

Integrated web services server for
IBM i updates (August 2015)
Nested array support, parameter ordering, and much more!

By Nadir Amra, IBM Software Engineer
04 August 2015

Abstract: The integrated web services server for IBM i allow users to expose
Integrated Language Environment (ILE) programs and service programs as SOAP or
Representational State Transfer (REST) web services. In July 2015, several
enhancements have been released. This article discusses each of the enhancements in
the integrated web services server.

IBM i – Integrated Web Services

 2

Introduction
For several years now, IBM i users have had the ability to deploy ILE programs and
services programs as web services based on the SOAP protocol using the integrated web
services server for IBM i support that is part of the operating system. It has been just over
a year that users were given the ability to deploy ILE programs and service programs as
RESTful web services.

In July of 2015, a bunch of enhancements were made to eliminate some of the nuances
and limitations when deploying an ILE program object as a web service to an integrated
web services server. The following updates have been made:

• Support nested output arrays
• Enable improved processing of very large output character fields
• Preserve case sensitivity of identifiers
• Preserve field ordering
• Allow RESTful services to return user-defined media types
• Allow for new transport metadata values to be passed to web service
• Install web service script updated for SOAP services
• Allow Java™-based web services

To get the updates, you will need to load the latest Hypertext Transfer Protocol (HTTP)
group program temporary fix (PTF). Table 1 lists the HTTP group PTFs that are needed
for each of the supported releases of the IBM i operating system.

Table 1. Software prerequisites
IBM i release HTTP group PTF
i 7.2 SF99713 (level 9 or greater)
i 7.1 SF99368 (level 35 or greater)
i 6.1 SF99115 (level 45 or greater)

Note that all the updates discussed in the article applies to the integrated web services
server version 2.6 or later except the install web service script enhancement, which applies
to all versions of the server. In addition, the REST updates do not apply to the IBM i 6.1
release because REST is not supported on 6.1.

Support nested output arrays
It has always been the case that during the web service deployment of an ILE program
object (that is, program or service program) you could designate a parameter that is of
type integer as the variable that would indicate how many elements are to be returned in
an output parameter where the output parameter is an array. For example, Listing 1 shows
a simple RPG procedure that has three parameters: requestCount, array_LENGTH, and
array. The first parameter, requestCount, is an input parameter that indicates how
many elements should be returned. The second parameter, array_LENGTH, is an output
parameter that indicates how many elements were actually returned. And the third

IBM i – Integrated Web Services

 3

parameter, array, is an output parameter that is an array of size 10 that contains the
elements to be returned.

Listing 1. RPG procedure with array as a parameter
 h nomain PGMINFO(*PCML:*MODULE:*DCLCASE)

 D rpgarray Pr
 D requestCount...
 D 10i 0
 D array_LENGTH 10i 0
 D array 20 DIM(10)

 P rpgarray B EXPORT
 D Pi
 D requestCount...
 D 10i 0
 D array_LENGTH 10i 0
 D array 20 DIM(10)

 D i S 10i 0

 /Free
 if (requestCount < 0 or requestCount > 10);
 requestCount = 0;
 endif;

 array_LENGTH = requestCount;
 clear array;

 for i = 1 to requestCount;
 array(i) = 'element-' + %CHAR(i);
 endfor;

 return;
 /End-Free
 p rpgarray e

When you deploy the service program, a web panel (see Figure 1) that requires you to
designate which parameters are input and which parameters are output is shown.

IBM i – Integrated Web Services

 4

Figure 1. Deploy a new service - Export procedures to externalize as a
web service

As you can tell by Figure 1, there is a Count column where you can indicate the
parameter that contains the actual number of elements in the array. By default, it is set to
the maximum size of the array. If we deployed the service program as-is and invoked the
web service, the XML document returned would include all the elements in the array,
even though we just requested 2 to be returned (see Listing 2).

Listing 2. SOAP response with count not set
 <soap:Body>
 <ns2:rpgarrayResponse xmlns:ns2="http://rpgarray.wsbeans.iseries/">
 <return>
 <array>element-1</array>
 <array>element-2</array>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array_LENGTH>2</array_LENGTH>
 </return>
 </ns2:rpgarrayResponse>
 </soap:Body>

Now if we redeployed the service program and designate a parameter that indicates the
number of actual elements in the output array, as shown in Figure 2, you would have seen
a response that did not include the empty elements shown in Listing 2.

IBM i – Integrated Web Services

 5

Figure 2. Deploy new service - Export procedures to externalize as a
web service with count set

The caveat is that you could only do this for program or procedure parameters. Let us look
at an example in Listing 3, which is a slight modification of the example shown in Listing
1.

Listing 3. RPG procedure with array as a field in a data structure
 h nomain PGMINFO(*PCML:*MODULE:*DCLCASE)

 D arrayOfStrDS DS qualified template
 D array_LENGTH 10i 0
 D array 20 DIM(10)

 D rpgarray2 Pr
 D requestCount...
 D 10i 0
 D arrayOfStr likeds(arrayOfStrDS)

 P rpgarray2 B EXPORT
 D Pi
 D requestCount...
 D 10i 0
 D arrayOfStr likeds(arrayOfStrDS)

 D i S 10i 0

 /Free
 if (requestCount < 0 or requestCount > 10);
 requestCount = 0;
 endif;

 arrayOfStr.array_LENGTH = requestCount;
 clear arrayOfStr.array;

IBM i – Integrated Web Services

 6

 for i = 1 to requestCount;
 arrayOfStr.array(i) = 'element-' + %CHAR(i);
 endfor;

 return;
 /End-Free
 p rpgarray2 e

The change that has been made is to make the array_LENGTH and array subfields in a
structure, arrayOfStrDS, and the output parameter, arrayOfStr, is defined to be a
parameter of type arrayOfStrDS. Now when we try to deploy the service program,
there is no way to set the count field because the array is not a first-level parameter, as
shown in Figure 3.

Figure 3. Deploy new service – Export procedures to externalize as a
web service and output parameter is a structure

If we invoked the web service, the response would include empty elements, as shown in
Listing 4.

Listing 4. SOAP response output structure and count not set
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:rpgarray2Response xmlns:ns2="http://rpgarray2.wsbeans.iseries/">
 <return>
 <arrayOfStr>
 <array>element-1</array>
 <array>element-2</array>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>
 <array/>

IBM i – Integrated Web Services

 7

 <array/>
 <array_LENGTH>2</array_LENGTH>
 </arrayOfStr>
 </return>
 </ns2:rpgarray2Response>
 </soap:Body>
 </soap:Envelope>

Not very nice to say the least. Well, that has now been resolved!

In the panel where you indicate which parameters are input and which parameters are
output is a new checkbox field (see Figure 4), Detect length fields, that is selected by
default.

Figure 4. Deploy new service with Detect length fields selected

When Detect length fields is selected, it will be assumed that any integer (int) field that
immediately precedes an array field with the same name as the array field appended with
_LENGTH is a length field that will be used to indicate the actual number of elements in
the array. In this example, the array field identifier is named array, then the field length
for the array would be array_LENGTH. An added benefit is that the length field is
hidden from the client and is not returned in the client response. Listing 5 shows the
response when Detect length fields is selected.

Listing 5. SOAP response output structure with Detect length fields
selected
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

IBM i – Integrated Web Services

 8

 <soap:Body>
 <ns2:rpgarray2Response xmlns:ns2="http://rpgarray2.wsbeans.iseries/">
 <return>
 <arrayOfStr>
 <array>element-1</array>
 <array>element-2</array>
 </arrayOfStr>
 </return>
 </ns2:rpgarray2Response>
 </soap:Body>
</soap:Envelope>

Note: If Detect length fields is selected, you will only be able to specify input or output
parameters – you will not be able to specify inputoutput parameters. In addition, the
preservation of parameter order and case sensitivity of identifiers, which we will talk
about later in this article, is also enabled.

Enable improved processing of very large output
character fields
Length field support has been extended to character fields. Output character fields that are
very large (I am talking about 1000s of bytes) take time to process because the
determination of the size of the string to return is done by traversing the field a byte at a
time, from right to left, looking for the first non-blank character.

To improve the processing of these large character fields, you can specify an integer (int)
field length that immediately precedes the character field with the same name as the
character field appended with _LENGTH (like what is done when processing output arrays
with field lengths). If the field length exists and Detect length fields is selected, the
traversing of the field to determine the size is not performed, improving performance. In
addition, the length field is hidden from the client and is not returned in the client
response.

Preserve case sensitivity of identifiers
In the past, the compiler generated a Program Call Markup
Language (PCML) document and stored it in the ILE module object
with identifiers entirely uppercased. Thus identifiers in SOAP and
REST requests and responses had to be uppercased. In the latter half
of 2014, an enhancement was made in the RPG compiler that
preserved the identifier case when generating the PCML document.
This allowed integrated web services to preserve identifier case to a
certain extent. Identifiers for XML element names and JSON field
names were generated based on the procedure name, the structure
name, and the field names within a structure. The first character in
the identifier is changed from uppercase to lowercase unless the
first two characters are in uppercase, in which case the identifier is
left alone.

Identifier Generation
A new RPG enhancement has
been released for IBM i releases
7.1 and 7.2 that allows you to
control the identifier case of
parameter names. See the
following PTFs for details:

SI55531 7.2
SI55442 7.2
SI55340 7.1

IBM i – Integrated Web Services

 9

If the Detect length fields check box is selected, the identifier name is used as it is
defined in the ILE program object. For example, if the identifier starts with an uppercase
character followed by a lowercase character, then the identifier in the XML or JSON
document will also start with an uppercase character followed by a lowercase character. If
the Detect length fields is not selected, then the identifier will start with a lowercase
character.

Preserve field ordering
Prior to the latest integrated web services updates, when deploying an ILE program or
service program, the ordering of parameter fields and fields within structures was not
preserved, and in most cases the ordering is based on alphabetic ordering (and sometimes
it is based on something that I cannot even fathom!). Take for example the RPG
procedure shown in Listing 6.

Listing 6. RPG procedure to illustrate field ordering
 h nomain PGMINFO(*PCML:*MODULE:*DCLCASE)

 D ordertest Pr
 D oneParam 10i 0
 D twoParam 10i 0
 D threeParam 10i 0

 P ordertest B EXPORT
 D Pi
 D oneParam 10i 0
 D twoParam 10i 0
 D threeParam 10i 0

 /Free
 oneParam = 1;
 twoParam = 2;
 threeParam = 3;
 return;
 /End-Free
 p orderTest e

If the service program is deployed and all three parameters are designated as output
parameters, you might think that the XML response would include the three parameters in
the following sequence: oneParam , twoParam , and threeParam . However, the SOAP XML
response that is returned is shown in Listing 7.

Listing 7. SOAP XML response – unordered fields
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <a:ordertestResponse xmlns:a="http://ordertest.wsbeans.iseries/">
 <return>
 <twoParam>2</twoParam>
 <oneParam>1</oneParam>
 <threeParam>3</threeParam>
 </return>
 </a:ordertestResponse>
 </soap:Body>
</soap:Envelope>

IBM i – Integrated Web Services

 10

If the Detect length fields check box is selected, then the ordering is preserved, and the
response you will get is shown in Listing 8.

 Listing 8. SOAP XML response – ordered fields
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <a:ordertestResponse xmlns:a="http://ordertest.wsbeans.iseries/">
 <return>
 <oneParam>1</oneParam>
 <twoParam>2</twoParam>
 <threeParam>3</threeParam>
 </return>
 </a:ordertestResponse>
 </soap:Body>
</soap:Envelope>

Allow RESTful services to return user-defined media
types
Support has been added to allow RESTful services to return user-defined content. Before
this enhancement, the response that is returned could either be XML or JSON content.

To return a user-defined media type, there must be one output parameter (or two if Detect
length fields is selected and one parameter is a field length for the other parameter which
must be of type character). The output parameter must be a primitive type such as integer,
char, float, and so on. In most cases, the output parameter would be of type character. The
deploy panel in which REST properties are set has been updated to allow the setting of a
user-defined media type. In Figure 2, you can see the panel with plain/html being set
for the output media type. This means that the program will return a string consisting of an
HTML document.

Figure 5. Deploy new service – setting REST properties

IBM i – Integrated Web Services

 11

More than one media type value can be specified by ensuring that each media type is
separated by a comma. If more than one is specified, then the ILE program object would
need to set the HTTP header content-type field to the appropriate value depending on the
content that is being returned. To learn how to set HTTP headers, see Building a REST
service with integrated web services server for IBM i, Part 3.

Allow for new transport metadata values to be passed to
web service
Before the enhancements, the REMOTE_ADDR (remote address of the client) transport
metadata value could be passed to the ILE web service implementation code as an
environment variable. Additional transport metadata values have been added:

• QUERY_STRING: Returns the query string that is contained in the request
URL after the path.

• REQUEST_METHOD: Returns the name of the HTTP method with which this
request was made, for example, GET, POST, or PUT.

• REQUEST_URI: Returns the part of this request's URL from the protocol
name up to the query string in the first line of the HTTP request.

• REQUEST_URL: Reconstructs the URL the client used to make the request.
• SERVER_NAME: Returns the host name of the server to which the request

was sent. It is the value of the part before ":" in the Host header value, if any,
or the resolved server name or the server IP address.

• SERVER_PORT: Returns the port number to which the request was sent. It is
the value of the part after ":" in the Host header value, if any, or the server port
where the client connection was accepted on.

Note: If the web service was deployed before applying the HTTP group PTF that includes
the integrated web services updates, then you will need to redeploy the web service in
order for the new transport metadata to be passed to the web service implementation code.

Install web service script updated for SOAP services
The installWebservice.sh QShell script (located in /qibm/proddata/os/webservices/bin) has
been enhanced so that you can now deploy an ILE program object and specify parameter
usage (that is, input, output, and inputoutput) when deploying a SOAP service. The -
parameterUsage option is a colon delimited list containing parameter usage values
corresponding to the procedures or program to be deployed. For each program or
procedure you need to specify the procedure or the program name, followed by a colon,
followed by a comma delimited list of usage descriptors ('i' for input, 'o' for output, or 'io'
for inputoutput) for each parameter. For example, if a service program contains two
procedures, 'PROC1' with two parameters and 'PROC2' with three parameters, then a
possible value would be:

 -parameterUsage PROC1:i,o:PROC2:i,i,io

https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

IBM i – Integrated Web Services

 12

Note that only those procedures listed will be externalized as web service operations. This
parameter is optional. If not specified, the default is to use the parameter usage values
specified in the PCML associated with the program object.

In addition, you can now indicate whether you want the web service to be deployed as a
SOAP 1.1 or SOAP 1.2 web service. The -serviceType option is the type of service to
be installed. A value of *SOAP11 or *SOAP12 indicates that the program object should
be installed as a SOAP 1.1 or SOAP 1.2 service, respectively. This parameter is optional.
If not specified, the default value of *SOAP11 is used.

Allow Java-based web services
I have included this bit of information as part of the integrated web services server
updates, but in fact it is an enhancement in the integrated application server. The
integrated web services server will always be a server that can be used
to deploy ILE programs and services programs as web services.
However, we realize the need for users to deploy Java web services to a
server, so an enhancement has been made to the integrated application
server that allows you to enable the JAX-WS and JAX-RS features in
an integrated application server. When these features are enabled, you
can deploy JAX-WS and JAX-RS web services to the server.

To enable the feature, go to the IBM Web Administration GUI, and
select the integrated application server (must be version 8.5 or later). If
you click the Server properties link in the navigation panel, a page
with various tabs will be displayed. On the Features tab, you will find
various features that can be enabled for the server, as shown in Figure
6.

What are features?
The integrated application server
version 8.5 is based on IBM
WebSphere® Application Server
Liberty profile. Liberty has the
notion of features, which are
units of functionality by which
you control the pieces of the
runtime environment that are
loaded into a particular server.

IBM i – Integrated Web Services

 13

Figure 6. Integrated application server Features tab

If you want to deploy SOAP web services based on JAX-WS, then you would select the
jaxws-2.2 (Java API for XML-Based Web Services 2.2) feature and then click the double-
headed arrows pointing to the right, followed by clicking OK or Apply. You would do
the same thing if you want to deploy REST web service based on JAX-RS, except the
feature that you would want to add is jaxrs-1.1 (Java API for RESTful Web Services 1.1).

Summary
The integrated web services server support provides a solid foundation for creating and
deploying web services based on ILE programs or service programs on the IBM i
platform. You can now deploy web services based on Java to integrated application
servers too! We’re continually trying to improve the integrated web services experience,
and we’d love to hear from you.

Resources

• For information about the integrated web services support on IBM i see the
product web page.

https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy

