
*IBM Confidential*

IBM Software Group Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

IBM WebSphere® Data Interchange V3.3

Architecture of the WebSphere Data 
Interchange data transformation

This presentation will describe the WebSphere Data Interchange Data Transformation 
architecture.



*IBM Confidential*

IBM Software Group Page 2 of 14

IBM Software Group

2

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Agenda

� Describe message flow

� Describe WebSphere Data Interchange message flow

� Identity data transformation components

� WebSphere Data Interchange parsers and serialization

� Describe delayed enveloping flow

� Describe delayed translation flow

� Document store and optional records 

The presentation will describe message flow, the WebSphere Data Interchange message flow, 
identify data transformation components, and review processing options. 



*IBM Confidential*

IBM Software Group Page 3 of 14

IBM Software Group

3

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation architecture 

� Message flows 

� Simple or complex

� One input message to multiple outputs

� Processing nodes

� Receives source message

� Creates target message

� Messages are in abstract form  

� A message broker is a set of execution environments hosting services 
to handle the message traffic.

Message flows can range from the very simple, performing just one action 
on a message, to the complex, providing a number of actions on the 
message to transform its format and content. A message flow can process 
one message in several ways to deliver a number of output messages, 
perhaps with different format and content, to a number of target applications.

The other nodes between input and output provide the actions you want 
taken against the messages.  Each node receives the source message and 
creates a target message.  The source and target messages are 
represented in an abstract form using an Abstract Message Model (AMM). 

A message broker is a set of execution environments hosting services to 
handle the message traffic.



*IBM Confidential*

IBM Software Group Page 4 of 14

IBM Software Group

4

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

WebSphere Data Interchange message flow 

Output Data

Logical Message

Adapter

LMA

Transaction 

Store Services

WDI 

Utility

PERFORM 

TRANSFORM

WHERE SYNTAX(?)

TRANSFORM

Data Transformation

Utility

Input

Message Output message

Input message  Input Data

Document

Store

WDI Message

Broker

MB

The WebSphere Data Interchange Utility parses the PERFORM command 
and determines what process to call.  The Utility component ID is FF and it 
logs messages beginning with FF.

With PERFORM TRANSFORM command, the Data Transformation (DT) 
Utility is called to parse the input data into messages based on syntax.  The 
Data Transformation Utility calls the Logical Message Adapter (LMA) to read 
the input data and parse out 1 logical input message.  It does setup for the 
Message Broker (MB) including PERFORM keyword options, Document 
Store active. And passes EACH logical message to the Message Broker for 
processing.  

The Message Broker  initializes the message flow for processing and creates 
and initializes the source Logical Message and the source document 
properties in the Abstract Message (AMM).   The Message Broker also, 
causes the Target Abstract Message (output message) to be serialized to 
output and calls Transaction Store Services to make the Document Store 
updates. The Message Broker component ID is MB and it logs messages 
beginning with MB.



*IBM Confidential*

IBM Software Group Page 5 of 14

IBM Software Group

5

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

WebSphere Data Interchange message flow

� Data transformation processing

� The logical message adapter reads the input data and parses out 1 

logical message based on SYNTAX() keyword

� EDI source SYNTAX(E).  A logical message is 1 interchange

� Data Format or DF source SYNTAX(D)  

�Uses the DF metadata (control string) to identify the beginning or 

end of a logical message  

�Also returns partner identification fields 

� XML source SYNTAX(X).  Uses the “<?xml” in the input file to identify 

a logical message

The SYNTAX keyword is required with the PERFORM TRANSFORM 
command.  Syntax E is EDI source and a logical message is one 
interchange.  Syntax D is application data or DF source and a logical 
message is identified in the metadata definition.  Syntax X is XML source 
and a logical message is identified by the beginning of the XML prologue.



*IBM Confidential*

IBM Software Group Page 6 of 14

IBM Software Group

6

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

WebSphere Data Interchange message flow

WDI Message

Broker

MB

Input

Message

Root

Properties MQMD MQRFH2 Body

Normal 

Message

Flow

TRANSFORM ENVELOPE(Y)

De-Envelope

Rules

Validate

Transform

Transform FA

Validate

Envelope

Envelope FA

Processing Nodes

AMM Interface

A Normal Message Flow is the message flow for a translate and envelope process as 
opposed to delayed enveloping processing.  It defines the processing NODES for the 
message. All processing nodes create and update information for the Document Store and 
optional record processing.  Each node also has a source abstract message and propagate 
a target abstract message for the next processing node.



*IBM Confidential*

IBM Software Group Page 7 of 14

IBM Software Group

7

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� De-envelope – Uses input message syntax and assigns appropriate de-
enveloper  

�Message navigation causes the input message to be parsed into the 
Source Abstract Message  

�Navigates the source AMM and sets the Source document properties
in the AMM Properties folder  

�Propagate the Source AMM for the Rules node Component is EVxxx.  
Logs messages EVnnnn

• Data Format (DF) – module EDIEVADF  

• XML – module EDIEVXML

• EDI (Support for X12, EDIFACT, UNTDI, and UCS).. Modules 
EDIEVX12, EDIEVFAC, EDIEVTDI, EDIEVUCS)

The De-Envelope node uses the input message syntax and assigns the 
appropriate de-enveloper.  Abstract message navigation causes the input 
message to be parsed into the Source Abstract Message (AMM).  The 
deenveloper navigates the source abstract message and sets the Source 
document properties in the Abstract Message Properties folder and  
propagates the Source Abstract Message for the Rules node.  The De-
Envelope node component is EV and it logs messages beginning with EV.



*IBM Confidential*

IBM Software Group Page 8 of 14

IBM Software Group

8

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� Rules – Uses the source document properties and performs 
the rules lookup to identify the DT mapping

� Propagate the source abstract message for the validate node

� Component is RULxxx.  Module EDIRUICL.  Logs messages 

RUnnnn

� Validate - Validates the source abstract message using the 

source metadata definition (control string)

� executes and processes results from a Validation map

� creates target abstract message for the functional acknowledgment

� propagate the source abstract message for the Transform node.  
Component is VAxxx.  Module EDIVAICL.  Logs messages TRnnnn

The Rules node uses the Source document properties and performs the 
Data Transformation (DT) Rules lookup to identify the Data Transformation 
mapping to be used and any Rule information for the Target message.  The 
Rules node propagates the Source Abstract Message for the Validate node.  
The Rules component is RU, the module name is EDIRUICL, and it logs 
messages beginning with RU.

The Validate node validates the Source Abstract Message using the source 
metadata definition, executes and processes results from a Validation map, 
creates the target Abstract Message for functional acknowledgment 
processing, and propagates the Source Abstract Message for the Transform 
node.  If functional acknowledgment processing is identified, the target 
Abstract Message for the acknowledgment is propagated to the Transform 
node to execute the mapping commands for the functional acknowledgment 
map.  The Validate node component is VA, the module name is EDIVAICL, 
and it logs messages beginning with TR. 



*IBM Confidential*

IBM Software Group Page 9 of 14

IBM Software Group

9

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� Transform – Reads the mapping metadata (control 
string)

� Navigates the source abstract message

� executes mapping commands

� creates the target abstract message

� Propagate the target abstract message for the Validate 
node

� Component is EDIUTxxx.  Module EDIUTCNI.  Logs 
messages UTnnnn

The Transform node reads the Data Transformation mapping metadata or 
mapping control string, navigates the Source Abstract Message, executes 
mapping commands, creates the Target Abstract Message and propagates 
the Target Abstract Message for the Validate node.  The Transform 
component is UT, the module name is EDIUTCNI, and it logs messages 
beginning with UT.



*IBM Confidential*

IBM Software Group Page 10 of 14

IBM Software Group

10

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� Validate - Validates the target message using the target metadata 
definition (control string) 

� executes and processes results from a validation map

� propagate the target message for the envelope node

� Component is VAxxx.  Module EDIVAICL.  Logs messages TRnnnn

The Validate node validates the Target Abstract Message using the target 
metadata definition, executes and processes results from a Validation map, 
and propagates the Target Abstract Message for the Envelope node.



*IBM Confidential*

IBM Software Group Page 11 of 14

IBM Software Group

11

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� Envelope - Uses output message syntax and assigns appropriate 
enveloper

� Navigates the target message and adds enveloping data to the 

target message

� Propagate the target message for the Message Broker.  Component

is EVxxx.  Logs messages EVnnnn

• Data Format (DF) – module EDIEVADF  

• XML – module EDIEVXML

• EDI (Support for X12, EDIFACT, and UCS).. Modules 
EDIEVX12, EDIEVFAC, EDIEVUCS)

The Envelope node uses output message syntax and assigns the 
appropriate enveloper.  The Envelope node navigates the Target Abstract 
Message, adds enveloping data, and propagates the Target Abstract 
Message  for the Message Broker (MB).  The Envelope node component is 
EV and it logs messages beginning with EV.



*IBM Confidential*

IBM Software Group Page 12 of 14

IBM Software Group

12

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Data transformation processing

� Transform functional acknowledgment – reads the functional 
acknowledgment mapping metadata (control string)

� Navigates the source message

� executes mapping commands

� creates the target message

� Propagate the target message for the enveloper node.  Component

is EDIUTxxx.  Module EDIUTCNI.  Logs messages UTnnnn

� Envelope functional acknowledgment – Same as the envelope node

The Transform Functional Acknowledgment is the Transform node.  It reads 
the Data Transformation Functional Acknowledgment mapping metadata or 
control string, navigates the Source Abstract Message, executes mapping 
commands, and creates the Target Abstract Message.  The Transform node 
propagates the Target Abstract Message for the Enveloper node to envelope 
the Functional Acknowledgment.



*IBM Confidential*

IBM Software Group Page 13 of 14

IBM Software Group

13

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Parsers 

� PARSERS – The de-envelope node causes the input message to be 
parsed 

� Source SYNTAX a parser is assigned to the abstract message

�EDI parser – Reads the standard metadata definition (control string), 

� Parses the input message and creates the source abstract 
message.  Component is EDIPARSER, EDIUPECM.  Module is 
EDIUPEDI.  Logs messages UPnnnn

�Data format parser – Reads the metadata definition (control string)

� Parses the input message and creates the source abstract 
message.  Component is EDIUPADF, EDIUPACM.  Module is 
EDIUPADF.  Logs messages UPnnnn

�XML parser – Sends the input buffer to XML tool kit for parsing.  The 
XML tool kit sends each piece of data back to the parser  

� The parser creates the source abstract message from each 
piece.  Component is EDIUPAMM, EDIUPXML.  Module is 
EDIUPAMM.  Logs messages UPnnnn

Parsers are used to parse the source data. All parsers use the WebSphere 
Data Interchange abstract message interface and create the source abstract 
message.  The De-envelope node causes the input message to be parsed.  
Based on the source SYNTAX a parser is assigned to the abstract message 
(AMM).  All parsers use the Abstract Message interface and create the 
source abstract message.  The Parsers component is UP and they log 
messages beginning with UP.



*IBM Confidential*

IBM Software Group Page 14 of 14

IBM Software Group

14

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Serialization 

� Serialization – The message broker causes the target message to be 
serialized to an output buffer 

� target SYNTAX a parser is assigned to the abstract message

�EDI serialization – Component is EDIPARSER, EDIUPECM  

� Module is EDIUPEDI.  Function is ediwritebuffer.  Logs 
messages UPnnnn

�Data format serialization – Component is EDIUPADF, EDIUPACM  

� Module is EDIUPADF.  Function is adfwritebuffer Logs 
messages UPnnnn

�XML serialization – Component is EDIUPAMM, EDIUPXML, 
EDIEXWRT.  

� Module is EDIUPAMM.  Function is ammwritebuffer.  Logs 
messages UPnnnn

The Message Broker causes the Target abstract message to be serialized to 
an output buffer. All parsers contain some kind of writebuffer function and 
use the WebSphere Data Interchange abstract message interface to
navigate the target abstract message.   Based on the target SYNTAX a 
parser is assigned to the abstract message (AMM).  



*IBM Confidential*

IBM Software Group Page 15 of 14

IBM Software Group

15

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Delayed enveloping 

WDI Transaction 

Store Services

TS

Input

Message

Root

Properties MQMD MQRFH2 Body

Message

Flow

TRANSFORM INTYPE(ST)

DIR(S)

GetStore

AMM Interface

GetStore

Envelope
Document

Store

AMM Interface

WDI Message

Broker

MB

With delayed enveloping, the Data Transformation Utility gathers information 
about the messages to be enveloped based on selection criteria and passes 
the information to the Message Broker.  The Message Broker initializes the 
message flow with two processing nodes, GetStore and Envelope.  The 
GetStore node calls Transaction Store services to gather the messages to
be enveloped.  It creates the input message and the Abstract Message 
Properties for the delayed enveloping.  The Abstract Message is propagated 
for the Envelope Node and the message flow continues along the normal 
message flow.  



*IBM Confidential*

IBM Software Group Page 16 of 14

IBM Software Group

16

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Delayed translation 

WDI Message

Broker

MB Input

Message

Root

Properties MQMD MQRFH2 Body

Message

Flow

TRANSFORM INTYPE(ST)

DIR(R)

GetStore

AMM Interface

GetStore

De-Envelope

Rules

Transform

Validate

Envelope

Document 

Store

AMM Interface

WDI Transaction 

Store Services

TS

With delayed translation, the Data Transformation Utility gathers information 
about the messages to be translated or transformed based on selection 
criteria and passes the information to the Message Broker.  The Message 
Broker initializes the message flow with the GetStore, De-Envelope, 
Transform, Validate and Envelope  processing nodes. The GetStore node 
calls Transaction Store services to gather the messages to be translated.  It 
creates the input message and the Abstract Message Properties for the 
delayed translation.  The Abstract Message is propagated for the De-
Envelope Node and the message flow continues along the normal message 
flow.



*IBM Confidential*

IBM Software Group Page 17 of 14

IBM Software Group

17

© 2007 IBM CorporationArchitecture of the WebSphere Data Interchange data transformation

Document store and optional records

� Document store – The processing nodes that create the 
information stored in document store

� interface to create the information 

�passed back to the message broker.  Component is TSUPD, 
TSUTL.  Module is EDIDTUTL.  Logs messages TSnnnn

� Optional records – The processing nodes that create the 
information needed to produce optional records 
� interface to create the information 

�passed back to the message broker.  Component is EDIOPUPD, 
EDIOPUTL.  Module is EDIDTUTL

Any processing node that creates information that should be stored in the 
Document Store (DS) have an interface to create the information. When 
complete, an internal representation of the Document Store records are 
created in a linked list to pass back to the Message Broker.  The Message 
Broker uses Transaction Store Services to update the Document Store.  
Component is TSUPD, TSUTL.  Module is EDIDTUTL.  Logs messages 
beginning with TS.



*IBM Confidential*

IBM Software Group Page 18 of 14

18

IBM Software Group

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS WebSphere MQ Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both. 

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.  

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Linux is a registered trademark of Linus Torvalds.  

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication.  Product data is subject to change without notice.  This document could include technical inaccuracies or 
typographical errors.  IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice.   Any statements regarding IBM's 
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.  References in this document to IBM products, programs, or 
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.  Any reference to an IBM Program 
Product in this document is not intended to state or imply that only that program product may be used.  Any functionally equivalent program, that does not infringe IBM's intellectual 
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind.  THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER 
EXPRESS OR IMPLIED.  IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall 
have no responsibility to update this information.   IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, 
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers 
of those products, their published announcements or other publicly available sources.  IBM has not tested those products in connection with this publication and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products.  IBM makes no representations or warranties, express or implied, regarding non-IBM products and 
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.  Inquiries regarding patent or copyright 
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY  10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  All customer examples described are presented as illustrations of 
how those customers have used IBM products and the results they may have achieved.  The actual throughput or performance that any user will experience will vary depending upon 
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no assurance 
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006.  All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

Architecture of the WebSphere Data Interchange data transformation


