

Send and receive user-defined SOAP
and REST messages from RPG

Integrated web service client APIs offer an easy approach to
send payloads

By Nadir Amra, IBM Software Engineer
Published 01 June 2016

Abstract: The integrated web services client for Integrated Language Environment
(ILE) has been used for years to send SOAP messages by generating stubs that hide the
details about the SOAP messaging protocol. However, it did not allow users to send
user-defined payloads over the Hypertext Transfer Protocol (HTTP) transport. This
article discusses the enhancements in the integrated web services client that allow you
to bypass the stubs and send user-defined requests.

IBM i – Integrated Web Services

 2

Introduction
The integrated web services client for ILE has been used for years to send SOAP
messages by generating stubs that hide the details about the SOAP messaging protocol.
Users would set the fields in the stub-generated structures, invoke the
web service operation, and receive the response. And this has worked
great.

But what if you want to bypass the stubs and just send a user-defined
payload, such as an Extensible Markup Language (XML) document
that is not generated by the stubs? Or maybe you want to send a
JavaScript Object Notation (JSON) payload as a Representational State
Transfer (REST) request, for which stub generation currently does not
provide support. What to do then?

The answer to the questions is the integrated web services client. The
client library has been enhanced with new application program interfaces (APIs) that
enable users to send user-defined payloads. This article provides information on the APIs
and some examples of API usages written in ILE RPG.

About the new transport APIs
The transport APIs may be used by client applications that want to control what is sent to
a server and what is received from the server.

For RPG programming, the APIs and constants are defined in the include file:
/QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc.

The following table summarizes the transport APIs. You can find more details about the
transport API functions in the Integrated Web Services Client for ILE programming guide
on the integrated web services website (see Resources).

Table 1. Transport APIs
Function Is used to
axiscTransportCreate() Create a transport object.
axiscTransportDestroy() Destroy a transport object.
axiscTransportReset() Reset the transport object to its initial state.
axiscTransportSetProperty() Set a transport property.
axiscTransportGetProperty() Get a transport property.
axiscTransportSend() Send bytes over transport.
axiscTransportFlush() Flush the transport of any buffered data.
axiscTransportReceive() Receive data from the transport.
axiscTransportGetLastErrorCode() Get transport error code from the last unsuccessful

transport operation.
axiscTransportGetLastError()

Get transport error string from the last
unsuccessful transport operation.

The program temporary
fixes (PTFs) that are
needed for each of the
supported releases of
the IBM i operating
system to use the APIs:

7.3: SI60805, SI60808
7.2: SI60806, SI60809
7.1: SI60807, SI60810

IBM i – Integrated Web Services

 3

The typical flow of events when using the transport APIs is as follows:

1. Use the axiscTransportCreate()function to create a transport object. The
URL to the web service is specified in the call to the function.

2. Set any transport properties (for example, connect timeout, HTTP method, HTTP
headers, whether payload needs to be converted to UTF-8, and so on) using the
axiscTransportSetProperty() function.

3. Send data (if any) using the axiscTransportSend() function. Data is
buffered until the axiscTransportFlush() function is called. The data is
automatically converted to UTF-8 unless the
AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to
"false" (in which case the data is sent as is).

4. Send the request to the client by invoking the axiscTransportFlush()
function.

5. Receive the response to the request by calling the
axiscTransportReceive() function. This API must be called even if no
data is returned in order to consume the HTTP response to the request, which
includes the HTTP response headers and status code. The data is automatically
converted from UTF-8 to the job coded character set identifier (CCSID) unless the
AXISC_PROPERTY_CONVERT_PAYLOAD transport property is set to
"false" (in which case the data is returned as is).

6. Destroy the transport object by calling the axiscTransportDestroy()
function.

Let us now look at a sample client that uses the APIs to perform a REST request.

About the REST APIs used in the article
The REST APIs that the client example (in this article) can invoke is based on the APIs
documented in the article, Building a REST service with integrated web services server
for IBM i, Part 3. The REST APIs developed in the article assumes a database of student
registrations and allows you to retrieve, add, delete, and update student registrations using
normal REST conventions. Table 2 shows a summary of the APIs that will be used in the
sample code.

Table 2. REST API information for student registration example
REMOVE URL /context-root/students/{id}

Method DELETE
Request body None
Returns 204 No content

404 Not found
500 Server error

CREATE URL /context-root/students
Method POST
Request body JSON
Returns 201 Created

409 Conflict
500 Server error

https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

IBM i – Integrated Web Services

 4

GETALL URL /context-root/students
Method GET
Request body None
Returns 200 OK and JSON

500 server error

The student registration database contains the records shown in Figure 1.

Figure 1. Student registration database records

Using the APIs – Sending REST requests
The client application invokes the REST APIs as follows:

1. Removes a student registration using the DELETE HTTP method.
2. Creates a student registration using the POST HTTP method.
3. Retrieves all student registrations using the GET HTTP method.

The source code for the client is available in the Code Listings section at the end of this
article. So, without further ado, let us go over the code as it uses the new client APIs.
Figure 1 shows the beginning of the code.

Figure 1. Client application code (part 1 of 7)

Looking at Figure 1, you can find that the client code is using the ILE RPG compiler
support for free-form code from column 1 to the end of line. This is
indicated by specifying **FREE in column 1 of the first line (1). The
other thing to notice is the /COPY statement (2) that is used to include
the various client API function prototypes and related constants.

The code in Figure 2 is the start of the logic that initiates a delete action of a student
registration record.

Free-form RPG PTFs:
7.2: SI58137
7.1: SI58136

IBM i – Integrated Web Services

 5

Figure 2. Client application code (part 2 of 7)

In Figure 2, you can uncomment the line (3) that contains the function call to enable trace.
If you do uncomment, the trace file will be created in file
/tmp/axistransport.log. Recall from Table 2 that in order to delete a resource,
the format of the URI must be /context-root/students/{id}. In this example,
we are removing the resource (student registration) with identification of 823M934LA (4).
A transport object is created (5) by calling the axiscTransportCreate() API and
the HTTP method to be used on the HTTP request is set to DELETE (6) by calling the
axiscTransportSetProperty() API. That is it. There is no payload to be sent
with the request. The request is send to the server by the call to the subroutine
flushAndReceiveData()(7). More information about this routine is provided later
in the article, but basically the subroutine sends the request and handles the response to the
request.

The code in Figure 3 shows the logic to create a new student registration record.

IBM i – Integrated Web Services

 6

Figure 3. Client application code (part 3 of 7)

The axiscTransportReset() API (8) is invoked with the URI that is needed to
create a new student registration record. Because JSON data is to be sent, the
axiscTransportSetProperty() API is invoked to set the content type (9) of the
HTTP request to application/json, followed by the setting of the HTTP method to POST
using the same API. The payload is a JSON formatted request containing the new student
registration record (10). The data is stored in the transport object by the call to the
axiscTransportSend() API call (11). The request is send to the server by the call to
the subroutine, flushAndReceiveData()(12).

The next step is to retrieve all the student registration records, as shown in Figure 4.

Figure 4. Client application code (part 4 of 7)

The URI used when creating a new student registration record is used when retrieving the
student registration records, and therefore, there is no need to reset the transport object.
To retrieve the student registration records, the HTTP method, GET, must be used (13).

IBM i – Integrated Web Services

 7

Again, a payload is not required to be sent with the request. The request is send to the
server by the call to the subroutine, flushAndReceiveData()(14). Finally, the
transport object is destroyed by the call to the axiscTransportDestroy() API (15).

Now, let us take a look at the helper subroutines used. Figure 5 shows the PRINT()
subroutine. The subroutine uses the C runtime printf() function that prints to standard
output (stdout). So any data passed to the PRINT() subroutine is written to standard
output.

Figure 5. Client application code (part 5 of 7)

Figure 6 shows the checkError() subroutine. This subroutine is called if an error
occurs when calling a transport API.

IBM i – Integrated Web Services

 8

Figure 6. Client application code (part 6 of 7)

The subroutine writes the error code and the associated error message (16) to the standard
output. If the error code indicates that an unexpected HTTP status code (17) was returned
by the server, the HTTP status code is retrieved and written to the standard output.

Figure 7 shows the flushAndReceiveData() subroutine. This subroutine is called
to send an HTTP request and receive an HTTP response.

IBM i – Integrated Web Services

 9

Figure 7. Client application code (part 7 of 7)

The call to the axiscTransportFlush() API (18) is done to initiate the sending of
the HTTP request. The call to the axiscTransportReceive() API (19) is done to
receive the HTTP response to the request. As long as there is data, we loop on the
axiscTransportReceive() API (20) call until there is no data to be consumed.

Seeing the code in action
You can compile the code (assuming that you have loaded and applied the RPG free-form
PTFs discussed previously) using the following CL commands (note that <library>
should be replaced with an existing IBM i library):

CRTRPGMOD MODULE(<library>/CLIENTR) SRCSTMF('/clientrest.rpgle')

CRTPGM PGM(<library>/CLIENTR) MODULE(<library>/CLIENTR)
 BNDSRVPGM((QSYSDIR/QAXIS10CC))

After the program is created, start a QShell session (using the QSH CL command) and
invoke the program by issuing the following command:

system 'call <library>/clientr'

IBM i – Integrated Web Services

 10

If you have the web service deployed and running on your system and everything runs
successfully, you should see something like what is shown in Figure 8.

Figure 8. Client application code output

The delete operation was successful and an HTTP status code of 204 indicates success
with no content being returned by the server. The creation of a new student registration
record was successful and an HTTP status code of 201 indicates the creation of a new
resource. Finally, the retrieval of all the registration records was successful indicated by
HTTP status code of 200 (OK). You can see the newly created student registration record
in the data.

Summary
The new APIs allow you to send user-defined payloads over the HTTP transport. This
support enables you to send REST requests or even SOAP requests while controlling
exactly what is sent. The APIs will handle the details of the HTTP protocol while
allowing you to handle the important details, which is the payload sent and received.
We’re continually trying to improve the integrated web services experience, and we’d love
to hear from you.

Resources

• For everything about the integrated web services support on IBM i see the product
web page.

Code Listings
Source code listing for the SRA application
**free
Ctl-Opt DFTNAME(RESTCLIENT);
// **
// *
// IBM Web Services Client for ILE *
// *
// FILE NAME: client.RPGLE *

https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy
https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy

IBM i – Integrated Web Services

 11

// *
// DESCRIPTION: Source to do REST request using transport APIs *
// *
// **
// LICENSE AND DISCLAIMER *
// ---------------------- *
// This material contains IBM copyrighted sample programming source *
// code (Sample Code). *
// IBM grants you a nonexclusive license to compile, link, execute, *
// display, reproduce, distribute and prepare derivative works of *
// this Sample Code. The Sample Code has not been thoroughly *
// tested under all conditions. IBM, therefore, does not guarantee *
// or imply its reliability, serviceability, or function. IBM *
// provides no program services for the Sample Code. *
// *
// All Sample Code contained herein is provided to you "AS IS" *
// without any warranties of any kind. THE IMPLIED WARRANTIES OF *
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND *
// NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. *
// SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED *
// WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO *
// EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, *
// SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE *
// CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS *
// INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION *
// HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF *
// THE POSSIBILITY OF SUCH DAMAGES. *
// *
// <START_COPYRIGHT> *
// *
// Licensed Materials - Property of IBM *
// *
// 5770-SS1 *
// *
// (c) Copyright IBM Corp. 2016, 2016 *
// All Rights Reserved *
// *
// U.S. Government Users Restricted Rights - use, *
// duplication or disclosure restricted by GSA *
// ADP Schedule Contract with IBM Corp. *
// *
// Status: Version 1 Release 0 *
// <END_COPYRIGHT> *
// *
// **

/COPY /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc

DCL-S rc INT(10);
DCL-S tHandle POINTER;

DCL-S uri CHAR(200);
DCL-S response CHAR(32768);
DCL-S request CHAR(32768);
DCL-S propBuf CHAR(100);
DCL-S propBuf2 CHAR(100);

IBM i – Integrated Web Services

 12

// --
// Web service logic. The code will attempt to invoke a Web service.
// --

// Uncomment to enable trace
// axiscAxisStartTrace('/tmp/axistransport.log': *NULL);

// Set URI in order to delete student
uri = 'http://localhost:10035/web/services/students/823M934LA';

// Create HTTP transport handle.
tHandle = axiscTransportCreate(uri:AXISC_PROTOCOL_HTTP11);
if (tHandle = *NULL);
 PRINT ('TransportCreate() failed');
 return;
endif;

// Delete student registration, ID is part of URI
PRINT ('==Deleting student registration record');

propBuf = 'DELETE' + X'00';
axiscTransportSetProperty(tHandle: AXISC_PROPERTY_HTTP_METHOD:
%addr(propBuf));
flushAndReceiveData();

// Now create a new student registration
PRINT ('==Creating student registration record');

uri = 'http://localhost:10035/web/services/students';
axiscTransportReset(tHandle:uri);

propBuf = 'Content-type' + X'00';
propBuf2 = 'application/json' + X'00';
axiscTransportSetProperty(tHandle: AXISC_PROPERTY_HTTP_HEADER:
 %addr(propBuf):%addr(propBuf2));

propBuf = 'POST' + X'00';
axiscTransportSetProperty(tHandle: AXISC_PROPERTY_HTTP_METHOD:
%addr(propBuf));

request = '{"studentID":"123456789","firstName":'
 + '"New","lastName":"Rec","gender":"Male"}';

rc = axiscTransportSend(tHandle: %ADDR(request): %len(%trim(request)):
0);
if (rc = -1);
 checkError ('TransportSend()');
else;
 flushAndReceiveData();
endif;

// Now retrieve all student records
PRINT ('==Retrieving student registration records');
propBuf = 'GET' + X'00';
axiscTransportSetProperty(tHandle: AXISC_PROPERTY_HTTP_METHOD:
%addr(propBuf));
flushAndReceiveData();

IBM i – Integrated Web Services

 13

// Cleanup handle.
axiscTransportDestroy(tHandle);

*INLR=*ON;

// ===
// Print to standard out
// ===
DCL-PROC PRINT ;
 dcl-pi *n;
 msg varchar(5000) const;
 end-pi;

 dcl-pr printf extproc(*dclcase);
 template pointer value options(*string);
 dummy int(10) value options(*nopass);
 end-pr;

 dcl-c NEWLINE CONST(x'15');

 printf(%TRIM(msg) + NEWLINE);
END-PROC PRINT;

// ===
// Handle error
// ===
DCL-PROC checkError ;
 dcl-pi *n;
 msg varchar(5000) const;
 end-pi;

 DCL-S axisCode INT(10);
 DCL-S statusCode POINTER;
 DCL-S rc INT(10);

 axisCode = axiscTransportGetLastErrorCode(tHandle);
 PRINT (msg + ' call failed: ' +
 %CHAR(axisCode) + ':' +
 %STR(axiscTransportGetLastError(tHandle)));

 if (axisCode = EXC_TRANSPORT_HTTP_EXCEPTION);
 rc = axiscTransportGetProperty(tHandle:
 AXISC_PROPERTY_HTTP_STATUS_CODE: %ADDR(statusCode));
 PRINT ('HTTP Status code: ' + %STR(statusCode));
 endif;
END-PROC checkError;

// ===
// Flush and Receive data
// ===
DCL-PROC flushAndReceiveData;
 dcl-pi *n;
 end-pi;

 DCL-S header POINTER;

IBM i – Integrated Web Services

 14

 DCL-S property CHAR(100);
 DCL-S bytesRead INT(10) inz(0);

 clear response;
 clear header;

 // Flush data so request is sent
 rc = axiscTransportFlush(tHandle);
 if (rc = -1);
 checkError ('TransportFlush()');
 return;
 endif;

 // Receive data and print out data and response to stdout
 rc = axiscTransportReceive(tHandle: %ADDR(response): %SIZE(response):
0);
 if (rc = 0);
 PRINT ('No data to read');
 else;
 dow rc > 0 AND bytesRead < %SIZE(response);
 bytesRead = bytesRead + rc;
 rc = axiscTransportReceive(tHandle:
 %ADDR(response)+bytesRead:
 %SIZE(response)-bytesRead:
 0);
 enddo;
 endif;

 if (rc = -1);
 checkError ('TransportReceive()');
 elseif (bytesRead > 0);
 PRINT ('Bytes read: ' + %CHAR(bytesRead));
 PRINT ('Data: ' + response);
 endif;

 if (rc > -1);
 rc = axiscTransportGetProperty(tHandle:
 AXISC_PROPERTY_HTTP_STATUS_CODE:
 %addr(header));
 if (rc = -1);
 checkError ('TransportGetProperty()');
 else;
 PRINT ('HTTP status code: ' + %str(header));
 endif;
 endif;

END-PROC flushAndReceiveData;

