

WebSphere Application Server

WebSphere Liberty Batch –
Monitoring a Chunk Step

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP102780 under the category of "White Papers"

Version Date: December 4, 2018
See "Document change history" on page 9 for a description of the changes in this version of the document

IBM Software Group
Application and Integration Middleware Software

Written by:

David Follis
IBM Poughkeepsie

845-435-5462
follis@us.ibm.com

Don Bagwell
IBM Advanced Technical Sales

301-240-3016
dbagwell@us.ibm.com

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 2 - Version Date: Tuesday, December 04, 2018

Many thanks go to Scott Kurz, Don Bagwell, and the
various customers who commented/tried this out..

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 3 - Version Date: Tuesday, December 04, 2018

Contents
Introduction ... 4
Configuration .. 4
The Chunk Output ... 6
The Iteration Output .. 7
Conclusion .. 8
Document change history ... 9

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 4 - Version Date: Tuesday, December 04, 2018

Introduction
So you’ve got a Java Batch job and it is taking longer to run than you think it should. What
to do? Well, first have a look at the job log and find the start and end messages for each
step and look at the timestamps. The whole job might be slow, but there’s probably one
step that catches your eye as being the source of the long-running job problem.
If that step is a batchlet, well, there’s not much you can do except open the application up
and have a look inside to see what is going on in there. You might have to insert some
debug/print statements or something else depending on what is going on. But, if the step is
a chunk step, there is a way to get more information without having to touch the application
itself.
A chunk step supports a whole set of Listener interfaces that can get control at various
points in the processing of a chunk step. Remember that a chunk step basically does read-
item/process-item in a loop until it reaches a checkpoint and then writes the results,
committing those results and any checkpoint data. Implementing the listeners gives you
the ability to “watch” the reads, processing, and writes take place and observe how long
each one takes.
This paper describes a sample of a Java class that implements the Reader, Processor,
Writer, Chunk, and Step listeners. The class collects time (and maybe CPU) data along the
way and reports it in a comma-separated-value format so you can do analysis with your
favorite spreadsheet application.
I’m not going to go into the details of the code here. There are plenty of comments (or at
least I think so : -) in the code itself for that. This paper is intended to be more of a User’s
Guide.
The sample itself is located here:

https://github.com/WASdev/sample.batch.misc

Configuration
JSR-352 supports a lot of different Listener interfaces, but in the JSL where you specify a
listener to be invoked, you just tell it the package and class of the listener. The batch
container figures out at runtime which Listener interfaces the class implements and drives
the right methods at the right time. That’s pretty nice because if you have a listener that
implements several interfaces you don’t have to list it in the JSL for each one. That’s really
nice for our sample because it implements five different Listener interfaces. And because a
listener can be implemented more than once, adding this listener won’t interfere with any
application implementations of the same listeners.
To start out then, all we need to do is find the JSL for the chunk step we want to gather data
about and add this block inside the <step> block.

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 5 - Version Date: Tuesday, December 04, 2018

<listeners>

 <listener ref=”com.ibm.websphere.samples.batch.artifacts.ChunkTimeListener”>

</listeners>

That will do it, but the listener supports a few parameters you should specify. The
parameters are:

Parameter Comments
outputDir This is the absolute path where you want the two output files to be

produced. If not specified, no files are produced.
writeAt Either “ChunkEnd” or “StepEnd” depending when you want data

written
logToJoblog Set to true or false to indicate if information should be written to the

joblog, possibly in addition to the files produced in the outputDir

The intended approach was that you would specify an outputDir and the results are
produced in ChunkData and IterationData comma separated value files. The file names
will contain prefixes include the job name, execution id, and step name to avoid collisions
with other jobs or previous runs of this job. A review of the contents of the files are in a
later section of this paper.
You can choose to have data written at the end of each chunk or at the end of the step.
Waiting until the end of the step avoids the overhead of writing the data as the step
progresses, but could produce a lot of in-memory data that could impact heap usage in a
bad way. ChunkEnd is probably preferable.
When developing the listener, we first had the output going to the job log in a human-
readable format. After adding the .csv file support, we decided to keep the joblog output as
an option in case it was easier to understand the data if it was mixed in with other
messages logged by the application itself.
Finally, it might be helpful to externalize these settings as Job Parameters that can be set
by the submitter of the job. A sample is shown below.

<listeners>

 <listener ref="com.ibm.websphere.samples.batch.artifacts.ChunkTimeListener">

 <properties >

 <property name="outputDir" value="#{jobParameters['outputDir']}"/>

 <property name="writeAt" value="#{jobParameters['writeAt']}?:ChunkEnd;"/>

 <property name="logToJoblog" value="#{jobParameters['logToJoblog']}?:false;"/>

 </properties>

 </listener>

</listeners>

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 6 - Version Date: Tuesday, December 04, 2018

The Chunk Output
The first file produced by the listener is a summary for each chunk processed. The output
can be in two forms, depending on whether CPU data is available. If it isn’t, those columns
are left out. Here’s a sample of a few rows of the table without CPU data:

Chunk WriteTMillis ChunkTMillis Reads ReadErr Processes ProcessErr
1 90 705 5 0 5 0
2 98 800 5 0 5 0
3 53 756 5 0 5 0
4 64 774 5 0 5 0
5 85 748 5 0 5 0

The table shows data for the first five chunks processed by a sample run of some chunk
step. You can see that the ‘write’ operation for each chunk took between 50 and 98
milliseconds. The overall time for the chunk ranged between 700 and 800 milliseconds.
Each chunk read and processed five records with no exceptions from the reader or
processor.
Loading this data into a spreadsheet (with a lot more rows from a real application) will allow
you to easily average and find min and max values.
It is important to note that use of advanced error handling features like skip, retry, and retry-
rollback will affect how this data looks. Non-zero values in the error columns combined with
a knowledge of how the job handles errors will be required to understand the data. But
presumably if you are tuning performance for an application, you are less worried about the
error cases than the normal mainline path. The error counts are mostly here to allow you to
know something odd happened in this chunk.
If CPU data is available, the table will contain extra columns. Here’s a sample:

Chunk WriteTMillis WriteCPUMicro ChunkTMillis ChunkCPUMicro Reads ReadErr Processes ProcessErr
1 1 11 5 1437 5 0 5 0
2 2 14 10 1473 5 0 5 0
3 0 4 9 1534 5 0 5 0
4 1 11 7 1449 5 0 5 0

Note that write and total chunk CPU times are in microseconds while elapsed times are in
milliseconds.

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 7 - Version Date: Tuesday, December 04, 2018

The Iteration Output
The Iteration report produces information about each pass through the read/process cycle
within each chunk. As noted under the Chunk Output, errors and error handling might
complicate this picture.
We’ll start with sample output that does not include CPU data:

Chunk Iter ReadTMillis ProcessTMillis
1 1 56 59
1 2 37 55
1 3 55 93
1 4 98 32
1 5 80 50
2 1 66 71
2 2 37 51
2 3 66 98
2 4 95 28
2 5 91 99

The chunk numbers will match the chunk numbers seen in the Chunk Output. If a
particular chunk took extra long, you can find the details in the Iteration Output and see
where the time was spent.
The iteration numbers count each pass through the read/process loop and you can see the
counts of five passes match the read/process counts from the Chunk Output. The last two
columns provide the elapsed time, in milliseconds, spent in the reader and processor.
And here is some sample data that includes CPU time:

Chunk Iter ReadTMillis ReadCPUmicro ProcessTMillis ProcessCPUmicro

1 1 0 5 0 4
1 2 0 3 1 10
1 3 0 3 0 1
1 4 0 2 0 1
1 5 0 3 2 14
2 1 1 11 0 2
2 2 2 12 0 2
2 3 0 3 0 1
2 4 1 12 2 11
2 5 0 3 1 10

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 8 - Version Date: Tuesday, December 04, 2018

Conclusion
The Chunk Time Listener is a handy way to add some metrics into a chunk step without
having to touch the application itself. The data, perhaps combined with a bit of logging
from the application about what was going on in each iteration, might make help identify
performance bottlenecks that are dramatically adding to the execution cost of a chunk step.

WP102780 – Monitoring a Chunk Step

© 2018, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 9 - Version Date: Tuesday, December 04, 2018

Document change history
Check the date in the footer of the document for the version of the document.

December 3, 2018 Initial Version

December 4, 2018 Add document number

End of WP102780

