
IBM i

Remote System Explorer API
Administration and Programming Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
111.

Second Edition (May 2024)

This edition applies to version IBM i 7.3 (product number 5770-SS1) and to all subsequent releases and modifications
until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2023, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Preface

The RSE API Administration and Programming Guide describes the IBM® Remote System Explorer API, a
collection of REST APIs that allow a client to work with various components on an IBM i host system,
including QSYS objects, IFS files, jobs, and CL Commands.

Who should read this book?
The RSE API Administration and Programming Guide is primarily for developers of web applications that
need to access IBM i servers that use REST requests. Some of the information is useful to system
administrators who manage systems.

What you need to know to understand this book
Web application developers need to know JSON and how to invoke RESTful APIs. System administrators
need to be authorized to use the IBM i Web Administration GUI to enable RSE API and troubleshoot
problems.

Conventions used in this book
Italics is used for new terms where they are defined.

Constant width is used for:

• Program language code listings
• JSON listings
• Command lines and options

Constant width italic is used for replaceable items in code or commands.

Examples in this book
Examples used in RSE API Administration and Programming Guide are kept simple to illustrate specific
concepts. Some examples are fragments that require other code to work.

What has changed in this document
As new features and enhancements are made, the information in this document will get updated. To use
any new features or enhancements you should load the latest HTTP Group PTF for your IBM i release. To
see what HTTP Group PTF a feature or enhancement is in, go to the IBM Integrated Web Services for i
Technology Updates wiki, at URL:

http://www.ibm.com/developerworks/ibmi/techupdates/iws

Notes:

1. Sometimes new features or enhancements are not yet part of a group PTF, in which case the wiki will
list the PTF number(s) containing the feature or enhancement.

2. To help you see where technical changes have been made since the previous edition, the character | is
used to mark new and changed information.

The following lists the changes that have been made to the book since the previous edition:

• May 17 2024

– The Remote System Explorer (RSE) APIs have been enhanced to include new REST APIs to manage
digital certificates and get information about TLS levels on the IBM i server. A new category of

© Copyright IBM Corp. 2023, 2024 iii

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/dW%20IBM%20Integrated%20Web%20Services%20for%20i/page/Welcome%20to%20IBM%20Integrated%20Web%20Services%20for%20i%20Technology%20Updates

services, called Security Services, has been created and contain the various security APIs. The new
security APIs can be further sub-categorized as follows:

- Digital certificate related APIs

These APIs enables you to list certificates in certificate stores, get detailed information about
certificates, delete certificates, import and export certificates. You can also change certificate store
passwords.

- Application definition APIs

These APIs enables you to list application definitions, associate/disassociate certificates to/from
application definitions. In addition, you can add and remove certificate authority (CA) digital
certificates from the application definition CA trust list.

- TLS APIs

These APIs provide information about transport layer security (TLS) attributes and statistics for the
system.

For more information, see “API methods: Security Services” on page 47.

iv RSE API: Administration and Programming Guide

Contents

Preface...iii

RSE API overview..1

Technical concepts...3
Overview... 3
API categories.. 4
Getting started..5

Installation details... 7

Starting and stopping the RSE API server...9
Starting and stopping the server by using CL commands... 9
Starting and stopping the server by using Web Administration for i interface..................................... 9

Security.. 11
Transport level security..11
Authentication.. 12
Authorization.. 13
Administrator role.. 14
Security related properties.. 14
HTTP access log... 15

Performance...17
Tuning RSE API...17
Tuning the network...17
Load balancing..18

Serviceability..19
Updates and fixes...19
Troubleshooting..19

Logging.. 19
JVM dumps... 24

RSE API reference... 25

API methods: Administration Services... 27
GET /api/v1/admin/settings ..27
POST /api/v1/admin/settings ..28
GET /api/v1/admin/sessions ...29
DELETE /api/v1/admin/sessions ...30
GET /api/v1/admin/memory ... 30
GET /api/v1/admin/environment .. 31

API methods: CL Command Services..33
PUT /api/v1/cl ..33
GET /api/v1/cl/{commandname} .. 34

API methods: IFS Services.. 37
GET /api/v1/ifs/list .. 37

 v

GET /api/v1/ifs/{path} ... 39
PUT /api/v1/ifs/{path} ... 40
GET /api/v1/ifs/{path}/info ..41

API methods: QSYS Services...43
GET /api/v1/qsys/search/{objectName} ...43

API methods: Security Services.. 47
POST /api/v1/security/dcm/appdef/associate ...47
POST /api/v1/security/dcm/appdef/disassociate .. 48
GET /api/v1/security/dcm/appdef/list ..49
POST /api/v1/security/dcm/appdef/trust ...50
POST /api/v1/security/dcm/appdef/untrust .. 51
POST /api/v1/security/dcm/cert/delete ... 52
POST /api/v1/security/dcm/cert/export ...53
POST /api/v1/security/dcm/cert/import .. 54
POST /api/v1/security/dcm/cert/info ... 55
POST /api/v1/security/dcm/cert/list .. 57
POST /api/v1/security/dcm/certstore/changepassword ... 58
GET /api/v1/security/tls .. 59
GET /api/v1/security/tls/stats .. 61

API methods: SQL Services... 65
PUT /api/v1/sql ..65

API methods: Server Information Services.. 67
GET /api/v1/info/serverdetails ... 67

API methods: Session Services...69
GET /api/v1/session .. 69
PUT /api/v1/session .. 71
POST /api/v1/session ..73
DELETE /api/v1/session .. 73

Components...75
Schemas... 75
Security schemes... 88

Configuration files..89
rseapi.properties.. 89

RSE API Guides... 91

Configure TLS for the admin5 server...93

Testing RSE API by using OpenAPI UI.. 99

Notices..111
Trademarks.. 112

Glossary.. 115

Index.. 119

vi

RSE API overview

In support of web services and service-oriented architecture (SOA), the IBM i operating system integrates
a software technology, IBM Remote System Explorer API (RSE API) that is a collection of APIs that allow
a client to work with various components on the IBM i. This integration opens the IBM i system to various
web service client implementations, including RPG, COBOL, C, C++, Java™, .NET, PHP, Enterprise Service
Bus, mobile and web applications.

This part of the book introduces the RSE API concepts and architecture, including installation details.

© Copyright IBM Corp. 2023, 2024 1

2 RSE API: Administration and Programming Guide

Technical concepts

The RSE API provides REST APIs that enables you to interact with IBM i objects such as database files,
IFS files, and CL commands. RSE API requires a user to have a user profile on the target IBM i server.

An overview of RSE API is provided in the following sections.

Overview
The RSE API web application runs in the admin5 integrated application server. The admin5 is one
of several servers that fall under the HTTP Administration Server umbrella. The HTTP Administration
Server consists of an instance of an IBM HTTP Server, named admin, and several instances of integrated
application servers, named admin1, admin2, admin3, admin4, and admin5. The integrated application
servers are used to run various IBM i web applications such as IBM Web Administration for i, which is a
web application that is used to manage different types of servers, including admin5.

Figure 1 on page 3 shows the general flow between web clients and the RSE API application deployed
in the application server.

Figure 1. Flow between web clients and RSE API

The flow is as follows:

1. Clients make requests. Requests are routed to the RSE API application. All requests must be done over
a secure connection (https). If transport level security (TLS) is not enabled, all requests are rejected.

2. The RSE API performs the requested operation and returns the response in JSON format. The target
IBM i server can be a remote IBM i server or the IBM i server that the RSE API application is running
on. Note that if indirectly accessing an IBM i server, TLS must be configured for the remote host server.

RSE API and the Java Toolbox
The RSE API application can be thought of as an extension to the Java Toolbox classes, but instead of
users having to write a Java application to access objects residing on an IBM i server that uses the Java
Toolbox classes, users can invoke a REST API.

© Copyright IBM Corp. 2023, 2024 3

Figure 2. RSE API and Java Toobox

Given that RSE API is heavily dependent on the Java Toolbox, any limitations in the Java Toolbox is
applicable to RSE API.

API categories
The RSE APIs can be categorized as follows:

• Administration Services

Get information about the state of the RSE API environment, such as number of sessions, memory
usage, and setting global settings. Only users who connect to localhost and are designated as
administrators or have *ALLOBJ authority can successfully invoke the APIs.

• CL Command Service

The CL command service is used to run CL commands.
• IFS Services

The integrated file system (IFS) services are used to perform IFS operations such as reading from a file
and writing to a file.

• QSYS Service

The QSYS service allows users to search for QSYS objects.
• Security Service

The security service APIs are used to manage digital certificates and to obtain system transport level
security (TLS) information.

• SQL Service

The SQL service runs SQL statements.
• Server Information Service

4 RSE API: Administration and Programming Guide

The server information services retrieve information about the RSE API application.
• Session Services

Session services are used to authenticate and manage sessions.

Detailed information on the APIs can be found in “RSE API reference” on page 25.

Getting started
Assuming that the IBM Web Administration Server active, you can view the online documentation by
specifying the following URL: http://host:2011/openapi/ui/, where host is your IBM i host name
or IP address. However, to use the APIs using the OpenAPI UI where you can view the request and
response data without having to develop an application that uses the APIs, use the following URL:
https://host:2012/openapi/ui/. If you need to enable TLS for the admin5 server, see “Configure
TLS for the admin5 server” on page 93.

Note: The default ports for the admin5 server are 2011 (http) and 2012 (https). The ports can be
different on your system depending on whether the system administrator configured ports other than the
default.

The OpenAPI UI web page is generated that uses the OpenAPI specification (OAS), which defines a
standard, language-agnostic interface to RESTful APIs, which allows one to discover and understand
the capabilities of the service without access to source code, documentation, or through network traffic
inspection. See “Testing RSE API by using OpenAPI UI” on page 99 to learn how to use the OpenAPI UI.

Technical concepts 5

6 RSE API: Administration and Programming Guide

Installation details

This chapter describes the RSE API web application, including installation details and a description of the
various components that make up the RSE API web application.

Installing RSE API
The RSE API web application is included in option 3 of the base operating system. Table 1 on page 7
lists prerequisite products that need to be installed:

Table 1. RSE API prerequisite products

IBM i OS version Products

7.3, 7.4, 7.5 • 5770SS1 option 3 - Extended Base Directory Support
• 5770SS1 option 12 - Host Servers
• 5770SS1 option 30 - Qshell
• 5770SS1 option 33 - PASE
• 5770SS1 option 34 - Digital Certificate Manager
• 5770DG1 - IBM HTTP Server for IBM i
• 5770JV1 - IBM Java SE 8 64

Note: After installing the various license product options, you should load the latest HTTP Group PTF
since all fixes and enhancements are packaged as part of the HTTP Group PTF. It would also be wise to
load the latest Java group PTF. See “Updates and fixes” on page 19 for further details.

Directory locations and properties
When the RSE API web application is installed, two directories are created as shown Table 2 on page 7:

Table 2. Install directories and contents

Directory Contents

/QIBM/ProdData/OS/RSEAPI Contains the RSE API package.

/QIBM/UserData/OS/RSEAPI On initial install, the directory does not contain anything.
When properties for the RSE API is configured, the
properties will be stored in file /QIBM/UserData/OS/
RSEAPI/rseapi.properties. For more information, see
“rseapi.properties” on page 89.

© Copyright IBM Corp. 2023, 2024 7

8 RSE API: Administration and Programming Guide

Starting and stopping the RSE API server

The HTTP Administration Server server runs under the QHTTPSVR subsystem. If active, you will see
various jobs as shown in Figure 3 on page 9.

Figure 3. HTTP Administration Server jobs

The jobs with the name of admin are the HTTP Server jobs, the other jobs (admin1-admin5) are the
integrated application server jobs.

In the following sections, the CL commands that are used requires that user to have authority to the
command.

Starting and stopping the server by using CL commands
You can start the HTTP Administration Server by using the following CL command:

QSYS/STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

When the server starts, not all integrated application server jobs may be active. A system administrator
is able to disable a server by using the Web Administration for i GUI interface. If that is the case for
admin5, ask the system administrator to enable the server. After the server is enabled, restart the HTTP
Administration Server or start the admin5 server by using the following CL command:

QSYS/STRTCPSVR SERVER(*IAS) INSTANCE(admin5)

End the HTTP Administration Server by using the following CL command:

QSYS/ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

To end the admin5 server, the following CL command can be used:

QSYS/ENDTCPSVR SERVER(*IAS) INSTANCE(admin5)

Starting and stopping the server by using Web Administration for i
interface

Various types of servers are managed through the Web Administration for i interface. The Web
Administration for i interface is a browser-based application that is loaded in the HTTP Administration
Server and is typically accessed by using the following URL: http://<host>:2001/HTTPAdmin, where
host is the host name or IP address of the IBM i server.

© Copyright IBM Corp. 2023, 2024 9

Note: If you are unable to connect to the server, check to see whether the HTTP Administration Server is
active.

The Web Administration for i interface combines forms, tools, and wizards to create a simplified
environment to set up and manage many different servers on your system. The wizards guide you through
a series of advanced steps to accomplish a task.

It is assumed that you are familiar with the Web Administration for i interface. If not, read about the
interface under the HTTP Server topic in the IBM Documentation at http://www.ibm.com/support/
knowledgecenter/ssw_ibm_i.

By default, only users with *ALLOBJ and *IOSYSCFG special authorities can manage and create web-
related servers on the system by using the Web Administration for i interface. A user without the
necessary IBM i special authorities to manage or create web-related servers requires an administrator to
grant that user permission to a server or group of servers.

To start and stop the admin5 server, navigate to the admin5 server by clicking the Application Servers
tab and choosing the admin5 server from the Server selection box as shown in Figure 4 on page 10.

Figure 4. Selecting an application server

Once a server is selected, the admin5 is shown and you can start or stop the server by using the buttons
on the page.

10 RSE API: Administration and Programming Guide

http://www.ibm.com/support/knowledgecenter/ssw_ibm_i
http://www.ibm.com/support/knowledgecenter/ssw_ibm_i

Security

This chapter discusses various topics that are related to security as it pertains to the usage of RSE API.

Transport level security
Transport level security (TLS) is a communication protocol that is used to secure browser to server, and
client to server traffic across the internet and internal networks.

All RSE API API requests must be submitted over a secure connection (https). An API request over an
unsecure connection will fail. If indirectly accessing an IBM i server, the host servers on that server need
to be configured for TLS to accept connections over secure connections.

TLS is a useful tool to secure communications, but it must be deployed correctly otherwise the data
in transit is vulnerable to modification or eavesdropping and the TLS merely provides a false sense of
security. Occasionally TLS is incorrectly referred to as 'SSL', which is an earlier protocol deprecated due
to security vulnerabilities. TLS uses public key cryptography to exchange keys between client and server,
symmetric encryption to encrypt data in transit and x.509 certificates to identify the server to the client,
and in some configurations identify the client to the server.

The following steps are essential to deploy a secure TLS connection:

• Securely generate and store a private key.
• Obtain a certificate associated with the private key, signed by the appropriate trusted Certificate

Authority (CA).
• Configure the server to use most secure TLS versions (for example, 1.2 or 1.3, or more secure version as

new TLS versions become available) and approved cipher suites.
• Configure the client to check certificate validity and use approved TLS versions.
• Deploy certificate and private key to server.
• Replace the certificate before it expires (typically certificates expire after 1 year).

Each of these steps has its own security requirements that need to be considered, and are described in
the following sections.

Private key recommendations
The following are private key recommendations:

1. RSA key length should be at least 2048, and 4096 or stronger is recommended, ECC key length must
be at least 224, 256 recommended.

2. Private keys should not be sent in unencrypted emails or instant messages.
3. Private keys should not be stored in github or other source control systems.
4. Private keys should not be stored unencrypted on engineers' workstations or devices.
5. Access to private keys should be restricted to the engineers and systems that require access, using

role based access control, access control lists or an equivalent control.

Certificate recommendations
The following are certificate recommendations:

1. All external facing certificates used should be issued through an approved Certificate Authority (CA).
2. Certificate private keys must be unique to that certificate. Private keys must not be re-used for any

other purpose.
3. Whenever a certificate is renewed, a new private key should be used.

© Copyright IBM Corp. 2023, 2024 11

4. External facing certificates issued by an external CA should have a maximum lifetime of 371 days (that
is, 1 year, plus 6 days to allow procurement/deployment).

5. Internal facing certificates issued by an internal CA for service to service connections should have a
maximum lifetime of 2 years.

6. Internal facing certificates issued by an internal CA for browser to service connections should have a
maximum lifetime of 1 year.

7. Internal Online CA signing certificates should have a maximum lifetime of 10 years. Internal Offline CA
certificates and root certificates should have a maximum lifetime of 10 years

8. Certificates should use a SHA2-256 (SHA256) signature or stronger. SHA-1 signatures should not be
permitted.

TLS protocol recommendations
The following are TLS protocol recommendations:

1. Only TLS versions 1.2 or 1.3 should be permitted. All older versions of TLS and all version of SSL must
not be used.

2. Only permitted cipher suites should be used.

Cipher suites recommendations
The following are cipher suites recommendations:

1. Minimum RSA key size should be 2048, and 4096 is recommended.
2. Minimum AES key size should be 128.
3. Minimum ECDSA key size should be 224, and 256 is recommended.
4. Minimum ECDHE key size should be 224, and 256 is recommended.
5. SHA2 or SHA3 should be used for hash algorithm. SHA1 or MD5 must not be used.

Authentication
RSE API handles authentication to the REST APIs. Access to any objects or information on a server is
done by using the Java Toolbox. Thus, a user must have a user profile to the requested server.

The authentication schemes that are supported by RSE API are:

• HTTP bearer authentication
• HTTP basic authentication

All valid authentication requests are audited and logged.

HTTP bearer authentication
An HTTP bearer authentication scheme is used to generate access tokens that are exchanged between
the server and the client when calling the API operations. The token is exchanged between the client and
the server in the Authorization HTTP header in the following format:

Authorization: Bearer token

For RSE API to be used, authenticate by using the POST HTTP method session API. The request body
format contains the host, user ID, and password (for more information, see “ POST /api/v1/session ” on
page 73). An example of the payload:

{
 "host": "localhost",
 "userid": "user",
 "password": "pwd"
}

12 RSE API: Administration and Programming Guide

If authentication is successful, a token is returned in the Authorization HTTP header. An example of an
HTTP header:

Authorization: Bearer 4eaa14e6-ea9c-4dde-b6f7-f542b34d5309-60da75d3-3132

The client must then send the token in the Authorization HTTP header on all API requests.

HTTP basic authentication
HTTP basic authentication is a simple challenge and response mechanism with which a server can
request authentication information (a user ID and password) from a client. The client passes the
authentication information to the server in an Authorization header. The authentication information is
in base-64 encoding. The format of the Authorization HTTP header is as follows:

Authorization: Basic BASE64(userid:password)

When a client request using HTTP basic authentication is authenticated, the API is then invoked and the
response is returned. A token is not returned.

Note: The session APIs do not support HTTP basic authentication.

Authentication errors
All valid authentication requests are audited and logged to the messages.log file. If an authentication is
successful, you will see an entry in the log file that is similar to the following example:

[4/14/23 13:21:06:002 CDT] 00000291 IBMiRSEAPI A login: User 'amra' authenticated.

If authentication fails, the response that is returned is similar to the following response:

{
 "title": "UNAUTHORIZED",
 "status": 401,
 "detail": "User ID or password is not set or not valid.",
 "method": "GET",
 "instance": "/rseapi/api/v1/ifs/list",
 "timestamp": "2023-04-14T18:26:39.961Z"
}

If you want to find out the reason for the failure, you will need to check the log file. Authentication failures
are logged with detailed information on the authentication failure. For example,

[4/14/23 13:26:39:961 CDT] 00000291 IBMiRSEAPI A login: Login attempt by user 'amra' failed.
Password is incorrect.:AMRA

For more information at looking at server log files, see “Logging” on page 19.

Authorization
Every system user must have a user identity before they can sign on to and use a system. This user
identity is a special object that is called a user profile.

A user profile is a string of characters that uniquely identifies a user to a system and controls what the
user can do and access to functions and objects to which they have been granted authority. Only an
administrator with appropriate system authority can create a user profile. (In this document, user ID and
user profile is used interchangeably.)

Authorization defines the content that you can view and the actions that you can perform. Thus, the user
profile that is used to authenticate to RSE API governs what a user can do when attempting to perform a
request to an API.

Security 13

When an API returns a list of objects, some attributes of the object can be set to null depending on data
and object authorities the user has been given to the object. In the following response returned by the IFS
list API, the object represented by path /QSYS.LIB/NOAUTHLIB.LIB has various attributes set to null:

{
 "objects": [
 {
 "path": "/QSYS.LIB/NETDATACOL.LIB",
 "description": null,
 "isDir": null,
 "subType": null
 },
 {
 "path": "/QSYS.LIB/NETDATADEV.LIB",
 "description": "",
 "isDir": true,
 "subType": "PROD"
 },
 {
 "path": "/QSYS.LIB/NOAUTHLIB.LIB",
 "description": null,
 "isDir": null,
 "subType": null
 }
]
}

In cases where an attempt is made to access the object for which the user has no authority, an error is
returned. The following is an example of an error that is returned when trying to access the object for
which the user has no authority:

{
 "title": "FORBIDDEN",
 "status": 403,
 "detail": "CPF9820 Not authorized to use library NOAUTHLIB.",
 "method": "GET",
 "instance": "/rseapi/api/v1/ifs/list",
 "timestamp": "2023-04-14T17:52:12.441Z"
}

See “RSE API reference” on page 25 for a description of the fields in the error response.

Administrator role
RSE API has an administrator role. Any user profile with *ALLOBJ special authority or has been
designated as an administrator will be able to use the Administration Services APIs.

The Administration Services APIs enable a user to obtain information about the server hosting the RSE
API web application, such as memory usage, and active sessions per user. You can also invalidate
sessions. More importantly, the APIs enable an administrator to set global attributes, such as the
maximum number of sessions, and the ability to restrict who can use RSE API.

For more information on what you can do with the Administration Services APIs, see “API methods:
Administration Services” on page 27.

Security related properties
RSE API has a set of properties to protect against denial of service (DoS) attacks or compromising system
resources.

• com.ibm.rseapi.excludeusers
• com.ibm.rseapi.includeusers
• com.ibm.rseapi.maxfilesize
• com.ibm.rseapi.maxsessioninactivity
• com.ibm.rseapi.maxsessionlifetime

14 RSE API: Administration and Programming Guide

• com.ibm.rseapi.maxsessions
• com.ibm.rseapi.maxsessionsperuser
• com.ibm.rseapi.maxsessionusecount
• com.ibm.rseapi.maxsessionwaittime

See “rseapi.properties” on page 89 for further details.

HTTP access log
Logs are granular, timestamped, complete, and immutable records of application events that can be used
for troubleshooting and debugging purposes.

HTTP access logs record information about all requests that are handled by a web server. The access
log is highly configurable, and you define the contents and format of the access log. The log can include
information about the IP address of the client making the request, user ID of the person making the
request (determined by the HTTP authentication), timestamp when the request was received, the request
line, and so on.

HTTP access logs should be periodically analyzed to ensure that no unusual activity is taking place. For
example, if you have 100,000 requests in 5 minutes from one specific IP address. HTTP access logs can
also be used to detect API problems, performance or otherwise. Finally, and most importantly, logging
allows one to backtrack and do forensic analysis when an intrusion is detected.

You should consider turning on HTTP access logging for the admin5 server. By default, HTTP access
logging is disabled. See “HTTP access logging” on page 22 for further details.

Security 15

16 RSE API: Administration and Programming Guide

Performance

When looking at improving performance, one needs to look at the entire web environment. In this
context, a web environment is a grouping of related web server, application server, and operating system
settings that form a web solution. This chapter attempts to highlight various approaches to improving the
performance of RSE API. The information in this section share common approaches to solving common
problems based on real environments. They do not provide a “one size fits all” solution. As technology
evolves, new recommendations and information might be added to the information in this document.

For a definitive discussion on performance, you should read the topics in IBM Documentation under the
performance topic on the Performance web page.

A key reference from which the information in this chapter is derived from is the IBM
WebSphere Application Server Performance Cookbook at https://publib.boulder.ibm.com/
httpserv/cookbook/. Although the cookbook covers performance tuning for WebSphere® Application
Server, there is a very strong focus on Java, Operating Systems, and theory that can be applied to other
products and environments.

Tuning RSE API
RSE API is a Java web application and thus runs in a JVM in the admin5 server job. The JVM is configured
to have a maximum Java heap size of 4096 megabytes and generates OutOfMemory errors when there
is insufficient space to allocate an object in the Java heap. In RSE API, this can be manifested by a
combination of one or more of the following actions:

• High number of threads (that is, sessions) handling API requests, which can occur when there are
thousands of simultaneous RSE API requests.

• Large amount of incoming or outgoing data, such as when writing or reading to an IFS file.
• Large amount of IBM i objects processed, such as performing a search that results in thousands of

objects being processed.

To mitigate the occurrence of OutOfMemory errors and the performance of RSE API, careful
consideration must be taken when setting the following RSE API properties:

• com.ibm.rseapi.excludeusers
• com.ibm.rseapi.includeusers
• com.ibm.rseapi.maxfilesize
• com.ibm.rseapi.maxsessioninactivity
• com.ibm.rseapi.maxsessionlifetime
• com.ibm.rseapi.maxsessions
• com.ibm.rseapi.maxsessionsperuser
• com.ibm.rseapi.maxsessionusecount
• com.ibm.rseapi.maxsessionwaittime

Further details on these properties can be found in “rseapi.properties” on page 89.

Tuning the network
The network adapters that are used determine the maximum speed that can be reached. For example, 1
Gb, 10 Gb, and so on (at least in theory). However, the protocol being used, the networking parameters
set, the quality of the connections, as well as other systems in the same subnet in the network
determines the actual performance in terms of network throughput and speed.

© Copyright IBM Corp. 2023, 2024 17

https://www.ibm.com/docs/en/i/7.5?topic=performance
https://publib.boulder.ibm.com/httpserv/cookbook/
https://publib.boulder.ibm.com/httpserv/cookbook/

• Consider increasing the TCP/IP buffer for send and receive operations by using the CHGTCPA CL
command to a value greater than the default of 64 KB. This can significantly reduce the network traffic.

• Ensure that the parameters for current line speed is reflecting what the adapter is capable of. A single
device with a lower line speed capability forces the whole subnet in the network to run at the lower
speed and can severely degrade network performance.

• Ensure the current DUPLEX parameter is set to *FULL so the connection can be used for send and
receive at the same time.

• Consider increasing the maximum frame size from 1496 bytes to 8996 bytes as this can significantly
reduce the traffic between the system and the next network router and speed up the connections
especially when virtual Ethernet connections are used.

Load balancing
If you have multiple partitions or servers, you can have a load balancer spray requests among the RSE API
servers. However, the load balancer must be smart enough to assign subsequent requests to the same
server since tokens are not shared between the servers.

18 RSE API: Administration and Programming Guide

Serviceability

A system administrator must be able to diagnose and troubleshoot issues in the RSE API web application.
This chapter describes various methods that can be used to resolve problems that can be encountered
while using the RSE API web application.

Updates and fixes
The latest RSE API PTFs for the various supported releases are documented on the RSE API Technology
updates at https://www.ibm.com/support/pages/node/6982713.

Eventually, PTFs are included in the latest HTTP group PTF that corresponds to the IBM i operating
system release. The various group PTFs for an IBM i release can be found at IBM i Group PTFs with level at
https://www.ibm.com/support/pages/ibm-i-group-ptfs-level.

Troubleshooting
There are several tools to help identify problems with the server or the RSE API web application.

Logging
The integrated application server can produce a variety of traces that help to debug issues with the server
and applications.

The integrated application server records limited information by default. This basic information is useful
for debugging common configuration issues. You can view the output logs for the admin5 server by
opening the messages.log file by clicking the View Logs link in the navigation bar (see Figure 5 on page
19).

Figure 5. View logs page

Some files are associated with internal server startup processing. For example, jobname.txt and
lwipid.txt. From the perspective of a programmer or administrator, there are three primary log files for
an integrated application server:

• console.log - ctaining the redirected standard output and standard error from the JVM process. This
console output is intended for direct human consumption. The console output contains major events
and errors. The console output always contains messages that are written directly by the JVM process,
such as the output generated by the JVM property -verbose:gc.

© Copyright IBM Corp. 2023, 2024 19

https://www.ibm.com/support/pages/node/6982713
https://www.ibm.com/support/pages/ibm-i-group-ptfs-level

• messages.log - containing all messages except server trace messages that are written or captured by
the logging component. All messages that are written to this file contain additional information such as
the message time stamp and the ID of the thread that wrote the message. This file does not contain
messages that are written directly by the JVM process.

• trace.log - containing all messages that are written or captured by the product. This file is created
only if you enable the advanced server tracing that is discussed in “Configuring server tracing” on page
21. This file does not contain messages that are written directly by the JVM process.

Figure 6 on page 20 shows sample output written to messages.log from a server starting.

**
product = WebSphere Application Server 23.0.0.3 (wlp-1.0.75.cl230320230319-1900)
wlp.install.dir = /QIBM/ProdData/OS/ApplicationServer/runtime/wlp/
server.config.dir = /QIBM/UserData/OS/AdminInst/admin5/wlp/usr/servers/admin5/
java.home = /QOpenSys/QIBM/ProdData/JavaVM/jdk80/64bit/jre
java.version = 1.8.0_351
java.runtime = Java(TM) SE Runtime Environment (8.0.7.20 - pap6480sr7fp20-20221020_01(SR7 FP20))
os = OS/400 (V7R3M0; ppc64) (en_US)
process = 15913@UT30P44.RCH.STGLABS.IBM.COM
Classpath = /QIBM/ProdData/OS/ApplicationServer/runtime/wlp/bin/
tools/ws-server.jar:/QIBM/ProdData/OS/ApplicationServer/runtime/wlp/bin/tools/ws-javaagent.jar:/
QIBM/ProdData/OS/ApplicationServer/runtime/wlp/bin/tools/ws-javaagent.jar
Java Library path = /QSYS.LIB:/QSYS.LIB/QHTTPSVR.LIB
Suppressed message ids: [CWWKS4001I]
**
[4/14/23 13:54:11:457 CDT] 00000001
com.ibm.ws.kernel.launch.internal.FrameworkManager A CWWKE0001I: The server admin5
has been launched.
[4/14/23 13:54:15:847 CDT] 00000025
com.ibm.ws.config.xml.internal.XMLConfigParser A CWWKG0028A: Processing
included configuration resource: /QIBM/UserData/OS/AdminInst/admin5/wlp/usr/servers/admin5/
resources/security/admin-cust.xml
[4/14/23 13:54:15:871 CDT] 00000025
com.ibm.ws.config.xml.internal.XMLConfigParser A CWWKG0028A: Processing included
configuration resource: /QIBM/ProdData/OS/RSEAPI/IBMiRSEAPI.xml
[4/14/23 13:54:25:114 CDT] 00000042
com.ibm.ws.http.internal.VirtualHostImpl A CWWKT0016I: Web application
available (default_host): http://ut30p44:2011/rseapi/
.
.
.
[4/14/23 13:54:25:742 CDT] 00000031
com.ibm.ws.kernel.feature.internal.FeatureManager A CWWKF0012I: The server installed
the following features: [appSecurity-2.0, distributedMap-1.0, el-3.0, jaxb-2.2, jaxrs-2.0,
jaxrsClient-2.0, jdbc-4.1, jndi-1.0, jsf-2.2, json-1.0, jsp-2.3, mpConfig-1.2, mpOpenAPI-1.1,
servlet-3.1, ssl-1.0, transportSecurity-1.0].
[4/14/23 13:54:25:742 CDT] 00000031
com.ibm.ws.kernel.feature.internal.FeatureManager I CWWKF0008I: Feature update
completed in 9.334 seconds.
[4/14/23 13:54:25:742 CDT] 00000031
com.ibm.ws.kernel.feature.internal.FeatureManager A CWWKF0011I: The admin5 server is
ready to run a smarter planet. The admin5 server started in 15.232 seconds.
[4/14/23 13:54:51:839 CDT] 00000031
om.ibm.ws.security.registry.internal.UserRegistryServiceImpl E CWWKS3005E: A configuration
exception has occurred. No UserRegistry implementation service is available. Ensure that you
have a user registry configured.
[4/14/23 13:54:51:888 CDT] 00000031
com.ibm.ws.logging.internal.impl.IncidentImpl I FFDC1015I: An FFDC Incident
has been created: "com.ibm.ws.security.registry.RegistryException: CWWKS3005E: A
configuration exception has occurred. No UserRegistry implementation service
is available. Ensure that you have a user registry configured.
com.ibm.ws.security.authentication.jaas.modules.UsernameAndPasswordLoginModule 116" at
ffdc_23.04.14_13.54.51.0.log
[4/14/23 13:54:52:102 CDT]
00000031 .ibm.ws.jaxrs.2.0.common:1.0.75.cl230320230319-1900(id=123)] I Setting the server's
publish address to be /api/
[4/14/23 13:54:52:271 CDT] 00000031
com.ibm.ws.webcontainer.servlet I SRVE0242I: [IBMiRSEAPI] [/
rseapi] [com.ibm.rse.rest.api.jaxrs.RSEResourceConfig]: Initialization successful.
[4/14/23 13:54:52:382 CDT] 00000048
IBMiRSEAPI I Standard logger starting.
[4/14/23 13:54:52:670 CDT] 00000048
IBMiRSEAPI A login: User 'amra' authenticated.

Figure 6. Sample output of messages.log

20 RSE API: Administration and Programming Guide

The log shows the server startup procedure. First, the kernel starts, then the feature manager initializes
and reads the configuration files. The server is configured to listen on given ports. The RSE API web
application is started. The log also shows an audit record for a client login request.

Note: The log records CWWKS3005E and FFDC1015I can be ignored.

Enabling trace produces lots of information and negatively affects the performance of RSE API, so you do
not want to enable traces in a production environment unless you really need to.

Configuring server tracing
The integrated application server can be configured to gather debug information for the server runtime.

Note: Server runtime tracing is typically asked for by IBM service to debug a problem in the server.

You can modify the server runtime tracing level by clicking on the Server Logging tab as shown in Figure 7
on page 21.

Figure 7. Server Logging

The format of the trace specification is:

<component> = <level>

where <component> is the component for which to set a log detail level, and <level> is one of the valid
logger levels shown in Table 3 on page 22. Separate multiple trace specifications with colons (:).

Components correspond to Java packages and classes, or to collections of Java packages. Use an asterisk
(*) as a wildcard to indicate components that include all the classes in all the packages that are contained
by the specified component. For example:
*

Specifies all traceable code that is running in the server, including the product system code and
customer code.

com.ibm.ws.*
Specifies all classes with the package name beginning with com.ibm.ws.

Serviceability 21

com.ibm.ws.classloader.JarClassLoader
Specifies the JarClassLoader class only.

The following table shows valid logging levels:

Table 3. Valid logging levels.

Logging level Description

off Logging is turned off.

fatal Task cannot continue and component, application,
and server cannot function.

severe Task cannot continue but component, application,
and server can still function. This level can also
indicate an impending unrecoverable error.

warning Potential error or impending error. This level can
also indicate a progressive failure (for example, the
potential leaking of resources).

audit Significant event that affects server state or
resources.

info General information that outlines overall task
progress.

config Configuration change or status.

detail General information that details subtask progress.

fine General trace information plus method entry, exit,
and return values.

finer Detailed trace information.

finest A more detailed trace that includes all the detail
that is needed to debug problems.

all All events are logged, includes custom levels, and
can provide a more detailed trace than finest.

HTTP access logging
An HTTP access log contains a record of all inbound client requests handled by HTTP endpoints. By
default, HTTP access logging is disabled. You can enable access logging in the integrated application
server by navigating to the HTTP Access Log tab as shown in Figure 8 on page 23:

22 RSE API: Administration and Programming Guide

Figure 8. HTTP access log

The HTTP access log format is used when logging client access information. The value for this property
is a space-separated list of options. The order that you specify the options determines the format of this
information in the log. The default value is as follows:

%h %u %{t}W "%r" %s %b

Each option can be enclosed in quotation marks, but the quotation marks are not required. Unless
otherwise noted, a value of '-' is printed for an option if the requested information cannot be obtained
for that option. The following list indicates the available options and the information that is printed if that
option is specified as part of the value specified for this property.
%a

Remote address.
%A

Local IP address.
%b

Response size in bytes excluding headers.
%B

Response size in bytes excluding headers. The number 0 is printed instead of dash (-) if no value is
found.

%{CookieName}C or %C
The request cookie specified within the brackets, or if the brackets are not included, prints all request
cookies.

%D
The elapsed time of the request - millisecond accuracy, microsecond precision.

%h
Remote host.

%{HeaderName}i
The header name specified within the brackets from the request.

%m
Request method.

Serviceability 23

%{HeaderName}o
The header name specified within the brackets from the response.

%q
Output the query string with any password escaped.

%r
First line of the request.

%{R}W
Service time of the request from the moment the request is received until the first set of bytes of the
response is sent - millisecond accuracy, microsecond precision. The %{R}W option is often a good
approximation for application response time (as compared to %D, which is end-to-end response time
including client and network).

%s
Status code.

%t
NCSA format of the start time of the request.

%{t}W
The current time when the message to the access log is queued to be logged in normal NCSA format.

%u
Remote user according to the WebSphere Application Server specific $WSRU header.

%U
URL Path, not including the query string.

JVM dumps
The integrated application server runs in a Java Virtual Machine (JVM). As such, you have the ability, with
the proper authority, to diagnose problems at the JVM level, such as hung threads, deadlocks, excessive
processing, excessive memory consumption, memory leaks, and defects in the virtual machine.

The most straightforward way to look at various aspects of the server is by using the Work with Java
Virtual Machine (WRKJVMJOB) CL command. The following information or functionality is available for
IBM Technology for Java JVM jobs:

• The arguments and options with which the JVM was started.
• Environment variables for both ILE and PASE.
• Java locks being blocked, held, and waiting on.
• Garbage collection information.
• The properties with which the JVM was started.
• The properties with which the JVM is running.
• The list of threads associated with the JVM.
• The partially completed job log for the JVM job.
• The ability to generate JVM (System, Heap, and Java) dumps.
• The ability to enable and disable verbose garbage collection.

To learn more about the WRKJVMJOB command, search on the command in the IBM Documentation.

24 RSE API: Administration and Programming Guide

https://www.ibm.com/docs/en/i

RSE API reference

This part of the document describes various API methods available to users. Things to note:

• In general, all requests and responses are in JSON format.
• RSE API uses conventional HTTP response codes to indicate the success or failure of an API request.

In general, codes in the 2xx range indicate success. Codes in the 4xx range indicate an error that
failed given the information that is provided (for example, a required parameter was omitted). Codes in
the 5xx range indicate an internal error with RSE API. If an error is encountered, the following JSON
response is returned (the following is an example of an error):

{
 "title": "BAD_REQUEST",
 "status": 400,
 "detail": "Path name not set.",
 "method": "GET",
 "instance": "/rseapi/api/v1/ifs/list",
 "timestamp": "2022-02-20T14:51:58.252Z"
}

where:

– title is a string representing the HTTP status code description.
– status is an integer representing the HTTP status code.
– detail is a string that provides more details about the error.
– method is a string that represents the HTTP method that was used in the request.
– instance is a string that represents the URI that was used in the request.
– timestamp is a string that represents a timestamp of when the error occurred in ISO-8601 format.

• In the API documentation, the Parameters section for each API lists the parameters and an indication
of the source of the parameter value:

– (header) indicates that the parameter value is obtained from an HTTP header.
– (query) indicates that the parameter value is obtained from the query string parameter in the URL.
– (path) indicates that the parameter value is obtained from a path component of the URL path. The

path variable will be shown with a variable name that is encapsulated with a leading and trailing
brace. For example, in the following IFS API path, /api/v1/ifs/{path}/info, the component in
the path is designated by {path}.

© Copyright IBM Corp. 2023, 2024 25

26 RSE API: Administration and Programming Guide

API methods: Administration Services

Administration Services provide APIs that give information about RSE API and the runtime environment of
the RSE API server. To use the APIs, the authenticated user must authenticate to localhost and have the
administrator role or have *ALLOBJ special authority.

GET /api/v1/admin/settings
Get the general settings being used for RSE API.

The settings are global in nature and include settings for tuning, environment, and administrator override
categories.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "adminUsers": ["USER1","USER2"],
 "includeUsers": ["USER1","USER2"],
 "excludeUsers": [],
 "maxFileSize": 3072000,
 "maxSessionInactivity": 7200,
 "maxSessionLifetime": 21600,
 "maxSessionUseCount": 1000,
 "maxSessionWaitTime": 300,
 "maxSessions": 100,
 "maxSessionsPerUser": 20,
 "sessionCleanupInterval": 300
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

© Copyright IBM Corp. 2023, 2024 27

POST /api/v1/admin/settings
Set settings for RSE API.

The settings are global in nature and include settings for tuning, environment, and administrator override
categories.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The settings for RSE API.

Required: true

Media types
application/json

Schema
“RSEAPI_Settings” on page 78

Example

{
 "persist": false,
 "adminUsers": ["USER1","USER2"],
 "includeUsers": ["USER1","USER2"],
 "excludeUsers": [],
 "maxFileSize": 3072000,
 "maxSessionInactivity": 7200,
 "maxSessionLifetime": 21600,
 "maxSessionUseCount": 1000,
 "maxSessionWaitTime": 300,
 "maxSessions": 100,
 "maxSessionsPerUser": 20,
 "sessionCleanupInterval": 300
}

Responses
204

Successful request, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

28 RSE API: Administration and Programming Guide

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/admin/sessions
Get information about sessions.

Get information about sessions. The information that is returned applies to active sessions on the server.
Active sessions may include sessions that are expired but have not been reclaimed by RSE API.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "totalSessions": 3,
 "sessions": [
 {
 "userid": "USER1",
 "sessionCount": 1
 },
 {
 "userid": "USER2",
 "sessionCount": 2
 }
]
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

API methods: Administration Services 29

DELETE /api/v1/admin/sessions
Delete sessions.

Delete sessions. You can delete all active sessions or only sessions tied to a user ID. Sessions that are
deleted are marked as expired.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

user (query)

The session(s) to delete. Specify the user ID to delete all sessions created by the user, or the special
value of *ALL to delete all sessions for all users.

type
string

default
*ALL

Responses
204

Successful request, no content.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/admin/memory
Get information about server memory usage.

Get information about the JVM memory usage of the server running RSE API.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

30 RSE API: Administration and Programming Guide

Responses
200

Successful request.

Media types
application/json

Example

{
 "jvmFreeMemory": 17428920,
 "jvmMaxMemory": 4294967296,
 "jvmTotalMemory": 78249984
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/admin/environment
Get information about server environment.

Get information about server environment, such as host, operating system, Java version, and port.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "rseapiBasepath": "rseapi",
 "rseapiHostname": "UT30P44",
 "rseapiPort": 2012,
 "rseapiVersion": "1.0.6",
 "osName": "OS/400",
 "osVersion": "V7R5M0",

API methods: Administration Services 31

 "javaVersion": "1.8.0_351"
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

32 RSE API: Administration and Programming Guide

API methods: CL Command Services

CL Command Services provide APIs for running CL commands.

PUT /api/v1/cl
Run one or more CL commands on the server.

Run one or more CL commands on the server. If a command fails, any messages relating to the error is
returned. If the command succeeds, no data is returned. By default, a response payload will be returned
if an error occurs that will include the first level message text. If you want the full message details,
set the includeMessageHelpText property to true. If you want messages returned in all cases, set the
includeMessageOnSuccess property to true.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
List of CL commands to run. If more than one CL command is to be run, you can indicate whether all
commands should be run even if an error is encountered while running a CL command.

Media types
application/json

Schema
“RSEAPI_CLCommands” on page 75

Example

{
 "continueOnError": true,
 "includeMessageOnSuccess": true,
 "includeMessageHelpText": false,
 "clCommands": [
 "qsys/crtlib lib1",
 "qsys/crtsrcpf lib1/qrpglesrc"
]
}

Responses
200

Command(s) issued successfully, error(s) may have occurred.

Media types
application/json

Example

{
 "totalIssued": 2,
 "totalSuccesses": 1,
 "totalFailures": 1,
 "commandOutputList": [
 {

© Copyright IBM Corp. 2023, 2024 33

 "success": false,
 "command": "qsys/crtlib lib1",
 "output": [
 "CPF2111: Library LIB1 already exists. "
]
 },
 {
 "success": true,
 "command": "qsys/crtsrcpf lib1/qrpglesrc",
 "output": [
 "CPC7301: File QRPGLESRC created in library LIB1. "
]
 }
]
}

204

All command(s) issued successfully, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/cl/{commandname}
Retrieves the command definition for the specified CL command.

Retrieves the command definition for the specified CL command. The command definition is returned
as an XML document. The generated command information XML source is called Command Definition
Markup Language or CDML. See the Document Type Definition (DTD) in /QIBM/XML/DTD/QcdCLCmd.dtd
for the definition of the CDML tag language returned by this API.

Parameters
Authorization (header)

type
string

library (query)

The library name. Valid values are a specific name, or one of the following special values:

• *CURLIB - The current library is searched.
• *LIBL - The library list is searched. This is the default.

type
string

default
*LIBL

34 RSE API: Administration and Programming Guide

ignorecase (query)

Boolean indicating whether case should be ignored. The default value is 'true'. If set to 'false', the
library and command name will not be uppercased.

type
boolean

default
true

commandname (path)

The CL command name.

type
string

required
true

Responses
200

Successful request.

Media types
application/json

Example

{
 "definition": "<QcdCLCmd DTDVersion=\"1.0\"><Cmd CmdName=\"DSPLIBL\"
CmdLib=\"__LIBL\" CCSID=\"37\" HlpPnlGrp=\"QHLICMD\" HlpPnlGrpLib=\"__LIBL\"
HlpID=\"DSPLIBL\" MaxPos=\"1\" Prompt=\"Display Library List\" MsgF=\"QCPFMSG\"
MsgFLib=\"__LIBL\" ExecBatch=\"YES\" ChgCmdExit=\"NO\" RtvCmdExit=\"NO\"><Parm
Kwd=\"OUTPUT\" PosNbr=\"1\" KeyParm=\"NO\" Type=\"CHAR\" Min=\"0\" Max=\"1\"
Prompt=\"Output\" Len=\"1\" Rstd=\"YES\" Dft=\"*\" AlwUnprt=\"YES\"
AlwVar=\"YES\" Expr=\"YES\" Full=\"NO\" DspInput=\"YES\" Choice=\"*, *PRINT\"
><SpcVal><Value Val=\"*\" MapTo=\"*\"/><Value Val=\"*PRINT\" MapTo=\"L\"/></
SpcVal></Parm></Cmd></QcdCLCmd>"
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

API methods: CL Command Services 35

36 RSE API: Administration and Programming Guide

API methods: IFS Services

Integrated File System (IFS) Services provide APIs for accessing objects in a way that is like personal
computer and UNIX operating systems. This includes listing objects in directories, reading from files, and
writing to files.

GET /api/v1/ifs/list
Gets a list of objects in the specified path.

Gets a list of objects in the specified path. The information returned includes the name, whether object is
a directory, the description, and the object subtype. For objects that are not in the QSYS.LIB file system,
any part of the path may contain an asterisk (*) , which is a wildcard that means zero or more instances
of any character. For example, a path of '/tmp/am*1.txt' will return all objects in directory '/tmp' that
have names that begin with 'am' and end with '1.txt'. For QSYS.LIB objects, only generic names may be
specified in any part of the path. A generic name is a character string that contains one or more characters
followed by an asterisk. For example, '/qsys.lib/am*.lib' will return all libraries that have names that start
with 'am'. Another example is ‘/qsys.lib/am*.*’, which would return all objects that start with ‘am’. This
would be equivalent to specifying a path of ‘/qsys.lib/am*'.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

path (query)

The working directory. For example, /u/IBM/test

type
string

required
true

subtype (query)

Subtype of objects to return. Valid values include a specific object type (*LIB, *FILE, *PGM, *OUTQ,
etc.) or *ALL. Note that many file system objects do not have a subtype. For example, any Root,
QOpenSys or UDFS object.

type
string

includehidden (query)

Whether to show hidden files.

type
boolean

default
false

Responses
200

Successful request.

© Copyright IBM Corp. 2023, 2024 37

Media types
application/json

Example

{
 "objects": [
 {
 "path": "/QSYS.LIB/USER1.LIB/QCLSRC.FILE",
 "description": "\"test\"",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QCSRC.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QRPGLESRC.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QSQDSRC.FILE",
 "description": "SQL PROCEDURES",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QSRVSRC.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-DTA"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QWOBJ.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QAUDJR0043.JRNRCV",
 "description": "",
 "isDir": false,
 "subType": ""
 }
]
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements

38 RSE API: Administration and Programming Guide

GET /api/v1/ifs/{path}
Get the content of a file.

Get the content of a file. The content is returned in a JSON object.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

ETag (header)

Whether to return checksum for the file.

type
boolean

path (path)

Path to file for which the data is to be read.

type
string

required
true

Responses
200

Successful request.

Media types
application/json

Example

{
 "ccsid": 819,
 "content": "Hello world\n"
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

API methods: IFS Services 39

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

PUT /api/v1/ifs/{path}
Write a string to a file.

Write a string to a file. The file must exist and its contents will be replaced by the string specified in the
request.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

If-Match (header)

If the If-Match HTTP header is passed, RSE API will check to see if the Etag (MD5 hash of the object
content) matches the provided Etag value. If this value matches, the operation will proceed. If the
match fails, the system will return a 412 (Precondition Failed) error.

type
string

path (path)

Path to file in which the data will be written.

type
string

required
true

Request body
File content.

Required: true

Media types
application/json

Schema
“RSEAPI_FileContent” on page 80

Example

{
 "content": "some data that will be written to file."
}

text/plain
Schema
Example

some data that will be written to file.

40 RSE API: Administration and Programming Guide

Responses
204

Successful request, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

412

Precondition failed.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/ifs/{path}/info
Returns information about the object referenced by the path.

Returns information about the object referenced by the path. The information returned includes the
name, whether object is a directory, the description, the object subtype, CCSID, size, last modified
timestamp, and object subtype.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

path (path)

Path to object for which information is to be returned.

type
string

required
true

Responses
200

Successful request.

API methods: IFS Services 41

Media types
application/json

Example

{
 "path": "/qsys.lib/user1.lib",
 "description": "user1's lib",
 "isDir": true,
 "subType": "PROD",
 "owner": "USER1",
 "ccsid": 37,
 "lastModified": 1680559633,
 "size": 401408,
 "recordLength": -1,
 "numberOfRecords": -1
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

42 RSE API: Administration and Programming Guide

API methods: QSYS Services

QSYS Services provide APIs for accessing QSYS objects.

GET /api/v1/qsys/search/{objectName}
Returns a list of QSYS.LIB objects that match the search criteria.

Returns a list of QSYS.LIB objects that match the search criteria. The filter is the object name, and may
be a value of *ALL, in which case all objects that match the search criteria is returned, or a generic name.
A generic name is a character string that contains one or more characters followed by an asterisk (*). If
a generic name is specified, all objects that have names with the same prefix as the generic name are
returned.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

objectLibrary (query)

The library or set of libraries that are searched for objects. Valid values are a specific name, or one of
the following special values:

• *ALL - All libraries are searched.
• *ALLUSR - All user libraries are searched.
• *CURLIB - The current library is searched.
• *LIBL - The library list is searched.
• *USRLIBL - The user portion of the library list is searched.

type
string

default
*USRLIBL

objectType (query)

The type of object to search. Valid values include: *FILE, *PGM, *LIB, etc., or *ALL.

type
string

default
*ALL

objectSubtype (query)

Object subtype. For example, PF-SRC, PF-DTA, SAVF, etc., or *ALL. Note that not all objects have
subtypes.

type
string

default
*ALL

© Copyright IBM Corp. 2023, 2024 43

memberName (query)

The member name to match for objects of type PF-SRC or PF-DTA. Valid values are a specific name,
or an extended generic name where the asterisk (*) may be placed in any part of the name, or *ALL.
Note that members are not searched for unless the object subtype that starts with the prefix PF. For
example, PF, or PF-SRC.

type
string

default
memberType (query)

The member type to match for members of objects of type PF-SRC or PF-DTA. Valid values are a
specific name, such as C, CBLLE, RPGLE, SQLRPGLE, etc., or *ALL.

type
string

default
*ALL

objectName (path)

The object name. Valid values are a specific name, a generic name (for example, AM*), or one of the
following special values:

• *ALL - All object names are searched.
• *ALLUSR - All objects that are libraries in QSYS or the library list are searched. The object library

must either be *ALL, *LIBL or QSYS. The object type must be *LIB. A list of user libraries is returned.

type
string

required
true

Responses
200

Successful request.

Media types
application/json

Example

{
 "objects": [
 {
 "path": "/QSYS.LIB/USER1.LIB/AXISLIBS.FILE",
 "description": "",
 "isDir": false,
 "subType": "SAVF"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/DEALER.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-DTA"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/FLGHT400.FILE",
 "description": "",
 "isDir": false,
 "subType": "SAVF"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/IWSDB1.FILE",
 "description": "",

44 RSE API: Administration and Programming Guide

 "isDir": true,
 "subType": "PF-DTA"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QCLSRC.FILE",
 "description": "\"test\"",
 "isDir": true,
 "subType": "PF-SRC"
 },
 {
 "path": "/QSYS.LIB/USER1.LIB/QCSRC.FILE",
 "description": "",
 "isDir": true,
 "subType": "PF-SRC"
 }
]
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

API methods: QSYS Services 45

46 RSE API: Administration and Programming Guide

API methods: Security Services

Security Services provide APIs relating to security, such as the management of digital certificates and the
retrieval of TLS system information.

All the digital certificate management APIs require the Digital Certificate Manager, option 34 of the IBM
i licensed program (5770-SS1), be installed. In addition, the authenticated user must have the *ALLOBJ
and *SECADM special authorities.

POST /api/v1/security/dcm/appdef/associate
Associate digital certificates to an application definition.

Associate digital certificates to an application definition. A maximum of 4 certificates can be specified.

On successful completion, the specified certificates will replace any pre-existing certificates associated
with the application definition.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to assign digital certificates to an application definition.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertAppDefAssociateRequest” on page 76

Example

{
 "appDefinitionID": "myappdef",
 "certAliases": ["mylabel1","mylabel2"]
}

Responses
204

Request successful, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

© Copyright IBM Corp. 2023, 2024 47

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/appdef/disassociate
Disassociate digital certificates from an application definition.

Disassociate digital certificates from an application definition. All certificates associated with the
application definition will be disassociated.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to disassociate digital certificates from an application definition.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertAppDefDisassociateRequest” on page 83

Example

{
 "appDefinitionID": "myappdef"
}

Responses
204

Request successful, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

48 RSE API: Administration and Programming Guide

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/security/dcm/appdef/list
List application definitions.

Retrieve a list of application definitions. You can filter what is returned by application definition ID and
application type. When filtering by application definition ID, you can specify a generic ID. A generic ID
is a character string that contains one or more characters followed by an asterisk (*). If a generic ID
is specified, all application definition IDs that have an ID with the same prefix as the generic ID are
returned.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

idFilter (query)

Application definition ID filter.

type
string

typeFilter (query)

Application type filter. Possible values: SERVER, CLIENT, SERVER_CLIENT, OBJECT_SIGNING. If not
specifed, all server and client application definitions are returned.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "appDefinitions": [
 {
 "appDefinitionID": "QIBM_OS400_QRW_SVR_DDM_DRDA",
 "appType": "SERVER",
 "description": "IBM i DDM/DRDA Server - TCP/IP",
 "certAliases": []
 }

API methods: Security Services 49

]
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/appdef/trust
Add certificate authority (CA) digital certificate to the application definition CA trust list.

Add a CA certificate to the application definition CA trust list.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to add an CA to the application definition CA trust list.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertAppDefTrustRequest” on page 76

Example

{
 "appDefinitionID": "myappdef",
 "certAlias": "mylabel1"
}

Responses
204

Request successful, no content.

50 RSE API: Administration and Programming Guide

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/appdef/untrust
Remove a certificate authority (CA) digital certificate from the application definition CA trust list.

Remove a certificate authority (CA) digital certificate from the application definition CA trust list.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to remove a CA digital certificate from an application definition CA trust list.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertAppDefTrustRequest” on page 76

Example

{
 "appDefinitionID": "myappdef",
 "certAlias": "mylabel1"
}

Responses
204

Request successful, no content.

400

Bad request.

API methods: Security Services 51

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/cert/delete
Delete a digital certificate.

Delete a digital certificate.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to delete a digital certificate.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertRequest” on page 81

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": "passw0rd",
 "certAlias": "mylabel"
}

Responses
204

Request successful, no content.

400

Bad request.

52 RSE API: Administration and Programming Guide

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/cert/export
Export a digital certificate.

Export a digital certificate. Only server/client and CA certificates can be exported. Certificates can be
exported in the DER, PEM, or PKCS12 formats. A server/client or CA certificate that is to include the
private key must be exported in the PKCS12 format. CA certificates without private keys cannot be
exported in the PKCS12 format.

When exporting certificates in the PKCS12 format, a password for the exported certificate must be
specified.

The certificate data in the response will be encoded in Base64, even for certificate data returned in the
PEM format.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to export a digital certificate.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertExportRequest” on page 85

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": "passw0rd",
 "certFormat": "PKCS12",
 "certAlias": "mylabel",
 "certDataPassword": "myPassw0rd"
}

API methods: Security Services 53

Responses
200

Successful request.

Media types
application/json

Example

{
"certFormat": "PKCS12",
 "certData": "BASE64-BLOB"
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/cert/import
Import a digital certificate.

Import a digital certificate. Only server/client or CA certificates can be imported. A certificate can be
imported in the following formats: PKCS12, DER, or PEM. If the certificate to be imported includes a
private key, then the PKCS12 format must be used.

If importing a CA certificate and the certificate includes a private key, the PKCS12 format must be used
and the certificate type must be set to SERVER_CLIENT. When importing CA certificate that do not contain
a private key, the PEM or DER format must be used.

The certificate data in the request must be encoded in Base64, which includes certificate data in the PEM
format.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

54 RSE API: Administration and Programming Guide

Request body
The API properties required to import a digital certificate.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertImportRequest” on page 84

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": "passw0rd",
 "certType": "SERVER_CLIENT",
 "certFormat": "PKCS12",
 "certAlias": "mylabel",
 "certData": "BASE64-BLOB",
 "certDataPassword": "myPassw0rd"
}

Responses
204

Request successful, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/cert/info
Get detailed certificate information.

Get detailed certificate information, such as subject, issuer, subject alternative names, and serial number.

Parameters
Authorization (header)

The authorization HTTP header.

API methods: Security Services 55

type
string

Request body
The API properties required to get detailed information about a digital certificate.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertRequest” on page 81

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": "passw0rd",
 "certAlias": "mylabel"
}

Responses
200

Successful request.

Media types
application/json

Example

{
 "alias": "UNIQUE-SAN",
 "trusted": true,
 "subject": "C=US,SP=Minnesota,O=IBM,CN=UniQue",
 "issuer": "C=US,SP=Any,O=IBM Web Administration for
i,CN=mysystem_CERTIFICATE_AUTHORITY",
 "keyAlgorithm": "ECDSA",
 "keySize": 256,
 "hasPrivateKey": true,
 "signatureAlgorithm": "RSA_SHA256",
 "keyStorageLocation": "SOFTWARE",
 "serialNumber": "6526CFBC0601B8",
 "effectiveDate": "2024-05-02T23:00:00-05:00",
 "expirationDate": "2026-05-02T22:59:59-05:00",
 "subjectAlternativeNames": [
 "booboo.ibm.com",
 "9.9.9.9"
],
 "keyUsages": [
 "DIGITAL_SIGNATURE",
 "NONREPUDIATION",
 "KEY_ENCIPHERMENT",
 "KEY_AGREEMENT"
]
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

56 RSE API: Administration and Programming Guide

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/cert/list
Retrieve a list of certificates in a certificate store.

Retrieve a list of certificates in a certificate store. You can filter what is returned by alias, certificate type,
days until expiration, and whether to include expired certificates. When filtering by alias, you can specify
a generic alias for alias. A generic alias is a character string that contains one or more characters followed
by an asterisk (*). If a generic alias is specified, all certificates that have an alias with the same prefix as
the generic alias are returned. Note that if the daysUntilExpiration filter is specified, CSR certificates will
not be returned in the response since CSR certificates do not expire.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The API properties required to list certificates in a certificate store.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertListRequest” on page 81

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": "passw0rd",
 "filters": {
 "certAlias": "*",
 "certTypes": ["SERVER_CLIENT", "CA", "CSR"],
 "daysUntilExpiration": 5000,
 "excludeExpired": false
 }}

Responses
200

Successful request.

API methods: Security Services 57

Media types
application/json

Example

{
 "certificates": [
 {
 "certAlias": "GLOBAL-MULTISAN",
 "commonName": "myserver.ibm.com",
 "type": "SERVER_CLIENT",
 "daysBeforeExpiration": 1831,
 "keyAlgorithm": "ECDSA",
 "keySize": 256,
 "keyStorageLocation": "SOFTWARE",
 "signatureAlgorithm": "ECDSA_SHA256"
 },
 {
 "certAlias": "LOCAL_CERTIFICATE_AUTHORITY_106F947K(5)",
 "commonName": "Local CA for myserver on July 17",
 "type": "CA",
 "daysBeforeExpiration": 6807,
 "keyAlgorithm": "ECDSA",
 "keySize": 256,
 "signatureAlgorithm": "ECDSA_SHA256"
 }
]
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

POST /api/v1/security/dcm/certstore/changepassword
Change digital certificate store password.

Change digital certificate store password. For system certificate stores of type CMS, if the current
password is omitted, the system stash file will be used.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

58 RSE API: Administration and Programming Guide

Request body
The API properties required to change a digital certificate store password.

Required: true

Media types
application/json

Schema
“RSEAPI_DCMCertStoreChangePasswordRequest” on page 77

Example

{
 "certStoreType": "CMS",
 "certStorePath": "*SYSTEM",
 "certStorePassword": null,
 "certStorePasswordNew": "myNewPassw0rd",
 "daysToExpiration": 0
}

Responses
204

Request successful, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/security/tls
Retrieve system transport layer security (TLS) attributes.

The API retrieves TLS attributes for the system. The system level settings are based on TLS System Values
and System Service Tools (SST) Advanced Analysis command TLSCONFIG that allows viewing or altering
of system-wide system TLS default properties.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

API methods: Security Services 59

Responses
200

Successful request.

Media types
application/json

Example

{
 "supportedProtocols": [
 "TLSv1.3",
 "TLSv1.2"
],
 "eligibleDefaultProtocols": [
 "TLSv1.3",
 "TLSv1.2"
], "defaultProtocols": [
 "TLSv1.3",
 "TLSv1.2"
], "supportedCipherSuites": [
 "AES_128_GCM_SHA256",
 "AES_256_GCM_SHA384",
 "CHACHA20_POLY1305_SHA256",
 "ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
], "eligibleDefaultCipherSuites": [
 "AES_128_GCM_SHA256",
 "AES_256_GCM_SHA384",
 "CHACHA20_POLY1305_SHA256",
 "ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
], "defaultCipherSuites": [
 "AES_128_GCM_SHA256",
 "AES_256_GCM_SHA384",
 "CHACHA20_POLY1305_SHA256",
 "ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_RSA_WITH_AES_128_GCM_SHA256",
 "ECDHE_RSA_WITH_AES_256_GCM_SHA384",
 "ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
 "ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"
], "supportedSignatureAlgorithms": [
 "ECDSA_SHA512",
 "ECDSA_SHA384",
 "ECDSA_SHA256",
 "RSA_PSS_SHA512",
 "RSA_PSS_SHA384",
 "RSA_PSS_SHA256",
 "RSA_SHA512",
 "RSA_SHA384",
 "RSA_SHA256"
], "defaultSignatureAlgorithms": [
 "ECDSA_SHA512",
 "ECDSA_SHA384",
 "ECDSA_SHA256",
 "RSA_PSS_SHA512",
 "RSA_PSS_SHA384",
 "RSA_PSS_SHA256",
 "RSA_SHA512",
 "RSA_SHA384",
 "RSA_SHA256"
], "supportedSignatureAlgorithmCertificates": [
 "ECDSA_SHA512",
 "ECDSA_SHA384",
 "ECDSA_SHA256",
 "ECDSA_SHA224",
 "ECDSA_SHA1",
 "RSA_PSS_SHA512",

60 RSE API: Administration and Programming Guide

 "RSA_PSS_SHA384",
 "RSA_PSS_SHA256",
 "RSA_SHA512",
 "RSA_SHA384",
 "RSA_SHA256",
 "RSA_SHA224",
 "RSA_SHA1",
 "RSA_MD5"
], "defaultSignatureAlgorithmCertificates": [
 "ECDSA_SHA512",
 "ECDSA_SHA384",
 "ECDSA_SHA256",
 "RSA_PSS_SHA512",
 "RSA_PSS_SHA384",
 "RSA_PSS_SHA256",
 "RSA_SHA512",
 "RSA_SHA384",
 "RSA_SHA256"
], "supportedNamedCurves": [
 "x25519",
 "x448",
 "Secp256r1",
 "Secp384r1",
 "Secp521r1"
], "defaultNamedCurves": [
 "Secp256r1",
 "Secp384r1",
 "x25519",
 "Secp521r1",
 "x448"
], "defaultMinimumRSAKeySize": 0, "handshakeConnectionCounts": false,
"secureSessionCaching": true, "auditSecureTelnetHandshakes": false}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

GET /api/v1/security/tls/stats
Retrieve system transport layer security (TLS) statistics.

The API retrieves TLS statistics. The information returned includes TLS handshake connection counts by
protocol type and cipher suite on the system since the last reset for the system. The System Service
Tools (SST) Advanced Analysis command TLSCONFIG connectionCounts option identifies the system level
setting to enable handshake connection counting.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

API methods: Security Services 61

Responses
200

Successful request.

Media types
application/json

Example

{
 "protocolCounters": {
 "TLSv13": 5,
 "TLSv12": 10,
 "TLSv11": 0,
 "TLSv10": 0,
 "SSLv3": 0 },
 "cipherSuiteCounters": {
 "AES_128_GCM_SHA256": 0,
 "AES_256_GCM_SHA384": 0,
 "CHACHA20_POLY1305_SHA256": 0,
 "ECDHE_ECDSA_AES_128_GCM_SHA256": 0,
 "ECDHE_ECDSA_AES_256_GCM_SHA384": 0,
 "ECDHE_ECDSA_CHACHA20_POLY1305_SHA256": 0,
 "ECDHE_RSA_AES_128_GCM_SHA256": 0,
 "ECDHE_RSA_AES_256_GCM_SHA384": 0,
 "ECDHE_RSA_CHACHA20_POLY1305_SHA256": 0,
 "RSA_AES_128_GCM_SHA256": 15,
 "RSA_AES_256_GCM_SHA384": 0,
 "ECDHE_ECDSA_AES_128_CBC_SHA256": 0,
 "ECDHE_ECDSA_AES_256_CBC_SHA384": 0,
 "ECDHE_RSA_AES_128_CBC_SHA256": 0,
 "ECDHE_RSA_AES_256_CBC_SHA384": 0,
 "RSA_AES_128_CBC_SHA256": 0,
 "RSA_AES_128_CBC_SHA": 0,
 "RSA_AES_256_CBC_SHA256": 0,
 "RSA_AES_256_CBC_SHA": 0,
 "ECDHE_ECDSA_3DES_EDE_CBC_SHA": 0,
 "ECDHE_RSA_3DES_EDE_CBC_SHA": 0,
 "RSA_3DES_EDE_CBC_SHA": 0,
 "ECDHE_ECDSA_RC4_128_SHA": 0,
 "ECDHE_RSA_RC4_128_SHA": 0,
 "RSA_RC4_128_SHA": 0,
 "RSA_RC4_128_MD5": 0,
 "RSA_DES_CBC_SHA": 0,
 "RSA_EXPORT_RC4_40_MD5": 0,
 "RSA_EXPORT_RC2_CBC_40_MD5": 0,
 "ECDHE_ECDSA_NULL_SHA": 0,
 "ECDHE_RSA_NULL_SHA": 0,
 "RSA_NULL_SHA256": 0,
 "RSA_NULL_SHA": 0,
 "RSA_NULL_MD5": 0
 }
}

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

404

The specified resource was not found.

500

Unable to process the request due to an internal server error.

62 RSE API: Administration and Programming Guide

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

API methods: Security Services 63

64 RSE API: Administration and Programming Guide

API methods: SQL Services

SQL Services provide APIs associated with performing SQL operations.

PUT /api/v1/sql
Run a SQL statement on the server.

Run a SQL statement on the server. If SQL statement fails, any messages relating to the error is returned.

SQL state information is returned only if errors are detected. You have the option of indicating whether the
state information is returned on all responses. By default, if a SQL statement is run successfully and there
is no result set to return, no data is returned in the response.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Request body
The SQL statement to be run on the server.

Required: true

Media types
application/json

Schema
“RSEAPI_SQLRequest” on page 83

Example

{
 "alwaysReturnSQLStateInformation": false,
 "treatWarningsAsErrors": false,
 "sqlStatement": "select * from QIWS.QCUSTCDT"
}

Responses
200

SQL statements(s) issued.

Media types
application/json

Example

{
 "resultSet": [
 {
 "CUSNUM": 938472,
 "LSTNAM": "Henning",
 "INIT": "G K",
 "STREET": "4859 Elm Ave",
 "CITY": "Dallas",
 "STATE": "TX",
 "ZIPCOD": 75217,

© Copyright IBM Corp. 2023, 2024 65

 "CDTLMT": 5000,
 "CHGCOD": 3,
 "BALDUE": 37,
 "CDTDUE": 0
 },
 {
 "CUSNUM": 839283,
 "LSTNAM": "Jones",
 "INIT": "B D",
 "STREET": "21B NW 135 St",
 "CITY": "Clay",
 "STATE": "NY",
 "ZIPCOD": 13041,
 "CDTLMT": 400,
 "CHGCOD": 1,
 "BALDUE": 100,
 "CDTDUE": 0
 }
]
}

204

SQL statement(s) issued successfully, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

66 RSE API: Administration and Programming Guide

API methods: Server Information Services

Server Information Services provide APIs about RSE API.

GET /api/v1/info/serverdetails
Get information about the RSE API.

Get information about the RSE API.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "rseapiBasepath": "rseapi",
 "rseapiHostname": "UT30P44",
 "rseapiPort": 2012,
 "rseapiVersion": "1.0.6"
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication
• basicHttpAuthentication

© Copyright IBM Corp. 2023, 2024 67

68 RSE API: Administration and Programming Guide

API methods: Session Services

Session Services provide APIs for authenticating a user and managing sessions that are tied to an
authenticated user. The user must have a user profile on the IBM i server to be accessed. Once
authenticated, a bearer token is returned and must be submitted on requests when invoking protected
APIs in an HTTP authorization header.

GET /api/v1/session
Get information about the session.

Get information about the session. The information returned includes session settings in addition to
information about any host server jobs tied to the session.

Parameters
Authorization (header)

The authorization HTTP header.

type
string

envvars (query)

Comma seperated list of environment variables to return from the remote command host server job.

type
string

maxjoblogrecords (query)

Maximum number of message log records to return from the remote command host server job.

type
integer

default
0

joblogfilter (query)

Comma seperated list of message IDs. Only remote command host server job log messages that do
not match the filter message IDs will be returned.

type
string

Responses
200

Successful request.

Media types
application/json

Example

{
 "sessionInfo": {
 "userID": "user1",
 "host": "localhost",
 "expiration": "2023-04-04T00:56:35Z",
 "creation": "2023-04-03T22:04:50Z",

© Copyright IBM Corp. 2023, 2024 69

 "lastUsed": "2023-04-03T22:56:35Z",
 "domain": "rseapi",
 "expired": false
 },
 "sessionSettings": {
 "libraryList": [],
 "clCommands": [],
 "envVariables": {},
 "sqlDefaultSchema": null,
 "sqlTreatWarningsAsErrors": false,
 "sqlProperties": {
 "XA loosely coupled support": "0",
 "access": "all",
 "auto commit": "true",
 "autocommit exception": "false",
 "bidi implicit reordering": "true",
 "bidi numeric ordering": "false",
 "bidi string type": "5",
 "big decimal": "true",
 "block criteria": "2",
 "block size": "32",
 "character truncation": "true",
 "concurrent access resolution": "2",
 "cursor hold": "true",
 "cursor sensitivity": "asensitive",
 "data compression": "true",
 "data truncation": "true",
 "database name": "",
 "date format": "iso",
 "date separator": "",
 "decfloat rounding mode": "half even",
 "decimal separator": "",
 "driver": "toolbox",
 "errors": "basic",
 "extended dynamic": "false",
 "extended metadata": "false",
 "full open": "false",
 "hold input locators": "true",
 "hold statements": "false",
 "ignore warnings": "01003,0100C,01567",
 "lazy close": "false",
 "libraries": "*LIBL",
 "lob threshold": "32768",
 "maximum blocked input rows": "32000",
 "maximum precision": "31",
 "maximum scale": "31",
 "metadata source": "1",
 "minimum divide scale": "0",
 "naming": "system",
 "numeric range error": "true",
 "package": "",
 "package add": "true",
 "package cache": "false",
 "package ccsid": "13488",
 "package criteria": "default",
 "package error": "warning",
 "package library": "QGPL",
 "portNumber": "0",
 "prefetch": "true",
 "proxy server": "",
 "qaqqinilib": "",
 "query optimize goal": "0",
 "query replace truncated parameter": "",
 "query storage limit": "-1",
 "query timeout mechanism": "qqrytimlmt",
 "remarks": "system",
 "secondary URL": "",
 "server trace": "0",
 "sort": "hex",
 "sort language": "",
 "sort table": "",
 "sort weight": "shared",
 "time format": "iso",
 "time separator": ":",
 "trace": "false",
 "transaction isolation": "read uncommitted",
 "translate binary": "false",
 "translate boolean": "true",
 "translate hex": "character",
 "true autocommit": "false",
 "use block update": "false",
 "variable field compression": "all"

70 RSE API: Administration and Programming Guide

 },
 "sqlStatements": []
 },
 "jobRemoteCommand": {
 "id": "094268/QUSER/QZRCSRVS",
 "ccsid": 37,
 "homeDirectory": "/home/USER1",
 "curLib": null,
 "systemLibl": [
 {
 "name": "QSYS",
 "attribute": "PROD",
 "description": "System Library"
 },
 {
 "name": "QSYS2",
 "attribute": "PROD",
 "description": "System Library for CPI's"
 },
 {
 "name": "QHLPSYS",
 "attribute": "PROD",
 "description": ""
 },
 {
 "name": "QUSRSYS",
 "attribute": "PROD",
 "description": "System Library for Users"
 }
],
 "userLibl": [
 {
 "name": "QGPL",
 "attribute": "PROD",
 "description": "General Purpose Library"
 },
 {
 "name": "QTEMP",
 "attribute": "TEST",
 "description": ""
 }
],
 "envVariables": {},
 "jobLog": []
 }
}

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication

PUT /api/v1/session
Refresh session settings.

Refresh session settings. The settings affect the remote command and database host server jobs that are
tied to the session. Refreshing sesson settings may result in the ending of existing host server jobs.

Parameters
Authorization (header)

The authorization HTTP header.

API methods: Session Services 71

type
string

Request body
The settings for the session.

Required: true

Media types
application/json

Schema
“RSEAPI_SessionSettings” on page 86

Example

{
 "resetSettings": true,
 "continueOnError": true,
 "libraryList": [
 "lib1",
 "lib2"
],
 "clCommands": [
 "QSYS/CLRLIB LIB(BUILD)"
],
 "envVariables": {
 "var1": "var1val",
 "var2": "var2val"
 },
 "sqlDefaultSchema": "lib1",
 "sqlProperties": {
 "auto commit": "true",
 "ignore warnings": "01003,0100C,01567"
 },
 "sqlStatements": [
 "SET PATH = LIB1, LIB2"
]
}

Responses
204

Successful request, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication

72 RSE API: Administration and Programming Guide

POST /api/v1/session
Authenticate with user credentials and return an embedded token.

Authenticate with user credentials and return an embedded token to access different RSE APIs. On
succesful authentication, a token is returned in the Authorization HTTP header. The client must send this
token in the Authorization HTTP header when making requests to protected RSE APIs. For example:

Authorization: Bearer 4eaa14e6-ea9c-4dde-b6f7-f542b34d5309-60da75d3-3132

For optimal performance, specify localhost to access objects located on the same system in which the
RSE APIs are hosted on. If accessing objects on a remote system using the RSE APIs, the host servers on
the remote system must be enabled for secure communications.

Alternatively, the non-session APIs may be invoked using basic authentication. In this case, the
credentials must always be sent on every request.

Request body
The user credentials to be authenticated.

Required: true

Media types
application/json

Schema
“RSEAPI_LoginCredentials” on page 77

Example

{
 "host": "localhost",
 "userid": "user",
 "password": "pwd"
}

Responses
201

Successful request, new resource created.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

DELETE /api/v1/session
Logout, releasing resources tied to the session.

Logout, releasing resources tied to the session. If a logout is not performed, it will be discarded after a
period of idle time (default is 2 hours).

API methods: Session Services 73

Parameters
Authorization (header)

The authorization HTTP header.

type
string

Responses
204

Successful request, no content.

400

Bad request.

401

Unauthorized request was made.

403

The request is forbidden.

500

Unable to process the request due to an internal server error.

Security Requirements
• bearerHttpAuthentication

74 RSE API: Administration and Programming Guide

Components

Schemas

RSEAPI_CLCommands
Properties

continueOnError

boolean

description

Continue processing CL commands if an error is encountered.

default
false

includeMessageOnSuccess

boolean

description

Return CL command messages on success.

default
false

includeMessageHelpText

boolean

description

Return message help text for CL command messages.

default
false

clCommands

array

description

CL command to run.

items

string

type
object

description

List of CL commands to run.

array
clCommands

© Copyright IBM Corp. 2023, 2024 75

RSEAPI_DCMCertAppDefTrustRequest
Properties

appDefinitionID

string

description

The application definition identifier.

certAlias

string

description

The certificate label.

required

• appDefinitionID
• certAlias

type
object

description

Add/remove a CA certificate to/from an application definition list of trusted CA certificates.

RSEAPI_DCMCertAppDefAssociateRequest
Properties

appDefinitionID

string

description

The application definition identifier.

certAliases

array

description

The certificate label. Maximum of 4.

items

string

required

• appDefinitionID
• certAliases

type
object

description

Associate certificate(s) to an application definition.

76 RSE API: Administration and Programming Guide

RSEAPI_LoginCredentials
Properties

host

string

description

The IBM i server from which objects are to be accessed.

default
localhost

userid

string

description

The user ID.

password

string

description

The password.

required

• password
• userid

type
object

description

The login credentials.

RSEAPI_DCMCertStoreChangePasswordRequest
Properties

certStoreType

string

description

The type of the certificate store. Valid values: CMS.

certStorePath

string

description

Path to certificate store or one of the following special values: *SYSTEM, *LOCALCA,
*OBJECTSIGNING, or SIGNATUREVERIFICATION.

certStorePassword

string

description

The certificate store password. If field omitted or set to null, the system stash will be used.

Components 77

certStorePasswordNew

string

description

The new certificate store password.

daysToExpiration

integer

description

Number of days before password expires.

default
0

required

• certStorePassword
• certStorePasswordNew
• certStorePath
• certStoreType

type
object

description

Change certificate store password request.

RSEAPI_Settings
Properties

persist

boolean

description

Save settings to property file in persistent storage (hard disk).

default
false

adminUsers

array

description

User IDs that will be designated as an RSE API administrator.

items

string

includeUsers

array

description

User IDs allowed to use RSE API.

items

string

78 RSE API: Administration and Programming Guide

excludeUsers

array

description

User IDs not allowed to use RSE API.

items

string

maxFileSize

integer (int64)

maximum
15360000

minimum
0

description

Maximum size of IFS file data that can be processed (reading or writing) by RSE API.

default
3072000

maxSessions

integer (int64)

minimum
-1

description

Maximum number of total sessions. The value of -1 indicates there is no limit.

default
100

maxSessionsPerUser

integer (int64)

description

Maximum number of sessions allowed on a per-user basis. The value of -1 indicates there is
no limit. A value other than -1 must be greater than zero.

default
20

maxSessionInactivity

integer (int64)

maximum
7200

minimum
30

description

Maximum amount of inactive time, in seconds, before an available sesson is invalidated.

default
7200

maxSessionLifetime

integer (int64)

Components 79

description

Maximum life, in seconds, for a session. The value of -1 indicates there is no limit. A value
other than -1 must be greater or equal to 30.

default
-1

maxSessionUseCount

integer (int64)

description

Maximum number of times a session can be used before it is invalidated. The value of -1
indicates there is no limit. A value other than -1 must be greater than zero.

default
-1

maxSessionWaitTime

integer (int64)

minimum
-1

description

Maximum time, in seconds, to wait on a session to become available. The value of -1 indicates
there is no limit.

default
300

sessionCleanupInterval

integer (int64)

maximum
900

minimum
30

description

The time interval, in seconds, for how often the session maintenance daemon is run.

default
300

type
object

description

Global settings for RSE API.

RSEAPI_FileContent
Properties

content

string

type
object

description

The file content.

80 RSE API: Administration and Programming Guide

array
content

RSEAPI_DCMCertRequest
Properties

certStoreType

string

description

The type of the certificate store. Valid values: CMS.

certStorePath

string

description

Path to certificate store or one of the following special values: *SYSTEM, *LOCALCA,
*OBJECTSIGNING, or *SIGNATUREVERIFICATION.

certStorePassword

string

description

The certificate store password.

certAlias

string

description

The certificate label.

required

• certAlias
• certStorePassword
• certStorePath
• certStoreType

type
object

description

Certificate request.

RSEAPI_DCMCertListRequest
Properties

certStoreType

string

description

The type of the certificate store. Valid values: CMS.

certStorePath

string

Components 81

description

Path to certificate store or one of the following special values: *SYSTEM, *LOCALCA,
*OBJECTSIGNING, or SIGNATUREVERIFICATION.

certStorePassword

string

description

The certificate store password.

filters

object

properties
certAlias

string

description

Aliase name filter. A simple generic name can be specified. For example, myCert*

certTypes

array

description

Certificate types filter. Valid values: CA, SERVER_CLIENT.

items

string

daysUntilExpiration

integer

description

Days until expiration filter.

excludeExpired

boolean

description

Whether to exclude expired certificates.

description

One or more combination of filters.

required

• certStorePassword
• certStorePath
• certStoreType

type
object

description

List certificate request.

82 RSE API: Administration and Programming Guide

RSEAPI_DCMCertAppDefDisassociateRequest
Properties

appDefinitionID

string

description

The application definition identifier.

type
object

description

Disassociate certificates from an application definition.

array
appDefinitionID

RSEAPI_SQLRequest
Properties

alwaysReturnSQLStateInformation

boolean

description

Always return SQL state information. Default value is whatever has been set for the session.

treatWarningsAsErrors

boolean

description

Treat SQL warnings as errors. Default value is whatever has been set for the session.

sqlStatement

string

description

The SQL statement to be run.

type
object

description

SQL request to run.

array
sqlStatement

RSEAPI_DCMCertListFilters
Properties

certAlias

string

description

Aliase name filter. A simple generic name can be specified. For example, myCert*

Components 83

certTypes

array

description

Certificate types filter. Valid values: CA, SERVER_CLIENT.

items

string

daysUntilExpiration

integer

description

Days until expiration filter.

excludeExpired

boolean

description

Whether to exclude expired certificates.

type
object

RSEAPI_DCMCertImportRequest
Properties

certStoreType

string

description

The type of the certificate store. Valid values: CMS.

certStorePath

string

description

Path to certificate store or one of the following special values: *SYSTEM, *LOCALCA,
*OBJECTSIGNING, or SIGNATUREVERIFICATION.

certStorePassword

string

description

The certificate store password.

certType

string

description

The certificate type. Possible values: CA, or SERVER_CLIENT

certFormat

string

description

The format of the certificate. Possible values: PKCS12, DER, or PEM.

84 RSE API: Administration and Programming Guide

certAlias

string

description

The certificate label. This property is ignored when certificate type is set to
CERTIFICATE_SIGNING_REQUEST.

certData

string

description

Base64-encoded binary data object representing the certificate to be imported.

certDataPassword

string

description

The password to access the certificate data. This property is only used when the certificate
type is set to SERVER_CLIENT.

required

• certData
• certFormat
• certStorePassword
• certStorePath
• certStoreType
• certType

type
object

description

Import certificate request.

RSEAPI_DCMCertExportRequest
Properties

certStoreType

string

description

The type of the certificate store. Valid values: CMS.

certStorePath

string

description

Path to certificate store or one of the following special values: *SYSTEM, *LOCALCA,
*OBJECTSIGNING, or SIGNATUREVERIFICATION.

certStorePassword

string

description

The certificate store password.

Components 85

certFormat

string

description

The format of the certificate. Possible values: PKCS12, DER, or PEM.

certAlias

string

description

The certificate label.

certDataPassword

string

description

The password to access the certificate data that is returned. This field is only used when
certificate type is SERVER_CLIENT.

required

• certAlias
• certFormat
• certStorePassword
• certStorePath
• certStoreType

type
object

description

Export certificate request.

RSEAPI_SessionSettings
Properties

resetSettings

boolean

description

Replace existing sessions attributes. A value of false will merge settings in request with
existing session settings.

default
false

continueOnError

boolean

description

Continue with session processing if an error occurs.

default
false

libraryList

array

86 RSE API: Administration and Programming Guide

description

Library to be added to library list of the remote command host server job tied to session.

items

string

clCommands

array

description

CL command to be run in remote command host server job tied to session.

items

string

envVariables

object

description

Environment variable to set in remote command host server job tied to session.

additionalProperties

string

additionalPropertiesSchema

string

sqlDefaultSchema

string

description

Default SQL schema to use when running SQL statements in database host server job.

sqlTreatWarningsAsErrors

boolean

description

Treat SQL warnings as errors.

default
false

sqlProperties

object

description

Java toolbox JDBC property.

additionalProperties

string

additionalPropertiesSchema

string

sqlStatements

array

Components 87

description

SQL statment to be run in database host server job tied to session.

items

string

type
object

description

The settings for the session.

Security schemes

bearerHttpAuthentication
Description

Bearer token authentication.

Type
http

HTTP Authorization scheme
bearer

Bearer token format
Bearer [token]

basicHttpAuthentication
Description

Basic authentication.

Type
http

HTTP Authorization scheme
basic

88 RSE API: Administration and Programming Guide

Configuration files

This chapter describes the configuration files used by RSE API.

rseapi.properties

The RSE API uses a properties file, IBMiRSEAPI.properties, to store properties that affect RSE API. The
property file, if it exists, is stored in /QIBM/UserData/OS/RSEAPI/rseapi.properties.

Table 4. List of RSE API properties

Property Default value Description

com.ibm.rseapi.adminusers Comma separated list of user IDs that are
administrators.

com.ibm.rseapi.excludeusers Comma separated list of user IDs not
allowed to use the RSE API.

com.ibm.rseapi.includeusers Comma separated list of user IDs allowed
to use the RSE API. By default, all users are
allowed to use RSE API.

com.ibm.rseapi.maxfilesize 3072000 The maximum size, in bytes, of data that is
allowed when reading from files and writing
to files. The minimum value is 0 bytes, and
the maximum value is 15 megabytes.

com.ibm.rseapi.maxsessioninactivity 7200 A maximum amount of inactive time, in
seconds, before a session is reclaimed.
The minimum value is 30 seconds, the
maximum value is 7200 seconds.

com.ibm.rseapi.maxsessionlifetime -1 Maximum life for a session. A value of
-1 indicates there is no limit. If -1 is not
specified, the minimum value is 30 seconds.

com.ibm.rseapi.maxsessions 600 Maximum number of active sessions. A
value of -1 indicates there is no limit.

com.ibm.rseapi.maxsessionsperuser 20 Maximum number of active sessions a user
can establish. A value of -1 indicates there
is no limit. If -1 is not specified, the
minimum value is 1.

com.ibm.rseapi.maxsessionusecount -1 Maximum number of times a session can
be used before it expires. A value of -1
indicates there is no limit. If -1 is not
specified, the minimum value is 1.

com.ibm.rseapi.maxsessionwaittime 300 Maximum time to wait, in seconds, for a
session to become available. A value of
-1 indicates to wait indefinitely. A value of
0 indicates that if the session cannot be
obtained, to return immediately.

© Copyright IBM Corp. 2023, 2024 89

Table 4. List of RSE API properties (continued)

Property Default value Description

com.ibm.rseapi.sessioncleanupinterval 300 The time interval, in seconds, for how often
the maintenance daemon is run to reclaim
idle or expired sessions. The minimum
value is 30 seconds, and the maximum
value is 900 seconds.

By default, there is no property file. A property file is created when an administrator submits an
Administration Services REST request using the POST HTTP method with the persist property set to
true. The following is an example of the payload in the request:

{
 "persist": false,
 "adminUsers": ["USER1","USER2"],
 "includeUsers": ["USER1","USER2"],
 "excludeUsers": [],
 "maxFileSize": 3072000,
 "maxSessionInactivity": 7200,
 "maxSessionLifetime": 21600,
 "maxSessionUseCount": 1000,
 "maxSessionWaitTime": 300,
 "maxSessions": 100,
 "maxSessionsPerUser": 20,
 "sessionCleanupInterval": 300
}

If the persist attribute in the request is set to false, then the properties will be used for as long as the
RSE API server, admin5, is running. On a restart of the server, the properties revert to their default values.

If the persist attribute in the request is set to true, then the properties will be used. In addition, the
properties are stored in the file /QIBM/UserData/OS/RSEAPI/rseapi.properties. On restart of the
server, the properties that have been saved will be used.

A system administrator can create the file manually. Ensure the file is tagged with a CCSID of 1208
(UTF-8). An example of a file is shown below:

#RSE API Properties
#Tue Mar 28 18:03:16 CDT 2023
com.ibm.rseapi.sessioncleanupinterval=300
com.ibm.rseapi.maxsessionwaittime=300
com.ibm.rseapi.maxsessioninactivity=7200
com.ibm.rseapi.adminusers=USER1,USER2
com.ibm.rseapi.includeusers=USER1,USER2
com.ibm.rseapi.maxsessionusecount=1000
com.ibm.rseapi.maxsessions=100
com.ibm.rseapi.maxfilesize=3072000
com.ibm.rseapi.maxsessionlifetime=21600
com.ibm.rseapi.maxsessionsperuser=20

90 RSE API: Administration and Programming Guide

RSE API Guides

This part of the document goes through step-by-step examples of how to do various things relating to RSE
API.

© Copyright IBM Corp. 2023, 2024 91

92 RSE API: Administration and Programming Guide

Configure TLS for the admin5 server

What you’ll learn
Learn how you can use the Configure TLS wizard to enable TLS for the admin5 server. The wizard is
provided by the Web Administration for i interface.

In this example, a self-signed certificate is used. Depending on your needs, there are pros and cons to
self-signed versus certificate authority (CA)-signed digital certificates. When you are deciding whether to
generate a self-signed certificate or purchase a signed certificate from a CA, consider the following:

• You can easily create self-signed certificates by using the Configure TLS wizard. However, these self-
signed certificates are not verified by a trusted third party.

• The primary advantage of using certificates from a CA is that the identity of the certificate holder is
verified by a trusted third party. The disadvantages include extra cost and administrative effort. If you
decide to use a third-party certificate, obtain it from a CA.

• A CA provides a centralized source for posting and obtaining information about certificates, including
information about revoked certificates.

Prerequisites and assumptions
By default, only users with *ALLOBJ and *IOSYSCFG special authorities can manage and create web-
related servers on the system by using the Web Administration for i interface. A user without the
necessary IBM i special authorities to manage or create web-related servers requires an administrator to
grant that user permission to a server or group of servers.

Step 1. Navigate to the admin5 server
Access the Web Administration for i interface from your browser by using the following URL: http://
<host>:2001/HTTPAdmin, where <host> is the host name or an IP address of the IBM i server.

Note: If you are unable to connect to the server, check to see whether the HTTP Administration Server is
active.

Referring to Figure 9 on page 94:

1. Click the Manage tab (1).
2. Click the Application Servers sub-tab (2).
3. Click the Server selection list (3) and select Admin5.

© Copyright IBM Corp. 2023, 2024 93

Figure 9. Navigating to the Admin5 server

Step 2. Start the Configure TLS wizard
In the navigation page as shown in Figure 10 on page 94, click on Configure TLS (1). Press Next (2).

Figure 10. Start Configure TLS wizard

Step 3. Go through the Configure TLS wizard to configure admin5 server
1. On the page shown in Figure 11 on page 95, you have the ability to specify TLS port and protocol. You

can also indicate whether the non-TLS port should be disabled. In this example, the TLS protocol is set
to TLSv1.3 (1). Press Next.

94 RSE API: Administration and Programming Guide

Figure 11. TLS wizard - Specify TLS port and protocol
2. On the panel shown in Figure 12 on page 95, specify the keystore information. In this example, the

DCM system store (1) is used. Press Next.

Figure 12. TLS wizard - Specify keystore information
3. On the page shown in Figure 13 on page 96, specify the keystore password (1). Press Next.

Configure TLS for the admin5 server 95

Figure 13. TLS wizard - Specify keystore password
4. On the page shown in Figure 14 on page 96, specify the ciphers for TLS to use. The example uses the

default ciphers (1). Press Next.

Figure 14. TLS wizard - Specify cipher for TLS
5. On the page shown in Figure 15 on page 97, you have the option to restart server later or to restart

server immediately after the wizard completes. The example specifies that the server should be
restarted immediately (1) once the wizard completes. Press Next.

96 RSE API: Administration and Programming Guide

Figure 15. TLS wizard - Restart the server now?
6. A summary page is shown as in Figure 16 on page 97. Note the information shown includes the

self-signed certificate name (1). Press Finish. After the TLS wizard updates the server, it will restart
the server, and the server is now ready to accept RSE API requests.

Figure 16. TLS wizard - Summary

Configure TLS for the admin5 server 97

98 RSE API: Administration and Programming Guide

Testing RSE API by using OpenAPI UI

What you’ll learn
The OpenAPI specification, previously known as the Swagger specification, defines a standard interface
for documenting and exposing RESTful APIs. RSE API supports a web-based tool, the OpenAPI UI, that
enables you to call API operations from within a browser.

Prerequisites and assumptions
The IBM Web Administration Server must be active. If you have problems connecting to the server, see
“Starting and stopping the RSE API server” on page 9.

Before you can successfully issue API requests, the server must be configured to handle requests over a
secure connection. If you need to enable TLS, see “Configure TLS for the admin5 server” on page 93.

Step 1. Open the OpenAPI UI page
Using a browser, view the OpenAPI UI page by specifying the following URL: https://host:2012/
openapi/ui/, where host is the host name or IP address of your server. The browser page is shown in
Figure 17 on page 99

Note: The default TLS port for the admin5 server is 2012. The port can be different on your system
depending on whether the system administrator configured a port other than the default.

Figure 17. The OpenAPI UI

Some highlights of the OpenAPI UI:

1. The base URL (1) to RSE API.
2. The version (2) of RSE API is shown. In the figure, it is 1.0.6.

© Copyright IBM Corp. 2023, 2024 99

3. The RSE API category and description (3). Under each category is a list of APIs.
4. Each row (4) under an RSE API category represents an API. The row shows the HTTP method, the

path that would need to be appended to the base URL, and a short description. Clicking the row
expands the row to reveal further details about the API and the ability to invoke the API. More on this
later.

5. Clicking the security lock (5) results the authentication prompt being displayed.

Step 2. Authenticate
Authentication in the OpenAPI UI needs to be only done one time. Clicking any of the security locks
results in the display of an authentication prompt similar to the one shown in Figure 18 on page 100,
which shows the available authentication schemes: bearer (1) and basic (2). (The one exception is if
you click the security lock corresponding to a session API, in which case only the bearer authentication
scheme is displayed.)

Figure 18. Available authorizations

Click the Close button of the Available authorizations prompt. The steps to authenticate using HTTP
bearer authentication is as follows:

1. To obtain a token, go to the Session Services APIs and select the POST HTTP method as shown in
Figure 19 on page 101.

100 RSE API: Administration and Programming Guide

Figure 19. Session API: POST HTTP method

The format of the page to test APIs is the same for all the APIs. The following describes the POST
HTTP method for the session API:

a. A description (1) of the API is shown.
b. Parameters (2) are listed if there are any. The value of the parameters can be obtained from the

URL path, the query string, or an HTTP header.
c. The request body (3) is the payload that is sent to the server. Not all APIs have payloads. In the

session API, an example is shown of the format of payload.
d. Possible HTTP status codes (4) that can be returned by the server are shown.
e. In order to test the API, you need to click the Try it out (5) button.

Click the Try it out (5) button.
2. The page becomes input capable as shown in Figure 20 on page 102. You can now specify your

credentials (1).

Testing RSE API by using OpenAPI UI 101

Figure 20. Session API: POST HTTP method - Try it out

Click the Execute (2) button to send the request to the server.
3. The page will refresh and include the request and response as shown in Figure 21 on page 102.

Figure 21. Session API: POST HTTP method - Request and response

102 RSE API: Administration and Programming Guide

• The request in cURL format (1) is shown. cURL stands for client URL, and is a command line tool
that is used to transfer data to and from a server. A user can copy and paste to command line to
duplicate the request, assuming cURL is installed on their workstation.

• The request URL is shown (2), which is constructed from the base path and the API path.
• The server returns a response. The HTTP status code (3) is shown, as well as HTTP headers in the

response (4). The token is returned in the Authorization HTTP header of the response. There is
no payload in the response.

Copy the token and click one of the security locks to show the Available authorizations prompt in
which you can paste the authentication token in the input field.

4. Paste the authentication token in the input field (1) as shown in Figure 22 on page 103. Then click
(2) Authorize to save the token for the session.

Figure 22. Setting authentication token - before clicking Authorize
5. The session token is saved and you will see Logout (1) button in addition to the Close (2) button as

shown in Figure 23 on page 104. Clicking the Logout button will enable you to set a new token.

Testing RSE API by using OpenAPI UI 103

Figure 23. Setting authentication token- after clicking Authorize

Click Close button to exit the authorization prompt. You are now able to use any of the APIs as long as
the token is valid.

Similarly, authenticating by using basic authentication is simply a matter of clicking any of the security
locks to show the Available authorizations prompt, specifying your user name and password, and
clicking Authorize to save the credentials. Click Close button to exit the authorization prompt.

Step 3. Use CL Command Services to create a library with a source physical file
In this step, the PUT HTTP method of the CL Command Services API is used create a library. It is assumed
that you have authenticated. Navigate to the CL Command Services APIs, click the PUT HTTP method,
then click the Try it out button. You should see a web page similar to Figure 24 on page 105.

104 RSE API: Administration and Programming Guide

Figure 24. CL Command Services - PUT HTTP method

• Since authentication information has already been set (by clicking on the security lock and setting
authentication information), you can ignore the Authorization HTTP header field (1) on the API panels.

• An example of the request body (2) is shown. You can add or remove CL commands.

Click the Execute (3) button to send the request to the server. The next panel will show the request and
response as shown in Figure 25 on page 106

Testing RSE API by using OpenAPI UI 105

Figure 25. CL Command Services - PUT HTTP method response

1. The HTTP status code in response is 200 (1).
2. The response body (2) is shown. Because the request attribute includeMessageOnSuccess is set

to true, a response body is returned. If it was set to false, you will get an HTTP status code of 201
and a response body is not returned, assuming that all the CL commands ran successfully.

Step 4. Use IFS Services to list objects in a library
In this step, the IFS list API is used to list all objects that start with the letter Q in a library. It is assumed
that you have authenticated. Navigate to the IFS Services APIs, click the GET HTTP method with the
path /api/v1/ifs/list, then click the Try it out button. You should see a web page similar to Figure
26 on page 107.

106 RSE API: Administration and Programming Guide

Figure 26. IFS Services - List objects

• Specify a path (1) you want to search.
• You can specify a subtype (2). In this example a subtype is not set.

Click the Execute (3) button to send the request to the server. The next panel will show the request and
response as shown in Figure 27 on page 108

Testing RSE API by using OpenAPI UI 107

Figure 27. IFS Services - list response

1. The path you specify is a query string parameter (1), and thus the path is specified as part of the URL
for the request.

2. The HTTP status code in response is 200 (2).
3. The response body (3) is shown. The list of objects that match the search criteria is returned.

Step 5. Use IFS Services to get detailed information about an object
In this step, the IFS Services API that uses the GET HTTP method with a path of /api/v1/ifs/{path}/
info is used to return information about an object. It is assumed that you have authenticated. Navigate
to the IFS Services APIs, click the GET HTTP method with the path /api/v1/ifs/{path}/info,
followed by clicking on the Try it out button. You should see a web page similar to Figure 28 on page 109.

108 RSE API: Administration and Programming Guide

Figure 28. IFS Services - get object information

• Specify a path (1) of the object.

Click the Execute (2) button to send the request to the server. The next page will show the request and
response as shown in Figure 29 on page 109

Figure 29. IFS Services - get object information response

1. The path that you specify is a path parameter (1), and thus the path of the object is a component of
the URL path.

2. The HTTP status code in response is 200 (2).
3. The response body (3) is shown. The information for the specified object is returned. A value of -1

means that the attribute is not applicable to the object.

Testing RSE API by using OpenAPI UI 109

110 RSE API: Administration and Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
2800 37th Street NW
Rochester, MN 55901-4441
U.S.A.

© Copyright IBM Corp. 2023, 2024 111

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

112 Notices

Other company, product, or service names may be trademarks or service marks of others.

Notices 113

114 RSE API: Administration and Programming Guide

Glossary

admin server
The HTTP server and application server instances shipped on IBM i. The application servers are used
to host IBM supplied web applications. Currently, there are 5 web application servers, named admin1,
admin2, admin3, admin4, and admin5.

ANSI
American National Standard for Information Systems

API
Application Programming Interface

attachment
Data that is attached to a message on the wire, separately from the SOAP envelope. Attachments are
often used for sending large files or images.

authentication
Confirming the identity of a user. The most common form of authentication is user ID and password,
such as through basic authentication. When a user is authenticated, the source of a request is
represented as a Subject object at run time.

authorization
Determining whether a user has access to a specific role within the system.

CA - certificate authority
A Certificate Authority (CA) is a trusted central administrative entity that can issue digital certificates
to users and servers. The trust in the CA is the foundation of trust in the certificate as a valid
credential.

certificate
A credential used as an identity of proof between the server and client. It consists of a public key and
some identifying information that a certificate authority (CA), an entity to sign certificates, has digitally
signed. Each public key has an associated private key and the server must prove that it has access
to the private key associated with the public key contained within the digital certificate. A self-signed
certificate means it is signed by the server itself. If a self-signed certificate is specified to a server,
clients might not trust the connection. To obtain a signed certificate from a public CA, you need to
generate a Certificate Signing Request (CSR) and send it to the CA. After a certificate is returned, it is
imported to your keystore.

DoS
A denial of service (DoS) attack is a malicious attempt to flood a server with traffic, rendering the web
site or resource inaccessible.

HTTP

Hypertext Transfer Protocol (HTTP) is a request/response-based protocol that permits clients to
interact with servers.

IBM Toolbox for Java
See JT400.

IoT
The Internet of Things (IoT) is the billions of physical devices around the world that are now
connected to the internet, all collecting and sharing data.

Java Toolbox
See JT400.

JT400 - IBM Toolbox for Java
A set of Java classes that allows Java programs to access data on your IBM i. It’s based on open-
source package JTOpen.

© Copyright IBM Corp. 2023, 2024 115

JSON
JavaScript Object Notation. Lightweight data-interchange format that is built on a collection of name/
value pairs alongside ordered lists of values.

keystore
A storage facility for cryptographic keys and certificates. A private key entry in a keystore file holds a
cryptographic private key and a certificate chain for the corresponding public key. A private key entry
can be specified to a server when configuring SSL. A trusted certificate entry contains a public key for
a trusted party, normally a CA. A trusted certificate is used to authenticate the signer of certificates
provided by a server or client. The keystore types that the Web Administrator for i GUI supports are:
JKS, JCEKS, PKCS12, and CMS. Additionally, the Digital Certificate Manager (DCM) *SYSTEM is also
supported.

OpenAPI
The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs
which allows both humans and computers to discover and understand the capabilities of the service
without access to source code, documentation, or through network traffic inspection. OpenAPI
started as Swagger (see Swagger) before it was made into a standard specification and branded
as OpenAPI.

REST - Representational State Transfer
A style of software architecture for distributed hypermedia systems such as the World Wide Web.
REST strictly refers to a collection of architectural principles. The term is also often used in a loose
sense to describe any simple interface that transmits domain-specific data over HTTP without an
additional messaging layer such as SOAP or session tracking via HTTP cookies.

secure endpoint URL
Endpoint beginning with https

SSL
Secure Sockets Layer. See TLS.

Swagger
An open specification for defining REST APIs. A Swagger document is the REST API equivalent of a
WSDL document for a SOAP-based web service. The Swagger document specifies the list of resources
that are available in the REST API and the operations that can be called on those resources.

TCPIP
Transmission Control Protocol/Internet Protocol

TLS
Transport Layer Security (TLS) protocol provides data encryption, data origin authentication, and
message integrity. TLS is based on the Secure Sockets Layer (SSL) protocol and is defined by the
Internet Engineering Task Force (IETF) in RFCs such as 2246 (TLSv1.0), 4346 (TLSv1.1), and 5246
TLSv1.2) and 8446 (TLSv1.3). SSL was originally defined as a proprietary protocol, not by the IETF.
Since TLS evolved from SSL, the two terms are usually used interchangeably.

UI
A user interface is the part of a software product that your customer actually sees. A user interface
may include the layout of display screens or printed output, displayed or printed text, commands,
online help, and messages.

WAR - Web Application Archive
A file used to distribute a collection of Java Servlets, Java classes, XML files, static web pages, and
other resources that together constitute a web application.

Web Administration GUI
Provides a web-based server management and creation interface for IBM i. Web Administration GUI
is rich in function, examples, error-checking, and provides many easy-to-use wizards to help users
accomplish many difficult tasks. The GUI supports many different web technologies and helps the
user integrate these technologies into a useful production ready web environment.

web service
A self-contained software component with a well-defined interface that describes a set of operations
that are accessible over the Internet. Web services are either SOAP-based or REST-based web
services.

116 RSE API: Administration and Programming Guide

wire
All the underlying components that are responsible for physically sending or receiving a message on
the web.

XML
eXtensible Mark-up Language

Glossary 117

118 RSE API: Administration and Programming Guide

Index

A
Authentication

Authorization header 12, 13
Basic 13
Bearer 12

Authorization 13

C
configuration files

rseapi.properties 89

H
HTTP

group PTF 19
HTTP Administration Server

Starting and stopping 9

I
installation

package 7
prerequisites 7

J
JVM

dumps 24

L
logging

HTTP access logging 22
Server tracing 21

P
performance tuning

load balancing 18
network 17
RSE API 17

Properties
Security 14

PTF 19

R
Role

Administrator 14
RSE API

categories 4
concepts 3
getting started 5

RSE API (continued)
overview 3

S
Serviceability

Updates 19

T
TLS

certificate recommendations 11
cipher recommendations 12
private key recommendations 11
protocol recommendations 12

Index 119

120 RSE API: Administration and Programming Guide

IBM®

	Contents
	Preface
	RSE API overview
	Technical concepts
	Overview
	API categories
	Getting started

	Installation details
	Starting and stopping the RSE API server
	Starting and stopping the server by using CL commands
	Starting and stopping the server by using Web Administration for i interface

	Security
	Transport level security
	Authentication
	Authorization
	Administrator role
	Security related properties
	HTTP access log

	Performance
	Tuning RSE API
	Tuning the network
	Load balancing

	Serviceability
	Updates and fixes
	Troubleshooting
	Logging
	JVM dumps

	RSE API reference
	API methods: Administration Services
	GET /api/v1/admin/settings
	POST /api/v1/admin/settings
	GET /api/v1/admin/sessions
	DELETE /api/v1/admin/sessions
	GET /api/v1/admin/memory
	GET /api/v1/admin/environment

	API methods: CL Command Services
	PUT /api/v1/cl
	GET /api/v1/cl/{commandname}

	API methods: IFS Services
	GET /api/v1/ifs/list
	GET /api/v1/ifs/{path}
	PUT /api/v1/ifs/{path}
	GET /api/v1/ifs/{path}/info

	API methods: QSYS Services
	GET /api/v1/qsys/search/{objectName}

	API methods: Security Services
	POST /api/v1/security/dcm/appdef/associate
	POST /api/v1/security/dcm/appdef/disassociate
	GET /api/v1/security/dcm/appdef/list
	POST /api/v1/security/dcm/appdef/trust
	POST /api/v1/security/dcm/appdef/untrust
	POST /api/v1/security/dcm/cert/delete
	POST /api/v1/security/dcm/cert/export
	POST /api/v1/security/dcm/cert/import
	POST /api/v1/security/dcm/cert/info
	POST /api/v1/security/dcm/cert/list
	POST /api/v1/security/dcm/certstore/changepassword
	GET /api/v1/security/tls
	GET /api/v1/security/tls/stats

	API methods: SQL Services
	PUT /api/v1/sql

	API methods: Server Information Services
	GET /api/v1/info/serverdetails

	API methods: Session Services
	GET /api/v1/session
	PUT /api/v1/session
	POST /api/v1/session
	DELETE /api/v1/session

	Components
	Schemas
	Security schemes

	Configuration files
	rseapi.properties

	RSE API Guides
	Configure TLS for the admin5 server
	Testing RSE API by using OpenAPI UI

	Notices
	Trademarks

	Glossary
	Index

