
Testing_MPP_Configuration.ppt

This presentation will discuss how to test your MPP configuration for DataStage® 7 and 8

by using seven simple DataStage jobs.

Page 1 of 10

Testing_MPP_Configuration.ppt

The objectives of this presentation are to understand what elements make up a MPP

configuration with InfoSphere™ Information Server and how to test that the configuration is

set up correctly with seven simple DataStage jobs.

This document will not discuss how to set up the MPP environment. For information on

this, look to the Information Server documentation in the Information Center. For

Information Server 8.5, the provided URL has information on how to add computers to

share engine processing. More information can be found within the IBM InfoSphere

Information Server Planning, Installation, and Configuration Guide.

The assumption is that the MPP configuration is complete and simple jobs can be created

to ensure that the configuration is correct.

This presentation also expects you to retain some mastery in administrating InfoSphere

Information Server and have some development knowledge of Parallel jobs.

Page 2 of 10

Testing_MPP_Configuration.ppt

At a high level, InfoSphere Information Server with a MPP configuration must have certain

elements. These elements include the Parallel Engine Conductor node, one or more

compute nodes with one or more partitions, and a database server accessible from the

conductor and compute nodes.

Each host runs its own image of the operating system and retains its own processors,

disk, I/O resources and memory.

The configuration file displayed on this slide is for a four node configuration. Pay attention

to how the use of fastname indicates the location of the server the jobs are assigned to.

fastname must be the output of the “uname –n” command on that particular server. In a

MPP environment, each node will have its own disks, therefore its own /orch/s0, /orch/s1

and /scratch. It is not necessary to have the same resource disk or scratch disk paths

between nodes.

Page 3 of 10

Testing_MPP_Configuration.ppt

This first example job will test the ability to propagate jobs on multiple remote nodes. This

will confirm that RSH/SSH privileges are properly set and that the peek stage can start on

all servers.

To create this job, use a row generator stage to a peek stage. Generate a nominal number

of rows for a couple columns to test this connectivity. Configure the RowGenerator stage

to run in parallel. For this job and all subsequent jobs in this presentation, be sure that

$APT_CONFIG_FILE is set to point to a configuration file that is set up similar to the

example displayed in the previous slide. Also, when running this job and all other jobs in

this presentation, set the environment variable $APT_DUMP_SCORE to true on the job

properties to confirm that all nodes are being used.

Page 4 of 10

Testing_MPP_Configuration.ppt

The second job will make sure that the project folder is available on all of the nodes and

that the propagation of the transformer code is properly configured. This job consists of a

RowGenerator stage linked to a Transformer stage which in turn is linked to a Peek stage.

Once again, it is not required to generate a large number of rows or have a large number

of columns in this job. Transformer stage is a user generated operator that does not

already exist on all nodes, unlike all other operators. It will be auto-propagated if properly

configured. The technote referenced on this slide discusses the software install

requirements when using DataStage on a MPP.

Page 5 of 10

Testing_MPP_Configuration.ppt

The third job will test the I/O or the handling of the file system on the MPP setup. This job

will use a sequential file stage that links into a parallel transformer stage which in turn

outputs to a sequential file stage. It is good practice to use a sequential file that represents

the data that will be used in the actual jobs.

The technotes referenced on this slide discusses common disk problems such as disk

space, ulimit, and how to detect and correct these issues.

Page 6 of 10

Testing_MPP_Configuration.ppt

The fourth job will confirm that DataStage is able to connect to source and target

databases from all of the nodes. It will also ensure that the client version of the databases

is available on all of the authorized nodes and is functioning correctly.

For simplicity, use the ODBC connector stage as shown in the job displayed on this slide

and put in the connection information for the databases that the jobs will be connecting to.

Use the ODBC Connector stage for the database source. Link to a Transformer stage

which in turn will link to another ODBC Connector stage pointing to the target database. It

may be necessary to use other database-specific stages in lieu of the ODBC connector

stage to further test connectivity.

Page 7 of 10

Testing_MPP_Configuration.ppt

The fifth and sixth jobs will confirm that there is sufficient resource space for both reading

and writing. For the data in job 5, use a Sequential File that represents the amount of data

that might be processed by actual production jobs. Create a job that uses a Sequential

File stage that links to a Transformer stage that in turn, outputs to a Data Set stage. This

will test the resources space when writing a dataset.

For job 6, use the previously created Data Set as input to a transformer and then write it

out to a Sequential File Stage. This will test the resource space for the read. It will also

test the ability to read from the dataset even if the job is running on different nodes. The

technote referenced on this slide discusses some of the ways to examine resources to

determine if enough space has been allocated.

Page 8 of 10

Testing_MPP_Configuration.ppt

The seventh job will confirm that there is sufficient scratch space on each of the nodes.

This job will check this by generating an exceptionally high number of records and using

the sort operator to rearrange the records. Ideally, the job should generate a similar

volume data that will be processed in a normal load.

By adding the sort, the job will be using memory, swap and scratch space. To create the

job, use a RowGenerator stage that generates several rows that represents about 20%

over the expected job load. Ideally, the columns should also be similar to what will be used

in the actual jobs. The RowGenerator stage links to a Sort stage which in turn outputs to a

Peek stage.

Only checking scratch space without running this type of job can give a false indication

that there is sufficient disk space. Review the technote referenced on this slide for

information on the errors that can be received and how to correct any issues.

Page 9 of 10

Testing_MPP_Configuration.ppt Page 10 of 10

