
ZJBATCH - WebSphere Liberty Java Batch

IBM WebSphere Liberty Java Batch

Hands-on Labs

Lab Version Date: February 15, 2018

© 2017, IBM Corporation 1

ZJBATCH - WebSphere Liberty Java Batch

Table of Contents
Unit 2 - Server Creation and Setup...3

Create servers and start as z/OS Started Tasks...3
Generate DDL and create Batch Persistence DB..12
Validate Java Batch using SleepyBatchlet Sample...19

Unit 3 - JSR-352 Concepts..20
JSL orchestration: splits and flows.. 20
JSL orchestration: conditional flow control..21
Chunk Processing: the modified BonusPayout sample...24

Unit 4 - Job Submission and Control...30
batchManager... 30
batchManagerZos... 35
Batch Events... 39
AdminCenter... 44

Unit 5 - Multi-JVM (or "Multi-Server")...47
Configure JSRDISP and JSREXEC1 for Multi-JVM..47
Use message selector to direct job execution...49
Use compound message selector... 51

Unit 6 - Security...53
Return the environment to the essentials..53
batchManagerZos: SAF authentication and authorization...54
AdminCenter + batchManager: SAF authentication and authorization..56
AdminCenter + batchManager: SAF Keyrings and SSL..56

© 2017, IBM Corporation 2

ZJBATCH - WebSphere Liberty Java Batch

Unit 2 - Server Creation and Setup
Create servers and start as z/OS Started Tasks

 Double click on the "WG31" icon you see on the desktop. This opens up a 3270 session.

 Enter TSO USER1 and press the host enter key (which is the right-Ctrl key):

 Provide the password for the USER1 ID (the instructors will provide) and press host enter:

 When you see the following, press host enter (right-Ctrl) to clear:

You will then see the "ISPF Primary Option Menu" screen:

 At the "Option" input field at the top, key in =3.4 and press the host enter key.

 Then, at the "Data Set List Utility" panel, key in USER1.JBATCH.* and press host enter:

© 2017, IBM Corporation 3

ZJBATCH - WebSphere Liberty Java Batch

This will display a list of data sets that match that criteria. There should be only one:

 Place a b (for "browse") in the prefix area to the left of the data set, then press host enter:

This will display the "members" in the data set:

 Place a b (again, for "browse") in the prefix area to the left of the LAB2 member:

Press the host enter key.

© 2017, IBM Corporation 4

ZJBATCH - WebSphere Liberty Java Batch

 You will now see the contents of that member. You are in "browse" mode, so you can't modify
anything. Use the scroll function -- F8 for 'down', F7 for 'up' -- to look at what this job is doing.

Notes: This job is creating a few RACF profiles -- a group ID, two user IDs, a set of STARTED
profiles, and a SURROGAT profile. The SURROGAT is what allows your USER1 ID to "switch
user" to the server JSRSERV ID without requiring a password.

 In the "Command" field at the top, key in sub and press the host enter key:

You should see three stars at the bottom of your screen:

Press host enter to clear that screen hold.

 You should then see a message indicating the job has been submitted:

Press host enter to clear the screen hold indicated by the three stars.

© 2017, IBM Corporation 5

ZJBATCH - WebSphere Liberty Java Batch

 The job runs fairly quickly, so you should now see the return code:

The string MAXCC=0000 means the job ran without errors.

If you don't see this message, it means the job is still running. Press host enter again and
repeat until you do see this message. Then press host enter to clear the screen hold
indicated by the three stars.

 Locate the "PuTTY" icon on the desktop and double-click on it. It will bring up this panel:

 Double-click on "WG31" under "Save Sessions":

That will open up a PuTTY session to your z/OS system.

 Log in with USER1:

Press the PC enter key (not the right-Ctrl).

 Provide the password for USER1 (it's the same password you used for TSO).

 Enter the following command to create the directory under which the servers will operate:

mkdir /shared/jsrhome

© 2017, IBM Corporation 6

ZJBATCH - WebSphere Liberty Java Batch

 Now change the ownership so the JSRSRV ID has ownership:

chown JSRSERV:JSRGRP /shared/jsrhome

 Finally, change the permissions so "other" has no permissions:

chmod 750 /shared/jsrhome

 Enter the following command to "switch user" to the JSRSERV ID we'll use for the Liberty z/OS
servers:

su -s JSRSERV

 Verify that you are indeed JSRSERV by entering the command whoami as shown here:

If it responds back with JSRSERV, then you are currently operating as that ID1.

Hint: At this point you may want to maximize the PuTTY terminal screen so you can see the full
command after you paste it.

 Change directories to the Liberty z/OS installation /bin location:

cd /shared/zWebSphere/Liberty/V17001/bin

 Set the JAVA_HOME variable so it points to a valid 64-bit Java:

export JAVA_HOME=/shared/java/J8.0_64/

 Now set the WLP_USER_DIR location. This tells the environment where the servers will be
created:

export WLP_USER_DIR=/shared/jsrhome

 We're going to create all four servers right here even though we won't really use three of them
until later in the workshop2. Enter the following four commands:

 ./server create JSRDISP
You should see: "Server JSRDISP created."

 ./server create JSREXEC1
You should see: "Server JSREXEC1 created."

 ./server create JSREXEC2
You should see: "Server JSREXEC2 created."

 ./server create JSRMON
You should see: "Server JSRMON created."

 Enter the following command to list the servers:

ls -al /shared/jsrhome/servers

You should see something like this:
$ ls -al /shared/jsrhome/servers
total 128
drwxr-x--T 8 JSRSERV JSRGRP 8192 Mar 27 14:12 .

1 The ability to "switch user" without a password was granted with the SURROGAT profile generated in the LAB2 job.
2 We will, however, start and verify all four in this lab.

© 2017, IBM Corporation 7

ZJBATCH - WebSphere Liberty Java Batch

drwxr-x--- 3 JSRSERV JSRGRP 8192 Mar 27 14:11 ..
drwxr-x--T 3 JSRSERV JSRGRP 8192 Mar 27 14:11 .classCache
drwxr-x--- 2 JSRSERV JSRGRP 8192 Mar 27 14:12 .logs
drwxr-x--- 5 JSRSERV JSRGRP 8192 Mar 27 14:11 JSRDISP
drwxr-x--- 5 JSRSERV JSRGRP 8192 Mar 27 14:12 JSREXEC1
drwxr-x--- 5 JSRSERV JSRGRP 8192 Mar 27 14:12 JSREXEC2
drwxr-x--- 5 JSRSERV JSRGRP 8192 Mar 27 14:12 JSRMON
$

 The default server.xml files contain things we don't need. We created a shell script that
copies in some cleaned-up files. Issue the following command:

/u/user1/jbatch/lab2/copy.sh

You should see this:

$./copy.sh
Copying files for JSRDISP
Copying files for JSREXEC1
Copying files for JSREXEC2
Copying files for JSRMON
All done!

 Go back to your 3270 session. In the command field at the top, enter =3.4 and press the
host enter key (right-Ctrl):

This will take you back to the "Data Set List Utility" panel.

 On the "Dsname Level" field, enter SYS1.PROCLIB and press the host enter key:

© 2017, IBM Corporation 8

ZJBATCH - WebSphere Liberty Java Batch

 In the resulting list of data sets that match that pattern, but a b (for browse) next to the
SYS1.PROCLIB data set:

Press the host enter key.

 In the command line, enter find JSR and press host enter:

That will find the first instance of a member that starts with "JSR". You should see five
members that start with "JSR":

Note: We copied and customized these to save a little time in the workshop. We copied them to
SYS1.PROCLIB from the /templates/zos/procs location under the Liberty install path.
The customization was minor ... we'll review the customization in the steps that follow.

 Place a b (for browse) next to the JSRDISP member:

Then press the host enter key.

© 2017, IBM Corporation 9

ZJBATCH - WebSphere Liberty Java Batch

 The JCL start procedure will display. It will look like the following. The numbered blocks
correspond to notes that follow:

Notes:

1. We changed the proc name from the default BBGZSRV to the name of the server, JSRDISP in
this case.

2. We changed the default PARMS='defaultServer' to PARMS='JSRDISP' to explicitly name
the server to be started. This avoids passing PARMS= in on the START command.

3. We set INSTDIR= to the location where Liberty z/OS is installed on these systems.

4. We set the USERDIR= value to the "user directory" of /shared/jsrhome.

We customized the others -- JSREXEC1, JSREXEC2, JSRMON -- in the same way.

 In the command line at the top, enter =sdsf.da and press the host enter key:

You'll see something like this:

© 2017, IBM Corporation 10

ZJBATCH - WebSphere Liberty Java Batch

 To show only our jobs that start with "JSR," we'll set a prefix. Enter PRE JSR* in the
command line and press host enter:

That should result in:

(That "JSRSERV" job is really your PuTTY session operating under the ID of JSRSERV.)

 On the command line enter /S JSRDISP to start that server:

Press the host enter key. After a moment or two, press the host enter key again to refresh the
screen. You should see:

That indicates your JSRDISP server is up and running as a z/OS started task.

 Now enter the other three server start commands:

 /S JSREXEC1

 /S JSREXEC2

 /S JSRMON

You should now see all four servers running:

© 2017, IBM Corporation 11

ZJBATCH - WebSphere Liberty Java Batch

 What TCP ports are those servers using? Let's check. Go back to your PuTTY terminal and
enter the following command:

netstat | grep JSR

You should see:
$ netstat | grep JSR
JSRDISP 0000050C 0.0.0.0..10080 0.0.0.0..0 Listen
JSREXEC1 00000529 0.0.0.0..11080 0.0.0.0..0 Listen
JSREXEC2 00000531 0.0.0.0..12080 0.0.0.0..0 Listen
JSRMON 0000053A 0.0.0.0..13080 0.0.0.0..0 Listen
$

Each server's port value was set to be 1000 higher than the previous. You don't have to do it
this way, it's just something we did to make sure the ports were unique.

Note: The SSL ports are 10443, 11443, 12443, and 13443, but they don't show because we've not
yet started anything that requires those ports.

 Go back to the 3270 session and shut down JSREXEC1, JSREXEC2, and JSRMON:

 /P JSREXEC1

 /P JSREXEC2

 /P JSRMON

You should be left with just one active server -- JSRDISP:

Generate DDL and create Batch Persistence DB
The next thing to do is generate the DDL for the JobRepository persistence tables. To do this we
need to add a few things to the server.xml so the ddlGen shell script can contact the server,
and the server can communicate with DB2.

To keep this from being a typing exercise we'll have you copy in a pre-built XML. We'll show you
what was added and explain why it was added.

 Go to your 3270 session and set the prefix to PRE DSN* as shown here:

When you press the host enter key you should see no jobs. That's because DB2 is not yet
started. You'll do that now.

 Enter the command: /-DSN2 START DB2

Wait about 30 seconds, then refresh the screen with the host enter key. You should see four
address spaces:

© 2017, IBM Corporation 12

ZJBATCH - WebSphere Liberty Java Batch

 Go back to your PuTTY session and enter the following command as one line:

cp /u/user1/jbatch/lab2/disp_ddl.xml

 /shared/jsrhome/servers/JSRDISP/server.xml

The server.xml copied in looks like this. Take a few seconds and note what was added:

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>localConnector-1.0</feature>
 </featureManager>

 <batchPersistence jobStoreRef="BatchDatabaseStore" />

 <databaseStore id="BatchDatabaseStore"
 createTables="false"
 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />
 <jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />

 <library id="DB2T4LibRef">
 <fileset dir="/shared/db21210/jdbc/classes/"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />
 </library>

 <authData id="batchAlias" user="SYSADM1" password="SYSADM1" />

 <dataSource id="batchDB"
 containerAuthDataRef="batchAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"
 portNumber="2446"
 databaseName="DSN2LOC"
 driverType="4" />
 </dataSource>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="10080"
 httpsPort="10443" />

</server>

The two features enable the JSR-352 batch function as well as the JMX local connector; the
rest is all batch persistence and DB2 z/OS definitions.

© 2017, IBM Corporation 13

ZJBATCH - WebSphere Liberty Java Batch

 Go back to your PuTTY session and enter the following commands:

 cd /shared/zWebSphere/Liberty/V17001/bin

 export PATH=$PATH:/shared/java/J8.0_64/bin

The first is just to make certain you're in the /bin directory of the Liberty install location.

The second is so the java command is on the PATH.

 Now, generate the DDL with the following command:

./ddlGen generate JSRDISP

You should get the following message:

CWWKD0107I: The requested DDL was generated in the following
directory: /shared/jsrhome/servers/JSRDISP/ddl

 Go back to your 3270 session and enter =3.17 from any command line.

 Enter /shared/jsrhome/servers/JSRDISP/ddl on the "Pathname" field:

and press the host enter key. You should see:

That's telling you there's one file in that directory.

 Place an e (for edit) in the prefix area to the left of the file name:

Press the host enter key.

 You'll see an "Edit Entry Panel" ... just press host enter to get past that.

© 2017, IBM Corporation 14

ZJBATCH - WebSphere Liberty Java Batch

 You should now see:

That is the DB2 z/OS Data Definition Language (DDL) statements to create the
JobRepository table for IBM Java Batch. Each line represents a command. The commands
go way past the right side of the 3270 screen.

Notes: This file is in "tagged ASCII," which means the editor will display in readable text if you have
the _BPXK_AUTOCVT=ON environment variable set.

We ran this command ahead of the workshop, downloaded the output to our PC, reformatted
all the lines so they'd fit within a 72-column JCL limit, then uploaded back to the mainframe
so it would hit as EBCDIC. We wrappered it with JCL to create the tables. That's what you'll
submit next.

 In 3270, enter =3.4

 Enter USER1.JBATCH.JCL and press host enter to display that dataset.

 Place a b (for browse) next to that data set.

 Submit the CREATE member3 by entering sub next to the member and pressing the host enter
key:

3 This is where we placed the DDL we generated. We broke the lines to fit within 72 columns, and we wrappered it with
JCL so the tables could be created as a JCL batch job. Feel free to browse that member if you'd like.

© 2017, IBM Corporation 15

ZJBATCH - WebSphere Liberty Java Batch

 This job takes about 10 to 20 seconds to complete, so hit the host enter key occasionally to
refresh the screen. Eventually you should see the following:

That means the tables were created.

 We're almost there. Go back to your PuTTY session and enter the following command as
one line:

cp /u/user1/jbatch/lab2/disp_app.xml

 /shared/jsrhome/servers/JSRDISP/server.xml

The server.xml copied in looks like this. Take a few moments to note what's been
removed, and what's been added:
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>localConnector-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>

 <authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">
 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
 </authorization-roles>

 <batchPersistence jobStoreRef="BatchDatabaseStore" />

 <databaseStore id="BatchDatabaseStore"
 createTables="false"
 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />
 <jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />

 <library id="DB2T4LibRef">
 <fileset dir="/shared/db21210/jdbc/classes/"
 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />
 </library>

 <authData id="batchAlias" user="SYSADM1" password="SYSADM1" />

 <dataSource id="batchDB"
 containerAuthDataRef="batchAlias"
 type="javax.sql.XADataSource"
 jdbcDriverRef="DB2T4">
 <properties.db2.jcc
 serverName="wg31.washington.ibm.com"

© 2017, IBM Corporation 16

ZJBATCH - WebSphere Liberty Java Batch

 portNumber="2446"
 databaseName="DSN2LOC"
 driverType="4" />
 </dataSource>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="10080"
 httpsPort="10443" />

</server>

The localConnect-1.0 feature is no longer needed, so that's removed. We add
batchManagement-1.0 and appSecurity-2.0 to enable the IBM operational
enhancements. The other red XML is in support of security. This is "basic" security.

 This would be a good time to look at the messages.log file and see if the new XML was
loaded properly, or if there were problems. Locate the WS-FTP icon on the desktop and
double click on that.

Note: The messages.log file is a "tagged ascii" file. It can be viewed with the OEDIT function in a
3270 session. We find it easier to use an FTP client to view the file. It ends up downloading
the file and opening it in an editor on the PC.

 You should see the launch window for the tool, pre-loaded with the host and user information:

Click "OK" to launch the tool.

© 2017, IBM Corporation 17

ZJBATCH - WebSphere Liberty Java Batch

 On the right side of the tool is the "remote site," which in this case is the z/OS system. Enter
/shared/jsrhome/servers/JSRDISP/logs into the field, then press the PC enter key:

That will result in a list of files in that directory being displayed.

 Do the following:

1 Highlight the messages.log file with a single click of the mouse.

2 Make sure "Binary" is selected

3 Click the "View" button

The result will the be the messages.log file displayed in a text editor on your PC.

 If you scroll down and to the right you'll see the messages. Somewhere in the bottom 10 or
15 messages you should see:

CWWKF0012I: The server installed the following features: [ssl-1.0,
batchManagement-1.0, json-1.0, distributedMap-1.0, appSecurity-2.0].

and:

CWWKO0219I: TCP Channel defaultHttpEndpoint-ssl has been started and
is now listening for requests on host * (IPv4) port 10443.

Those are good signs.

 Close the text editor that is displaying the messages.log file.

© 2017, IBM Corporation 18

ZJBATCH - WebSphere Liberty Java Batch

Validate Java Batch using SleepyBatchlet Sample
We are now ready to test our first batch application and verify the environment.

 In your PuTTY session, enter the following command as one line:

cp /u/user1/jbatch/apps/SleepyBatchletSample-1.0.war

 /shared/jsrhome/servers/JSRDISP/dropins/SleepyBatchletSample-1.0.war

That copies the "Sleepy Batchlet" sample application to the server's "dropins" directory where
it will be detected and dynamically loaded.

 Go to the WS-FTP client and view the messages.log file again. You should see the
following message near the bottom:
CWWKZ0001I: Application SleepyBatchletSample-1.0 started in 0.089 seconds.

Close the file editor displaying the messages.log file.

 Go to the PuTTY session and enter the following command as one line:
./batchManager submit --batchManager=localhost:10443 --user=Fred

 --password=fredpwd --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml --trustSslCertificates --wait

You should see something like this:
[2017/03/27 18:33:44.129 -0400] CWWKY0101I: Job sleepy-batchlet with
instance ID 1 has been submitted.

[2017/03/27 18:33:44.133 -0400] CWWKY0106I: JobInstance:{"jobName":"sleepy-
batchlet","instanceId":1,"appName":"SleepyBatchletSample-
1.0#SleepyBatchletSample-
1.0.war","submitter":"Fred","batchStatus":"STARTING","jobXMLName":"sleepy-
batchlet.xml","instanceState":"SUBMITTED","lastUpdatedTime":"2017/03/27
22:33:40.534 +0000"}

Then after 15 seconds (the default "sleep" period) you should see:
[2017/03/27 18:34:14.322 -0400] CWWKY0105I: Job sleepy-batchlet with
instance ID 1 has finished. Batch status: COMPLETED. Exit status: COMPLETED

[2017/03/27 18:34:14.322 -0400] CWWKY0107I: JobExecution:{"jobName":"sleepy-
batchlet","executionId":1,"instanceId":1,"batchStatus":"COMPLETED","exitStat
us":"COMPLETED","createTime":"2017/03/27 22:33:42.994
+0000","endTime":"2017/03/27 22:33:59.469
+0000","lastUpdatedTime":"2017/03/27 22:33:59.469
+0000","startTime":"2017/03/27 22:33:44.170 +0000","jobParameters":
{},"restUrl":"https://192.168.17.219:10443/ibm/api/batch/","serverId":"local
host//shared/jsrhome/JSRDISP","logpath":"/shared/jsrhome/servers/JSRDISP/log
s/joblogs/sleepy-batchlet/2017-03-
27/instance.1/execution.1/","stepExecutions":
[{"stepExecutionId":1,"stepName":"step1","batchStatus":"COMPLETED","exitStat
us":"SleepyBatchlet:i=15;stopRequested=false","stepExecution":"https://local
host:10443/ibm/api/batch/jobexecutions/1/stepexecutions/step1"}]}

 View the messages.log file again. You should see println() output for every second it "slept."

Congratulations! You've setup and run your first batch job for this workshop.

 End of Unit 2 Lab

© 2017, IBM Corporation 19

ZJBATCH - WebSphere Liberty Java Batch

Unit 3 - JSR-352 Concepts
In this lab we'll take a closer look at how the JSR-352 specification works. Specifically: JSL flow
control, and JSR "chunk" processing.

JSL orchestration: splits and flows
 In your PuTTY session, copy the following application to the server's /dropins directory:

cp /u/user1/jbatch/apps/JSR352Concepts2ProjectWAR.war

/shared/jsrhome/servers/JSRDISP/dropins/JSR352Concepts2ProjectWAR.war

This is a job that has a split and two flows and looks like this:

 Take a look below at the Job Specification Language (JSL) for the job and compare to the
picture above, noting the steps and split IDs and the "next=" labels:
<job ...>

<step id="Step1" next="Split1">
<batchlet ref="com.ibm.sample.LoggingBatchlet" />

</step>
<split id="Split1" next="FinalStep">

<flow id="Flow1">
<step id="Flow1Step1" next="Flow1Step2">

<batchlet ref="com.ibm.sample.LoggingBatchlet" />
</step>
<step id="Flow1Step2">

<batchlet ref="com.ibm.sample.LoggingBatchlet" />
</step>

</flow>
<flow id="Flow2">

<step id="Flow2Step1">
<batchlet ref="com.ibm.sample.LoggingBatchlet" />

</step>
</flow>

</split>
<step id="FinalStep">

<batchlet ref="com.ibm.sample.LoggingBatchlet" />
</step>

</job>

© 2017, IBM Corporation 20

ZJBATCH - WebSphere Liberty Java Batch

 Note how every step has the same ref= value, which means each step runs the exact same
Java class. All it does4 is this:
log.log(Level.INFO, "Batchlet in control in step "+stepContext.getStepName());

That simply puts out a message indicating which step the processing is in.

 In the PuTTY session, change directories to the Liberty /bin directory:

cd /shared/zWebSphere/Liberty/V17001/bin

 While you're at it, make sure the JAVA_HOME is set:

export JAVA_HOME=/shared/java/J8.0_64/

 Enter the following command as one line to run the job:

./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd

--applicationName=JSR352Concepts2ProjectWAR

--jobXMLName=SplitExample.xml --pollingInterval_s=5

--trustSslCertificates --wait

It should come back relatively quickly with a status of 'COMPLETED'.

 In the WS-FTP client, make sure the "Remote Site" location is:

/shared/jsrhome/servers/JSRDISP/logs

then highlight the messages.log file and click the "View" button. At the very bottom you
should see:

I Batchlet in control in step Step1
I Batchlet in control in step Flow1Step1
I Batchlet in control in step Flow2Step1
I Batchlet in control in step Flow1Step2
I Batchlet in control in step FinalStep

Note: With a split, the flows operate on separate JVM threads "in parallel." So the sequence of
messages you see may be slightly different from what's shown here.

Lesson: Our lesson here was very basic and very simple -- the Job Specification
Language (JSL) file can control the "flow" through a multi-step job.

JSL orchestration: conditional flow control
 In your PuTTY session, copy the following application to the server's /dropins directory:

cp /u/user1/jbatch/apps/JSR352ConceptsProjectWAR.war

/shared/jsrhome/servers/JSRDISP/dropins/JSR352ConceptsProjectWAR.war

This is a job that has four steps, and it uses "conditional flow control" to determine what to do,
based on the step exit status set by the first step. See next for an illustration:

4 The Java source has a bit more than just that one line, of course.

© 2017, IBM Corporation 21

ZJBATCH - WebSphere Liberty Java Batch

 Take a look below at the Job Specification Language (JSL) for the job and compare to the
picture above. Note in particular the "next on=" that follows first step:
<job ..>

<step id="CheckParm">
<batchlet ref="com.ibm.concepts.CheckParm">

<properties >
<property name="points" value="#{jobParameters['points']}?:0;"/>

</properties>
</batchlet>
<next on="0" to="LessThan" />
<next on="4" to="MoreThan" />
<next on="8" to="StringParm" />

</step>
<step id="LessThan">

<batchlet ref="com.ibm.concepts.LessThan" >
<properties >

<property name="points" value="#{jobParameters['points']}?:0;"/>
</properties>

</batchlet>
<end on="*" exit-status="0"/>

</step>
<step id="MoreThan">

<batchlet ref="com.ibm.concepts.MoreThan" >
<properties >

<property name="points" value="#{jobParameters['points']}?:0;"/>
</properties>

</batchlet>
<end on="*" exit-status="0"/>

</step>

© 2017, IBM Corporation 22

ZJBATCH - WebSphere Liberty Java Batch

<step id="StringParm">
<batchlet ref="com.ibm.concepts.StringParm" />
<fail on="*" exit-status="12"/>

</step>
</job>

 Now take a look next at the relevant code in the CheckParm step:
try {

 int i = (new Integer(points)).intValue();
 if (i<100) { rc = new String("0");}
 if (i>=100) { rc = new String("4");}
 }
 catch(NumberFormatException nfe) {
 rc = new String("8");
 }

 stepContext.setExitStatus(rc);

In plain language -- "Take the input string, turn it into an integer, then check for value. If less
than 100, then set the step exit status to 0; if greater than or equal to 100 then set exit status
to 4; if not an integer, then catch exception and set exit status to 8."

 Enter the following command as one line to run the job with a "points" value of less than 100:
./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd

--applicationName=JSR352ConceptsProjectWAR

--jobXMLName=JSR352ConceptsJob.xml --trustSslCertificates

--pollingInterval_s=5 --wait --jobParameter=points=50

In your PuTTY session output you should see the following for the job:

Batch status: COMPLETED. Exit status: 0

 In the WS-FTP client, highlight the messages.log file and click the "View" button. At the
very bottom you should see:
I Batchlet in control in step CheckParm
I Input parameter points=50
I Batchlet in control in step LessThan
I Input parameter points = 50
I Your point value gives you Gold status
I We gave you a bonus. Your new point level is 60

 Next, enter the following command as one line to run the job with a "points" value of more
than 100:
./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd

--applicationName=JSR352ConceptsProjectWAR

--jobXMLName=JSR352ConceptsJob.xml --trustSslCertificates

--pollingInterval_s=5 --wait --jobParameter=points=5000

In your PuTTY session output you should see the following for the job:

Batch status: COMPLETED. Exit status: 0

© 2017, IBM Corporation 23

ZJBATCH - WebSphere Liberty Java Batch

 In the WS-FTP client, highlight the messages.log file and click the "View" button. At the
very bottom you should see:
I Batchlet in control in step CheckParm
I Input parameter points=5000
I Batchlet in control in step MoreThan
I Input parameter points = 5000
I Your point value gives you Platinum status
I We gave you a bonus. Your new point level is 5100

 Finally, try a command where the job parameter value is not an integer:
./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd

--applicationName=JSR352ConceptsProjectWAR

--jobXMLName=JSR352ConceptsJob.xml --trustSslCertificates

--pollingInterval_s=5 --wait --jobParameter=points=xyz

In your PuTTY session output you should see:

Batch status: FAILED . Exit status: 12

Note: Recall the JSL related to the "StringParm" step:
<fail on="*" exit-status="12"/>

That tells the container to fail the job and assign a job exit status of 12.

 Go take a look at the messages.log file. You should see something like this:

I Batchlet in control in step CheckParm
I Input parameter points=xyz
I Batchlet in control in step StringParm
I Parameter value supplied is not an integer value. This is not valid.
W CWWKY0011W: Job JSR352ConceptsJob failed with batch status FAILED and exit
status 12 for job instance nn and job execution nn.

Lesson: Our lesson here was the following:

(a) You can set step exit status values

(b) You can control the flow based on conditional processing of step exit status

Chunk Processing: the modified BonusPayout sample

Note: We modified the BonusPayout sample available on Github by making the logging show the chunk
activity more clearly. The sample available on Github is a bit silent by default. We changed it so
more messages are put out, and the chunk activity can be seen more clearly.

 In your PuTTY session, copy the following application to the server's /dropins directory:

cp /u/user1/jbatch/apps/JSR352Concepts3WAR.war

/shared/jsrhome/servers/JSRDISP/dropins/JSR352Concepts3WAR.war

This is a two-step job: the first is a batchlet which generates a file of numbers; the second is a
chunk step that reads from the file, adds a "bonus" value to each record, and then writes each
row to a DB2 table:

© 2017, IBM Corporation 24

ZJBATCH - WebSphere Liberty Java Batch

The Job Specification Language (JSL) file is a bit more involved than the others we showed,
so we won't look at that here.

 Next, copy in a new server.xml file with the following command:

cp /u/user1/jbatch/lab3/jsrdisp.xml

/shared/jsrhome/servers/JSRDISP/server.xml

(That brings in some JDBC definitions so the BONUSDB.ACCOUNT table can be accessed.)

 In your 3270 session, go to =3.4, provide the data set USER1.JBATCH.JCL in the list field.
Place a b (for browse) next to the data set when listed. Then type sub next to the BONUS
member and press host enter:

This will create the BONUSDB.ACCOUNT table in DB2.

Press host enter to clear any three-star (***) screen holds and the job completion message.

 In the PuTTY session, enter the following command to submit the BonusPayout job:
./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd --applicationName=JSR352Concepts3WAR

--jobXMLName=LoggingSimpleBonusPayout.xml --jobParameter=dsJNDI=jdbc/bonus

--jobParameter=tableName=BONUSDB.ACCOUNT --jobParameter=logging=true

--jobParameter=numRecords=10 --jobParameter=chunkSize=2

--pollingInterval_s=5 --trustSslCertificates --wait

Note numRecords and chunkSize. That's controlling the size of the generated data and the
"chunk" (checkpoint) interval. This will "chunk" five times5.

You should see: Batch status: COMPLETED. Exit status: COMPLETED

5 Six, really -- it'll do five chunks based on the chunksize of 2, then it'll reach end of file and do a final chunk to close.

© 2017, IBM Corporation 25

ZJBATCH - WebSphere Liberty Java Batch

 In the WS-FTP client, type in /tmp/ for the "Remote Site" value and press PC enter. You
should see something like this:

 Highlight the bonuspayout.outfile.nn.csv file6 you see and click on the "View" button.
That should open the text editor, and you should see something like this:

 Go back to the WS-FTP client and put /shared/jsrhome/servers/JSRDISP/logs in the
"remote site" field and press PC enter. Then highlight the messages.log file and click the
"View" button:

 Scroll to the bottom of the messages.log file and take a moment to review what's there. It
should look something like this. See the notes that follow this example output.
I Read Account 0
I Processing 0 Old Balance = 210 New Balance = 310
I Read Account 1
I Processing 1 Old Balance = 989 New Balance = 1089
I DSRA8203I: Database product name : DB2
I DSRA8204I: Database product version : DSN10015
I DSRA8205I: JDBC driver name : IBM Data Server Driver for JDBC and SQLJ
I DSRA8206I: JDBC driver version : 4.14.119
I Adding: 2 items to table name: BONUSDB.ACCOUNT via batch update
I Chunk Listener afterChunk
I Chunk Listener beforeChunk
I Read Account 2
I Processing 2 Old Balance = 787 New Balance = 887
I Read Account 3

6 The nn value will be the "Instance ID" of your batch job.

© 2017, IBM Corporation 26

ZJBATCH - WebSphere Liberty Java Batch

I Processing 3 Old Balance = 164 New Balance = 264
I Adding: 2 items to table name: BONUSDB.ACCOUNT via batch update
I Chunk Listener afterChunk
I Chunk Listener beforeChunk
I Read Account 4
I Processing 4 Old Balance = 61 New Balance = 161
I Read Account 5
I Processing 5 Old Balance = 770 New Balance = 870
I Adding: 2 items to table name: BONUSDB.ACCOUNT via batch update
I Chunk Listener afterChunk
I Chunk Listener beforeChunk
I Read Account 6
I Processing 6 Old Balance = 409 New Balance = 509
I Read Account 7
I Processing 7 Old Balance = 71 New Balance = 171
I Adding: 2 items to table name: BONUSDB.ACCOUNT via batch update
I Chunk Listener afterChunk
I Chunk Listener beforeChunk
I Read Account 8
I Processing 8 Old Balance = 439 New Balance = 539
I Read Account 9
I Processing 9 Old Balance = 115 New Balance = 215
I Adding: 2 items to table name: BONUSDB.ACCOUNT via batch update
I Chunk Listener afterChunk
I Chunk Listener beforeChunk
I End of stream reached in class com.ibm.sample.GeneratedCSVReader
I Chunk Listener afterChunk

Note: The text highlighted in red represents a "chunk interval" processing. It read in the account
record 4, and then it added 100 to the balance. Then it read in account record 5 and added 100 to the
balance. Then it reached its "chunkSize" value and commited the transaction to DB2. It did this over
and over until the ItemReader returned null (end of file) and it ended.

 Go back to your 3270 session, go to =3.4, provide the data set USER1.JBATCH.JCL in the
list field. Place a b (for browse) next to the data set when listed. Then type sub next to the
SELECT member7 and press host enter:

Press host enter to clear any three-star (***) screen holds and the job completion message.

 Let's go look at the output from that. Go to =sdsf.st and then set the prefix to PRE SEL*.
You should see:

 Place a question mark (?) next to the job and press host enter.

7 This is simply JCL that issues a SELECT * FROM BONUSDB.ACCOUNT to list the contents of that table.

© 2017, IBM Corporation 27

ZJBATCH - WebSphere Liberty Java Batch

 Now place an s next to the SYSPRINT member and press host enter:

You should see something like this:
 +--+
 | ACCTNUM | BALANCE | INSTANCEID | ACCTCODE |
 +--+
 1_| 0 | 310 | nn | CHK |
 2_| 1 | 1089 | nn | CHK |
 3_| 2 | 887 | nn | CHK |
 4_| 3 | 264 | nn | CHK |
 5_| 4 | 161 | nn | CHK |
 6_| 5 | 870 | nn | CHK |
 7_| 6 | 509 | nn | CHK |
 8_| 7 | 171 | nn | CHK |
 9_| 8 | 539 | nn | CHK |
10_| 9 | 215 | nn | CHK |
 +--+

Where nn is the instance number of the batch job that ran.

This is showing the contents fo the BONUSDB.ACCOUNT table, which is the DB2 table into
which the chunk step of that job wrote its output. In this case it did a COMMIT every two
records because that's what you asked for with chunkSize=2 on the batchManager
command.

 Go back to your PuTTY session.

 Let's run the job again, this time with 1000 record, a chunk size of 100, and logging turned off
so the output is not so chatty:

./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd --applicationName=JSR352Concepts3WAR

--jobXMLName=LoggingSimpleBonusPayout.xml

--jobParameter=dsJNDI=jdbc/bonus

--jobParameter=tableName=BONUSDB.ACCOUNT --jobParameter=logging=false

--jobParameter=numRecords=1000 --jobParameter=chunkSize=100

--pollingInterval_s=5 --trustSslCertificates --wait

Note the parameters highlighted in red: we are turning logging off, we set the number of
records to 1000, and we set the chunk interval to 100.

You should see: Batch status: COMPLETED. Exit status: COMPLETED

 In the WS-FTP client, go to /tmp/ and click the "Refresh" button. You should now see two
"csv" files. Highlight the second "csv" file you see there. Click the "View" button. This time
you'll see many more records ... 1000 to be precise. Scroll to the bottom and the last record
should be 999.

 In 3270, go to the USER1.JBATCH.JCL data set and submit the SELECT member again.

© 2017, IBM Corporation 28

ZJBATCH - WebSphere Liberty Java Batch

 Go to =sdsf.st with the prefix of PRE SEL* and you should see two SELECT jobs. Place a
question mark (?) next to the one with the higher JobID value and press host enter. Then
place an s next to the SYSPRINT member and press host enter.

At the top you should see the records created by the first running of the job. But if you scroll
down (F8) you should see the records for the second running (keep an eye on the
INSTANCEID column).

 Clean up the applications you used in this lab. In the PuTTY session, enter the following
command:

rm /shared/jsrhome/servers/JSRDISP/dropins/JSR352*

 Verify that only SleepyBatchlet remains:

ls /shared/jsrhome/servers/JSRDISP/dropins

Lesson: Our lesson here was the following:

(a) Experience a "chunk" application

(b) See evidence of the "chunk" process taking place

 End of Unit 3 Lab

© 2017, IBM Corporation 29

ZJBATCH - WebSphere Liberty Java Batch

Unit 4 - Job Submission and Control
batchManager

You used this briefly back in Lab 2 when you validated your environment. We'll explore a bit
more of batchManager here.

 Go to your PuTTY session8 and verify a few things:

 Enter command whoami

It should respond with: JSRSERV

If it returns USER1, then enter command su -s JSRSERV

 Enter command pwd

You should be in /shared/zWebSphere/Liberty/V17001/bin

If not, then enter cd /shared/zWebSphere/Liberty/V17001/bin

 Enter command echo $WLP_USER_DIR

It should respond with /shared/jsrhome

If not, then enter command export WLP_USER_DIR=/shared/jsrhome

 Finally, enter command echo $JAVA_HOME

It should respond with export /shared/java/J8.0_64/

If not, then enter command export JAVA_HOME=/shared/java/J8.0_64/

 Submit the SleepyBatchlet sample again with the following command entered as one line:
./batchManager submit --batchManager=localhost:10443 --user=Fred

 --password=fredpwd --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml --trustSslCertificates --wait

This should result in the job being submitted and running to a 'COMPLETED' state. If you
look closely at the output, you'll see the "instance ID" and "execution ID" both incremented by
one from the previous execution.

 The default "sleep time" of that application is 15 seconds, but that can be altered by passing
in a job parameter. Enter the following as one line:
./batchManager submit --batchManager=localhost:10443 --user=Fred

 --password=fredpwd --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml --jobParameter=sleep.time.seconds=5

 --trustSslCertificates --wait

Notice the extra value: --jobParameter=sleep.time.seconds=5. That tells the
application to "sleep" for only 5 seconds.

You should see the job status as 'COMPLETED'.

 Let's verify the passed-in job parameter actually took effect. Using the WS-FTP client,
navigate to the /shared/jsrhome/servers/JSRDISP/logs directory and view the
messages.log file. You should see:

SleepyBatchlet: process: entry
SleepyBatchlet: process: sleep for: 5
SleepyBatchlet: process: [0] sleeping for a second...
SleepyBatchlet: process: [1] sleeping for a second...

8 If it's closed, then double click on the "PuTTY" icon and load the WG31 profile. Log in as "USER1."

© 2017, IBM Corporation 30

ZJBATCH - WebSphere Liberty Java Batch

SleepyBatchlet: process: [2] sleeping for a second...
SleepyBatchlet: process: [3] sleeping for a second...
SleepyBatchlet: process: [4] sleeping for a second...
SleepyBatchlet: process: exit. exitStatus: SleepyBatchlet:i=5;stopRequested=false

That verifies the passed-in value took effect.

 Next you'll add one more parameter: --getJobLog. That will result in the job log coming
back to your PuTTY session. Enter the following as one line:
./batchManager submit --batchManager=localhost:10443 --user=Fred

--password=fredpwd --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml --jobParameter=sleep.time.seconds=5

 --getJobLog --trustSslCertificates --wait

When that completes you will see the job log come back to the PuTTY session. It will look
something9 like this:
xxxxx Begin file: instance.4/execution.4/part.1.log xxxxxxxxxxxxxxxxxx
[3/30/17 14:33:36:349 GMT] com.ibm.ws.batch.JobLogger
==
Started invoking execution for a job
 JobInstance id = 4
 JobExecution id = 4
 Job Name = sleepy-batchlet
 Job Parameters = {sleep.time.seconds=5}
==

[3/30/17 14:33:36:368 GMT] com.ibm.ws.batch.JobLogger
[3/30/17 14:33:36:547 GMT] com.ibm.ws.batch.JobLogger
==
For step name = step1
 New top-level step execution id = 4
==

[3/30/17 14:33:36:787 GMT] com.ibm.ws.batch.JobLogger
[3/30/17 14:33:42:011 GMT] com.ibm.ws.batch.JobLogger
[3/30/17 14:33:42:026 GMT] com.ibm.ws.batch.JobLogger
[3/30/17 14:33:42:026 GMT] com.ibm.ws.batch.JobLogger
==
Completed invoking execution for a job
 JobInstance id = 4
 JobExecution id = 4
 Job Name = sleepy-batchlet
 Job Parameters = {sleep.time.seconds=5}
 Job Batch Status = COMPLETED, Job Exit Status = COMPLETED
==

xxxxx End file: instance.4/execution.4/part.1.log xxxxxxxxxxxxxxxxxx

 Now let's run that exact same command again, but this time do it from a shell script.

Why? Because this helps illlustrate how you might programmatically invoke a batch job on z/OS
from a scheduler function running off-platform. Or from another z/OS LPAR.

In your PuTTY session, enter command cd /u/user1/jbatch/lab4

9 There's a few lines of text to the right we're omitting here. The lines are long and we wanted to avoid wrapping text here.

© 2017, IBM Corporation 31

ZJBATCH - WebSphere Liberty Java Batch

 Let's see what's in the shell script we developed for this workshop. Enter the command:

cat subjob.sh

Note: That shell script has four sections:
• Set variables used to construct the command

• Set JAVA_HOME so batchManager can operate

• Construct and submit the command

• Capture the batchManager return code and format into something more compatible with
the shift BPXBATCH will perform10.

 Submit the job with this command: ./subjob.sh

You should see:

$./subjob.sh
Setting Variables
Set Java Home
Submitting Command
batchManager exit code= 35 Status=Good: submitted and completed.
Will set shell script exit code to 0
If BPXBATCH, then JES return code should be RC=0000

Note: Return code 35 is what batchManager issues when the job has successfully been submitted
and has completed. So in this context, view RC=35 as good news. The shell script sees the
batchManager 35 and sets the shell script exit code to 0.

 Check the output files:

STDOUT cat out.txt

You should see the joblog.

STDERR cat err.txt

You should nothing back as a successful execution results in nothing to STDERR.

 Let's now run that shell script using JCL and BPXBATCH. In your 3270 session, go to =3.4
and set the data set name to USER1.JBATCH.JCL:

Press the host enter key.

 Place an b (for browse) next to the data set:

Press host enter.

 Place b next to the BMGRJCL member and press host enter:

10 The objective is to set the shell script exit code to something under 16. batchManager exit codes are above 16. Numbers
above 16 are shifted by BPXBATCH, then JES will capture a portion of that. It gets confusing. But for numbers under
16 then it's more understandable and deterministic.

© 2017, IBM Corporation 32

ZJBATCH - WebSphere Liberty Java Batch

You should see a relatively simple JCL that uses BPXBATCH to execute the shell script:

//BMGRJCL JOB (0),'BMGR+JCL',CLASS=A,REGION=0M,
// MSGCLASS=H,NOTIFY=USER1
//SUBMIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /u/user1/jbatch/lab4/subjob.sh
/*
//*

 Submit that job by typing sub in the command field and press host enter:

 You will get three asterisks on your screen (***). Press host enter to clear that. You should
then see:

Again, press host enter to clear that.

 In the command field, enter =sdsf.st to go to the job status display:

 The "JSR*" prefix from earlier is still set, so you won't see your BMGRJCL job until you
change the prefix. Enter pre bmgr* in the command field:

You should then see your job running:

 Wait 10 or 15 seconds, then press host enter again. You should see11:

11 If you don't see the completion message, wait a bit more and press host enter again.

© 2017, IBM Corporation 33

ZJBATCH - WebSphere Liberty Java Batch

Note the "MAXCC" value. That's your return code. Press host enter to clear this.

 Now put a question mark (?) next to the completed job and press host enter:

That should bring up all the DDNAME members for the job:

 Place an s (for "select") next to the JESMSGLG member and press host enter:

You should see something like the following. Note the RC value. That RC is based on the
exit code the shell script set. When you're through with this, press F3.
 :
13.30.47 JOB00164 IRR010I USERID USER1 IS ASSIGNED TO THIS JOB.
13.30.47 JOB00164 ICH70001I USER1 LAST ACCESS AT 13:29:08 ON FRIDAY,
MARCH 31, 2017
13.30.47 JOB00164 $HASP373 BMGRJCL STARTED - INIT 1 - CLASS A - SYS WG31
13.31.22 JOB00164 Jobname Procstep Stepname CPU Time EXCPs RC
13.31.22 JOB00164 BMGRJCL --None-- SUBMIT 00:00:00 51 00
13.31.22 JOB00164 $HASP395 BMGRJCL ENDED
 :

 Place an s next to the STDOUT member and press host enter. You should see something like
this:
Setting Variables
Set Java Home
Submitting Command
batchManager exit code= 35 Status=Good: submitted and completed.
Will set shell script exit code to 0
If BPXBATCH, then JES return code should be RC=0000

We saw the JES return code equal 0 (it was listed as 00, but that's the same thing).

But what about the Java Batch job log? Why isn't that here?

That's because the shell script was redirecting that to a file:

$LOCATION $ACTION $SERVER $USER $PW $APP $JOBXML $PARM1 $PARM2
$PARM3 $PARM4 > $OUTLOC/out.txt 2> $OUTLOC/err.txt

© 2017, IBM Corporation 34

ZJBATCH - WebSphere Liberty Java Batch

If you wanted the job log to go to JES with the --getJobLog parameter specified, you would
simply remove that redirect to file from the shell script. It would then go to STDOUT DD.

We'll do that with batchManagerZos coming up next.

batchManagerZos
The batchManagerZos command line utility is very similar to batchManager, but it uses WOLA to
communicate with Liberty z/OS rather than REST. Using WOLA requires some setup work.

 In your 3270 session, go to =sdsf.da, set the prefix to pre JSR*. You should see your
server running:

(Note: the other "JSRSERV" is your PuTTY session.)

 Stop your server with the following command: /P JSRDISP

 Go to =3.4, list the data set USER1.JBATCH.JCL, then place a b next to the LAB4 member:

That job creates a set of SERVER and CBIND profiles that allow WOLA to work for the server.
We'll cover this in a bit more detail in Unit 6 on security.

 Submit that job by typing sub in the command line for the member and pressing host enter:

If you get the "three star" screen hold, press host enter to clear that.

 You should fairly quickly see:

 In your PuTTY session, copy over a new server.xml so the WOLA support is present. Use
the following command:
cp /u/user1/jbatch/lab4/wola.xml /shared/jsrhome/servers/JSRDISP/server.xml

That added the following XML elements to the previous server.xml:

© 2017, IBM Corporation 35

ZJBATCH - WebSphere Liberty Java Batch

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 </featureManager>

 <zosLocalAdapters wolaGroup="LIBERTY"
 wolaName2="BATCH"
 wolaName3="MANAGER"/>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>
 (The rest of the server.xml omitted to save space in document)

 Now go to your 3270 session. Enter =sdsf.da and make sure the prefix is PRE JSR* (it
most likely is still that value from before).

 Now you're going to start the Liberty Angel, which allows access to authorized servers. Issue
the following command:

/S JSRZANGL

We copied that JCL to proclib and customized prior to the workshop. You sould see the
following:

 Now start your server again with /S JSRDISP. You should now see:

 Go to the WS-FTP client and navigate to the "remote" directory where the messages.log file
is located: /shared/jsrhome/servers/JSRDISP/logs. You should see:

© 2017, IBM Corporation 36

ZJBATCH - WebSphere Liberty Java Batch

 Highlight the messages.log file and click the "View" button:

This will open up a text editor and display the log file.

 Look for the key "is available" messages at the top of the log file:

Those indicate: (a) The Angel is up, and (b) the server ID has access to the required SAF
SERVER profiles to allow access to the WOLA authorized service.

 About half-way down the log file you should see this message:

CWWKB0501I: The WebSphere Optimized Local Adapter channel registered
with the Liberty profile server using the following name: LIBERTY
BATCH MANAGER

That indicates the WOLA "three part name" is in effect for this Liberty z/OS server.

 Go to your PuTTY session and issue the command whoami. It should tell you the ID in effect
is JSRSERV. That ID was not granted READ to the CBIND, so that ID can't use
batchManagerZos. But the USER1 ID was granted READ, so it can use it.

 Enter the command exit. This will take you out of JSRSERV and return you to the USER1 ID.
You can verify this whoami.

 In your PuTTY session, change directories using this command:

cd /shared/zWebSphere/Liberty/V17001/lib/native/zos/s390x

 Let's start with the simple "ping" command:

./batchManagerZos ping --batchManager=LIBERTY+BATCH+MANAGER

That returns nothing if everything is working well. If something is not right, you'll see a bunch
of error messages12.

12 Assuming you saw the "is available" messages, then the most common problem here is either (a) the ID you're using does
not have READ to the CBIND, or (b) the three-part name is not exactly matched. That name value is case-sensitive.

© 2017, IBM Corporation 37

ZJBATCH - WebSphere Liberty Java Batch

 Submit a SleepyBatchlet job with the following command as one line:

./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --wait

You will see the same output on your PuTTY session screen as you did with batchManager.

 You can run batchManagerZos from JCL using BPXBATCH just like you did batchManager.
Go to =3.4, list USER1.JBATCH.JCL, then browse the BMGRZJCL member. You should see:

//BMGRZJCL JOB (0),'BMGRZ+JCL',CLASS=A,REGION=0M,
// MSGCLASS=H,NOTIFY=USER1
//SUBMIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /u/user1/jbatch/lab4/subzjob.sh
/*
//*

Two differences from before: (1) the job name is different; (2) the shell script it calls is
different.

Note: The shell script is very similar to the one used with batchManager, with the following
differences: (a) the location in the file system for batchManagerZos is different from
batchManager; (b) batchManagerZos does not need host/port and ID/PW, but it does need the
three-part name.

 Submit that job by entering sub in the command field.

 Go to =sdsf.st and set PRE BMGR*. You should see your job executing.

 When that completes, place an S next to the job and press host enter. You should see near
the top:
Jobname Procstep Stepname CPU Time EXCPs RC
BMGRZJCL --None-- SUBMIT 00:00:00 53 00
$HASP395 BMGRZJCL ENDED

and at the bottom:
Setting Variables
Submitting Command
batchManagerZos exit code= 35 Status=Good: submitted and completed.
Will set shell script exit code to 0
If BPXBATCH, then JES return code should be RC=0000

Job Log? There is a --getJobLog parameter on batchManagerZos, but we did not use it
here. Why not? Because batchManagerZos requires "batch events" to be
configured to retrieve the job log, and we've not yet configured that.

How did batchManager do it? By calling back to the server with the REST
interface to retrieve the job log. It can do that easily because batchManager is a
Java program, and Java can fairly easily format an HTTP request and parse the
JSON that comes back. A native z/OS program like batchManagerZos would
struggle with HTTP and JSON parsing.

We'll see retrieval of the job log when we get to batch events.

© 2017, IBM Corporation 38

ZJBATCH - WebSphere Liberty Java Batch

Batch Events
In this lab we will make use of the "batch events" feature to allow batchManagerZos to monitor for
job completion and retrieve the job log. We will also use the JSRMON server to host another
application that will monitor the batch events tree for events that are published.

 In your 3270 session, go to =sdsf.da and set the prefix with PRE MQS1*.

 Start MQ with /-MQS1 START QMGR. Press host enter to refresh the screen. You should
soon see:

 Next, copy the MQ JMS resource adapter to the JSRDISP directory. In your PuTTY session,
use this command as one line:

cp /shared/mqm/V9R0M1/java/lib/jca/wmq.jmsra.rar

 /shared/jsrhome/servers/JSRDISP/wmq.jmsra.rar

 Next, make the MQ "SCSQUATH" data set13 available on the STEPLIB variable to your
PuTTY session: export STEPLIB='MQ901.SCSQAUTH'

 Copy the XML updates so your JSRDISP server is enabled to emit batch events:

cp /u/user1/jbatch/lab4/events.xml

/shared/jsrhome/servers/JSRDISP/server.xml

Here's what was added:
 <!-- Enable features -->
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 </featureManager>

 <batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

 <jmsConnectionFactory id="batchConnectionFactory"
 jndiName="jms/batch/connectionFactory">
 <properties.wmqJms
 hostName="wg31.washington.ibm.com"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 port="1414"
 queueManager="MQS1">
 </properties.wmqJms>
 </jmsConnectionFactory>

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

 <wmqJmsClient startupRetryCount="999"

13 The batchManagerZos client will use MQ BINDINGS mode to monitor the pub/sub topic tree.

© 2017, IBM Corporation 39

ZJBATCH - WebSphere Liberty Java Batch

 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <zosLocalAdapters wolaGroup="LIBERTY"
 wolaName2="BATCH"
 wolaName3="MANAGER"/>

(That's the XML necessary to enable batch events and make the server able to connect to the MQ
Queue Manager.)

 The server will have dynamically updated its configuration with those changes, so now you're
ready to submit a batchManagerZos command. First, let's make certain your'e in the right
directory:

cd /shared/zWebSphere/Liberty/V17001/lib/native/zos/s390x

 Now, enter the following command:

./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --wait --queueManagerName=MQS1

Notice that last parameter, which names the MQ queue manager to connect to and listen on
the default topic root of batch for the job completion event.

You should see this message:

INFO: CWWKY0118I: Subscribing to batch events at JMS topic root:
batch/jobs/instance/+.

Then you should see the usual messages indicating the job has been submitted and has
gone to completion. You will find the job seems to complete more quickly. In reality what's
happening is batchManagerZos is aware of the job completing the moment the completion
event is published. It did not have to wait for the next polling cycle to find out.

 Let's get the job log via the batch events topic tree as well:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml

--getJobLog --wait --queueManagerName=MQS1

As part of the output to the PuTTY terminal you should see the job log.

 Finally, let's invoke that via JCL and a shell script. In your 3270 session, go to the
USER1.JBATCH.JCL data set and submit the BMGREJCL ("e" for "events") member:

That runs the subzjob_events.sh shell script. That shell script calls batchManagerZos,
and the command includes --getJobLog, --wait, and --queueManagerName.

 Go to =sdsf.st to view your job. The prefix should still be set to PRE BMGR*, so your job
should appear.

© 2017, IBM Corporation 40

ZJBATCH - WebSphere Liberty Java Batch

 When your job completes, place a question mark (?) next to the job name and press host
enter:

That will display the DDNAME members:

 Place an s next to the JESMSGLG member and press host enter. You should see the return
code:

 Press F3 to return to the list of DDNAME members, then place an s next to the STDOUT
member and press host enter. You should see the job log (which came back to the JCL job
via the batch events mechanism).

At the bottom you should see the messages that came out of the shell script indicating the
return code processing:
batchManagerZos exit code= 35 Status=Good: submitted and completed.
Will set shell script exit code to 0
If BPXBATCH, then JES return code should be RC=0000

 Let's do one more thing with batch events -- enable the JSRMON server to watch the topic for
job log parts and copy them to a directory when they're published.

Start by copying the monitor application over to JSRMON's /dropins directory:
cp /u/user1/jbatch/apps/JobLogEventsDirCreator-1.0.war

/shared/jsrhome/servers/JSRMON/dropins/JobLogEventsDirCreator-1.0.war

 Next, copy the MQ JCA resource adapter file to the server's directory:

cp /shared/mqm/V9R0M1/java/lib/jca/wmq.jmsra.rar

 /shared/jsrhome/servers/JSRMON/wmq.jmsra.rar

 Then, copy in the server.xml we prepared ahead of time:

cp /u/user1/jbatch/lab4/monitor.xml

 /shared/jsrhome/servers/JSRMON/server.xml

That XML looks like what follows. It has the MQ JMS definitions. But it has no batch
definitions at all. This is to make the point that any process capable of subscribing to the
topic can monitor for batch events.
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">

© 2017, IBM Corporation 41

ZJBATCH - WebSphere Liberty Java Batch

 <!-- Enable features -->
 <featureManager>
 <feature>mdb-3.2</feature>
 <feature>jndi-1.0</feature>
 <feature>jca-1.7</feature>
 <feature>servlet-3.1</feature>
 <feature>jsonp-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 </featureManager>

 <variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

 <wmqJmsClient startupRetryCount="999"
 startupRetryInterval="1000ms"
 reconnectionRetryCount="10"
 reconnectionRetryInterval="5m">
 </wmqJmsClient>

 <jmsTopic id="JobLogEventTopic"
 jndiName="jms/batch/batchJobTopic">
 <properties.wmqJms
 baseTopicName="batch/jobs/execution/jobLogPart" />
 </jmsTopic>

 <jmsActivationSpec id="JobLogEventsDirCreator-1.0/JobLogEventsSubscriber">
 <properties.wmqJms
 destinationRef="JobLogEventTopic"
 destinationType="javax.jms.Topic"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 queueManager="MQS1"
 hostName="wg31.washington.ibm.com"
 port="1414" />
 </jmsActivationSpec>

 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpPort="13080"
 httpsPort="13443" />

</server>

 In the 3270 session, go to =sdsf.da, set the prefix to PRE JSR*, and then issue the start
command for the JSRMON server: /S JSRMON. You should see the server come up:

© 2017, IBM Corporation 42

ZJBATCH - WebSphere Liberty Java Batch

 Go to USER1.JBATCH.JCL and sub the BMGREJCL job again:

 Wait about 15 seconds, then hit the host enter key again. You should get the completion
message:

 Using the WS-FTP client, go to this directory on the "remote site":

/shared/jsrhome/servers/JSRMON/JobLogEvents

Then double-click on the sleepy-batchlet directory. That will take you to the next
directory down, which will be today's date.

 Repeat that process of double-clicking on the directories to go further down the tree.
Eventually you will come to the directory where part1.log is found:

 Highlight that file and click the "View" button:

That will open a text editor where you'll see the job log.

That job log was retrieved from the MQ topic. The server where it ran -- JSRDISP --
published the job log as an event to the topic, and the MDB application in this server retrieved

© 2017, IBM Corporation 43

ZJBATCH - WebSphere Liberty Java Batch

it and placed it down this path.

 Close the text editor showing the job log.

 Go to =sdsf.da, set the prefix to PRE JSR*, then enter the command /P JSRMON to stop
the server. We don't need this server any more this workshop.

Key Points: We've seen two processes take advantage of the batch events:

(1) batchManagerZos, which subscribed to the topic so it could determine when the
submitted job was complete

(2) The application in JSRMON, which subscribed to the topic and watched for job log
parts to be published.

Any process that can subscribe to a topic can monitor the batch processing. That
includes any topic in the topic tree, not just job status or job log part.

AdminCenter
The AdminCenter provides a way to view the jobs through a graphical interface. You can't submit
jobs through this interface, but you can view the status of jobs, stop and restart jobs14, and view
job logs.

 Start by copying in a new server.xml file with the updates needed for the Admin Center:

cp /u/user1/jbatch/lab4/adminCenter.xml

 /shared/jsrhome/servers/JSRDISP/server.xml

That brought in a new feature:
<featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 <feature>adminCenter-1.0</feature>
</featureManager>

And a little further down in the XML a new role to allow "Fred" to access the AdminCenter:
<authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">
 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
</authorization-roles>

<administrator-role>
 <user>Fred</user>
</administrator-role>

<batchPersistence jobStoreRef="BatchDatabaseStore" />

 Start an instance of the Firefox browser.

14 Starting with 17.0.0.1.

© 2017, IBM Corporation 44

ZJBATCH - WebSphere Liberty Java Batch

 Supply this URL into Firefox:

http://wg31.washington.ibm.com:10080/adminCenter

That is going to throw a "Your Connection is Not Secure" warning.

Why? Because the self-generated and self-signed certificate created with Liberty "basic" security is
not well-known. Your browser does not recognize it.

 In Firefox, "Add an Exception" and accept the security challenge to allow access to this
website even though Firefox is warning you to be careful.

 You should now see this:

Supply the userid and password (note: these are case-sensitive):

User Name Fred

Password fredpwd

Click "Submit".

 You should now see:

Click on the "Java Batch" tool icon.

 You should now see a list of the jobs you have run to this point in the workshop.

 Take a few minutes and explore the interface. See if you can:

 View a job log (hint: the little page icon)

 See what server the job ran in (hint: hover mouse near left side of a job listing and you
should see a little down arrow appear. Click on that and a second line should appear
with the server name.)

 Modify the columns that display (hint: the little gear symbol)

 Close the browser.

© 2017, IBM Corporation 45

ZJBATCH - WebSphere Liberty Java Batch

 End of Unit 4 Lab

© 2017, IBM Corporation 46

ZJBATCH - WebSphere Liberty Java Batch

Unit 5 - Multi-JVM (or "Multi-Server")
Now we're going to separate the job submission role and the job execution role. The JSRDISP
server will act as the "dispatcher," and it'll queue job requests to an MQ queue where an "executor"
server (JSREXEC1 or JSREXEC2) will pick up the message and run the job.

Configure JSRDISP and JSREXEC1 for Multi-JVM
 Start by stopping the JSRDISP server. We do this so we have a nice, clean messages.log

file to look at. Go to =sdsf.da, set the prefix to PRE JSR* and then issue the command
/P JSRDISP to stop that server. Refresh the screen with the host enter key. You should end
up with just the Angel:

 Go to your PuTTY session and change directories to the /dropins directory of the JSRDISP
server:

cd /shared/jsrhome/servers/JSRDISP/dropins

 List the files in that directory with the command ls. You should see just one file:

SleepyBatchletSample-1.0.war

 Delete that file:

rm SleepyBatchletSample-1.0.war

The "dispatcher" won't run the application; that will take place back in one of the "executor"
servers.

 In the PuTTY session. copy in the new server.xml file:

cp /u/user1/jbatch/lab5/jsrdisp.xml

/shared/jsrhome/servers/JSRDISP/server.xml

That brought in the following new things:
 <featureManager>
 (no additions to the feature list)
 </featureManager>

 <batchJmsDispatcher
 connectionFactoryRef="batchConnectionFactory"
 queueRef="batchJobSubmissionQueue" />

 <jmsQueue id="batchJobSubmissionQueue"
 jndiName="jms/batch/jobSubmissionQueue">
 <properties.wmqJms baseQueueName="JAVA.BATCH.QUEUE"
 priority="QDEF"
 baseQueueManagerName="MQS1">
 </properties.wmqJms>
 </jmsQueue>

 (no other changes elsewhere in the server.xml)

The tag <batchJmsDispatcher> enables this server to be a "dispatcher," and the
<jmsQueue> element defines the queue on which to PUT job submission messages

© 2017, IBM Corporation 47

ZJBATCH - WebSphere Liberty Java Batch

 In your 3270 session, go to =sdsf.da and start the server with /S JSRDISP. You should
now see the Angel and the JSRDISP server:

 Let's turn our attention to the first "executor" server. We'll start by copying the SleepyBatchlet
sample application to that server's /dropins directory:

cp /u/user1/jbatch/apps/SleepyBatchletSample-1.0.war

/shared/jsrhome/servers/JSREXEC1/dropins/SleepyBatchletSample-1.0.war

 We'll copy the MQ JMS resource adapter to the server's directory:

cp /shared/mqm/V9R0M1/java/lib/jca/wmq.jmsra.rar

 /shared/jsrhome/servers/JSREXEC1/wmq.jmsra.rar

 Next, we'll copy in the updated server.xml for this executor server:

cp /u/user1/jbatch/lab5/jsrexec1.xml

/shared/jsrhome/servers/JSREXEC1/server.xml

That server.xml has a lot of JMS and MQ definitions in it, which looks a lot like the
JSRDISP server's XML. Rather than show it all15, we'll highlight three key things in the
JSREXEC1 server's server.xml file:

<batchJmsExecutor activationSpecRef="batchActivationSpec1"
 queueRef="batchJobSubmissionQueue"/>

That enabled this server to act as an "executor." And:
 <jmsActivationSpec id="batchActivationSpec1" >
 <properties.wmqJms
 destinationRef="batchJobSubmissionQueue"
messageSelector="com_ibm_ws_batch_applicationName = 'SleepyBatchletSample-1.0'"
 maxPoolDepth="1"
 :

The messageSelector tells the JMS activation specification what message to watch for and
pick up. In this case it's indicating the SleepyBatchlet application. And finally:
<jmsQueue id="batchJobSubmissionQueue"
 jndiName="jms/batch/jobSubmissionQueue">
 <properties.wmqJms baseQueueName="JAVA.BATCH.QUEUE"
 baseQueueManagerName="MQS1">
 </properties.wmqJms>
</jmsQueue>

That tells the server what MQ queue to listen on. That's the same queue the JSRDISP
dispatcher server was defined to put messages on.

 In 3270, go to =sdsf.da and start the server with /S JSREXEC1. You should now see:

15 Feel free to look at the file if you wish. Either OEDIT in z/OS, or use the WS-FTP client to "view" the file.

© 2017, IBM Corporation 48

ZJBATCH - WebSphere Liberty Java Batch

 Now you're ready to submit a job to the JSRDISP server, and have it place the job submission
message on the queue to be picked up by the JSREXEC1 server listening on that queue.

We'll do both batchManager and batchManagerZos:

batchManager

 cd /shared/zWebSphere/Liberty/V17001/bin

 ./batchManager submit --batchManager=localhost:10443 --user=Fred

--password=fredpwd --applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --trustSslCertificates --wait

Note: port 10443 is the port of the JSRDISP server, not the executor server.

 Give it 20 or 30 seconds and you should see "batchStatus":"COMPLETED"

 Look for "serverId":"localhost//shared/jsrhome/JSREXEC1" in the output to the
PuTTY screen. That tells you that executed in the JSREXEC1 server.

 Using the WS-FTP client, go to the /shared/jsrhome/servers/JSREXEC1/logs directory.
Highlight the messages.log file and click on the "View" button. At the bottom you should see:

SleepyBatchlet: process: entry
SleepyBatchlet: process: sleep for: 15
SleepyBatchlet: process: [0] sleeping for a second...
SleepyBatchlet: process: [1] sleeping for a second...
SleepyBatchlet: process: [2] sleeping for a second...
 :
SleepyBatchlet: process: [14] sleeping for a second...
SleepyBatchlet: process: exit. exitStatus: SleepyBatchlet:i=15;stopRequested=false

That's more proof it ran in the JSREXEC1 server and not the JSRDISP you submitted to.

batchManagerZos

 cd /shared/zWebSphere/Liberty/V17001/lib/native/zos/s390x

 export STEPLIB='MQ901.SCSQAUTH'

./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --queueManagerName=MQS1 --wait

 Give it 20 or so seconds and you should see "batchStatus":"COMPLETED"

 Look for "serverId":"localhost//shared/jsrhome/JSREXEC1" in the output to the
PuTTY screen. That tells you that executed in the JSREXEC1 server.

 Again, use the WS-FTP client to look at the JSREXEC1 server's messages.log file. You'll see a
second set of "SleepyBatchlet" output messages. That proves the job ran in that server and not
the JSRDISP you submitted against using batchManagerZos.

Key Point: the multi-JVM support works with either batchManager or batchManagerZos in the same
way -- the job submission message is placed on the queue, and is then picked up by whatever
executor server is listening on that queue with a message selector that matches.

Use message selector to direct job execution
We're going to start two "executor" servers; one with SleepyBatchlet, and the other with a
different application -- BonusPayout, which is a "chunk" application. We're going to show how
each server will only pick up the application it is defined to pick up based on the message
selector in the server.xml file.

© 2017, IBM Corporation 49

ZJBATCH - WebSphere Liberty Java Batch

 First, we'll copy the BonusPayout application to the /dropins directory of the JSREXEC2
server:
cp /u/user1/jbatch/apps/BonusPayout-1.0.war

/shared/jsrhome/servers/JSREXEC2/dropins/BonusPayout-1.0.war

 Next, we'll copy the MQ JMS resource adapter to the JSREXEC2 directory:

cp /shared/mqm/V9R0M1/java/lib/jca/wmq.jmsra.rar

 /shared/jsrhome/servers/JSREXEC2/wmq.jmsra.rar

 Then we'll copy the pre-built server.xml to the JSREXEC2 server:

cp /u/user1/jbatch/lab5/jsrexec2.xml

/shared/jsrhome/servers/JSREXEC2/server.xml

That is almost identical to the JSREXEC1 server.xml except for HTTP ports and the
message selector16:
 <jmsActivationSpec id="batchActivationSpec2" >
 <properties.wmqJms
 destinationRef="batchJobSubmissionQueue"
 messageSelector="com_ibm_ws_batch_applicationName = 'BonusPayout-1.0'"
 transportType="CLIENT"

 In your 3270 session, go to =sdsf.da, set the prefix to PRE JSR*, and start the server with
the command /S JSREXEC2. You should see:

 Using batchManagerZos, submit the BonusPayout job:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=BonusPayout-1.0 --jobXMLName=SimpleBonusPayoutJob.xml

--jobParameter=dsJNDI=jdbc/bonus --jobParameter=tableName=BONUSDB.ACCOUNT

--queueManagerName=MQS1 --wait

This job completes very quickly. You should see a result in just a few seconds.

 Inspect the output that comes to your PuTTY terminal. In particular, look for batch status of
COMPLETED and exit status of COMPLETED, and the server ID, which should be JSREXEC2:

INFO: CWWKY0101I: Job with instance ID xx has been submitted.

INFO: CWWKY0106I: JobInstance:
{"jobName":"","instanceId":xx,"appName":"BonusPayout-1.0#BonusPayout-
1.0.war","submitter":"","batchStatus":"STARTING","jobXMLName":"BonusPayoutJo
b.xml","instanceState":"JMS_CONSUMED","lastUpdatedTime":"2017/04/03
00:16:49.682 +0000"}

INFO: CWWKY0105I: Job with instance ID xx has finished. Batch status:
COMPLETED. Exit status: COMPLETED

INFO: CWWKY0107I: JobExecution:
{"jobName":"BonusPayoutJob","executionId":xx,"instanceId":xx,"batchStatus":"
COMPLETED","exitStatus":"COMPLETED","createTime":"2017/04/03 00:16:49.636

16 It also has additional JDBC definitions to access the BONUSDB.ACCOUNT table in DB2.

© 2017, IBM Corporation 50

ZJBATCH - WebSphere Liberty Java Batch

+0000","endTime":"2017/04/03 00:16:51.606
+0000","lastUpdatedTime":"2017/04/03 00:16:51.606
+0000","startTime":"2017/04/03 00:16:49.810 +0000","jobParameters":
{"tableName":"BONUSDB.ACCOUNT","com.ibm.ws.batch.submitter.jobId":"STC00243"
,"com.ibm.ws.batch.submitter.jobName":"USER16","dsJNDI":"jdbc/bonus"},"restU
rl":"https://192.168.17.219:12443/ibm/api/batch","serverId":"localhost//shar
ed/jsrhome/JSREXEC2","logpath":"/shared/jsrhome/servers/JSREXEC2/logs/joblog
s/BonusPayoutJob/2017-04-03/instance.xx /execution.xx /","stepExecutions":
[{"stepExecutionId":xx,"stepName":"generate","batchStatus":"COMPLETED","exit
Status":"COMPLETED"},
{"stepExecutionId":xx,"stepName":"addBonus","batchStatus":"COMPLETED","exitS
tatus":"COMPLETED"},
{"stepExecutionId":xx,"stepName":"validation","batchStatus":"COMPLETED","exi
tStatus":"1000"}]}

Use Case: You've just seen one use case for the Multi-JVM design: the ability to submit jobs through a
common Dispatcher and have it run in the specific server where the batch job is hosted.

Next we're going to see another use-case: directing job submission to a specific server based
on a job parameter you supply.

Use compound message selector
 We're going to have JSREXEC2 host both SleepyBatchlet and BonusPayout. So issue the

following command to copy SleepyBatchlet to that server's /dropins directory:

cp /u/user1/jbatch/apps/SleepyBatchletSample-1.0.war

/shared/jsrhome/servers/JSREXEC2/dropins/SleepyBatchletSample-1.0.war

 Copy in a new server.xml to the JSREXEC1 server:

cp /u/user1/jbatch/lab5/jsrexec1_2.xml

/shared/jsrhome/servers/JSREXEC1/server.xml

The message selector is now:
messageSelector="com_ibm_ws_batch_applicationName =
 'SleepyBatchletSample-1.0' AND jobPriority = '1'"

This will only pick up messages for SleepyBatchlet where a job parameter of jobPriority
is set to the value '1'.

 Copy in a new server.xml to the JSREXEC2 server:

cp /u/user1/jbatch/lab5/jsrexec2_2.xml

/shared/jsrhome/servers/JSREXEC2/server.xml

The message selector is now:
messageSelector="(com_ibm_ws_batch_applicationName =
 'SleepyBatchletSample-1.0' AND NOT jobPriority = '1')
 OR com_ibm_ws_batch_applicationName = 'BonusPayout-1.0'"

This will pick up a BonusPayout job submission or any SleepBatchlet submission where
jobPriority is other than 1 (but it can't be omitted: if not present, the message won't be
picked up by either server).

 Enter the following job submission command:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml

--queueManagerName=MQS1 --jobParameter=jobPriority=1 --wait

Inspect the output and look for the server ID. You'll see that went to JSREXEC1. That's

© 2017, IBM Corporation 51

ZJBATCH - WebSphere Liberty Java Batch

because the jobParameter of jobPriority=1 was specified.

 Now enter the following job submission command:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml

--queueManagerName=MQS1 --jobParameter=jobPriority=2 --wait

You'll find that goes to JSREXEC2. That's because the jobPriority value is not 1, but rather it
is jobPriority=2.

 Finally, enter the following job submission command:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=BonusPayout-1.0 --jobXMLName=BonusPayoutJob.xml

--jobParameter=dsJNDI=jdbc/bonus --jobParameter=tableName=BONUSDB.ACCOUNT

--queueManagerName=MQS1 --wait

That goes to JSREXEC2 because the job is BonusPayout, and that's only being selected for
in the server.xml of that server.

 End of Unit 5 Lab

© 2017, IBM Corporation 52

ZJBATCH - WebSphere Liberty Java Batch

Unit 6 - Security
Return the environment to the essentials

To keep the spotlight on the essentials, we're going to return the environment to just servers
JSRDISP and JSREXEC1. The message selector in JSREXEC1 will be simple: selecting just on
the application name for SleepyBatchlet.

 In your 3270 session, go to =sdsf.da, set the prefix to PRE JSR*, and then stop all three
servers:

 /P JSRDISP

 /P JSREXEC1

 /P JSREXEC2

 In your PuTTY session, copy server.xml files over to the two servers:

cp /u/user1/jbatch/lab6/jsrdisp.xml

 /shared/jsrhome/servers/JSRDISP/server.xml

and

cp /u/user1/jbatch/lab6/jsrexec1.xml

/shared/jsrhome/servers/JSREXEC1/server.xml

 Go back to your 3270 session and start both servers:

 /S JSRDISP

 /S JSREXEC1

 Now check to make sure things still work as it did before:

Admin Console

 Open a browser and go to http://wg31.washington.ibm.com:10080/adminCenter/

 Accept the security challenge caused by the self-signed certificate

 Log on with ID of Fred and password of fredpwd (case sensitive values)

 Log off (upper right corner "person" icon) and close the browser.

batchManager

 In the PuTTY session: cd /shared/zWebSphere/Liberty/V17001/bin

 Also in PuTTY: export JAVA_HOME=/shared/java/J8.0_64/

 And then in PuTTY:
./batchManager submit --batchManager=localhost:10443

--user=Fred --password=fredpwd

--applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --trustSslCertificates --wait

 Wait 30 or so seconds, then look for
Batch status: COMPLETED. Exit status: COMPLETED

batchManagerZos

 In PuTTY: export STEPLIB='MQ901.SCSQAUTH'

 In PuTTY: cd /shared/zWebSphere/Liberty/V17001/lib/native/zos/s390x

© 2017, IBM Corporation 53

ZJBATCH - WebSphere Liberty Java Batch

 In PuTTY:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

 --applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --wait --queueManagerName=MQS1

 Wait 20 or so seconds, then look for
Batch status: COMPLETED. Exit status: COMPLETED

You have verified the essentially workings of a Multi-JVM topology with basic security.

batchManagerZos: SAF authentication and authorization
We're going to start with this because this is the easiest: it does not involve SSL and certificates.

 Go to =3.4, list the data set USER1.JBATCH.JCL, then place a b (for browse) next to the
data set to browse.

 Then submit the LAB6A member:

That (a) creates a SAF ID of FRED with password FREDSAF, (b) creates the Java batch
EJBROLE profiles and grants FRED to batchAdmin; (c) grants FRED read to the CBIND so
that ID can use WOLA.

 Copy an updated server.xml to the JSRDISP server:

cp /u/user1/jbatch/lab6/jsrdisp_2.xml

 /shared/jsrhome/servers/JSRDISP/server.xml

That updated included the following added and removed:
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 <feature>adminCenter-1.0</feature>
 <feature>zosSecurity-1.0</fature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <safRegistry id="saf" />
 <safAuthorization racRouteLog="ASIS" />
 <safCredentials profilePrefix="BBGZDFLT" />

 <basicRegistry id="basic1" realm="jbatch">
 <user name="Fred" password="fredpwd" />
 </basicRegistry>

 <authorization-roles id="com.ibm.ws.batch">
 <security-role name="batchAdmin">
 <special-subject type="EVERYONE"/>
 <user name="Fred" />
 </security-role>
 </authorization-roles>

© 2017, IBM Corporation 54

ZJBATCH - WebSphere Liberty Java Batch

 <administrator-role>
 <user>Fred</user>
 </administrator-role>

 Copy in the updated server.xml for the JSREXEC1 server:

cp /u/user1/jbatch/lab6/jsrexec1_2.xml

 /shared/jsrhome/servers/JSREXEC1/server.xml

The changes there are essentially the same as for the other XML you copied in.

 Open up a second PuTTY session and log on as FRED with a password of FREDSAF.

 Enter the following two commands to get ready to use batchManagerZos:

 cd /shared/zWebSphere/Liberty/V17001/lib/native/zos/s390x

 export STEPLIB='MQ901.SCSQAUTH'

 Enter the following command to test FRED's ability to use WOLA17:
./batchManagerZos ping --batchManager=LIBERTY+BATCH+MANAGER

If successful, that should respond with nothing ... just the prompt.

 You're ready to submit a batchManagerZos command under the ID of FRED:
./batchManagerZos submit --batchManager=LIBERTY+BATCH+MANAGER

--applicationName=SleepyBatchletSample-1.0 --jobXMLName=sleepy-batchlet.xml

--wait --queueManagerName=MQS1

If you wait the usual 20 or so seconds for SleepyBatchlet to complete, you should see the
"COMPLETED" message.

 Enter the command exit into the PuTTY session you started with the FRED ID. That will
close the session.

Validation? How do we know it was actually FRED that submitted that job? You can see in the output:
"submitter":"FRED"

(When using WOLA, the ID used is the ID under which the batchManagerZos client is
operating. In this case you logged into PuTTY with FRED, so FRED was the ID used.)

How do we know we went to SAF for authorization? The server.xml has no knowledge
of FRED any more, nor any knowledge of what FRED is authorized to do. We removed all
that from the server.xml. The XML now points to SAF. It went to SAF to check that
FRED was a valid ID.

Finally, we know FRED has access to the EJBROLE because if that ID did not have access
you would have received an error trying to submit the command:
CWWKY0304W: User FRED is not authorized to start batch jobs

You didn't see that, so FRED has access to the EJBROLE.

17 This is really a test of FRED's access to the CBIND profile that protects against unauthorized use of WOLA against a
server, based on the WOLA "three-part name" for that server.

© 2017, IBM Corporation 55

ZJBATCH - WebSphere Liberty Java Batch

AdminCenter + batchManager: SAF authentication and authorization
When it comes to SAF authentication and authorization, the AdminCenter and batchManager are
very similar to one another. We're leaving SSL off the table for now. We'll pick that up to end this
lab.

 Go to the USER1.JBATCH.JCL data set and submit the LAB6B member.

Notes: That job creates the unauthenticated group and guest, the APPL profile, and two EJBROLE
profiles. Feel free to browse the member if you'd like.

That job assumes the LAB6A job was run. Notably: the FRED user ID, and the Java Batch
authorization EJBROLE profiles.

 Try the AdminCenter:

 Open a browser and go to:
http://wg31.washington.ibm.com:10080/adminCenter/

 Accept any security challenges you receive. (We have not yet changed out the SSL certificate, so
for now the browser is complaining just as it was before.)

 Try to log in with the previous ID/PW value of Fred and fredpwd. You should get an error:
"Login error: unrecognized user name and/or password." That's because the password "fredpwd"
is what we used when it was "basic security." Fred now has a SAF password of FREDSAF.

 Now log in with FRED and FREDSAF. That should succeed. That ID/PW combination is defined in
SAF, and it has access to the "Administrator" role required to access the AdminCenter.

 Log off the AdminCenter and close the browser.

 Go to your remaining PuTTY session. Enter the command whoami to confirm that is the one
logged in with the USER1 ID.

 Enter the command: cd /shared/zWebSphere/Liberty/V17001/bin

 Now enter the job submission command:
./batchManager submit --batchManager=localhost:10443

--user=FRED --password=FREDSAF --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml --trustSslCertificates --wait

Note the ID and password ... this is the new FRED/FREDSAF combination.

That should result in: Batch status: COMPLETED. Exit status: COMPLETED

AdminCenter + batchManager: SAF Keyrings and SSL
We're going to layer on the final piece of this -- pushing the SSL certificate down into SAF
keyrings. The "certificate authority" we are going to use is RACF-generated, so it still won't be
recognized by a browser. In the "real world" you would sign your server certificate with a well-
known certificate authority.

 In your 3270 session, go to USER1.JBATCH.JCL and submit the job LAB6C.

That job (a) generates a CA certificate and a server certificate; (b) signs the server cert with
the CA cert; (c) creates a server keyring and a client keyring; (d) connects the certs to the
keyrings; and (d) gives the server ID and client ID the ability to access the certificates.

 In your PuTTY session, copy the new server.xml over to the JSRDISP server:

cp /u/user1/jbatch/lab6/jsrdisp_3.xml

/shared/jsrhome/servers/JSRDISP/server.xml

© 2017, IBM Corporation 56

ZJBATCH - WebSphere Liberty Java Batch

The following were added and removed by that copy operation:
 <featureManager>
 <feature>servlet-3.1</feature>
 <feature>batch-1.0</feature>
 <feature>batchManagement-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosLocalAdapters-1.0</feature>
 <feature>wmqJmsClient-2.0</feature>
 <feature>adminCenter-1.0</feature>
 <feature>zosSecurity-1.0</feature>
 <feature>ssl-1.0</feature>
 </featureManager>

 <keyStore id="defaultKeyStore" password="Liberty"/>

 <sslDefault sslRef="DefaultSSLSettings" />
 <ssl id="DefaultSSLSettings"
 keyStoreRef="CellDefaultKeyStore"
 trustStoreRef="CellDefaultTrustStore" />
 <keyStore id="CellDefaultKeyStore"
 location="safkeyring:///Keyring.SERVER"
 password="password" type="JCERACFKS"
 fileBased="false" readOnly="true" />
 <keyStore id="CellDefaultTrustStore"
 location="safkeyring:///Keyring.SERVER"
 password="password" type="JCERACFKS"
 fileBased="false" readOnly="true" />

 <safRegistry id="saf" />
 <safAuthorization racRouteLog="ASIS" />
 <safCredentials profilePrefix="BBGZDFLT" />

 Copy the new server.xml for the JSREXEC1 server as well:

cp /u/user1/jbatch/lab6/jsrexec1_3.xml

/shared/jsrhome/servers/JSREXEC1/server.xml

The updates for that are the same as we saw for JSRDISP.

 Open a Firefox18 browser and go to:

http://wg31.washington.ibm.com:10080/adminCenter/

You will be challenged because the authority that signed the server certificate is not a well-
known authority. We expected that. Click on the "Add Exception" button:

18 Firefox makes it easier to inspect the certificate. Chrome makes it more challenging.

© 2017, IBM Corporation 57

ZJBATCH - WebSphere Liberty Java Batch

 Click on the "View" button to view the certificate:

You should see:

That verifies the SAF-certificate is being used and not the previous Liberty-generated one.

 Click the "Close" button on the certificate view, then click "Confirm Security Exception" button:

 Then click the "Add Exception" button. You should be taken to the AdminCenter login panel.

 Log in with FRED and FREDSAF. You should gain entry, just as you did before.

 Close the browser.

 Go to your PuTTY session. Enter whoami to confirm the active ID is USER1. That's important
because the keyring that holds the CA certificate is connected to the USER1 ID.

Note: If the ID that returns from whoami is FRED, then close the PuTTY session.

If the ID that returns from whoami is JSRSERV, then it means you're still operating under
JSRSERV from when you "switched users" to that ID earlier. Enter exit to return to the
original USER1 ID.

© 2017, IBM Corporation 58

ZJBATCH - WebSphere Liberty Java Batch

 For batchManager to understand that it must go to a SAF keyring to get the CA certificate so it
can trust the server certificate, you must enter a very long JVM_ARGS string.

Note: get this string from the Lab Commands file. Copy and paste this command.
export JVM_ARGS="-Djavax.net.ssl.trustStore=safkeyring://USER1/Keyring.CLIENT

-Djavax.net.ssl.trustStoreType=JCERACFKS

-Djavax.net.ssl.keyStore=safkeyring://USER1/Keyring.CLIENT

-Djavax.net.ssl.keyStoreType=JCERACFKS

-Dcom.ibm.ssl.keyStoreFileBased=false

-Dcom.ibm.ssl.trustStoreFileBased=false

-Djava.protocol.handler.pkgs=com.ibm.crypto.provider

-Djavax.net.ssl.keyStorePassword=password"

 Now you can enter the batchManager command:
./batchManager submit --batchManager=wg31.washington.ibm.com:10443

--user=FRED --password=FREDSAF --applicationName=SleepyBatchletSample-1.0

--jobXMLName=sleepy-batchlet.xml --wait

Note two things:

1. The host name is no longer "localhost" but rather than host name of the z/OS system. That's
because that's the host name that's part of the server certificate.

2. The --trustSslCertificates parameter is no longer present. That's what we used before
to get by the untrusted nature of the Liberty-generated self-signed certificate. With that
removed, we're telling the client to validate the certificate. It can do that if it knows about the
SAF keyring where the CA certificate is stored.

You should see the job get submitted and run to completion.

 End of Unit 6 Lab
And End of Document

© 2017, IBM Corporation 59

