

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 1© 2017, IBM Corporation

1

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Unit 2

Liberty, Server Creation and Setup

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 2© 2017, IBM Corporation

2

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Objective of this Unit in the Workshop

Liberty after IM ...

OverviewOverview

Better understanding

of Liberty z/OS as the

server foundation for

Liberty Java Batch

Better understanding

of Liberty z/OS as the

server foundation for

Liberty Java Batch

● The Java Batch function operates within

the context of a Liberty server

● Understanding a few key things about

Liberty will help with using Java Batch

● Liberty z/OS has a few things unique

that allow it to operate on z/OS

● Purpose of this unit is to give you an

understanding of the Liberty runtime so

we can then move on to Java Batch

specific things

Hmmm … I already

know some of this. So

this will be a review.

Liberty is a fairly sophisticated application server platform, and to cover it all would be impossible within the time we've set for this

workshop. So our objective for this unit is much more limited: to cover some key things about Liberty, and Liberty z/OS, that are

fundamental to better understanding how the Java Batch function works inside Liberty.

The IBM WebSphere Liberty Java Batch function runs in Liberty on all platforms supported by Liberty. You can't run this function

outside of Liberty. So understanding how Liberty works will help you understand how Java Batch works inside of Liberty.

Liberty z/OS has a few things that are unique to z/OS, and the Java Batch function has the ability to take advantage of this. For

instance, the batchManagerZos command line client is exclusive to the z/OS platform, and it uses a cross-memory mechanism

(WOLA) to communicate with the Liberty server to submit and control jobs. Also, z/OS has the SAF security interface that can be

used for security constructs such as the user registry, application role authorization, and SSL digital certificates.

So we'll take a relatively high-level tour of the Liberty server and then we'll go into the first hands-on lab.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 3© 2017, IBM Corporation

3

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Liberty z/OS After the Installation Manager Work Has Been Done

Server creation ...

IBM

Installation

Manager

IBM

Installation

Manager

/usr/lpp/zWAS/V16004

/usr/lpp/zWAS/V16002

/usr/lpp/zWAS/V1700x

Liberty z/OS requires the use of IBM Installation Manager

(IM) to perform the installation
The IM topic is beyond the scope of this workshop; we assume you have IM working

The result of an IM install of a Liberty is a ZFS file system at

a mount point

That file system may then be copied, DUMP/RESTORE'd

just like any other ZFS

You may have multiple levels of Liberty installed at one

time. They are just mounted ZFS file systems.
In fact, we encourage you to install new levels into separate ZFS file systems (rather than

"in place" updated of the same ZFS). That makes it very easy to test new levels and to fall

back if there's an issue with a new release.

We'll start with a brief discussion of how Liberty z/OS is installed. It is done using an installation utility called "IBM Installation

Manager," or IM for short.

Note: the Installation Manager topic is too big to cover with any detail in this workshop. If you'd like more information, see the

WP102544 Techdoc at ibm.com/support/techdocs. That provides information on acquiring IM (it's a no-charge function), installing it,

and using it.

What IM produces is a file system at a mount point you specify. That's really all there is to a Liberty z/OS installation: a ZFS file

system. It's about 200MB or so in size, and you may have multiple levels mounted at the same time so some servers can operate at

one level and other servers at another. The "no migration" design of Liberty – meaning, you can move up a level or fall back a level

without requiring any changes to the configuration structure – makes having multiple levels concurrently appealing. We do not

recommend the "in place" update of IM where the one level is deleted and a new level installed into the same ZFS; it works, but it

takes longer, and the flexibility of having multiple levels present outweighs the additional DASD consumed.

The ZFS file systems are capable of being copied and sent to other LPARs as well, which means you do not have to have IM on every

LPAR where Liberty z/OS operates. You can – and we encourage this as well – operate a "service zone" for IM work, then copy the file

system and move it to whereever it will be used.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 4© 2017, IBM Corporation

4

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Creating a Liberty z/OS Server

Start PROC ...

> cd /usr/lpp/zWAS/V16004/bin

> export JAVA_HOME=/shared/java/J8.0_64

> export WLP_USER_DIR=/JavaBatch

>./server create JBSRV01

UNIX shell … Telnet, SSH, OMVS

1

2

3

4

/JavaBatch

 /servers

 /JBSRV01

 /apps

 /dropins

 /logs

 server.xml

1. Change to the /bin directory of the Liberty install
That is where the 'server' shell script is located. That shell script

is used to create the servers.

2. Export JAVA_HOME
Or have that value specified in .profile … key point is the location

of a valid 64-bit Java must be specified to the environment with

the JAVA_HOME variable.

3. Export WLP_USER_DIR
The WLP_USER_DIR variable specifies where the server will be created.

This may be any location you wish. The ID you use to create the server

must have WRITE to this directory location.

4. Create the server
The server shell script 'create' verb will cause the server to be created

with the name you specify on the create command. The shell script then

goes to the specified WLP_USER_DIR location and creates the server.

Creating a Liberty z/OS server involves opening a UNIX shell environment -- which can be a Telnet session, an SSH session, or even an

OMVS screen – setting two environment variables, and then issuing the 'server create' command.

The two variables are:

● JAVA_HOME – Liberty does not come with its own Java; you must have a valid 64-bit Java installed somewhere on the system

that can be pointed to with this variable. Then it's just a matter of exporting JAVA_HOME to the environment so that when the

'server create' is run it can access and use Java.

● WLP_USER_DIR – this is where the server will be created. It can be anywhere you wish. The 'server' shell script will read the

value of WLP_USER_DIR in the shell environment and attempt to create the server directories there. Provided the ID under

which you execute the 'server' command has write permissions to that location, your server will be created.

The 'server' shell script resides in the /bin directory of the Liberty install. So you change directories to that location and issue the

command 'server create <server_name>'. The server name you provide ends up being a directory under the WLP_USER_DIR

location. It then creates some other directories and copies in a default server.xml file. Your server is created.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 5© 2017, IBM Corporation

5

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Supplied Sample BBGZSRV JCL Start Procedure … and How it Works

Customization ...

//BBGZSRV PROC PARMS='defaultServer'

//*----------------------------------

// SET INSTDIR='<your_value>'

// SET USERDIR='<your_value>'

//*----------------------------------

//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,

// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'

//WLPUDIR DD PATH='&USERDIR.'

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

/<WLP_USER_DIR>

 /servers

 /<server_name>

 server.xml

/<install_path>/

START BBGZSRV,PARMS='<server_name>'

1

2

3

4

1. INSTDIR=
This points to the location where Liberty z/OS is installed.

2. USERDIR=
This points to the WLP_USER_DIR under which the server

you wish to start resides.

3. START command PARMS=
By default the START command includes a PARMS=

that names the server.

4. PARMS= resolution on EXEC statement
The PARMS= on the START command overrides the

PARMS= on the PROC statement, and that resolves the

&PARMS variable on the EXEC statement

Once the server is created we can start it either as a UNIX process, or as a z/OS started task. Starting it as a UNIX process involves

using the same 'server' shell script you used to create the server, but with a different verb: 'server start' rather than 'server create".

Our interest in this workshop is starting it as a z/OS started task. To do that you use the supplied sample JCL, which is found in the

install file system at this location: /<install_mount_point>/templates/zos/procs/. Copy the procs to your system proclib and

customize.

The sample JCL looks like what's shown in this chart (we've cut out some comment lines). Follow the numbered circles:

1. The INSTDIR= variable points to the installation location for the level of Liberty z/OS you wish to use. This value then resolves

down to the &INSTDIR. substitution variable on the EXEC statement to complete the path to the 'bbgzsrv' module.

2. The USERDIR= variable points to the WLP_USER_DIR under which the server you wish to start resides.

3. By default (we're going to show you some customization options on the next chart) the START command includes a PARMS= in

which you name the server you wish to start.

4. The PARMS= you supply on the START command overrides what's coded on the PROC statement, and that then resolves down

to the &PARMS substitution variable on the EXEC statement.

It's not that complex a JCL start proc. And it's open to customization if you wish, which we explore on the next chart.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 6© 2017, IBM Corporation

6

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Some Customized Variations on the Sample JCL Start Procedure

Java ...

//JBSRV01 PROC PARMS='JBSRV01'

//*---

 :

 :

//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,

// PARM='PGM &INSTDIR./lib/native/zos/s390x/bbgzsrv &PARMS'

//WLPUDIR DD PATH='&USERDIR.'

Hard-code the server name on the PROC statement

Use this when you want each

server to have its own JCL proc

START <proc>

//JBSRV01 PROC VERSION='',PARMS='JBSRV01'

//*---

// SET INSTDIR='/zLiberty'

 :

 :

//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,

// PARM='PGM &INSTDIR./&VERSION./lib/native/zos/s390x/bbgzsrv &PARMS'

//WLPUDIR DD PATH='&USERDIR.'

Pass in Liberty z/OS version value as a parameter

/zLiberty/V16002

/zLiberty/V16003

/zLiberty/V16004

START <proc>,VERSION='V16004'

Append Version

This would work well for test

environments where you're going

between versions frequently

Here we illustrate two customizations to the default JCL start procedure. As mentioned on the previous chart, this JCL is not that

complex, and you are free to customize it to fit your specific needs.

● Hard-code server name on PROC statement – the objective here is to simplify the START command to just START <proc>. This

implies each server has its own JCL start procedure (which potentially impacts the SAF STARTED profiles used to assign the ID to

the started task, but we'll defer that conversation to Unit 6 where we discuss security issues). If each server has its own

dedicated JCL start procedure, then you may wish to consider renaming the JCL to equal the server name (which is why, as a

general "good practice" we recommend server names be 8 characters or less and upper-case so you can name z/OS artifacts like

JCL start procs equal to the server name).

● Pass in other parameters –for example, passing in the Liberty z/OS version level to use when starting the server. This implies you

have multiple levels of Liberty z/OS installed, and the mount point name for each lends itself to this practice, such as we're

illustrating here. In this example we're adding VERSION='' to the PROC statement, and we append /&VERSION. to the EXEC

statement. Then when the START is issued with VERSION='V16004' for example, that value gets passed and it resolves down to

complete the path to the designated version number you wish to use.

These are just examples. You don't have to do either of these. But it shows how the JCL start procedure is a relatively simple one and

can be customized fairly easily.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 7© 2017, IBM Corporation

7

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Level of Java the Liberty Started Task Will Use

What we'll construct ...

Started Instance of Liberty z/OS

JCLJCL

IBM Java Batch

JAVA_HOME=

UNIX Environment Variable in Effect
There are several ways to inject JAVA_HOME into the

environment. A relatively simple way is to have the server.env

file present and have it specify JAVA_HOME=

/<WLP_USER_DIR>

 /servers

 /<server_name>

 server.xml

 server.env

When the server is started the environment variable is read and

the Java at that location is used.

What about the Java location that the server will use? We do that by making the JAVA_HOME variable available to the environment

in which the server starts. There are several ways to accomplish this, but one of the easiest to understand is simply coding a

server.env file alongside your server.xml file, and populating that file with JAVA_HOME= and pointing to the 64-bit Java you wish to

use.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 8© 2017, IBM Corporation

8

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

What We Will Construct for the Lab Environment

server.xml ...

The WLP_USER_DIR
For this workshop the value /JavaBatch is arbitrary. You may choose another more meaningful value

for your location.

File system allocated and mounted at WLP_USER DIR
Not strictly required, but a good thing to do.

The "Dispatcher" server
Our aim is to create a "multi-JVM" environment. Initially we'll configure this server to be used as a

single-JVM Java Batch server, then later we'll switch it so it acts as the Dispatcher.

The first of two "Executor" servers
We are going to create two Executor servers so we can illustrate the "message selector" on the JMS

activation specification. This is the first of two Executor servers.

The second of two "Executor" servers
This is the second Executor server.

Sharing the MQ RAR file from /shared/config
We could have placed the MQ RAR file each server's root directory, but we thought showing how you

can share configuration elements under this shared location would be interesting.

Each server will have its own JCL start procedure
That was not required; we could have shared one JCL proc among the three. But having a separate JCL

for each makes the START command very simple.

/JavaBatch

 /servers

 /JSRDISP

 server.xml

 server.env

 /JSREXEC1

 server.xml

 server.env

 /JSREXEC2

 server.xml

 server.env

 /shared

 /config

 wmq.jmsra.rar

JSRDISP
JSREXEC1
JSREXEC2

Let's step back and think about the server environment we'll use for this workshop labs. The chart shows the server structure we

intend to have you build as part of the hands-on lab.

Note: the names we're using here for WLP_USER_DIR and the server names are very generic. They don't represent a very well-

formed naming convention. For this workshop it's fine because we're trying to get across some key concepts, and using simple-to-

remember names helps. But in your setup back home you will want to think through thenaming convention a bit more carefully.

We're going to have you build three servers even though two of them will go mostly unused until we get the "multi-JVM" lab after

Unit 5. We thought if you were in creating one server it would be easy enough for you to create two more. Let's walk through the

chart from top to bottom:

● The WLP_USER_DIR location will be /JavaBatch, and will have a file system allocated and mounted at that location.

● The "Dispatcher" server will be called JSRDISP in upper-case. For this lab, and the Unit 3 and Unit 4 labs this server will be the

server we'll use. It's not until the Unit 5 lab that it really becomes a "multi-JVM dispatcher," but that's okay ... it's just a name.

● We'll create two executor servers – JSREXEC1 and JSREXEC2 – that will go unused until the Unit 5 lab. We're creating two

executor servers because we want to show you some things related to MDB message selectors, and to do that we need at least

two servers to best illustrate job submission messages on the dispatching queue being selectively picked up.

● To use MQ for the batch events (Unit 4) and "multi-JVM" configuration (Unit 5), we need to make the MQ resource adapter

available to each server. We're going to show you how you can make use of the /shared directory to share common things

between servers under the same WLP_USER_DIR location.

● Each server is going to have its own JCL start procedure. We do this because it simplifies the START command, and it avoids the

problem of case mis-matches on PARMS= that is supply on the START command.

This topology is more advanced than a single server, but less sophisticated than what's possible with Liberty. This will give you a very

good sense for server creation and starting servers when multiple servers exist under a single WLP_USER_DIR location.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 9© 2017, IBM Corporation

9

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Primary Configuration File for a Server – server.xml

Updating XML ...

<?xml version="1.0" encoding="UTF-8"?>

<server description="new server">

 <featureManager>

 <feature>servlet-3.1</feature>

 <feature>batch-1.0</feature>

 <feature>batchManagement-1.0</feature>

 </featureManager>

 <httpEndpoint id="defaultHttpEndpoint"

 host="*"

 httpPort="25080"

 httpsPort="25443" />

</server>

"Features"
This is what tells the server what functions to

load. This is what makes Liberty "composable."

For Java Batch, the two key features are shown.

Other Configuration Elements
This where we'll place a great deal of other XML

to configure things such as JDBC for DB2, and JMS

for access to MQ.

HTTP ports
Liberty Java Batch makes use of REST, which is

based on HTTP, which means we need to open

ports for that. This illustrates how that's defined.

On z/OS that file is "tagged ASCII," which means system editors such as OEDIT* can read and edit

even though the file is in ASCII. It autoconverts because it understands the tagging.

* When environment variable _BPXK_AUTOCVT=ON is set

The heart of a server's configuration is the server.xml file. This is the primary configuration file for a server. (Other files exist: we saw

the server.env for environment variables earlier, and later we'll see the bootstraps. properties file. But the server.xml is the primary

configuration file.)

What does it look like? The picture above shows you an example: at the top is a "feature list" ... this is where you "compose" the

Liberty server to load the features you want, based on what you want to do with the server. For this workshop the key features are

batch-1.0 (enables the JSR-352 support) and batchManagement-1.0 (enables the operational extensions IBM has produced). You'll

see more features as the workshop goes on, but those are the two key features of interest for Java Batch.

At the bottom is the httpEndpoint definitions, which is where we define the HTTP and HTTPS ports for the server.

In the middle is where we're going to put all sorts of XML to do various things – define the Java Batch persistence, provide the JDBC

definitions to get to DB2 z/OS, some basic security settings we'll use until we get to Unit 6 (when we'll remove them and add others

to use SAF for security), and in Unit 5 we'll add various JMS definitions to use MQ.

The best way to learn about the elements to use in the server.xml is to see examples, then study the specific elements references in

the Knowledge Center, which you can Google fairly easily. The WP102544 Techdoc at ibm.com/support/techdocs has a "Samples"

document that illustrates a three-server environment very much like what we're doing in this workshop.

The server.xml file for Liberty z/OS is "tagged ASCII," which means it's an ASCII file, but an extended attribute on the file tells the z/OS

system that the file can be "auto-converted" in editors so you can edit using system editors such as OEDIT.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 10© 2017, IBM Corporation

10

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

In This Workshop We'll Update XML by Copying in Pre-Built Versions

Key pieces ...

XML we built ahead of

time and stored at a

defined location

/JavaBatch

 /servers

 /JSRDISP

 server.xml

 server.env

 /JSREXEC1

 server.xml

 server.env

 /JSREXEC2

 server.xml

 server.env

 /shared

 /config

 wmq.jmsra.rar

We do this for several reasons:
● Some configuration updates imply a lot of XML

● Nobody likes typing a lot of XML

● Typos in XML can lead to lost time debugging syntax errors

● Even copy/paste can be an issue when XML is very long

By all means, please do look at the XML we're having you copy in. We'll

explain in lecture what the XML is and what it's doing. We just want to

avoid the tedious exercise of typing it all in.

Let's talk about editing the server.xml file for this workshop ...

We're going to supply pre-built server.xml files you simply copy from one location over to your server location. That will replace the

file and the Liberty server will dynamically update with the new information.

Why are we doing this?

Because there's a lot of XML to add for things like JDBC and JMS configurations. In other workshops we tried providing a copy-and-

paste file where you could insert rows in server.xml and paste, but we found that sometimes lines would get overlaid if not enough

lines were inserted, and then XML was lost and the server had problems.

The objective of this workshop is not to make you typists, nor is it to have you inserting lines and scrolling up and down pasting in

large chunks of XML. We want you to get to success without having to fight through problems that result from some little error

caused by a typo, or an overlaid line, or whatever. So we'll supply the full XML files and you'll issue a UNIX 'cp' command to copy the

file from our pre-built location to your server location.

But by all means look the files! We absolutely want you to understand what each copy is bringing in. We'll help with that by

illustrating in the hands-on lab guide what new XML is coming in with each cp command.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 11© 2017, IBM Corporation

11

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Key Pieces to Setting Up Your First Liberty Java Batch Server

What's in XML ...

Liberty z/OS

Server

Liberty z/OS

Server

JCLJCL

SAF Profiles

2

1

4

5

6XMLXML

ENVENV

3

1. SAF Profiles
We need to setup up a few things ahead of time: notably, the ID and group the servers will operate

under, and the STARTED profiles so the JCL start procs will assign that ID to the started tasks.

2. Create Server
With the ID created we can go into a UNIX shell under that ID and create the server.

3. Configuration Files
The act of creating the server will copy in a default template. As mentioned, we created configuration

files ahead of time and for the upcoming lab you'll copy them in.

4. JCL Start Procs
Sample JCL is supplied with the Liberty install. It's a simple matter to copy them from the file system to

your proclib and customize. We did that ahead of time.

5. Java Batch Job Repository
We could start with in-memory, but we'd rather go with the JobRepository in DB2 z/OS.

We will have you generate the DDL using the genDDL shell script. But then we'll have you submit a JCL

job we created that uses that same DDL to batch-create the tables in DB2. In the "real world" you'd

review the generated DDL with your DB Admin and create according to your DB2 procedures.

6. Sample Java Batch Application
For the initial validation we're going to use the "SleepyBatchlet" sample available out on Git. This is

easy to use as an IVP because it requires no other data input or output sources.

Let's step back and take a high-level view of the key components that go into creating and running your first Java Batch server, and

how we'll accomplish some of those things in this workshop. Follow the numbered circles:

1. There's a few SAF profiles that must be in place initially – the server ID and group, as well as the STARTED profiles that will assign

the ID when the START command is issues. We'll have a pre-built JCL job you submit to do that.

2. You'll create the server by opening a Telnet session and issuing the 'server create' command.

3. The configuration files we'll have you copy in from our pre-built directory, as we discussed on the previous chart.

4. The JCL start procs will be copied into the SYS1.PROCLIB data set ahead of time, but you'll customize them.

5. The JobRepository consists of a set of DB2 tables. We could create those ahead of time, but we wanted you to experience

running the genDDL shell script to generate the DDL. You'll do that, but then we'll have you run a pre-built JCL job that has the

same DDL to create the tables. That will spare you the time of getting the generated the DDL into a 80-column JCL format.

6. There's a sample Java Batch program we'll have you use that's relatively simple. We have it placed in a directory where you can

simply copy it into your server's /dropins locations.

Yes, some of this is simply you submitting a job we spent time building ahead of time. If we had you run through all the steps we'd

never fit this into two days. You're not missing anything important provided you understand the key things going on. The work we

did ahead of time was mostly just mundane stuff to save you time.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 12© 2017, IBM Corporation

12

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The server.xml in Support of the Initial* Java Batch Server

Batch persistence ...

Features

Basic Security

Job Repository JDBC

HTTP Ports

<server>

</server>

* We will add more to this as we build out the configuration to suppor the multi-JVM topology

Feature Specification
We have a few key features to make sure are in place – batch-1.0,

batchManagement-1.0, and appSecurity-2.0. The first enables the JSR-352 batch

function; the second enables the IBM operational enhancements; and the third is

because the REST interface is going to impose security requirements.

Basic Security Definitions
In the "Security" unit we'll talk about how to get security definitions into SAF, but to

start out we can keep things simple by coding them in the server.xml file.

Job Repository and JDBC Definitions
To use the DB2 JobRepository tables we have to tell the Liberty z/OS server how to get

to DB2 z/OS and a few other things.

HTTP Ports
The REST interface we'll use to submit the job requires HTTP and HTTPS ports to be

open.

This is a very abstract representation of the server.xml structure that you'll see for this workhop. What we're trying to do here is

convey the idea that information in the server.xml file is organized into groups of XML, each with a particular purpose. You've already

seen a little of the XML earlier: with the feature list and the HTTP ports. Those two things are represented by the top and bottom

boxes in this picture.

In adddition we'll add a section for "basic security." This will satisfy the security requirement of IBM WebSphere Liberty Java Batch

without having to get too complicated with security too early. Another block of XML will be associated with the JDBC definitions

needed to access the DB2 tables for the JobRepository. (And later, in Unit 4 and 5, we'll add more to represent JMS for both batch

events and the multi-JVM design.)

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 13© 2017, IBM Corporation

13

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Batch Persistence and JDBC Definition

Generating DDL ...

<batchPersistence jobStoreRef="BatchDatabaseStore" />

<databaseStore id="BatchDatabaseStore"

 createTables="false"

 dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

<jdbcDriver id="DB2T4" libraryRef="DB2T4LibRef" />

<library id="DB2T4LibRef">

 <fileset dir="/shared/db21010/jdbc/classes/"

 includes="db2jcc4.jar db2jcc_license_cisuz.jar sqlj4.zip" />

</library>

<authData id="batchAlias" user="xxxxx" password="xxxxx" />

<dataSource id="batchDB"

 containerAuthDataRef="batchAlias"

 type="javax.sql.XADataSource"

 jdbcDriverRef="DB2T4">

 <properties.db2.jcc

 serverName="wg31.washington.ibm.com"

 portNumber="9446"

 databaseName="WG31DB2"

 driverType="4" />

</dataSource>

1

2

3

4

5

1. batchPersistence
This turns on batch persistence. Absent this

it would be in-memory JobRepository

2. dataBaseStore
This points to the dataSource to use, and it

also specifies the DB2 z/OS table schema for

the Java Batch tables.

3. library
Points to where the DB2 JDBC drivers are

4. authData
We're showing JDBC T4, and that requires an

authentication alias.

5. dataSource
Provides the specifics of the connection to

DB2

This is why we provide pre-built

XML to copy in, rather than

having you type this by hand. ☺

Here we start showing some of the detail of the XML ... specifically, the JDBC definitions to access DB2 where the JobRepository

tables are maintained. The numbered circles correspond to the notes here:

1. The <batchPersistence> element provides a pointer ("jobStoreRef=") to more XML that begins to define the batch persistence

information.

2. The <databaseStore> element is pointed to by <batchPersistence>, and it provides more details: (a) it will not attempt to auto-

create the tables in the database engine; (b) the data source is pointed to with the ID "batchDB"; (c) the tables will use a

schema value of JBATCH; and (d) no table prefix is used for the tables.

3. The <library> element is used to provide information about where the JDBC drivers are located.

4. The <authData> element is used to specify the authentication alias for the JDBC Type 4 connection we're using to DB2.

Note: JDBC Type 2 (cross-memory z/OS) is possible, but we're choosing not to do that in this workshop because it requires RRS,

which is a z/OS authorized service and would mean the Liberty Angel process would be required. Later we're going to require

the Angel for the batchManagerZos command line client, which uses WOLA, which is a z/OS authorized service as well. But for

now we're "keeping it simple" with JDBC T4, which does not require the Angel process.

5. The <dataSource> element defines the final set of details needed to access DB2, including the host and port where DB2 is

listening.

That's a lot of detail, but it's necessary detail to understand how and where to get to DB2 to access the JobRepository tables.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 14© 2017, IBM Corporation

14

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Generating the JobRepository DDL using the genDDL Utility

Java batch features ...

ddlGen

Liberty z/OS

Server

Liberty z/OS

Server

DB2DB2

DDL File

XMLXML

1

2

3

4

1. The Liberty server
The server must be up and running for ddlGen to work

The ddlGen utility will create the DDL for the table definitions

based on the relational system defined to the running server:

2. The server.xml file
Must be configured with valid <batchPersistence> and JDBC definitions so it knows how to

reach the DB2 system. Also, the localConnector-1.0 and batch-1.0 features must be defined.

For DB2 on z/OS we advise setting createTables="false" on the <dataBaseStore> element

so automatic generation of tables in DB2 is not attempted.

3. The DB2 system
Must be started and running with the Liberty server able to connect to it.

4. The output file
The output from the ddlGen utility is a file with the DDL statements to create the tables used for

the JobRepository. This DDL does not have database and STOGROUP definitions, so you would

want to review this DDL with your DB2 Admin so it can be customized to your local DB2 policies.

WebSphere Liberty Java Batch comes with a utility called "ddlGen" which will generate a set of Data Definition Language (DDL)

statements to create the tables needed for the JobRepository. The general process is this: you generate the DDL, you review with

your DB Admin, and then you implement the tables.

Note: by default this utility will try to auto-create the tables as well. That works great for something like Derby, and maybe DB2 on

the Linux/Unix/Windows platforms, but is probably not something you'd do with DB2 z/OS. There's a way to stop it from trying to

auto-create the tables, and that's with the createTables="false" tag on the server.xml <dataBaseStore> element.

This utility has a few requirements for it to work:

● Your Liberty server must be up and running, and it must have valid JDBC definitions in the server.xml to allow it to connect to the

database system you intend to use. The utility will connect to the running server and have the server connect to the database

system.

● The server.xml must also have the localconnector-1.0 feature defined. This is what provides JMX support. The ddlGen utility will

use JMX and connect to the running server.

● The database system – DB2 z/OS in our workshop – must be started. The Liberty server will connect to the DB2 instance using

the JDBC definitions in the server.xml.

With all that in place the ddlGen utility will produce an output file that contains the DDL for the tables. This file has very long lines,

one for each table creation or index creation. It is definitely not formatted for FB 80, so you'd need to do that to get it into JCL for

table creation. Also, the ddlGen utility does not create any STOGROUP, TABLESPACE, or DATABASE statements. It just creates TABLE

and INDEX statements. So for DB2 z/OS you should definitely have your DB2 administrator take a look at the statements and assist

with the creation of the SQL to properly format the tables for your system.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 15© 2017, IBM Corporation

15

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Liberty Java Batch Features

Basic security ...

There are two levels we can turn on: basic JSR-352 support, and IBM operational extensions

<featureManager>

 <feature>servlet-3.1</feature>

 <feature>batch-1.0</feature>

 <feature>batchManagement-1.0</feature>

</featureManager>

This enables the JSR-352 Java Batch support. If you coded just this, you could run JSR-352 batch

jobs, but you would not have the IBM extensions such as the REST interface, the batchManager

command line client, the batchManager Zos command line client, or the multi-JVM support.

This enables the IBM operational extensions to the JSR-352 support found in Java EE 7. If you

code just this, then batch-1.0 would be enabled automatically. Coding both (as shown) does no

harm. For this workshop, we intend to illustrate the IBM operational extensions.

There are two features that are key to the use of the WebSphere Liberty Java Batch function – batch-1.0 and batchManagement-1.0.

batch-1.0 is what enables the JSR-352 support. But coding only this would mean you could run JSR-352 applications, but you would

not have the operational enhancement functions IBM has provided. Those are enabled with the batchManagement-1.0 feature.

As a general rule, you will code both of these. Yes, you could use just batch-1.0, but there's little reason not to use the operational

enhancements that come with batchManagement-1.0. So ... code them both.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 16© 2017, IBM Corporation

16

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Basic Security

SleepyBatchlet ...

<keyStore id="defaultKeyStore"

 password="Liberty"/>

<basicRegistry id="basic1" realm="jbatch">

 <user name="Fred" password="fredpwd" />

</basicRegistry>

<authorization-roles id="com.ibm.ws.batch">

 <security-role name="batchAdmin">

 <user name="Fred" />

 </security-role>

</authorization-roles>

The final unit of this workshop focuses on security … specifically, the use of SAF to "harden"

security constructs. Initially we can satisfy security requirements with "basic" security:

Liberty-generate key/trust store
With this line, Liberty will generate a file keystore with

a self-signed certificate for SSL. You'd never use this

for production, but it's "good enough" to start with.

User Registry
If we're required to log in, we'll need a registry of user

identities. Normally this is LDAP or SAF, but to start

we'll code it here in the server.xml file. "Fred" is our

user, and his password is "fredpwd" (case sensitive).

Application Role
The batchManagement-1.0 function REST interface requires

the authenticated user to be granted access to one of the

defined roles. Here we're granting Fred access to the

"batchAdmin" role, which allows Fred administrator rights.

This is simply a way to achieve the minimum

security requirements quickly and easily for

initial validation and usage. See the security unit

for more on SAF security implementation.

Try as we might, we can't avoid the subject of security. ☺

When batchManagement-1.0 is enabled, the REST interface (and the batchManager command line client which uses the REST

interface) imposes a set of security requirements that must be satisfied. Those requirements are:

● Encryption – the network connection with the REST interface is marked protected, which means it will be redirected to the

HTTPS port of the server. That will trigger the establishment of an SSL connection, which means a server digital certificate is

required. Normally that is done by generating a certificate and having a well-known "Certificate Authority" sign it. But this early

in the workshop we're going to take a shortcut and use a built-in Liberty function that generates a certificate and places it in a

file. That's enough to satisfy the SSL requirement. (We'll look at SAF-based SSL and keyrings in Unit 6.)

● Authentication – before entry is permitted the user presenting themselves need to be authenticated. That means Liberty must

compare the ID and password against a registry of users and their passwords. Normally that's done with LDAP or SAF, but again,

we're taking a shortcut early in this workhop and we'll code the registry right in the server.xml. (More on SAF registry in Unit 6.)

● Authorization – a user can be authenticated, but they may not be permitted to use the Java Batch function. Authority is checked

against defined "application roles," which determine how much authority a user has within the function. Normally that would

be done with either LDAP or SAF, but here we'll use roles defined in the server.xml.

As the chart indicates, this is all just a way to simplify the security requirement so we can focus on the other functions of WebSphere

Liberty Java Batch without having to jump through too many security hoops too early. But you'd never operate your production

environment with what we show you in the chart. It's great for development and ad hoc testing, but for anything more than that

better security is needed. We have the entire Unit 6 dedicated to this topic.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 17© 2017, IBM Corporation

17

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The SleepyBatchlet Sample and Application Deployment

Job submission ...

https://github.com/WASdev/sample.batch.sleepybatchlet

SleepyBatchletSample-1.0.war

The sample, when submitted, loops for a specified number of seconds (default 15) and then ends.

It has no data input or output requirements.

It's an ideal IVP because it has no dependencies other than an operational Java Batch runtime

/JavaBatch

 /servers

 /JBSRV01

 /apps

 /dropins

 /logs

 server.xml

SleepyBatchletSample-1.0.war

For this workshop we did the

download. The WAR file is on the

z/OS system ready to copy into your

server's /dropins directory

With Liberty you can deploy an application either by using

dynamic file monitoring and the /dropins directory, or by

statically defining the application in server.xml

For this workshop we're going to use the /dropins directory

To validate the infrastructure we're going to have you use a sample Java Batch application called "SleepyBatchlet," which is available

for download on Git at the URL shown on the chart.

The application is good for initial verification because it requires no other data input or output definitions. It's a relatively simple JSR-

352 application that is structured as a one-step job, and the step is a "batchlet." The batchlet simply loops and "sleeps" for a

specified number of seconds, then ends. The number of seconds it "sleeps" default to 15, and that value can be passed in as a job

parameter at time of job submission (we'll see how that works in Unit 3).

The sample application is packaged as a WAR file (Web ARchive), and can be deployed by simply placing the file in the /dropins

directory of the server. The server will detect the new file and dynamically pick it up and load the application.

Java Batch applications may be "started" in the Liberty server, but that does not mean the batch function is processing. That's done

by submitting the job through the JobOperator interface. For IBM WebSphere Liberty Java Batch, IBM has interfaced the

JobOperator with a REST interface, and has provided two command line interfaces: batchManager and batchManagerZos. For the lab

coming up after this unit we'll use the batchManager client because it's relatively easy to use initially. (The other command line

client, batchManagerZos, requires WOLA, and that means the Angel needs to be in place as well as some SAF SERVER profiles. We'll

do that up in Unit 4. For now we'll stay simple and use batchManager.)

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 18© 2017, IBM Corporation

18

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

Submitting the SleepyBatchlet Job

Techdoc ...

> cd /usr/lpp/zWAS/V16004/bin

> export JAVA_HOME=/shared/java/J8.0_64

> (see command below)

UNIX shell … Telnet, SSH, OMVS

./batchManager submit --batchManager=localhost:25443

 --user=Fred --password=fredpwd

 --applicationName=SleepyBatchletSample-1.0

 --jobXMLName=sleepy-batchlet.xml

 --trustSslCertificates --wait

One long command line ... 1

2

3

4

1. Point to server host and HTTPS port

Here we're invoking on the same LPAR, so

we use "localhost".

2. Provide authentication information

This matches what we defined in the "basic"

security in server.xml

3. Name the application to submit

The server may have many different

applications deployed, so this names the

batch job to submit

4. Specify the JSL XML file

This is part of the application WAR file.

Naming this tells the batch container what

JSL to use.

5. Trust the SSL certificate

This tells batchManager to automatically trust the SSL certificate without performing any verification. When using the "basic"

security this is necessary because the "basic" self-signed certificate is not trusted, and an SSL handshake error would occur.

6. Wait for job completion to return to prompt

This tells batchManager to hold return to prompt until the job completes.

5 6

This chart illustrates how the SleepyBatchlet job is submitted using the batchManager command line client. The batchManager

utility is located in the /bin directory of the install path. You invoke it from a shell environment (Telnet, SSH, OMVS), or with JCL and

BPXBATCH (which creates a shell as well, but one under the control of the JCL). You have to have JAVA_HOME exported to the shell

environment for this to work. Then you issue the command.

The "verb" is 'submit' ... there are other verbs on the batchManager command line interface, and we'll explore those up in Unit 4.

For now, we'll focus on 'submit.' The submit verb is followed by a series of parameters. Follow the numbered circles:

1. The --batchManager= parameter specifies the host and port of the Liberty server that we'll communicate with to run the Java

batch job. Here we're showing "localhost" because we'll be invoking on the same LPAR as the server. But you could as easily

specify a real DNS host name. Which tells us something about batchManager – you can run this utility anywhere; it does not

need to be run on the same LPAR as the Liberty z/OS server. The other required bit of information is the port number. This is the

HTTPS (secure) port.

2. The userid and password of the ID that will attempt access. Do you recall our chart with talk of authentication and user

registries? This is why we need it ... to submit a job we have to authenticate. That means the ID we're passing in (Fred in this

case) must be in the registry. If you recall our basic registry example, Fred is coded in the registry section of server.xml.

3. We name the Java Batch application so the Liberty server knows which one to invoke. You may have many Java Batch

applications deployed in a server, so we have to indicate which one we're interested in.

4. The --jobXMLName refers to the "Job Specification Language" (JSL) file to read in and use for the job. The SleepyBatchlet sample

has the JSL file packaged with the application. So we only need refer to the JSL name. There is an option to use a JSL file that's

outside the application package. That's called "inline JSL," and we cover that in Unit 4.

5. The --trustSslCertificates tells the batchManager client to overlook issues with server certificates that are not valid for some

reason. For this lab we're using the "basic" security with the self-generated certificate. That certificate is a good certificate, it's

just not signed by a certificate authority. It is "self-signed," and SSL clients in the world are programmed to be wary of such

things. This parameter allows us to work past that. (The alternative would be to create a JVM argument that provides access to

that self-signed certificate so batchManager could verify what it has received matches what's in its "trust store." Using

trustSslCertificates is easier. But it's important to understand you should not use this for anything but development and testing

where you know the environment well and can trust the server.

6. The --wait parameter tells batchManager to wait for the job to complete. It periodically polls the server to find out the status of

the job. When the job finishes, the batchManager invocation ends. That's an important piece of the "enterprise scheduler

integration" puzzle, so remember this --wait thing.

When you issue that command it will build an SSL connection to the target server, submit the job, and wait for it to complete. You

will get back a message indicating the job completion status.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 19© 2017, IBM Corporation

19

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

WP102544 Techdoc

Lab ...

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102544

A detailed step-by-step

implementation guide

Links to other Techdocs related to the

Java Batch topic

We have a very detailed Techdoc that steps through implementing the WebSphere Liberty Java Batch function. So if you're

concerned about the things we did ahead of time for this workshop, you can rest assured the details are available. That Techdoc also

has a set of links at the bottom that point off to other Techdocs related to Java Batch.

Unit 2 – Liberty, Server Creation and Setup

Unit 2 - 20© 2017, IBM Corporation

20

IBM WebSphere Liberty Batch z/OS

© 2017 IBM Corporation

The Hands-On Lab

Run supplied SAF jobRun supplied SAF job

Verify OperationsVerify Operations

Create the serversCreate the servers

Customize the JCL start procsCustomize the JCL start procs

Copy in the XML updatesCopy in the XML updates

Deploy Sample ApplicationDeploy Sample Application

Run ddlGen and create databaseRun ddlGen and create database

Objective: get hands-on with Liberty; setup servers for Java Batch

Lab instructions are fairly specific

Use the supplied copy-and-paste file for commands

Steady pace … don't rush

Off to lab!

We're ready to go into the first lab. This lab will have you do the things that are outlined in the boxes down the left side of the chart.

The objective is to create the server environment and set it up for Java Batch.

The lab instructions are fairly specific – submit this, do that, etc. The lab instructions early in this workshop will be very specific, but

will back off as we get deeper in the later labs. By then you'll be familiar with things and won't need all the details.

We have said we don't want this to be a typing exercise, so we're also supply a text file that contains the long commands to enter to

do things. Please make use of that copy-and-paste file ... it'll save time, and it'll help you avoid problems related to typo errors.

The key to these labs is a steady pace. You don't need to rush. A good steady pace will do it.

End of Unit

