

Unit 4 – Job Submission and Control

Unit 4 - 1© 2017, IBM Corporation

1

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Unit 4

Job Submission and Control

Unit 4 – Job Submission and Control

Unit 4 - 2© 2017, IBM Corporation

2

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Topics for this Unit

batchManager ...

WOLA
Batch Applications

Java Batch

Liberty z/OS Server

batchManagerZosbatchManagerZos

batchManagerbatchManager

EventEvent

EventEvent

EventEvent

adminCenter-1.01

2

3

4

5

1. batchManager
Command line client that uses the REST interface of IBM Java

Batch to submit, monitor and control batch jobs

Note: this can be used from anywhere Liberty Java Batch is installed; all it needs

is a network connection to the server where the batch job runs

2. batchManagerZos
Command line client that uses WOLA as the interface to Liberty

z/OS to submit, monitor and control batch jobs

Note: WOLA limits this client to the same LPAR where the server operates.

3. Jog Logging
As jobs execute, a job log is written out to the file system.

4. AdminCenter
The AdminCenter is a browser-based graphical management

interface to Liberty. It has a Java Batch tool that lets you view

jobs and job results

5. Batch Events
IBM Java Batch can publish "events" to a pub/sub topic so

subscribers can monitor results

In this unit we're going to turn our attention back to the IBM operational enhancements to the JSR-352 specification and show how

they operate. To that end we're going to cover five topics:

1. batchManager – this is a command line client useful for submitting jobs and managing job execution. It's a Java-based utility

that behind-the-scenes uses the REST interface of IBM WebSphere Liberty Java Batch. Because it's a network-based utility, it can

be run from anywhere. It does not need to be run on the same LPAR as the Liberty server running the batch program.

2. batchManagerZos – this is another command line client, very similar to batchManager, that is useful for submitting jobs and

managing job execution. Unlike batchManager, this is a native program that uses WebSphere Optimized Local Adapers (WOLA)

to get from the batchManagerZos client into the Liberty z/OS server. This limits batchManagerZos execution to the same LPAR as

the Liberty z/OS server it communicates with. But in return you get (a) the avoidance of overhead instantiating a JVM to run

batchManager, and (b) a more efficient mechanism (batch events rather than periodic polling) to determine when the Java batch

job has completed.

3. Job logging – the JSR-352 specification mentions job logging, but does not spell out any details how that is to be done. The IBM

implementation provides for a structured mechanism for logging job output, as well as a means of retrieving the job logs.

4. The Liberty AdminCenter – the AdminCenter is a web-based administrative interface to Liberty itself. It is designed to have

"tools" (functional plugin-ins) to do different things. One of the tools is for Java batch in which you can view the status of jobs

and retrieve job logs.

5. Batch events – this is an IBM enhancement that uses JMS (Java Messaging Service) publish/subscribe to emit "events" (messages)

at various stages of job execution. These events are published to a "topic" (a queue) which can be "subscribed to" (monitored)

by a process looking for key things in the events that have been published. This opens up range of interesting architectural

things related to monitoring the batch environment. One of the exploiters of this is the batchManaagerZos client, which can be

configured to monitor the topic watching for the job status indicator. That avoids having to periodically poll the server to

determine the job status. For very long running jobs this savings can add up.

Ready? Here we go ...

Unit 4 – Job Submission and Control

Unit 4 - 3© 2017, IBM Corporation

3

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManagerbatchManager

Unit 4 – Job Submission and Control

Unit 4 - 4© 2017, IBM Corporation

4

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Overview of the batchManager Command Line Interface Utility

batchManager CLI ...

/<install_path>/bin

 batchManager

 batchManager.bat

Java Virtual Machine

batchManager

CLI Batch Applications

Java Batch

Liberty z/OS Server

● Command Action (verb)
● Action options and parameters

Any UNIX environment, including z/OS

Windows

TCP/IP

Network

Server HTTPS port

SSL Connection

Key Points:

● Is a Java utility, so JAVA_HOME must be available to the environment

● Establishes network connection to the target server host:port specified

● Can be run from any WebSphere Liberty Java Batch platform OS

The batchManager Command Line Interface (CLI) utility comes with Liberty on all platforms, and can be found under the /bin

directory of the install path. You will find two copies of it – one with no extension, which is used on any UNIX environment, including

z/OS; and one with an extension of "bat" which is for Windows.

The command is executed in a UNIX shell or Windows command prompt environment. On z/OS it can be wrapped in JCL with

BPXBATCH being the mechanism that provides the UNIX shell. It's a Java program, so it'll need access to Java via a JAVA_HOME

variable that points to a valid 64-bit Java implementation.

The utility takes as input a command string consisting of an action (or a "verb") and a set of options. Over the next several charts

we'll explore the actions and options available to batchManager.

This utility makes use of a network connection to the Liberty server where the Java Batch is running, so the client can be run on any

platform and connect to another platform where the Liberty server is located. All you need is a network between the two.

Note: as mentioned before, what batchManager is doing is using the REST interface provided by the IBM WebSphere Liberty Java

Batch function. The value of batchManager is that it eliminates the need for you to undestand the REST URI patterns and the JSON

format ... batchManager handles all that for you.

Unit 4 – Job Submission and Control

Unit 4 - 5© 2017, IBM Corporation

5

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManager Command Line Utility

'submit' action ...

> export JAVA_HOME=/shared/java/J8.0_64

> cd /shared/zWebSphere/Liberty/V16004/bin

> ./batchManager help

Usage: batchManager {help|submit|stop|restart|status|getJobLog|listJobs|purge} [options]

Actions:

 help

 Print help information for the specified action.

 submit

 Submit a new batch job.

 stop

 Stop a batch job.

 restart

 Restart a batch job.

 status

 View the status of a job.

 getJobLog

 Download the joblog for a batch job.

 listJobs

 List job instances.

 purge

 Purge all records and logs for a job instance or purge a list of

 job instance records.

Options:

 Use help [action] for detailed option information of each action.

Must have JAVA_HOME in the

environment. The utility lives

under the /bin directory

We're going to focus on the 'submit'

function, but note the other things

that can be done with the utility.

For any of the action verbs you can

get further 'help' information

The chart above shows a shell environment where we ran the batchManager utility with the 'help' action. Notice how we exported

the JAVA_HOME variable, then we changed directories to the /bin directory of our install path.

The result was a listing of the actions that are provided by batchManager – submit, stop, restart, status, getJobLog, listJobs, and

purge. Our focus will be on the 'submit' action, but we wanted you to see the other actions that are available.

Note: the 'help' function is particularly useful in getting a listing of details for any of the given actions. On the next chart we're going

to show you the results of 'help submit'. You can issue the same for the other actions – 'help stop' or 'help restart,' etc. Whenever

you're not sure of a syntax, remember this help facility.

Unit 4 – Job Submission and Control

Unit 4 - 6© 2017, IBM Corporation

6

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManager 'submit' Action (derived from 'help submit')

Example syntax ...

batchManager submit [options]

--user=[username]

--password[=pwd]

--batchManager=[host]:[port],[host2]:[port2],...

--controlPropertiesFile=[control-properties-file]

--trustSslCertificates

--httpTimeout_s=[http timeout in seconds]

--jobXMLFile=[jobXMLFile]

--jobParametersFile=[job-parameters-file]

--applicationName=[applicationName]

--jobParameter=[key]=[value]

--jobPropertiesFile=[job-properties-file]

--componentName=[componentName]

--restartTokenFile=[restart-token-file]

--moduleName=[moduleName]

--stopOnShutdown

--jobXMLName=[jobXMLName]

--pollingInterval_s=[polling interval in seconds]

--returnExitStatus

--wait

--getJobLog

--verbose

This flows over encrypted connection. If no password provided, you will be prompted. It is possible to use a client

certificate for authentication when using z/OS SAF.

The 'help submit' function of the

batchManager command provides a

description for each.

We'll review some of these in a few charts, but first

an example ...

Here is the result of the 'help submit' command. The actual output is more verbose with descriptive text for each of the options.

We've trimmed that out to save space and highlight the options themselves.

Some of the options are required, some are truly optional. The three at the top are required – a user and password, and the server

to which you wish to connect. Some interesting things to keep in mind:

● You can actually not supply user and password ... it'll then prompt you. That works okay when you're an interactive shell

environment, but if you'd doing this using BPXBATCH and JCL it's not really an option.

● You can use a client certificate to authenticate, which would eliminate the need to code user and password on the command

line. This requires the Liberty server be set up to request a client certificate, and making a client certificate available to the JVM

that runs batchManager. Explaining all that here is too much for this unit.

● Notice the host:port, host:port of the command. You can specify multiple host:port pairs and have batchManager failover from

one to the other if it can't make a connection. This would be useful when you're seeking a highly-available environment with

two (or more) Liberty servers set up to receive batch submission requests.

As for the options ... we're review some of those in several charts, but first we'll show you an example to set context.

Unit 4 – Job Submission and Control

Unit 4 - 7© 2017, IBM Corporation

7

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Example Command Syntax for the BonusPayout Sample Application

Command options ...

./batchManager submit

 --batchManager=wg31.washington.ibm.com:25443

 --user=Fred --password=fredpwd

 --applicationName=BonusPayout-1.0

 --jobXMLName=SimpleBonusPayoutJob.xml

 --jobParameter=dsJNDI=jdbc/bonus

 --jobParameter=tableName=BONUSDB.ACCOUNT

 --trustSslCertificates

 --wait

ActionAction
The host and HTTPS port of the

Liberty z/OS server hosting

batch application

The host and HTTPS port of the

Liberty z/OS server hosting

batch application

ID and password for authentication.

This ID must be in the effective

registry, and have access to a

role sufficient to allow it to submit

ID and password for authentication.

This ID must be in the effective

registry, and have access to a

role sufficient to allow it to submit

The application nameThe application name

The name of the job JSL file packaged

with the application. Alternative is to

use jobXMLFile to provide path and

name of file external to the job package

The name of the job JSL file packaged

with the application. Alternative is to

use jobXMLFile to provide path and

name of file external to the job package

Two jobParameter name/value pairs: one

to name the JNDI to access DB2 for the

application table; the other to name the

DB2 table to use

Two jobParameter name/value pairs: one

to name the JNDI to access DB2 for the

application table; the other to name the

DB2 table to use

Allows easy acceptance

of the self-generated

Liberty SSL certificate

Allows easy acceptance

of the self-generated

Liberty SSL certificate

Command line utility waits for

job to complete before returning

control to the prompt

Command line utility waits for

job to complete before returning

control to the prompt

Here's an example of the batchManager command in use to submit another sample job called BonusPayout, which is a sample job

with a batchlet and a chunk step. It has the ability to pass in several job parameters, and it's useful as an illustration of a

batchManager command that's something different from what we've already seen with SleepyBatchlet. Let's walk through the

options from top to bottom:

● The --batchManager option points to the host where Liberty is running and the HTTPS port on which to connect.

● The --user and --password options provide what's necessary to authenticate. This flows on an encrypted SSL connection, so the

password is not in the clear. With basic security we don't have the option of client certificate authentication, but with SAF

security we do, so with client certificate authentication it would be possible to eliminate --user and --password entirely.

● The --applicationName option is used to specify which application to submit. A Liberty server may be hosting several different

Java batch applications, so we need to indicate which one is being referenced. This option does that.

● The --jobXMLName option is used to specify the JSL file packaged with the application. It's possible to have multiple JSL files

packaged with an application, so this lets you specify which one you want to use.

Note: the --jobXMLFile option lets you point to a JSL file outside the application package.

● This sample application has two parameter name/value pairs: one to indicate the JNDI name of the JDBC data source to access

the application table, and one for the table name itself. So we code two --jobParameter options, one for each job parameter we

wish to pass in.

● The --trustSslCertificates option allows us to get around an issue we have with "basic" security; specifically, the fact that the self-

signed certificate Liberty generated with the basic security settings in server.xml is not recognized because there is no Certificate

Authority that has signed the certificate. --trustSslCertificates simply tells batchManager to ignore the "no CA has signed this"

issue and keep going. Great for testing; never use this in production.

● Finally, the --wait option tells batchManager to hold off returning to the command prompt until the Java Batch job has

completed. It does this by periodically polling the server to check the status of the job. When the Java Batch job completes,

batchManager ends and returns to the command prompt.

Unit 4 – Job Submission and Control

Unit 4 - 8© 2017, IBM Corporation

8

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Revisit the Command Options ...

batchManagerZos ...

--controlPropertiesFile=[control-properties-file]

--trustSslCertificates

--httpTimeout_s=[http timeout in seconds]

--jobXMLFile=[jobXMLFile]

--jobParametersFile=[job-parameters-file]

--applicationName=[applicationName]

--jobParameter=[key]=[value]

--jobPropertiesFile=[job-properties-file]

--componentName=[componentName]

--restartTokenFile=[restart-token-file]

--moduleName=[moduleName]

--stopOnShutdown

--jobXMLName=[jobXMLName]

--pollingInterval_s=[polling interval in seconds]

--returnExitStatus

--wait

--getJobLog

--verbose

Provides a way to supply command parameters from a file

rather than on the command. Can't use true/false

parameters in this file, such as trustSslCertificates or verbose.

Provides a way to supply command parameters from a file

rather than on the command. Can't use true/false

parameters in this file, such as trustSslCertificates or verbose.

Point to a JSL file inline rather than naming

one packaged with the application.

Point to a JSL file inline rather than naming

one packaged with the application.

If the job has many parameter name/value pairs, you

can specify them in a file and point to the file rather

than supplying name/value pairs on the command.

If the job has many parameter name/value pairs, you

can specify them in a file and point to the file rather

than supplying name/value pairs on the command.

An alias of jobParametersAn alias of jobParameters

The name of a file which holds the instance id of the

job to be restarted. If the file contains an instance id,

the job is restarted. If not, a new job is submitted

and the resulting instance id is stored in the file.

The name of a file which holds the instance id of the

job to be restarted. If the file contains an instance id,

the job is restarted. If not, a new job is submitted

and the resulting instance id is stored in the file.

This option can be used together with --wait. It registers

a shutdown hook with the JVM that gets control when

the batchManager program is abnormally terminated.

This option can be used together with --wait. It registers

a shutdown hook with the JVM that gets control when

the batchManager program is abnormally terminated.

The interval of time at

which to poll for job status.

Default is 30 seconds.

The interval of time at

which to poll for job status.

Default is 30 seconds.

If specified, the program will download

the joblog and print it to STDOUT after

the job finishes. This option must be

combined with --wait.

If specified, the program will download

the joblog and print it to STDOUT after

the job finishes. This option must be

combined with --wait.
Message at every

poll interval

Message at every

poll interval

Let's go back to the command options and take another tour of what they do. The ones highlighted in yellow are the ones we're

looking at on this chart, and the boxes that point to each offers a brief description of what each is for.

Next we're going to look at batchManagerZos, which is very similar to batchManager, but it uses a different connectivity mechanism.

Unit 4 – Job Submission and Control

Unit 4 - 9© 2017, IBM Corporation

9

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManagerZosbatchManagerZos

Unit 4 – Job Submission and Control

Unit 4 - 10© 2017, IBM Corporation

10

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Overview of the batchManagerZos Command Line Interface Utility

Updates to server.xml ...

/<install_path>/lib/native/zos/s390x

 batchManagerZos z/OS only; not supported on other platforms

z/OS Address Space

batchManagerZos

CLI Batch Applications

Java Batch

Liberty z/OS Server

● Command Action (verb)
● Action options and parameters

WOLA

Cross-Memory

Angel

Process

Angel

Process

SAF SERVER

SAF CBIND

1

2

4

5

XMLXML 3

1. Native z/OS, not Java
Which means no JVM is instantiated for each

invocation.

2. WOLA, not network
Uses WOLA cross-memory, which is very fast

and very secure, but limits to same-LPAR.

3. Server must support WOLA
There's a handful of XML required for a server

to be able to use WOLA.

4. Angel Process required
WOLA is a z/OS authorized service, which

means the Angel comes into play.

5. SAF SERVER and CBIND
WOLA requires a few SERVER profiles and a

CBIND profile.

● It's a command line interface very similar to batchManager

● Pro: can monitor for batch events rather than poll

● Con: same LPAR, discussions of high-availability more involved

Note this is down a different path from batchManager

The batchManagerZos client is located in a different place under the install path ... not under /bin but rather under the path shown

on the top of the chart. This is a z/OS-only thing, so there is no option for "bat" extensions for Windows. This can be invoked from a

z/OS shell environment -- Telnet, SSH, OMVS, or BPXBATCH in JCL.

Let's take a high-level tour by following the numbered circles:

1. The batchManagerZos client is not Java-based, it is native code, so there's no need to have JAVA_HOME in the environment. But

more to the point, this does not instantiate a JVM each time it is invoked like batchManager does, so the overhead associated

with building a JVM each time is avoided.

2. batchManagerZos uses WebSphere Optimized Local Adapters (WOLA) to communicate with the Liberty z/OS server. WOLA is

very fast, does not use the TCP/IP stack at all, but it limits you to having batchManagerZos on the same LPAR as the Liberty z/OS

server you are talking to.

3. The use of WOLA by batchManagerZos means the Liberty z/OS server must also support WOLA. This is done with some updates

to the server.xml file. We'll show you what that looks like in a few charts.

4. Because WOLA is a "z/OS authorized service," the Angel Process is required to provide the access to the authorized service for

the server. The Angel Process is a started task that protects access to specified services. We'll see some details of that in a few

charts, and go into more detail in Unit 6 on security.

5. Finally, the use of WOLA triggers the need for a few SAF profiles; specifically, SERVER profiles to grant the Liberty z/OS server

access to the authorized services, and a CBIND profile to control who can use the WOLA register function to connect to the

Liberty z/OS server.

Unit 4 – Job Submission and Control

Unit 4 - 11© 2017, IBM Corporation

11

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Updates to server.xml to Support the Use of WOLA for batchManagerZos

SAF security ...

<featureManager>

 <feature>servlet-3.1</feature>

 <feature>batch-1.0</feature>

 <feature>batchManagement-1.0</feature>

 <feature>zosLocalAdapters-1.0</feature>

 <feature>appSecurity-2.0</feature>

</featureManager>

<authorization-roles id="com.ibm.ws.batch">

 <security-role name="batchAdmin">

 <special-subject type="EVERYONE"/>

 <user name="Fred" />

 </security-role>

</authorization-roles>

<zosLocalAdapters wolaGroup="LIBERTY"

 wolaName2="BATCH"

 wolaName3="MANAGER"/>

Batch Applications

Java Batch

Liberty z/OS Server

XMLXML

1

2

3

1. zosLocalAdapters-1.0
The zosLocalAdapters-1.0 feature is needed to enable the

WOLA support. This is in addition to the features we've already

discussed.

2. WOLA "three-part name"
This "three-part name" is what the batchManagerZos client

uses to identify which Liberty server to connect to using WOLA.

The three-part name can be any value you want, but it must be

unique on the LPAR. Each "part" may be up to 8 characters.

This value is also referenced on the SAF CBIND to control what

IDs can connect using WOLA.

3. Basic security workaround
This "special-subject" entry to the security role is only needed

when using basic security. If you use SAF as the registry and

role enforcement, then the ID that invokes batchManagerZos

can be checked and validated. We'll look at this in more detail

in the "Security" unit.

In order to use batchManagerZos against a Liberty z/OS server, the target server needs to support WOLA. There are three things that

need to be added to server.xml to accomplish this:

1. The zosLocalAdapters-1.0 feature needs to be added to the feature list. This is in addition to the batch-1.0 and

batchManagement-1.0 features we discussed earlier.

2. We need to add the <zosLocalAdapters> element and provide the "three-part name." This "three-part name" is used by the

batchManagerZos client when it connects: it has to know which Liberty z/OS server to cross-memory connect to, and it does that

with the three-part name. The three part name elements are really arbitrary, but it has to be unique on the LPAR. As part of

planning for Liberty z/OS a review of naming conventions is recommended, and one way to achieve uniqueness of this three-part

name is to make sure the server names are unique, and to employ the server name as the wolaName3= value.

3. Because we're using "basic security" we need to add an element to the <security-role> definition. The reason for this is because

WOLA is coming cross-memory and the ID which is asserted across WOLA (the ID used to invoke batchManagerZos) can't be seen

by the Java container that's running the basic security function. This is only because we're using basic security at this point in the

workshop; this is not needed when we use SAF security as discussed in Unit 6.

The addition we need to add is <special-subject> and name EVERYONE. This allows the basic security to work with

batchManagerZos.

Note: for those who may be concerned this represents a security risk, we offer several points: (a) "basic" security is really

intended for development and ad hoc testing, and not "real world". When using SAF things work as you'd expect. And (b)

there's already quite a bit of security in play here: the ID that invokes batchManagerZos has already been authenticated because

the utility can only be invoked on z/OS, and to get to the z/OS shell environment you have to authenticate, and the CBIND profile

prevents just anyone from using batchManagerZos to connect to the Liberty server. So this EVERYONE special-subject is not

much of an exposure for initial testing.

Let's look at the SAF security requirements for using WOLA ...

Unit 4 – Job Submission and Control

Unit 4 - 12© 2017, IBM Corporation

12

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

SAF Security That Must be in Place for WOLA to Work (Simplified Explanation*)

batchManagerZos help ...
* More detail is provided in the "Security" unit

Liberty z/OS

Server

Liberty z/OS

Server

Liberty z/OS

Angel Process

Liberty z/OS

Angel Process

batchManagerZos

CLI

batchManagerZos

CLI

ID

ID

WOLA

1

2 messages.log

1. Angel Present; Server ID access via SERVER profiles
Two key things going on here – (1) access to the Angel process, and (2) authority for server to load the

authorized code. These are provided by SAF SERVER profiles.

The process is:

● Create the SAF SERVER profiles (details in Security unit)
● Grant server STC ID (or group) READ to the SERVER profiles
● Start the server and check messages.log for key indicator of access:

CWWKB0103I: Authorized service group LOCALCOM is available.

CWWKB0103I: Authorized service group WOLA is available.

CWWKB0103I: Authorized service group CLIENT.WOLA is available.

and:

CWWKB0501I: The WebSphere Optimized Local Adapter channel registered with

the Liberty profile server using the following name: LIBERTY BATCH MANAGER

2. batchManagerZos ID access via CBIND profile
The purpose of the CBIND is to control what client IDs are allowed to create the WOLA "registration"

(cross-memory connection) into the Liberty server. The SAF CBIND profile is based on the three-part

name in the server.xml (wildcard characters allowed). Grant READ to the ID running batchManagerZos

and it will be allowed to create the registration.

The ID that runs batchManagerZos is either the ID logged into the UNIX shell, or the effective ID of JCL

job that invokes batchManagerZos.

The use of WOLA means the Angel process must be present, and it brings two key SAF profile requirements into play -- SERVER and

CBIND.

The Angel Process is a started task that provides an "anchor point" for protecting access to z/OS authorized services. The sample JCL

start procedure for the Angel is in the same location as the sample for the server itself. Copy that to your system proclib and

customize by pointing to the install location for Liberty. Getting the Angel to start is easy; the more critical thing is creating the SAF

SERVER profiles and granting READ to the Liberty z/OS Java Batch server ID. When that is done properly, you will see the highlighted

messages come out in the messages.log file indicating the WOLA authorized services as "available." You will also see the "three part

name" you defined show up in a message indicating the server has registered that name as a target for batchManagerZos connection.

These arel all good signs.

Note: we are not showing the details of the SAF SERVER profiles or the CBIND profiles. We'll give you that detail back in Unit 6. For

the upcoming lab we'll have you submit a job we created ahead of time that will create the profiles.

The next piece of this puzzle is a CBIND profile that protects which IDs running batchManagerZos can connect to the server. The

CBIND profile is based on the three-part name the server is configured with. The ID that will run batchManagerZos is granted READ

to that profile, and that's what allows them to "register in" to the Liberty z/OS server. If someone else tries to run batchManagerZos

they will be denied because their ID does not have READ to the CBIND profile.

Unit 4 – Job Submission and Control

Unit 4 - 13© 2017, IBM Corporation

13

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManagerZos 'help'

'submit' action ...

./batchManagerZos help

Usage: batchManagerZos {help|ping|submit|stop|restart|status|purge|listJobs} [options]

Actions:

 help

 Use help [action] for detailed option information.

 ping

 'Ping' the batch manager to test connectivity.

 submit

 Submit a new batch job.

 stop

 Stop a batch job.

 restart

 Restart a batch job.

 status

 View the status of a job.

 purge

 Purge all records and logs for a job instance or purge a list of job instance records.

 listJobs

 List job instances

Options:

 Use help [action] for detailed option information.

Actions are very similar to those

provided with batchManager CLI

Actions are very similar to those

provided with batchManager CLI

Action 'ping' is unique to

batchManagerZos. Use this to

test for basic WOLA connectivity

Action 'ping' is unique to

batchManagerZos. Use this to

test for basic WOLA connectivity

'help' on action provides details

for any of the actions

'help' on action provides details

for any of the actions

Here we're showing you the batchManagerZos command with the 'help' action. The actions available to batchManagerZos are very

similar to what we saw with batchManager, but there are some differences. For example, note the 'ping' action ... this is a

verification action to see whether the WOLA connectivity is there.

Note: 'ping' will return silence when it works; it'll return an error message if connectivity to the Liberty z/OS can't be achieved.

Let's look at the 'submit' action for batchManagerZos ...

Unit 4 – Job Submission and Control

Unit 4 - 14© 2017, IBM Corporation

14

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

batchManagerZos 'submit' Action (derived from 'help submit')

Example syntax ...

./batchManagerZos help submit
 --batchManager=[WOLA 3-Part Name]

Options:

 --applicationName=[applicationName]

 --moduleName=[moduleName]

 --componentName=[componentName]

 --jobXMLName=[jobXMLName]

 --jobXMLFile=[jobXMLFile]

 --jobParameter=[name]=[value]

 --jobParametersFile=[job-parameters-file]

 --jobPropertiesFile=[job-properties-file]

 --controlPropertiesFile=[control-properties-file]

 --restartTokenFile=[restart-token-file]

 --wait

 --queueManagerName=[queueManagerName]

 --pollingInterval_s=[polling interval in seconds]

 --getJobLog

 --verbose

 --returnExitStatus

Very similar to batchManager, with a few

exceptions which we highlight here

1. --batchManager=
This is used to name the WOLA three part name,

for example:

--batchManager=LIBERTY+BATCH+MANAGER

The server you wish to connect to must have this

exact three-part name defined, and have all the "is

available" messages present. Further, there must

be a CBIND that grants READ to the client ID.

2. --queueManagerName=
This is related to "batch events." This lets

batchManagerZos monitor for job status by

subscribing to the topic. This avoids the overhead

of periodic polling the --wait option uses by

default.

More on "batch events" coming up.

1

2

Here again we're showing you the results of a 'help submit' action, but this time for batchManagerZos. We have again removed the

verbose descriptions to show just the command options. This is very similar to what we saw with batchManager, but there are a few

interesting new things. We'll look at the new things and skim over the ones that are identical to what we saw with batchManager.

● --batchManager= is used to point to the three-part name being hosted by the Liberty z/OS server. You separate the names with a

plus sign (+) with no spaces. So for example: LIBERTY+BATCH+MANAGER, or whatever your three part name is.

Note: there is no need for userid/password because the ID that invokes batchManagerZos will be asserted cross-memory into the

server. We know that ID is a valid z/OS ID because the user would not be able to get to a z/OS shell environment without

authenticating sometime prior to invoking batchManagerZos. Oh, and there's no need for SSL because there's no network.

● --queueManager= is optional, and is used to name the MQ queue manager which is hosting the batch events topic. This is used

to monitor for job completion without having to poll the server like batchManager does. With this specified, the

batchManagerZos client subscribes to the topic and watches for one of several different batch events to know when the job

completes.

Unit 4 – Job Submission and Control

Unit 4 - 15© 2017, IBM Corporation

15

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Example Command Syntax for the BonusPayout Sample Application

JCL and BPXBATCH ...

./batchManagerZos submit

 --batchManager=LIBERTY+BATCH+MANAGER

 --applicationName=BonusPayout-1.0

 --jobXMLName=SimpleBonusPayoutJob.xml

 --jobParameter=dsJNDI=jdbc/bonus

 --jobParameter=tableName=BONUSDB.ACCOUNT

 --wait --queueManagerName=MQS1

Specify the three-part name

defined in the server

Specify the three-part name

defined in the server
ActionAction

Name the application, JSL

name, and pass in the two

sets of name/value pairs

(this is just like batchManager)

Name the application, JSL

name, and pass in the two

sets of name/value pairs

(this is just like batchManager)

Specify --wait and name the

MQ queue manager for

monitoring on batch events

Specify --wait and name the

MQ queue manager for

monitoring on batch events

The syntax related to specifying the application and the JSL is the same as batchManager. Note

that this has no host, port, ID, password, or SSL considerations. This is using WOLA.

Here's an example of the command syntax for batchManagerZos to submit the same BonusPayout application we saw for the

batchManager example. It's very similar. The difference is the three-part name rather than host:port, and here we're showing the

use of the optional --queueManagerName function to monitor for the batch events. We have more on batch events later in this unit.

Unit 4 – Job Submission and Control

Unit 4 - 16© 2017, IBM Corporation

16

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Invoking batchManagerZos* using JCL and BPXBATCH

Job logging ...

//BMGRZJCL JOB (0),'BMGR+JCL',CLASS=A,

// REGION=0M,MSGCLASS=H,NOTIFY=USER1
//SUBMIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +

/*

//*

* Or batchManager … same considerations

batchManagerZos or shell script

Invoke batchManagerZos directly

You can invoke batchManagerZos directly in the JCL, coding all the

parameters needed, and keeping everything in the 72-column limit of

JCL using plus sign (+) continuation symbols.

This works, but the way BPXBATCH surfaces return codes to JES may

be confusing. (BPXBATCH shifts value one byte; JES takes only a

portion of result.) A shell script can help with this.

0 The task completed normally.

20 A required argument was not specified.

21 An unrecognized argument was specified.

22 An invalid argument value was specified.

255 An unknown error occurred.

33 The job stopped.

34 The job did not complete successfully.

35 The job completed successfully.

36 The job was abandoned.

If --wait

specified

Invoke shell script, which invokes batchManagerZos

This allows you to capture the return code from batchManagerZos

and set the script exit code so the value is never more than 16.

35

33

20,21,22

34

else

0

4

8

12

13

x'0'

x'4'

x'8'

x'C'

x'D'

x'000'

x'400'

x'800'

x'C00'

x'D00'

0000

1024

2048

3072

3328

batchManagerZos

Return Code

Shell script sets

exit code to

Exit status

HEX

BPXBATCH

shift RC in JES

The shell script we use in lab does this

You can invoke batchManagerZos (or batchManager) from JCL using BPXBATCH. This is what you would do to integrate an enterprise

scheduler on z/OS with the Java Batch runtime in Liberty z/OS. The scheduler would submit a JCL job which uses batchManagerZos

to submit the job. You would typically code --wait on the batchManagerZos command so the JCL job would stay active as long as the

Java batch job is active in Liberty.

You can invoke batchManagerZos (or batchManager) using BPXBATCH by either invoking the command directly, or by invoking a shell

script which invokes the command. The benefit of invoking a shell script which then invokes the utility is it allows you greater control

over setting the exit code that surfaces to JES. This requires a bit of explanation.

BPXBATCH is going to shift up one byte the return code it sees from batchManagerZos. That is what BPXBATCH does. So take, for

example, the case where you run batchManagerZos with --wait, and everything runs as expected. The return code out of

batchManagerZos will be 35, which is 0x23 (hex). BPXBATCH will take that 0x23 value and shift it to 0x2300. JES, on the other hand,

will take only the last three digits from that -- 0x300 -- and surface a return code of 768. That's confusing enough; the real confusion

comes in if some other return code gets shifted and the last three is the same 0x300. Then JES returns the same 768 for a different

condition.

With a shell script we can eliminate a fair amount of this confusing by taking control of the exit code that's issued by the shell script

and making sure no exit code is greater than 16. By doing that, we insure what JES receives is the same two-byte hex that comes out

of the shell script.

The chart shows the return codes that batchManagerZos (or batchManager; they use the same return codes) will issue under

different circumstances. When invoking batchManagerZos from JCL, we would code --wait because we want the JCL job to stay active

while the Java batch is running. So in our shell script we would want to set rc=35 to shell script exit=0. 0 is the universal "things are

good" code. BPXBATCH shifts that, JES strips the last three, and the result is a JES return code of 0. Yea! :-)

batchManagerZos return code of 33 means someone stopped the job. That's not necessarily a failure. So in our shell script we can

set that value to an exit of 4. BPXBATCH shifts that, JES strips the last three, and the result is a JES return code of 1024. In this case

you (and the enterprise scheduler) need to understand that JES RC=1024 means the shell script issued exit 4.

batchManagerZos return codes 20, 21, and 22 are used when there's something wrong with the command -- a required argument

was missing, an unrecognized argument (a typo, for example) was specified, or an invalid value for an argument was used. That's not

a problem with the Java batch code itself; those are problems with the job submission. So we'll set a return code of 8 for those.

BPXBATCH shifts, JES strips the last three, and we get a JES return code 2048.

batchManagerZos return code 34 is the case where it was successfully submitted, but it did not complete. Something is wrong inside

the code. For that we set an exit of 12, which is hex 0xC. BPXBATCH shifts, JES strips the last three, and the JES return code is 3072.

Any other problem results in an exit code of 13. If you see a JES return code of 3328, you know it's something not otherwise

captured in the other exit codes.

That's the value of the shell script. We're going to use a shell script like that in the lab that's coming up.

Unit 4 – Job Submission and Control

Unit 4 - 17© 2017, IBM Corporation

17

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Job LoggingJob Logging

Unit 4 – Job Submission and Control

Unit 4 - 18© 2017, IBM Corporation

18

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Illustration of the Job Log Tree for a Server

Logging control ...

/<server_output_dir>

 /logs

 /joblogs

 /sleepy-batchlet

 /2017-01-27

 /instance.1

 /execution.1

 part.1.log

 /SimpleBonusPayoutJob

 /2017-01-27

 /instance.2

 /execution.2

 part.1.log

 /2017-01-28

 /instance.3

 /execution.3

 part.1.log

 /execution.4

 part.1.log

 /execution.5

 part.1.log

● The output directory defaults to the server configuration root (where server.xml

resides), but can be redirected using WLP_OUTPUT_DIR

● The job logs will go under the /logs/joblogs directory of that output directory

● The first job ran was SleepyBatchlet, on January 27th. It ran successfully. There

was one "instance" (#1) and one "execution" (#1) of that instance.

● The next job was SimpleBonusPayout, also on January 27th. It ran successfully.

There was one "instance" (#2) and one "execution" (#2) of that instance.

● Then on January 28th SimpleBonusPayout was run again. This was instance #3.

But execution #3 failed.

● You restarted it. Same "instance" (#3), but now a new "execution" (#4). It failed

as well.

● You restarted it again. Same "instance" (#3), a new "execution" (#5). This time it

worked.

The next job you run will be "instance" #4, and "execution" #6.

These instance and execution numbers are what uniquely identify the job

instance and execution for purposes of job restart and job log retreival.

We mentioned earlier that the JSR-352 specification mentions the importance of job logging, but it does not specify how it should be

implemented. It leaves that up to the vendors to implement as they see best.

Also earlier we described the JSR-352 terminology of "job instance ID" and "job execution ID" mentioned how those things are

important because they tie to job logging. Well, here's an example of a job log tree created by the IBM WebSphere Liberty Java Batch

function for the running of two jobs -- both SleepyBatchlet and SimpleBonusPayoutJob -- across two days. There's a lot of words on

this chart, but let's take a few moments and go through it:

● First, by default the logs are written under the server's /logs directory under the server configuration directory. But the

WLP_OUTPUT_DIR variable can be used to redirect the server's output -- all the output, not just batch job logs -- to any location

you wish.

● The job logs will appear under /joglogs

● The next layer down is the application name. We have two applications illustrated here. Let's focus first on the SleepyBatchlet

job logs. On January 27th, 2017 the job was submitted. The runtime assigned a job instance number of "1" and then it create a

job execution number of "1" as well. (That's because the JobRepository tables was fresh and new when this test was run.) The

job ran to completion, and that was the last time this job was run.

● The next job is the SimpleBonusPayout job. It was run on both January 27th and January 28th, but with different results. On

January 27th it was submitted and it ran to successful completion. It was assigned a job instance number of "2", which was the

next job instance number based on the information in the JobRepository. The job execution number was also "2" because it was

the next job execution number based on the JobRepository.

● Then on January 28th the SimpleBonusPayout job was run again. It was assigned a job instance number of "3" and a job

execution number of "3". But this execution failed for some reason. You investigated, discovered the problem, corrected it and

restarted the job. This restart of the job results in a new execution number under the same instance number, but it gets a job

execution number of "4".

Note: it's tempting to think instance and execution numbers march up in lock-step, but that's not necessarily the case. It would if

every job submission went to successful completion and you never had to restart a job. But that's not real-world ... sometimes

things happen and you have restart. That's when the numbers cease being the same value. The two numbers are in fact not

related to each other at all. They both start at "1" but that's the only relationship between them.

But it too fails. So you investigate, correct and restart again. This creates yet another execution number ("5") but under the

same instance number ("3"). This illustrates how a given job instance can have multiple executions under it.

Unit 4 – Job Submission and Control

Unit 4 - 19© 2017, IBM Corporation

19

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Controlling Job Logging by Server

Application messages to log ...

<batchJobLogging

 enabled="true|false"

 maxTime="<seconds>"

 maxRecords="<records>" />

server.xml

server.env

WLP_OUTPUT_DIR=path
Liberty output directory variable

By default output goes to the server root directory (the directory

in which the server.xml file is located). You can direct server

output to a different location using this variable.

Switch to enable or disable batch job logging
By default this is "true," so left uncoded you get the default Java

batch job logging behavior. Code "false" and no job logging

occurs.

Jog log rolling based on records
This determines when a job log will be closed and

rolled to a new job log part based on records written.

Range is 0 to 2147483647, with a default of 1000

Job log rolling based on time
This determines when a job log will be closed and

rolled to a new job log part based on time elapsed.

Range is 0 to 2147483647, with a default of 0.

Note: if you have a non-zero time specified and no records are

written in that time interval, then no log rolling occurs. There's

no sense is rolling an empty job log part.

You have the ability to control the behavior of this job logging.

The first thing is what we mentioned on the previous chart -- we can control where the server output goes with the

WLP_OUTPUT_DIR variable coded in the server.env file. This will redirect all the server's output to whatever location you specify, not

just the jog logging directory. This is useful function when you have a policy that says the server STC ID can't be the same as the

configuration file owner ID. In that case we need to redirect the server output (a "write" operation) to a different location.

Then in the server.xml file we have the <batchJogLogging> element, which controls the behavior of Java Batch job logging:

● enabled="truth|false" ... this is a switch that turns logging off. By default this is "true." But if for some reason you have a batch

server you don't want to produce job logs, you can disable logging with a "false" setting here.

● maxRecords= ... this determines when the job log file is closed and a new job log part file is opened. The default is "1000" which

means every 1000 records written to the job log will result in a close of the file and a new job log part created. The

SleepyBatchlet writes about 20 lines of output, so we only saw one job log part.

● maxTime= ... this provides another way to determine when a job log part is closed and another. This is based on a time interval.

This defaults to "0" which means no time interval is in effect.

Unit 4 – Job Submission and Control

Unit 4 - 20© 2017, IBM Corporation

20

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Messages Written by Java Batch Application – go to Job Logging?

Retrieving job logs ...

From the WP102544 "Step-by-Step Implementation Guide"

import java.util.logging.Logger;

protected final static Logger log = Logger.getLogger(MyProgram.class.getName());

System.out.println("Hello World!");

public String process() {

 log.log(Level.INFO, "Hello World!");

 return null;

}

STDOUT is the messages.log file

To achieve output to the Job Log, do something like this:

This will go to message.logThis will go to message.log

This will go to the job logThis will go to the job log

We have to be careful in our understanding of what application messages go to the job log. A simple println() will not go to the job

log, but it will go to the STDOUT, which is the messages.log file.

To get application messages to go to the job log you have to use java.util.logging. The example in the bottom half the chart illustrates

this in action: java.util.logging.Logger is imported, a log object is instantiated, then that's used to log the message. The println() will

go to messages.log, the lower one goes to the job log file.

Unit 4 – Job Submission and Control

Unit 4 - 21© 2017, IBM Corporation

21

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Ways to Retrieve the Job Logs

AdminCenter ...

1. Directly
The job log parts are written to the directory location we showed earlier. If you have access, you are free to go into that

directory and retrieve the job log parts. If multiple job log parts, you must piece them back together yourself.

2. batchManager 'getJobLog' action
This action (or 'verb') takes as input the job instance number and job execution number, along with where you want the

output file written, and the type of file to write: text or zip. This will concatenate multiple job log parts.

3. REST interface (which is what batchManager ultimately uses)
A set of GET verbs to retrieve a listing of the job log parts and then retrieve the files. If you want more details, go to the

Knowledge Center and search: rwlp_batch_rest_api.

4. --getJobLog on batchManager or batchManagerZos command line
This parameter on the 'submit' action, along with --wait, will return the job log to STDOUT. Depending on how you

invoke either CLI client, that would be your shell (telnet, SSH, or OMVS), or if BPXBATCH then you can redirect to a file or

to JES spool.

5. From the AdminCenter Java Batch tool GUI (upcoming section in this unit)

The little file icon to on the GUI will retrieve the job parts and display them in the browser session. If multiple job log

parts then you must scroll through each part individually.

6. Using batch events and monitoring on jobLogPart topic (upcoming section in this unit)

A monitoring application can subscribe to the jobLogPart topic and retrieve the job log parts as they're published. We

show an example of that in the "batch events" section later in this unit.

How do you retrieve the job logs once they've been written? There are six ways that can be done, and the chart spells out those

approaches. They range from the most direct ("go into the file system and get the log") to the more sophisticated ("turn on batch

events and subscribe to the topic and pull the jobLogPart events").

Note: if you're interested in getting the job log output "as it happens," then use batchManagerZos with batch events enabled and the

--queueManagerName= value specified on the job submission. That tells batchManagerZos to subscribe to the topic and watch for

the job log parts as they're published.

Unit 4 – Job Submission and Control

Unit 4 - 22© 2017, IBM Corporation

22

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

AdminCenterAdminCenter

Unit 4 – Job Submission and Control

Unit 4 - 23© 2017, IBM Corporation

23

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Overview of the Liberty AdminCenter

AdminCenter security ...

Batch

Applications

Java Batch

Liberty z/OS Server

XMLXML

http://<host>:<port>/adminCenter

<featureManager>

 <feature>servlet-3.1</feature>

 <feature>batch-1.0</feature>

 <feature>batchManagement-1.0</feature>

 <feature>zosLocalAdapters-1.0</feature>

 <feature>appSecurity-2.0</feature>

 <feature>adminCenter-1.0</feature>

</featureManager>

This is the "Java Batch" tool, which

was first introduced in 16.0.0.4. The adminCenter-1.0 feature

enables this function

The "AdminCenter" is a graphical interface to the Liberty server. It is designed as an extensible framework into which "tools" can be

installed to do different management functions. The AdminCenter is enabled with the adminCenter-1.0 feature.

One of the tools is a "Java Batch" tool. This provides the ability to view jobs and retrieve job logs. Before showing you that, however,

we're going to once again dip into the topic of security.

Unit 4 – Job Submission and Control

Unit 4 - 24© 2017, IBM Corporation

24

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

AdminCenter Security ("Basic" for now)

Java Batch tool ...

<keyStore id="defaultKeyStore" password="Liberty"/>

<basicRegistry id="basic1" realm="jbatch">

 <user name="Fred" password="fredpwd" />

</basicRegistry>

<authorization-roles id="com.ibm.ws.batch">

 <security-role name="batchAdmin">

 <special-subject type="EVERYONE"/>

 <user name="Fred" />

 </security-role>

</authorization-roles>

<administrator-role>

 <user>Fred</user>

</administrator-role>

Basic Keystore

(SSL)

Basic Keystore

(SSL)

Basic User

Registry

Basic User

Registry

Authorization roles

for Java Batch

Authorization roles

for Java Batch

Authorization role

for AdminCenter

Authorization role

for AdminCenter

The AdminCenter URL will re-direct to SSL and prompt for userid and password. This

"basic" security is what allows it to work. More security details in "Security" unit.

The AdminCenter imposes a security requirement -- it is a "protected" application, and requires encryption, authentication, and role

authority to access it.

Earlier we discussed the "basic" security we put in place for batchManager-1.0. Thankfully that takes care of most of the security

requirements of the AdminCenter as well. The only new thing we have to add is the <administrator-role> element with Fred given

access to it.

In Unit 6 we'll dig into how to push all this down into SAF security.

Unit 4 – Job Submission and Control

Unit 4 - 25© 2017, IBM Corporation

25

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Java Batch Tool Display (in 16.0.0.4)

Batch events ...

Column headers for batch job name, instance ID,

application name, submitter, state, etc.

Column headers for batch job name, instance ID,

application name, submitter, state, etc.

Expand a given instance to display detailsExpand a given instance to display details

Retrieve job logRetrieve job log

Search for jobsSearch for jobs

Configure columnsConfigure columns

Here's a bitmap captures of the AdminCenter Java Batch tool showing the display of jobs. It's arranged in a column and row format,

with each major row representing a different job instance, and the columns representing information about the job -- the Instance ID,

the application name, the submitter ID, the last update, the state, and a little icon that can be used to retrieve the job log. Each

major row can be expanded to show the executions under the instance. The search bar lets you search for a specific job.

It's a handy addition to the other tools available to you for managing Java Batch jobs.

Unit 4 – Job Submission and Control

Unit 4 - 26© 2017, IBM Corporation

26

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Batch EventsBatch Events

Unit 4 – Job Submission and Control

Unit 4 - 27© 2017, IBM Corporation

27

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Overview of Batch Events

server.xml ...

Batch

Applications

Java Batch

Liberty z/OS Server

XMLXML

twlp_batch_monitoringKC Search

batch/jobs
 /instance
 /submitted
 /jms_queued
 /jms_consumed
 /dispatched
 /completed
 /stopped
 /stopping
 /failed
 /purged
 /execution
 /restarting
 /starting
 /completed
 /failed
 /stop
 /jobLogPart
 /step
 /started
 /completed
 /failed
 /stopped
 /checkpoint
 /partition

 /(sub-topics)
 /split-flow

 /(sub-topics)

Any Monitoring

Function

Enabled with <batchJmsEvents> element in XML
As well as a valid <jmsConnectionFactory> that provides connectivity to a

messaging engine capable of hosting a pub/sub topic.

Examples: IBM MQ, or the default messaging of Liberty.

While batch jobs execute, events emitted to topic tree
The topics are shown in the chart to the left. The topics represent

different "states" of jobs, steps, partitions and split-flows.

For example, the "jobLogPart" event is published with the job log part each

time a part is created.

Any monitoring function can subscribe and monitor
This pub/sub design allows any monitoring function to subscribe to the

topic and receive the events as they occur.

For example, batchManagerZos has the ability to subscribe to the topic

tree and monitor for job completion status (rather than periodic polling).

Publish

Subscribe

This is the final topic in the unit. File this under "useful tools to monitor what's going on with my batch jobs."

Batch "events" are messages that are published to a JMS "topic" by the Liberty server as it cycles through the various states of a job,

from submission, through execution, to completion. This allows any function capable of subscribing to the topic to monitor activity

by watching for events in whatever part of the topic tree they are interested.

This requires server.xml updates to provide the JMS definitions so the server can reach the messaging engine used -- which can be

either the default messaging of Liberty, or IBM MQ. We'll look at a sample of the server.xml updates next.

Unit 4 – Job Submission and Control

Unit 4 - 28© 2017, IBM Corporation

28

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Example of server.xml to Support Batch Events (MQ in this example)

batchManagerZos ...

<variable name="wmqJmsClient.rar.location"
 value="${server.config.dir}/wmq.jmsra.rar" />

<batchJmsEvents
 connectionFactoryRef="batchConnectionFactory" />

<jmsConnectionFactory id="batchConnectionFactory"
 jndiName="jms/batch/connectionFactory">
 <properties.wmqJms
 hostName="wg31.washington.ibm.com"
 transportType="CLIENT"
 channel="SYSTEM.DEF.SVRCONN"
 port="1414"
 queueManager="MQS1">
 </properties.wmqJms>

</jmsConnectionFactory>

MQ Resource File Location
To access MQ, Liberty is going to need the MQ

resource adapter to load the code to make the

connection. This variable provides the pointer to

where you have the RAR file located.

Note: in this case we used ${server.config.dir} to resolve the

location to the server's configuration directory, which is where

server.xml resides.

<batchJmsEvents>
This element is what enables batch events. It points

to the JMS connection factory to use.

<jmsConnectionFactory>
This defines the connection to the MQ queue

manager to which the batch events will be published.

In this case we're showing client mode.

Here's an example of the server.xml updates to support batch events to an IBM MQ queue manager. At the topic is a <variable>

element that defines the location of the MQ JMS resource adapter archive file. Liberty needs that to get the Java classes it needs to

make the connection to MQ.

The <batchJmsEvents> element enables the batch events function. It has a pointer to the JMS connection factory for the definitions

of the MQ queue manager it will publish to.

The <jmsConnectionFactory> element is pointed to from the <batchJmsEvents> element, and this defines how the server will get to

the MQ queue manager. In this example we're showing CLIENT mode connection, which uses the network to communicate with MQ.

Unit 4 – Job Submission and Control

Unit 4 - 29© 2017, IBM Corporation

29

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Recall the batchManagerZos Command Line Utility

Montitor MDB sample ...

./batchManagerZos help submit

 --batchManager=[WOLA 3-Part Name]

Options:

 --applicationName=[applicationName]

 --moduleName=[moduleName]

 --componentName=[componentName]

 --jobXMLName=[jobXMLName]

 --jobXMLFile=[jobXMLFile]

 --jobParameter=[name]=[value]

 --jobParametersFile=[job-parameters-file]

 --jobPropertiesFile=[job-properties-file]

 --controlPropertiesFile=[control-properties-file]

 --restartTokenFile=[restart-token-file]

 --wait

 --queueManagerName=[queueManagerName]

 --pollingInterval_s=[polling interval in seconds]

 --getJobLog

 --verbose

 --returnExitStatus

The --queueManagerName parameter

specifies the MQ queue manager where

the batch events are being published

For this to work, the QMGR receiving

the published events must be local to

the batchManagerZos client (it uses

BINDINGS mode) to access

The topics it subscribes to are:
batch/jobs/instance/stopped

batch/jobs/instance/failed

batch/jobs/instance/completed

When it sees an event on one of those

topics it can determine the result

We saw this earlier when we were exploring the batchManagerZos subject. That command line interface client has the ability to

monitor the topic tree to determine the status of a submitted job. That's done with the --queueManagerName = option where you

name the QMGR subsystem name. This must be done along with the --wait option.

Doing this eliminates the need to poll the Liberty z/OS server periodically to determine the state of the job. It simply monitors the

topic tree and when it sees the event showing either stopped, failed, or completed it knows the job is done.

This uses BINDINGS mode to connect to the MQ queue manager, so that means the batchManagerZos instance must be on the same

LPAR as the queue manager that has the batch events topic.

Unit 4 – Job Submission and Control

Unit 4 - 30© 2017, IBM Corporation

30

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Another Example: Batch Events MDB Monitor Linked to From WP102603 Techdoc

Summary ...

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102603

This is an MDB application that subscribes to

the batch/jobs/execution/jobLogPart topic

When a Job Log Part is seen, it retrieves the

log part and stores it in a directory under the

server running the MDB

Source for this sample provided at Git location

linked to from the Techdoc

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544

The WP102544 WebSphere Liberty Batch anchor Techdoc has a PDF that provides a sample

configuration which includes this MDB monitoring application running in a separate Liberty server

The WP102603 Techdoc has a link to a sample MDB application that monitors the jogLogPart topic and retrieves job log parts as

they're published. It then writes the job logs into the /logs directory of the Liberty server that's hosting the MDB application. The

use of this sample is illustrated in the WP102544 "Sample Configuration" guide.

Unit 4 – Job Submission and Control

Unit 4 - 31© 2017, IBM Corporation

31

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Summary of Topics We Covered In This Unit

Questions?

This unit covered a lot of topics ... five, as a matter of fact. The focus of this unit was on job submission, jog logging, and batch

events.

The upcoming lab focuses on those same topics.

End of UnitEnd of Unit

