltg_pacing_algorithm; /* reserved */
 unsigned char implicit_tg_sharing_prohibited; /* reserved */
 unsigned char link_spec_data_format; /* reserved */
 unsigned char limit_enable; /* reserved */
 unsigned char reserv1[6]; /* reserved */
 unsigned char implicit_dspu_template[8]; /* implicit dspu template */
 AP_UINT16 implicit_ls_limit; /* implicit ls limit */
 unsigned char reserv4; /* reserved */
 unsigned char implicit_dspu_services; /* reserved */
 unsigned char implicit_deact_timer; /* deact timer for implicit LSs */
 AP_UINT16 act_xid_exchange_limit; /* activation XID exchange limit */
 AP_UINT16 nonact_xid_exchange_limit; /* non-act. XID exchange */
 /* limit */
 unsigned char ls_xmit_rcv_cap; /* LS transmit-receive capability*/
 unsigned char max_ifrm_rcvd; /* maximum number of I-frames */
 /* that can be received */
 AP_UINT16 target_pacing_count; /* target pacing count */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 LINK_ADDRESS dlc_data; /* DLC data */
 LINK_ADDRESS hpr_dlc_data; /* reserved */
 unsigned char implicit_cp_cp_sess_support; /* implicit links allow */
 /* CP-CP sessions */
 unsigned char implicit_limited_resource; /* implicit links are */
 /* limited resource */
 unsigned char implicit_hpr_support; /* Implicit links support HPR */

QUERY_PORT

480 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char implicit_link_lvl_error; /* Send HPR traffic on implicit */
 /* links using link-level error */
 /* recovery? */
 unsigned char retired1; /* reserved */
 TG_DEFINED_CHARS default_tg_chars; /* default TG chars */
 unsigned char discovery_supported; /* reserved */
 AP_UINT16 port_spec_data_len; /* length of port specific data */
 AP_UINT16 link_spec_data_len; /* length of link specific data */
} PORT_DEF_DATA;

For more details of the link_address structure, see “QUERY_LS” on page 375; for more details of the
port-specific and link-specific data, see “DEFINE_PORT” on page 159 and “DEFINE_LS” on page 100.
The data structure for the port-specific data follows the port_def_data structure, and the data
structure for the link-specific data follows this; both structures are padded to start on a 4-byte boundary.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_PORT

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of ports for which data should be returned. To request data for a specific port
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the port_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the port_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

port_name
Name of port being queried. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

dlc_name
DLC name filter. To return information only on ports associated with a specific DLC, specify the DLC
name. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8
bytes. To return information about all ports without filtering on the DLC name, set this parameter to 8
binary zeros.

QUERY_PORT

Chapter 3. NOF API Verbs 481

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

port_summary.overlay_size
The size of the returned port_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each port_summary structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

port_summary.port_name
Name of the port. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

port_summary.description
A null-terminated text string describing the port, as specified in the definition of the port.

port_summary.port_state
Specifies the current state of the port. Possible values are:
AP_ACTIVE

The port is active.
AP_NOT_ACTIVE

The port is not active.
AP_PENDING_ACTIVE

START_PORT is in progress.
AP_PENDING_INACTIVE

STOP_PORT is in progress.
port_summary.dlc_name

Name of the DLC associated with this port. This is an 8-byte ASCII string, padded on the right with
spaces if the name is shorter than 8 bytes.

port_detail.overlay_size
The size of the returned port_detail structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each port_detail structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future

QUERY_PORT

482 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

port_detail.port_name
Name of the port. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

port_detail.det_data.port_state
Specifies the current state of the port. Possible values are:
AP_ACTIVE

The port is active.
AP_NOT_ACTIVE

The port is not active.
AP_PENDING_ACTIVE

START_PORT is in progress.
AP_PENDING_INACTIVE

STOP_PORT is in progress.
port_detail.det_data.dlc_type

DLC type for the port. This is one of the following:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_IP

Enterprise Extender (HPR/IP)
port_detail.det_data.port_sim_rim

Specifies whether Set Initialization Mode (SIM) and Receive Initialization Mode (RIM) are supported.
Possible values are:
AP_YES

SIM and RIM are supported.
AP_NO

SIM and RIM are not supported.
port_detail.det_data.def_ls_good_xids

Total number of successful XID exchanges that have occurred on all defined link stations on this port
since the last time this port was started.

port_detail.det_data.def_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all defined link stations on this
port since the last time this port was started.

port_detail.det_data.dyn_ls_good_xids
Total number of successful XID exchanges that have occurred on all dynamic link stations on this port
since the last time this port was started.

port_detail.det_data.dyn_ls_bad_xids
Total number of unsuccessful XID exchanges that have occurred on all dynamic link stations on this
port since the last time this port was started.

port_detail.det_data.num_implicit_links
Total number of implicit links currently active on this port. This includes dynamic links and implicit
links created following use of Discovery. The number of such links allowed on this port is limited by
the implicit_ls_limit parameter of port_def_data.

QUERY_PORT

Chapter 3. NOF API Verbs 483

port_detail.det_data.neg_ls_supp
Support for negotiable link stations. Possible values are:
AP_YES

Link stations can be negotiated.
AP_NO

Link stations cannot be negotiated.
port_detail.det_data.abm_ls_supp

Support for ABM link stations. Possible values are:
AP_YES

ABM link stations are supported.
AP_NO

ABM link stations are not supported.
AP_UNKNOWN

Support for ABM link stations cannot be determined because the DLC associated with this port has
not yet been started.

port_detail.det_data.start_time
The elapsed time, in hundredths of a second, between the time the node was started and the last time
this port was started. If this port has not yet been started, this parameter is set to zero.

port_detail.def_data.description
A null-terminated text string describing the port, as specified in the definition of the port.

port_detail.def_data.dlc_name
Name of the DLC associated with this port. This is an 8-byte ASCII string, padded on the right with
spaces if the name is shorter than 8 bytes.

port_detail.def_data.port_type
The type of line used by the port.

For SDLC, the following values may be returned:

AP_PORT_SWITCHED
Switched line.

AP_PORT_NONSWITCHED
Nonswitched line.

For QLLC, this is set to AP_PORT_SWITCHED.

For Token Ring / Ethernet, this is set to AP_PORT_SATF (shared access transport facility).

For Enterprise Extender (HPR/IP), this is set to AP_PORT_SATF (shared access transport facility).

port_detail.def_data.port_attributes
This is a bit field. It can take the value AP_NO, or the following:
AP_RESOLVE_BY_LINK_ADDRESS

This value specifies that an attempt is made to resolve incoming calls by using the link address on
CONNECT_IN before using the CP name (or node ID) carried on the received XID3 to resolve them.
This is ignored if the port_type parameter is not set to AP_PORT_SWITCHED.

def_data.implicit_uplink_to_en
This parameter applies only if the local node is a Branch Network Node; it is reserved if the local node
is any other type.

If the adjacent node is an end node, this parameter specifies whether implicit link stations off this port
are uplink or downlink. This parameter is ignored if there are existing links to the same adjacent node,
because in this case the existing links are used to determine the link type. Possible values are:

AP_YES
Implicit links to an End Node are uplinks.

QUERY_PORT

484 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NO
Implicit links to an End Node are downlinks.

port_detail.def_data.port_number
Port number.

port_detail.def_data.max_rcv_btu_size
Maximum BTU size that can be received.

port_detail.def_data.tot_link_act_lim
Total link activation limit.

port_detail.def_data.inb_link_act_lim
Inbound link activation limit.

port_detail.def_data.out_link_act_lim
Outbound link activation limit.

port_detail.def_data.ls_role
Link station role.

For SDLC or QLLC, the following values may be returned:

AP_LS_PRI
Primary

AP_LS_SEC
Secondary

AP_LS_NEG
Negotiable

For Token Ring / Ethernet, this is set to AP_LS_NEG (negotiable).

port_detail.def_data.implicit_dspu_template
Specifies the DSPU template, defined with the DEFINE_DSPU_TEMPLATE verb, that will be used for
definitions if the local node is to provide SNA gateway for an implicit link activated on this port. If the
template specified does not exist (or is already at its instance limit) when the link is activated,
activation will fail. This is an 8-byte string in a locally displayable character set. All eight bytes are
significant and must be set.

If the def_data.implicit_dspu_services parameter is not set to AP_PU_CONCENTRATION, this
parameter is reserved.

port_detail.def_data.implicit_ls_limit
The maximum number of implicit link stations which can be active on this port simultaneously,
including dynamic links and links activated for Discovery. A value of zero indicates that there is no
limit; a value of AP_NO_IMPLICIT_LINKS indicates that no implicit links are allowed.

port_detail.def_data.implicit_deact_timer
Limited resource link deactivation timer, in seconds.

If implicit_limited_resource is set to AP_YES or AP_NO_SESSIONS, then an HPR-capable implicit link
is automatically deactivated if no data flows on the link for the duration of this timer, and no sessions
are using the link.

If implicit_limited_resource is set to AP_INACTIVITY, then an implicit link is automatically
deactivated if no data flows on the link for the duration of this timer.

port_detail.def_data.act_xid_exchange_limit
Activation XID exchange limit.

port_detail.def_data.nonact_xid_exchange_limit
Non-activation XID exchange limit.

port_detail.def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. Possible values are:
AP_LS_TWS

Two-way simultaneous

QUERY_PORT

Chapter 3. NOF API Verbs 485

AP_LS_TWA
Two-way alternating

port_detail.def_data.max_ifrm_rcvd
Maximum number of I-frames that can be received by local link stations before an acknowledgment is
sent. Range: 1-127.

port_detail.def_data.target_pacing_count
Numeric value between 1 and 32,767 inclusive indicating the desired pacing window size. (The
current version of CS/AIX does not make use of this value.)

port_detail.def_data.max_send_btu_size
Maximum BTU size that can be sent.

port_detail.def_data.dlc_data
Port address. For more information on the dlc_data structure, see “QUERY_LS” on page 375.

def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit link stations using this port. Possible
values are:
AP_YES

CP-CP sessions are permitted for implicit LSs.
AP_NO

CP-CP sessions are not permitted for implicit LSs.
def_data.implicit_limited_resource

Specifies whether implicit link stations off this port are defined as limited resources. Possible values
are:
AP_NO

Implicit links are not limited resources, and will not be deactivated automatically.
AP_NO_SESSIONS

Implicit links are limited resources, and will be deactivated automatically when no active sessions
are using them.

AP_INACTIVITY
Implicit links are limited resources, and will be deactivated automatically when no active sessions
are using them or when no data has flowed for the time period specified by the
implicit_deact_timer field.

def_data.implicit_hpr_support
Specifies whether High Performance Routing (HPR) is supported on implicit links. Possible values are:
AP_YES

HPR is supported on implicit links.
AP_NO

HPR is not supported on implicit links.
def_data.implicit_link_lvl_error

For SDLC, this parameter is not used.

For other link types, this parameter specifies whether HPR traffic should be sent on implicit links using
link-level error recovery (AP_YES or AP_NO). The parameter is reserved if implicit_hpr_support is set
to AP_NO.

def_data.default_tg_chars
Default TG characteristics. These are used for implicit link stations using this port, and as the default
TG characteristics for defined link stations that do not have TG characteristics explicitly defined. For
details of these parameters, see “DEFINE_LS” on page 100.

port_detail.def_data.port_spec_data_len
Unpadded length, in bytes, of the port-specific data. The data structure for this data follows the
port_def_data structure, but is padded to start on a 4-byte boundary. For more details of the port-
specific data, see “DEFINE_PORT” on page 159.

QUERY_PORT

486 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

port_detail.def_data.link_spec_data_len
Unpadded length, in bytes, of the link-specific data. The data structure for the link-specific data
follows the data structure for the port-specific data, but is padded to start on a 4-byte boundary. For
more details of the link-specific data, see “DEFINE_PORT” on page 159.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PORT_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the port_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_PU
QUERY_PU returns information about local PUs and the links associated with them. This verb can be used
to obtain information about a specific PU or about multiple PUs, depending on the options used.

VCB structure
typedef struct query_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char pu_name[8]; /* PU name */
 unsigned char host_attachment; /* host attachment filter */
} QUERY_PU;

typedef struct pu_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char pu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char ls_name[8]; /* LS name */
 unsigned char pu_sscp_sess_active; /* Is PU-SSCP session active */
 unsigned char host_attachment; /* Host attachment */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
 unsigned char sscp_id[6]; /* SSCP ID */
 unsigned char conventional_lu_compression; /* compression for LU 0-3? */
 unsigned char conventional_lu_cryptography; /* reserved */
 unsigned char dddlu_supported; /* does the host support DDDLU? */

QUERY_PU

Chapter 3. NOF API Verbs 487

 unsigned char tcpcv_supported; /* does the host support TCPCVs? */
 unsigned char dddlu_offline_supported; /* does the PU support sending */
 /* NMVT (power off) to host? */
 unsigned char reserva[9]; /* reserved */
} PU_DATA;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window */
 /* size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from */
 /* LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID)*/
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_PU

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of PUs for which data should be returned. To request data for a specific PU rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the pu_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the pu_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

pu_name
Name of the PU for which information is required, or the name to be used as an index into the list of
PUs. This value is ignored if list_options is set to AP_FIRST_IN_LIST. This is an 8-byte type-A
EBCDIC string, padded on the right with spaces if the name is shorter than 8 characters.

QUERY_PU

488 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

host_attachment
Specifies whether to filter the returned information by whether the PUs are attached to the host
directly or using DLUR. Possible values are:
AP_DIRECT_ATTACHED

Return information only on PUs directly attached to the host system.
AP_DLUR_ATTACHED

Return information only on PUs supported by DLUR.
AP_NONE

Return information about all PUs regardless of host attachment.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

pu_data.overlay_size
The size of the returned pu_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each pu_data structure in turn,
it must use this value to move to the correct offset for the next data structure, and must not use the C
sizeof() operator. This is because the size of the returned overlay may increase in future releases of
CS/AIX; using the returned overlay size ensures that your application will continue to work with future
releases.

pu_data.pu_name
PU Name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

pu_data.description
A null-terminated text string describing the PU, as specified in the definition of the LS or of the internal
PU.

pu_data.ls_name
Name of the link station associated with this PU. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 bytes.

pu_data.pu_sscp_sess_active
Specifies whether the PU-SSCP session is active. Possible values are:
AP_YES

The PU-SSCP session is active.
AP_NO

The PU-SSCP session is inactive.

QUERY_PU

Chapter 3. NOF API Verbs 489

pu_data.host_attachment
Local PU host attachment type.

Possible values are:

AP_DIRECT_ATTACHED
PU is directly attached to the host system.

AP_DLUR_ATTACHED
PU is supported by DLUR.

pu_data.pu_sscp_stats.rcv_ru_size
Reserved (always set to zero).

pu_data.pu_sscp_stats.send_ru_size
Reserved (always set to zero).

pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_data.pu_sscp_stats.max_send_pac_win
Reserved (always set to zero).

pu_data.pu_sscp_stats.cur_send_pac_win
Reserved (always set to zero).

pu_data.pu_sscp_stats.max_rcv_pac_win
Reserved (always set to zero).

pu_data.pu_sscp_stats.cur_rcv_pac_win
Reserved (always set to zero).

pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

ppu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_data.pu_sscp_stats.sidh
Session ID high byte.

pu_data.pu_sscp_stats.sidl
Session ID low byte.

pu_data.pu_sscp_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

pu_data.pu_sscp_stats.pacing_type
The type of receive pacing in use on the PU-SSCP session. This parameter is set to AP_NONE.

QUERY_PU

490 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

pu_data.sscp_id
For dependent LU sessions, this parameter is the SSCP ID received in the ACTPU from the host for the
PU to which the local LU is mapped. For independent LU sessions, this parameter is set to 0 (zero).
This value is an array of six bytes displayed as hexadecimal values.

pu_data.conventional_lu_compression
Specifies whether data compression is requested for LU 0-3 sessions using this PU. Possible values
are:
AP_YES

Data compression should be used for LU 0-3 sessions using this PU if the host requests it.
AP_NO

Data compression should not be used for LU 0-3 sessions using this PU.
pu_data.dddlu_supported

Specifies whether the host system supports DDDLU (Dynamic Definition of Dependent LUs). Possible
values are:
AP_YES

The host supports DDDLU.
AP_NO

The host does not support DDDLU.
pu_data.tcpcv_supported

Specifies whether the host system supports receiving the TCP/IP Information Control Vector (0x64).
CS/AIX can use this vector to send TCP/IP addressing information for TN3270 or LUA clients to the
host. Possible values are:
AP_YES

The host supports TCP CVs.
AP_NO

The host does not support TCP CVs.
pu_data.dddlu_offline_supported

Specifies whether the local PU supports sending NMVT (power off) messages to the host. If the host
system supports DDDLU (Dynamic Definition of Dependent LUs), CS/AIX sends NMVT (power off) to
the host when it has finished using a dynamically defined LU. This allows the host to save resources by
removing the definition when it is no longer required.

Possible values are:

AP_YES
The local PU sends NMVT (power off) messages to the host.

AP_NO
The local PU does not send NMVT (power off) messages to the host.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PU_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the pu_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

QUERY_PU

Chapter 3. NOF API Verbs 491

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_PU_TYPE

The PU specified by the pu_name parameter is a remote PU and not a local PU.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_RAPI_CLIENTS
QUERY_RAPI_CLIENTS returns information about Remote API Clients (on AIX, Linux, or Windows)for
which a particular server on the CS/AIX LAN is currently acting as the controller.

This verb must be issued to a server. It does not matter whether the node is started on that server.

Note: If a client is connected to the server through a Web server, and the client software is stopped, there
may be a delay of a minute or two before the Web server ends the connection to the CS/AIX controller
server. This means that a QUERY_RAPI_CLIENTS verb may still include the client for a short time after it
has stopped using the server.

VCB structure
typedef struct query_rapi_clients
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 AP_UINT16 max_clients; /* maximum number of clients */
 unsigned char sys_name[128]; /* RAPI Client to start query */
} QUERY_RAPI_CLIENTS;

typedef struct rapi_client_info
{
 AP_UINT16 overlay_size; /* overlay size */
 unsigned char sys_name[128]; /* RAPI Client System name */
 SNA_IP_ADDR rapi_client_origin_ip_addr; /* IP addr client sends us */
 SNA_IP_ADDR rapi_client_adj_ip_addr; /* IP addr client comes in on */
 AP_UINT16 rapi_client_adj_port; /* port IP client comes in on */
} RAPI_CLIENT_INFO;

typedef struct sna_ip_addr
{
 AP_UINT16 family; /* IPv4 or IPv6 */
 union
 {

QUERY_RAPI_CLIENTS

492 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char ipv4_addr[4];
 unsigned char ipv6_addr[16];
 } ip_addr;
} SNA_IP_ADDR;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_RAPI_CLIENTS

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of clients for which data should be returned. To request data for a specific client
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list of clients.
AP_LIST_INCLUSIVE

Start at the entry specified by the sys_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the sys_name parameter.
sys_name

Fully-qualified system name of the client to be used as an index into the list (such as
newbox.this.co.uk). This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

This is an ASCII string of 1-128 characters, padded on the right with spaces if the name is shorter
than 128 characters.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

QUERY_RAPI_CLIENTS

Chapter 3. NOF API Verbs 493

max_clients
The maximum number of clients using the server as their controller server at any time since the
CS/AIX software was started.

rapi_client_info.overlay_size
The size of the returned rapi_client_info structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each rapi_client_info
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

rapi_client_info.sys_name
The fully-qualified system name of the client (such as newbox.this.co.uk).

rapi_client_info.rapi_client_origin_ip_addr
The IP address of the client.

rapi_client_info.rapi_client_origin_ip_addr.family
The type of TCP/IP address specified for the client. Possible values are as follows.
AF_INET

IPv4 address, specified as a dotted-decimal address (such as 193.1.11.100).
AF_INET6

IPv6 address, specified as a colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

Note: The values AF_INET and AF_INET6 are taken from a system header file, and are not standard
AP_* values defined by CS/AIX. The system header file is /usr/include/sys/socket.h on an AIX
server or client, and /usr/include/linux/socket.h on a Linux client.

If your NOF application needs to test against these values, you should use #include to include this
system file in addition to the nof_c.h header file.

rapi_client_info.rapi_client_origin_ip_addr.ip_addr.ipv4_addr
This field is used only if the family parameter is set to AF_INET. The IPv4 (dotted-decimal) address of
the client computer.

rapi_client_info.rapi_client_origin_ip_addr.ip_addr.ipv6_addr
This field is used only if the family parameter is set to AF_INET6. The IPv6 (colon-hexadecimal)
address of the client computer.

rapi_client_info.rapi_client_adj_ip_addr
The IP address through which the client attaches to CS/AIX. This may not be the same as
rapi_client_origin_ip_addr if one of the following is true.

• The client connects through a Web server.
• The client connects through a TCP/IP proxy or NAT router, such as the Linux iptables tool.
• The client has multiple IP addresses.

rapi_client_info.rapi_client_adj_ip_addr.family
The type of TCP/IP address through which the client attaches to CS/AIX. Possible values are as
follows.
AF_INET

IPv4 address, specified as a dotted-decimal address (such as 193.1.11.100).
AF_INET6

IPv6 address, specified as a colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

Note: The values AF_INET and AF_INET6 are taken from a system header file, and are not standard
AP_* values defined by CS/AIX. The system header file is /usr/include/sys/socket.h on an AIX
server or client, and /usr/include/linux/socket.h on a Linux client.

QUERY_RAPI_CLIENTS

494 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If your NOF application needs to test against these values, you should use #include to include this
system file in addition to the nof_c.h header file.

rapi_client_info.rapi_client_adj_ip_addr.ip_addr.ipv4_addr
This field is used only if the family parameter is set to AF_INET. The IPv4 (dotted-decimal) address
through which the client attaches to CS/AIX.

rapi_client_info.rapi_client_adj_ip_addr.ip_addr.ipv6_addr
This field is used only if the family parameter is set to AF_INET6. The IPv6 (colon-hexadecimal)
address through which the client attaches to CS/AIX.

rapi_client_info.rapi_client_adj_port
The IP port number through which the client attaches to CS/AIX.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.
AP_INVALID_NODE_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE or AP_LIST_FROM_NEXT to list all
entries starting from the supplied node name, but the sys_name parameter was not specified or
was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_RCF_ACCESS
QUERY_RCF_ACCESS returns information about the permitted access to the CS/AIX Remote Command
Facility (RCF): the user ID used to run UNIX Command Facility (UCF) commands, and the restrictions on
which administration commands can be issued using the Service Point Command Facility (SPCF). This
information was previously set up using DEFINE_RCF_ACCESS. For more information about SPCF and
UCF, see the IBM Communications Server for Data Center Deployment on AIX Administration Guide.

This verb must be issued to the domain configuration file.

VCB structure
typedef struct query_rcf_access
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char ucf_username[32]; /* UCF username */
 AP_UINT32 spcf_permissions; /* SPCF permissions */
 unsigned char reserv3[8]; /* Reserved */
} QUERY_RCF_ACCESS;

QUERY_RCF_ACCESS

Chapter 3. NOF API Verbs 495

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_RCF_ACCESS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

ucf_username
Specifies the AIX user name of the UCF user. This parameter is a null-terminated ASCII string.

All UCF commands will be run using this user's user ID, using the default shell and access permissions
defined for this user.

If this parameter is set to a null string, this indicates that UCF access is prohibited.

spcf_permissions
Specifies the types of CS/AIX administration commands that can be accessed using SPCF. This is set
to AP_NONE to indicate that SPCF access is prohibited, or to one or more of the following values
(combined using a logical OR):
AP_ALLOW_QUERY_LOCAL

QUERY_* verbs are permitted.
AP_ALLOW_DEFINE_LOCAL

DEFINE_*, SET_*, DELETE_*, ADD_*, and REMOVE_* verbs, and also INIT_NODE, are permitted.
AP_ALLOW_ACTION_LOCAL

"Action" verbs are permitted: START_*, STOP_*, ACTIVATE_*, DEACTIVATE_*, and also APING,
INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, and RESET_SESSION_LIMIT.

AP_ALLOW_QUERY_REMOTE
The QUERY_* verbs are allowed to provide access to a remote CS/AIX node.

AP_ALLOW_DEFINE_REMOTE
The DEFINE_*, SET_*, DELETE_*, ADD_*, REMOVE_*, and INIT_NODE verbs are allowed to provide
access to a remote CS/AIX node.

AP_ALLOW_ACTION_REMOTE
The START_*, STOP_*, ACTIVATE_*, DEACTIVATE_*, APING, INITIALIZE_SESSION_LIMIT,
CHANGE_SESSION_LIMIT, and RESET_SESSION_LIMIT verbs are allowed to provide access to a
remote CS/AIX node.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_RTP_CONNECTION
The QUERY_RTP_CONNECTION verb returns a list of information about Rapid Transport Protocol (RTP)
connections for which the node is an endpoint. This verb can be used to obtain summary or detailed
information about a specific RTP connection or about multiple RTP connections, depending on the options
used.

This verb must be issued to a running node.

QUERY_RTP_CONNECTION

496 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct query_rtp_connection
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char rtp_name[8]; /* name of RTP connection */
} QUERY_RTP_CONNECTION;

typedef struct rtp_connection_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char rtp_name[8]; /* RTP connection name */
 unsigned char first_hop_ls_name[8]; /* LS name of first hop */
 unsigned char dest_node_name[17]; /* fully qualified name of */
 /* destination node */
 unsigned char connection_type; /* LU-LU or CP-CP connection? */
 unsigned char cos_name[8]; /* class of service name */
 AP_UINT16 num_sess_active; /* number of active sessions */
} RTP_CONNECTION_SUMMARY;

typedef struct rtp_connection_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char rtp_name[8]; /* RTP connection name */
 unsigned char first_hop_ls_name[8]; /* LS name of first hop */
 unsigned char dest_node_name[17]; /* fully qualified name of */
 /* destination node */
 unsigned char isr_boundary_fn; /* is conn used for Boundary Func? */
 unsigned char connection_type; /* LU-LU or CP-CP connection? */
 unsigned char reserv1; /* reserved */
 unsigned char cos_name[8]; /* class of service name */
 AP_UINT16 max_btu_size; /* maximum BTU size */
 AP_UINT32 liveness_timer; /* liveness timer */
 unsigned char local_tcid[8]; /* local tcid */
 unsigned char remote_tcid[8]; /* remote tcid */
 RTP_STATISTICS rtp_stats; /* RTP statistics */
 AP_UINT16 num_sess_active; /* number of active sessions */
 unsigned char arb_mode; /* ARB-S, ARB-R, ARB-P? */
 unsigned char refifo; /* refifo support? */
 AP_UINT32 refifo_timer; /* last refifo timer in ms */
 AP_UINT32 path_switch_time; /* time since last path switch secs */
 AP_UINT16 path_switch_atts; /* number of path switch attempts */
 unsigned char reserv2[4]; /* reserved */
 AP_UINT16 rscv_len; /* length of appended RSCV */
 } RTP_CONNECTION_DETAIL;

The session detail structure may be followed by a Route Selection Control Vector (RSCV) as defined by
SNA Formats. This control vector defines the session route through the network and is carried on the
BIND. This RSCV is included only if the node's configuration (specified using DEFINE_NODE) indicates
that endpoint RSCVs should be stored.

typedef struct rtp_statistics
{
 AP_UINT32 bytes_sent; /* total number of bytes sent */
 AP_UINT32 bytes_received; /* total number of bytes received */
 AP_UINT32 bytes_resent; /* total number of bytes resent */
 AP_UINT32 bytes_discarded; /* total number of bytes discarded */
 AP_UINT32 packets_sent; /* total number of packets sent */
 AP_UINT32 packets_received; /* total number of packets received */
 AP_UINT32 packets_resent; /* total number of packets resent */
 AP_UINT32 packets_discarded; /* total number of packets discarded*/
 AP_UINT32 gaps_detected; /* gaps detected */
 AP_UINT32 send_rate; /* current send rate */
 AP_UINT32 max_send_rate; /* maximum send rate */
 AP_UINT32 min_send_rate; /* minimum send rate */

QUERY_RTP_CONNECTION

Chapter 3. NOF API Verbs 497

 AP_UINT32 receive_rate; /* current send rate */
 AP_UINT32 max_receive_rate; /* maximum receive rate */
 AP_UINT32 min_receive_rate; /* minimum receive rate */
 AP_UINT32 burst_size; /* current burst size */
 AP_UINT32 up_time; /* total uptime of connection */
 AP_UINT32 smooth_rtt; /* smoothed round-trip time */
 AP_UINT32 last_rtt; /* last round-trip time */
 AP_UINT32 short_req_timer; /* SHORT_REQ timer duration */
 AP_UINT32 short_req_timeouts; /* number of SHORT_REQ timeouts */
 AP_UINT32 liveness_timeouts; /* number of liveness timeouts */
 AP_UINT32 in_invalid_sna_frames; /* number of invalid SNA frames */
 AP_UINT32 in_sc_frames; /* number of SC frames received */
 AP_UINT32 out_sc_frames; /* number of SC frames sent */
 AP_INT32 delay_change_sum; /* delay change sum */
 AP_UINT32 current_receiver_threshold;
 /* current ARB-R receiver threshold */
 AP_UINT32 minimum_receiver_threshold;
 /* minimum ARB-R receiver threshold */
 AP_UINT32 maximum_receiver_threshold;
 /* maximum ARB-R receiver threshold */
 AP_UINT32 sent_normals_count; /* number of NORMALs sent */
 AP_UINT32 sent_slowdowns_count; /* number of SLOWDOWNs sent */
 AP_UINT32 rcvd_normals_count; /* number of NORMALs received */
 AP_UINT32 rcvd_slowdowns_count; /* number of SLOWDOWNs received */
 AP_UINT32 dcs_reset_count_non_heal;
 /* number of non-healing resets */
 AP_UINT16 dcs_reset_count_healing;
 /* number of self-healing resets */
 unsigned char arb_mode; /* ARB mode (GREEN, YELLOW, RED) */
 unsigned char reserve[1]; /* reserved */
} RTP_STATISTICS;

Supplied parameters
Supplied parameters are:

opcode
AP_QUERY_RTP_CONNECTION

buf_ptr
Pointer to a buffer into which list information can be written. The application can append data to the
end of the VCB in which case, buf_ptr must be set to NULL.

buf_size
Size of the buffer supplied.

num_entries
Maximum number of RTP connections for which data should be returned. To request data for a
specific connection rather than a range, specify the value 1. To return as many entries as possible,
specify zero; in this case, CS/AIX will return the maximum number of entries that can be
accommodated in the supplied data buffer.

list_options
The level of information required for each entry and the position in the list from which CS/AIX begins
to return data.

Specify the level of information required with one of the following values:

AP_SUMMARY
Summary information only.

AP_DETAIL
Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the rtp_name parameter.

QUERY_RTP_CONNECTION

498 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the rtp_name parameter.

rtp_name
Name of the RTP connection. This value is ignored if the list_options parameter is set to
AP_FIRST_IN_LIST. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This may be higher than num_entries.

rtp_connection_summary.overlay_size
The size of the returned rtp_connection structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each
rtp_connection_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

rtp_connection_summary.rtp_name
Name of the RTP connection. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes.

rtp_connection_summary.first_hop_ls_name
Name of the link station of the first hop of the RTP connection. This is an 8-byte ASCII string, padded
on the right with spaces if the name is shorter than 8 bytes.

rtp_connection_summary.dest_node_name
Fully qualified name of the destination control point for the RTP portion of the session. The name is a
17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-
string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

rtp_connection_summary.connection_type
Specifies the type of sessions on the RTP connection. Possible values are:
AP_RTP_CP_CP_SESSION

The RTP connection carries CP-CP sessions.
AP_RTP_LU_LU_SESSION

The RTP connection carries LU-LU sessions.
AP_RTP_ROUTE_SETUP

The RTP connection is used for route setup.
rtp_connection_summary.cos_name

Name of the class of service used by the RTP connection. This name is an EBCDIC string padded on
the right with EBCDIC spaces.

QUERY_RTP_CONNECTION

Chapter 3. NOF API Verbs 499

rtp_connection_summary.num_sess_active
Number of sessions active on this RTP connection.

rtp_connection_detail.overlay_size
The size of the returned rtp_connection structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each
rtp_connection_detail structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

rtp_connection_detail.rtp_name
Name of the RTP connection. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes.

rtp_connection_detail.first_hop_ls_name
Name of the link station of the first hop of the RTP connection. This is an 8-byte ASCII string, padded
on the right with spaces if the name is shorter than 8 bytes.

rtp_connection_detail.dest_node_name
Fully qualified name of the destination control point for the RTP portion of the session. The name is a
17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-
string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

rtp_connection_detail.isr_boundary_fn
Specifies whether the RTP Connection is being used for any ISR session for which the local node is
providing HPR-APPN Boundary Function. Possible values are:
AP_YES

The RTP connection is being used for an ISR session for which the local node is providing HPR-
APPN Boundary Function.

AP_NO
The RTP connection is not being used for an ISR session for which the local node is providing HPR-
APPN Boundary Function.

rtp_connection_detail.connection_type
Specifies the type of sessions on the RTP connection. Possible values are:
AP_RTP_CP_CP_SESSION

The RTP connection carries CP-CP sessions.
AP_RTP_LU_LU_SESSION

The RTP connection carries LU-LU sessions.
AP_RTP_ROUTE_SETUP

The RTP connection is used for route setup.
rtp_connection_detail.cos_name

Name of the class of service used by the RTP connection. This name is an EBCDIC string padded on
the right with EBCDIC spaces.

rtp_connection_detail.max_btu_size
Maximum size, in bytes, of the basic transmission unit (BTU) used on the RTP connection.

rtp_connection_detail.liveness_timer
Liveness timer, measured in seconds, for the RTP connection. If no traffic flows on a connection during
a liveness timer interval, RTP starts a status exchange to check if its partner is still there. A short
liveness timer interval provides quick detection of line failures and rapid path switching when a line
fails. However, if the interval is too short, performance is slightly degraded by the frequent checks on
the status of the line.

rtp_connection_detail.local_tcid
Local TCID (transport control identifier) for the RTP connection.

QUERY_RTP_CONNECTION

500 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

rtp_connection_detail.remote_tcid
Remote TCID for the RTP connection.

rtp_connection_detail.rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this RTP connection.

rtp_connection_detail.rtp_stats.bytes_received
Total number of bytes that the local node has received on this RTP connection.

rtp_connection_detail.rtp_stats.bytes_resent
Total number of bytes that the local node has resent on this RTP connection because bytes were lost
in transit.

rtp_connection_detail.rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP connection that were discarded as duplicates
of data already received.

rtp_connection_detail.rtp_stats.packets_sent
Total number of packets that the local node has sent on this RTP connection.

rtp_connection_detail.rtp_stats.packets_received
Total number of packets that the local node has received on this RTP connection.

rtp_connection_detail.rtp_stats.packets_resent
Total number of packets that the local node has resent on this RTP connection because packets were
lost in transit.

rtp_connection_detail.rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP connection that were discarded as
duplicates of data already received.

rtp_connection_detail.rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap corresponds to one or more lost frames.

rtp_connection_detail.rtp_stats.send_rate
Current send rate on this RTP connection, measured in Kbits/second. This rate is the maximum
allowed send rate as calculated by the ARB (adaptive rate-based) algorithm. RTP uses the ARB
algorithm to calculate how fast it can send data based on an analysis of the amount of time it takes for
the partner to respond.

rtp_connection_detail.rtp_stats.max_send_rate
Maximum send rate on this RTP connection, measured in Kbits/second.

rtp_connection_detail.rtp_stats.min_send_rate
Minimum send rate on this RTP connection, measured in Kbits/second.

rtp_connection_detail.rtp_stats.receive_rate
Current receive rate on this RTP connection, measured in Kbits/second. This rate is the actual rate
calculated over the last measurement interval.

rtp_connection_detail.rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection, measured in Kbits/second.

rtp_connection_detail.rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection, measured in Kbits/second.

rtp_connection_detail.rtp_stats.burst_size
Current burst size on this RTP connection, measured in bytes.

rtp_connection_detail.rtp_stats.up_time
Total number of seconds this RTP connection has been active.

rtp_connection_detail.rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node and the partner RTP node, measured in
milliseconds.

rtp_connection_detail.rtp_stats.last_rtt
The last measured round-trip time between the local node and the partner RTP node, measured in
milliseconds.

QUERY_RTP_CONNECTION

Chapter 3. NOF API Verbs 501

rtp_connection_detail.rtp_stats.short_req_timer
The amount of time to wait for a response to a request for a status exchange, measured in
milliseconds. A short timer interval provides quick detection of failures but lowers performance.

rtp_connection_detail.rtp_stats.short_req_timeouts
Total number of times the short_req_ timer has expired for this RTP connection.

rtp_connection_detail.rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this RTP connection. The liveness timer
expires when the connection has been idle for the period specified in the liveness_timer parameter.

rtp_connection_detail.rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded on this RTP connection because they were not
valid.

rtp_connection_detail.rtp_stats.in_sc_frames
Total number of session control frames received on this RTP connection.

rtp_connection_detail.rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP connection.

rtp_connection_detail.rtp_stats.delay_change_sum
Value of the delay change sum currently held by the ARB-R algorithm on this RTP connection.

rtp_connection_detail.rtp_stats.current_receiver_threshold
Value of the receiver threshold currently held by the ARB-R algorithm on this RTP connection.

rtp_connection_detail.rtp_stats.minimum_receiver_threshold
Value of the minimum receiver threshold currently held by the ARB-R algorithm on this RTP
connection.

rtp_connection_detail.rtp_stats.maximum_receiver_threshold
Value of the maximum receiver threshold currently held by the ARB-R algorithm on this RTP
connection.

rtp_connection_detail.rtp_stats.sent_normals_count
Number of NORMAL feedback ARB-R segments sent by the ARB-R algorithm on this RTP connection.

rtp_connection_detail.rtp_stats.sent_slowdowns_count
Number of SLOWDOWN1 and SLOWDOWN2 feedback ARB-R segments sent by the ARB-R algorithm
on this RTP connection.

rtp_connection_detail.rtp_stats.rcvd_normals_count
Number of NORMAL feedback ARB-R segments received by the ARB-R algorithm on this RTP
connection.

rtp_connection_detail.rtp_stats.rcvd_slowdowns_count
Number of SLOWDOWN1 and SLOWDOWN2 feedback ARB-R segments received by the ARB-R
algorithm on this RTP connection.

rtp_connection_detail.rtp_stats.dcs_reset_count_non_heal
Number of delay change sum resets made as a part of normal ARB-R processing on this RTP
connection.

rtp_connection_detail.rtp_stats.dcs_reset_count_healing
Number of delay change sum resets made to self-heal the ARB-R algorithm on this RTP connection.

rtp_connection_detail.rtp_stats.arb_mode
The current ARB-R status mode on this RTP connection. Possible values are:
0

GREEN
1

YELLOW
2

RED
rtp_connection_detail.num_sess_active

Number of sessions active on this RTP connection.

QUERY_RTP_CONNECTION

502 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

rtp_connection_detail.arb_mode
Specifies the ARB mode in use on this RTP Connection. Possible values are:
AP_ARB_S

Standard mode ARB.
AP_ARB_R

Responsive mode ARB.
AP_ARB_P

Progressive mode ARB.
AP_UNKNOWN

The ARB mode has not yet been determined because the RTP connection is not yet established.
rtp_connection_detail.refifo

Specifies whether refifo is enabled on the RTP connection. Possible values are:
AP_YES

Refifo is enabled. When CS/AIX detects a gap in received data, it starts the refifo timer to allow
time for out-of-sequence packets to arrive, and requests retransmission only if the packets are
still missing when the timer expires.

AP_NO
Refifo is not enabled. When CS/AIX detects a gap in received data, it requests retransmission of
the missing packets immediately.

rtp_connection_detail.refifo_timer
The most recent refifo timer duration, in milliseconds.

rtp_connection_detail.path_switch_time
The time in seconds since the most recent path switch attempt on this RTP connection. If there have
been no path switch attempts (path_switch_atts is set to zero), this parameter is set to zero.

rtp_connection_detail.path_switch_atts
The total number of path switch attempts made on this RTP connection.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RTP_CONNECTION

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the rtp_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_RTP_TUNING
QUERY_RTP_TUNING returns information about the parameters that will be used for future RTP
connections. This information was previously set up using DEFINE_RTP_TUNING.

QUERY_RTP_TUNING

Chapter 3. NOF API Verbs 503

VCB structure
typedef struct query_rtp_tuning
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char path_switch_attempts; /* number of path switch attempts */
 unsigned char short_req_retry_limit; /* short request timer retry limit */
 AP_UINT16 path_switch_times[4]; /* path switch times */
 AP_UINT32 refifo_cap; /* maximum for refifo timer */
 AP_UINT32 srt_cap; /* maximum for short request timer */
 AP_UINT16 path_switch_delay; /* minimum delay before path switch*/
 unsigned char reserved[78]; /* reserved */
} QUERY_RTP_TUNING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_RTP_TUNING

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

path_switch_attempts
Number of path switch attempts to set on new RTP connections.

short_req_retry_limit
Number of times a Status Request is sent before CS/AIX determines that an RTP connection is
disconnected and starts Path Switch processing.

path_switch_times
Length of time in seconds for which CS/AIX attempts to path switch a disconnected RTP connection.
This parameter is specified as four separate time limits for each of the valid transmission priorities in
order: AP_LOW, AP_MEDIUM, AP_HIGH, and AP_NETWORK.

refifo_cap
The RTP protocol uses a timer called the Re-FIFO Timer. The value of this timer is calculated as part of
the protocol, but this parameter specifies a maximum value in milliseconds beyond which the timer
cannot increase. In some situations, setting this maximum value can improve performance. A value of
0 (zero) means that the timer is not limited and can take any value calculated by the protocol.

srt_cap
The RTP protocol uses a timer called the Short Request Timer. The value of this timer is calculated as
part of the protocol, but this parameter specifies a maximum value in milliseconds beyond which the
timer cannot increase. In some situations, setting this maximum value can improve performance. A
value of 0 (zero) means that the timer is not limited and can take any value calculated by the protocol.

path_switch_delay
Minimum delay in seconds before a path switch occurs. Specifying a delay avoids unnecessary path
switch attempts caused by temporary resource shortages at the remote system, in particular when
there is no other route available.

The default value for this parameter is zero, indicating that a path switch attempt can occur as soon as
the protocol indicates it is required.

QUERY_RTP_TUNING

504 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_SECURITY_ACCESS_LIST
QUERY_SECURITY_ACCESS_LIST returns information about security access lists defined in a CS/AIX
configuration file. It can return information about a single list or multiple lists, depending on the options
used.

VCB structure
typedef struct query_security_access_list
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char list_name[14]; /* Security Access List name */
 unsigned char user_name[10]; /* user name */
 AP_UINT32 num_init_users; /* number of users for first */
 /* list when starting in middle */
 AP_UINT32 num_last_users; /* number of users on last */
 /* overlay if last list is */
 /* incomplete */
 unsigned char last_list_incomplete; /* set to AP_YES if user data */
 /* for last list is incomplete */
} QUERY_SECURITY_ACCESS_LIST;

typedef struct security_access_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char list_name[14]; /* list name */
 unsigned char reserv1[2]; /* reserved */
 AP_UINT32 num_filtered_users; /* number of users returned */
 SECURITY_LIST_DEF def_data; /* list definition */
} SECURITY_ACCESS_DETAIL;

typedef struct security_list_def
{
 unsigned char description[32]; /* description */
 unsigned char reserv3[16]; /* reserved */
 AP_UINT32 num_users; /* number of users in list */
 unsigned char reserv2[16]; /* reserved */
} SECURITY_LIST_DEF;

typedef struct security_user_data
{
 AP_UINT16 sub_overlay_size; /* reserved */
 unsigned char user_name[10]; /* user name */
} SECURITY_USER_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_SECURITY_ACCESS_LIST

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

QUERY_SECURITY_ACCESS_LIST

Chapter 3. NOF API Verbs 505

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of security access lists for which data should be returned. This number includes
partial security access list entries (for which a user name is specified, so that the returned data does
not include the first user name in the list).

To request data for a specific security access list rather than a range, specify the value 1. To return as
many entries as possible, specify zero; in this case, CS/AIX will return the maximum number of entries
that can be accommodated in the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first user name for the first security access list.
AP_LIST_INCLUSIVE

Start at the entry specified by the supplied security access list name and user name, or start at the
first user name for the specified security access list if no user name is specified.

AP_LIST_FROM_NEXT
If a user name is specified, start at the user immediately following the specified user. If no user
name is specified, start at the first user for the specified security access list.

The list is ordered by security access list name, and then by user name within each security access
list. For more information about how the list is ordered and how the application can obtain specific
entries from it, see “List options for QUERY_* Verbs” on page 33.

list_name
The name of the security access list for which information is required, or the name to be used as an
index into the list of security access lists. This parameter is ignored if list_options is set to
AP_FIRST_IN_LIST. The name is an ASCII string of 1-14 characters, padded on the right with
spaces if the name is shorter than 14 characters.

user_name
To return information starting with a specific user name for the specified security access list, set this
parameter to the user name. To return information starting at the first user name for the specified
security access list, set this parameter to 10 binary zeros.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than buf_size.

total_num_entries
Total number of entries that could have been returned. This may be higher than num_entries.

num_entries
The number of entries actually returned. The last entry may be incomplete; this is indicated by the
last_list_incomplete parameter.

num_init_users
If the user_name parameter was set to a nonzero value, so that the information for the first security
access list in the returned data does not start with the first user in that list, this parameter indicates

QUERY_SECURITY_ACCESS_LIST

506 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

the number of user name structures for this list that are included in the returned data. Otherwise, this
parameter is not used.

num_last_users
If the last_list_incomplete parameter indicates that the data for the last list is incomplete, this
parameter indicates the number of user name structures for this list that are included in the returned
data. (The num_filtered_users parameter returned for this list indicates the total number of user name
structures that are available.) Otherwise, this parameter is not used.

last_list_incomplete
Specifies whether the information for the last security access list is incomplete. Possible values are:
AP_YES

The complete data for the last security access list was too large to fit in the data buffer. At least
one user name structure is included, but there are further user name structures that are not
included in the data buffer. The num_last_users parameter indicates how many user name
structures have been returned; the application can issue further verbs to obtain the remaining
data.

AP_NO
The data for the last list is complete.

Each entry in the data buffer consists of the following:

security_access_detail.list_name
The name of the security access list. This is an ASCII string of 1-14 characters.

security_access_detail.num_filtered_users
The total number of user names in this security access list.

security_access_detail.def_data.description
A null-terminated text string describing the security access list, as specified in the definition of the list.

security_access_detail.def_data.num_users
The total number of users in the security access list.

If this is the last list in the data buffer, and the last_list_incomplete parameter is set to AP_YES, the
total number of user name structures returned for this list will be as specified by the num_last_users
parameter; this will be less than num_users.

For each user name in the list, a security_user_data structure is returned with the following
information:

user_name
Name of the user.

This can be either of the following:

• An AIX login ID defined on the CS/AIX computer (if password substitution is disabled for LUs that
use this security access list)

• A user ID defined using the DEFINE_USERID_PASSWORD verb

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE, but the list_name parameter did not
match the name of any defined security access list.

QUERY_SECURITY_ACCESS_LIST

Chapter 3. NOF API Verbs 507

AP_INVALID_USER_NAME
The list_options parameter was set to AP_LIST_INCLUSIVE, but the user_name parameter did
not match a user name defined for the specified security access list.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_SESSION
QUERY_SESSION returns list information about sessions for a particular local LU.

This verb can be used to obtain either summary or detailed information, about a specific session or a
range of sessions, depending on the options used.

This verb must be issued to a running node.

VCB structure
typedef struct query_session
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char mode_name[8]; /* mode name */
 unsigned char session_id[8]; /* session ID */
} QUERY_SESSION;

typedef struct session_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv3[1]; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char session_id[8]; /* session ID */
 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
} SESSION_SUMMARY;

typedef struct session_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char reserv3[1]; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char session_id[8]; /* session ID */
 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
 unsigned char cos_name[8]; /* Class of Service name */

QUERY_SESSION

508 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char trans_pri; /* Transmission priority: */
 unsigned char ltd_res; /* Session spans a limited resource */
 unsigned char polarity; /* Session polarity */
 unsigned char contention; /* Session contention */
 SESSION_STATS sess_stats; /* Session statistics */
 unsigned char reserv3a; /* reserved */
 unsigned char sscp_id[6]; /* SSCP ID of host */
 unsigned char reserva; /* reserved */
 AP_UINT32 session_start_time; /* start time of the session */
 AP_UINT16 session_timeout; /* session timeout */
 unsigned char cryptography; /* reserved */
 unsigned char reservb[5]; /* reserved */
 unsigned char comp_in_series; /* reserved */
 unsigned char plu_slu_comp_lvl; /* PLU to SLU compression level */
 unsigned char slu_plu_comp_lvl; /* SLU to PLU compression level */
 unsigned char rscv_len; /* Length of following RSCV */
} SESSION_DETAIL;

The session detail structure may be followed by a Route Selection Control Vector (RSCV) as defined by
SNA Formats. This control vector defines the session route through the network and is carried on the
BIND. This RSCV is included only if the node's configuration (specified using DEFINE_NODE) indicates
that endpoint RSCVs should be stored.

typedef struct fqpcid
{
 unsigned char pcid[8]; /* procedure correlator identifier */
 unsigned char fqcp_name[17]; /* originator's network qualified */
 /* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* Maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* Maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* Maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* Current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* Maximum receive pacing window */
 /* size */
 AP_UINT16 cur_rcv_pac_win; /* Current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* Number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* Num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* Number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* Number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* Num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* Number of data bytes received */
 unsigned char sidh; /* Session ID high byte (from LFSID)*/
 unsigned char sidl; /* Session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name (or RTP name) */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_SESSION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of sessions for which data should be returned. To request data for a specific
session rather than a range, specify the value 1. To return as many entries as possible, specify zero; in

QUERY_SESSION

Chapter 3. NOF API Verbs 509

this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the session_id parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the session_id parameter.

The combination of the local LU (lu_name or lu_alias), partner LU (plu_alias or fqplu_name), and
mode_name specified is used as an index into the list of sessions if the list_options parameter is set to
AP_LIST_INCLUSIVE or AP_LIST_FROM_NEXT.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters. To specify that the LU is identified by its alias rather than its LU name, set
this parameter to 8 binary zeros and specify the LU alias in the following parameter. To specify the LU
associated with the local CP (the default LU), set both lu_name and lu_alias to binary zeros.

lu_alias
Locally defined LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. This parameter is used only if lu_name is set to 8 binary zeros; it is ignored
otherwise. To specify the LU associated with the local CP (the default LU), set both lu_name and
lu_alias to binary zeros.

plu_alias
Partner LU alias. To return information only about sessions associated with a specific partner LU,
specify the partner LU alias (in this parameter) or the partner LU fully qualified name (in the following
parameter). To return information about all sessions without filtering on the partner LU, set both of
these parameters to binary zeros.

This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter than 8 bytes. To
specify that the LU is identified by its LU name rather than its alias, set this parameter to 8 binary
zeros and specify the LU name in the following parameter.

fqplu_name
Fully qualified network name for the partner LU. This parameter is used only if plu_alias is set to 8
binary zeros; it is ignored otherwise.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

mode_name
Mode name filter. To return information only about sessions associated with a specific mode, specify
the mode name; the partner LU must also be specified (using one of the two preceding parameters).
To return information about all sessions without filtering on mode name, set this parameter to 8
binary zeros.

QUERY_SESSION

510 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

The mode name is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters.

session_id
8-byte identifier of the session. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

session_summary.overlay_size
The size of the returned session_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each session_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

session_summary.plu_alias
Partner LU alias. This is an 8-byte ASCII character string, right-padded with ASCII spaces.

session_summary.fqplu_name
Fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

session_summary.mode_name
Mode name. This is an 8-byte type-A EBCDIC string (starting with a letter), right-padded with EBCDIC
spaces.

session_summary.session_id
8-byte identifier of the session.

session_summary.fqpcid.pcid
Procedure Correlator ID. This is an 8-byte hexadecimal string.

session_summary.fqpcid.fqcp_name
Fully qualified CP name. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

session_detail.overlay_size
The size of the returned session_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

QUERY_SESSION

Chapter 3. NOF API Verbs 511

When your application needs to go through the returned buffer to find each session_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

session_detail.plu_alias
Partner LU alias. This is an 8-byte ASCII character string, right-padded with ASCII spaces.

session_detail.fqplu_name
Fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, right-padded
with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

session_detail.mode_name
Mode name. This is an 8-byte type-A EBCDIC string (starting with a letter), right-padded with EBCDIC
spaces.

session_detail.session_id
8-byte identifier of the session.

session_detail.fqpcid.pcid
Procedure Correlator ID. This is an 8-byte hexadecimal string.

session_detail.fqpcid.fqcp_name
Fully qualified control point name. This is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a
network name of 1-8 A-string characters.

session_detail.cos_name
Class of service name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the
name is shorter than 8 characters.

session_detail.trans_pri
Transmission priority. Possible values are:

AP_LOW

AP_MEDIUM

AP_HIGH

AP_NETWORK

session_detail.ltd_res
Specifies whether the session uses a limited resource link. Possible values are:
AP_YES

Session uses a limited resource link.
AP_NO

Session does not use a limited resource link.
session_detail.polarity

Specifies the polarity of the session. Possible values are:

AP_PRIMARY

AP_SECONDARY

session_detail.contention
Specifies whether the session is a contention winner or contention loser session for the local LU.
Possible values are:
AP_CONWINNER

Contention winner session
AP_CONLOSER

Contention loser session

QUERY_SESSION

512 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

session_detail.sess_stats.rcv_ru_size
Maximum receive RU size.

session_detail.sess_stats.send_ru_size
Maximum send RU size.

session_detail.sess_stats.max_send_btu_size
Maximum BTU size that can be sent.

session_detail.sess_stats.max_rcv_btu_size
Maximum BTU size that can be received.

session_detail.sess_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

session_detail.sess_stats.cur_send_pac_win
Current size of the send pacing window on this session.

session_detail.sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

session_detail.sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

session_detail.sess_stats.send_data_frames
Number of normal flow data frames sent.

session_detail.sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

session_detail.sess_stats.send_data_bytes
Number of normal flow data bytes sent.

session_detail.sess_stats.rcv_data_frames
Number of normal flow data frames received.

session_detail.sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

session_detail.sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

session_detail.sess_stats.sidh
Session ID high byte.

session_detail.sess_stats.sidl
Session ID low byte.

session_detail.sess_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station. It sets it to one if the BIND sender is
the node containing the secondary link station.

session_detail.sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte ASCII string, padded on the right with
spaces if the name is shorter than 8 bytes. This field can be used to correlate the session statistics
with the link over which session data flows.

session_detail.sess_stats.pacing_type
The type of receive pacing in use on this session. Possible values are:

• AP_NONE
• AP_FIXED
• AP_ADAPTIVE

session_detail.duplex_support
Returns the conversation duplex support as negotiated on the BIND. Possible values are:
AP_HALF-DUPLEX

Only half-duplex conversations are supported.

QUERY_SESSION

Chapter 3. NOF API Verbs 513

AP_FULL_DUPLEX
Both full-duplex and half-duplex sessions are supported. Expedited data is also supported.

session_detail.sscp_id
For dependent LU sessions, this parameter is the SSCP ID received in the ACTPU from the host for the
PU to which the local LU is mapped. For independent LU sessions, this parameter is set to 0 (zero).

session_detail.session_start_time
The time between the CP starting and this session becoming active, measured in one-hundredths of a
second. If the session is not fully active when the query is processed, this parameter is set to 0 (zero).

session_detail.session_timeout
The timeout associated with this session This timeout is derived from:

• The LU 6.2 timeout associated with the local LU
• The LU 6.2 timeout associated with the remote LU
• The mode timeout
• The global timeout
• The limited resource timeout (if this session is running over a limited resource link)

session_detail.plu_slu_comp_lvl
Specifies the compression level for data sent from the primary LU (PLU) to the secondary LU (SLU).
Possible values are:
AP_NONE

Compression is not used.
AP_RLE_COMPRESSION

Run-length encoding (RLE) compression is used.
AP_LZ9_COMPRESSION

LZ9 compression is used.
AP_LZ10_COMPRESSION

LZ10 compression is used.
session_detail.slu_plu_comp_lvl

Specifies the compression level for data sent from the secondary LU (SLU) to the primary LU (PLU).
Possible values are:
AP_NONE

Compression is not used.
AP_RLE_COMPRESSION

Run-length encoding (RLE) compression is used.
AP_LZ9_COMPRESSION

LZ9 compression is used.
AP_LZ10_COMPRESSION

LZ10 compression is used.
session_detail.rscv_len

Length of the RSCV which is appended to the session_detail structure. (If none is appended, then
the length is zero.)

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:

QUERY_SESSION

514 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_LU_ALIAS
The specified lu_alias parameter was not valid.

AP_INVALID_LU_NAME
The specified lu_name parameter was not valid.

AP_INVALID_SESSION_ID
The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied value, but the session_id parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_SNA_NET
QUERY_SNA_NET returns information about servers that can act as backup servers, as defined in the
sna.net file. It can be used to obtain information about a specific server or about multiple servers,
depending on the options used.

The ordering of server names in this file is significant; the first server listed in the file will always be the
controller if it is active, the second will be the controller if the first is inactive, the third will be the
controller if the first and second are both inactive, and so on. Because of this, the list of server names
returned on QUERY_SNA_NET is in the same order as it is in the file; the returned names are not ordered
by name length and lexicographical ordering, as with other QUERY_* verbs.

This verb must be issued to the sna.net file.

VCB structure
typedef struct query_sna_net
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char security; /* reserved */
 unsigned char domain_name[64]; /* domain name */
 unsigned char server_name[128]; /* controller or backup server name */
 unsigned char reserv4[4]; /* reserved */
} QUERY_SNA_NET;

typedef struct backup_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char reserv1[2]; /* reserved */
 unsigned char server_name[128]; /* controller or backup server name */
 unsigned char reserv2[4]; /* reserved */
} BACKUP_SUMMARY;

Supplied parameters
The application supplies the following parameters:

QUERY_SNA_NET

Chapter 3. NOF API Verbs 515

opcode
AP_QUERY_SNA_NET

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of server names for which data should be returned. To request a specific entry
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data.

Specify one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the server_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the server_name parameter.

For more information about how the application can obtain specific entries from the list, see “List
options for QUERY_* Verbs” on page 33. The server names are listed in the same order as in the file,
not in order of name length and/or lexicographical order as for other QUERY_* verbs.

server_name
Name of the server for which information is required, or the name to be used as an index into the list
of servers. The server name is ignored if list_options is set to AP_FIRST_IN_LIST.

If the server name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the server name.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

domain_name
The name of the TCP/IP domain containing the CS/AIX LAN. This name was specified during
installation of the controller server.

Each entry in the data buffer consists of the following parameters:

QUERY_SNA_NET

516 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

backup_summary.overlay_size
The size of the returned backup_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each backup_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

backup_summary.server_name
Server name.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_RECORD_NOT_FOUND

The list_options parameter was set to AP_LIST_INCLUSIVE or AP_LIST_FROM_NEXT to list
entries starting from the supplied server name, but the backup_name parameter did not match an
entry in the file. If the supplied name was one returned on a previous QUERY_SNA_NET verb, this
indicates that the list has been updated (by another administration program or NOF application)
since the previous verb; the application should reissue QUERY_SNA_NET to obtain the complete
list.

AP_INVALID_TARGET
The target handle on the NOF API call specified a configuration file or a node. This verb must be
issued to the sna.net file.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_STATISTICS
QUERY_STATISTICS returns statistics on the usage of an LS. The Enterprise Extender (HPR/IP) link type
does not support link statistics; do not issue this verb for an Enterprise Extender LS or port.

This verb must be issued to a running node.

QUERY_STATISTICS

Chapter 3. NOF API Verbs 517

VCB structure
typedef struct query_statistics
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char name[8]; /* LS name or port name */
 unsigned char stats_type; /* LS or port statistics? */
 unsigned char table_type; /* statistics table requested */
 unsigned char reset_stats; /* reset the statistics? */
 unsigned char dlc_type; /* type of DLC */
 unsigned char statistics[256]; /* current statistics */
 unsigned char reserva[20]; /* reserved */
} QUERY_STATISTICS;

LS statistics:

typedef struct vdl_ls_statistics
{
 V0_MUX_INFO mux_info; /* streams config info */
 AP_UINT32 ls_st_mus_sent; /* Frames sent from this Link Stn */
 AP_UINT32 ls_st_mus_received; /* Frames received at this Link Stn */
 AP_UINT32 ls_st_bytes_sent; /* Bytes sent from this Link Stn */
 AP_UINT32 ls_st_bytes_received; /* Bytes received at this Link Stn */
 AP_UINT32 ls_st_test_cmds_sent; /* test commands sent */
 AP_UINT32 ls_st_test_cmds_rec; /* test commands received */
 AP_UINT32 ls_st_data_pkt_resent; /* sequenced data packets resent */
 AP_UINT32 ls_st_inv_pkt_rec; /* invalid packets received */
 AP_UINT32 ls_st_adp_rec_err; /* data detected receive errors */
 AP_UINT32 ls_st_adp_send_err; /* data_detected transmit errors */
 AP_UINT32 ls_st_rec_inact_to; /* received inactivity timeouts */
 AP_UINT32 ls_st_cmd_polls_sent; /* command polls sent */
 AP_UINT32 ls_st_cmd_repolls_sent; /* command repolls sent */
 AP_UINT32 ls_st_cmd_cont_repolls; /* max continuous repolls sent */
} VDL_LS_STATISTICS;

typedef struct v0_mux_info
{
 AP_UINT16 dlc_type; /* DLC implementation type */
 unsigned char need_vrfy_fixup; /* reserved */
 unsigned char num_mux_ids; /* reserved */
 AP_UINT32 card_type; /* type of adapter card */
 AP_UINT32 adapter_number; /* DLC adapter number */
 AP_UINT32 oem_data_length; /* reserved */
 AP_INT32 mux_ids[5]; /* reserved */
} V0_MUX_INFO;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_STATISTICS

name
Name of the LS for which statistics are required. This is an 8-byte ASCII string, padded on the right
with spaces if the name is shorter than 8 bytes. CS/AIX uses this name to correlate the response to
the correct link station.

stats_type
The type of resource for which statistics are requested. Set this to AP_LS.

table_type
The type of statistics information requested. Set this to AP_STATS_TBL.

reset_stats
Specifies whether to reset the statistics when this verb completes. Possible values are:

QUERY_STATISTICS

518 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
Reset the statistics; a subsequent QUERY_STATISTICS verb will contain only data gathered after
this verb was issued.

AP_NO
Do not reset the statistics; the data on this verb will be included in the data returned to a
subsequent QUERY_STATISTICS verb.

dlc_type
Type of the DLC. Possible values are:
AP_SDLC

Synchronous data link control
AP_TR

Token Ring
AP_ETHERNET

Ethernet
AP_X25

X.25 packet switching

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

dlc_type
Type of DLC for which statistics information is being returned. Possible values are:
AP_SDLC

SDLC
AP_X25

QLLC
AP_TR

Token Ring
AP_ETHERNET

Ethernet
statistics

Current statistics for the link station. This string is replaced by the appropriate structure for the DLC
type. The parameters in the structure are described below.

mux_info.dlc_type, mux_info.card_type, mux_info.adapter_number
Streams configuration information for the DLC. For more information about these parameters, see
“DEFINE_DLC” on page 74.

vdl_ls_statistics.ls_st_mus_sent
Number of frames sent from CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_mus_received
Number of frames received by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_bytes_sent
Number of bytes sent from CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_bytes_received
Number of bytes received by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_test_cmds_sent
Number of TEST commands sent by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_test_cmds_rec
Number of TEST commands received by CS/AIX on this LS since the LS was started.

QUERY_STATISTICS

Chapter 3. NOF API Verbs 519

vdl_ls_statistics.ls_st_data_pkt_resent
Number of sequenced data packets resent by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_inv_pkt_rec
Number of invalid packets received by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_adp_rec_err
Number of data detected receive errors on this LS since the LS was started.

vdl_ls_statistics.ls_st_adp_send_err
Number of data detected transmit errors on this LS since the LS was started.

vdl_ls_statistics.ls_st_rec_inact_to
Number of received inactivity timeouts on this LS since the LS was started.

vdl_ls_statistics.ls_st_cmd_polls_sent
Number of command polls sent by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_cmd_repolls_sent
Number of command repolls sent by CS/AIX on this LS since the LS was started.

vdl_ls_statistics.ls_st_cmd_cont_repolls
Maximum number of continuous repolls sent by CS/AIX on this LS since the LS was started.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LINK_NAME

The supplied name parameter was not a valid LS name.
AP_INVALID_STATS_TYPE

The stats_type parameter was not set to a valid value.
AP_INVALID_TABLE_TYPE

The table_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_LINK_DEACTIVATED

The specified link is not currently active.
AP_PORT_DEACTIVATED

The specified port is not currently active.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute because the DLC type does not support returning statistics information,
CS/AIX returns the following parameter:

QUERY_STATISTICS

520 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_FUNCTION_NOT_SUPPORTED

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_ACCESS_DEF
QUERY_TN3270_ACCESS_DEF returns information about TN3270 users on other computers that can use
the TN server feature of CS/AIX to access a host for 3270 emulation using TN3270 Server. (To return
information about users accessing the host using TN Redirector, use QUERY_TN_REDIRECT_DEF.)

This verb can return either summary or detailed information, about a single user or multiple users,
depending on the options used.

VCB structure
typedef struct query_tn3270_access_def
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 AP_UINT16 default_record; /* start with DEFAULT record? */
 unsigned char client_address[256]; /* address of TN3270 user */
 AP_UINT16 port_number; /* TCP/IP port to access server */
 AP_UINT32 num_init_sessions; /* number of sessions for first */
 /* user when starting in middle */
 AP_UINT32 num_last_sessions; /* number of sessions on last */
 /* detail overlay if last user */
 /* is incomplete */
 unsigned char last_user_incomplete; /* set to AP_YES if session */
 /* data for last user incomplete*/
 unsigned char reserv4[11]; /* Reserved */
} QUERY_TN3270_ACCESS_DEF;

typedef struct tn3270_access_summary
{
 AP_UINT16 overlay_size; /* overlay size */
 AP_UINT16 default_record; /* is this the DEFAULT record? */
 unsigned char client_address[256]; /* address of TN3270 user */
 AP_UINT16 address_format; /* Format of client address */
 unsigned char reserv3[6]; /* Reserved */
} TN3270_ACCESS_SUMMARY;

typedef struct tn3270_access_detail
{
 AP_UINT16 overlay_size; /* overlay size */
 AP_UINT16 sub_overlay_offset; /* offset to first sess struct*/
 AP_UINT16 default_record; /* is this the DEFAULT record?*/
 unsigned char client_address[256]; /* address of TN3270 user */
 AP_UINT32 num_filtered_sessions;/* num sess returned for user */
 unsigned char reserv3[4]; /* Reserved */
 TN3270_ACCESS_DEF_DATA def_data; /* user definition */
} TN3270_ACCESS_DETAIL;

typedef struct tn3270_access_def_data
{
 unsigned char description[32]; /* Description - null terminated */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 address_format; /* Format of client address */

QUERY_TN3270_ACCESS_DEF

Chapter 3. NOF API Verbs 521

 AP_UINT32 num_sessions; /* Number of sessions being added */
 unsigned char reserv3[64]; /* reserved */
} TN3270_ACCESS_DEF_DATA;

For each session, up to the number specified by the num_sessions parameter, the following structure is
included at the end of the def_data structure:

typedef struct tn3270_session_def_data
{
 AP_UINT16 sub_overlay_size; /* reserved */
 unsigned char description[32]; /* Session description */
 unsigned char tn3270_support; /* Level of TN3270 support */
 unsigned char allow_specific_lu; /* Allow access to specific LUs */
 unsigned char printer_lu_name[8]; /* Generic printer LU/pool */
 /* accessed */
 unsigned char reserv1[6]; /* reserved */
 AP_UINT16 port_number; /* TCP/IP port used to access */
 /* server */
 unsigned char lu_name[8]; /* Generic display LU/pool */
 /* accessed */
 unsigned char session_type; /* Unused in current version */
 unsigned char model_override; /* Unused in current version */
 unsigned char ssl_enabled; /* Is this an SSL session? */
 unsigned char security_level; /* SSL encryption strength */
 unsigned char cert_key_label[80]; /* Certificate key label */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
 unsigned char allow_ssl_timeout_to_nonssl;
 /* Allow non-SSL clients on SSL? */
 unsigned char reserv3[17];
 AP_UINT32 reserv4; /* reserved */
} TN3270_SESSION_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_TN3270_ACCESS_DEF

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of users for which data should be returned. If detailed information about user
sessions is being returned, this number includes partial entries (for which a client address is specified,
so that the returned data does not include the user definition or the user's first session).

To request data for a specific user rather than a range, specify the value 1. To return as many entries
as possible, specify zero; in this case, CS/AIX will return the maximum number of entries that can be
accommodated in the supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first session for the first user in the list.

QUERY_TN3270_ACCESS_DEF

522 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_LIST_INCLUSIVE
Start at the entry specified by the supplied client address and port number, or start at the first
session for the specified client address if no port number is specified.

AP_LIST_FROM_NEXT
If a port number is specified, start at the session immediately following the session with the
specified port number. If no port number is specified, start at the first session for the specified
client address.

The list is ordered by client address and then by port number for each user. For more information
about how the list is ordered and how the application can obtain specific entries from it, see “List
options for QUERY_* Verbs” on page 33.

default_record
Specifies whether the requested entry (or the entry to be used as an index into the list) is the default
record.

To query the default record, which is used by any TN3270 user not explicitly identified by a TCP/IP
address, specify AP_YES. In this case, the client_address parameter is reserved.

To query a normal TN3270 user record, specify AP_NO.

client_address
The TCP/IP address of the TN3270 user for whom information is required, or the name to be used as
an index into the list of users. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.
The address is a null-terminated ASCII string, which can be any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

port_number
To return information starting with a specific session for the specified user, set this parameter to the
TCP/IP port number defined for that session. To return information starting at the first session for the
specified user, set this parameter to zero.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than buf_size.

total_num_entries
Total number of entries that could have been returned. This may be higher than num_entries.

num_entries
The number of entries actually returned. The last entry may be incomplete; this is indicated by the
last_user_incomplete parameter.

num_init_sessions
If the port_number parameter was set to a nonzero value, so that the information for the first user in
the list does not start with the user's first session, this parameter indicates the number of session
structures for this user that are included in the returned data. Otherwise, this parameter is not used.

QUERY_TN3270_ACCESS_DEF

Chapter 3. NOF API Verbs 523

num_last_sessions
If the last_user_incomplete parameter indicates that the data for the last user is incomplete, this
parameter indicates the number of session structures for this user that are included in the returned
data. Otherwise, this parameter is not used.

last_user_incomplete
Specifies whether the information for the last user is incomplete. Possible values are:
AP_YES

The complete data for the last user was too large to fit in the data buffer. At least one session
structure is included, but there are further session structures that are not included in the data
buffer. The num_last_sessions parameter indicates how many session structures have been
returned; the application can issue further verbs to obtain the remaining data.

AP_NO
The data for the last user is complete.

Each entry in the data buffer consists of the following:

tn3270_access_summary.overlay_size
The size of the returned tn3270_access_summary structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each
tn3270_access_summary structure in turn, it must use this value to move to the correct offset for
the next data structure, and must not use the C sizeof() operator. This is because the size of the
returned overlay may increase in future releases of CS/AIX; using the returned overlay size ensures
that your application will continue to work with future releases.

tn3270_access_summary.default_record
Specifies whether this entry is the default record. Possible values are:
AP_YES

This is the default record. The client_address parameter is reserved.
AP_NO

This is a normal TN3270 user record.
tn3270_access_summary.client_address

The TCP/IP address of the TN3270 user. This can be any of the following; the address_format
parameter indicates whether it is an IP address or a name.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

tn3270_access_summary.address_format
Specifies the format of the client_address parameter. Possible values are:
AP_ADDRESS_IP

IP address (either IPv4 or IPv6)
AP_ADDRESS_FQN

Alias or fully qualified name
tn3270_access_detail.overlay_size

The size of the returned tn3270_access_detail structure, and therefore the offset to the start of
the next entry in the data buffer.

When your application needs to go through the returned buffer to find each tn3270_access_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

QUERY_TN3270_ACCESS_DEF

524 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

tn3270_access_detail.sub_overlay_offset
The offset to the start of the first session data structure for this TN3270 access record in the data
buffer.

tn3270_access_detail.default_record
Specifies whether this entry is the default record. Possible values are:
AP_YES

This is the default record. The client_address parameter is reserved.
AP_NO

This is a normal TN3270 user record.
tn3270_access_detail.client_address

The TCP/IP address of the TN3270 user. This is a null-terminated ASCII string, which can be any of
the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

tn3270_access_detail.num_filtered_sessions
The number of sessions returned for this user.

tn3270_access_detail.def_data
The details of the user, as defined in the configuration. This is followed by a number of session
structures defining the user's sessions. The format of this information is the same as for the
DEFINE_TN3270_ACCESS verb, except for the following:

• The num_sessions parameter in the def_data structure defines the total number of sessions
defined for the user.

• If the port_number parameter was set to a nonzero value, the data for the first user will contain only
the remaining session structures (starting from the requested entry), without the def_data
structure.

• If the last_user_incomplete parameter is set to AP_YES, the total number of session structures
returned for the last user will be as specified by the num_last_sessions parameter; this will be less
than num_sessions.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CLIENT_ADDRESS

The list_options parameter was set to AP_LIST_INCLUSIVE, but the client_address parameter
did not match the address of any defined TN3270 user.

AP_INVALID_PORT_NUMBER
The list_options parameter was set to AP_LIST_INCLUSIVE, but the port_number parameter did
not match a port number defined for the specified TN3270 user.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

QUERY_TN3270_ACCESS_DEF

Chapter 3. NOF API Verbs 525

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_ASSOCIATION
QUERY_TN3270_ASSOCIATION returns information about associations between display LUs and printer
LUs. Associations are queried by display LU name and are returned in order of display LU name.

This verb can be used to obtain information about a specific association or about multiple associations,
depending on the options used.

VCB structure
typedef struct query_tn3270_association
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char display_lu_name[8]; /* Display LU name */
} QUERY_TN3270_ASSOCIATION;

typedef struct tn3270_association
{
 AP_UINT16 overlay_size; /* Overlay size */
 unsigned char reserv2[2]; /* reserved */
 unsigned char display_lu_name[8]; /* Display LU name */
 TN3270_ASSOCIATION_DEF_DATA def_data; /* association definition */
} TN3270_ASSOCIATION;

typedef struct tn3270_association_def_data
{
 unsigned char description[32]; /* resource description */
 unsigned char reserve0[16]; /* reserved */
 unsigned char printer_lu_name[8]; /* name of printer LU/pool */
 unsigned char reserv2[8]; /* reserved */
} TN3270_ASSOCIATION_DEF_DATA;

Data is returned in the form of tn3270_association structures.

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_TN3270_ASSOCIATION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of associations for which data should be returned. To request data for a specific
association rather than a range, specify the value 1. To return as many entries as possible, specify 0;
in this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

QUERY_TN3270_ASSOCIATION

526 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

list_options
The position in the list of associations from which CS/AIX begins to return data. Specify one of the
following values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the display_lu_name parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the display_lu_name parameter.
display_lu_name

Name of the display LU for which association information is required or the name to be used as an
index into the list of associations. The display LU name is an EBCDIC string padded on the right with
EBCDIC spaces. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than the value supplied for the buf_size parameter.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This may be higher than the value supplied for
the num_entries parameter.

Each entry in the data buffer consists of the following:

tn3270_association.overlay_size
The size of the returned tn3270_association structure (and therefore the offset to the start of the
next entry in the data buffer).

When your application needs to go through the returned buffer to find each tn3270_association
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

tn3270_association.display_lu_name
Name of the display LU associated with the printer LU specified by the association.printer_lu_name
parameter. This is an EBCDIC string padded on the right with EBCDIC spaces.

tn3270_association_def_data.description
A null-terminated text string that describe the association, as specified in the definition of the
association.

tn3270_association_def_data.printer_lu_name
Name of the printer LU associated with the display LU specified by the association.display_lu_name
parameter. This is an EBCDIC string padded on the right with EBCDIC spaces.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

QUERY_TN3270_ASSOCIATION

Chapter 3. NOF API Verbs 527

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.
AP_INVALID_LU_NAME

Indicates one of the following:

• The list_options parameter was set to AP_LIST_FROM_NEXT, but the display LU name was not a
valid EBCDIC string.

• The list_options parameter was set to AP_LIST_INCLUSIVE, but the display LU name either
was not a valid EBCDIC string or did not correspond to an existing association record.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_DEFAULTS
QUERY_TN3270_DEFAULTS returns information about TN3270 parameters used on all client sessions.

If you are using Secure Sockets Layer (SSL) client authentication, and checking clients against a certificate
revocation list on an external LDAP server, use the QUERY_TN3270_SSL_LDAP verb to return details of
how to access this server.

VCB structure
typedef struct query_tn3270_defaults
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN3270_DEFAULTS_DEF_DATA def_data; /* TN3270 defaults */
} QUERY_TN3270_DEFAULTS;

typedef struct tn3270_defaults_def_data
{
 AP_UINT16 force_responses; /* force printer responses? */
 AP_UINT16 keepalive_method; /* method for sending keep-alives */
 AP_UINT32 keepalive_interval; /* interval between keep-alives */
 unsigned char reserv2[32]; /* reserved */
} TN3270_DEFAULTS_DEF_DATA;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN3270_DEFAULTS

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

QUERY_TN3270_DEFAULTS

528 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_OK

def_data.force_responses
Controls client responses on printer sessions. Possible values are:
AP_YES

Requests definite responses.
AP_NO

Request responses matching SNA traffic.
def_data.keepalive_method

Method for sending keep-alive messages. Keep-alive messages are messages sent to TN3270 clients
when there is no other activity on the connection, to keep the TCP/IP connections to the clients active;
this ensures that failed connections and clients can be detected. If there is no traffic at all on a TCP/IP
connection, failure of the connection or of the client may never be detected, which wastes TN server
resources and prevents LUs from being used for other sessions.

Possible values are:

AP_NONE
Do not send keep-alive messages.

AP_TN3270_NOP
Send Telnet NOP messages.

AP_TN3270_TM
Send Telnet DO TIMING-MARK messages.

def_data.keepalive_interval
Interval (in seconds) between consecutive keep-alive messages. The interval should be long enough
to minimize network traffic, especially if there are typically many idle client connections. The shorter
the keep-alive interval, the quicker failures are detected, but the more network traffic is generated. If
the keep-alive interval is too short and there are many clients, this traffic can be significant.

Because of the way TCP/IP operates, the keepalive interval that you configure is not the exact time
that it will take for the server to recognize that a client has disappeared. The exact time depends on
various factors, but will be no more than twice the configured timeout plus a few extra minutes (the
exact number depends on how TCP/IP is configured).

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_EXPRESS_LOGON
QUERY_TN3270_EXPRESS_LOGON returns information about the TN3270 Express Logon feature. This
feature means that TN3270 client users who connect to CS/AIX TN Server or TN Redirector using the
Secure Sockets Layer (SSL) client authentication feature do not need to supply the user ID and password
normally used for TN3270 security. Instead, their security certificate is checked against a Digital
Certificate Access Server (DCAS) at the host, which supplies the required user ID and password.

VCB structure
typedef struct query_tn3270_express_logon
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dcas_server[256]; /* IP hostname of DCAS server */
 AP_UINT16 dcas_port; /* port number to access server */
 unsigned char enabled; /* is Express Logon enabled? */

QUERY_TN3270_EXPRESS_LOGON

Chapter 3. NOF API Verbs 529

 unsigned char reserv3[33]; /* reserved */
} QUERY_TN3270_EXPRESS_LOGON;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN3270_EXPRESS_LOGON

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

dcas_server
The TCP/IP address of the host DCAS server that handles Express Logon authorization. This can be
specified as any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

dcas_port
The TCP/IP port number used to access the DCAS server.

enabled
Specifies whether the TN3270 Express Logon function is enabled. Possible values are:
AP_YES

The function is enabled, so TN3270 clients can access the host without needing to specify a user
ID and password.

AP_NO
The function is not enabled, so TN3270 clients must specify a user ID and password.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_SLP
QUERY_TN3270_SLP returns information about whether CS/AIX TN Server provides Service Location
Protocol (SLP) support, and how the TN Server advertises its services for use by TN3270 clients. This
information was specified using the DEFINE_TN3270_SLP verb.

VCB structure
typedef struct query_tn3270_slp
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 TN3270_SLP slp_config; /* SLP configuration */
 TN3270_SLP_DET_DATA det_data; /* SLP determined data */
} QUERY_TN3270_SLP;

QUERY_TN3270_SLP

530 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

typedef struct tn3270_slp
{
 unsigned char enable_load_balancing; /* Use this feature? */
 unsigned char reserve1; /* Reserved */
 AP_UINT16 load_advertisement_freq; /* Frequency of calculating load */
 AP_UINT16 load_change_threshold; /* Change in load required to */
 /* readvertise */
 AP_INT16 load_factor; /* Percentage factor to apply to */
 /* load */
 unsigned char num_scopes; /* count of SLP scope names */
 TN3270_SLP_SCOPE slp_scopes[10]; /* A set of scopes for the */
 /* TN3270 SLP/SA */
 unsigned char reserved[64]; /* Reserved */
} TN3270_SLP;

typedef struct tn3270_slp_scope
{
 unsigned char scope[32]; /* Scope (null-terminated string) */
} TN3270_SLP_SCOPE;

typedef struct tn3270_slp_det_data
{
 AP_UINT16 current_load; /* Advertised load */
 unsigned char reserved[30]; /* Reserved */
} TN3270_SLP_DET_DATA;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN3270_SLP

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

slp_config.enable_load_balancing
Specifies whether TN Server provides SLP support. Possible values are:
AP_YES

TN Server provides SLP support.
AP_NO

TN Server does not provide SLP support. All other parameters for this verb are reserved.
slp_config.load_advertisement_freq

Specifies the time interval (in seconds) at which CS/AIX recalculates the load on TN Server, to
determine whether the load has changed significantly and needs to be re-advertised.

slp_config.load_change_threshold
Specifies the change in load that is considered significant and requires re-advertising of the current
load. When CS/AIX recalculates the load on TN Server, it checks whether the current load differs from
the advertised load by more than this amount (either higher or lower), and advertises the new load
only if the difference is significant. For example, if the last advertised load value is 30%, a value of 10
indicates that CS/AIX re-advertises the load only if the current load becomes higher than 40% or
lower than 20%.

slp_config.load_factor
Specifies a percentage factor that CS/AIX should apply to the advertised load, to provide better
balancing between TN Servers of different capacities. For example, if one TN Server is running on a
faster computer with more available memory than another TN Server, you will probably want clients to
choose the first TN Server when both have the same load (in terms of the percentage of their host LUs
that are in use). In this case, specify a lower load_factor for the first TN Server and a higher one for

QUERY_TN3270_SLP

Chapter 3. NOF API Verbs 531

the second TN Server, so that the second TN Server's advertised load is higher even when the actual
percentage load is the same.

The load factor is a percentage in the range -100 - 100. The advertised load is calculated by adding
100 to this value and multiplying the actual percentage load by the result. For example, if the load
factor is -80, the advertised load is the actual load multiplied by(-80 + 100) or 20%; if the load
factor 50, the advertised load is the actual load multiplied by(50 + 100) or 150%.

slp_config.slp_scopes
In a large SLP network with many TN Servers and TN3270 clients, you may need to restrict the range
of TN Servers that each client can access. To do this, you can define a number of scopes, each of
which identifies a logical segment of the network. Each client and each Directory Agent is assigned to
a particular scope; a TN Server advertises its services only to clients and Directory Agents that have
the correct scope.

If each element of this array is set to a null string, the TN Server's services are advertised to any
TN3270 client or Directory Agent.

Any non-null strings in this array specify scope names for which this TN Server provides services. Each
scope name is an ASCII string (terminated by a null character); all clients and Directory Agents that
are to have access to the TN Server must have a scope name defined that matches a scope name
defined for the TN Server. Any unused scope names are set to null strings.

det_data.current_load
The load currently being advertised by this TN Server.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_SLP_TRACE
This verb returns information about the current tracing options for the CS/AIX TN3270 Service Location
Protocol feature.

This verb must be issued to a running node.

VCB structure
typedef struct query_tn3270_slp_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 unsigned char reserv3[6]; /* Reserved */
} QUERY_TN3270_SLP_TRACE;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN3270_SLP_TRACE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

QUERY_TN3270_SLP_TRACE

532 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Not used.

trace_flags
The types of tracing currently active.

If no tracing is active, or if tracing of all types is active, this is one of the following values:

AP_TN3270_SLP_NO_TRACE
No tracing.

AP_TN3270_SLP_ALL_TRACE
Tracing of all types.

If tracing is being used on specific interfaces, this parameter is set to one or more values from the list
below, combined using a logical OR operation.

AP_TN3270_SLP_TRC_CFG
Configuration message tracing: messages relating to the configuration of TN3270 SLP

AP_TN3270_SLP_TRC_NOF
Internal node operator function (NOF) tracing: trace NOF requests made by TN3270 SLP

AP_TN3270_SLP_TRC_TCP
TCP/IP interface tracing: messages between TN3270 SLP and TN3270 clients

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_SSL_LDAP
QUERY_TN3270_SSL_LDAP returns information about how to access a certificate revocation list for use
with the Secure Sockets Layer (SSL) client authentication feature. This information was specified using
the DEFINE_TN3270_SSL_LDAP verb.

VCB structure
typedef struct query_tn3270_ssl_ldap
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* reserved */
 AP_UINT16 total_num_entries; /* reserved */
 unsigned char list_options; /* reserved */
 unsigned char reserv3; /* reserved */
} QUERY_TN3270_SSL_LDAP;

typedef struct tn3270_ssl_ldap_def_data
{
 AP_UINT16 overlay_size; /* reserved */
 unsigned char auth_type; /* type of authorization checking */
 unsigned char reserv1; /* reserved */
 unsigned char ldap_addr[256]; /* address of LDAP server */
 AP_UINT16 ldap_port; /* port number to access server */
 unsigned char ldap_user[1024]; /* user ID on LDAP server */
 unsigned char ldap_password[128]; /* password on LDAP server */
 unsigned char reserv2[256]; /* reserved */
} TN3270_SSL_LDAP_DEF_DATA;

QUERY_TN3270_SSL_LDAP

Chapter 3. NOF API Verbs 533

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN3270_SSL_LDAP

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return the complete
information. This may be higher than the value supplied for the buf_size parameter.

The following information is returned in the data buffer:

def_data.auth_type
Specifies the type of authorization checking performed by the TN Server or TN Redirector. Possible
values are:
AP_LOCAL_ONLY

The server checks client certificates locally, but does not use an external certificate revocation list.
The parameters ldap_addr - ldap_password are reserved.

AP_LOCAL_X500
The server checks certificates locally, and also checks against an external certificate revocation
list. The remaining parameters in this data structure specify the location of this list.

def_data.ldap_addr
The TCP/IP address of the LDAP server that holds the certificate revocation list. This can be specified
as any of the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).
• A name (such as newbox.this.co.uk).
• An alias (such as newbox).

def_data.ldap_port
The TCP/IP port number used to access the LDAP server. The range is 0-65535.

def_data.ldap_user
The user name used to access the certificate revocation list on the LDAP server.

def_data.ldap_password
The password used to access the certificate revocation list on the LDAP server.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN3270_SSL_LDAP

534 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

QUERY_TN_REDIRECT_DEF
QUERY_TN_REDIRECT_DEF returns information about Telnet clients on other computers that can use the
TN Redirector feature of CS/AIX to access a host. It can return either summary or detailed information,
about a single user or multiple users, depending on the options used.

VCB structure
typedef struct query_tn_redirect_def
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3[3]; /* reserved */
 TN_REDIRECT_ADDRESS addr; /* Uniquely defines record */
} QUERY_TN_REDIRECT_DEF;

typedef struct tn_redirect_data
{
 AP_UINT16 overlay_size; /* overlay size */
 unsigned char reserv1[2]; /* Reserved */
 TN_REDIRECT_ADDRESS addr; /* addressing information */
 TN_REDIRECT_DEF_DATA def_data; /* definitions for the client */
} TN_REDIRECT_DATA;

typedef struct tn_redirect_address
{
 AP_UINT16 default_record; /* Is this the default record ? */
 unsigned char address_format; /* IP address or fully-qualified name */
 unsigned char client_address[256]; /* Client address */
 AP_UINT16 port_number; /* Port number that client connects on */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
 unsigned char reserved[34]; /* reserved */
} TN_REDIRECT_ADDRESS;

typedef struct tn_redirect_def_data
{
 unsigned char description[32]; /* Description - null terminated */
 unsigned char reserve0[16]; /* Reserved */
 unsigned char cli_ssl_enabled; /* Is the client session SSL? */
 unsigned char host_ssl_enabled; /* Is the host session SSL? */
 unsigned char host_address_format; /* Type of IP address for the host */
 unsigned char reserv1; /* Reserved */
 unsigned char host_address[256]; /* Host address */
 AP_UINT16 host_port_number; /* Port number to connect to host */
 unsigned char cli_conn_security_level; /* SSL encryption strength */
 unsigned char serv_conn_security_level; /* SSL encryption strength */
 unsigned char cli_conn_cert_key_label[80]; /* Key label for certificate */
 unsigned char serv_conn_cert_key_label[80]; /* Key label for certificate */
 unsigned char reserved[46]; /* Reserved */
} TN_REDIRECT_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_TN_REDIRECT_DEF

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

QUERY_TN_REDIRECT_DEF

Chapter 3. NOF API Verbs 535

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of users for which data should be returned. To request data for a specific user
rather than a range, specify the value 1. To return as many entries as possible, specify zero; in this
case, CS/AIX will return the maximum number of entries that can be accommodated in the supplied
data buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify one of the following values:
AP_FIRST_IN_LIST

Start at the first user in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the supplied client addressing information.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the supplied client addressing
information.

The list is ordered by client address. For more information about how the list is ordered and how the
application can obtain specific entries from it, see “List options for QUERY_* Verbs” on page 33.

addr
Specifies addressing information for the Telnet client for whom information is required, or the user to
be used as an index into the list of users. For more information about the contents of this data
structure, see “DEFINE_TN_REDIRECT” on page 194.

The information in this structure is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. This may be higher than buf_size.

total_num_entries
Total number of entries that could have been returned. This may be higher than num_entries.

num_entries
The number of entries actually returned.

tn_redirect_data.overlay_size
The size of the returned tn_redirect_data structure, and therefore the offset to the start of the
next entry in the data buffer.

When your application needs to go through the returned buffer to find each tn_redirect_data
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

tn_redirect_data.addr
Specifies addressing information for the Telnet client. For more information about the contents of this
data structure, see “DEFINE_TN_REDIRECT” on page 194.

QUERY_TN_REDIRECT_DEF

536 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

tn_redirect_data.def_data
Specifies definitions for the Telnet client. For more information about the contents of this data
structure, see “DEFINE_TN_REDIRECT” on page 194.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_CLIENT_ADDRESS

The list_options parameter was set to AP_LIST_INCLUSIVE, but the supplied addressing
information did not match any defined TN Redirector user.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TN_SERVER_TRACE
This verb returns information about the current tracing options for the CS/AIX TN server feature.

This verb must be issued to a running node.

VCB structure
typedef struct query_tn_server_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 unsigned char reserv3[6]; /* Reserved */
} QUERY_TN_SERVER_TRACE;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TN_SERVER_TRACE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

QUERY_TN_SERVER_TRACE

Chapter 3. NOF API Verbs 537

trace_flags
The types of tracing currently active.

If no tracing is active, or if tracing of all types is active, this is one of the following values:

AP_TN_SERVER_NO_TRACE
No tracing.

AP_TN_SERVER_ALL_TRACE
Tracing of all types.

If tracing is being used on specific interfaces, this parameter is set to one or more values from the list
below, combined using a logical OR operation.

AP_TN_SERVER_TRC_TCP
TCP/IP interface tracing: messages between TN server and TN3270 clients

AP_TN_SERVER_TRC_FM
Node interface tracing: internal control messages, and messages between TN server and TN3270
clients (in internal format)

AP_TN_SERVER_TRC_CFG
Configuration message tracing: messages relating to the configuration of TN server

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TP
QUERY_TP returns information about TPs that are currently using a local LU. This verb can be used to
obtain information about a specific TP or about multiple TPs, depending on the options used. This verb
returns information about current usage of the TPs, not about their definition; use
QUERY_TP_DEFINITION to obtain the definition of the TPs.

This verb must be issued to a running node.

VCB structure
typedef struct query_tp
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char tp_name[64]; /* TP name */
} QUERY_TP;

typedef struct tp_data
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char tp_name[64]; /* TP name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 instance_limit; /* maximum instance count */
 AP_UINT16 instance_count; /* current instance count */
 AP_UINT16 locally_started_count; /* locally started instance */
 /* count */
 AP_UINT16 remotely_started_count; /* remotely started instance */

QUERY_TP

538 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 /* count */
 unsigned char reserva[20]; /* reserved */
} TP_DATA;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_TP

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of TPs for which data should be returned. To request data for a specific TP rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list of TPs from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of LU name and TP name.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of LU name and TP
name.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

lu_name
LU name. This is an 8-byte type-A EBCDIC string, padded on the right with spaces if the name is
shorter than 8 characters. To specify that the LU is identified by its alias rather than its LU name, set
this parameter to 8 binary zeros and specify the LU alias in the following parameter. To specify the LU
associated with the local CP (the default LU), set both lu_name and lu_alias to binary zeros.

lu_alias
Locally defined LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. This parameter is used only if lu_name is set to 8 binary zeros; it is ignored
otherwise. To specify the LU associated with the local CP (the default LU), set both lu_name and
lu_alias to binary zeros.

tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters. This value is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

QUERY_TP

Chapter 3. NOF API Verbs 539

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

tp_data.overlay_size
The size of the returned tp_data structure, and therefore the offset to the start of the next entry in
the data buffer.

When your application needs to go through the returned buffer to find each tp_data structure in turn,
it must use this value to move to the correct offset for the next data structure, and must not use the C
sizeof() operator. This is because the size of the returned overlay may increase in future releases of
CS/AIX; using the returned overlay size ensures that your application will continue to work with future
releases.

tp_data.tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters.

tp_data.description
A null-terminated text string describing the TP, as specified in the definition of the TP.

tp_data.instance_limit
Maximum number of concurrently active instances of the specified TP.

tp_data.instance_count
Number of instances of the specified TP that are currently active.

tp_data.locally_started_count
Number of instances of the TP that have been started locally (by the TP issuing a TP_STARTED verb).

tp_data.remotely_started_count
Number of instances of the TP that have been started remotely (by a received Attach request).

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LIST_OPTION

The list_options parameter was not set to a valid value.
AP_INVALID_LU_ALIAS

The supplied lu_alias parameter was not valid.
AP_INVALID_LU_NAME

The supplied lu_name parameter was not valid.
AP_INVALID_TP_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the tp_name parameter was not valid.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

QUERY_TP

540 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TP_DEFINITION
QUERY_TP_DEFINITION returns information about TPs defined on the CS/AIX system. This verb can be
used to obtain information about a specific TP or about multiple TPs, depending on the options used. It
returns information about the definition of the TPs, not about their current usage; use QUERY_TP to obtain
the usage information.

VCB structure
typedef struct query_tp_definition
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char tp_name[64]; /* TP name */
} QUERY_TP_DEFINITION;

typedef struct tp_def_summary
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char tp_name[64]; /* TP name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
} TP_DEF_SUMMARY;

typedef struct tp_def_detail
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char tp_name[64]; /* TP name */
 TP_CHARS tp_chars; /* TP characteristics */
} TP_DEF_DETAIL;

typedef struct tp_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char security_list_name[14]; /* security access list name */
 unsigned char reserv1[2]; /* reserved */
 unsigned char conv_type; /* conversation type */
 unsigned char security_rqd; /* security support */
 unsigned char sync_level; /* synchronization level support */
 unsigned char dynamic_load; /* dynamic load */
 unsigned char enabled; /* is the TP enabled? */
 unsigned char pip_allowed; /* program initialization */
 /* parameters supported */
 unsigned char reserv3[10]; /* reserved */
 AP_UINT16 tp_instance_limit; /* limit on currently active TP */
 /* instances */
 AP_UINT16 incoming_alloc_timeout; /* incoming allocation timeout */
 AP_UINT16 rcv_alloc_timeout; /* receive allocation timeout */
 AP_UINT16 tp_data_len; /* reserved */
 unsigned char tp_data[120]; /* reserved */
} TP_CHARS;

Supplied parameters
The application supplies the following parameters:

QUERY_TP_DEFINITION

Chapter 3. NOF API Verbs 541

opcode
AP_QUERY_TP_DEFINITION

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of TPs for which data should be returned. To request data for a specific TP rather
than a range, specify the value 1. To return as many entries as possible, specify zero; in this case,
CS/AIX will return the maximum number of entries that can be accommodated in the supplied data
buffer.

list_options
The position in the list from which CS/AIX should begin to return data, and the level of information
required for each entry. Specify the level of information with one of the following values:
AP_SUMMARY

Summary information only.
AP_DETAIL

Detailed information.

Combine this value using a logical OR operation with one of the following values:

AP_FIRST_IN_LIST
Start at the first entry in the list.

AP_LIST_INCLUSIVE
Start at the entry specified by the tp_name parameter.

AP_LIST_FROM_NEXT
Start at the entry immediately following the entry specified by the tp_name parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters. This parameter is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

QUERY_TP_DEFINITION

542 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

tp_def_summary.overlay_size
The size of the returned tp_def_summary structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each tp_def_summary
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

tp_def_summary.tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters.

tp_def_summary.description
A null-terminated text string describing the TP, as specified in the definition of the TP.

tp_def_detail.overlay_size
The size of the returned tp_def_detail structure, and therefore the offset to the start of the next
entry in the data buffer.

When your application needs to go through the returned buffer to find each tp_def_detail
structure in turn, it must use this value to move to the correct offset for the next data structure, and
must not use the C sizeof() operator. This is because the size of the returned overlay may increase
in future releases of CS/AIX; using the returned overlay size ensures that your application will
continue to work with future releases.

tp_def_detail.tp_name
TP name. This is a 64-byte string, padded on the right with spaces if the name is shorter than 64
characters.

tp_def_detail.tp_chars.description
A null-terminated text string describing the TP, as specified in the definition of the TP.

tp_def_detail.tp_chars.security_list_name
Name of the security access list used by this TP (defined using the DEFINE_SECURITY_ACCESS_LIST
verb). This parameter restricts the TP so that only the users named in the specified list can allocate
conversations with it.

If this parameter is set to 14 binary zeros, the TP is available for use by any user.

tp_def_detail.tp_chars.conv_type
Specifies the type or types of conversation supported by the TP. Possible values are:
AP_BASIC

The TP supports only basic conversations.
AP_MAPPED

The TP supports only mapped conversations.
AP_EITHER

The TP supports either basic or mapped conversations.
tp_def_detail.tp_chars.security_rqd

Specifies the level of conversation security information required to start the TP. Possible values are:
AP_YES

A user ID and password are required to start the TP.
AP_NO

No security information is required.
tp_def_detail.tp_chars.sync_level

Specifies the values of synchronization level supported by the TP. Possible values are:
AP_NONE

The TP supports only sync_level NONE.

QUERY_TP_DEFINITION

Chapter 3. NOF API Verbs 543

AP_CONFIRM_SYNC_LEVEL
The TP supports only sync_level CONFIRM.

AP_EITHER
The TP supports either sync_level NONE or CONFIRM.

AP_SYNCPT_REQUIRED
The TP supports only sync_level SYNCPT (syncpoint is required).

AP_SYNCPT_NEGOTIABLE
The TP supports any of the three sync_level values NONE, CONFIRM, and SYNCPT.

tp_def_detail.tp_chars.dynamic_load
Specifies whether the TP can be dynamically loaded. This is set to AP_YES.

tp_def_detail.tp_chars.enabled
Specifies whether the TP can be attached successfully. Possible values are:
AP_YES

TP can be attached.
AP_NO

TP cannot be attached.
tp_def_detail.tp_chars.pip_allowed

Specifies whether the TP can receive Program Initialization Parameters (PIP). Possible values are:
AP_YES

TP can receive PIP.
AP_NO

TP cannot receive PIP.
tp_def_detail.tp_chars.duplex_support

Specifies which conversation duplex types are supported by the TP. Possible values are:
AP_HALF_DUPLEX

The TP supports half-duplex conversations only.
AP_FULL_DUPLEX

The TP supports full-duplex conversations.
AP_EITHER_DUPLEX

The TP supports both half-duplex and full-duplex conversations.
tp_def_detail.tp_chars.tp_instance_limit

Limit on the number of concurrently active TP instances.
tp_def_detail.tp_chars.incoming_alloc_timeout

Specifies the number of seconds that an incoming Attach will be queued waiting for a
RECEIVE_ALLOCATE. The value 0 (zero) implies that there is no timeout; the incoming Attach will be
queued indefinitely.

tp_def_detail.tp_chars.rcv_alloc_timeout
Number of seconds that a RECEIVE_ALLOCATE verb is queued waiting for an incoming Attach. The
value 0 (zero) implies that there is no timeout; the RECEIVE_ALLOCATE verb will be queued
indefinitely.

tp_def_detail.tp_chars.tp_data_len
Length of the implementation dependent TP data.

tp_def_detail.tp_chars.tp_data
CS/AIX does not use this parameter (it is set to all zeros).

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

QUERY_TP_DEFINITION

544 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Possible values are:
AP_INVALID_TP_NAME

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied name, but the tp_name parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TP_LOAD_INFO
QUERY_TP_LOAD_INFO returns information about TP load information entries. The buffer contains a
number of the variably sized tp_load_info structures.

This verb must be issued to a running node.

VCB structure
typedef struct query_tp_load_info
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3[3]; /* reserved */
 unsigned char tp_name[64]; /* TP name */
 unsigned char lu_alias[8]; /* LU alias */
} QUERY_TP_LOAD_INFO;

typedef struct tp_load_info
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char tp_name[64]; /* TP name */
 unsigned char lu_alias[8]; /* LU alias */
 TP_LOAD_INFO_DEF_DATA def_data; /* defined data */
} TP_LOAD_INFO;

typedef struct tp_load_info_def_data
{
 unsigned char description[32]; /* Description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char user_id[64]; /* User ID */
 unsigned char group_id[64]; /* Group ID */
 unsigned shor timeout; /* Timeout value */
 unsigned char type; /* TP type */
 unsigned char reserv2; /* reserved */
 AP_UINT16 reserv3; /* reserved */
 AP_UINT16 ltv_length; /* Length of LTV data */
} TP_LOAD_INFO_DEF_DATA;

Supplied parameters
The application supplies the following parameters:

QUERY_TP_LOAD_INFO

Chapter 3. NOF API Verbs 545

opcode
AP_QUERY_TP_LOAD_INFO

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of extra data control blocks for which data should be returned. To request data for
a specific resource rather than a range, specify the value 1. To return as many entries as possible,
specify zero; in this case, CS/AIX will return the maximum number of entries that can be
accommodated in the supplied data buffer.

list_options
The position in the list of TPs from which CS/AIX should begin to return data. Possible values are:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the combination of TP name and LU alias.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the combination of TP name and LU
alias.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

tp_name
TP name to query. This is a 64-byte EBCDIC string, padded on the right with spaces if the name is
shorter than 64 characters. Specify all binary zeroes to match on all TPs. This value is ignored if
list_options is set to AP_FIRST_IN_LIST.

lu_alias
The LU alias to query. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes. Specify all binary zeroes to match on all LUs.

This parameter can be used only if the TP is an APPC application; it is reserved if the TP is a CPI-C
application.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

QUERY_TP_LOAD_INFO

546 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

tp_load_info.overlay_size
The size of this overlay, including the LTV data. This size includes padding to ensure that the next
overlay falls on a properly aligned memory location.

When your application needs to go through the returned buffer to find each tp_load_info structure
in turn, it must use this value to move to the correct offset for the next data structure, and must not
use the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

tp_load_info.tp_name
TP name of the TP load info entry. This is a 64-byte EBCDIC string, padded on the right with spaces if
the name is shorter than 64 characters.

tp_load_info.lu_alias
The LU alias of the TP load info entry. This is an 8-byte ASCII string, padded on the right with spaces if
the name is shorter than 8 bytes.

This parameter is used only if the TP is an APPC application; it is reserved if the TP is a CPI-C
application.

def_data.description
Description of the TP load info.

def_data.user_id
User ID required to access and run the TP.

def_data.group_id
Group ID required to access and run the TP.

def_data.timeout
Timeout in seconds after the TP is loaded.

def_data.type
Indicates the TP type. Possible values are:

AP_TP_TYPE_QUEUED

AP_TP_TYPE_QUEUED_BROADCAST

AP_TP_TYPE_NON_QUEUED

def_data.ltv_length
Length of the LTV data buffer appended to this structure.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_TP_NAME

The tp_name parameter did not match the name of a defined TP.
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined LU alias.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TP_LOAD_INFO

Chapter 3. NOF API Verbs 547

QUERY_TRACE_FILE
This verb returns information about the files that CS/AIX uses to record trace data.

This verb must be issued to a running node.

VCB structure
typedef struct query_trace_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char trace_file_type; /* type of trace file */
 unsigned char dual_files; /* dual trace files */
 AP_UINT32 trace_file_size; /* trace file size */
 unsigned char reserv3[4]; /* reserved */
 unsigned char file_name[81]; /* file name */
 unsigned char file_name_2[81]; /* second file name */
} QUERY_TRACE_FILE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_TRACE_FILE

trace_file_type
The type of trace file. Possible values are:
AP_CS_TRACE

File contains tracing on data transferred across the CS/AIX LAN between the specified computer
and other nodes (activated by the SET_CS_TRACE verb).

AP_TN_SERVER_TRACE
File contains tracing on the CS/AIX TN server component.

AP_TN3270_SLP_TRACE
File contains tracing on the CS/AIX TN3270 Service Location Protocol component.

AP_IPS_TRACE
File contains tracing on kernel components for the specified node (activated by the
SET_TRACE_TYPE or ADD_DLC_TRACE verb).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

dual_files
Specifies whether tracing is to one file or to two files. Possible values are:
AP_YES

Tracing is to two files. When the first file reaches the size specified by trace_file_size, the second
file is cleared, and tracing continues to the second file. When this file then reaches the size
specified by trace_file_size, the first file is cleared, and tracing continues to the first file. This
ensures that tracing can continue for long periods without using excessive disk space; the
maximum space required is approximately twice the value of trace_file_size.

QUERY_TRACE_FILE

548 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NO
Tracing is to one file.

trace_file_size
The maximum size of the trace file. If dual_files is set to AP_YES, tracing will switch between the two
files when the current file reaches this size. If dual_files is set to AP_NO, this parameter is ignored; the
file size is not limited.

file_name
Name of the trace file, or of the first trace file if dual_files is set to AP_YES. This parameter is an ASCII
string of 1-80 characters, followed by a NULL character (binary zero).

If no path is included, the file is stored in the default directory for diagnostics files, /var/sna if a path
is included, this is either a full path (starting with a / character) or the path relative to the default
directory.

file_name_2
Name of the second trace file; this parameter is used only if dual_files is set to AP_YES. This
parameter is an ASCII string of 1-80 characters, followed by a NULL character (binary zero).

If no path is included, the file is stored in the default directory for diagnostics files, /var/sna if a path
is included, this is either a full path (starting with a / character) or the path relative to the default
directory.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FILE_TYPE

The trace_file_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_TRACE_TYPE
This verb returns information about the current tracing options for CS/AIX kernel components. For more
information about tracing options, see the IBM Communications Server for Data Center Deployment on AIX
Administration Guide.

This verb does not return information about DLC line tracing. To do this, use the QUERY_DLC_TRACE verb.

This verb must be issued to a running node.

VCB structure
typedef struct query_trace_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 AP_UINT32 truncation_length; /* truncate each msg to this size */
 AP_UINT16 internal_level; /* reserved */

QUERY_TRACE_TYPE

Chapter 3. NOF API Verbs 549

 AP_UINT32 api_flags; /* reserved */
} QUERY_TRACE_TYPE;

Supplied parameters
The application supplies the following parameter:

opcode
AP_QUERY_TRACE_TYPE

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

trace_flags
The types of tracing currently active. For more information about these trace types, see
“SET_TRACE_TYPE” on page 579.

If no tracing is active, or if tracing of all types is active, this is one of the following values:

AP_NO_TRACE
No tracing.

AP_ALL_TRACE
Tracing of all types.

If tracing is being used on specific interfaces, this parameter is set to one or more values from the list
below, combined using a logical OR operation.

AP_APPC_MSG
APPC messages

AP_FM_MSG
FM messages

AP_LUA_MSG
LUA messages

AP_NOF_MSG
NOF messages

AP_MS_MSG
MS messages

AP_GSNA_MSG
Generic SNA messages

AP_PV_MSG
(not used in this version of CS/AIX)

AP_GDLC_MSG
GDLC messages

AP_IPDL_MSG
Enterprise Extender (HPR/IP) messages

AP_DLC_MSG
Node to DLC messages

AP_NODE_MSG
Node messages

AP_SLIM_MSG
Messages sent between controller and backup servers in a client/server system

QUERY_TRACE_TYPE

550 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_DATAGRAM
Datagram messages

truncation_length
The maximum length, in bytes, of the information written to the trace file for each message. If a
message is longer than this, CS/AIX writes only the start of the message to the trace file, and discards
the data beyond truncation_length. This allows you to record the most important information for each
message but avoid filling up the file with long messages. A value of zero indicates that trace messages
are not truncated.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

QUERY_USERID_PASSWORD
QUERY_USERID_PASSWORD returns information about user ID / password pairs for use with APPC and
CPI-C conversation security, or about profiles for a defined user ID and password. It can be used to obtain
information about a specific user ID / password pair or about multiple pairs, depending on the options
used.

VCB structure
typedef struct query_userid_password
{
 AP_UINT16 opcode; /* Verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* Primary return code */
 AP_UINT32 secondary_rc; /* Secondary return code */
 unsigned char *buf_ptr; /* pointer to buffer */
 AP_UINT32 buf_size; /* buffer size */
 AP_UINT32 total_buf_size; /* total buffer size required */
 AP_UINT16 num_entries; /* number of entries */
 AP_UINT16 total_num_entries; /* total number of entries */
 unsigned char list_options; /* listing options */
 unsigned char reserv3; /* reserved */
 unsigned char user_id[10]; /* user ID */
} QUERY_USERID_PASSWORD;

typedef struct userid_info
{
 AP_UINT16 overlay_size; /* size of returned entry */
 unsigned char user_id[10]; /* user ID */
 USERID_PASSWORD_CHARS password_chars; /* password characteristics */
} USERID_INFO;

typedef struct userid_password_chars
{
 unsigned char description[32]; /* resource description */
 unsigned char reserv2[16]; /* reserved */
 AP_UINT16 profile_count; /* number of profiles */
 AP_UINT16 reserv1; /* reserved */
 unsigned char password[10]; /* password */
 unsigned char profiles[10][10]; /* profiles */
} USERID_PASSWORD_CHARS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_QUERY_USERID_PASSWORD

buf_ptr
A pointer to a data buffer that CS/AIX will use to return the requested information.

QUERY_USERID_PASSWORD

Chapter 3. NOF API Verbs 551

buf_size
Size of the supplied data buffer.

num_entries
Maximum number of user ID / password pairs for which data should be returned. To request a specific
entry rather than a range, specify the value 1. To return as many entries as possible, specify zero; in
this case, CS/AIX will return the maximum number of entries that can be accommodated in the
supplied data buffer.

list_options
The position in the list from which CS/AIX should begin to return data. Specify one of the following
values:
AP_FIRST_IN_LIST

Start at the first entry in the list.
AP_LIST_INCLUSIVE

Start at the entry specified by the user_id parameter.
AP_LIST_FROM_NEXT

Start at the entry immediately following the entry specified by the user_id parameter.

For more information about how the list is ordered and how the application can obtain specific entries
from it, see “List options for QUERY_* Verbs” on page 33.

user_id
User ID. This is a 10-byte type-AE EBCDIC string, padded on the right with spaces if the name is
shorter than 10 characters. The user ID is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the supplied buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required to return all the list
information requested. A value greater than buf_size indicates that not all the available entries were
returned.

num_entries
Number of entries returned in the data buffer.

total_num_entries
Total number of entries available. A value greater than num_entries indicates that not all the available
entries were returned.

Each entry in the data buffer consists of the following parameters:

userid_info.overlay_size
The size of the returned userid_info structure, and therefore the offset to the start of the next entry
in the data buffer.

When your application needs to go through the returned buffer to find each userid_info structure in
turn, it must use this value to move to the correct offset for the next data structure, and must not use
the C sizeof() operator. This is because the size of the returned overlay may increase in future
releases of CS/AIX; using the returned overlay size ensures that your application will continue to work
with future releases.

userid_info.user_id
User identifier. This is a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC
spaces.

QUERY_USERID_PASSWORD

552 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

userid_info.password_chars.description
A null-terminated text string describing the user ID and password, as specified in the definition of the
user ID and password.

userid_info.password_chars.profile_count
Number of profiles defined for this user.

userid_info.password_chars.password
An encrypted version of the user's password supplied on a DEFINE_USERID_PASSWORD verb. This is
a 10-byte type-AE EBCDIC character string, padded on the right with EBCDIC spaces.

userid_info.password_chars.profiles
Profiles associated with user. Each of these is a 10-byte type-AE EBCDIC character string, padded on
the right with EBCDIC spaces.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_USERID

The list_options parameter was set to AP_LIST_INCLUSIVE to list all entries starting from the
supplied user ID, but the user_id parameter was not valid.

AP_INVALID_LIST_OPTION
The list_options parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

REGISTER_INDICATION_SINK
REGISTER_INDICATION_SINK registers the NOF application to receive indications of a particular type; for
details of the CS/AIX NOF indications, see Chapter 4, “NOF Indications,” on page 599. The application
specifies the required type of indication by its opcode parameter; an application can register more than
once to accept multiple indication types. Each time an event occurs for which the application has
requested indications (for example a change in the configuration of the application's target node or a
change in the status of a DLC), CS/AIX sends the appropriate indication message to the application.

A NOF_STATUS_INDICATION, which indicates status changes for the target node or file, may be returned
to an application that has registered for any type of indication. For more information, see
“NOF_STATUS_INDICATION” on page 632.

This verb must always be issued using the asynchronous NOF API entry point, including a callback routine
(for more information about the NOF API entry points, see “Asynchronous entry point: nof_async” on page
21). CS/AIX uses this callback routine to return the requested indications to the application.

This verb may be issued to different targets depending on the type of indications required, as follows:

• To register for SNA network file indications, the target must be the sna.net file.
• To register for server indications, no target is required; the application must specify a null target handle.
• To register for configuration indications relating to domain resources, the target must be the domain
configuration file.

REGISTER_INDICATION_SINK

Chapter 3. NOF API Verbs 553

• To register for configuration indications relating to node resources, or to register for any other
indications, the target may be either a running node or an inactive node on a computer where the
CS/AIX software is running.

VCB structure
typedef struct register_indication_sink
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 proc_id; /* reserved */
 AP_UINT16 queue_id; /* reserved */
 AP_UINT16 indication_opcode; /* opcode of indication to be sunk */
} REGISTER_INDICATION_SINK;

Supplied parameters
The application supplies the following parameters:

opcode
AP_REGISTER_INDICATION_SINK

indication_opcode
The opcode parameter of the indication to be returned. CS/AIX will send this indication to the
application's callback routine every time the indication is generated.

To receive configuration indications, specify the value AP_CONFIG_INDICATION. If the target handle
specified on the REGISTER_INDICATION_SINK verb identifies the domain configuration file, this value
requests an indication each time the file is updated; if the target handle identifies a node, this value
requests an indication each time the node's configuration is updated.

To receive SNA network file indications, issue the verb using a target handle that identifies the
sna.net file, and specify the value AP_SNA_NET_INDICATION. This value requests an indication
each time the file is updated.

For all other indications, specify the opcode value for the required indication. For more information,
see the descriptions of individual indications in Chapter 4, “NOF Indications,” on page 599.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_OP_CODE

One of the following has occurred:

• The indication_opcode parameter did not match the opcode of any of the CS/AIX NOF API
indications.

REGISTER_INDICATION_SINK

554 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• The indication_opcode parameter specified an indication type that does not apply to the
specified target. If the target handle identifies the domain configuration file, only configuration
indications are valid; if the target handle identifies the sna.net file, only SNA network file
indications are valid; and if the target handle specifies a running node, all indications except SNA
network file indications are valid.

AP_DYNAMIC_LOAD_ALREADY_REGD
The indication_opcode parameter was set to a reserved value.

AP_SYNC_NOT_ALLOWED
The application issued REGISTER_INDICATION_SINK using the synchronous NOF entry point.
This verb must use the asynchronous entry point.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node does not support the function
associated with the specified indication, CS/AIX returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support the specified indication. For details of the support required for
each indication, see the description of each indication in Chapter 4, “NOF Indications,” on page
599.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

REMOVE_DLC_TRACE
This verb removes DLC line tracing that was previously specified using ADD_DLC_TRACE. It can be used to
remove all tracing on a resource that is currently being traced, to remove the tracing of certain messages
from a resource currently being traced, or to remove all DLC line tracing.

VCB structure
typedef struct remove_dlc_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 DLC_TRACE_FILTER filter; /* resource to stop tracing */
} REMOVE_DLC_TRACE;

typedef struct dlc_trace_filter
{
 unsigned char resource_type; /* type of resource */
 unsigned char resource_name[8]; /* name of resource */
 SNA_LFSID lfsid; /* session identifier */
 unsigned char message_type; /* type of messages */
} DLC_TRACE_FILTER;

typedef struct sna_lfsid
{
 union
 {
 AP_UINT16 session_id;
 struct
 {

REMOVE_DLC_TRACE

Chapter 3. NOF API Verbs 555

 unsigned char sidh;
 unsigned char sidl;
 } s;
 } uu;
 AP_UINT16 odai;
} SNA_LFSID;

Supplied parameters
The application supplies the following parameters:

opcode
AP_REMOVE_DLC_TRACE

resource_type
The resource type of the trace entry to remove or modify. Possible values are:
AP_ALL_DLC_TRACES

Remove all DLC tracing options, so that no resources are traced. If this option is specified, the
remaining parameters on this verb (resource_name through message_type) are reserved.

AP_ALL_RESOURCES
Remove or modify the tracing options used for tracing all DLCs, ports, and LSs; resources for which
DLC_TRACE entries are explicitly defined will continue to be traced.

AP_DLC
Remove or modify tracing for the DLC named in resource_name, and for all ports and LSs that use
this DLC.

AP_PORT
Remove or modify tracing for the port named in resource_name, and for all LSs that use this port.

AP_LS
Remove or modify tracing for the LS named in resource_name.

AP_RTP
Remove or modify tracing for the RTP (rapid transport protocol) connection named in
resource_name.

AP_PORT_DEFINED_LS
Modify tracing for the port named in resource_name and its defined LSs.

AP_PORT_IMPLICIT_LS
Modify tracing for the port named in resource_name and its implicit LSs.

resource_name
The name of the DLC, port, LS, or RTP connection for which tracing is being removed or modified. This
parameter is reserved if resource_type is set to AP_ALL_DLC_TRACES or AP_ALL_RESOURCES.

lfsid
The Local Form Session Identifier for a session on the specified LS. This is only valid for resource_type
AP_LS, and indicates that only messages on this session are to be removed. The structure contains
the following three values, which are returned in the SESSION_STATS section of a QUERY_SESSION
verb:

lfsid.uu.s.sidh
Session ID high byte.

lfsid.uu.s.sidl
Session ID low byte.

lfsid.odai
Origin Destination Assignor Indicator.

message_type
The type of messages to trace for the specified resource or session. Set this parameter to
AP_TRACE_ALL to remove all messages, or specify one or more of the following values (combined
using a logical OR):

REMOVE_DLC_TRACE

556 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_TRACE_XID
XID messages

AP_TRACE_SC
Session Control RUs

AP_TRACE_DFC
Data Flow Control RUs

AP_TRACE_FMD
FMD messages

AP_TRACE_SEGS
Non-BBIU segments that do not contain an RH

AP_TRACE_CTL
Messages other then MUs and XIDs

AP_TRACE_NLP
(this message type is currently not used)

AP_TRACE_NC
(this message type is currently not used)

For tracing on an RTP connection, the values AP_TRACE_XID, AP_TRACE_NLP, and AP_TRACE_CTL
are ignored.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns one of the following.

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_RESOURCE_TYPE

The resource_type parameter specified a value that was not valid.
AP_INVALID_MESSAGE_TYPE

The message_type parameter specified a value that was not valid.
AP_INVALID_DLC_NAME

The DLC named in resource_name does not have any tracing options set.
AP_INVALID_PORT_NAME

The Port named in resource_name does not have any tracing options set.
AP_INVALID_LS_NAME

The LS named in resource_name does not have any tracing options set.
AP_INVALID_RTP_CONNECTION

The RTP connection named in the resource_name parameter does not have any tracing options
set.

AP_INVALID_LFSID_SPECIFIED
The LS named in resource_name does not have any tracing options set for the specified LFSID.

REMOVE_DLC_TRACE

Chapter 3. NOF API Verbs 557

AP_INVALID_FILTER_TYPE
The message_type parameter specified a message type that is not currently being traced for the
specified resource.

AP_ALL_RESOURCES_NOT_DEFINED
The resource_type parameter was set to AP_ALL_RESOURCES, but there is no DLC_TRACE entry
defined for tracing options on all resources.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

RESET_SESSION_LIMIT
The RESET_SESSION_LIMIT verb requests CS/AIX to reset the session limits for a particular LU-LU-mode
combination. Sessions may be deactivated as a result of processing this verb.

VCB structure
typedef struct reset_session_limit
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char lu_name[8]; /* local LU name */
 unsigned char lu_alias[8]; /* local LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name*/
 unsigned char reserv3; /* reserved */
 unsigned char mode_name[8]; /* mode name */
 unsigned char mode_name_select; /* select mode name */
 unsigned char set_negotiable; /* set max negotiable limit to */
 /* zero? */
 unsigned char reserv4[8]; /* reserved */
 unsigned char responsible; /* who is responsible for */
 /* deactivation */
 unsigned char drain_source; /* drain source */
 unsigned char drain_target; /* drain target */
 unsigned char force; /* force */
 AP_UINT32 sense_data; /* sense data */
} RESET_SESSION_LIMIT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_RESET_SESSION_LIMIT

lu_name
LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes. To indicate that the LU is defined by its LU alias
instead of its LU name, set this parameter to 8 binary zeros.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes. It is used
only if lu_name is set to zeros.

To indicate the LU associated with the CP (the default LU), set both lu_name and lu_alias to 8 binary
zeros.

RESET_SESSION_LIMIT

558 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

plu_alias
LU alias of the partner LU.

This is an 8-byte ASCII string, using any locally displayable characters, padded on the right with
spaces if the name is shorter than 8 bytes. To indicate that the partner LU is defined by its fully
qualified LU name instead of its LU alias, set this parameter to 8 binary zeros.

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This parameter is used only if the
plu_alias field is set to zeros; it is ignored if plu_alias is specified.

The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

mode_name
Name of the mode for which to reset session limits. This parameter is ignored if mode_name_select is
set to AP_ALL.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a letter), padded on the right with
EBCDIC spaces if the name is shorter than 8 bytes.

mode_name_select
Selects whether session limits should be reset on a single specified mode, or on all modes between
the local and partner LUs. Possible values are:
AP_ONE

Reset session limits on the mode specified by mode_name.
AP_ALL

Reset session limits on all modes.
set_negotiable

Specifies whether the maximum negotiable session limit for this LU-LU-mode combination should be
reset to zero. (The current limit may be the limit specified for the mode, or may have been changed by
initialize_session_limit or change_session_limit). Possible values are:
AP_YES

Reset the maximum negotiable session limit for this LU-LU-mode combination to zero so that
sessions cannot be activated until it is changed by INITIALIZE_SESSION_LIMIT.

AP_NO
Leave the maximum negotiable session limit unchanged.

responsible
Indicates whether the source (local) or target (partner) LU is responsible for deactivating sessions
after the session limit is reset. Possible values are:
AP_SOURCE

The local LU is responsible for deactivating sessions.
AP_TARGET

The partner LU is responsible for deactivating sessions.
drain_source

Specifies whether the source LU satisfies waiting session requests before deactivating a session.
Possible values are:
AP_YES

Waiting session requests are satisfied.
AP_NO

Waiting session requests are not satisfied.
drain_target

Specifies whether the target LU satisfies waiting session requests before deactivating a session.
Possible values are:

RESET_SESSION_LIMIT

Chapter 3. NOF API Verbs 559

AP_YES
Waiting session requests are satisfied.

AP_NO
Waiting session requests are not satisfied.

force
Specifies whether session limits will be set to zero even if CNOS negotiation fails. Possible values are:
AP_YES

Session limits will be set to zero.
AP_NO

Session limits will not be set to zero if CNOS negotiation fails.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Possible values are:
AP_FORCED

The session limits were set to zero even though CNOS negotiation failed.
AP_AS_NEGOTIATED

The session limits were changed, but one or more values were negotiated by the partner LU.
AP_AS_SPECIFIED

The session limits were changed as requested, without being negotiated by the partner LU.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_EXCEEDS_MAX_ALLOWED

A CS/AIX internal error occurred.
AP_INVALID_LU_ALIAS

The lu_alias parameter did not match any defined local LU alias.
AP_INVALID_LU_NAME

The lu_name parameter did not match any defined local LU name.
AP_INVALID_MODE_NAME

The mode_name parameter did not match any defined mode name.
AP_INVALID_PLU_NAME

The fqplu_name parameter did not match any defined partner LU name.
AP_INVALID_MODE_NAME_SELECT

The mode_name_select parameter was not set to a valid value.
AP_INVALID_DRAIN_SOURCE

The drain_source parameter was not set to a valid value.
AP_INVALID_DRAIN_TARGET

The drain_target parameter was not set to a valid value.
AP_INVALID_FORCE

The force parameter was not set to a valid value.

RESET_SESSION_LIMIT

560 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_RESPONSIBLE
The responsible parameter was not set to a valid value.

AP_INVALID_SET_NEGOTIABLE
The set_negotiable parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_MODE_RESET

No sessions are currently active for this LU-LU-mode combination. Use
INITIALIZE_SESSION_LIMIT instead of RESET_SESSION_LIMIT to specify the limits.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: session allocation error
If the verb does not execute because of a session allocation error, CS/AIX returns the following
parameters:

primary_rc
AP_ALLOCATION_ERROR

secondary_rc
AP_ALLOCATION_FAILURE_NO_RETRY

A session could not be allocated because of a condition that requires corrective action. Check the
sense_data parameter and any logged messages to determine the reason for the failure, and take
any action required. Do not attempt to retry the verb until the condition has been corrected.

sense_data
The SNA sense data associated with the allocation failure.

Returned parameters: CNOS processing errors
If the verb does not execute because of an error, CS/AIX returns the following parameters.

primary_rc
AP_CONV_FAILURE_NO_RETRY

The session limits could not be changed because of a condition that requires action (such as a
configuration mismatch or a session protocol error). Check the CS/AIX log file for information
about the error condition, and correct it before retrying this verb.

primary_rc
AP_CNOS_PARTNER_LU_REJECT

The verb failed because CS/AIX failed to negotiate the session limits with the partner. Check
configuration at both the local LU and partner LU.

secondary_rc
AP_CNOS_COMMAND_RACE_REJECT

The verb failed because the specified mode was being accessed by another administration
program (or internally by the CS/AIX software) for session activation or deactivation, or for session
limit processing. The application should retry the verb, preferably after a timeout to allow the race
condition to be cleared.

RESET_SESSION_LIMIT

Chapter 3. NOF API Verbs 561

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_BUFFER_AVAILABILITY
This verb specifies the amount of STREAMS buffers that CS/AIX can use at any one time. This allows the
node to make efficient use of the buffers available, and allows you to ensure that buffers are available for
other processes on the AIX computer.

VCB structure
typedef struct set_buffer_availability
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 buf_avail; /* maximum buffer space available */
 unsigned char reserv3[8]; /* reserved */
} SET_BUFFER_AVAILABILITY;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_BUFFER_AVAILABILITY

buf_avail
The maximum amount of STREAMS buffer space available, in bytes.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_CENTRAL_LOGGING
This verb specifies whether CS/AIX log messages are sent to a central file from all servers, or to a
separate file on each server. For more information, see “SET_LOG_FILE” on page 568.

This verb must be issued to the node that is currently acting as the central logger; for information about
accessing this node, see “CONNECT_NODE” on page 51.

VCB structure
typedef struct set_central_logging
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */

SET_BUFFER_AVAILABILITY

562 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char enabled; /* is central logging enabled? */
 unsigned char reserv3[3]; /* reserved */
} SET_CENTRAL_LOGGING;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_CENTRAL_LOGGING

enabled
Specify whether central logging is enabled or disabled. Possible values are:
AP_YES

Central logging is enabled. All log messages are sent to a single file on the node currently acting as
the central logger.

AP_NO
Central logging is disabled. Log messages from each server are sent to a file on that server
(specified using the SET_LOG_FILE verb).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_NOT_CENTRAL_LOGGER

The verb was issued to a node that is not the central logger.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_CS_TRACE
This verb specifies tracing options for data sent between computers on the CS/AIX LAN. For more
information about tracing options, see the IBM Communications Server for Data Center Deployment on AIX
Administration Guide.

This verb can be issued from a NOF application running on an AIX or Linux client. The NOF application
must run with the userid root, or with a userid that is a member of the sys group (AIX) or sna group
(Linux).

This verb must be issued to a running node, unless it is issued from a client.

SET_CS_TRACE

Chapter 3. NOF API Verbs 563

VCB structure
typedef struct set_cs_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dest_sys[128]; /* node to which messages are traced */
 unsigned char reserv4[4]; /* reserved */
 AP_UINT16 trace_flags; /* trace flags */
 AP_UINT16 trace_direction; /* direction (send/rcv/both) to trace */
 unsigned char reserv3[8]; /* reserved */
} SET_CS_TRACE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_CS_TRACE

dest_sys
The server name for which tracing is required. This is an ASCII string, padded on the right with spaces
if the name is shorter than 128 characters.

To manage tracing on messages flowing between the computer to which this verb is issued (identified
by the target_handle parameter on the NOF API call) and one other server on the LAN, specify the
name of the other server here. Tracing on messages flowing to and from other computers on the LAN
will be unchanged; in particular, you can issue two SET_CS_TRACE verbs to activate tracing between
the same target computer and two different destination servers.

If the server name includes a . (period) character, CS/AIX assumes that it is a fully-qualified name;
otherwise it performs a DNS lookup to determine the server name.

To manage tracing on messages flowing between the computer to which this verb is issued (identified
by the target_handle parameter on the NOF API call) and all other servers and clients on the LAN, set
this parameter to 128 ASCII space characters. The options you specify on this verb override any
previous settings for tracing to specific computers (identified by dest_sys on the previous verbs).

trace_flags
The types of tracing required. To turn off all tracing, or to turn on tracing of all types, specify one of the
following values:
AP_NO_TRACE

No tracing.
AP_ALL_TRACE

Tracing of all types.

To activate tracing on specific message types, select one or more values from the list below,
combined using a logical OR operation.

AP_CS_ADMIN_MSG
Internal messages relating to client/server topology

AP_CS_DATAGRAM
Datagram messages

AP_CS_DATA
Data messages

trace_direction
Specifies the direction(s) in which tracing is required. This parameter is ignored if trace_flags is set to
AP_NO_TRACE. Possible values are:
AP_CS_SEND

Trace messages flowing from the target computer to the computer defined by dest_sys.

SET_CS_TRACE

564 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_CS_RECEIVE
Trace messages flowing from the computer defined by dest_sys to the target computer.

AP_CS_BOTH
Trace messages flowing in both directions.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_NAME_NOT_FOUND

The server specified by the dest_sys parameter did not exist or was not started.
AP_LOCAL_SYSTEM

The server specified by the dest_sys parameter is the same as the target node to which this verb
was issued.

AP_INVALID_TRC_DIRECTION
The trace_direction parameter was not set to a valid value.

AP_INVALID_TARGET
The verb was issued on a standalone server. This verb can only be issued on a client/server
system.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_GLOBAL_LOG_TYPE
This verb specifies the types of information that CS/AIX records in log files. It specifies default values that
are used on all servers; SET_LOG_TYPE can then be used to override these defaults on a particular server.
For more information about log files, see “SET_LOG_FILE” on page 568.

CS/AIX logs messages for the following types of event:

Problem
An abnormal event that degrades the system in a way perceptible to a user (such as abnormal
termination of a session).

Exception
An abnormal event that degrades the system but that is not immediately perceptible to a user (such
as a resource shortage), or an event that does not degrade the system but may indicate the cause of
later exceptions or problems (such as receiving an unexpected message from the remote system).

SET_GLOBAL_LOG_TYPE

Chapter 3. NOF API Verbs 565

Audit
A normal event (such as starting a session).

Problem and exception messages are logged to the error log file; audit messages are logged to the audit
log file. Problem messages are always logged and cannot be disabled, but you can specify whether to log
each of the other two message types. For each of the two files (audit and error), you can specify whether
to use succinct logging (including only the text of the message and a summary of the message source) or
full logging (including full details of the message source, cause, and any action required).

This verb must be issued to the node currently acting as the central logger; for more information, see
“CONNECT_NODE” on page 51.

VCB structure
typedef struct set_global_log_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char audit; /* audit logging on or off */
 unsigned char exception; /* exception logging on or off */
 unsigned char succinct_audits; /* use succinct logging in audit file?*/
 unsigned char succinct_errors; /* use succinct logging in error file?*/
 unsigned char reserv3[4]; /* reserved */
} SET_GLOBAL_LOG_TYPE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_GLOBAL_LOG_TYPE

audit
Specify whether audit messages are recorded. Possible values are:
AP_YES

Audit messages are recorded.
AP_NO

Audit messages are not recorded.
AP_LEAVE_UNCHANGED

Leave audit logging unchanged from the existing definition. (The initial default, when the CS/AIX
software is started, is that audit messages are not recorded.)

exception
Specify whether exception messages are recorded. Possible values are:
AP_YES

Exception messages are recorded.
AP_NO

Exception messages are not recorded.
AP_LEAVE_UNCHANGED

Leave exception logging unchanged from the existing definition. (The initial default, when the
CS/AIX software is started, is that exception messages are recorded.)

succinct_audits
Specifies whether to use succinct logging or full logging in the audit log file. Possible values are:
AP_YES

Succinct logging: each message in the log file contains a summary of the message header
information (such as the message number, log type, and system name) and the message text

SET_GLOBAL_LOG_TYPE

566 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

string and parameters. To obtain more details of the cause of the log and any action required, you
can use the snahelp utility.

AP_NO
Full logging: each message in the log file includes a full listing of the message header information,
the message text string and parameters, and additional information about the cause of the log and
any action required.

AP_LEAVE_UNCHANGED
Use the value (succinct logging or full logging) specified for this parameter on the previous
SET_GLOBAL_LOG_TYPE verb. The initial default, before any SET_GLOBAL_LOG_TYPE verb has
been issued, is to use succinct logging.

If you are using central logging, the choice of succinct or full logging for messages from all computers
is determined by the setting of this parameter on the server acting as the central logger; this setting
may either be from the SET_GLOBAL_LOG_TYPE verb, or from a SET_LOG_TYPE verb issued to that
server to override the default.

succinct_errors
Specifies whether to use succinct logging or full logging in the error log file; this applies to both
exception logs and problem logs. The allowed values and their meanings are the same as for the
succinct_audits parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_NOT_CENTRAL_LOGGER

The verb was issued to a node that is not the central logger.
AP_INVALID_SUCCINCT_SETTING

The succinct_audits or succinct_errors parameter was not set to a valid value.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_KERNEL_MEMORY_LIMIT
This verb specifies a limit on the amount of kernel memory that CS/AIX can use at any one time. This
allows you to ensure that memory is available for other processes on the AIX computer.

You can also specify the kernel memory limit when starting the CS/AIX software (for more information,
see the IBM Communications Server for Data Center Deployment on AIX Administration Guide). This verb
overrides the limit, if any, specified when starting the CS/AIX software.

SET_KERNEL_MEMORY_LIMIT

Chapter 3. NOF API Verbs 567

VCB structure
typedef struct set_kernel_memory_limit
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 limit; /* kernel memory limit, 0 => no limit */
 unsigned char reserv3[8]; /* Reserved */
} SET_KERNEL_MEMORY_LIMIT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_KERNEL_MEMORY_LIMIT

limit
The maximum amount of kernel memory that CS/AIX should use at any time, in bytes. If a CS/AIX
component attempts to allocate kernel memory that would take the total amount of memory currently
allocated to CS/AIX components above this limit, the allocation attempt will fail.

To remove the limit set by a previous SET_KERNEL_MEMORY_LIMIT verb, specify zero.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_LOG_FILE
This verb manages a file that CS/AIX uses to record log messages. It allows you to do the following:

• Specify a file used to record log messages (audit, error, or usage logs), and the backup file (to which log
information is copied).

• Specify the maximum log file size (when the log file reaches this size, CS/AIX copies log information to
the backup file and resets the log file).

• Copy the current contents of the log file to the backup file, and optionally delete the current file.

You can record audit log and error log messages in separate files, or record both types of messages in the
same file.

If you are using central logging, as defined by SET_CENTRAL_LOGGING, this verb must be issued to the
node that is acting as the central logger. Otherwise you can issue it to each node separately in order to
specify a different log file on each node.

This verb can be issued from a NOF application running on an AIX or Linux client. The NOF application
must run with the userid root, or with a userid that is a member of the sys group (AIX) or sna group
(Linux).

SET_LOG_FILE

568 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct set_log_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char log_file_type; /* type of log file */
 unsigned char action; /* reset and/or backup existing */
 unsigned char file_name[81]; /* file name */
 unsigned char backup_file_name[81]; /* backup file */
 AP_UINT32 file_size; /* log file size */
 unsigned char succinct; /* reserved */
 unsigned char reserv3[3]; /* reserved */
} SET_LOG_FILE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_LOG_FILE

log_file_type
The type of log file being managed. Possible values are:
AP_AUDIT_FILE

Audit log file (audit messages only).
AP_ERROR_FILE

Error log file (problem and exception messages).
AP_USAGE_FILE

Usage log file (information on current and peak usage of CS/AIX resources).

To record both audit and error messages in the same file, issue two SET_LOG_FILE verbs for the same
file name, specifying AP_AUDIT_FILE on one verb and AP_ERROR_FILE on the other.

action
The action to be taken on the log file. Specify one of the following values:
AP_NO_FILE_ACTION

Use the file specified in the file_name parameter as the log file, and the file specified in the
backup_file_name parameter as the backup file. After this verb completes successfully, all log
messages of the type defined by log_file_type are written to the new log file. The log file that was
used before this verb is issued, if any, is left unchanged.

AP_DELETE_FILE
Delete the contents of the current log file.

AP_BACKUP_FILE
Copy the contents of the current log file to the backup file, and then delete the contents of the
current file.

file_name
Name of the new log file.

To create the file in the default directory for diagnostics files, /var/sna, specify the file name with no
path. To create the file in a different directory, specify either a full path or the path relative to the
default directory. If you include the path, ensure that it is a valid path (either relative to the
application's working directory or a full path) on any computer to which this verb is issued.

This parameter is an ASCII string of 1-80 characters, followed by a NULL character (binary zero). To
continue logging to the file specified on a previous SET_LOG_FILE verb, specify a null string.

SET_LOG_FILE

Chapter 3. NOF API Verbs 569

backup_file_name
Name of the backup log file. When the log file reaches the size specified by file_size below, CS/AIX
copies the current contents to the backup file and then clears the log file. You can also request a
backup at any time using the action parameter above.

To create the file in the default directory for diagnostics files, /var/sna, specify the file name with no
path. To create the file in a different directory, specify either a full path or the path relative to the
default directory. If you include the path, ensure that it is a valid path (either relative to the
application's working directory or a full path) on any computer to which this verb is issued.

This parameter is an ASCII string of 1-80 characters, followed by a NULL character (binary zero). To
continue using the backup file specified on a previous SET_LOG_FILE verb, specify a null string.

file_size
The maximum size of the log file specified by log_file_type. When a message written to the file causes
the file size to exceed this limit, CS/AIX copies the current contents of the log file to the backup log file
and clears the log file. This means that the maximum amount of disk space taken up by log files is
approximately twice file_size.

To continue using the file size specified on a previous SET_LOG_FILE verb, set this parameter to zero.
The initial default value, before any SET_LOG_FILE verb has been issued, is 10,000,000 bytes. A value
of zero indicates "continue using the existing file size" and not "no limit".

You may need to increase the size of the audit and error log files according to the size of the CS/AIX
client/server network, to allow for the volume of log information generated in larger systems. In
particular, consider increasing the log file size to allow for the following:

• Large numbers of clients or users (since a single communications link failure may result in large
numbers of logs on the server relating to session failures)

• Activating audit logging as well as exception logging
• Using central logging instead of distributed logging
• Using full logging instead of succinct logging.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_FILE_ACTION

The action parameter was not set to a valid value.
AP_INVALID_FILE_TYPE

The log_file_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

SET_LOG_FILE

570 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_LOG_TYPE
This verb specifies the types of information that CS/AIX records in log files on a particular server. It can be
used to override the default settings specified on SET_GLOBAL_LOG_TYPE, or to remove the override so
that this server reverts to using the default settings. For more information about log files, see
“SET_LOG_FILE” on page 568.

This verb can be issued from a NOF application running on an AIX or Linux client. The NOF application
must run with the userid root, or with a userid that is a member of the sys group (AIX) or sna group
(Linux).

Problem
An abnormal event that degrades the system in a way perceptible to a user (such as abnormal
termination of a session).

Exception
An abnormal event that degrades the system but that is not immediately perceptible to a user (such
as a resource shortage), or an event that does not degrade the system but may indicate the cause of
later exceptions or problems (such as receiving an unexpected message from the remote system).

Audit
A normal event (such as starting a session).

Problem and exception messages are logged to the error log file; audit messages are logged to the audit
log file. Problem messages are always logged and cannot be disabled, but you can specify whether to log
each of the other two message types. For each of the two files (audit and error), you can specify whether
to use succinct logging (including only the text of the message and a summary of the message source) or
full logging (including full details of the message source, cause, and any action required).

VCB structure
typedef struct set_log_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char override; /* override global defaults? */
 unsigned char audit; /* audit logging on or off */
 unsigned char exception; /* exception logging on or off */
 unsigned char succinct_audits; /* use succinct logging in audit file?*/
 unsigned char succinct_errors; /* use succinct logging in error file?*/
 unsigned char reserv3[3]; /* reserved */
} SET_LOG_TYPE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_LOG_TYPE

override
Specifies whether this verb is being used to override the global log types specified on
SET_GLOBAL_LOG_TYPE, or to revert to using these defaults. Possible values are:

SET_LOG_TYPE

Chapter 3. NOF API Verbs 571

AP_YES
Override the global log types. The log types to be used on this server are specified by the audit
and exception parameters below, and the choice of succinct or full logging is specified by the
succinct_* parameters below.

AP_NO
Revert to using the global log types. The audit, exception, and succinct_* parameters below are
ignored.

audit
Specify whether audit messages are recorded on this server. Possible values are:
AP_YES

Audit messages are recorded.
AP_NO

Audit messages are not recorded.
AP_LEAVE_UNCHANGED

Leave audit logging unchanged from the existing definition.
exception

Specify whether exception messages are recorded on this server. Possible values are:
AP_YES

Exception messages are recorded.
AP_NO

Exception messages are not recorded.
AP_LEAVE_UNCHANGED

Leave exception logging unchanged from the existing definition.
succinct_audits

Specifies whether to use succinct logging or full logging in the audit log file on this server. Possible
values are:
AP_YES

Succinct logging: each message in the log file contains a summary of the message header
information (such as the message number, log type, and system name) and the message text
string and parameters. To obtain more details of the cause of the log and any action required, you
can use the snahelp utility.

AP_NO
Full logging: each message in the log file includes a full listing of the message header information,
the message text string and parameters, and additional information about the cause of the log and
any action required.

AP_LEAVE_UNCHANGED
Leave succinct logging or full logging unchanged from the existing definition.

If you are using central logging, the choice of succinct or full logging for messages from all computers
is determined by the setting of this parameter on the server acting as the central logger; this setting
may either be from the SET_GLOBAL_LOG_TYPE verb, or from a SET_LOG_TYPE verb issued to that
server to override the default.

succinct_errors
Specifies whether to use succinct logging or full logging in the error log file on this server; this applies
to both exception logs and problem logs. The allowed values and their meanings are the same as for
the succinct_audits parameter.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

SET_LOG_TYPE

572 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_SUCCINCT_SETTING

The succinct_audits or succinct_errors parameter was not set to a valid value.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_PROCESSING_MODE
This verb specifies how the NOF application interacts with the target node, configuration file, or SNA
network data file: whether the application has read-only access or read/write access, and whether the
application has exclusive access to the domain configuration file so that other applications cannot access
it.

This verb applies only to NOF applications running on a server. For an application running on a client, the
only processing mode available is read-only mode (the default), in which the application can issue
QUERY_* verbs but cannot define, start or stop resources. The client application cannot use
SET_PROCESSING_MODE to select any other mode.

The target node or file is specified by the target_handle parameter on the NOF API call; the application
obtains this parameter from the verb CONNECT_NODE (for a node) or OPEN_FILE (for a file). For more
information about the use of this parameter, see “NOF API entry points for AIX or Linux” on page 19.

This verb may be issued to the domain configuration file, to the sna.net file, or to a running node. The
valid processing modes that can be set with this verb depend on the target type.

VCB structure
typedef struct set_processing_mode
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char mode; /* new mode to be set for this handle */
 AP_UINT16 reserv1; /* reserved */
} SET_PROCESSING_MODE;

Supplied parameters
opcode

AP_SET_PROCESSING_MODE
mode

Requested mode for this target handle. The mode cannot be changed while any previous verbs issued
using this target handle are still outstanding. Possible values are:
AP_MODE_READ_ONLY

Read-only mode: the application will use only QUERY_* verbs, which do not modify the
configuration. This option can be used with either a file or a node as the target.

SET_PROCESSING_MODE

Chapter 3. NOF API Verbs 573

AP_MODE_READ_WRITE
Read / write mode: the application may use any NOF API verbs. This option can be used with
either a file or a node as the target.

AP_MODE_COMMIT
Commit mode: the application has exclusive read/write access to the target file, so that other
applications cannot access it until this application releases it. This option can be used only with
the domain configuration file as the target.

This mode is intended for issuing a series of connected verbs to a file (such as a series of DEFINE
verbs for related components). The application should complete the series of verbs as quickly as
possible and then reset its processing mode to one of the other options, in order to release the file
so that other NOF API applications or CS/AIX components can access it.

Note: To obtain read/write or commit access to the file, your NOF application must be running with a
user ID that is a member of the SNA administrators group system or sna (or running as root). If the
user ID is not a member of this group or root, the only valid processing mode is
AP_MODE_READ_ONLY.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PROC_MODE

The mode parameter was not set to a valid value.
AP_INVALID_TARGET_MODE

The mode parameter was not valid for the selected target.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state check, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_FILE_UNAVAILABLE

The application specified commit mode, but was unable to get exclusive access to the required
configuration file. This may be because another application is accessing the file in commit mode.

AP_VERB_IN_PROGRESS
The processing mode for the specified target handle cannot be changed because a previous verb
issued for this handle is still outstanding. All verbs for the target handle must be completed before
attempting to change the processing mode.

SET_PROCESSING_MODE

574 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NOT_AUTHORIZED
The NOF application cannot obtain read/write access to the file because it is running on a client, or
because it is running with a user ID that is not a member of the SNA administrators group system.
If the user ID is not a member of this group, the only valid processing mode is
AP_MODE_READ_ONLY.

AP_NOT_CONTROLLER
The processing mode cannot be changed to AP_MODE_READ_WRITE or AP_MODE_COMMIT
because the target handle specifies a file (either the domain configuration file or the SNA network
data file) on a backup server that is no longer acting as the controller server. Changes to the
running configuration file can be made only to the copy of this file on the controller (so that they
will be distributed to other servers); other copies of the file can be accessed only in read-only
mode. If the application needs to use read/write or commit mode, it should issue CLOSE_FILE for
this target handle, and then reissue OPEN_FILE to access the file on the new controller server.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_TN3270_SLP_TRACE
This verb specifies tracing options for the CS/AIX TN3270 Service Location Protocol component.

This verb must be issued to a running node.

VCB structure
typedef struct set_tn3270_slp_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 unsigned char reserv3[6]; /* reserved */
} SET_TN3270_SLP_TRACE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_TN3270_SLP_TRACE

trace_flags
The types of tracing required. To turn off all tracing, or to turn on tracing of all types, specify one of the
following values:
AP_TN3270_SLP_NO_TRACE

No tracing.
AP_TN3270_SLP_ALL_TRACE

Tracing of all types.

To activate tracing on specific message types, select one or more values from the list below,
combined using a logical OR operation.

AP_TN3270_SLP_TRC_CFG
Configuration message tracing: messages relating to the configuration of TN3270 SLP

SET_TN3270_SLP_TRACE

Chapter 3. NOF API Verbs 575

AP_TN3270_SLP_TRC_NOF
Internal node operator function (NOF) tracing: trace NOF requests made by TN3270 SLP

AP_TN3270_SLP_TRC_TCP
TCP/IP interface tracing: messages between TN3270 SLP and TN3270 clients

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_TN_SERVER_TRACE
This verb specifies tracing options for the CS/AIX TN server component.

This verb must be issued to a running node.

VCB structure
typedef struct set_tn_server_trace
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 unsigned char reserv3[6]; /* reserved */
} SET_TN_SERVER_TRACE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_TN_SERVER_TRACE

trace_flags
The types of tracing required. To turn off all tracing, or to turn on tracing of all types, specify one of the
following values:
AP_TN_SERVER_NO_TRACE

No tracing.
AP_TN_SERVER_ALL_TRACE

Tracing of all types.

To activate tracing on specific message types, select one or more values from the list below,
combined using a logical OR operation.

AP_TN_SERVER_TRC_TCP
TCP/IP interface tracing: messages between TN server and TN3270 clients

AP_TN_SERVER_TRC_FM
Node interface tracing: internal control messages, and messages between TN server and TN3270
clients (in internal format)

SET_TN_SERVER_TRACE

576 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_TN_SERVER_TRC_CFG
Configuration message tracing: messages relating to the configuration of TN server

AP_TN_SERVER_TRC_NOF
Internal node operator function (NOF) tracing: trace NOF requests made by TN server.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_TRACE_FILE
This verb specifies the name of a file that CS/AIX uses to record trace data.

If you issue a second SET_TRACE_FILE verb specifying a new file for the same file type, all subsequent
trace information will be written to the new file; the existing file is not removed, but further information
will not be written to it. If you issue a second SET_TRACE_FILE verb for the same trace file, this resets the
file (discarding trace information that was written to the file before the second verb).

This verb must be issued to a running node.

VCB structure
typedef struct set_trace_file
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char trace_file_type; /* type of trace file */
 unsigned char dual_files; /* dual trace files */
 AP_UINT32 trace_file_size; /* trace file size */
 unsigned char reserv3[4]; /* reserved */
 unsigned char file_name[81]; /* file name */
 unsigned char file_name_2[81]; /* second file name */
} SET_TRACE_FILE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_TRACE_FILE

trace_file_type
The type of trace file. Possible values are:
AP_CS_TRACE

File contains tracing on data transferred across the CS/AIX LAN between the specified computer
and other nodes (activated by the SET_CS_TRACE verb).

AP_TN_SERVER_TRACE
File contains tracing on the CS/AIX TN server component.

SET_TRACE_FILE

Chapter 3. NOF API Verbs 577

AP_TN3270_SLP_TRACE
File contains tracing on the CS/AIX TN3270 Service Location Protocol component.

AP_IPS_TRACE
File contains tracing on kernel components for the specified node (activated by the
SET_TRACE_TYPE or ADD_DLC_TRACE verb).

dual_files
Specifies whether tracing is to one file or to two files. Possible values are:
AP_YES

Tracing is to two files. When the first file reaches the size specified by trace_file_size, the second
file is cleared, and tracing continues to the second file. When this file then reaches the size
specified by trace_file_size, the first file is cleared, and tracing continues to the first file. This
ensures that tracing can continue for long periods without using excessive disk space; the
maximum space required is approximately twice the value of trace_file_size.

AP_NO
Tracing is to one file.

AP_LEAVE_UNCHANGED
Leave the dual_files setting unchanged from the existing definition. (The initial default, when the
CS/AIX software is started, is to use two files.)

trace_file_size
The maximum size of the trace file, in bytes. The initial default value, before any SET_TRACE_FILE
verb has been issued, is 10,000,000 bytes. To continue using the existing file size definition, specify
zero.

If dual_files is set to AP_YES, tracing will switch between the two files when the current file reaches
this size. If dual_files is set to AP_NO, this parameter is ignored; the file size is not limited.

You may need to increase the size of the trace files according to the size of the CS/AIX client/server
network, to allow for the volume of trace information generated in larger systems. In particular,
consider increasing the trace file size on a server to allow for large numbers of clients or users
accessing the server.

file_name
Name of the trace file, or of the first trace file if dual_files is set to AP_YES. To continue using the file
name specified on a previous SET_TRACE_FILE verb, set this parameter to a null string.

To create the file in the default directory for diagnostics files, /var/sna, specify the file name with no
path. To create the file in a different directory, specify either a full path or the path relative to the
default directory. If you include the path, ensure that it is a valid path (either relative to the
application's working directory or a full path) on any computer to which this verb is issued.

This parameter is an ASCII string of 1-80 characters, followed by a NULL character (binary zero).

file_name_2
Name of the second trace file; this parameter is used only if dual_files is set to AP_YES. To continue
using the file name specified on a previous set_trace_file verb, set this parameter to a null string.

To create the file in the default directory for diagnostics files, /var/sna, specify the file name with no
path. To create the file in a different directory, specify either a full path or the path relative to the
default directory. If you include the path, ensure that it is a valid path (either relative to the
application's working directory or a full path) on any computer to which this verb is issued.

This parameter is an ASCII string of 1-80 characters, followed by a NULL character (binary zero).

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

SET_TRACE_FILE

578 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_FILE_NAME

The file_name or file_name_2 parameter was not set to a valid AIX file name, or file_name_2 was
not specified when changing from a single trace file to dual trace files.

AP_INVALID_FILE_TYPE
The trace_file_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

SET_TRACE_TYPE
This verb specifies tracing options for CS/AIX kernel components. You can use this verb to specify the
state of tracing (on or off) at all interfaces, or to turn tracing on or off at specific interfaces (leaving tracing
at other interfaces unchanged). For more information about tracing options, see the IBM Communications
Server for Data Center Deployment on AIX Administration Guide.

To control DLC line tracing, use the ADD_DLC_TRACE verb. The truncation length specified on this verb
also applies to DLC tracing, but the tracing options on this verb do not apply to DLC tracing.

This verb must be issued to a running node.

VCB structure
typedef struct set_trace_type
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT16 trace_flags; /* trace flags */
 AP_UINT32 truncation_length; /* truncate each msg to this size */
 unsigned char init_flags; /* TRUE if initializing flags */
 unsigned char set_flags; /* TRUE if setting flags */
 /* FALSE if unsetting flags */
 unsigned char set_internal; /* reserved */
 AP_UINT16 internal_level; /* reserved */
 AP_UINT32 api_flags; /* api trace flags */
} SET_TRACE_TYPE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_SET_TRACE_TYPE

SET_TRACE_TYPE

Chapter 3. NOF API Verbs 579

trace_flags
The types of tracing required. To turn off all tracing, or to turn on tracing of all types, specify one of the
following values:
AP_NO_TRACE

No tracing.
AP_ALL_TRACE

Tracing of all types.

To control tracing on specific interfaces, select one or more values from the list below, combined
using a logical OR operation. For more information about these trace types, see “Trace types” on page
581.

If init_flags is set to AP_YES, select the values corresponding to the interfaces where you want tracing
to be active, and do not select the values corresponding to the interfaces where you want it to be
inactive. If init_flags is set to AP_NO, select the values corresponding to the interfaces where you
want to change the state of tracing.

AP_APPC_MSG
APPC messages

AP_LUA_MSG
LUA messages

AP_NOF_MSG
NOF messages

AP_MS_MSG
MS messages

AP_GDLC_MSG
GDLC messages

AP_IPDL_MSG
Enterprise Extender (HPR/IP) messages

AP_DLC_MSG
Node to DLC messages

AP_NODE_MSG
Node messages

AP_SLIM_MSG
Messages sent between controller and backup servers

AP_DATAGRAM
Datagram messages

truncation_length
Specify the maximum length, in bytes, of the information to be written to the trace file for each
message. This value must be at least 256.

If a trace message is longer than the length specified in this parameter, CS/AIX writes only the start of
the message to the trace file, and discards the data beyond truncation_length. This allows you to
record the most important information for each message but avoid filling up the file with long
messages.

To specify no truncation (all the data from each message is written to the file), set this parameter to
zero.

init_flags
Specifies whether to initialize tracing (define the tracing state at all interfaces), or to change the state
of tracing at one or more interfaces (leaving the others unchanged). Possible values are:
AP_YES

Tracing is being initialized. The trace_flags parameter defines the required state of tracing at all
interfaces.

SET_TRACE_TYPE

580 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_NO
Tracing is being changed. The trace_flags parameter defines the interfaces where tracing is being
activated or deactivated; other interfaces will not be affected.

set_flags
If init_flags is set to AP_NO, this parameter specifies whether tracing is to be activated or deactivated
at the requested interfaces. Possible values are:
AP_YES

Tracing is to be activated at the interfaces specified by the trace_flags parameter.
AP_NO

Tracing is to be deactivated at the interfaces specified by the trace_flags parameter.

If init_flags is set to AP_YES, this parameter is ignored.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

secondary_rc
Not used.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TRUNC_LEN

The truncation_length parameter specified a length of less than 256 bytes.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

Trace types
Figure 2 on page 582, shows the overall structure of CS/AIX. Each kernel-space trace type, relating to
data transferred across a particular interface between CS/AIX components, is shown in the diagram at the
interface where it is traced.

SET_TRACE_TYPE

Chapter 3. NOF API Verbs 581

Figure 2. Overall Structure of CS/AIX

Figure 2 on page 582 shows the following types of tracing, each of which can be controlled separately:

APPC messages
Messages between the APPC library and the node

LUA messages
Messages between the LUA library and the node

NOF messages
Messages between the NOF library and the node

MS messages
Messages between the MS library and the node

DLC line trace
SNA data sent on a DLC (tracing on these messages is controlled by the ADD_DLC_TRACE verb, not by
SET_TRACE_TYPE)

Node to DLC messages
Messages between the APPN node and the DLC component

In addition, the following message types (internal to CS/AIX) can be traced:

Node messages
Messages between components within the APPN protocol code

SET_TRACE_TYPE

582 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Control messages
Internal control messages between system components

START_DLC
START_DLC requests the activation of a DLC.

This verb must be issued to a running node.

VCB structure
typedef struct start_dlc
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char dlc_name[8]; /* name of DLC */
} START_DLC;

Supplied parameters
The application supplies the following parameters:

opcode
AP_START_DLC

dlc_name
Name of the DLC to be started. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes, which must match the name of a defined DLC.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameter:

primary_rc
AP_OK

This return code indicates only that the verb was issued successfully; the verb does not wait for the
DLC to initialize, and so does not return error return codes if the initialization of the DLC fails. DLC
initialization failures are reported using messages written to the error log file.

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC

The dlc_name parameter was not the name of a defined DLC.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

START_DLC

Chapter 3. NOF API Verbs 583

secondary_rc
AP_DLC_DEACTIVATING

The specified DLC has already been started, and is in the process of being deactivated.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

START_INTERNAL_PU
START_INTERNAL_PU requests DLUR to initiate SSCP-PU session activation for a previously defined local
PU which is served by DLUR.

This verb must be issued to a running node.

VCB structure
typedef struct start_internal_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pu_name[8]; /* internal PU name */
 unsigned char dlus_name[17]; /* DLUS name */
 unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
} START_INTERNAL_PU;

Supplied parameters
The application supplies the following parameters:

opcode
AP_START_INTERNAL_PU

pu_name
Name of the internal PU to be started (which must have been previously defined using
DEFINE_INTERNAL_PU). The name is an 8-byte type-A EBCDIC string (starting with a letter), padded
on the right with EBCDIC spaces.

dlus_name
Name of DLUS node which DLUR will contact to solicit SSCP-PU session activation for the given PU.
The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of
up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string
characters.

To use the DLUS specified in the DEFINE_INTERNAL_PU verb, or the global default specified in
DEFINE_DLUR_DEFAULTS if none was specified in DEFINE_INTERNAL_PU, set this parameter to 17
binary zeros.

bkup_dlus_name
Name of DLUS node which DLUR will store as the backup DLUS for the given PU. The name is a 17-
byte EBCDIC string, right-padded with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

To use the backup DLUS specified in the DEFINE_INTERNAL_PU verb, or the global backup default
specified in DEFINE_DLUR_DEFAULTS if none was specified in DEFINE_INTERNAL_PU, set this
parameter to 17 binary zeros.

START_INTERNAL_PU

584 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DLUS_NAME

The dlus_name parameter contained a character that was not valid or was not in the correct
format.

AP_INVALID_BKUP_DLUS_NAME
The bkup_dlus_name parameter contained a character that was not valid or was not in the correct
format.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_NO_DEFAULT_DLUS_DEFINED

A DLUS name was not specified either on this verb or on the DEFINE_INTERNAL_PU verb, and
there is no default DLUS defined because the DEFINE_DLUR_DEFAULTS verb has not been issued.

AP_PU_NOT_DEFINED
The supplied PU name was not the name of an internal PU defined using DEFINE_INTERNAL_PU.

AP_PU_ALREADY_ACTIVATING
The PU is already in the process of being started.

AP_PU_ALREADY_ACTIVE
The PU has already been started.

Returned parameters: unsuccessful
If the verb does not execute successfully, CS/AIX returns the following parameters.

primary_rc
AP_UNSUCCESSFUL

secondary_rc
Possible values are:
AP_DLUS_REJECTED

The DLUS rejected the session activation request.
AP_DLUS_CAPS_MISMATCH

The configured DLUS name was not a DLUS node.
AP_PU_FAILED_ACTPU

The local node rejected a message from the DLUS. This may be caused by an internal error, a
resource shortage, or a problem with the received message; check the CS/AIX log files for
messages providing more information.

START_INTERNAL_PU

Chapter 3. NOF API Verbs 585

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The node does not support DLUR; this is defined by the dlur_supported parameter on
DEFINE_NODE.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

START_LS
START_LS normally starts an inactive LS. Alternatively, it can be used to leave the LS inactive but specify
that it can be activated automatically by CS/AIX when required or activated by the remote system.

Note: If the LS is a leased SDLC link or a QLLC PVC link, it must be activated by the remote system as well
as by CS/AIX. You are recommended to define the LS to be activated when the node is started and to be
reactivated automatically after failures, to ensure that the link is always available; see “DEFINE_LS” on
page 100 for more information.

This verb must be issued to a running node.

VCB structure
typedef struct start_ls
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char ls_name[8]; /* name of link station */
 unsigned char enable; /* start ls or enable auto-activation? */
 unsigned char react_kicked; /* retry in progress? */
 unsigned char reserv3[2]; /* reserved */
} START_LS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_START_LS

ls_name
Name of the link station to be started. This is an 8-byte ASCII string, padded on the right with spaces
if the name is shorter than 8 bytes, which must already have been defined by a DEFINE_LS verb.

enable
Specifies the action to be taken for the LS.

To start the LS, set this parameter to AP_ACTIVATE.

To leave the LS inactive but specify that it can be activated (either by CS/AIX or by the remote system)
when required, specify one or both of the following values (combined using a logical OR):

AP_AUTO_ACT
The LS can be activated automatically by CS/AIX when required for a session. This value should be
used only when the LS is defined to be auto-activatable (auto_act_supp in the LS definition is set
to AP_YES); it re-enables auto-activation after the LS has been manually stopped using STOP_LS.

START_LS

586 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_REMOTE_ACT
The LS can be activated by the remote system. This value does not alter the defined value of
disable_remote_act in the LS definition; when the LS is next stopped, it will return to the defined
setting.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_LINK_NAME_SPECIFIED

The ls_name parameter was not the name of a defined LS.
AP_INVALID_LINK_ENABLE

The enable parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_ACTIVATION_LIMITS_REACHED

The activation limits have been reached.
AP_LINK_DEACT_IN_PROGRESS

The specified LS is currently being deactivated. You cannot start it until the deactivation process
has finished.

AP_ALREADY_STARTING
The specified LS is already starting.

AP_PARALLEL_TGS_NOT_SUPPORTED
A link to the remote system is already active. The adjacent node does not support parallel
transmission groups.

AP_PORT_INACTIVE
The LS cannot be started because its associated port is not active.

react_kicked
Specifies whether CS/AIX will retry the attempt to activate the LS (based on the react_timer_retry
parameter in the LS definition). Possible values are:
AP_YES

LS activation will be retried (up to the number of attempts specified by react_timer_retry).
AP_NO

LS activation will not be retried.

START_LS

Chapter 3. NOF API Verbs 587

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: unsuccessful
If the verb does not execute successfully because the SNA subsystem on the remote computer cannot be
contacted, CS/AIX returns the following parameters:

primary_rc
AP_LS_FAILURE

secondary_rc
Possible values are:
AP_PARTNER_NOT_FOUND

No response was received from the port associated with this LS. For Token Ring, Ethernet: check
that the mac_address parameter in the LS definition is correct.

AP_ERROR
The connection to the remote computer could not be established. This may be because the SNA
subsystem on the remote computer is not started. For link types other than LAN types (Token
Ring, Ethernet), it may also indicate that CS/AIX could not find a remote computer matching the
supplied addressing information.

Returned parameters: cancelled
If the verb does not execute because it was cancelled by another verb, CS/AIX returns the following
parameters:

primary_rc
AP_CANCELLED

secondary_rc
Possible values are:
AP_NO_SECONDARY_RC

A STOP_LS verb was issued before the START_LS verb had completed. The START_LS verb was
cancelled.

AP_LINK_DEACTIVATED
The DLC or port used by the LS was stopped before the START_LS verb had completed. The
START_LS verb was cancelled.

react_kicked
Specifies whether CS/AIX will retry the attempt to activate the LS (based on the react_timer_retry
parameter in the LS definition). Possible values are:
AP_YES

LS activation will be retried (up to the number of attempts specified by react_timer_retry).
AP_NO

LS activation will not be retried.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

START_PORT
START_PORT requests the activation of a port. The DLC specified for the port must be active before this
verb is issued.

This verb must be issued to a running node.

START_PORT

588 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
typedef struct start_port
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char port_name[8]; /* name of port */
} START_PORT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_START_PORT

port_name
Name of port to be started. This is an 8-byte ASCII string, padded on the right with spaces if the name
is shorter than 8 bytes, which must already have been defined by a DEFINE_PORT verb.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT

The port_name parameter was not the name of a defined port.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_DLC_INACTIVE

The port cannot be started because its associated DLC is not active.
AP_DUPLICATE_PORT

The specified port has already been started.
AP_STOP_PORT_PENDING

The specified port is currently being deactivated. You cannot start it until the deactivation process
has finished.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

START_PORT

Chapter 3. NOF API Verbs 589

Returned parameters: cancelled
If the verb does not execute because it was cancelled, CS/AIX returns the following parameters.

primary_rc
AP_CANCELLED

A STOP_PORT verb was issued before this verb had completed. The START_PORT verb was
cancelled.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

STOP_DLC
STOP_DLC requests CS/AIX to stop a DLC; this also stops any active ports and LSs that use the DLC.

This verb must be issued to a running node.

VCB structure
typedef struct stop_dlc
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char stop_type; /* stop type */
 unsigned char dlc_name[8]; /* name of DLC */
} STOP_DLC;

Supplied parameters
The application supplies the following parameters:

opcode
AP_STOP_DLC

stop_type
Type of stop processing required. Possible values are:
AP_ORDERLY_STOP

CS/AIX will perform cleanup operations before stopping the DLC.
AP_IMMEDIATE_STOP

CS/AIX will stop the DLC immediately.
dlc_name

Name of DLC to be stopped. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes, which must already have been defined by a DEFINE_DLC verb.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

STOP_DLC

590 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_DLC

The dlc_name parameter did not match the name of a defined DLC.
AP_UNRECOGNIZED_DEACT_TYPE

The stop_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_STOP_DLC_PENDING

The specified DLC is already in the process of being stopped.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: cancelled
If the verb does not execute because it has been cancelled, CS/AIX returns the following parameters:

primary_rc
AP_CANCELLED

The stop_type parameter specified an orderly stop, but the DLC was then stopped by a second
command specifying an immediate stop or by a failure condition.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

STOP_INTERNAL_PU
STOP_INTERNAL_PU requests DLUR to initiate SSCP-PU session deactivation for a previously defined
local PU which is served by DLUR.

This verb must be issued to a running node.

VCB structure
typedef struct stop_internal_pu
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char pu_name[8]; /* internal PU name */
 unsigned char stop_type; /* type of stop requested */
} STOP_INTERNAL_PU;

STOP_INTERNAL_PU

Chapter 3. NOF API Verbs 591

Supplied parameters
The application supplies the following parameters:

opcode
AP_STOP_INTERNAL_PU

pu_name
Name of the internal PU for which the SSCP-PU session will be deactivated. This is an 8-byte type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC spaces.

stop_type
Specifies how to stop the PU. Possible values are:
AP_ORDERLY_STOP

Deactivate all underlying PLU-SLU and SSCP-LU sessions before deactivating the SSCP-PU
session.

AP_IMMEDIATE_STOP
Deactivate the SSCP-PU session immediately.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_STOP_TYPE

The stop_type parameter was not set to a valid value.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
Possible values are:
AP_PU_NOT_DEFINED

The supplied PU name did not match the name of a defined internal PU.
AP_PU_ALREADY_DEACTIVATING

The PU is already in the process of being stopped.
AP_PU_NOT_ACTIVE

The PU is not active.

Returned parameters: function not supported
If the verb does not execute because the node's configuration does not support it, CS/AIX returns the
following parameter:

STOP_INTERNAL_PU

592 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The node does not support DLUR; this is defined by the dlur_supported parameter on
DEFINE_NODE.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

STOP_LS
STOP_LS stops an active LS. Alternatively, it can be issued for an inactive LS, to specify that the LS cannot
be activated automatically by CS/AIX when required or activated by the remote system; if both of these
are disabled, the LS can be activated only by issuing START_LS.

This verb must be issued to a running node.

VCB structure
typedef struct stop_ls
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char stop_type; /* stop type */
 unsigned char ls_name[8]; /* name of link station */
 unsigned char disable; /* disable remote or auto activation? */
 unsigned char reserved[3]; /* reserved */
} STOP_LS;

Supplied parameters
The application supplies the following parameters:

opcode
AP_STOP_LS

stop_type
Type of stop processing required. Possible values are:
AP_ORDERLY_STOP

CS/AIX will perform cleanup operations before stopping the LS.
AP_IMMEDIATE_STOP

CS/AIX will stop the LS immediately.
ls_name

Name of LS to be stopped. This is an 8-byte ASCII string, padded on the right with spaces if the name
is shorter than 8 bytes, which must already have been defined by a DEFINE_LS verb.

disable
Specifies the action to be taken for the LS.

To stop an active LS and return to the default settings for auto-activation and remote activation, set
this parameter to AP_NO.

To specify that an inactive LS cannot be activated by CS/AIX, or cannot be activated by the remote
system, specify one or both of the following values (combined using a logical OR):

AP_AUTO_ACT
The LS cannot be activated automatically by CS/AIX.

STOP_LS

Chapter 3. NOF API Verbs 593

AP_REMOTE_ACT
The LS cannot be activated by the remote system. This value does not alter the defined value of
disable_remote_act in the LS definition; when the LS is next started and stopped, it will return to
the defined setting.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_LINK_NOT_DEFD

The ls_name parameter did not match the name of a defined LS.
AP_UNRECOGNIZED_DEACT_TYPE

The stop_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LINK_DEACT_IN_PROGRESS

The specified LS is already in the process of being deactivated.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: cancelled
If the verb does not execute because it was cancelled, CS/AIX returns the following parameters.

primary_rc
AP_CANCELLED

The stop_type parameter specified an orderly stop, but the LS was then stopped by a second verb
specifying an immediate stop or by a failure condition.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

STOP_PORT
STOP_PORT allows the application to stop a port. This also stops any active LSs that are using the port.

STOP_PORT

594 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

This verb must be issued to a running node.

VCB structure
typedef struct stop_port
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char stop_type; /* Stop Type */
 unsigned char port_name[8]; /* name of port */
} STOP_PORT;

Supplied parameters
The application supplies the following parameters:

opcode
AP_STOP_PORT

stop_type
Type of stop processing required. Possible values are:
AP_ORDERLY_STOP

CS/AIX will perform cleanup operations before stopping the port.
AP_IMMEDIATE_STOP

CS/AIX will stop the port immediately.
port_name

Name of port to be stopped. This is an 8-byte ASCII string, padded on the right with spaces if the
name is shorter than 8 bytes.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
Possible values are:
AP_INVALID_PORT_NAME

The port_name parameter did not match the name of a defined port.
AP_UNRECOGNIZED_DEACT_TYPE

The stop_type parameter was not set to a valid value.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: state check
If the verb does not execute because of a state error, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

STOP_PORT

Chapter 3. NOF API Verbs 595

secondary_rc
AP_STOP_PORT_PENDING

The specified port is already in the process of being deactivated.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_STATE_CHECK, which are common to all NOF verbs.

Returned parameters: cancelled
If the verb does not execute because it has been cancelled, CS/AIX returns the following parameters:

primary_rc
AP_CANCELLED

The stop_type parameter specified an orderly stop, but the port was then stopped by a second
verb specifying an immediate stop or by a failure condition.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

TERM_NODE
TERM_NODE allows the application to stop the node with a specified urgency. This also stops all
connectivity resources associated with the node.

This verb must be issued to a running node.

VCB structure
typedef struct term_node
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char stop_type; /* stop type */
} TERM_NODE;

Supplied parameters
The application supplies the following parameters:

opcode
AP_TERM_NODE

stop_type
Specifies how CS/AIX should stop the node. Possible values are:
AP_ABORT

Stop immediately without attempting any cleanup processing. This value should be used only in
serious error conditions, because it may cause problems for other programs using the node's
resources.

AP_SHUTDOWN
Deactivate all LSs associated with the node before stopping.

AP_QUIESCE
Indicate to the network that the node is quiesced, reset session limits on all modes, unbind all
endpoint sessions for the node's LUs, and then stop as for AP_SHUTDOWN.

TERM_NODE

596 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_QUIESCE_ISR
Same functions as AP_QUIESCE, except that the node waits for all intermediate sessions to end.
This value applies only to network nodes.

AP_DEACT_CLEAN
Same functions as AP_QUIESCE, except that session limits are not reset and RTP connections are
allowed to terminate gracefully before the LSs are deactivated.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

primary_rc
AP_OK

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

UNREGISTER_INDICATION_SINK
UNREGISTER_INDICATION_SINK unregisters the NOF application so that it no longer receives indications
of a particular type (previously specified using REGISTER_INDICATION_SINK).

If the application has registered more than once to accept multiple indication types, it must unregister
separately for each indication that it no longer wants to receive.

This verb must always be issued using the asynchronous NOF API entry point, including the callback
routine that was supplied on the REGISTER_INDICATION_SINK verb (for more information about the
asynchronous NOF API entry point, see “Asynchronous entry point: nof_async” on page 21).

This verb may be issued to the domain configuration file, to a running node or to a server where the node
is not running, or to the sna.net file, depending on the type of indication for which the application is
unregistering.

VCB structure
typedef struct unregister_indication_sink
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 proc_id; /* reserved */
 AP_UINT16 queue_id; /* reserved */
 AP_UINT16 indication_opcode; /* opcode of indication to be unsunk */
} UNREGISTER_INDICATION_SINK;

Supplied parameters
The application supplies the following parameters:

opcode
AP_UNREGISTER_INDICATION_SINK

indication_opcode
The opcode parameter of the indication that is no longer required.

Returned parameters: successful execution
If the verb executes successfully, CS/AIX returns the following parameters:

UNREGISTER_INDICATION_SINK

Chapter 3. NOF API Verbs 597

primary_rc
AP_OK

Returned parameters: parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_OP_CODE

The indication_opcode parameter did not match the opcode of any of the CS/AIX NOF indications,
or the application has not previously registered to receive the specified indication on this target
handle.

Appendix B, “Common return codes,” on page 661 lists further secondary return codes associated with
AP_PARAMETER_CHECK, which are common to all NOF verbs.

Returned parameters: function not supported
If the verb does not execute successfully because the local node does not support the function
associated with the specified indication, CS/AIX returns the following parameters:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The local node does not support the specified indication. For details of the support required for
each indication, see the description of each indication in Chapter 4, “NOF Indications,” on page
599.

Returned parameters: other conditions
Appendix B, “Common return codes,” on page 661 lists further combinations of primary and secondary
return codes that are common to all NOF verbs.

UNREGISTER_INDICATION_SINK

598 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Chapter 4. NOF Indications

This chapter provides the following information for each NOF indication:

• Description of the indication's purpose and usage
• Verb control block (VCB) structure, as defined in the NOF API header file /usr/include/sna/
nof_c.h (AIX) or /opt/ibm/sna/include/nof_c.h (Linux)

• Explanations of the parameters returned to the application in the VCB

For information about how the application registers to receive NOF indications, see
“REGISTER_INDICATION_SINK” on page 553.

CONFIG_INDICATION
This indication is generated when another NOF application or a CS/AIX administration tool makes a
change to the target configuration, when the target node is stopped or started, or when a DLC, port, or LS
owned by the target node is stopped or started. The target can be the domain configuration file, a running
node, or an inactive node on a server where the CS/AIX software is running. The target is identified by the
target_handle parameter on the REGISTER_INDICATION_SINK verb that registers to receive this
indication.

VCB structure
No specific VCB structure is associated with this indication. To register for configuration indications, the
application specifies the value AP_CONFIG_INDICATION as the indication_opcode parameter on
REGISTER_INDICATION_SINK. When a change is made, CS/AIX then reports this to the application's
callback routine by sending a copy of the VCB from the NOF verb that made the change. For example, if
the configuration was modified by a DEFINE_DLC verb, CS/AIX sends a copy of the DEFINE_DLC VCB to
the application's callback routine.

To enable the application to distinguish between configuration indications and asynchronous responses to
its own NOF verbs, CS/AIX changes the primary_rc parameter in the VCB for a configuration indication.
The value AP_INDICATION identifies a VCB associated with a configuration indication; the value AP_OK,
or any other value, indicates an asynchronous response to one of the application's own NOF verbs.

The following events are not reported as configuration indications:

• Changes to the SNA network file sna.net. To receive indications of these changes, the application must
register for the indication type AP_SNA_NET_INDICATION. For more information, see
“SNA_NET_INDICATION” on page 648.

• Starting and stopping the SNA software on other servers. To receive indications of these changes, the
application must register for the indication type AP_SERVER_INDICATION. For more information, see
“SERVER_INDICATION” on page 644.

The range of VCBs that can be returned as configuration indications depends on the type of target handle
specified on REGISTER_INDICATION_SINK:

Domain configuration file
The application can receive VCBs for any verbs that modify domain resources but not node resources
(verbs that can be issued to the domain configuration file).

Node configuration file
The application can receive VCBs for any verbs that modify node resources.

Running node
The application can receive VCBs for any verbs that modify node resources, TERM_NODE VCBs, and
START_* and STOP_* VCBs for DLCs, ports, and LSs.

CONFIG_INDICATION

© Copyright IBM Corp. 1998, 2021 599

Inactive node
The application can receive VCBs for any verbs that modify node resources and also INIT_NODE VCBs.

DIRECTORY_INDICATION
This indication is generated when an entry is added to or removed from the local directory database.

VCB structure
typedef struct directory_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char removed; /* is entry being removed? */
 unsigned char resource_name[17]; /* resource name */
 unsigned char invalid; /* invalid entry being removed? */
 AP_UINT16 resource_type; /* resource type */
 unsigned char parent_name[17]; /* parent resource name */
 unsigned char entry_type; /* type of the directory entry */
 AP_UINT16 parent_type; /* parent resource type */
 unsigned char description[32]; /* resource description */
 unsigned char reserv3[16]; /* reserved */
 AP_UINT16 real_owning_cp_type; /* CP type of real owner */
 unsigned char real_owning_cp_name[17]; /* CP name of real owner */
 AP_UINT16 supplier_cp_type; /* CP type of supplier */
 unsigned char supplier_cp_name[17]; /* CP name of supplier */
 unsigned char reserva; /* reserved */
} DIRECTORY_INDICATION;

Parameters
opcode

AP_DIRECTORY_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous directory indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous directory indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous directory indications were lost.
removed

Specifies whether the indicated resource has been removed from the directory or added to it. Possible
values are:
AP_YES

The entry has been removed.
AP_NO

The entry has been added.
resource_name

Fully qualified name of the resource. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

DIRECTORY_INDICATION

600 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

invalid
When an end node registers its resources with a network node, new directory entries are added to the
network node's directory database for these resources. If the database already contains an explicitly
defined entry for one of these resources, but the entry does not match the registered resource, CS/AIX
removes the entry that is not valid and replaces it with the correct entry. This parameter is used to
indicate whether the entry has been removed because it was not valid and has been replaced by the
correct entry from the registered resource or because it was explicitly deleted. Possible values are:
AP_YES

The entry has been removed because it was incorrect.
AP_NO

The entry has been removed because it was explicitly deleted.

If the local node is not a network node, or if removed is set to AP_NO, this parameter is not used.

resource_type
Resource type. Possible values are:
AP_NNCP_RESOURCE

Network node.
AP_ENCP_RESOURCE

End node.
AP_LU_RESOURCE

LU.
parent_name

Fully qualified name of parent resource. If resource_type is AP_NNCP_RESOURCE, this is set to 17
binary zeros.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

entry_type
Specifies the type of the directory entry. This is one of the following:
AP_HOME

Local resource.
AP_CACHE

Cached entry.
AP_REGISTER

Registered resource (NN only)
parent_type

Specifies the parent type of the resource being registered. If resource_type is AP_NNCP_RESOURCE,
this parameter is not used. Possible values are:
AP_NNCP_RESOURCE

Network node.
AP_ENCP_RESOURCE

End node.
description

A null-terminated text string describing the resource, as specified in the definition of the resource.
real_owning_cp_type

This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies whether the real CP that owns the resource identified by this directory entry is the parent
resource or another node. This is one of the following:

DIRECTORY_INDICATION

Chapter 4. NOF Indications 601

AP_NONE
The real owner is the parent resource.

AP_ENCP_RESOURCE
The real owner is an end node that is not the parent resource. For example, if the resource is
owned by an End Node in the domain of a Branch Network Node (BrNN), the directory of this
BrNN's Network Node Server includes the BrNN as the parent resource, but the real owning CP is
the End Node.

real_owning_cp_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the real_owning_cp_type parameter indicates that the real owner of the resource is not the parent,
this parameter specifies the fully qualified name of the CP that owns the resource; otherwise it is
reserved.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

supplier_cp_type
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

Specifies whether this directory entry was registered by another node that is not the owning CP of the
resource. This is one of the following:

AP_NONE
The directory entry was not registered, or was registered by its owning CP.

AP_ENCP_RESOURCE
The directory entry was registered by a node that is not its owning CP. For example, if the resource
is owned by an End Node in the domain of a Branch Network Node (BrNN) that is itself in the
domain of the local node, the BrNN is the supplier because it registers the resource with the local
node, but the real owning CP is the End Node.

supplier_cp_name
This parameter applies only if the local node is a Network Node or a Branch Network Node; it is
reserved otherwise.

If the supplier_cp_type parameter indicates that the directory entry was registered by a node that is
not the owning resource, this parameter specifies the fully qualified name of the CP that supplied the
registration; otherwise it is reserved.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of 1-8 A-string characters, an EBCDIC dot (period) character, and a network name of 1-8
A-string characters.

DLC_INDICATION
This indication is generated when a DLC changes state between active and inactive.

VCB structure
typedef struct dlc_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has session been deactivated? */
 unsigned char dlc_name[8]; /* link station name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */

DLC_INDICATION

602 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char reserva[20]; /* reserved */
} DLC_INDICATION;

Parameters
opcode

AP_DLC_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous indications have been lost. If CS/AIX detects a condition that prevents
it from sending an indication (for example an internal resource shortage), it indicates this by setting
the data_lost parameter on the next indication after the condition has cleared. Possible values are:
AP_YES

One or more previous DLC indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous DLC indications were lost.
deactivated

Specifies whether the DLC has become inactive or become active. Possible values are:
AP_YES

The DLC has become inactive.
AP_NO

The DLC has become active.
dlc_name

Name of DLC. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

description
A null-terminated text string describing the DLC, as specified in the definition of the DLC.

DLUR_LU_INDICATION
This indication is generated when a DLUR LU is activated or deactivated. This indication can be used by a
registered application to maintain a list of currently active DLUR LUs.

VCB structure
typedef struct dlur_lu_indication
{
 AP_UINT16 opcode; /* Indication operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* Previous indication lost? */
 unsigned char reason; /* reason for this indication */
 unsigned char lu_name[8]; /* LU name */
 unsigned char pu_name[8]; /* PU name */
 unsigned char nau_address; /* NAU address */
 unsigned char reserv5[7]; /* reserved */
} DLUR_LU_INDICATION;

Parameters
opcode

AP_DLUR_LU_INDICATION
primary_rc

AP_OK

DLUR_LU_INDICATION

Chapter 4. NOF Indications 603

data_lost
Specifies whether any previous directory indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous directory indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous directory indications were lost.
reason

Reason for this indication. Possible values are:
AP_ADDED

The DLUR has just been activated by the DLUS.
AP_REMOVED

The DLUR has been deactivated, either explicitly by the DLUS or implicitly by a link failure or the
deactivation of the PU.

lu_name
Name of the logical unit (LU). This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded on the right with EBCDIC spaces.

pu_name
Name of the physical unit (PU) that this LU uses. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded on the right with EBCDIC spaces.

nau_address
Network accessible unit (NAU) address of the LU. This value must be in the range 1-255.

DLUR_PU_INDICATION
This indication is generated when a physical unit (PU) for the node that supports the dependent LU
requester (DLUR) function is attempting to activate, fails to activate, activates, or is deactivated. This
indication can be used to maintain a list of currently active DLUR PUs.

VCB structure
typedef struct dlur_pu_indication
{
 AP_UINT16 opcode; /* Indication operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* Previous indication lost? */
 unsigned char reason; /* reason for this indication */
 unsigned char pu_name[8]; /* PU name */
 unsigned char pu_id[4]; /* PU identifier */
 unsigned char pu_location; /* downstream or local PU */
 unsigned char pu_status; /* status of the PU */
 unsigned char dlus_name[17]; /* current DLUS name */
 unsigned char dlus_session_status; /* status of the DLUS pipe */
 unsigned char reserv5[2]; /* reserved */
} DLUR_PU_INDICATION;

Parameters
opcode

AP_DLUR_PU_INDICATION
primary_rc

AP_OK

DLUR_PU_INDICATION

604 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

data_lost
Specifies whether any previous directory indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous directory indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous directory indications were lost.
reason

Cause of the indication. Possible values are:

Possible values are:

AP_ACTIVATION_STARTED
The PU is activating.

AP_ACTIVATING
The PU has become active.

AP_DEACTIVATING
The PU has become inactive.

AP_FAILED
The PU has failed.

AP_ACTIVATION_FAILED
The PU has failed to activate.

pu_name
Name of the physical unit (PU). This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded on the right with EBCDIC spaces.

pu_id
PU identifier defined in a DEFINE_INTERNAL_PU verb or obtained in an XID from a downstream PU.
This value is a 4-byte hexadecimal string. Bits 0-11 are set to the Block number and bits 12-31 are set
to the ID number that uniquely identifies the PU.

pu_location
Location of the PU. Possible values are:
AP_INTERNAL

The PU has been defined by a DEFINE_INTERNAL_PU verb.
AP_DOWNSTREAM

The PU is located at a downstream computer.
pu_status

Status of the PU, as seen by the DLUR. Possible values are:
AP_RESET_NO_RETRY

The PU is in reset state and will not be retried.
AP_RESET_RETRY

The PU is in reset state and will be retried.
AP_PEND_ACTPU

The PU is waiting for an ACTPU from the host.
AP_PEND_ACTPU_RSP

Having forwarded an ACTPU to the PU, DLUR is now waiting for the PU to respond to it.
AP_ACTIVE

The PU is active.
AP_PEND_DACTPU_RSP

Having forwarded a DACTPU to the PU, DLUR is now waiting for the PU to respond to it.

DLUR_PU_INDICATION

Chapter 4. NOF Indications 605

AP_PEND_INOP
DLUR is waiting for all necessary events to complete before it deactivates the PU.

dlus_name
Name of the dependent LU server (DLUS) node that the PU is currently using (or attempting to use).
The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters. If the reason parameter is set to AP_FAILED, the dlus_name parameter is
set to all zeros.

dlus_session_status
Status of the DLUS pipe currently being used by the PU. Possible values are:
AP_PENDING_ACTIVE

The DLUS pipe is currently being activated.
AP_ACTIVE

The DLUS pipe is active.
AP_PENDING_INACTIVE

The DLUS pipe is currently being deactivated.
AP_INACTIVE

The DLUS pipe is inactive.

DLUS_INDICATION
This indication is generated when a pipe to a DLUS node changes state between active and inactive. When
the pipe becomes inactive, the indication also includes pipe statistics.

VCB structure
typedef struct dlus_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has DLUS become inactive? */
 unsigned char dlus_name[17]; /* DLUS name */
 unsigned char reserv1; /* reserved */
 PIPE_STATS pipe_stats; /* pipe statistics */
 unsigned char persistent_pipe_support; /* reserved */
 unsigned char persistent_pipe; /* reserved */
 unsigned char reserva[18]; /* reserved */
} DLUS_INDICATION;

typedef struct pipe_stats
{
 AP_UINT32 reqactpu_sent; /* REQACTPUs sent to DLUS */
 AP_UINT32 reqactpu_rsp_received; /* RSP(REQACTPU)s received */
 /* from DLUS */
 AP_UINT32 actpu_received; /* ACTPUs received from DLUS */
 AP_UINT32 actpu_rsp_sent; /* RSP(ACTPU)s sent to DLUS */
 AP_UINT32 reqactpu_sent; /* REQDACTPUs sent to DLUS */
 AP_UINT32 reqdactpu_rsp_received; /* RSP(REQDACTPU)s received */
 /* from DLUS */
 AP_UINT32 dactpu_received; /* DACTPUs received from DLUS */
 AP_UINT32 dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
 AP_UINT32 actlu_received; /* ACTLUs received from DLUS */
 AP_UINT32 actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
 AP_UINT32 dactlu_received; /* DACTLUs received from DLUS */
 AP_UINT32 dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */
 AP_UINT32 sscp_pu_mus_rcvd; /* MUs for SSCP-PU sessions rcvd */
 AP_UINT32 sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
 AP_UINT32 sscp_lu_mus_rcvd; /* MUs for SSCP-LU sessions rcvd */
 AP_UINT32 sscp_lu_mus_sent; /* MUs for SSCP-LU sessions sent */
} PIPE_STATS;

DLUS_INDICATION

606 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Parameters
opcode

AP_DLUS_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous DLUS indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous downstream LU indications were lost. Later fields in this VCB may be set to
zeros.

AP_NO
No previous downstream LU indications were lost.

deactivated
Specifies whether the pipe has become inactive or become active. Possible values are:
AP_YES

The pipe has become inactive.
AP_NO

The pipe has become active.
dlus_name

Name of the DLUS node. The name is a 17-byte EBCDIC string, right-padded with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

If the pipe was deactivated, a pipe_stats structure is included. The fields in this structure are as
follows:

pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the pipe.

pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over the pipe.

pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

DLUS_INDICATION

Chapter 4. NOF Indications 607

pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the pipe.

pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the pipe.

pipe_stats.sscp_lu_mus_sent
Number of SSCP-LU MUs sent to DLUS over the pipe.

DOWNSTREAM_LU_INDICATION
This indication is generated when either the LU-SSCP session or the PLU-SLU session between the
downstream LU and the host changes state between active and inactive. When one of these sessions
becomes inactive, the indication also includes session statistics for that session.

VCB structure
typedef struct downstream_lu_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char dspu_name[8]; /* PU name */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char dslu_name[8]; /* LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv3[16]; /* reserved */
 unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active; /* Is LU-SSCP session active */
 unsigned char plu_sess_active; /* Is PLU-SLU session active */
 unsigned char dspu_services; /* DSPU services */
 unsigned char reserv1; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 SESSION_STATS ds_plu_stats; /* Downstream PLU-SLU session stats */
 SESSION_STATS us_plu_stats; /* Upstream PLU-SLU session stats */
} DOWNSTREAM_LU_INDICATION;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window size*/
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window size*/
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char reserve; /* reserved */
} SESSION_STATS;

DOWNSTREAM_LU_INDICATION

608 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Parameters
opcode

AP_DOWNSTREAM_LU_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous downstream LU indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:
AP_YES

One or more previous downstream LU indications were lost. Later fields in this VCB may be set to
zeros.

AP_NO
No previous downstream LU indications were lost.

dspu_name
Name of the downstream PU associated with the downstream LU. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces.

ls_name
Name of the link station associated with the downstream LU. This is an 8-byte ASCII string, padded on
the right with spaces if the name is shorter than 8 characters.

dslu_name
Name of the downstream LU. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded on the right with EBCDIC spaces.

description
A null-terminated text string describing the downstream LU, as specified in the definition of the LU.

nau_address
Network accessible unit address of the LU.

lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
plu_sess_active

Specifies whether the PLU-SLU session is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
dspu_services

Specifies the services provided by the local node to the downstream LU.

Possible values are:

AP_PU_CONCENTRATION
Downstream LU is served by SNA gateway.

AP_DLUR
Downstream LU is served by DLUR.

DOWNSTREAM_LU_INDICATION

Chapter 4. NOF Indications 609

If the LU-SSCP session was deactivated, a session_stats structure is included for this session; if the
PLU-SLU session was deactivated, session_stats structures are included for the downstream and
upstream PLU-SLU sessions. The fields in this structure are as follows:

rcv_ru_size
Maximum receive RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

send_ru_size
Maximum send RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_send_pac_win
Current size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

max_rcv_pac_win
Maximum size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_rcv_pac_win
Current size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

send_data_frames
Number of normal flow data frames sent.

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

sidh
Session ID high byte. (In the upstream PLU-SLU session statistics, this parameter is reserved.)

sidl
Session ID low byte. (In the upstream PLU-SLU session statistics, this parameter is reserved.)

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station. (In the upstream PLU-SLU session statistics, this
parameter is reserved.)

ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters. (In the upstream PLU-SLU session statistics, this
parameter is reserved if dspu_services is set to AP_PU_CONCENTRATION.)

DOWNSTREAM_LU_INDICATION

610 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

DOWNSTREAM_PU_INDICATION
This indication is generated when the PU-SSCP session between the downstream PU and the host
changes state between active and inactive. When the session becomes inactive, the indication also
includes PU-SSCP session statistics.

VCB structure
typedef struct downstream_pu_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char dspu_name[8]; /* PU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv3[16]; /* reserved */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pu_sscp_sess_active; /* Is PU-SSCP session active */
 unsigned char dspu_services; /* DSPU services */
 unsigned char reserv1[2]; /* reserved */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
} DOWNSTREAM_PU_INDICATION;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window size*/
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window size*/
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char reserve; /* reserved */
} SESSION_STATS;

Parameters
opcode

AP_DOWNSTREAM_PU_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous downstream PU indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:
AP_YES

One or more previous downstream PU indications were lost. Later fields in this VCB may be set to
zeros.

AP_NO
No previous downstream PU indications were lost.

DOWNSTREAM_PU_INDICATION

Chapter 4. NOF Indications 611

dspu_name
Name of downstream PU. The name is an 8-byte EBCDIC type-A string, padded on the right with
EBCDIC spaces if the name is shorter than 8 characters.

description
A null-terminated text string describing the downstream PU, as specified in the definition of the LS
associated with the PU.

ls_name
Name of the link station associated with the downstream PU. This is an 8-byte ASCII string, padded
on the right with spaces if the name is shorter than 8 characters.

pu_sscp_sess_active
Specifies whether the PU-SSCP session to the downstream PU is active. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
dspu_services

Specifies the services provided by the local node to the downstream PU.

Possible values are:

AP_PU_CONCENTRATION
Downstream LU is served by SNA gateway.

AP_DLUR
Downstream LU is served by DLUR.

pu_sscp_stats.rcv_ru_size
Reserved (always set to zero).

pu_sscp_stats.send_ru_size
Reserved (always set to zero).

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
Reserved (always set to zero).

pu_sscp_stats.cur_send_pac_win
Reserved (always set to zero).

pu_sscp_stats.max_rcv_pac_win
Reserved (always set to zero).

pu_sscp_stats.cur_rcv_pac_win
Reserved (always set to zero).

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

DOWNSTREAM_PU_INDICATION

612 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

FOCAL_POINT_INDICATION
This indication is generated whenever a focal point is acquired, changed or revoked.

VCB structure
typedef struct focal_point_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char ms_category[8]; /* Focal point category */
 unsigned char fp_fqcp_name[17]; /* Fully qualified focal point cp name*/
 unsigned char ms_appl_name[8]; /* Focal point application name */
 unsigned char fp_type; /* type of current focal point */
 unsigned char fp_status; /* status of focal point */
 unsigned char fp_routing; /* type of MDS routing to reach FP */
 unsigned char reserva[20]; /* reserved */
} FOCAL_POINT_INDICATION;

Parameters
opcode

AP_FOCAL_POINT_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous focal point indications have been lost. If CS/AIX detects a condition
that prevents it from sending an indication (for example an internal resource shortage), it indicates
this by setting the data_lost parameter on the next indication after the condition has cleared. Possible
values are:
AP_YES

One or more previous focal point indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous focal point indications were lost.
ms_category

Management Services category for which the focal point has changed. This can be either one of the
category names specified in the MS Discipline-Specific Application Programs table contained in the
SNA Management Services Reference, padded on the right with spaces if the name is shorter than 8
bytes, or a user-defined category. User-defined category names should be an 8-byte type-1134
EBCDIC string, padded on the right with spaces if the name is shorter than 8 bytes.

FOCAL_POINT_INDICATION

Chapter 4. NOF Indications 613

fp_fqcp_name
Fully qualified name of the current focal point for the specified MS category. The name is a 17-byte
EBCDIC string, padded on the right with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters. If
this parameter is set to 17 binary zeros, this indicates that there is no focal point currently defined for
the specified MS category; the previous focal point has been deleted and not replaced.

ms_appl_name
Name of the current focal point application. This can be either one of the application names specified
in the MS Discipline-Specific Application Programs table in Systems Network Architecture:
Management Services Reference SC30-3346, padded on the right with spaces to 8 bytes, or a user-
defined application name (see the Bibliography). User-defined names should be an 8-byte type-1134
EBCDIC string, padded on the right with spaces if the name is shorter than 8 bytes. If this parameter
is set to 8 binary zeros, this indicates that there is no focal point currently defined for the specified MS
category; the previous focal point has been deleted and not replaced.

fp_type
Type of focal point. Refer to SNA Management Services for further detail. Possible values are:

AP_EXPLICIT_PRIMARY_FP

AP_IMPLICIT_PRIMARY_FP

AP_BACKUP_FP

AP_DEFAULT_PRIMARY_FP

AP_DOMAIN_FP

AP_HOST_FP

AP_NO_FP

fp_status
Status of the focal point. Possible values are:
AP_NOT_ACTIVE

The focal point has gone from active to inactive.
AP_ACTIVE

The focal point has gone from inactive or pending active to active.
fp_routing

Type of routing that applications should specify when sending data to the focal point. This parameter
is used only if the focal point status is AP_ACTIVE. Possible values are:
AP_DEFAULT

Data should be sent using default routing.
AP_DIRECT

Data should be sent using direct routing.

ISR_INDICATION
This indication is generated when an intermediate session routing (ISR) session is activated or
deactivated. When the session is deactivated, the returned data includes statistics on the session's usage.

VCB structure
typedef struct isr_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */

ISR_INDICATION

614 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 unsigned char deactivated; /* has ISR session been */
 /* deactivated? */
 FQPCID fqpcid; /* FQPCID for ISR session */
 unsigned char fqplu_name[17]; /* fully-qualified primary LU name */
 unsigned char fqslu_name[17]; /* fully-qualified secondary */
 /* LU name */
 unsigned char mode_name[8]; /* mode name */
 unsigned char cos_name[8]; /* COS name */
 unsigned char transmission_priority; /* transmission priority */
 AP_UINT32 sense_data; /* sense data */
 unsigned char reserv2a[2]; /* reserved */
 SESSION_STATS pri_sess_stats; /* Primary hop session statistics */
 SESSION_STATS sec_sess_stats; /* Secondary hop session statistics*/
 unsigned char reserva[20]; /* reserved */
} ISR_INDICATION;

typedef struct fqpcid
{
 unsigned char pcid[8]; /* procedure correlator identifier */
 unsigned char fqcp_name[17]; /* originator's network qualified */
 /* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window size*/
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window size*/
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char reserve; /* reserved */
} SESSION_STATS;

Parameters
opcode

AP_ISR_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous ISR indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous ISR indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous ISR indications were lost.
deactivated

Specifies whether the ISR session was deactivated or activated. Possible values are:
AP_YES

The session was deactivated.

ISR_INDICATION

Chapter 4. NOF Indications 615

AP_NO
The session was activated.

fqpcid.pcid
Procedure Correlator ID for the session. This is an 8-byte hexadecimal string.

fqpcid.fqcp_name
Fully qualified control point name. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

fqplu_name
Fully qualified name of the primary LU for this session; this parameter is reserved if deactivated is set
to AP_YES. The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists
of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name
of up to 8 A-string characters.

fqslu_name
Fully qualified name of the secondary LU for this session; this parameter is reserved if deactivated is
set to AP_YES. The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It
consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a
network name of up to 8 A-string characters.

mode_name
Mode name for this session; this parameter is reserved if deactivated is set to AP_YES. This is an 8-
byte type-A EBCDIC string (starting with a letter), padded to the right with EBCDIC spaces.

cos_name
COS name for this session; this parameter is reserved if deactivated is set to AP_YES. This is an 8-byte
type-A EBCDIC string (starting with a letter), padded to the right with EBCDIC spaces.

transmission_priority
The transmission priority associated with the session. This parameter is reserved if deactivated is set
to AP_YES.

sense_data
The sense data sent or received on the UNBIND request. This parameter is reserved if deactivated is
set to AP_NO.

If the ISR session was deactivated, session_stats structures are included for the primary and
secondary sessions. The fields in this structure are as follows:

rcv_ru_size
Maximum receive RU size.

send_ru_size
Maximum send RU size.

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window on this session.

cur_send_pac_win
Current size of the send pacing window on this session.

max_rcv_pac_win
Maximum size of the receive pacing window on this session.

cur_rcv_pac_win
Current size of the receive pacing window on this session.

send_data_frames
Number of normal flow data frames sent.

ISR_INDICATION

616 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

sidh
Session ID high byte.

sidl
Session ID low byte.

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if its local node contains the primary link station, and sets it to one if its local node
contains the secondary link station.

ls_name
Link station name associated with statistics. This is an 8-byte ASCII string, padded on the right with
spaces if the name is shorter than 8 bytes, which can be used to correlate the session statistics with
the link over which the session traffic flows.

LOCAL_LU_INDICATION
This indication is generated when a local LU is defined or deleted. This indication can be used by a
registered application to maintain a list of all local LUs currently defined.

VCB structure
typedef struct local_lu_indication
{
 AP_UINT16 opcode; /* Indication operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* Previous indication lost? */
 unsigned char reason; /* reason for this indication */
 unsigned char lu_name[8]; /* LU name */
 DESCRIPTION description; /* resource description */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char nau_address; /* NAU address */
 unsigned char reserv4; /* reserved */
 unsigned char pu_name[8]; /* PU name */
 unsigned char lu_sscp_active; /* Is LU-SSCP session active */
 unsigned char reserv5; /* reserved */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 unsigned char sscp_id[6]; /* SSCP ID */
} LOCAL_LU_INDICATION;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* max send BTU size */
 AP_UINT16 max_rcv_btu_size; /* max receive BTU size */
 AP_UINT16 max_send_pac_win; /* max send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* max receive pacing window size */
 AP_UINT16 cur_rcv_pac_win; /* current rcv pacing window size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num of fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */

LOCAL_LU_INDICATION

Chapter 4. NOF Indications 617

 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num of fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte */
 unsigned char sidl; /* session ID low byte */
 unsigned char odai; /*origin-destination assignor bit set*/
 unsigned char ls_name[8]; /* link station name */
 unsigned char pacing_type; /* type of pacing in use */
} SESSION_STATS;

The LU-SSCP statistics contained in the session_stats structure are valid only when both the
nau_address parameter is set to a nonzero value and the lu_sscp_active parameter is set to AP_YES.
Otherwise, the parameters in the session_stats structure are reserved.

Parameters
opcode

AP_LOCAL_LU_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous directory indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous directory indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous directory indications were lost.
reason

Reason for the indication. Possible values are:
AP_ADDED

The LU has been defined.
AP_REMOVED

The LU has been deleted, either explicitly using DELETE_LOCAL_LU, or implicitly, using
DELETE_LS, DELETE_PORT, or DELETE_DLC.

AP_SSCP_ACTIVE
The LU-SSCP session has become active after the node has successfully processed an ACTLU.

AP_SSCP_INACTIVE
The LU-SSCP session has become inactive after a normal DACTLU or a link failure.

lu_name
Name of the local logical unit (LU) whose state has changed. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded on the right with EBCDIC spaces.

description
Resource description, as specified on DEFINE_LOCAL_LU.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable character set. All eight bytes
are significant.

nau_address
Network accessible unit (NAU) address of the LU. This value must be in the range 1-255. A nonzero
value implies that the LU is a dependent LU. The value 0 (zero) implies that the LU is an independent
LU.

pu_name
Name of the physical unit (PU) that this LU uses. This is an 8-byte type-A EBCDIC string), padded on
the right with EBCDIC spaces. This parameter is significant only if the nau_address parameter is not

LOCAL_LU_INDICATION

618 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

set to 0 (zero). If the nau_address parameter is set to 0, the pu_name parameter is set to all binary
zeros.

lu_sscp_sess_active
Specifies whether the LU-SSCP session is active. If the nau_address parameter is set to 0 (zero), this
parameter is reserved. Possible values are:
AP_YES

The LU-SSCP session is active.
AP_NO

The LU-SSCP session is not active.
lu_sscp_stats.rcv_ru_size

This parameter is always reserved.
lu_sscp_stats.send_ru_size

This parameter is always reserved.
lu_sscp_stats.max_send_btu_size

Maximum basic transmission unit (BTU) that can be sent.
lu_sscp_stats.max_rcv_btu_size

Maximum basic transmission unit (BTU) that can be received.
lu_sscp_stats.max_send_pac_win

This parameter is always set to zero.
lu_sscp_stats.cur_send_pac_win

This parameter is always set to zero.
lu_sscp_stats.max_rcv_pac_win

This parameter is always set to zero.
lu_sscp_stats.cur_rcv_pac_win

This parameter is always set to zero.
lu_sscp_stats.send_data_frames

Number of normal flow data frames sent.
lu_sscp_stats.send_fmd_data_frames

Number of normal flow function management data (FMD) frames sent.
lu_sscp_stats.send_data_bytes

Number of normal flow data bytes sent.
lu_sscp_stats.rcv_data_frames

Number of normal flow data frames received.
lu_sscp_stats.rcv_fmd_data_frames

Number of normal flow function management data (FMD) frames received.
lu_sscp_stats.rcv_data_bytes

Number of normal flow data bytes received.
lu_sscp_stats.sidh

Session ID high byte.
lu_sscp_stats.sidl

Session ID low byte.
lu_sscp_stats.odai

Origin Destination Assignor indicator. When activating a session, the sender of the ACTLU sets this
parameter to zero if the local node contains the primary link station and sets it to one if the ACTLU
sender is the node containing the secondary link station.

lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a locally displayable character
set. All eight bytes are significant. The parameter can be used to correlate this session with the link
over which the session flows.

LOCAL_LU_INDICATION

Chapter 4. NOF Indications 619

lu_sscp_stats.pacing_type
Receive pacing type in use on the LU-SSCP session. This will take the value AP_NONE.

sscp_id
The identifier of the SSCP as received in the ACTPU for the PU used by this LU. This parameter is 6
bytes and is used only by dependent LUs. This parameter is set to all zeros for independent LUs or if
the lu_sscp_sess_active parameter is not set to AP_YES.

LOCAL_TOPOLOGY_INDICATION
This indication is generated when one of the following occurs:

• A TG in the local node's topology database changes state between active and inactive.
• A TG in the local node's topology database changes state between quiescing and not quiescing.
• A contention winner CP-CP session over a TG in the local node's topology database is activated or

deactivated.

VCB structure
typedef struct local_topology_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char status; /* TG status */
 unsigned char dest[17]; /* name of TG destination node */
 unsigned char dest_type; /* TG destination node type */
 unsigned char tg_num; /* TG number */
 unsigned char cp_cp_session_active; /* CP-CP sessions active? */
 unsigned char branch_link_type; /* Up or down link? */
 unsigned char branch_tg; /* Branch TG? */
 unsigned char reserva[17]; /* reserved */
} LOCAL_TOPOLOGY_INDICATION;

Parameters
opcode

AP_LOCAL_TOPOLOGY_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous local topology indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:
AP_YES

One or more previous local topology indications were lost.
AP_NO

No previous local topology indications were lost.
status

Specifies the status of the TG. This can be AP_NONE or one or more of the following values (combined
using a logical OR):

AP_TG_OPERATIVE

AP_TG_CP_CP_SESSIONS

AP_TG_QUIESCING

LOCAL_TOPOLOGY_INDICATION

620 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

dest
Fully qualified destination node name for the TG. The name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

dest_type
Type of the destination node. Possible values are:
AP_END_NODE

End node.
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
tg_num

Transmission group number associated with the TG.
cp_cp_session_active

Specifies whether the local node's contention winner CP-CP session is active. Possible values are:
AP_YES

The CP-CP session is active.
AP_NO

The CP-CP session is not active.
AP_UNKNOWN

The CP-CP session status is unknown.
branch_link_type

This parameter applies only if the node is a Branch Network Node; it is reserved otherwise.

Specifies the branch link type of this TG. Possible values are:

AP_UPLINK
The TG is an uplink.

AP_DOWNLINK
The TG is a downlink to an End Node.

AP_DOWNLINK_TO_BRNN
The TG is a downlink to a Branch Network Node that appears as an End Node from the perspective
of the local node.

AP_OTHERLINK
The TG is a link to a VRN.

branch_tg
This parameter applies only if the node is a Network Node; it is reserved otherwise.

Specifies whether the TG is a branch TG. Possible values are:

AP_YES
The TG is a branch TG.

AP_NO
The TG is not a branch TG.

AP_UNKNOWN
The TG type is unknown.

LS_INDICATION
This indication is generated when a link station is activated or deactivated. When the link station is
deactivated, the returned data includes statistics on the link station's usage.

LS_INDICATION

Chapter 4. NOF Indications 621

VCB structure
typedef struct ls_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has LS been deactivated? */
 unsigned char ls_name[8]; /* link station name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char adj_cp_name[17]; /* network qualified Adjacent CP name*/
 unsigned char adj_node_type; /* adjacent node type */
 AP_UINT16 act_sess_count; /* active session count on link */
 unsigned char indication_cause; /* cause of indication */
 LS_STATS ls_stats; /* link station statistics */
 unsigned char tg_num; /* tg number */
 AP_UINT32 sense_data; /* sense data */
 unsigned char brnn_link_type; /* type of branch link */
 unsigned char adj_cp_is_brnn; /* is adjacent node a BrNN? */
 unsigned char mltg_member; /* reserved */
 unsigned char tg_sharing; /* reserved */
 unsigned char ls_type; /* how LS was defined or discovered */
 unsigned char reserva[14]; /* reserved */
} LS_INDICATION;

typedef struct ls_stats
{
 AP_UINT32 in_xid_bytes; /* number of XID bytes received */
 AP_UINT32 in_msg_bytes; /* number of message bytes received */
 AP_UINT32 in_xid_frames; /* number of XID frames received */
 AP_UINT32 in_msg_frames; /* number of message frames received*/
 AP_UINT32 out_xid_bytes; /* number of XID bytes sent */
 AP_UINT32 out_msg_bytes; /* number of message bytes sent */
 AP_UINT32 out_xid_frames; /* number of XID frames sent */
 AP_UINT32 out_msg_frames; /* number of message frames sent */
 AP_UINT32 in_invalid_sna_frames; /* number of invalid */
 /* frames received */
 AP_UINT32 in_session_control_frames; /* number of control */
 /* frames received */
 AP_UINT32 out_session_control_frames; /* number of control */
 /* frames sent */
 AP_UINT32 echo_rsps; /* reserved */
 AP_UINT32 current_delay; /* reserved */
 AP_UINT32 max_delay; /* reserved */
 AP_UINT32 min_delay; /* reserved */
 AP_UINT32 max_delay_time; /* reserved */
 AP_UINT32 good_xids; /* successful XID on LS count */
 AP_UINT32 bad_xids; /* unsuccessful XID on LS count */
} LS_STATS;

Parameters
opcode

AP_LS_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous LS indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous LS indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous LS indications were lost.

LS_INDICATION

622 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

deactivated
Specifies whether the LS has been deactivated or activated. Possible values are:
AP_YES

The LS has been deactivated.
AP_NO

The LS has been activated.
ls_name

Name of the link station. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

description
A null-terminated text string describing the LS, as specified in the definition of the LS.

adj_cp_name
Fully qualified CP name of the adjacent node. The name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

adj_node_type
Type of the adjacent node. Possible values are:
AP_END_NODE

End node.
AP_NETWORK_NODE

Network node.
AP_LEN_NODE

LEN node.
AP_VRN

Virtual routing node.
act_sess_count

Total number of active sessions (both endpoint and intermediate) using the link.
indication_cause

Cause of the indication. Possible values are:
AP_ACTIVATING

The LS has been activated.
AP_DEACTIVATION_STARTED

Deactivation processing for the LS has started.
AP_DEACTIVATING

The LS has been deactivated.
AP_SESS_COUNT_CHANGING

The number of active sessions using the LS has changed.
AP_CP_NAME_CHANGING

The adjacent node's CP name has changed.
AP_DATA_LOST

A previous indication could not be sent.
AP_FAILED

The LS has failed.
AP_ACTIVATION_STARTED

The LS supports auto-activation, and has been started automatically when required for a session.
AP_ACTIVATION_FAILED

The LS supports auto-activation, but the attempt to start it automatically when required has failed.
AP_LR_ACTIVATING

The LS has failed (or an attempt to activate it has failed), and CS/AIX is attempting to reactivate it.

LS_INDICATION

Chapter 4. NOF Indications 623

The following parameters are returned only if deactivated is set to AP_YES, indicating that the LS has
been deactivated.

ls_stats.in_xid_bytes
Total number of XID (Exchange Identification) bytes received on this link station.

ls_stats.in_msg_bytes
Total number of data bytes received on this link station.

ls_stats.in_xid_frames
Total number of XID (Exchange Identification) frames received on this link station.

ls_stats.in_msg_frames
Total number of data frames received on this link station.

ls_stats.out_xid_bytes
Total number of XID (Exchange Identification) bytes sent on this link station.

ls_stats.out_msg_bytes
Total number of data bytes sent on this link station.

ls_stats.out_xid_frames
Total number of XID (Exchange Identification) frames sent on this link station.

ls_stats.out_msg_frames
Total number of data frames sent on this link station.

ls_stats.in_invalid_sna_frames
Total number of SNA frames that were not valid received on this link station.

ls_stats.in_session_control_frames
Total number of session control frames received on this link station.

ls_stats.out_session_control_frames
Total number of session control frames sent on this link station.

ls_stats.good_xids
Total number of successful XID exchanges that have occurred on this link station since it was started.

ls_stats.bad_xids
Total number of unsuccessful XID exchanges that have occurred on this link station since it was
started.

tg_num
Transmission group number associated with the LS.

sense_data
If the LS has failed because of an XID protocol error, this parameter contains the sense data
associated with the error. If indication_cause is set to any value other than AP_FAILED, this
parameter is reserved.

brnn_link_type
This parameter applies only if the local node is a Branch Network Node; it is reserved otherwise.

Specifies the branch link type of this link. Possible values are:

AP_UPLINK
The link is an uplink.

AP_DOWNLINK
The link is a downlink.

AP_OTHERLINK
The link is to a VRN.

AP_UNKNOWN_LINK_TYPE
The branch link type is unknown.

AP_BRNN_NOT_SUPPORTED
The link supports PU 2.0 traffic only.

LS_INDICATION

624 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

adj_cp_is_brnn
Specifies whether the adjacent node is a Branch Network Node. Possible values are:
AP_YES

The adjacent node is a Branch Network Node.
AP_NO

The adjacent node is not a Branch Network Node.
AP_UNKNOWN

The adjacent node type is unknown.
ls_type

Specifies how this link was defined or discovered. Possible values are:
AP_LS_DEFINED

The link station was defined explicitly by a CS/AIX administration program.
AP_LS_DYNAMIC

The link station was created when the local node connected to another node through a connection
network.

AP_LS_TEMPORARY
The link station was created temporarily to process an incoming call, but has not yet become
active.

AP_LS_IMPLICIT
The link station was defined implicitly when CS/AIX received an incoming call that it could not
match to a defined link station.

AP_LS_DLUS_DEFINED
The link station is a dynamic link station to a DLUR-served downstream PU, and was defined when
the local node received an ACTPU from a DLUS.

LU_0_TO_3_INDICATION
This indication is generated when the session status of a type 0-3 LU changes.

VCB structure
typedef struct lu_0_to_3_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char pu_name[8]; /* PU Name */
 unsigned char lu_name[8]; /* LU Name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char nau_address; /* NAU address */
 unsigned char lu_sscp_sess_active; /* Is SSCP session active? */
 unsigned char appl_conn_active; /* Is application using LU? */
 unsigned char plu_sess_active; /* Is PLU-SLU session active? */
 unsigned char host_attachment; /* Host attachment */
 SESSION_STATS lu_sscp_stats; /* LU-SSCP session statistics */
 SESSION_STATS plu_stats; /* PLU session statistics */
 unsigned char sscp_id[6]; /* SSCP id */
} LU_0_TO_3_INDICATION;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window */

LU_0_TO_3_INDICATION

Chapter 4. NOF Indications 625

 /* size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte (from LFSID)*/
 unsigned char sidl; /* session ID low byte (from LFSID) */
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char reserve; /* reserved */
} SESSION_STATS;

Parameters
opcode

AP_LU_0_TO_3_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous LU 0-3 indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous LU 0-3 indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous LU 0-3 indications were lost.
pu_name

Name of the local PU used by the LU. This is an 8-byte type-A EBCDIC string (starting with a letter),
padded on the right with EBCDIC spaces if the name is shorter than 8 characters.

lu_name
Name of the LU whose session status has changed. This is an 8-byte type-A EBCDIC string, padded on
the right with spaces if the name is shorter than 8 characters.

description
A null-terminated text string describing the LU, as specified in the definition of the LU.

nau_address
Network accessible unit address of the LU.

lu_sscp_sess_active
Specifies whether the SSCP session is active - that is, whether the ACTLU has been successfully
processed. Possible values are:
AP_YES

The session is active.
AP_NO

The session is not active.
appl_conn_active

Specifies whether an application is using the LU. Possible values are:
AP_YES

An application is using the LU.
AP_NO

No application is using the LU.
plu_sess_active

Specifies whether the PLU-SLU session has been activated. Possible values are:

LU_0_TO_3_INDICATION

626 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
The session is active.

AP_NO
The session is not active.

host_attachment
LU host attachment type.

Possible values are:

AP_DIRECT_ATTACHED
LU is directly attached to the host system.

AP_DLUR_ATTACHED
LU is attached to the host system using DLUR

sscp_id
For dependent LU sessions, this parameter is the SSCP ID received in the ACTPU from the host for the
PU to which the local LU is mapped. For independent LU sessions, this parameter is set to 0 (zero).
This value is an array of six bytes displayed as hexadecimal values.

A session_stats structure is included for each of the two sessions (LU-SSCP session and PLU-SLU
session). If the session goes from active to inactive, the structure contains the following parameters;
otherwise these parameters are reserved.

rcv_ru_size
Maximum receive RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

send_ru_size
Maximum send RU size. (In the LU-SSCP session statistics, this parameter is reserved.)

max_send_btu_size
Maximum BTU size that can be sent.

max_rcv_btu_size
Maximum BTU size that can be received.

max_send_pac_win
Maximum size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_send_pac_win
Current size of the send pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

max_rcv_pac_win
Maximum size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

cur_rcv_pac_win
Current size of the receive pacing window on this session. (In the LU-SSCP session statistics, this
parameter is reserved.)

send_data_frames
Number of normal flow data frames sent.

send_fmd_data_frames
Number of normal flow FMD data frames sent.

send_data_bytes
Number of normal flow data bytes sent.

rcv_data_frames
Number of normal flow data frames received.

rcv_fmd_data_frames
Number of normal flow FMD data frames received.

rcv_data_bytes
Number of normal flow data bytes received.

LU_0_TO_3_INDICATION

Chapter 4. NOF Indications 627

sidh
Session ID high byte.

sidl
Session ID low byte.

odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

MODE_INDICATION
This indication is sent when a local LU and partner LU start to communicate using a particular mode, or
when the active session count for the LU-LU-mode combination changes.

VCB structure
typedef struct mode_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char removed; /* is entry being removed? */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char mode_name[8]; /* mode name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 AP_UINT16 curr_sess_count; /* current session count */
 unsigned char reserva[20]; /* reserved */
} MODE_INDICATION;

Parameters
opcode

AP_MODE_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous mode indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous mode indications were lost.
AP_NO

No previous mode indications were lost.
removed

This parameter is currently not used; a mode indication is generated only when the LUs start to use
the mode, and not when they stop using it.

lu_alias
Locally defined LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is
shorter than 8 bytes.

MODE_INDICATION

628 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

fqplu_name
Fully qualified name of the partner LU. The name is a 17-byte EBCDIC string, padded on the right with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

mode_name
Mode name which designates the network properties for a group of sessions. This is an 8-byte type-A
EBCDIC string (starting with a letter), padded on the right with spaces if the name is shorter than 8
characters.

description
A null-terminated text string describing the mode, as specified in the definition of the mode.

curr_sess_count
The number of sessions currently active for this LU-LU-mode combination.

NN_TOPOLOGY_NODE_INDICATION
This indication is generated when a node entry in a network node's topology database is activated or
deactivated.

VCB structure
typedef struct nn_topology_node_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has the node become inactive? */
 unsigned char node_name[17]; /* node name */
 unsigned char node_type; /* node type */
 unsigned char branch_aware; /* is the node branch aware? */
 unsigned char reserva[19]; /* reserved */
} NN_TOPOLOGY_NODE_INDICATION;

Parameters
opcode

AP_NN_TOPOLOGY_NODE_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous NN topology node indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:
AP_YES

One or more previous NN topology node indications were lost. Later fields in this VCB may be set
to zeros.

AP_NO
No previous NN topology node indications were lost.

deactivated
Specifies whether the node has been deactivated or activated. Possible values are:

NN_TOPOLOGY_NODE_INDICATION

Chapter 4. NOF Indications 629

AP_YES
The node has been deactivated.

AP_NO
The node has been activated.

node_name
Network qualified node name from Network Topology Database. The name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

node_type
Type of the node. Possible values are:
AP_NETWORK_NODE

Network node.
AP_VRN

Virtual routing node.
branch_aware

Specifies whether the node supports branch awareness, APPN Option Set 1120.
AP_NO

The node does not support option set 1120.
AP_YES

The node supports option set 1120.

NN_TOPOLOGY_TG_INDICATION
This indication is generated when a TG entry in a network node's topology database is activated or
deactivated.

VCB structure
typedef struct nn_topology_tg_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char status; /* TG status */
 unsigned char owner[17]; /* name of TG owner node */
 unsigned char dest[17]; /* name of TG destination node */
 unsigned char tg_num; /* TG number */
 unsigned char owner_type; /* type of node that owns TG */
 unsigned char dest_type; /* TG destination node type */
 unsigned char cp_cp_session_active; /* are CP-CP sessions active? */
 unsigned char branch_tg; /* is this a branch link? */
 unsigned char multilink_tg; /* reserved */
 unsigned char reserva[15]; /* reserved */
} NN_TOPOLOGY_TG_INDICATION;

Parameters
opcode

AP_NN_TOPOLOGY_TG_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous NN topology TG indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:

NN_TOPOLOGY_TG_INDICATION

630 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
One or more previous NN topology TG indications were lost. Later fields in this VCB may be set to
zeros.

AP_NO
No previous NN topology TG indications were lost.

status
Specifies the status of the TG. This can be AP_NONE, or one or more of the following values (combined
using a logical OR):

AP_TG_OPERATIVE

AP_TG_CP_CP_SESSIONS

AP_TG_QUIESCING

owner
Name of the TG's originating node (the CS/AIX local node name). The name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. It consists of a network ID of up to 8 A-string
characters, an EBCDIC dot (period) character, and a network name of up to 8 A-string characters.

dest
Fully qualified destination node name for the TG. The name is a 17-byte EBCDIC string, padded on the
right with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot
(period) character, and a network name of up to 8 A-string characters.

tg_num
Transmission group number associated with the TG.

owner_type
Type of node that owns the TG. Possible values are:

AP_NETWORK_NODE

AP_VRN

dest_type
Type of the destination node for the TG. Possible values are:

AP_NETWORK_NODE

AP_VRN

cp_cp_session_active
Specifies whether the owning node's contention winner CP-CP session is active. Possible values are:
AP_YES

The CP-CP session is active.
AP_NO

The CP-CP session is not active.
AP_UNKNOWN

The CP-CP session status is unknown.
branch_tg

Specifies whether the TG is a branch TG. Possible values are:
AP_YES

The TG is a branch TG.
AP_NO

The TG is not a branch TG.
AP_UNKNOWN

The TG type is unknown.

NN_TOPOLOGY_TG_INDICATION

Chapter 4. NOF Indications 631

NOF_STATUS_INDICATION
This indication is generated when the application can no longer access its connected target (because the
CS/AIX software on the target computer has been stopped, or because the communications path to the
target computer has failed). If the target is the domain configuration file, it is also generated if another
server takes over as controller (and therefore the connected target file is no longer the controlling copy of
the file).

The application does not need to register explicitly for this indication. CS/AIX will return it to any
application that has registered for any type of indications on the specified target handle. If the application
is currently registered to receive indications using more than one callback routine, CS/AIX returns this
indication to the first routine registered.

After the application receives an indication that the target can no longer be accessed, all subsequent
verbs using the relevant target handle will be rejected, apart from DISCONNECT_NODE or CLOSE_FILE (to
end the application's connection to the target). In addition, any registrations for indications on this target
handle will be lost; in order to continue receiving indications when the target becomes available, the
application must reconnect to the target and reregister for the required indications.

VCB structure
typedef struct nof_status_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 AP_UINT32 status; /* status being reported */
 AP_UINT32 dead_target_handle; /* Handle of dead connection */
 /* NULL for system termination */
 unsigned char reserv1[32]; /* reserved */
} NOF_STATUS_INDICATION;

Parameters
opcode

AP_NOF_STATUS_INDICATION
primary_rc

AP_OK
status

Specifies the status change being reported. Possible values are:
AP_LOCAL_ABENDED

The CS/AIX software on the local computer has stopped. The application should not attempt to
issue any more NOF verbs until the software has been restarted.

AP_TARGET_ABENDED
The CS/AIX software on the target computer has stopped or the communications path to it has
failed.

AP_CONTROLLER_TAKEOVER
This value is returned only when the application is connected to the controlling configuration file
(specified by the requested_role parameter on OPEN_FILE). Another server has now taken over as
controller, so the target file is no longer the controlling configuration file. If the application needs
to make further changes to the running configuration, it must use CLOSE_FILE to end its
connection with the file, and then issue OPEN_FILE again to access the new controlling
configuration file.

dead_target_handle
The target handle of the failed target or of the file that is no longer the controlling configuration file.
The application should not attempt to issue any further verbs for this target handle except
DISCONNECT_NODE or CLOSE_FILE.

NOF_STATUS_INDICATION

632 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

If status is set to AP_LOCAL_ABENDED, this parameter is reserved.

PLU_INDICATION
This indication is generated when a local LU begins to communicate with a partner LU. This occurs either
when the first ALLOCATE to this PLU is processed or when the first BIND is received from this PLU. The
indication is also generated if the partner LU's CP name changes.

VCB structure
typedef struct plu_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* has previous indication */
 /* been lost? */
 unsigned char removed; /* is entry being removed? */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner */
 /* LU name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char partner_cp_name[17]; /* partner CP name */
 unsigned char partner_lu_located; /* partner CP name resolved? */
 unsigned char reserva[20]; /* reserved */
} PLU_INDICATION;

Parameters
opcode

AP_PLU_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous PLU indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous PLU indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous PLU indications were lost.
removed

This parameter is currently not used; a PLU indication is generated only when the LUs start to
communicate, and not when they stop communicating.

lu_alias
Local LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

plu_alias
Partner LU alias. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

fqplu_name
17-byte fully qualified network name for the partner LU. The name is a 17-byte EBCDIC string, padded
on the right with EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC
dot (period) character, and a network name of up to 8 A-string characters.

PLU_INDICATION

Chapter 4. NOF Indications 633

description
A null-terminated text string describing the partner LU, as specified in the definition of the partner LU.

partner_cp_name
17-byte fully qualified network name for the CP associated with the partner LU. This parameter is not
used if partner_lu_located below is set to AP_NO.

The name is a 17-byte EBCDIC string, padded on the right with EBCDIC spaces. It consists of a
network ID of up to 8 A-string characters, an EBCDIC dot (period) character, and a network name of
up to 8 A-string characters.

partner_lu_located
Specifies whether the local node has located the CP where the partner LU is located. Possible values
are:
AP_YES

The partner LU has been located. The partner_cp_name parameter contains the CP name of the
partner LU.

AP_NO
The partner LU has not yet been located. The partner_cp_name parameter should not be checked.

PORT_INDICATION
This indication is generated when a port is activated or deactivated.

VCB structure
typedef struct port_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has session been deactivated? */
 unsigned char port_name[8]; /* port name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char reserva[20]; /* reserved */
} PORT_INDICATION;

Parameters
opcode

AP_PORT_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous port indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous port indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous port indications were lost.
deactivated

Specifies whether the port has been deactivated or activated. Possible values are:

PORT_INDICATION

634 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_YES
The port has been deactivated.

AP_NO
The port has been activated.

port_name
Name of port. This is an 8-byte ASCII string, padded on the right with spaces if the name is shorter
than 8 bytes.

description
A null-terminated text string describing the port, as specified in the definition of the port.

PU_INDICATION
This indication is generated when the PU-SSCP session status of a local PU changes.

VCB structure
typedef struct pu_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char pu_name[8]; /* PU Name */
 unsigned char description[32]; /* resource description */
 unsigned char reserv3[16]; /* reserved */
 unsigned char pu_sscp_sess_active; /* Is SSCP session active? */
 unsigned char host_attachment; /* Host attachment */
 unsigned char reserv1[2]; /* reserved */
 SESSION_STATS pu_sscp_stats; /* PU-SSCP session statistics */
 unsigned char sscp_id[6]; /* SSCP id */
} PU_INDICATION;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing */
 /* window size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing */
 /* window size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte */
 /* (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID)*/
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char reserve; /* reserved */
} SESSION_STATS;

Parameters
opcode

AP_PU_INDICATION
primary_rc

AP_OK

PU_INDICATION

Chapter 4. NOF Indications 635

data_lost
Specifies whether any previous PU indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous PU indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous PU indications were lost.
pu_name

Name of the PU (specified on the DEFINE_LS verb). This is an 8-byte type-A EBCDIC string, padded on
the right with spaces if the name is shorter than 8 characters.

description
A null-terminated text string describing the PU, as specified in the definition of the PU.

pu_sscp_sess_active
Specifies whether the PU-SSCP session is active (whether the ACTPU has been successfully
processed). Possible values are:
AP_YES

The PU-SSCP session is active.
AP_NO

The PU-SSCP session is inactive.
host_attachment

Local PU host attachment type.

Possible values are:

AP_DIRECT_ATTACHED
PU is directly attached to the host system.

AP_DLUR_ATTACHED
PU is supported by DLUR.

sscp_id
For dependent LU sessions, this parameter is the SSCP ID received in the ACTPU from the host for the
PU to which the local LU is mapped. For independent LU sessions, this parameter is set to 0 (zero).
This value is an array of six bytes displayed as hexadecimal values.

The following parameters are used only when the session state changes from active to inactive:

pu_sscp_stats.rcv_ru_size
Reserved (always set to zero).

pu_sscp_stats.send_ru_size
Reserved (always set to zero).

pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

pu_sscp_stats.max_send_pac_win
Reserved (always set to zero).

pu_sscp_stats.cur_send_pac_win
Reserved (always set to zero).

pu_sscp_stats.max_rcv_pac_win
Reserved (always set to zero).

pu_sscp_stats.cur_rcv_pac_win
Reserved (always set to zero).

PU_INDICATION

636 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

pu_sscp_stats.sidh
Session ID high byte.

pu_sscp_stats.sidl
Session ID low byte.

pu_sscp_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station and sets it to one if the BIND sender is
the node containing the secondary link station.

pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte ASCII character string, right-padded
with spaces if the name is shorter than 8 characters.

RAPI_CLIENT_INDICATION
This indication is generated when a Remote API Client connects to or disconnects from a CS/AIX server. A
NOF application can use these indications to keep track of which clients are currently using the server as
their controller server.

VCB structure
typedef struct rapi_client_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char reason; /* reason for indication */
 unsigned char sys_name[128]; /* system name client sends us */
 SNA_IP_ADDR rapi_client_origin_ip_addr; /* IP addr client sends us */
 SNA_IP_ADDR rapi_client_adj_ip_addr; /* IP addr client comes in on */
 AP_UINT16 rapi_client_adj_port; /* port IP client comes in on */
 unsigned char reserva[16]; /* reserved */
} RAPI_CLIENT_INDICATION;

typedef struct sna_ip_addr
{
 AP_UINT16 family; /* IPv4 or IPv6 */
 union
 {
 unsigned char ipv4_addr[4];
 unsigned char ipv6_addr[16];
 } ip_addr;
} SNA_IP_ADDR;

RAPI_CLIENT_INDICATION

Chapter 4. NOF Indications 637

Parameters
opcode

AP_RAPI_CLIENT_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous client indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous client indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous client indications were lost.
reason

Specifies the status change that has occurred for this client. Possible values are:
AP_RAPI_CLIENT_CONNECTED

The client has started and has connected to this CS/AIX server as its controller server.
AP_RAPI_CLIENT_DISCONNECTED

The client has stopped and has disconnected from the CS/AIX server.
sys_name

The fully-qualified system name of the client (such as newbox.this.co.uk).
rapi_client_origin_ip_addr

The IP address of the client.
rapi_client_origin_ip_addr.family

The type of TCP/IP address specified for the client. Possible values are as follows. (These are standard
TCP/IP values rather than AP_* values defined by CS/AIX.)
AF_INET

IPv4 address, specified as a dotted-decimal address (such as 193.1.11.100).
AF_INET6

IPv6 address, specified as a colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

Note: The values AF_INET and AF_INET6 are taken from a system header file, and are not standard
AP_* values defined by CS/AIX. The system header file is /usr/include/sys/socket.h on an AIX
server or client, and /usr/include/linux/socket.h on a Linux client.

If your NOF application needs to test against these values, you should use #include to include this
system file in addition to the nof_c.h header file.

rapi_client_origin_ip_addr.ip_addr.ipv4_addr
This field is used only if the family parameter is set to AF_INET. The IPv4 (dotted-decimal) address of
the client computer.

rapi_client_origin_ip_addr.ip_addr.ipv6_addr
This field is used only if the family parameter is set to AF_INET6. The IPv6 (colon-hexadecimal)
address of the client computer.

rapi_client_adj_ip_addr
The IP address through which the client attaches to CS/AIX. This may not be the same as
rapi_client_origin_ip_addr if one of the following is true.

• The client connects through a Web server.
• The client connects through a TCP/IP proxy or NAT router, such as the Linux iptables tool.
• The client has multiple IP addresses.

RAPI_CLIENT_INDICATION

638 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

rapi_client_adj_ip_addr.family
The type of TCP/IP address through which the client attaches to CS/AIX. Possible values are as
follows. (These are standard TCP/IP values rather than AP_* values defined by CS/AIX.)
AF_INET

IPv4 address, specified as a dotted-decimal address (such as 193.1.11.100).
AF_INET6

IPv6 address, specified as a colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

Note: The values AF_INET and AF_INET6 are taken from a system header file, and are not standard
AP_* values defined by CS/AIX. The system header file is /usr/include/sys/socket.h on an AIX
server or client, and /usr/include/linux/socket.h on a Linux client.

If your NOF application needs to test against these values, you should use #include to include this
system file in addition to the nof_c.h header file.

rapi_client_adj_ip_addr.ip_addr.ipv4_addr
This field is used only if the family parameter is set to AF_INET. The IPv4 (dotted-decimal) address
through which the client attaches to CS/AIX.

rapi_client_adj_ip_addr.ip_addr.ipv6_addr
This field is used only if the family parameter is set to AF_INET6. The IPv6 (colon-hexadecimal)
address through which the client attaches to CS/AIX.

rapi_client_adj_port
The IP port number through which the client attaches to CS/AIX.

REGISTRATION_FAILURE
REGISTRATION_FAILURE indicates that an attempt to register resources with the network node server
failed.

VCB structure
typedef struct registration_failure
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char resource_name[17]; /* network qualified resource name */
 AP_UINT16 resource_type; /* resource type */
 unsigned char description[32]; /* resource description */
 unsigned char reserv1[16]; /* reserved */
 unsigned char reserv2b[2]; /* reserved */
 AP_UINT32 sense_data; /* sense data */
 unsigned char reserva[20]; /* reserved */
} REGISTRATION_FAILURE;

Parameters
opcode

AP_REGISTRATION_FAILURE
primary_rc

AP_OK
data_lost

Specifies whether any previous registration failure indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:

REGISTRATION_FAILURE

Chapter 4. NOF Indications 639

AP_YES
One or more previous registration failure indications were lost. Later fields in this VCB may be set
to zeros.

AP_NO
No previous registration failure indications were lost.

resource_name
Name of resource that failed to register. The name is a 17-byte EBCDIC string, right-padded with
EBCDIC spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period)
character, and a network name of up to 8 A-string characters.

resource_type
Resource type of resource that failed to register. One of the following.
AP_NNCP_RESOURCE

Network node.
AP_ENCP_RESOURCE

End node.
AP_LU_RESOURCE

LU.
description

A null-terminated text string describing the resource, as specified in the definition of the resource.
sense_data

Sense data (specified in SNA Formats).

RTP_INDICATION
This indication is generated when one of the following occurs:

• An RTP connection is connected or disconnected.
• The active session count changes.
• The connection performs a path-switch.

When the connection is disconnected, final RTP statistics are returned. At other times the rtp_stats
parameter is reserved.

VCB structure
typedef struct rtp_indication
{
 AP_UINT16 opcode; /* Indication operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* Previous indication lost? */
 unsigned char connection_state; /* current state of the RTP */
 /* connection */
 unsigned char rtp_name[8]; /* name of the RTP connection */
 AP_UINT16 num_sess_active; /* number of active sessions */
 unsigned char indication_cause; /* reason for this indication */
 unsigned char connection_type; /* usage of RTP connection */
 unsigned char reserv3[2]; /* reserved */
 RTP_STATISTICS rtp_stats; /* RTP statistics */
} RTP_INDICATION;

typedef struct rtp_statistics
{
 AP_UINT32 bytes_sent; /* total number of bytes sent */
 AP_UINT32 bytes_received; /* total number of bytes received */
 AP_UINT32 bytes_resent; /* total number of bytes resent */
 AP_UINT32 bytes_discarded; /* total number of bytes discarded */
 AP_UINT32 packets_sent; /* total number of packets sent */
 AP_UINT32 packets_received; /* total number of packets received */
 AP_UINT32 packets_resent /* total number of packets resent */

RTP_INDICATION

640 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

 AP_UINT32 packets_discarded; /* total number of packets discarded*/
 AP_UINT32 gaps_detected; /* gaps detected */
 AP_UINT32 send_rate; /* current send rate */
 AP_UINT32 max_send_rate; /* maximum send rate */
 AP_UINT32 min_send_rate; /* minimum send rate */
 AP_UINT32 receive_rate; /* current receive rate */
 AP_UINT32 max_receive_rate; /* maximum receive rate */
 AP_UINT32 min_receive_rate; /* minimum receive rate */
 AP_UINT32 burst_size; /* current burst size */
 AP_UINT32 up_time; /* total uptime of connection */
 AP_UINT32 smooth_rtt; /* smoothed round-trip time */
 AP_UINT32 last_rtt; /* last round-trip time */
 AP_UINT32 short_req_timer; /* SHORT_REQ timer duration */
 AP_UINT32 short_req_timeouts; /* number of SHORT_REQ timeouts */
 AP_UINT32 liveness_timeouts; /* number of liveness timeouts */
 AP_UINT32 in_invalid_sna_frames; /* number of invalid SNA frames */
 /* received */
 AP_UINT32 in_sc_frames; /* number of SC frames received */
 AP_UINT32 out_sc_frames; /* number of SC frames sent */
 AP_INT32 delay_change_sum; /* delay change sum */
 AP_UINT32 current_receiver_threshold;
 /* current ARB-R receiver threshold */
 AP_UINT32 minimum_receiver_threshold;
 /* minimum ARB-R receiver threshold */
 AP_UINT32 maximum_receiver_threshold;
 /* maximum ARB-R receiver threshold */
 AP_UINT32 sent_normals_count; /* number of NORMALs sent */
 AP_UINT32 sent_slowdowns_count; /* number of SLOWDOWNs sent */
 AP_UINT32 rcvd_normals_count; /* number of NORMALs received */
 AP_UINT32 rcvd_slowdowns_count; /* number of SLOWDOWNs received */
 AP_UINT32 dcs_reset_count_non_heal;
 /* number of non-healing resets */
 AP_UINT16 dcs_reset_count_healing;
 /* number of self-healing resets */
 unsigned char arb_mode; /* ARB mode (GREEN, YELLOW, RED) */
 unsigned char reserve[1]; /* reserved */
} RTP_STATISTICS;

Parameters
opcode

AP_RTP_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous directory indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous directory indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous directory indications were lost.
connection_state

The current state of the RTP connection. Possible values are:
AP_CONNECTING

Connection setup has started but is not yet complete.
AP_CONNECTED

The connection is fully active.
AP_DISCONNECTED

The connection is no longer active.
rtp_name

RTP connection name. This name is an 8-byte string in a locally displayable character set. All eight
bytes are significant.

RTP_INDICATION

Chapter 4. NOF Indications 641

num_sess_active
Number of sessions currently active on the connection.

indication_cause
Cause of the indication. Possible values are:
AP_ACTIVATED

The connection has become active.
AP_DEACTIVATED

The connection has become inactive.
AP_PATH_SWITCHED

The connection has successfully completed a path switch.
AP_SESS_COUNT_CHANGING

The number of active sessions using the connection has changed.
AP_SETUP_FAILED

The connection has failed before becoming fully active.
connection_type

Specifies the type of sessions on the RTP connection. Possible values are:
AP_RTP_CP_CP_SESSION

The RTP connection carries CP-CP sessions.
AP_RTP_LU_LU_SESSION

The RTP connection carries LU-LU sessions.
AP_RTP_ROUTE_SETUP

The RTP connection is used for route setup.

The following parameters are supplied only when the connection becomes inactive (when the
indication_cause parameter is set to AP_DEACTIVATED or AP_SETUP_FAILED). In all other cases, the
following parameters are reserved.

rtp_stats.bytes_sent
Total number of bytes that the local node has sent on this RTP connection.

rtp_stats.bytes_received
Total number of bytes that the local node has received on this RTP connection.

rtp_stats.bytes_resent
Total number of bytes that the local node has resent on this RTP connection because of loss in transit.

rtp_stats.bytes_discarded
Total number of bytes sent by the other end of the RTP connection that were discarded as duplicates
of data already received.

rtp_stats.packets_sent
Total number of packets that the local node has sent on this RTP connection.

rtp_stats.packets_received
Total number of packets that the local node has received on this RTP connection.

rtp_stats.packets_resent
Total number of packets that the local node has resent on this RTP connection because of loss in
transit.

rtp_stats.packets_discarded
Total number of packets sent by the other end of the RTP connection that were discarded as
duplicates of data already received.

rtp_stats.gaps_detected
Total number of gaps detected by the local node. Each gap corresponds to one or more lost frames.

rtp_stats.send_rate
Current send rate on this RTP connection, measured in kilobits per second. This is the maximum
allowed send rate as calculated by the ARB algorithm.

RTP_INDICATION

642 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

rtp_stats.max_send_rate
Maximum send rate on this RTP connection, measured in kilobits per second.

rtp_stats.min_send_rate
Minimum send rate on this RTP connection, measured in kilobits per second.

rtp_stats.receive_rate
Current receive rate on this RTP connection, measured in kilobits per second. This is the actual
receive rate calculated over the last measurement interval.

rtp_stats.max_receive_rate
Maximum receive rate on this RTP connection, measured in kilobits per second.

rtp_stats.min_receive_rate
Minimum receive rate on this RTP connection, measured in kilobits per second.

rtp_stats.burst_size
Current burst size on the RTP connection, measured in bytes.

rtp_stats.up_time
Total number of seconds the RTP connection has been active.

rtp_stats.smooth_rtt
Smoothed measure of round-trip time between the local node and the partner RTP node, measured in
milliseconds.

rtp_stats.last_rtt
The last measured round-trip time between the local node and the partner RTP node, measured in
milliseconds.

rtp_stats.short_req_timer
The current duration used for the SHORT_REQ timer, measured in milliseconds.

rtp_stats.short_req_timeouts
Number of SHORT_REQ timeouts.

rtp_stats.liveness_timeouts
Total number of times the liveness timer has expired for this RTP connection. The liveness timer
expires when the connection has been idle for the specified in the
rtp_connection_detail.liveness_timer.

rtp_stats.in_invalid_sna_frames
Total number of SNA frames received and discarded as not valid on this RTP connection.

rtp_stats.in_sc_frames
Total number of session control frames received on this RTP connection.

rtp_stats.out_sc_frames
Total number of session control frames sent on this RTP connection.

rtp_stats.delay_change_sum
Value of the delay change sum currently held by the ARB-R algorithm on this RTP connection.

rtp_stats.current_receiver_threshold
Value of the receiver threshold currently held by the ARB-R algorithm on this RTP connection.

rtp_stats.minimum_receiver_threshold
Value of the minimum receiver threshold currently held by the ARB-R algorithm on this RTP
connection.

rtp_stats.maximum_receiver_threshold
Value of the maximum receiver threshold currently held by the ARB-R algorithm on this RTP
connection.

rtp_stats.sent_normals_count
Number of NORMAL feedback ARB-R segments sent by the ARB-R algorithm on this RTP connection.

rtp_stats.sent_slowdowns_count
Number of SLOWDOWN1 and SLOWDOWN2 feedback ARB-R segments sent by the ARB-R algorithm
on this RTP connection.

RTP_INDICATION

Chapter 4. NOF Indications 643

rtp_stats.rcvd_normals_count
Number of NORMAL feedback ARB-R segments received by the ARB-R algorithm on this RTP
connection.

rtp_stats.rcvd_slowdowns_count
Number of SLOWDOWN1 and SLOWDOWN2 feedback ARB-R segments received by the ARB-R
algorithm on this RTP connection.

rtp_stats.dcs_reset_count_non_heal
Number of delay change sum resets made as a part of normal ARB-R processing on this RTP
connection.

rtp_stats.dcs_reset_count_healing
Number of delay change sum resets made to self-heal the ARB-R algorithm on this RTP connection.

rtp_stats.arb_mode
The current ARB-R status mode on this RTP connection. Possible values are:
0

GREEN
1

YELLOW
2

RED

SERVER_INDICATION
This indication is generated when the CS/AIX software is started or stopped on another computer on the
LAN or when a server's role as controller or backup server changes. A NOF application can use these
indications to keep track of which servers are currently active or to determine when a new server has
successfully taken over as controller.

Server indications are also generated (for CS/AIX internal use) when the status of other CS/AIX
components on a server changes. If the application needs to use server indications as described above, it
should check the status and flags parameters for changes; it can ignore any server indications where
these parameters do not indicate a change.

The REGISTER_INDICATION_SINK verb used to register for server indications should be issued with a
null target handle; it is not associated with any particular target.

VCB structure
typedef struct server_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 AP_UINT32 status; /* node status */
 AP_UINT32 flags; /* is server controller or backup? */
 unsigned char server_name[128]; /* name of server */
} SERVER_INDICATION;

Parameters
opcode

AP_SERVER_INDICATION
primary_rc

AP_OK

SERVER_INDICATION

644 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

data_lost
Specifies whether any previous server indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous server indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous server indications were lost.
status

Specifies the status of the SNA software on the indicated server. Possible values are:
AP_ACTIVE

The SNA software has been started.
AP_NOT_ACTIVE

The SNA software has been stopped.
flags

Specifies whether the indicated server is the controller server or a backup server. The application
should use a logical AND operation to check the appropriate values, as follows:

• If the expression "flags AND AP_CONTROLER_FLAG" is nonzero, the indicated server is the controller
server.

• If the expression "flags AND AP_BACKUP_FLAG" is nonzero, the indicated server is a backup server.

server_name
Name of the server on which the SNA software has been started or stopped.

SESSION_INDICATION
This indication is generated when a session is activated or deactivated. When a session is deactivated, the
verb returns statistics on the usage of the session.

VCB structure
typedef struct session_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char deactivated; /* has session been deactivated? */
 unsigned char lu_name[8]; /* LU name */
 unsigned char lu_alias[8]; /* LU alias */
 unsigned char plu_alias[8]; /* partner LU alias */
 unsigned char fqplu_name[17]; /* fully qualified partner LU name */
 unsigned char mode_name[8]; /* mode name */
 unsigned char session_id[8]; /* session ID */
 FQPCID fqpcid; /* fully qualified procedure */
 /* correlator ID */
 AP_UINT32 sense_data; /* sense data */
 unsigned char reserv1; /* reserved */
 SESSION_STATS sess_stats; /* session statistics */
 unsigned char sscp_id[6]; /* SSCP ID */
 unsigned char plu_slu_comp_lvl; /* compression level PLU->SLU */
 unsigned char slu_plu_comp_lvl; /* compression level SLU->PLU */
 unsigned char comp_in_series; /* reserved */
 unsigned char reserva[11]; /* reserved */
} SESSION_INDICATION;

typedef struct fqpcid
{
 unsigned char pcid[8]; /* procedure correlator identifier */
 unsigned char fqcp_name[17]; /* originator's network qualified */

SESSION_INDICATION

Chapter 4. NOF Indications 645

 /* CP name */
 unsigned char reserve3[3]; /* reserved */
} FQPCID;

typedef struct session_stats
{
 AP_UINT16 rcv_ru_size; /* session receive RU size */
 AP_UINT16 send_ru_size; /* session send RU size */
 AP_UINT16 max_send_btu_size; /* maximum send BTU size */
 AP_UINT16 max_rcv_btu_size; /* maximum rcv BTU size */
 AP_UINT16 max_send_pac_win; /* maximum send pacing window size */
 AP_UINT16 cur_send_pac_win; /* current send pacing window size */
 AP_UINT16 max_rcv_pac_win; /* maximum receive pacing window */
 /* size */
 AP_UINT16 cur_rcv_pac_win; /* current receive pacing window */
 /* size */
 AP_UINT32 send_data_frames; /* number of data frames sent */
 AP_UINT32 send_fmd_data_frames; /* num fmd data frames sent */
 AP_UINT32 send_data_bytes; /* number of data bytes sent */
 AP_UINT32 rcv_data_frames; /* number of data frames received */
 AP_UINT32 rcv_fmd_data_frames; /* num fmd data frames received */
 AP_UINT32 rcv_data_bytes; /* number of data bytes received */
 unsigned char sidh; /* session ID high byte */
 /* (from LFSID) */
 unsigned char sidl; /* session ID low byte (from LFSID)*/
 unsigned char odai; /* ODAI bit set */
 unsigned char ls_name[8]; /* Link station name */
 unsigned char pacing_type; /* Pacing type */
} SESSION_STATS;

Parameters
opcode

AP_SESSION_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous session indications have been lost. If CS/AIX detects a condition that
prevents it from sending an indication (for example an internal resource shortage), it indicates this by
setting the data_lost parameter on the next indication after the condition has cleared. Possible values
are:
AP_YES

One or more previous session indications were lost. Later fields in this VCB may be set to zeros.
AP_NO

No previous session indications were lost.
deactivated

Specifies whether the session has been deactivated or activated. Possible values are:
AP_YES

The session has been deactivated.
AP_NO

The session has been activated.
lu_name

LU name of the local LU, as defined to CS/AIX. This is an 8-byte type-A EBCDIC string, padded on the
right with spaces if the name is shorter than 8 bytes.

lu_alias
LU alias of the local LU, as defined to CS/AIX. This is an 8-byte ASCII string, using any locally
displayable characters, padded on the right with spaces if the name is shorter than 8 bytes.

plu_alias
LU alias of the partner LU. This is an 8-byte ASCII string, using any locally displayable characters,
padded on the right with spaces if the name is shorter than 8 bytes.

SESSION_INDICATION

646 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

fqplu_name
Fully qualified LU name for the partner LU, as defined to CS/AIX. This name is a 17-byte EBCDIC
string, padded on the right with EBCDIC spaces. It consists of a network ID of 1-8 A-string characters,
an EBCDIC dot (period) character, and an LU name of 1-8 A-string characters.

mode_name
Name of the mode used by the LUs. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded on the right with EBCDIC spaces if the name is shorter than 8 bytes.

session_id
8-byte identifier of the session.

fqpcid.pcid
Procedure Correlator ID. This is an 8-byte hexadecimal string.

fqpcid.fqcp_name
Fully qualified CP name. The name is a 17-byte EBCDIC string, padded on the right with EBCDIC
spaces. It consists of a network ID of up to 8 A-string characters, an EBCDIC dot (period) character,
and a network name of up to 8 A-string characters.

The following parameters are used only if deactivated is set to AP_YES:

sense_data
The sense data sent or received on the UNBIND message that ended the session.

duplex_support
The conversation duplex support as negotiated on the BIND. Possible values are:
AP_HALF_DUPLEX

Only half-duplex conversations are supported.
AP_FULL_DUPLEX

Both half-duplex and full-duplex conversations are supported. Expedited data is also supported.
AP_UNKNOWN

Duplex support is not known because the session has deactivated.
sess_stats.rcv_ru_size

Maximum receive RU size.
sess_stats.send_ru_size

Maximum send RU size.
sess_stats.max_send_btu_size

Maximum BTU size that can be sent.
sess_stats.max_rcv_btu_size

Maximum BTU size that can be received.
sess_stats.max_send_pac_win

Maximum size of the send pacing window on this session.
sess_stats.cur_send_pac_win

Current size of the send pacing window on this session.
sess_stats.max_rcv_pac_win

Maximum size of the receive pacing window on this session.
sess_stats.cur_rcv_pac_win

Current size of the receive pacing window on this session.
sess_stats.send_data_frames

Number of normal flow data frames sent.
sess_stats.send_fmd_data_frames

Number of normal flow FMD data frames sent.
sess_stats.send_data_bytes

Number of normal flow data bytes sent.
sess_stats.rcv_data_frames

Number of normal flow data frames received.

SESSION_INDICATION

Chapter 4. NOF Indications 647

sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

sess_stats.rcv_data_bytes
Number of normal flow data bytes received.

sess_stats.sidh
Session ID high byte.

sess_stats.sidl
Session ID low byte.

sess_stats.odai
Origin Destination Assignor Indicator. When bringing up a session, the sender of the BIND sets this
field to zero if the local node contains the primary link station, and sets it to one if the BIND sender is
the node containing the secondary link station.

sess_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant. This field can be used to correlate the session statistics with the link
over which session traffic flows.

sess_stats.pacing_type
The type of receive pacing in use on this session.

sscp_id
For dependent LU sessions, the identifier of the SSCP as received in the ACTPU for the PU used by this
LU. This parameter is 6 bytes and is used only by dependent LUs. This parameter is set to all zeros for
independent LUs.

session_detail.plu_slu_comp_lvl
Specifies the compression level for data sent from the primary LU (PLU) to the secondary LU (SLU).
Possible values are:
AP_NONE

Compression is not used.
AP_RLE_COMPRESSION

Run-length encoding (RLE) compression is used.
AP_LZ9_COMPRESSION

LZ9 compression is used.
AP_LZ10_COMPRESSION

LZ10 compression is used.
session_detail.slu_plu_comp_lvl

Specifies the compression level for data sent from the secondary LU (SLU) to the primary LU (PLU).
Possible values are:
AP_NONE

Compression is not used.
AP_RLE_COMPRESSION

Run-length encoding (RLE) compression is used.
AP_LZ9_COMPRESSION

LZ9 compression is used.
AP_LZ10_COMPRESSION

LZ10 compression is used.

SNA_NET_INDICATION
This indication is generated when another NOF application or a CS/AIX administration tool makes a
change to the SNA network file sna.net. The target for this verb, identified by the target_handle
parameter on the REGISTER_INDICATION_SINK verb that registers to receive this indication, must be the
sna.net file.

SNA_NET_INDICATION

648 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

VCB structure
No specific VCB structure is associated with this indication. To register for SNA network indications, the
application specifies the value AP_SNA_NET_INDICATION as the indication_opcode parameter on
REGISTER_INDICATION_SINK. When a change is made to the SNA network file, CS/AIX then reports this
to the application's callback routine by sending a copy of the VCB from the NOF verb (ADD_BACKUP or
DELETE_BACKUP) that made the change.

To enable the application to distinguish between SNA network indications and asynchronous responses to
its own NOF verbs issued to the SNA network file, CS/AIX changes the primary_rc parameter in the VCB
for an indication. The value AP_INDICATION identifies a VCB associated with an SNA network file
indication; the value AP_OK, or any other value, indicates an asynchronous response to one of the
application's own NOF verbs.

TN_REDIRECTION_INDICATION
This indication is generated when a Telnet client starts or ends a session using TN Redirector. It is also
generated when the SNA node providing TN Server function is stopped, to notify the application that it will
need to re-register for TN Redirection indications; this is because registration for these indications is not
maintained when the node stops and restarts.

VCB structure
typedef struct tn_redirection_indication
{
 AP_UINT16 opcode; /* verb operation code */
 unsigned char reserv2; /* reserved */
 unsigned char format; /* reserved */
 AP_UINT16 primary_rc; /* primary return code */
 AP_UINT32 secondary_rc; /* secondary return code */
 unsigned char data_lost; /* previous indication lost */
 unsigned char reason; /* reason for indication */
 SNA_IP_ADDR client_ip_addr; /* client IP address */
 AP_UINT16 client_port; /* client port number */
 SNA_IP_ADDR host_ip_addr; /* host IP address */
 AP_UINT16 host_port; /* host port number */
 unsigned char client_number; /* client number */
 unsigned char listen_local_address[46];
 /* Local addr client connects to */
 unsigned char reserva[16]; /* reserved */
} TN_REDIRECTION_INDICATION;

typedef struct sna_ip_addr
{
 AP_UINT16 family; /* IPv4 or IPv6 */
 union
 {
 unsigned char ipv4_addr[4];
 unsigned char ipv6_addr[16];
 } ip_addr;
} SNA_IP_ADDR;

Parameters
opcode

AP_TN_REDIRECTION_INDICATION
primary_rc

AP_OK
data_lost

Specifies whether any previous TN redirection indications have been lost. If CS/AIX detects a
condition that prevents it from sending an indication (for example an internal resource shortage), it
indicates this by setting the data_lost parameter on the next indication after the condition has
cleared. Possible values are:

TN_REDIRECTION_INDICATION

Chapter 4. NOF Indications 649

AP_YES
One or more previous TN redirection indications were lost. Later fields in this VCB may be set to
zeros.

AP_NO
No previous TN redirection indications were lost.

reason
Specifies the reason for sending this indication. Possible values are:
AP_CONNECTION_ACTIVATED

The Telnet client has started a session using TN Redirector.
AP_CONNECTION_DEACTIVATED

The TN Redirector session has ended.
AP_TN_SERVER_TERMINATED

The node providing TN Server function has stopped. If there were any active TN Redirector
sessions using this node, the application will also receive an indication for each session with
reason set to AP_CONNECTION_DEACTIVATED.

If the application needs to continue receiving TN Redirection indications, it should re-register for
these indications when the node restarts.

The following fields are not valid if reason is set to AP_TN_SERVER_TERMINATED.

client_ip_addr.family
The type of TCP/IP address specified for the computer on which the Telnet client runs. Possible values
are as follows. (These are standard TCP/IP values rather than AP_* values defined by CS/AIX.)
AF_INET

IPv4 address, specified as a dotted-decimal address (such as 193.1.11.100).
AF_INET6

IPv6 address, specified as a colon-hexadecimal address (such as
2001:0db8:0000:0000:0000:0000:1428:57ab or 2001:db8::1428:57ab).

Note: The values AF_INET and AF_INET6 are taken from a system header file, and are not standard
AP_* values defined by CS/AIX. The system header file is /usr/include/sys/socket.h on an AIX
server or client, and /usr/include/linux/socket.h on a Linux client.

If your NOF application needs to test against these values, you should use #include to include this
system file in addition to the nof_c.h header file.

client_ip_addr.ip_addr.ipv4_addr
This field is used only if client_ip_addr.family is set to AF_INET. The IPv4 (dotted-decimal) address of
the computer on which the Telnet client runs.

client_ip_addr.ip_addr.ipv6_addr
This field is used only if client_ip_addr.family is set to AF_INET6. The IPv6 (colon-hexadecimal)
address of the computer on which the Telnet client runs.

client_port
The number of the server TCP/IP port that the Telnet client uses to access the TN Redirector node.

host_ip_addr
The TCP/IP address of the host computer with which the client communicates. This can be either of
the following.

• An IPv4 dotted-decimal address (such as 193.1.11.100).
• An IPv6 colon-hexadecimal address (such as 2001:0db8:0000:0000:0000:0000:1428:57ab

or 2001:db8::1428:57ab).

host_port
The number of the TCP/IP port that the TN Redirector node uses to access the host.

TN_REDIRECTION_INDICATION

650 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

client_number
A number specific to each client. This can be used to correlate successful redirection indications of
type AP_CONNECTION_ACTIVATED with those of type AP_CONNECTION_DEACTIVATED.

listen_local_address
The address on the local TN Server computer to which TN3270 clients connect.

TN_REDIRECTION_INDICATION

Chapter 4. NOF Indications 651

TN_REDIRECTION_INDICATION

652 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix A. Return code values

This appendix lists all the possible return codes in the NOF interface in numerical order. The values are
defined in the header file values_c.h.

You can use this appendix as a reference to check the meaning of a return code received by your
application.

Primary return codes
The following primary return codes are used in NOF applications.

AP_OK 0x0000
AP_PARAMETER_CHECK 0x0100
AP_STATE_CHECK 0x0200
AP_INDICATION 0x0210
AP_TP_BUSY 0x02F0
AP_ALLOCATION_ERROR 0x0300
AP_ACTIVATION_FAIL_RETRY 0x0310
AP_COMM_SUBSYSTEM_ABENDED 0x03F0
AP_ACTIVATION_FAIL_NO_RETRY 0x0410
AP_COMM_SUBSYSTEM_NOT_LOADED 0x04F0
AP_DEALLOC_ABEND 0x0500
AP_LU_SESS_LIMIT_EXCEEDED 0x0510
AP_DEALLOC_ABEND_PROG 0x0600
AP_FUNCTION_NOT_SUPPORTED 0x0610
AP_THREAD_BLOCKING 0x06F0
AP_DEALLOC_ABEND_SVC 0x0700
AP_DEALLOC_ABEND_TIMER 0x0800
AP_DATA_POSTING_BLOCKED 0x0810
AP_INVALID_VERB_SEGMENT 0x08F0
AP_DEALLOC_NORMAL 0x0900
AP_PATH_SWITCH_NOT_ALLOWED 0x0910
AP_CP_CP_SESS_ACT_FAILURE 0x0A10
AP_PROG_ERROR_NO_TRUNC 0x0C00
AP_PROG_ERROR_TRUNC 0x0D00
AP_PROG_ERROR_PURGING 0x0E00
AP_CONV_FAILURE_RETRY 0x0F00
AP_CONV_FAILURE_NO_RETRY 0x1000
AP_SVC_ERROR_NO_TRUNC 0x1100
AP_UNEXPECTED_DOS_ERROR 0x11F0
AP_SVC_ERROR_TRUNC 0x1200
AP_SVC_ERROR_PURGING 0x1300
AP_UNSUCCESSFUL 0x1400
AP_STACK_TOO_SMALL 0x15F0
AP_MIXED_API_USED 0x16F0
AP_IN_PROGRESS 0x17F0
AP_CNOS_PARTNER_LU_REJECT 0x1800
AP_COMPLETED 0x18F0
AP_CONVERSATION_TYPE_MIXED 0x1900
AP_NODE_STOPPING 0x1A00
AP_NODE_NOT_STARTED 0x1B00
AP_CANCELLED 0x2100
AP_BACKED_OUT 0x2200
AP_DUPLEX_TYPE_MIXED 0x2300
AP_LS_FAILURE 0x2300
AP_OPERATION_INCOMPLETE 0x4000
AP_OPERATION_NOT_ACCEPTED 0x4100
AP_CONVERSATION_ENDED 0x4200
AP_ERROR_INDICATION 0x4300
AP_EXPD_NOT_SUPPORTED_BY_LU 0x4400
AP_BUFFER_TOO_SMALL 0x4500
AP_MEMORY_ALLOCATION_FAILURE 0x4600
AP_INVALID_VERB 0xFFFF

Primary return codes

© Copyright IBM Corp. 1998, 2021 653

Secondary return codes
The following secondary return codes are used in NOF applications.

AP_AS_SPECIFIED 0x00000000
AP_ALLOCATION_ERROR_PENDING 0x00000300
AP_DEALLOC_ABEND_PROG_PENDING 0x00000600
AP_DEALLOC_ABEND_SVC_PENDING 0x00000700
AP_DEALLOC_ABEND_TIMER_PENDING 0x00000800
AP_UNKNOWN_ERROR_TYPE_PENDING 0x00001100
AP_BO_NO_RESYNC 0x00002408
AP_TRANS_PGM_NOT_AVAIL_NO_RETRY 0x00004C08
AP_INVALID_SET_PROT 0x00070000
AP_INVALID_DLUS_NAME 0x00900000
AP_SEC_BAD_PASSWORD_EXPIRED 0x00FF0F08
AP_BAD_TP_ID 0x01000000
AP_BO_RESYNC 0x01002408
AP_INVALID_NEW_PROT 0x01070000
AP_DLC_ACTIVE 0x01100000
AP_NO_DEFAULT_DLUS_DEFINED 0x01900000
AP_BAD_TPSID 0x01FF0000
AP_SEC_BAD_PASSWORD_INVALID 0x01FF0F08
AP_BAD_CONV_ID 0x02000000
AP_SEND_ERROR_LOG_LL_WRONG 0x02010000
AP_INVALID_SET_UNPROT 0x02070000
AP_INVALID_NUMBER_OF_NODE_ROWS 0x02080000
AP_DUPLICATE_CP_NAME 0x02100000
AP_INVALID_PU_ID 0x02900000
AP_NOT_OWNER 0x02FF0000
AP_SEC_BAD_USERID_REVOKED 0x02FF0F08
AP_BAD_LU_ALIAS 0x03000000
AP_BAD_DLOAD_ID 0x03000001
AP_BAD_REMOTE_LU_ALIAS 0x03000002
AP_SEND_ERROR_BAD_TYPE 0x03010000
AP_INVALID_NEW_UNPROT 0x03070000
AP_DUPLICATE_DEST_ADDR 0x03100000
AP_PU_ALREADY_ACTIVATING 0x03900000
AP_INSUFFICIENT_PRIVILEGES 0x03FF0000
AP_SEC_BAD_USERID_INVALID 0x03FF0F08
AP_ALLOCATION_FAILURE_NO_RETRY 0x04000000
AP_SEND_ERROR_BAD_STATE 0x04010000
AP_INVALID_SET_USER 0x04070000
AP_NODE_ROW_WGT_LESS_THAN_LAST 0x04080000
AP_CANT_MODIFY_PORT_NAME 0x04100000
AP_PU_ALREADY_DEACTIVATING 0x04900000
AP_INVALID_CALLBACK 0x04FF0000
AP_SEC_BAD_USERID_MISSING 0x04FF0F08
AP_ALLOCATION_FAILURE_RETRY 0x05000000
AP_BAD_ERROR_DIRECTION 0x05010000
AP_INVALID_DATA_TYPE 0x05070000
AP_TG_ROW_WGT_LESS_THAN_LAST 0x05080000
AP_DUPLICATE_PORT_NUMBER 0x05100000
AP_PU_ALREADY_ACTIVE 0x05900000
AP_BAD_TP_TYPE 0x05FF0000
AP_SEC_BAD_PASSWORD_MISSING 0x05FF0F08
AP_INVALID_STATS_TYPE 0x06070000
AP_DUPLICATE_PORT_NAME 0x06100000
AP_PU_NOT_ACTIVE 0x06900000
AP_ALREADY_REGISTERED 0x06FF0000
AP_SEC_BAD_GROUP_INVALID 0x06FF0F08
AP_AS_NEGOTIATED 0x07000000
AP_INVALID_TABLE_TYPE 0x07070000
AP_INVALID_DLC_NAME 0x07100000
AP_DLUS_REJECTED 0x07900000
AP_SEC_BAD_UID_REVOKED_IN_GRP 0x07FF0F08
AP_PORT_DEACTIVATED 0x08070000
AP_INVALID_DLC_TYPE 0x08100000
AP_DLUS_CAPS_MISMATCH 0x08900000
AP_SEC_BAD_UID_NOT_DEFD_TO_GRP 0x08FF0F08
AP_ALLOCATE_NOT_PENDING 0x09050000
AP_INVALID_SET_PASSWORD 0x09070000
AP_INVALID_NUMBER_OF_TG_ROWS 0x09080000
AP_INVALID_LINK_ACTIVE_LIMIT 0x09100000
AP_PU_FAILED_ACTPU 0x09900000
AP_SEC_BAD_UNAUTHRZD_AT_RLU 0x09FF0F08
AP_SNA_DEFD_COS_CANT_BE_CHANGE 0x0A080000
AP_SNA_DEFD_COS_CANT_BE_CHANGED 0x0A080000
AP_PU_NOT_RESET 0x0A900000
AP_SEC_BAD_UNAUTHRZD_FROM_LLU 0x0AFF0F08
AP_INVALID_NUM_PORTS_SPECIFIED 0x0B100000

Secondary return codes

654 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_PU_OWNS_LUS 0x0B900000
AP_SEC_BAD_UNAUTHRZD_TO_TP 0x0BFF0F08
AP_INVALID_PORT_NAME 0x0C100000
AP_INVALID_FILTER_OPTION 0x0C900000
AP_SEC_BAD_INSTALL_EXIT_FAILED 0x0CFF0F08
AP_INVALID_PORT_TYPE 0x0D100000
AP_INVALID_STOP_TYPE 0x0D900000
AP_SEC_BAD_PROCESSING_FAILURE 0x0DFF0F08
AP_UNRECOGNIZED_DEACT_TYPE 0x0E050000
AP_PORT_ACTIVE 0x0E100000
AP_PU_ALREADY_DEFINED 0x0E900000
AP_NO_PORTS_DEFINED_ON_DLC 0x0F100000
AP_DEPENDENT_LU_NOT_SUPPORTED 0x0F900000
AP_INVALID_DLC 0x10050000
AP_COS_NAME_NOT_DEFD 0x10080000
AP_DUPLICATE_PORT 0x10100000
AP_INVALID_DSPU_SERVICES 0x10900000
AP_BAD_CONV_TYPE 0x11000000
AP_SNA_DEFD_COS_CANT_BE_DELETE 0x11080000
AP_SNA_DEFD_COS_CANT_BE_DELETED 0x11080000
AP_STOP_PORT_PENDING 0x11100000
AP_DSPU_SERVICES_NOT_SUPPORTED 0x11900000
AP_BAD_SYNC_LEVEL 0x12000000
AP_LU_NAU_ADDR_ALREADY_DEFD 0x12020000
AP_INVALID_SESSION_ID 0x12050000
AP_LINK_DEACT_IN_PROGRESS 0x12100000
AP_INVALID_DSPU_NAME 0x12900000
AP_BAD_SECURITY 0x13000000
AP_INVALID_NN_SESSION_TYPE 0x13050000
AP_LINK_DEACTIVATED 0x13100000
AP_PARTNER_NOT_FOUND 0x13200000
AP_PARTNER_NOT_RESPONDING 0x13300000
AP_ERROR 0x13400000
AP_DSPU_ALREADY_DEFINED 0x13900000
AP_BAD_RETURN_CONTROL 0x14000000
AP_INVALID_MAX_NEGOT_SESS_LIM 0x14020000
AP_INVALID_SET_COLLECT_STATS 0x14050000
AP_LINK_ACT_BY_REMOTE 0x14100000
AP_INVALID_SOLICIT_SSCP_SESS 0x14900000
AP_INVALID_BACK_LEVEL_SUPPORT 0x15000000
AP_INVALID_MODE_NAME 0x15020000
AP_INVALID_SET_COLLECT_NAMES 0x15050000
AP_LINK_ACT_BY_LOCAL 0x15100000
AP_INVALID_TG_NUMBER 0x15500000
AP_MISSING_CP_NAME 0x15510000
AP_MISSING_CP_TYPE 0x15520000
AP_INVALID_CP_TYPE 0x15520000
AP_DUPLICATE_TG_NUMBER 0x15530000
AP_TG_NUMBER_IN_USE 0x15540000
AP_MISSING_TG_NUMBER 0x15550000
AP_PARALLEL_TGS_NOT_ALLOWED 0x15570000
AP_INVALID_BKUP_DLUS_NAME 0x15900000
AP_PIP_LEN_INCORRECT 0x16000000
AP_INVALID_RECV_PACING_WINDOW 0x16020000
AP_INVALID_SET_COLLECT_RSCVS 0x16050000
AP_SEC_REQUESTED_NOT_SUPPORTED 0x16900000
AP_NO_USE_OF_SNASVCMG 0x17000000
AP_INVALID_CNOS_SLIM 0x17020000
AP_LINK_NOT_DEFD 0x17100000
AP_INVALID_DUPLEX_SUPPORT 0x17900000
AP_UNKNOWN_PARTNER_MODE 0x18000000
AP_INVALID_TARGET_PACING_CNT 0x18020000
AP_PS_CREATION_FAILURE 0x18100000
AP_QUEUE_PROHIBITED 0x18900000
AP_INVALID_MAX_RU_SIZE_UPPER 0x19020000
AP_TP_ACTIVE 0x19100000
AP_INVALID_TEMPLATE_NAME 0x19900000
AP_INVALID_SNASVCMG_MODE_LIMIT 0x1A020000
AP_MODE_ACTIVE 0x1A100000
AP_CLASHING_NAU_RANGE 0x1A900000
AP_PLU_ACTIVE 0x1B100000
AP_INVALID_NAU_RANGE 0x1B900000
AP_INVALID_COS_SNASVCMG_MODE 0x1C020000
AP_INVALID_PLU_NAME 0x1C100000
AP_INVALID_NUM_DSLU_TEMPLATES 0x1C900000
AP_INVALID_DEFAULT_RU_SIZE 0x1D020000
AP_INVALID_SET_NEGOTIABLE 0x1D100000
AP_GLOBAL_TIMEOUT_NOT_DEFINED 0x1D900000
AP_INVALID_MIN_CONWINNERS 0x1E020000
AP_INVALID_MODE_NAME_SELECT 0x1E100000
AP_INVALID_RESOURCE_NAME 0x1E900000
AP_INVALID_RESPONSIBLE 0x1F100000

Secondary return codes

Appendix A. Return code values 655

AP_INVALID_DLUS_RETRY_TIMEOUT 0x1F900000
AP_MODE_SESS_LIM_EXCEEDS_NEG 0x20020000
AP_INVALID_DRAIN_SOURCE 0x20100000
AP_INVALID_DLUS_RETRY_LIMIT 0x20900000
AP_CPSVCMG_ALREADY_DEFD 0x21020000
AP_INVALID_CN_NAME 0x21080000
AP_INVALID_DRAIN_TARGET 0x21100000
AP_TP_NAME_NOT_RECOGNIZED 0x21600810
AP_INVALID_MIN_CONLOSERS 0x21900000
AP_BAD_DUPLEX_TYPE 0x22000000
AP_INVALID_BYPASS_SECURITY 0x22020000
AP_DEF_LINK_INVALID_SECURITY 0x22080000
AP_INVALID_FORCE 0x22100000
AP_SYSTEM_TP_CANT_BE_CHANGED 0x22600810
AP_INVALID_MAX_RU_SIZE_LOW 0x22900000
AP_FDX_NOT_SUPPORTED_BY_LU 0x23000000
AP_TEST_INVALID_FOR_FDX 0x23010000
AP_INVALID_IMPLICIT_PLU_FORBID 0x23020000
AP_INVALID_PROPAGATION_DELAY 0x23080000
AP_SYSTEM_TP_CANT_BE_DELETED 0x23600810
AP_INVALID_MAX_RECV_PACING_WIN 0x23900000
AP_SEND_EXPD_INVALID_LENGTH 0x24010000
AP_INVALID_SPECIFIC_SECURITY 0x24020000
AP_INVALID_EFFECTIVE_CAPACITY 0x24080000
AP_INVALID_CLEANUP_TYPE 0x24100000
AP_INVALID_DYNAMIC_LOAD 0x24600810
AP_RU_SIZE_LOW_UPPER_MISMATCH 0x24900000
AP_RCV_EXPD_INVALID_LENGTH 0x25010000
AP_INVALID_DELAYED_LOGON 0x25020000
AP_INVALID_COS_NAME 0x25100000
AP_INVALID_ENABLED 0x25600810
AP_LU_ALREADY_ACTIVATING 0x25900000
AP_EXPD_BAD_RETURN_CONTROL 0x26010000
AP_INVALID_CNOS_PERMITTED 0x26020000
AP_PW_SUB_NOT_SUPP_ON_SESS 0x26050000
AP_INVALID_SESSION_LIMIT 0x26100000
AP_INVALID_PIP_ALLOWED 0x26600810
AP_LU_DEACTIVATING 0x26900000
AP_EXPD_DATA_BAD_CONV_STATE 0x27010000
AP_INVALID_DRAIN 0x27100000
AP_LU_ALREADY_ACTIVE 0x27900000
AP_INVALID_PRLL_SESS_SUPP 0x28100000
AP_INVALID_MIN_CONTENTION_SUM 0x28900000
AP_INVALID_LU_NAME 0x29100000
AP_COMPRESSION_NOT_SUPPORTED 0x29900000
AP_MODE_NOT_RESET 0x2A100000
AP_INVALID_MAX_COMPRESS_LVL 0x2A900000
AP_MODE_RESET 0x2B100000
AP_INVALID_COMPRESSION 0x2B900000
AP_CNOS_REJECT 0x2C100000
AP_INVALID_EXCEPTION_INDEX 0x2C900000
AP_INVALID_OP_CODE 0x2D100000
AP_INVALID_MAX_LS_EXCEPTION 0x2D900000
AP_INVALID_DISABLE 0x2E900000
AP_INVALID_MODIFY_TEMPLATE 0x2F900000
AP_INVALID_ALLOW_TIMEOUT 0x30900000
AP_CONFIRM_ON_SYNC_LEVEL_NONE 0x31000000
AP_PIP_NOT_ALLOWED 0x31600810
AP_TRANS_PGM_NOT_AVAIL_RETRY 0x31604B08
AP_POST_ON_RECEIPT_BAD_FILL 0x31900000
AP_CONFIRM_BAD_STATE 0x32000000
AP_UNKNOWN_USER 0x32100000
AP_POST_ON_RECEIPT_BAD_STATE 0x32900000
AP_CONFIRM_NOT_LL_BDY 0x33000000
AP_NO_PROFILES 0x33100000
AP_INVALID_HPR_SUPPORT 0x33900000
AP_CONFIRM_INVALID_FOR_FDX 0x34000000
AP_CONVERSATION_TYPE_MISMATCH 0x34600810
AP_INVALID_LU_MODEL 0x34900000
AP_INVALID_MODEL_NAME 0x35900000
AP_TOO_MANY_PROFILES 0x36100000
AP_INVALID_CRYPTOGRAPHY 0x36900000
AP_INVALID_UPDATE_TYPE 0x37100000
AP_INVALID_CLU_CRYPTOGRAPHY 0x37900000
AP_DIR_ENTRY_PARENT 0x38100000
AP_INVALID_RESOURCE_TYPES 0x38900000
AP_NODE_ALREADY_STARTED 0x39100000
AP_CHECKSUM_FAILED 0x39900000
AP_NODE_FAILED_TO_START 0x3A100000
AP_DATA_CORRUPT 0x3A900000
AP_LU_ALREADY_DEFINED 0x3B100000
AP_INVALID_RETRY_FLAGS 0x3B900000

Secondary return codes

656 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_IMPLICIT_LU_DEFINED 0x3C100000
AP_DELAYED_VERB_PENDING 0x3C900000
AP_PORT_INACTIVE 0x3D100000
AP_DSLU_ACTIVE 0x3D900000
AP_ACTIVATION_LIMITS_REACHED 0x3E100000
AP_ACTIVATION_LIMITS_REACHED 0x3E100000
AP_INVALID_BRANCH_LINK_TYPE 0x3E900000
AP_PARALLEL_TGS_NOT_SUPPORTED 0x3F100000
AP_INVALID_BRNN_SUPPORT 0x3F900000
AP_DLC_INACTIVE 0x40100000
AP_BRNN_SUPPORT_MISSING 0x40900000
AP_CONFIRMED_BAD_STATE 0x41000000
AP_NO_LINKS_DEFINED 0x41100000
AP_SYNC_LEVEL_NOT_SUPPORTED 0x41600810
AP_INVALID_UPLINK 0x41900000
AP_CONFIRMED_INVALID_FOR_FDX 0x42000000
AP_STOP_DLC_PENDING 0x42100000
AP_INVALID_DOWNLINK 0x42900000
AP_INVALID_LS_ROLE 0x43100000
AP_INVALID_IMPLICIT_UPLINK 0x43900000
AP_INVALID_BTU_SIZE 0x44100000
AP_INVALID_ROCP_NAME 0x44900000
AP_LAST_LINK_ON_ACTIVE_PORT 0x45100000
AP_INVALID_REG_WITH_NN 0x45900000
AP_DYNAMIC_LOAD_ALREADY_REGD 0x46100000
AP_LS_PENDING_RETRY 0x46900000
AP_INVALID_LIST_OPTION 0x47100000
AP_INVALID_COS_TABLE_VERSION 0x47900000
AP_INVALID_RES_NAME 0x48100000
AP_CFRTP_REQUIRED_FOR_MLTG 0x48900000
AP_INVALID_RES_TYPE 0x49100000
AP_INVALID_MLTG_PAC_ALGORITHM 0x49900000
AP_INVALID_ADJ_NNCP_NAME 0x4A100000
AP_LIM_RESRCE_INVALID_FOR_MLTG 0x4A900000
AP_INVALID_NODE 0x4B100000
AP_AUTO_ACT_INVALID_FOR_MLTG 0x4B900000
AP_INVALID_ORIGIN_NODE 0x4C100000
AP_MLTG_LS_VISIBILITY_MISMATCH 0x4C900000
AP_INVALID_TG 0x4D100000
AP_SLTG_LINK_ACTIVE 0x4D900000
AP_INVALID_FQPCID 0x4E100000
AP_MLTG_LINK_PROPERTIES_DIFFER 0x4E900000
AP_INVALID_POOL_NAME 0x4F100000
AP_INVALID_ADJ_CP_NAME 0x4F900000
AP_BAD_TYPE 0x50020000
AP_INVALID_NAU_ADDRESS 0x50100000
AP_INVALID_ENABLE_POOL 0x50300000
AP_INVALID_SEND_TERM_SELF 0x50900000
AP_DEALLOC_BAD_TYPE 0x51000000
AP_LU_NAME_POOL_NAME_CLASH 0x51100000
AP_SECURITY_NOT_VALID 0x51600F08
AP_INVALID_TERM_METHOD 0x51900000
AP_DEALLOC_FLUSH_BAD_STATE 0x52000000
AP_INVALID_PRIORITY 0x52100000
AP_INVALID_DISABLE_BRANCH_AWRN 0x52900000
AP_DEALLOC_CONFIRM_BAD_STATE 0x53000000
AP_INVALID_DNST_LU_NAME 0x53100000
AP_INVALID_SHARING_PROHIBITED 0x53900000
AP_INVALID_HOST_LU_NAME 0x54100000
AP_INVALID_LINK_SPEC_FORMAT 0x54900000
AP_DEALLOC_NOT_LL_BDY 0x55000000
AP_PU_NOT_DEFINED 0x55100000
AP_INVALID_CN_TYPE 0x55900000
AP_INVALID_PU_NAME 0x56100000
AP_INVALID_PU_TYPE 0x56600000
AP_INCONSISTENT_BEST_EFFORT 0x56900000
AP_DEALLOC_LOG_LL_WRONG 0x57000000
AP_CNOS_MODE_NAME_REJECT 0x57010000
AP_INVALID_MAX_IFRM_RCVD 0x57100000
AP_INVALID_CN_TG 0x57900000
AP_INVALID_SYM_DEST_NAME 0x58100000
AP_SEC_BAD_PROTOCOL_VIOLATION 0x58600F08
AP_INVALID_LINK_SPEC_DATA 0x58900000
AP_INVALID_LENGTH 0x59100000
AP_DLC_UI_ONLY 0x59900000
AP_INVALID_ISR_THRESHOLDS 0x5A100000
AP_ADJ_CP_WRONG_TYPE 0x5A900000
AP_BAD_PARTNER_LU_ALIAS 0x5B010000
AP_INVALID_NUM_LUS 0x5B100000
AP_CP_CP_SESS_ALREADY_ACTIVE 0x5B900000
AP_EXCEEDS_MAX_ALLOWED 0x5C010000
AP_CANT_DELETE_ADJ_ENDNODE 0x5C100000

Secondary return codes

Appendix A. Return code values 657

AP_NO_ACTIVE_CP_CP_LINK 0x5C900000
AP_LU_MODE_SESSION_LIMIT_ZERO 0x5D010000
AP_INVALID_RESOURCE_TYPE 0x5D100000
AP_PU_CONC_NOT_SUPPORTED 0x5E100000
AP_INVALID_IMPL_APPN_LINKS_LEN 0x5E900000
AP_CNOS_COMMAND_RACE_REJECT 0x5F010000
AP_DLUR_NOT_SUPPORTED 0x5F100000
AP_INVALID_LIMIT_ENABLE 0x5F900000
AP_INVALID_SVCMG_LIMITS 0x60010000
AP_INVALID_RTP_CONNECTION 0x60100000
AP_INVALID_LS_ATTRIBUTE 0x60900000
AP_FLUSH_NOT_SEND_STATE 0x61000000
AP_PATH_SWITCH_IN_PROGRESS 0x61100000
AP_HPR_NOT_SUPPORTED 0x62100000
AP_SOME_ENABLED 0x62900000
AP_RTP_NOT_SUPPORTED 0x63100000
AP_NONE_ENABLED 0x63900000
AP_COS_TABLE_FULL 0x64100000
AP_INCONSISTENT_IMPLICIT 0x64900000
AP_INVALID_DAYS_LEFT 0x65100000
AP_ANYNET_NOT_SUPPORTED 0x66100000
AP_INVALID_PERSIST_PIPE_SUPP 0x66900000
AP_INVALID_DISCOVERY_SUPPORT 0x67100000
AP_ACTIVATION_PROHIBITED 0x67900000
AP_SESSION_FAIL_ALREADY_REGD 0x68100000
AP_INVALID_NULL_ADDR_MEANING 0x68900000
AP_CANT_MODIFY_VISIBILITY 0x69100000
AP_INVALID_CPLU_SYNCPT_SUPPORT 0x69900000
AP_CANT_MODIFY_WHEN_ACTIVE 0x6A100000
AP_INVALID_CPLU_ATTRIBUTES 0x6A900000
AP_INVALID_BASE_NUMBER 0x6B100000
AP_INVALID_REG_LEN_SUPPORT 0x6B900000
AP_DEACT_CG_INVALID_CGID 0x6C020000
AP_INVALID_NAME_ATTRIBUTES 0x6C100000
AP_LUNAME_CGID_MISMATCH 0x6C900000
AP_NAU_ADDRESS_MISMATCH 0x6D100000
AP_INVALID_DDDLU_OFFLINE 0x6D900000
AP_POSTED_DATA 0x6E100000
AP_POSTED_NO_DATA 0x6F100000
AP_DEF_PLU_INVALID_FQ_NAME 0x74020000
AP_DLC_DEACTIVATING 0x86020000
AP_INVALID_WILDCARD_NAME 0x8C020000
AP_DUPLICATE 0x8D020000
AP_LU_NAME_WILDCARD_NAME_CLASH 0x8E020000
AP_INVALID_USERID 0x90020000
AP_INVALID_PASSWORD 0x91020000
AP_INVALID_PROFILE 0x93020000
AP_INVALID_TP_NAME 0xA0020000
AP_P_TO_R_INVALID_TYPE 0xA1000000
AP_INVALID_CONV_TYPE 0xA1020000
AP_P_TO_R_NOT_LL_BDY 0xA2000000
AP_P_TO_R_NOT_SEND_STATE 0xA3000000
AP_INVALID_SYNC_LEVEL 0xA3020000
AP_P_TO_R_INVALID_FOR_FDX 0xA5000000
AP_INVALID_LINK_NAME_SPECIFIED 0xB0020000
AP_RCV_AND_WAIT_BAD_STATE 0xB1000000
AP_INVALID_LU_ALIAS 0xB1020000
AP_RCV_AND_WAIT_NOT_LL_BDY 0xB2000000
AP_INVALID_NUM_LS_SPECIFIED 0xB2020000
AP_PLU_ALIAS_CANT_BE_CHANGED 0xB3020000
AP_PLU_ALIAS_ALREADY_USED 0xB4020000
AP_RCV_AND_WAIT_BAD_FILL 0xB5000000
AP_INVALID_AUTO_ACT_SUPP 0xB5020000
AP_CANT_DELETE_IMPLICIT_LU 0xB6020000
AP_FORCED 0xB7020000
AP_INVALID_LS_NAME 0xB7030000
AP_INVALID_LFSID_SPECIFIED 0xB7040000
AP_INVALID_FILTER_TYPE 0xB7050000
AP_INVALID_MESSAGE_TYPE 0xB7060000
AP_CANT_DELETE_CP_LU 0xB7070000
AP_ALL_RESOURCES_NOT_DEFINED 0xB7090000
AP_INVALID_LIST_TYPE 0xB70A0000
AP_RESOURCE_NAME_NOT_ALLOWED 0xB70B0000
AP_LU_ALIAS_CANT_BE_CHANGED 0xB8020000
AP_LU_ALIAS_ALREADY_USED 0xB9020000
AP_INVALID_LINK_ENABLE 0xBA020000
AP_INVALID_CLU_COMPRESSION 0xBB020000
AP_INVALID_DLUR_SUPPORT 0xBC020000
AP_ALREADY_STARTING 0xC0010000
AP_RCV_IMMD_BAD_STATE 0xC1000000
AP_INVALID_LINK_NAME 0xC1010000
AP_INVALID_USER_DEF_1 0xC3010000

Secondary return codes

658 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_RCV_IMMD_BAD_FILL 0xC4000000
AP_INVALID_USER_DEF_2 0xC4010000
AP_INVALID_NODE_TYPE 0xC4020000
AP_INVALID_USER_DEF_3 0xC5010000
AP_INVALID_NAME_LEN 0xC5020000
AP_INVALID_NETID_LEN 0xC6020000
AP_INVALID_NODE_TYPE_FOR_HPR 0xC8020000
AP_INVALID_MAX_DECOMPRESS_LVL 0xC9020000
AP_INVALID_CP_NAME 0xCA010000
AP_INVALID_COMP_IN_SERIES 0xCA020000
AP_INVALID_LIMITED_RESOURCE 0xCE010000
AP_RCV_AND_POST_BAD_STATE 0xD1000000
AP_INVALID_BYTE_COST 0xD1010000
AP_RCV_AND_POST_NOT_LL_BDY 0xD2000000
AP_RCV_AND_POST_BAD_FILL 0xD5000000
AP_INVALID_TIME_COST 0xD6010000
AP_BAD_RETURN_STATUS_WITH_DATA 0xD7000000
AP_LOCAL_CP_NAME 0xD7010000
AP_LS_ACTIVE 0xDA010000
AP_INVALID_FQ_OWNING_CP_NAME 0xDB020000
AP_R_T_S_BAD_STATE 0xE1000000
AP_R_T_S_INVALID_FOR_FDX 0xE2000000
AP_BAD_LL 0xF1000000
AP_SEND_DATA_NOT_SEND_STATE 0xF2000000
AP_CP_OR_SNA_SVCMG_UNDELETABLE 0xF3010000
AP_SEND_DATA_INVALID_TYPE 0xF4000000
AP_DEL_MODE_DEFAULT_SPCD 0xF4010000
AP_SEND_DATA_CONFIRM_SYNC_NONE 0xF5000000
AP_MODE_NAME_NOT_DEFD 0xF5010000
AP_SEND_DATA_NOT_LL_BDY 0xF6000000
AP_MODE_UNDELETABLE 0xF6010000
AP_SEND_TYPE_INVALID_FOR_FDX 0xF7000000
AP_INVALID_FQ_LU_NAME 0xFD010000
AP_INVALID_PARTNER_LU 0xFE010000
AP_INVALID_LOCAL_LU 0xFF010000

Secondary return codes

Appendix A. Return code values 659

Secondary return codes

660 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix B. Common return codes

This appendix describes the primary and secondary return codes that are common to all NOF verbs.

Return codes that are specific to a particular verb, or a group of verbs, are described in the individual verb
descriptions in Chapter 3, “NOF API Verbs,” on page 35.

Communications subsystem not active
If the verb does not execute because a required component is not active, CS/AIX returns the following
parameters:

primary_rc
AP_COMM_SUBSYSTEM_ABENDED

secondary_rc
One of the following:
AP_LOCAL_ABENDED

The CS/AIX software has stopped.
AP_TARGET_ABENDED

The target node has stopped or the communication path to it has failed.
primary_rc

AP_COMM_SUBSYSTEM_NOT_LOADED
The CS/AIX software is not active.

secondary_rc
Not used.

primary_rc
AP_NODE_NOT_STARTED

The target node has not been started.
secondary_rc

Not used.
primary_rc

AP_NODE_STOPPING
The target node is in the process of stopping (as a result of a TERM_NODE verb).

secondary_rc
Not used.

Indication
This return code does not signify an error.

If the application has registered using REGISTER_INDICATION_SINK to receive configuration indications
or SNA network file indications, CS/AIX sends an indication each time another NOF API application or a
CS/AIX component modifies the target file or the target node's configuration. The format of this indication
is the same as the returned VCB for the NOF verb that modified the configuration. CS/AIX sets this
primary return code to indicate that the VCB being returned is a configuration indication or an SNA
network file indication, rather than the response to a verb issued by the application; this enables the
application to distinguish between its own verb returns and indications resulting from verbs issued by
other applications.

primary_rc
AP_INDICATION

Communications subsystem not active

© Copyright IBM Corp. 1998, 2021 661

secondary_rc
Possible values are:
AP_EXTRA_DATA_LOST

CS/AIX was unable to allocate sufficient storage to return the complete VCB for this indication; the
returned information is incomplete. The application should issue the appropriate QUERY_* verb to
obtain more information about the modified component.

(zero)
The complete VCB for this indication is being returned.

Invalid function
If the verb does not execute because the node does not recognize it as a valid verb, CS/AIX returns the
following parameters:

primary_rc
AP_INVALID_VERB

The opcode parameter was not set to the operation code of any NOF verb, or the verb identified by
this parameter cannot be used because this version of CS/AIX does not support it.

secondary_rc
Not used.

primary_rc
AP_FUNCTION_NOT_SUPPORTED

The NOF verb identified by the specified opcode parameter cannot be used because the target
node's configuration does not support it.

secondary_rc
Not used.

Invalid verb segment

If the verb does not execute because the VCB was not contained within a data segment, CS/AIX returns
the following parameters:

primary_rc
AP_INVALID_VERB_SEGMENT

The verb control block extended beyond the end of a data segment. The verb did not execute.

A secondary return code is not returned.

Parameter check
If the verb does not execute because of a parameter error, CS/AIX returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
One of the following:
AP_INVALID_FORMAT

The reserved parameter format was not set to zero.
AP_INVALID_TARGET_HANDLE

The supplied target handle is not valid.

Invalid function

662 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

AP_INVALID_TARGET
The verb cannot be issued to the specified target. For example, QUERY_PARTNER_LU, which
returns information about an LU's current usage, can be issued only to a running node; it is not
valid when issued to a file.

AP_INVALID_TARGET_MODE
The verb cannot be issued in the current mode. For example, only QUERY_* verbs can be issued in
read-only mode; DEFINE_*, DELETE_*, START_*, and STOP_* verbs are not valid in this mode.

AP_NOT_SERVER
This return code occurs only when you are running the NOF application program on a client. The
verb that you issued is not valid on a client; it can be issued only on a server.

AP_SYNC_NOT_ENABLED
The application issued this verb within a callback routine, using the synchronous NOF entry point.
Any verb issued from a callback routine must use the asynchronous entry point.

State check
If the verb does not execute because of a state check, CS/AIX returns the following parameters.

primary_rc
AP_STATE_CHECK

secondary_rc
One of the following:
AP_CANT_MODIFY_VISIBILITY

You have attempted to define a resource with a name that is reserved for use internally by CS/AIX.
Please choose a different name.

AP_FILE_LOCK_FAILED
The application issued SET_PROCESSING_MODE to change to commit mode, but CS/AIX failed to
get a lock on the configuration file. This can be because another NOF API application or CS/AIX
component is already accessing the file.

AP_FILE_UNLOCK_FAILED
The application issued SET_PROCESSING_MODE to change from commit mode to one of the other
modes, but CS/AIX failed to release its lock on the configuration file. In order to free the file when
this error occurs, CS/AIX closes the application's handle to the file. The application must issue
OPEN_FILE again, to obtain a new file handle, before attempting to issue any more verbs to this
file.

AP_FILE_UNAVAILABLE
The connection to the target file has been lost.

AP_NOT_CONTROLLER
The target file is a copy of the domain configuration file, or of the sna.net file, on a server that is
not the controller server. Verbs that modify these files must be issued to the controller server's
copy of the files.

AP_SYNC_PENDING
This verb was issued using the synchronous NOF API entry point, but another synchronous verb
was in progress. Only one synchronous verb can be in progress at any time.

System error
If the verb does not execute because of an operating system error, CS/AIX returns the following
parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

An operating system call failed during processing of the verb.

State check

Appendix B. Common return codes 663

secondary_rc
The secondary return code in this case is the return code from the operating system call.

For the meaning of the operating system return code, see the file /usr/include/errno.h on the
computer where the error occurred. Typically, the return code will indicate a condition such as
memory shortage.

For the meaning of the operating system return code, refer to your operating system documentation.

If the problem persists, consult your System Administrator.

If the verb was issued to change the target configuration (such as DEFINE_* or DELETE_*), or to
perform an action (such as START_*), the application should issue the appropriate QUERY_* verb to
determine whether the change or action succeeded. In particular, if this error occurs while processing
a DEFINE_* or DELETE_* verb containing multiple data structures, the change can be incomplete.

System error

664 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix C. How to send your comments to IBM

We appreciate your input on our publications. Feel free to comment on the clarity, accuracy, and
completeness of the information or provide any other feedback that you have.

Use one of the following methods to send your comments:

1. Use the feedback link at the bottom of Knowledge Center.
2. Use the feedback template below and send us an email at "mhvrcfs@us.ibm.com"
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader's Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

Email feedback template
Please cut and paste the template below into your email. Then fill in the required information.

• My name:
• My Company, University or Institution:
• The URL of the topic or web page you are commenting on:
• The text of your comment

If you are willing to talk to us about your comment, please feel free to include a phone number and the
best time to reach you.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending reader's comments. Instead, take one of the
following actions:

• Contact your IBM service representative
• Call IBM technical support
• Visit the IBM support portal at https://www.ibm.com/support/home/.

© Copyright IBM Corp. 1998, 2021 665

Mailto:mhvrcfs@us.ibm.com
https://www.ibm.com/support/home/

666 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

• IBM Director of Licensing
• IBM Corporation
• North Castle Drive
• Armonk, NY 10504-1785
• U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

• IBM World Trade Asia Corporation
• Licensing
• 2-31 Roppongi 3-chome, Minato-ku
• Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

• IBM Corporation
• P.O. Box 12195
• 3039 Cornwallis Road
• Research Triangle Park, NC 27709-2195
• U.S.A.

© Copyright IBM Corp. 1998, 2021 667

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface for
the operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp. 2000, 2005, 2006, 2007, 2008, 2021. All rights reserved.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or
both:

668 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• ACF/VTAM
• Advanced Peer-to-Peer Networking
• AIX
• Application System/400
• APPN
• AS/400
• CICS
• DATABASE 2
• DB2
• Enterprise System/3090
• Enterprise System/4381
• Enterprise System/9000
• ES/3090
• ES/9000
• eServer
• IBM
• IBMLink

• IMS
• MVS
• MVS/ESA
• Operating System/2
• Operating System/400
• OS/2
• OS/400
• PowerPC
• PowerPC Architecture
• S/390
• System/390
• System p5
• System z
• System z9
• VSE/ESA
• VTAM
• WebSphere

The following terms are trademarks or registered trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in the United States, other
countries, or both.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The
Open Group.

Intel and EM64T are trademarks of Intel Corporation.

AMD64 is a trademark of Advanced Micro Devices, Inc.

Linux is a trademark of Linus Torvalds.

RedHat and RPM are trademarks of Red Hat, Inc.

SuSE Linux is a trademark of Novell.

Ubuntu is a trademark of Canonical Limited.

Microsoft, Windows, Windows 10, Windows Server 2012, Windows Server 2016, Windows Server 2019
and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks of others.

Appendix D. Notices 669

670 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Bibliography

The following IBM publications provide information about the topics discussed in this library. The
publications are divided into the following broad topic areas:

• CS/AIX, Version 7.1
• Redbooks
• AIX operating system
• Systems Network Architecture (SNA)
• Host configuration
• z/OS Communications Server
• Transmission Control Protocol/Internet Protocol (TCP/IP)
• X.25
• Advanced Program-to-Program Communication (APPC)
• Programming
• Other IBM networking topics

For books in the CS/AIX library, brief descriptions are provided. For other books, only the titles and order
numbers are shown here.

CS/AIX version 7.1 publications
The CS/AIX library comprises the following books. In addition, softcopy versions of these documents are
provided on the CD-ROM. See IBM Communications Server for Data Center Deployment on AIX Quick
Beginningsfor information about accessing the softcopy files on the CD-ROM. To install these softcopy
books on your system, you require 9-15 MB of hard disk space (depending on which national language
versions you install).

• IBM Communications Server for Data Center Deployment on AIX Migration Guide(SC31-8585)

This book explains how to migrate from Communications Server for AIX Version 4 Release 2 or earlier to
CS/AIX Version 6.

• IBM Communications Server for Data Center Deployment on AIX Quick Beginnings (GC31-8583)

This book is a general introduction to CS/AIX, including information about supported network
characteristics, installation, configuration, and operation.

• IBM Communications Server for Data Center Deployment on AIX Administration Guide (SC31-8586)

This book provides an SNA and CS/AIX overview and information about CS/AIX configuration and
operation.

• IBM Communications Server for Data Center Deployment on AIX Administration Command Reference
(SC31-8587)

This book provides information about SNA and CS/AIX commands.
• IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

(SC23-8591)

This book provides information for experienced `C' or Java™programmers about writing SNA transaction
programs using the CS/AIX CPI Communications API.

• IBM Communications Server for Data Center Deployment on AIX or Linux APPC Programmer's Guide
(SC23-8592)

This book contains the information you need to write application programs using Advanced Program-to-
Program Communication (APPC).

© Copyright IBM Corp. 1998, 2021 671

• IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide
(SC23-8590)

This book contains the information you need to write applications using the Conventional LU Application
Programming Interface (LUA).

• IBM Communications Server for Data Center Deployment on AIX or Linux CSV Programmer's Guide
(SC23-8589)

This book contains the information you need to write application programs using the Common Service
Verbs (CSV) application program interface (API).

• IBM Communications Server for Data Center Deployment on AIX or Linux MS Programmer's Guide
(SC23-8596)

This book contains the information you need to write applications using the Management Services (MS)
API.

• IBM Communications Server for Data Center Deployment on AIX NOF Programmer's Guide (SC31-8595)

This book contains the information you need to write applications using the Node Operator Facility
(NOF) API.

• IBM Communications Server for Data Center Deployment on AIX Diagnostics Guide (SC31-8588)

This book provides information about SNA network problem resolution.
• IBM Communications Server for Data Center Deployment on AIX or Linux APPC Application Suite User's

Guide(SC23-8595)

This book provides information about APPC applications used with CS/AIX.
• IBM Communications Server for Data Center Deployment on AIX Glossary (GC31-8589)

This book provides a comprehensive list of terms and definitions used throughout the CS/AIX library.

IBM Redbooks
IBM maintains an International Technical Support Center that produces publications known as Redbooks.
Similar to product documentation, Redbooks cover theoretical and practical aspects of SNA technology.
However, they do not include the information that is supplied with purchased networking products.

The following books contain information that may be useful for CS/AIX:

• IBM Communications Server for AIX Version 6(SG24-5947)
• IBM CS/AIX Understanding and Migrating to Version 5: Part 2 - Performance (SG24-2136)
• Load Balancing for Communications Servers(SG24-5305)

On the World Wide Web, users can download Redbook publications by using http://
www.redbooks.ibm.com.

AIX operating system publications
The following books contain information about the AIX operating system:

• AIX Version 5.3 System Management Guide: Operating System and Devices (SC23-4910)
• AIX Version 5.3 System Management Concepts: Operating System and Devices (SC23-4908)
• AIX Version 5.3 System Management Guide: Communications and Networks (SC23-4909)
• AIX Version 5.3 Performance Management Guide (SC23-4905)
• AIX Version 5.3 Performance Tools Guide and Reference (SC23-4906)
• Performance Toolbox Version 2 and 3 Guide and Reference (SC23-2625)
• AIX Version 5.3 Communications Programming Concepts (SC23-4894)
• AIX Version 5.3 Installation Guide and Reference (SC23-4887)

672 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

• AIXlink/X.25 Version 2.1 for AIX: Guide and Reference (SC23-2520)

Systems Network Architecture (SNA) publications
The following books contain information about SNA networks:

• Systems Network Architecture: Format and Protocol Reference Manual - Architecture Logic for LU Type 6.2
(SC30-3269)

• Systems Network Architecture: Formats (GA27-3136)
• Systems Network Architecture: Guide to SNA Publications (GC30-3438)
• Systems Network Architecture: Network Product Formats (LY43-0081)
• Systems Network Architecture: Technical Overview (GC30-3073)
• Systems Network Architecture: APPN Architecture Reference (SC30-3422)
• Systems Network Architecture: Sessions between Logical Units (GC20-1868)
• Systems Network Architecture: LU 6.2 Reference - Peer Protocols (SC31-6808)
• Systems Network Architecture: Transaction Programmer's Reference Manual for LU Type 6.2

(GC30-3084)
• Systems Network Architecture: 3270 Datastream Programmer's Reference (GA23-0059)
• Networking Blueprint Executive Overview (GC31-7057)
• Systems Network Architecture: Management Services Reference (SC30-3346)

Host configuration publications
The following books contain information about host configuration:

• ES-9000, ES-3090 IOCP User's Guide Volume A04 (GC38-0097)
• 3174 Establishment Controller Installation Guide (GG24-3061)
• 3270 Information Display System 3174 Establishment Controller: Planning Guide (GA27-3918)
• OS/390 Hardware Configuration Definition (HCD) User's Guide (SC28-1848)
• ESCON Director Planning(GA23-0364)

z/OS Communications Server publications
The following books contain information about z/OS Communications Server:

• z/OS V1R7 Communications Server: SNA Network Implementation Guide (SC31-8777)
• z/OS V1R7 Communications Server: SNA Diagnostics (Vol 1: GC31-6850, Vol 2: GC31-6851)
• z/OS V1R6 Communications Server: Resource Definition Reference (SC31-8778)

TCP/IP publications
The following books contain information about the Transmission Control Protocol/Internet Protocol
(TCP/IP) network protocol:

• z/OS V1R7 Communications Server: IP Configuration Guide (SC31-8775)
• z/OS V1R7 Communications Server: IP Configuration Reference (SC31-8776)
• z/VM V5R1 TCP/IP Planning and Customization (SC24-6125)

X.25 publications
The following books contain information about the X.25 network protocol:

• AIXLink/X.25 for AIX: Guide and Reference (SC23-2520)

Bibliography 673

• RS/6000 AIXLink/X.25 Cookbook(SG24-4475)
• Communications Server for OS/2 Version 4 X.25 Programming (SC31-8150)

APPC publications
The following books contain information about Advanced Program-to-Program Communication (APPC):

• APPC Application Suite V1 User's Guide (SC31-6532)
• APPC Application Suite V1 Administration (SC31-6533)
• APPC Application Suite V1 Programming (SC31-6534)
• APPC Application Suite V1 Online Product Library (SK2T-2680)
• APPC Application Suite Licensed Program Specifications (GC31-6535)
• z/OS V1R2.0 Communications Server: APPC Application Suite User's Guide (SC31-8809)

Programming publications
The following books contain information about programming:

• Common Programming Interface Communications CPI-C Reference (SC26-4399)
• Communications Server for OS/2 Version 4 Application Programming Guide (SC31-8152)

Other IBM networking publications
The following books contain information about other topics related to CS/AIX:

• SDLC Concepts(GA27-3093)
• Local Area Network Concepts and Products: LAN Architecture (SG24-4753)
• Local Area Network Concepts and Products: LAN Adapters, Hubs and ATM (SG24-4754)
• Local Area Network Concepts and Products: Routers and Gateways (SG24-4755)
• Local Area Network Concepts and Products: LAN Operating Systems and Management (SG24-4756)
• IBM Network Control Program Resource Definition Guide (SC30-3349)

674 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

Index

A
access list, conversation security 177
ACTIVATE_SESSION 35
activating a session 35
ADD_BACKUP 38
ADD_DLC_TRACE 39
AIX applications

compiling and linking 24
APING 42
APPN node 2
asynchronous entry point

AIX or Linux 20
callback routine 23
callback routine, Windows 28
overview 21
Windows 25, 26

audit log file 372, 568

B
backup server

adding 38
deleting 208

C
callback routine

overview 23
overview, Windows 28
requirements 24
supplied to REGISTER_* verbs 24

central logging 266, 267, 562
CHANGE_SESSION_LIMIT 46
changing session limits 46
checking communications path to remote LU 42
child process 24
client/server operation 3
clients

querying 492
CLOSE_FILE 50
closing a configuration file 50
closing the sna.net file 50
CN 59, 269
CN ports 273
comments on publication

sending feedback 665
comp_proc (callback routine)

Windows 27
compiling AIX applications 24
compiling and linking

Windows 29
compiling Linux applications 24
CONFIG_INDICATION 17, 599
configuration file

closing 50
domain resources 2

configuration file (continued)
header information 81, 331
node 2
opening 252

configuration indication 17
configuration, node 2
CONNECT_NODE 51
controller server 4
corr (correlator)

Windows 28, 29
COS

defining 62
getting information 279
node row 281
TG row 284

CPI-C, side information 67, 289

D
data file

invokable TP 2
TP definition 2

DEACTIVATE_CONV_GROUP 52
DEACTIVATE_LU_0_TO_3 54
DEACTIVATE_SESSION 55
deactivating a session

LU type 0-3 54
LU type 6.2 55

DEFINE_ADJACENT_LEN_NODE 57
DEFINE_CN 59
DEFINE_COS 62
DEFINE_CPIC_SIDE_INFO 67
DEFINE_DEFAULT_PU 69
DEFINE_DEFAULTS 70
DEFINE_DIRECTORY_ENTRY 72
DEFINE_DLC 74
DEFINE_DLUR_DEFAULTS 79
DEFINE_DOMAIN_CONFIG_FILE 81
DEFINE_DOWNSTREAM_LU 82
DEFINE_DOWNSTREAM_LU_RANGE 85
DEFINE_DSPU_TEMPLATE 88
DEFINE_FOCAL_POINT 91
DEFINE_INTERNAL_PU 93
DEFINE_LOCAL_LU 96
DEFINE_LS 100
DEFINE_LS_ROUTING verb 127
DEFINE_LU_0_TO_3 130
DEFINE_LU_0_TO_3_RANGE 134
DEFINE_LU_LU_PASSWORD 138
DEFINE_LU_POOL 140
DEFINE_LU62_TIMEOUT 129
DEFINE_MODE 141
DEFINE_PARTNER_LU 156
DEFINE_PORT 159
DEFINE_RCF_ACCESS 174
DEFINE_RTP_TUNING 175
DEFINE_SECURITY_ACCESS_LIST 177

Index 675

DEFINE_TN_REDIRECT 194
DEFINE_TN3270_ACCESS 179
DEFINE_TN3270_ASSOCIATION 185
DEFINE_TN3270_DEFAULTS 187
DEFINE_TN3270_EXPRESS_LOGON 188
DEFINE_TN3270_SLP 190
DEFINE_TN3270_SSL_LDAP 192
DEFINE_TP 199
DEFINE_TP_LOAD_INFO 202
DEFINE_USERID_PASSWORD 205
DELETE_ADJACENT_LEN_NODE 207
DELETE_BACKUP 208
DELETE_CN 209
DELETE_COS 211
DELETE_CPIC_SIDE_INFO 212
DELETE_DIRECTORY_ENTRY 213
DELETE_DLC 214
DELETE_DOWNSTREAM_LU 215
DELETE_DOWNSTREAM_LU_RANGE 217
DELETE_DSPU_TEMPLATE 218
DELETE_FOCAL_POINT 220
DELETE_INTERNAL_PU 222
DELETE_LOCAL_LU 223
DELETE_LS 224
DELETE_LS_ROUTING 225
DELETE_LU_0_TO_3 228
DELETE_LU_0_TO_3_RANGE 229
DELETE_LU_LU_PASSWORD 231
DELETE_LU_POOL 232
DELETE_LU62_TIMEOUT 227
DELETE_MODE 233
DELETE_PARTNER_LU 234
DELETE_PORT 235
DELETE_RCF_ACCESS 236
DELETE_SECURITY_ACCESS_LIST 237
DELETE_TN_REDIRECT 242
DELETE_TN3270_ACCESS 238
DELETE_TN3270_ASSOCIATION 240
DELETE_TP 243
DELETE_TP_LOAD_INFO 244
DELETE_USERID_PASSWORD 245
directory entry

defining 72
deleting 213
getting information 297
LU 303

directory statistics 307
DIRECTORY_INDICATION 600
DISCONNECT_NODE 247
DLC

defining 74
querying 308
starting 583
stopping 590

DLC_INDICATION 602
DLUR

default DLUS 79
LU 318
PU 322
support 33

DLUR_LU_INDICATION 603
DLUR_PU_INDICATION 604
DLUS 327
DLUS_INDICATION 606

domain configuration 4
domain configuration file

on multiple servers 4
domain resources, configuration file 2
downstream LU 82, 85, 332
downstream PU 339
DOWNSTREAM_LU_INDICATION 608
DOWNSTREAM_PU_INDICATION 611
DSPU template 343

E
end node 32
entry points

AIX or Linux 19
Windows 25

error log file 372, 568
Express Logon 188

F
feedback

email template 665
sending reader comments 665

FNA 111
focal point 91, 346
FOCAL_POINT_INDICATION 613

H
hexadecimal values for NOF parameters 35
HNA 111

I
indications

overview 16, 599
registering for 553
unregistering 597

INIT_NODE 248
INITIALIZE_SESSION_LIMIT 249
invokable TP

data file 2
defining 199
getting information 262

invokable TP data file 200
ISR session 352
ISR_INDICATION 614

K
kernel components, memory usage 359, 567

L
LEN node 32
licensing limits 466
link station routing

defining 127
deleting 225
querying 395

linking AIX applications 24

676 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

linking Linux applications 24
Linux applications

compiling and linking 24
list options for QUERY_* verbs 33
local LU

conversations 275
defining 96
querying 360
sessions 508

local topology 367
LOCAL_LU_INDICATION 617
LOCAL_TOPOLOGY_INDICATION 620
log file 372, 568
log message type 350, 373, 565, 571
log messages

central logging 266, 267
log messages, central logging 562
LS

defining 100
querying 375
starting 586
statistics 517
stopping 593

LS_INDICATION 621
LU pool

defining 140
querying 412

LU type 0-3 130, 134
LU type 6.2 timeout

defining 129
deleting 227
querying 416

LU_0_TO_3_INDICATION 625
LU-LU password 138, 409

M
MAC address, Token Ring / Ethernet 125
Management Services

active applications 419
active transactions 256
default PU 69, 294
focal point 91, 346
statistics 421

MDS application 419
MDS statistics 421
MDS support 33
memory usage, kernel components 359, 567
mode

defining 141
mapping to COS 433

MODE_INDICATION 628
multiple processes 24
multiple servers on a LAN 4

N
network node

restrictions 32
topology 438, 446

network topology
querying 367, 438, 446
statistics 443

NN_TOPOLOGY_NODE_INDICATION 629
NN_TOPOLOGY_TG_INDICATION 630
node

connecting to 51
defining 145
implementation of 2
limits 466
options 466
querying 452, 464
resource usage 466
starting 248
stopping 596

node configuration file 2
node type, APPN 32
NOF API overview 1
nof entry point

AIX or Linux 20
description 20
returned values 21
supplied parameters 20
Windows 25

NOF verbs
common return codes 661
order in which issued 31
overview 35
restrictions based on node configuration 32

nof_async entry point
AIX or Linux 20
callback routine 23
callback routine, Windows 28
description 21
returned values 22
returned values, Windows 28
supplied parameters 22
supplied parameters, Windows 27
Windows 25, 26

NOF_STATUS_INDICATION 17, 632
nofvcb structure

Windows 26, 27

O
OPEN_FILE 252
opening a configuration file 252
opening thesna.net file 252

P
partner LU

defining 156
getting information 469, 475
method of locating 127, 225, 395

password
conversation security 205, 551
LU-LU 138, 409
session-level security 409

PATH_SWITCH 254
PLU_INDICATION 633
pool, LU 140, 412
port

defining 159
querying 479
starting 588

Index 677

port (continued)
stopping 594

PORT_INDICATION 634
primary return codes 653
processing mode 31, 573
PU 487
PU_INDICATION 635

Q
QUERY_* verbs

detailed information 34
list options 33
returning information about multiple resources 33
summary information 34

QUERY_ACTIVE_TRANSACTION 256
QUERY_ADJACENT_NN 259
QUERY_AVAILABLE_TP 262
QUERY_BUFFER_AVAILABILITY 264
QUERY_CENTRAL_LOGGER 266
QUERY_CENTRAL_LOGGING 267
QUERY_CN 269
QUERY_CN_PORT 273
QUERY_CONVERSATION 275
QUERY_COS 279
QUERY_COS_NODE_ROW 281
QUERY_COS_TG_ROW 284
QUERY_CPIC_SIDE_INFO 289
QUERY_CS_TRACE 293
QUERY_DEFAULT_PU 294
QUERY_DEFAULTS 295
QUERY_DIRECTORY_ENTRY 297
QUERY_DIRECTORY_LU 303
QUERY_DIRECTORY_STATS 307
QUERY_DLC 308
QUERY_DLC_TRACE 313
QUERY_DLUR_DEFAULTS 317
QUERY_DLUR_LU 318
QUERY_DLUR_PU 322
QUERY_DLUS 327
QUERY_DOMAIN_CONFIG_FILE 331
QUERY_DOWNSTREAM_LU 332
QUERY_DOWNSTREAM_PU 339
QUERY_DSPU_TEMPLATE 343
QUERY_FOCAL_POINT 346
QUERY_GLOBAL_LOG_TYPE 350
QUERY_ISR_SESSION 352
QUERY_KERNEL_MEMORY_LIMIT 359
QUERY_LOCAL_LU 360
QUERY_LOCAL_TOPOLOGY 367
QUERY_LOG_FILE 372
QUERY_LOG_TYPE 373
QUERY_LS 375
QUERY_LS_ROUTING 395
QUERY_LU_0_TO_3 397
QUERY_LU_LU_PASSWORD 409
QUERY_LU_POOL 412
QUERY_LU62_TIMEOUT 416
QUERY_MDS_APPLICATION 419
QUERY_MDS_STATISTICS 421
QUERY_MODE 423
QUERY_MODE_DEFINITION 429
QUERY_MODE_TO_COS_MAPPING 433
QUERY_NN_TOPOLOGY_NODE 438

QUERY_NN_TOPOLOGY_STATS 443
QUERY_NN_TOPOLOGY_TG 446
QUERY_NODE 452
QUERY_NODE_ALL 464
QUERY_NODE_LIMITS 466
QUERY_PARTNER_LU 469
QUERY_PARTNER_LU_DEFINITION 475
QUERY_PORT 479
QUERY_PU 487
QUERY_RAPI_CLIENTS 492
QUERY_RCF_ACCESS 495
QUERY_RTP_CONNECTION 496
QUERY_RTP_TUNING 503
QUERY_SECURITY_ACCESS_LIST 505
QUERY_SESSION 508
QUERY_SNA_NET 515
QUERY_STATISTICS 517
QUERY_TN_REDIRECT_DEF 535
QUERY_TN_SERVER_TRACE 537
QUERY_TN3270_ACCESS_DEF 521
QUERY_TN3270_ASSOCIATION 526
QUERY_TN3270_DEFAULTS 528
QUERY_TN3270_EXPRESS_LOGON 529
QUERY_TN3270_SLP 530
QUERY_TN3270_SLP_TRACE 532
QUERY_TN3270_SSL_LDAP 533
QUERY_TP 538
QUERY_TP_DEFINITION 541
QUERY_TP_LOAD_INFO 545
QUERY_TRACE_FILE 548
QUERY_TRACE_TYPE 549
QUERY_USERID_PASSWORD 551

R
RAPI_CLIENT_INDICATION 637
RCF

access 495
defining 174
preventing access 236

reader comments
methods of sending feedback 665

REGISTER_INDICATION_SINK 553
registering for indications 553
REGISTRATION_FAILURE 639
Remote API Client

querying 492
REMOVE_DLC_TRACE 555
RESET_SESSION_LIMIT 558
return codes

primary 653
secondary 654

return codes, common 661
RTP connections

parameters 175, 503
querying 496
switching path 254

RTP_INDICATION 640

S
secondary return codes 654
server 4

678 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

SERVER_INDICATION 644
session limits

initializing 249
resetting 558

SESSION_INDICATION 645
SET_BUFFER_AVAILABILITY 562
SET_CENTRAL_LOGGING 562
SET_CS_TRACE 563
SET_GLOBAL_LOG_TYPE 565
SET_KERNEL_MEMORY_LIMIT 567
SET_LOG_FILE 568
SET_LOG_TYPE 571
SET_PROCESSING_MODE 31, 573
SET_TN_SERVER_TRACE 576
SET_TN3270_SLP_TRACE 575
SET_TRACE_FILE 577
SET_TRACE_TYPE 579
side information, CPI-C 67, 289
SNA gateway support 33
SNA network file indication 17
SNA_NET_INDICATION 17, 648
sna.net file

adding a backup server 38
closing 50
deleting a backup server 208
opening 252
querying backup servers 515

SPCF
access 495
defining 174

START_DLC 583
START_INTERNAL_PU 584
START_LS 586
START_PORT 588
statistics

LS 517
network topology 443

status indication 17
STOP_DLC 590
STOP_INTERNAL_PU 591
STOP_LS 593
STOP_PORT 594
STREAMS buffers 264, 562
STREAMS components 3
synchronous entry point

AIX or Linux 20
Windows 25

T
target for NOF verbs 30
target handle

Windows 26, 27
technical problems

methods of resolving 665
Telnet client

checking authorization 192
express logon 188
using TN Redirector 194, 535

TERM_NODE 596
TN_REDIRECTION_INDICATION 649
TN3270 Express Logon 188
TN3270 user

using TN3270 Server 179, 521

TN3270 user (continued)
using TN3270 SLP 190

TP 199, 538, 541, 545
trace file 548, 577
trace type

CS trace 293, 563
node DLC trace 39
querying 549
setting 579
TN server trace 537, 576
TN3270 SLP trace 532, 575

U
UCF

access 495
defining 174

UNREGISTER_INDICATION_SINK 597
usage log file 372, 568
user ID, conversation security 205, 551

V
VCB structure, pointer to

Windows 26, 27
VCB structure, pointer to, Windows 29

Index 679

680 IBM Communications Server for Data Center Deployment on AIX: IBM Communications Server for Data
Center Deployment on AIX NOF Programmer's Guide

IBM®

SC31-8595-06

	Contents
	Tables
	Figures
	About this book
	Who should use this book
	How to use this book
	Organization of this book
	Typographic conventions
	Graphic conventions

	Where to find more information

	Chapter 1. Introduction to the NOF API
	Purpose of the NOF API
	Node configuration file
	Domain configuration file
	Invokable TP data file

	CS/AIX components
	Client/Server operation
	Controller server and backup servers
	AIX or Linux clients
	Windows Clients

	NOF verbs to manage specific CS/AIX functions
	Managing the target (node or file) for NOF verbs
	Getting started
	3270 communications
	LUA communications
	APPC communications
	CPI-C communications
	Managing HPR RTP connections
	Managing SNA gateway
	Managing DLUR
	Managing TN server
	Managing TN Redirector
	Managing SNA management services functions
	Managing access to the CS/AIX system from the host NetView program
	Managing diagnostics settings
	Managing directory entries
	Querying the network topology
	Checking the communications path to a remote LU
	Managing servers and clients on the CS/AIX LAN
	Managing configuration file header information
	Managing AIX resource usage

	NOF Indications
	Configuration indications
	SNA network file indications
	NOF status indications

	Chapter 2. Writing NOF applications
	Client/Server considerations
	AIX or Linux considerations
	NOF API entry points for AIX or Linux
	Synchronous entry point: nof
	Function call
	Supplied parameters
	Returned values
	Using the synchronous entry point

	Asynchronous entry point: nof_async
	Function call
	Supplied parameters
	Returned values
	Using the asynchronous entry point

	The callback routine specified on the nof_async entry point
	Callback function
	Supplied parameters
	Returned values
	Using the callback routine for indications

	Scope of target handle

	Compiling and linking the NOF application
	AIX applications
	Linux applications

	Windows considerations
	NOF API entry points for Windows
	Synchronous entry point: nof
	Function call
	Supplied parameters
	Returned values
	Using the synchronous entry point

	Asynchronous entry point: nof_async
	Function call
	Supplied parameters
	Returned values
	Using the asynchronous entry point

	The callback routine specified on the nof_async entry point
	Callback function
	Supplied parameters
	Returned values

	Scope of target handle

	Compiling and linking the NOF application
	Compiler options for structure packing
	Header files
	Load-time linking
	Run-time linking

	Writing portable applications
	Target for NOF verbs
	Processing modes

	Ordering and dependencies between NOF verbs
	NOF restrictions based on node configuration
	APPN end node and LEN node restrictions
	Multiple Domain Support (MDS) restrictions
	SNA gateway and DLUR restrictions

	List options for QUERY_* Verbs
	Obtaining information about a single resource or multiple resources
	Obtaining summary or detailed information

	Chapter 3. NOF API Verbs
	ACTIVATE_SESSION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: activation failure
	Returned parameters: other conditions

	ADD_BACKUP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	ADD_DLC_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	APING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: allocation failure
	Returned parameters: conversation failure
	Returned parameters: other conditions

	CHANGE_SESSION_LIMIT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: session allocation error
	Returned parameters: CNOS processing errors
	Returned parameters: other conditions

	CLOSE_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	CONNECT_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEACTIVATE_CONV_GROUP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEACTIVATE_LU_0_TO_3
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEACTIVATE_SESSION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_ADJACENT_LEN_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_CN
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_COS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_CPIC_SIDE_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_DEFAULT_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	DEFINE_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_DIRECTORY_ENTRY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_DLC
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_DLUR_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_DOMAIN_CONFIG_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	DEFINE_DOWNSTREAM_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_DOWNSTREAM_LU_RANGE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_DSPU_TEMPLATE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_FOCAL_POINT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: replaced
	Returned parameters: unsuccessful
	Returned parameters: other conditions

	DEFINE_INTERNAL_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_LOCAL_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions
	Default LUs

	DEFINE_LS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions
	Bit ordering in MAC addresses
	Modem control characters

	DEFINE_LS_ROUTING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_LU62_TIMEOUT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_LU_0_TO_3
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_LU_0_TO_3_RANGE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_LU_LU_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_LU_POOL
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_MODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_PARTNER_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions
	Incoming calls

	DEFINE_RCF_ACCESS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_RTP_TUNING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_SECURITY_ACCESS_LIST
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_TN3270_ACCESS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions
	Using the Telnet Daemon's TCP/IP Port

	DEFINE_TN3270_ASSOCIATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_TN3270_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_TN3270_EXPRESS_LOGON
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	DEFINE_TN3270_SLP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_TN3270_SSL_LDAP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DEFINE_TN_REDIRECT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_TP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DEFINE_TP_LOAD_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DEFINE_USERID_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_ADJACENT_LEN_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_BACKUP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_CN
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DELETE_COS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_CPIC_SIDE_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_DIRECTORY_ENTRY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_DLC
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_DOWNSTREAM_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DELETE_DOWNSTREAM_LU_RANGE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DELETE_DSPU_TEMPLATE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_FOCAL_POINT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DELETE_INTERNAL_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	DELETE_LOCAL_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_LS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_LS_ROUTING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_LU62_TIMEOUT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_LU_0_TO_3
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_LU_0_TO_3_RANGE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_LU_LU_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_LU_POOL
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_MODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_PARTNER_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_RCF_ACCESS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	DELETE_SECURITY_ACCESS_LIST
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_TN3270_ACCESS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_TN3270_ASSOCIATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	DELETE_TN_REDIRECT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_TP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_TP_LOAD_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DELETE_USERID_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	DISCONNECT_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	INIT_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	INITIALIZE_SESSION_LIMIT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: session allocation error
	Returned parameters: CNOS processing errors
	Returned parameters: other conditions

	OPEN_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	PATH_SWITCH
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: path switch disabled
	Returned parameters: path switch failure
	Returned parameters: node check
	Returned parameters: other conditions

	QUERY_ACTIVE_TRANSACTION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_ADJACENT_NN
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_AVAILABLE_TP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_BUFFER_AVAILABILITY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_CENTRAL_LOGGER
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: state check
	Returned parameters: other conditions

	QUERY_CENTRAL_LOGGING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	State check
	Returned parameters: other conditions

	QUERY_CN
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_CN_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_CONVERSATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_COS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_COS_NODE_ROW
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_COS_TG_ROW
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_CPIC_SIDE_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	QUERY_CS_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_DEFAULT_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: node not started
	Returned parameters: other conditions

	QUERY_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: node not started
	Returned parameters: other conditions

	QUERY_DIRECTORY_ENTRY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_DIRECTORY_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_DIRECTORY_STATS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_DLC
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_DLC_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_DLUR_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DLUR_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DLUR_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DLUS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DOMAIN_CONFIG_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_DOWNSTREAM_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DOWNSTREAM_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_DSPU_TEMPLATE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_FOCAL_POINT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_GLOBAL_LOG_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_ISR_SESSION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_KERNEL_MEMORY_LIMIT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_LOCAL_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LOCAL_TOPOLOGY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LOG_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LOG_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_LS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LS_ROUTING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LU_0_TO_3
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LU_LU_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LU_POOL
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_LU62_TIMEOUT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_MDS_APPLICATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_MDS_STATISTICS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_MODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_MODE_DEFINITION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_MODE_TO_COS_MAPPING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_NMVT_APPLICATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_NN_TOPOLOGY_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_NN_TOPOLOGY_STATS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_NN_TOPOLOGY_TG
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_NODE_ALL
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_NODE_LIMITS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_PARTNER_LU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_PARTNER_LU_DEFINITION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	QUERY_RAPI_CLIENTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_RCF_ACCESS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_RTP_CONNECTION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_RTP_TUNING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_SECURITY_ACCESS_LIST
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_SESSION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_SNA_NET
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	QUERY_STATISTICS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	QUERY_TN3270_ACCESS_DEF
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TN3270_ASSOCIATION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TN3270_DEFAULTS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TN3270_EXPRESS_LOGON
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TN3270_SLP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TN3270_SLP_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TN3270_SSL_LDAP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TN_REDIRECT_DEF
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TN_SERVER_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_TP
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TP_DEFINITION
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TP_LOAD_INFO
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TRACE_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	QUERY_TRACE_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	QUERY_USERID_PASSWORD
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	REGISTER_INDICATION_SINK
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	REMOVE_DLC_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	RESET_SESSION_LIMIT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: session allocation error
	Returned parameters: CNOS processing errors
	Returned parameters: other conditions

	SET_BUFFER_AVAILABILITY
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	SET_CENTRAL_LOGGING
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_CS_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_GLOBAL_LOG_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_KERNEL_MEMORY_LIMIT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	SET_LOG_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_LOG_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_PROCESSING_MODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	SET_TN3270_SLP_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	SET_TN_SERVER_TRACE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	SET_TRACE_FILE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions

	SET_TRACE_TYPE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: other conditions
	Trace types

	START_DLC
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: other conditions

	START_INTERNAL_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: unsuccessful
	Returned parameters: function not supported
	Returned parameters: other conditions

	START_LS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: unsuccessful
	Returned parameters: cancelled
	Returned parameters: other conditions

	START_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: cancelled
	Returned parameters: other conditions

	STOP_DLC
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: cancelled
	Returned parameters: other conditions

	STOP_INTERNAL_PU
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: function not supported
	Returned parameters: other conditions

	STOP_LS
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: cancelled
	Returned parameters: other conditions

	STOP_PORT
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: state check
	Returned parameters: cancelled
	Returned parameters: other conditions

	TERM_NODE
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: other conditions

	UNREGISTER_INDICATION_SINK
	VCB structure
	Supplied parameters
	Returned parameters: successful execution
	Returned parameters: parameter check
	Returned parameters: function not supported
	Returned parameters: other conditions

	Chapter 4. NOF Indications
	CONFIG_INDICATION
	VCB structure

	DIRECTORY_INDICATION
	VCB structure
	Parameters

	DLC_INDICATION
	VCB structure
	Parameters

	DLUR_LU_INDICATION
	VCB structure
	Parameters

	DLUR_PU_INDICATION
	VCB structure
	Parameters

	DLUS_INDICATION
	VCB structure
	Parameters

	DOWNSTREAM_LU_INDICATION
	VCB structure
	Parameters

	DOWNSTREAM_PU_INDICATION
	VCB structure
	Parameters

	FOCAL_POINT_INDICATION
	VCB structure
	Parameters

	ISR_INDICATION
	VCB structure
	Parameters

	LOCAL_LU_INDICATION
	VCB structure
	Parameters

	LOCAL_TOPOLOGY_INDICATION
	VCB structure
	Parameters

	LS_INDICATION
	VCB structure
	Parameters

	LU_0_TO_3_INDICATION
	VCB structure
	Parameters

	MODE_INDICATION
	VCB structure
	Parameters

	NN_TOPOLOGY_NODE_INDICATION
	VCB structure
	Parameters

	NN_TOPOLOGY_TG_INDICATION
	VCB structure
	Parameters

	NOF_STATUS_INDICATION
	VCB structure
	Parameters

	PLU_INDICATION
	VCB structure
	Parameters

	PORT_INDICATION
	VCB structure
	Parameters

	PU_INDICATION
	VCB structure
	Parameters

	RAPI_CLIENT_INDICATION
	VCB structure
	Parameters

	REGISTRATION_FAILURE
	VCB structure
	Parameters

	RTP_INDICATION
	VCB structure
	Parameters

	SERVER_INDICATION
	VCB structure
	Parameters

	SESSION_INDICATION
	VCB structure
	Parameters

	SNA_NET_INDICATION
	VCB structure

	TN_REDIRECTION_INDICATION
	VCB structure
	Parameters

	Appendix A. Return code values
	Primary return codes
	Secondary return codes

	Appendix B. Common return codes
	Communications subsystem not active
	Indication
	Invalid function
	Invalid verb segment
	Parameter check
	State check
	System error

	Appendix C. How to send your comments to IBM
	Email feedback template
	If you have a technical problem

	Appendix D. Notices
	Trademarks

	Bibliography
	CS/AIX version 7.1 publications
	IBM Redbooks
	AIX operating system publications
	Systems Network Architecture (SNA) publications
	Host configuration publications
	z/OS Communications Server publications
	TCP/IP publications
	X.25 publications
	APPC publications
	Programming publications
	Other IBM networking publications

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

