

Creating REST APIs based on SQL
statements

IBM Db2 for i and integrated web services integration

By Nadir Amra, IBM Software Engineer
Published 01 June 2016 (updated 05 May 2024)

Abstract: You may already be using an integrated web services server to expose ILE
programs and service programs as RESTful web services. This tutorial introduces a
powerful new feature of the integrated web services server – the ability to deploy SQL
statements as RESTful web services.

IBM i – Integrated Web Services

 2

Introduction
For many years now the integrated web services for IBM i has focused on giving IBM i
customers the ability to expose Integrated Language Environment (ILE) programs and
service programs as REST and SOAP APIs (also known as web services). Using the
HTTP Web Administration GUI interface and with a few clicks of the mouse button, you
magically have an API that is based on a program or service program that may be written
in RPG, Cobol, or C, and even command language (CL)!

In the latest release of the IBM i operating system (as of August 2019), IBM i 7.4, this
same interface can now be used to deploy SQL statements as Representational State
Transfer (REST) APIs, enabling IBM® Db2® to act as a RESTful service provider.

In this tutorial, we take you through the steps of deploying SQL statements as REST APIs.

Prerequisites
This section lists the software prerequisites and the prior knowledge that you need to
possess to create REST APIs using SQL statements.

Software
To get all the PTFs required by the integrated web services server in support of REST, you
will need to load the latest HTTP Group PTF. The IBM Support web page IBM i Group
PTFs with level lists the HTTP group PTFs for each of the supported releases of the IBM i
operating system.

Note: The steps in this article were performed on IBM i 7.3. Panels may look different if
you are on an older or newer release. And if you are on an older release, some features
discussed in this article may be unsupported on that release.

Assumptions
Before reading this tutorial, you need to read “Part 1: Building a REST service with
integrated web services server for IBM i” in order to have a basic understanding of the
REST principles and the terminology used. You should also be familiar with the
fundamental concepts of JavaScript Object Notation (JSON) and XML.

The RESTful application
The example we use in this discussion is a sample Student Registration Application
(SRA). This example is used to show how an ILE service program is exposed as a REST
API in the tutorial “Part 3: Building a REST service with integrated web services server
for IBM i”. In this tutorial, we use the same database file to demonstrate how we can
achieve the same functionality but without a service program as the interface to the
database file.

The student registration management functions we want to provide in this sample SRA
application must enable you to:

https://www.ibm.com/support/pages/ibm-i-group-ptfs-level
https://www.ibm.com/support/pages/ibm-i-group-ptfs-level
https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

IBM i – Integrated Web Services

 3

• Register new students
• Edit registered student information
• List registered students
• Get information about a student
• Remove student registrations

The only object we have is the database file, STUDENTDB, where student records are
stored.

Things to get done before deployment
When deploying a RESTful web service, you should have answers to the following
questions at the bare minimum:

1. How do I want the URIs to look like?
2. What HTTP methods will the resource support?
3. What incoming content types should be supported?
4. What type of data should be returned?
5. What SQL statements should be used to implement the APIs?

Table 2 shows a summary of the mappings that we want between HTTP methods and
Uniform Resource Identifiers (URIs) for the SRA.

Table 2. HTTP method and URI mappings
HTTP method URI Description
GET /context-root/students Returns all student registrations
GET /context-root/students/{id} Returns student registration
POST /context-root/students Registers a new student
PUT /context-root/students Updates registered student
DELETE /context-root/students/{id} Removes registered student

Note: The default context-root for an integrated web services server is
/web/services. The context root for a server can be changed.

For each of the URI mappings, we need to identify the SQL statements that will be used
and to associate a procedure identifier with the SQL statement. You need this information
when deploying services based on SQL statements. Table 3 shows a summary of the
mappings that we want between URI and SQL statements for the SRA.

Table 3. URI mapping to SQL mappings
URI Procedure

identifier
SQL statement

/context-root/students GETALL SELECT * from STUDENTDB
/context-root/students/{id} GETBYID SELECT * from STUDENTDB

IBM i – Integrated Web Services

 4

WHERE "studentID" = ?
/context-root/students ADD INSERT INTO STUDENTDB

("studentID", "firstName",
"lastName", "gender")
VALUES(?,?,?,?)

/context-root/students UPDATE UPDATE STUDENTDB SET
"firstName" = ?,
"lastName" = ?,
"gender" = ?
WHERE "studentID" = ?

/context-root/students/{id} REMOVE DELETE FROM STUDENTDB
WHERE "studentID" = ?

What you need
The example REST API developed in this tutorial assumes a database of student
registrations and focuses on allowing you to retrieve, add, delete, and update these student
registrations using normal REST conventions.

Step 1. Set up the application database file
In this example, the STUDENTDB DB file will be created in the STUDENTS library. If
you have done the steps in part 2 of the series of articles, you can skip this step. To create
the library, issue the following CL command:

CRTLIB STUDENTS

To create the table, issue the following SQL command:

CREATE TABLE STUDENTS/STUDENTDB
 ("studentID" FOR COLUMN studentID CHAR (9) NOT NULL,
 "firstName" FOR COLUMN firstName CHAR (50) NOT NULL,
 "lastName" FOR COLUMN lastName CHAR (50) NOT NULL,
 "gender" FOR COLUMN gender CHAR (10) NOT NULL,
 PRIMARY KEY (studentID))
 RCDFMT studentr

To populate the table with sample student registration data, issue the following SQL
command:

INSERT INTO STUDENTS/STUDENTDB
 (studentID, firstName, lastName, gender)
 VALUES('823M934LA', 'Nadir', 'Amra', 'Male'),
 ('826M660CF', 'John', 'Doe', 'Male'),
 ('747F023ZX', 'Jane', 'Amra', 'Female')

IBM i – Integrated Web Services

 5

You must ensure that the user profile that will be running the service has authority to the
library and database file. In this example we will be using the default user profile for the
server, QWSERVICE. So, issue the following CL command:

CHGAUT OBJ('/qsys.lib/students.lib/studentdb.file')
 USER(QWSERVICE) DTAAUT(*RWX)

Step 2. Create the integrated web services server
To deploy an ILE program object as a REST service, you need to have an integrated web
services server created, and it must be version 2.6 or later. If you have one already
created, you can skip this section. If you need to create one, see “Part 2: Building a REST
service with integrated web services server for IBM i” to learn how to create a server.

Step 3. Deploy the SQL statements as a RESTful web
service
Now we deploy the SQL statements that make up the SRA as a RESTful web service.

Step 3-1. Deploy SQL statements as a web service
Click the Deploy New Service wizard link that is in the navigation bar. You should see
the page in Figure 1.

Figure 1. Deploy web service – step 1

This page gives you the option to either deploy a SOAP or REST web service, and to
choose whether the web service will be based on an ILE program/service program or SQL
statements. When you select SQL as a Web service, the wizard shows a page requiring
various database properties that must be set.

https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

IBM i – Integrated Web Services

 6

By default, the database system that processes the SQL statements is the local host (the
system hosting the integrated web services server). You can specify a remote system if the
database files reside on a remote server.

In this example, we have specified the default schema to be students. The system uses
the default SQL schema to resolve unqualified names in the SQL statements. For example,
in the statement SELECT * FROM MYTABLE, the system looks only in the default SQL
schema for MYTABLE. The following conditions apply, depending on whether the
naming convention is set to *SQL (SQL naming) or *SYS (system naming):

• For SQL naming, if *LIBL is specified for default schema, then the first or second
entry (whichever is not *LIBL) in the library list becomes the default schema. If
the first and second entry in the library list is *LIBL, then the user profile becomes
the default schema.

• For system naming, if *LIBL is specified for default schema, no default SQL
schema is set, and the system uses the specified libraries in the library list to search
for unqualified names.

You can specify the following naming convention to use when referring to tables:

• *SQL indicates that SQL naming (as in schema.table) should be used.
• *SYS indicates that system naming (as in schema/table) should be used.

Finally, you may specify one or more libraries that you want to add to or replace the
library list of the server job. The system uses the specified libraries to resolve unqualified
stored procedure names, and stored procedures use them to resolve unqualified names. To
specify multiple libraries, use commas or spaces to separate individual entries. You can
use *LIBL as a placeholder for the current library list of the server job.

Click Next at the bottom of the page.

Step 3-2. Specify a name for the resource (web service)
Now we need to give the web service (that is, the resource) a meaningful service name and
description. The resource name has been changed to students(see Figure 2).

IBM i – Integrated Web Services

 7

Figure 2. Deploy web service – step 2

You can set a URI path template for the resource. For this example, we do not need to
specify anything because the path to the resource after changing the resource name is what
we want:

/context-root/students

Click Next at the bottom of the page.

Step 3-3. Specify security constraint
The security constraint limits who can access the web service. To protect the web service,
an authentication method other than *NONE needs to be specified (see Figure 3). If the
web service is protected and roles have been defined, you will have the option to indicate
what roles are authorized to the web service. If roles have not been defined, then all
authenticated users are allowed access to the web service.

Figure 3. Deploy web service – step 3

The security constraint panel is beyond the scope of this article. We accept the default
values and click on the Next button at bottom of form.

IBM i – Integrated Web Services

 8

Step 3-4. Specify SQL statements
The wizard shows a page that allows you to add SQL statements (see Figure 4). SQL
statements are associated with a procedure so you also have to specify a meaningful
procedure name (because it will be used as an identifier when returning result sets in
response to a client request).

Figure 4. Deploy web service – step 4

Click Add to add a SQL statement. Figure 5 shows the page after we added the SQL
statement for removing a student record.

Figure 5. Deploy web service – step 4 (remove student record)

In Figure 5, we specify REMOVE for procedure name and the SQL statement to be used to
remove a record from the database. Notice that we use a parameter marker for student ID
that will be removed. When you click Continue after adding the SQL statement, the page
will display a parameter corresponding to the parameter marker. You can (and should)
change the identifier associated with the parameter by selecting the SQL statement. You
want to change the parameter identifier for parameters if the identifier is going to be part
of the HTTP payload of the client request (payloads are normally associated with the
POST or PUT HTTP methods).

IBM i – Integrated Web Services

 9

In Figure 6, you can see the rest of the SQL statements. Note that the parameter identifiers
have been changed for all the SQL statements.

Figure 6. Deploy web service – step 4 (all SQL statements added)

After adding all the SQL statements, click Next.

Step 3-5. Specify SQL information
Procedures contain SQL statements. For each procedure, you must specify how the output
from SQL statements is to be handled.

The first procedure to be processed is REMOVE.

IBM i – Integrated Web Services

 10

Figure 7. Deploy web service – step 5 (REMOVE)

Looking at Figure 7, you can find that:

• We have taken the default value for including SQL state information in response
(1), which is only if the SQL operation fails to run successfully.

• We have also taken the default value for treating SQL warnings as errors (2). This
option only applies to SQL warnings related to getting DB connections, preparing
SQL statements, and running the SQL statements. If a warning happens in any of
these cases, it will be treated as a SQL error.

• We have indicated that a 204 (No Content) HTTP status code (3) is to be returned
on a SQL statement that has run successfully. We have taken the default HTTP
status code of 500 (Server Error) if the SQL operation fails to run successfully.

Click Next to process the UPDATE procedure (shown in Figure 8).

IBM i – Integrated Web Services

 11

Figure 8. Deploy web service – step 5 (UPDATE)

Looking at Figure 8, you will find that we have taken the default values for the fields
except for where we have indicated that a 204 (No Content) HTTP status code (1) is to be
returned on a SQL statement that has run successfully.

Click Next to process the ADD procedure (Figure 9).

IBM i – Integrated Web Services

 12

Figure 9. Deploy web service – step 5 (ADD)

Looking at Figure 9, you will find that we have taken the default values for the fields
except for where we have indicated that a 201 (Created) HTTP status code (1) is to be
returned on a SQL statement that has run successfully.

Click Next to process the GETBYID procedure (Figure 10).

IBM i – Integrated Web Services

 13

Figure 10. Deploy web service – step 5 (GETBYID)

Looking at Figure 10, you can find that:

• The SQL operation returns a single-row result set (1). This ensures that the
response returned is not an array of objects, but a single object. If you wanted the
response to return an array of objects, you would specify a multi-row result set.
Note that if you specify a single-row result set, then only one row will be returned,
even in the case where the result set has multiple rows.

• The default trim mode (2) for output character fields is to remove trailing blanks
from fields. You also have the option to remove leading blanks, both leading and
trailing blanks, and to not remove blanks. Using the trim function within the SQL
statement will perform better than setting this option to a value other than None
(not to remove blanks).

• We have taken the default values for HTTP status codes (3): 200 (OK) for success
and 500 (Server Error) for failure.

Click Next to process the GETALL procedure (Figure 11).

IBM i – Integrated Web Services

 14

Figure 11. Deploy web service – step 5 (GETALL)

Looking at Figure 11, you can find that:

• The SQL operation returns a multi-row result set (1). This ensures that the
response returned is an array of objects.

• We have taken the default values for HTTP status codes (2): 200 (OK) for success
and 500 (Server Error) for failure.

At this point, we are done with setting SQL-related information for each procedure. Click
Next.

Step 3-6. Specify resource method information
Before discussing this step, it is a good idea to summarize the REST information for the
RESTful application that is to be deployed. Table 4 summarizes REST information for
each of the resource methods (that is, procedures) of the SRA.

Table 4. REST information for each procedure
REMOVE URL /context-root/students/{id}

Method DELETE
Request body None
Returns 204 No content

500 Server error
UPDATE URL /context-root/students

Method PUT
Request body JSON
Returns 204 No content

IBM i – Integrated Web Services

 15

500 Server error
ADD URL /context-root/students

Method POST
Request body JSON
Returns 201 Created

500 Server error
GETBYID URL /context-root/students/{id}

Method GET
Request body None
Returns 200 OK and JSON

500 Server error
GETALL URL /context-root/students

Method GET
Request body None
Returns 200 OK and JSON

500 server error

First procedure to be processed is the REMOVE procedure.

Figure 12. Deploy web service – step 6 (REMOVE)

Looking at Figure 12, you can find that:

• The HTTP request method (1) is set to DELETE.
• Recall from Table 3 that the URI has the following format:

/context-root/students/{id}
That is, the student identifier information is passed in as part of the URI. So, we
specify a URI path template (2) so that any HTTP DELETE request that matches
the URI is passed to the REMOVE procedure.

IBM i – Integrated Web Services

 16

• There is no entity body returned by the procedure. However, we needed to specify
a value and therefore, retained the default which is JSON (3).

• We want to inject the URI path variable id into the studentID parameter. We
do this by specifying the input source as *PATH_PARAM (4) and selecting the
identifier to be inserted.

Click Next to process the UPDATE procedure (Figure 13).

Figure 13. Deploy web service – step 6 (UPDATE)

Looking at Figure 13, you can find that:

• The HTTP request method (1) is set to PUT.
• The format of the input data is JSON (2).
• There is no entity body returned by the procedure. However, we need to specify a

value, and therefore, we retained the default which is JSON (3).
• Because the request is in the payload of the client request, we specify that the

parameters should be wrapped (4).

Click Next to process the CREATE procedure (Figure 14).

IBM i – Integrated Web Services

 17

Figure 14. Deploy web service – step 6 (ADD)

Looking at Figure 14, you can find that:

• The HTTP request method (1) is set to POST.
• The format of the input data is JSON (2).
• There is no entity body returned by the procedure. However, we need to specify

some value, and therefore, we retained the default which is JSON (3).
• Because the request is in the payload of the client request, we specify that the

parameters should be wrapped (4).

Click Next to process the GETBYID procedure (Figure 15).

IBM i – Integrated Web Services

 18

Figure 15. Deploy web service – step 6 (GETBYID)

Looking at Figure 15, you can find that:

• The HTTP request method (1) is set to GET.
• Recall from Table 3 that the URI has the following format:

/context-root/students/{id}
That is, the student identifier information is passed in as part of the URI. So, we
specify a URI path template (2) so that any HTTP GET request that matches the
URI is passed to the GETBYID procedure.

• There is no input data. So, we can simply consider the default values to accept all
input media types (3).

• The format of the output data is JSON (4).
• We want to inject the URI path variable id into the studentID parameter. We

do this by specifying the input source as *PATH_PARAM (5) and selecting the
identifier to be inserted.

Click Next to process the GETALL procedure (Figure 16).

IBM i – Integrated Web Services

 19

Figure 16. Deploy web service – step 6 (GETALL)

Looking at Figure 16, you can find that:

• The HTTP request method (1) is set to GET.
• There is no input data. So, we can simply consider the default values to accept all

input media types (2).
• The format of the output data is JSON (3).

At this point, we have completed setting REST information. Click Next.

Step 3-7. Specify user ID for this service
We now need to specify the user ID to run the service. As shown in Figure 17, you can run
the service using the server's user ID, specifying an existing user ID, or using an
authenticated user ID (this would require you to enable basic authentication – see the
Security chapter in the Integrated Web Services Server Administration and Programming
Guide for details on how to do this).

http://www.ibm.com/support/docview.wss?uid=isg3T1026868
http://www.ibm.com/support/docview.wss?uid=isg3T1026868

IBM i – Integrated Web Services

 20

Figure 17. Deploy web service – step 7

For the web service to run correctly, the user ID status must be set to *ENABLED and the
password must be set to a value other than *NONE. If a user ID that is disabled or has a
password of *NONE is specified, a warning message is displayed, and the service may not
run correctly. In addition, ensure that the specified user ID has the proper authorities to
any resources and objects that the web service needs, such as libraries, databases, and
files.

In this example, we accept the default values. Click Next.

Step 3-8. Deploy web service – step 8
The web service deployment wizard shows you a summary page (see Figure 18), giving
you a chance to see the details relating to the web service being deployed.

Figure 18. Deploy web service – step 8 (Summary)

IBM i – Integrated Web Services

 21

Click Finish at the bottom of the summary page to complete the installation process.
When the web service is deployed, the deployed service becomes active (indicated with a
green dot to the left of service name) as in Figure 19:

Figure 19. Successfully deployed RESTful web service

Congratulations, you have now successfully deployed SQL statements as a RESTful web
service.

You can easily test the resource methods that are bound to the HTTP GET method using a
browser. Figure 20 shows the results of the request that returns all registered students.

Figure 20. Testing web service – return all registered students

IBM i – Integrated Web Services

 22

Figure 21 shows the result of a request for a student record with a student ID of
823M934LA.

Figure 21. Testing web service – return a registered student

To test the other resource methods, an external tool (such as SoapUI) must be used.
Figure 22 shows the result of a request to create a new student registration using SoapUI.

Figure 22. Testing web service – create a new student registration

Looking at Figure 22, as we are attempting to create a new student registration, the HTTP
method is POST (1). The sub pane numbered (2) is the new student registration data in
JSON format that will be sent to the server as part of the HTTP POST request. After
submitting the request, the server response did not return any JSON data (3). Because the
create request succeeded, the REST service returned the HTTP status code of 201
(Created).

Figure 23 shows the results when we ran the same request again.

IBM i – Integrated Web Services

 23

Figure 23. Testing web service – create a student registration error

Looking at Figure 23, as we are attempting to create a new student registration with a
student ID that already exists in the database, the server returned an HTTP status code of
500 (Server Error) (1) with information regarding the error (2), which includes the SQL
state, SQL code, and the error message.

Summary
In this tutorial, you learned how to deploy a REST API based on SQL statements using the
integrated web services server support for IBM i.

The integrated web services server REST support provides a solid foundation for creating
and deploying REST APIs based on ILE programs, service programs, and SQL statements
on the IBM i platform. Add the highly intuitive IBM Web Administration for i GUI for
deploying web services, and you've got everything you need to quickly prototype and
deploy your own custom REST API.

Resources

• For everything about the integrated web services support on IBM i see the product
web page.

https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy
https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy

