

Building a REST service with
integrated web services server for
IBM i: Part 3

Deploy a RESTful application using multiple HTTP methods

By Nadir Amra, IBM Software Engineer
Published 08 May 2015 (updated 05 May 2024)

Abstract: Rapidly changing application environments require a flexible mechanism to
exchange data between different application tiers. Representational State Transfer
(REST) has gained widespread acceptance across the Web as the interface of choice for
mobile and interactive applications.

You may already be using integrated web services server to expose ILE programs and
service programs as SOAP-based web services. This series of articles introduces a
powerful new feature of the integrated web services server – the ability to deploy ILE
programs and services programs as RESTful web services. In this third installment, you
will learn how to deploy an application as a RESTful web service using multiple HTTP
methods.

IBM i – Integrated Web Services

 2

Introduction
For several years now IBM i users have had the ability to deploy ILE programs and
services programs as web services based on the SOAP protocol using the integrated web
services server support that is part of the operating system. REST web services were not
supported by the integrated web services server, until now.

This article is the third in a series of articles about the integrated web services server
REST support.

• Part one starts out by explaining the basic concepts behind REST web services and
how the integrated web services server supports REST services.

• Part two takes you through the steps of deploying a simple ILE application as a
RESTful web service.

• In part three, we take you through the steps of deploying a more complex ILE
application that uses more of the REST features.

Prerequisites

Software
To get all the PTFs required by the integrated web services server in support of REST, you
will need to load the latest HTTP Group PTF. The IBM Support web page IBM i Group
PTFs with level lists the HTTP group PTFs for each of the supported releases of the IBM i
operating system.

Note: The steps in this article were performed on IBM i 7.3. Panels may look different if
you are on an older or newer release. And if you are on an older release, some features
discussed in this article may be unsupported on that release.

Assumptions
Before reading this article, you should have read part one of the article in the series in
order to have a basic understanding of REST principles and the terminology used.

The RESTful application
The example we will use in this discussion is a sample Student Registration Application
(SRA). The student registration management functions provided in this sample SRA
application enable you to:

• Register new students
• Edit registered student information
• List registered students
• Remove student registrations

SRA consists of a service program, STUDENTRSC, that contain the RESTful services
(i.e. procedures) that provides the basic Create-Read-Update-Delete (CRUD) database
logic, and a database file, STUDENTDB, where student records are stored.

https://www.ibm.com/support/pages/ibm-i-group-ptfs-level
https://www.ibm.com/support/pages/ibm-i-group-ptfs-level

IBM i – Integrated Web Services

 3

Listing 1 shows the prototypes of the procedures in the SRA application that are exported
from the STUDENTRSC service program (i.e. resource). The full source of the
application can be found at the end of this article in Code Listings.

Listing 1. Partial listing of SRA application

ctl-opt nomain pgminfo(*pcml:*module:*dclcase);

dcl-ds studentRec qualified template;
 studentID char(9);
 firstName varchar(50);
 lastName varchar(50);
 gender char(10);
end-ds;

dcl-proc getAll export;
 dcl-pi *n;
 students_LENGTH int(10);
 students likeds(studentRec) dim(1000) options(*varsize);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;
.
.
.
End-proc;

dcl-proc getByID export;
 dcl-pi *n;
 studentID char(9);
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;
.
.
.
end-proc;

dcl-proc create export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;
.
.
.
end-proc;

dcl-proc update export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);

IBM i – Integrated Web Services

 4

 end-pi;
.
.
.
end-proc;

dcl-proc remove export;
 dcl-pi *n;
 studentID char(9);
 httpStatus int(10);
 end-pi;
.
.
.
end-proc;

The resource program object defines five procedures:

• getAll: get all students.
• getById: get a particular student using their student ID.
• create: create a new student record.
• update: update a student record.
• remove: delete a particular student record.

You should also note that a data structure template (studentRec) is defined which defines
the fields in the database file. You can optionally define the data structure via an
externally described data structure, but the decision to not use an externally defined data
structure is due to wanting to control the case of the XML element names and/or JSON
field names, which are obtained from the generated program interface information.
Previously names were all capitalized. However, a new feature was introduced and
PTF’ed to IBM i 7.1 (PTF SI55340) and i 7.2 (PTF SI55442) that allows you to control
the case by specifying the *DCLCASE parameter for the PGMINFO Control specification
keyword. When specified, the names in the program interface information will be
generated in the same case as the names defined in the RPG source file.

Things to get done before deployment
As we have done in Part 2 of the series, we need figure out things before deploying the
RESTful web service. To summarize, when deploying a RESTful web service, you
should have answers to the following questions at the bare minimum:

1. How do I want the URIs to look like?
2. What HTTP methods will the resource support?
3. What incoming content types should be supported?
4. What type of data should be returned?

In the following sections go through these basic questions in the context of the application
that will be deployed. Table 2 shows a summary of the mappings that we want between
HTTP methods and URIs for the SRA application.

IBM i – Integrated Web Services

 5

Table 2. HTTP method and URI mappings
HTTP Method URI Description
GET /context-root/students Return all student registrations
GET /context-root/students/{id} Return student registration
POST /context-root/students Register a new student
PUT /context-root/students Update registered student
DELETE /context-root/students/{id} Remove registered student

Note: The default context-root for an integrated web services server is /web/service.
The context root for a server may be changed.

Return all student registrations
Listing 2 shows the getAll() procedure. This procedure will be used to return all
student registrations and will be mapped to the HTTP GET method.

Listing 2. Procedure getAll()
dcl-proc getAll export;
 dcl-pi *n;
 students_LENGTH int(10);
 students likeds(studentRec) dim(1000) options(*varsize);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 clear httpHeaders;
 clear students;
 students_LENGTH = 0;

 openStudentDB();

 setll *loval STUDENTDB;

 read(e) studentR;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 endif;

 dow (NOT %eof);
 students_LENGTH = students_LENGTH+1;
 students(students_LENGTH).studentID = STUDENTID;
 students(students_LENGTH).firstName = FIRSTNAME;
 students(students_LENGTH).lastName = LASTNAME;
 students(students_LENGTH).gender = GENDER;

 read(e) studentR;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 endif;
 enddo;

IBM i – Integrated Web Services

 6

 httpStatus = H_OK;
 httpHeaders(1) = 'Cache-Control: no-cache, no-store';

 closeStudentDB();
end-proc;

Notice that in the parameter list there is an array that will contains the student records and
a corresponding length field that will be used to indicate how many student registration
records there actually is in the array. If you do not specify the length field, the response
will include empty elements which would degrade performance in both the client and
server.

The httpStatus parameter is used for the HTTP status code that is returned to the client.
On unexpected errors the HTTP status code H_SERVERERROR (500) is returned. Otherwise,
H_OK (200) is returned.

The httpHeaders parameter is used to return HTTP headers. In this example we do not
want the response cached and thus the Cache-Control HTTP header is set.

Return student registration
Listing 3 shows the getByID() procedure. This procedure will be used to return a
student registration and will be mapped to the HTTP GET method.

Listing 3. Procedure getByID()
dcl-proc getByID export;
 dcl-pi *n;
 studentID char(9);
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 clear httpHeaders;
 clear student;

 openStudentDB();

 chain(e) studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 student.studentID = studentID;
 student.firstName = firstName;
 student.lastName = lastName;
 student.gender = gender;

 httpStatus = H_OK;
 else;
 httpStatus = H_NOTFOUND;
 endif;

IBM i – Integrated Web Services

 7

 httpHeaders(1) = 'Cache-Control: no-cache, no-store';

 closeStudentDB();
end-proc;

The parameter studentID is an input parameter that is used as a key to read the student
registration from the database. If not found the HTTP status code H_NOTFOUND (404) is
returned. The caching control HTTP header is also set so the response is not cached.

Register a new student
Listing 4 shows the create() procedure. This procedure will be used to create a new
student registration and will be mapped to the HTTP POST method.

Listing 4. Procedure create()
dcl-proc create export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 openStudentDB();

 studentID = student.studentID;
 firstName = student.firstName;
 lastName = student.lastName;
 gender = student.gender;

 write(e) studentR;
 if NOT %ERROR;
 httpStatus = H_CREATED;
 // URL will need to change to your server and port
 httpHeaders(1) = 'Location: ‘ +
 ‘http://server:port/web/service/students/' + studentID;
 elseif %STATUS = ERR_DUPLICATE_WRITE;
 httpStatus = H_CONFLICT;
 else;
 httpStatus = H_SERVERERROR;
 endif;

 closeStudentDB();
end-proc;

If the student ID already exists in the database, an HTTP status code of H_CONFLICT (409).
An HTTP status code of H_CREATED (201) is returned on a successful create. For HTTP
201 status code responses the Location HTTP is returned and is set to the URI of the
new resource which was created by the request.

IBM i – Integrated Web Services

 8

Update a registered student
Listing 5 shows the update() procedure. This procedure will be used to update an
existing student registration and will be mapped to the HTTP PUT method.

Listing 5. Procedure update()
dcl-proc update export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);
 end-pi;

 openStudentDB();

 chain(e) student.studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 studentID = student.studentID;
 firstName = student.firstName;
 lastName = student.lastName;
 gender = student.gender;

 update(e) studentR;
 if NOT %ERROR;
 httpStatus = H_NOCONTENT;
 else;
 httpStatus = H_NOTFOUND;
 endif;
 else;
 httpStatus = H_NOTFOUND;
 endif;

 closeStudentDB();
end-proc;

If the student ID is not found, an HTTP status code of H_NOTFOUND (404). Notice also on
a successful update operation the HTTP status code of H_NOCONTENT (204) is returned
since the procedure does not return any data.

Remove a registered student
Listing 6 shows the remove() procedure. This procedure will be used to remove an
existing student registration and will be mapped to the HTTP DELETE method.

Listing 6. Procedure remove()
dcl-proc remove export;
 dcl-pi *n;
 studentID char(9);
 httpStatus int(10);
 end-pi;

 openStudentDB();

IBM i – Integrated Web Services

 9

 chain(e) studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 delete(e) studentR;
 if NOT %ERROR;
 httpStatus = H_NOCONTENT;
 elseif NOT %FOUND;
 httpStatus = H_NOTFOUND;
 else;
 httpStatus = H_SERVERERROR;
 endif;
 else;
 httpStatus = H_NOTFOUND;
 endif;

 closeStudentDB();
end-proc;

If the student ID is not found, an HTTP status code of H_NOTFOUND (404). On a successful
delete operation the HTTP status code of H_NOCONTENT (204) is returned since the
procedure does not return any data.

What you need
The example REST API developed this article assumes a database of student registrations
and focuses on allowing you to retrieve, add, delete, and update these student registrations
using normal REST conventions.

If you want to recreate the steps on your server, the source of the SRA application is
available at the end of this article in Code Listings.

Step 1. Set up the application database file
In this example the STUDENTDB DB file will be created in library STUDENTS. To
create the library, issue the following CL command:

CRTLIB STUDENTS

To create the table, issue the following SQL command:

CREATE TABLE STUDENTS/STUDENTDB
("studentID" FOR COLUMN studentID CHAR (9) NOT NULL,
 "firstName" FOR COLUMN firstName CHAR (50) NOT NULL,
 "lastName" FOR COLUMN lastName CHAR (50) NOT NULL,
 "gender" FOR COLUMN gender CHAR (10) NOT NULL,
 PRIMARY KEY (studentID))
 RCDFMT studentr

IBM i – Integrated Web Services

 10

To populate the table with sample student registration data, issue the following SQL
command:

INSERT INTO STUDENTS/STUDENTDB
 (studentID, firstName, lastName, gender)
 VALUES('823M934LA', 'Nadir', 'Amra', 'Male'),
 ('826M660CF', 'John', 'Doe', 'Male'),
 ('747F023ZX', 'Jane', 'Amra', 'Female')

You must ensure that the user profile that will be running the service has authority to the
library and database file. In this example we will be using the default user profile for the
server, QWSERVICE. So, issue the following CL command:

CHGAUT OBJ('/qsys.lib/students.lib/studentdb.file')
 USER(QWSERVICE) DTAAUT(*RWX)

Step 2. Create the integrated web services server
To deploy an ILE program object as a REST service, you need to have an integrated web
services server created, and it must be version 2.6 or greater. If you have one already
created, you can skip this section. If you need to create one, please see part two of this
series of articles to learn how to create a server.

Step 3. Deploy the ILE application as a RESTful web
service
Now we deploy the SRA application service program as a RESTful web service. The
service program STUDENTRSC is assumed to be in library STUDENTRSC. To create the
service program, copy the source listing into a file and issue the following CL commands
(the following statements assumes that the source for the SRA application is stored in
“/iwsexample/studentrsc.rpgle”):

ADDLIBLE LIB(STUDENTS)

CRTRPGMOD MODULE(STUDENTS/STUDENTRSC)
 SRCSTMF('/iwsexample/studentrsc.rpgle')

CRTSRVPGM SRVPGM(STUDENTS/STUDENTRSC) EXPORT(*ALL)

Step 3-1. Deploy an IBM i program object as a web service
Click on the Deploy New Service wizard link that is in the navigation bar. You should see
the panel in Figure 1.

IBM i – Integrated Web Services

 11

Figure 1. Deploy web service – step 1

This panel gives you the option to either deploy a SOAP or REST web service. Since we
are deploying a REST web service, we have selected the REST radio button. We also have
inserted the path to the ILE program object that is to be deployed, which is
“/QSYS.LIB/STUDENTS.LIB/STUDENTRSC.SRVPGM”.

Click on the Next button of the form.

Step 3-2. Specify name for the resource (web service)
Now we need to give the web service (i.e. resource) a meaningful service name and
description. By default, the service name and description are set to the name of the
selected program object (see Figure 2).

Figure 2. Deploy web service – step 2

The resource name has been changed to students. In addition, you can set a URI path
template for the resource. For this example, we do not need to specify anything since the
path to the resource after changing the resource name is:

IBM i – Integrated Web Services

 12

/context-root/students

Which is what we want. Click on the Next button at bottom of form.

Step 3-3. Specify security constraint
The security constraint limits who can access the web service. To protect the web service,
an authentication method other than *NONE needs to be specified (see Figure 3). If the
web service is protected and roles have been defined, you will have the option to indicate
what roles are authorized to the web service. If roles have not been defined, then all
authenticated users are allowed access to the web service

Figure 3. Deploy web service – step 3

The security constraint panel is beyond the scope of this article. We accept the default
values and click on the Next button at bottom of form.

Step 3-4. Select export procedures to externalize as resource
methods
The wizard will show a list of exported procedures as shown in Figure 4. For service
programs (object type of *SRVPGM), there may be one or more procedures. For programs
(object type of *PGM), there is only one procedure, which is the main entry point to the
program. Expanding the procedure row shows the parameters for the procedure and
various parameter attributes.

IBM i – Integrated Web Services

 13

Figure 4. Deploy web service – step 4

Ensure the checkbox Detect transient fields (length and is-null fields) is selected. When
Detect transient fields (length and is-null fields) is selected, integrated web services
support will assumed that any numeric field that immediately precedes an array field with
the same name as the array field appended with _LENGTH is a length field that will be
used to indicate the actual number of elements in the array. The length field is transient,
that is, not considered part of the payload. Without length fields, all the elements in the
array are returned. You will see an example of a length field later on in this section when
we look at the getAll() procedure.

The parameter attributes are modifiable. In most cases you want to modify the parameter
attributes to control what data is to be sent by web service clients and what data is to be
returned in the responses to the client requests.

In Figure 4 the REMOVE procedure is the procedure that is to be used to remove a student
registration. It has two parameters, studentID and httpStatus. The studenID is
the identifier of the student to be removed and thus is an input parameter to the procedure.
The httpStatus parameter is the HTTP status code to be returned in the response to
the client and is designated as an output parameter.

If you scroll down the exported procedure panel you see (see Figure 5) the UPDATE,
CREATE, and GETBYID procedures. The parameters have been designated as input or
output parameters.

IBM i – Integrated Web Services

 14

Figure 5. Deploy web service – step 4 (update, create, and getByID)

Scrolling down a little bit more you will find the GETALL procedure (see Figure 6) that
returns all the student registration data in the database.

Figure 6. Deploy web service – step 4 (getAll)

Since we want to only return the actual number of registered students, we have defined a
length field parameter called students_LENGTH. The length field tells integrated web
services support how many elements to return in the response. It will be set by the
GETALL procedure to the actual number of registered students and thus the response will
contain data for only the actual number of registered students. Without the length field, the
procedure will return a response that will contains 1000 student records in which 3 student
records will contain student registration data, and 995 student records will be empty.

Click on the Next button at bottom of form.

Step 3-5. Specify ILE procedure information
This panel (Figure 7) is shown for each procedure to be deployed as a web service and
allows you to indicate how each procedure invocation handles web service calls.

IBM i – Integrated Web Services

 15

Figure 7. Specify ILE procedure information – step 5 (remove)

You can indicate whether character fields are to be trimmed of blanks. In addition, you
can specify a user defined messages if the call to the procedure fails and indicate what
HTTP status codes to use on a procedure call success and failure.

For this example, accept the defaults for each of the procedures by pressing Next until you
get to the Specify resource method information panel.

Step 3-6. Specify resource method information
Before discussing this step, it is a good idea to summarize the REST information for the
RESTful application that is to be deployed. Table 3 below summarizes REST information
for each of the resource methods (i.e. procedures) of the SRA application.

Table 3. REST information for each procedure
REMOVE URL /context-root/students/{id}

Method DELETE
Request body None
Returns 204 No content

404 Not found
500 Server error

UPDATE URL /context-root/students
Method PUT
Request body JSON
Returns 204 No content

404 Not found
500 Server error

CREATE URL /context-root/students
Method POST
Request body JSON
Returns 201 Created

409 Conflict
500 Server error

GETBYID URL /context-root/students/{id}
Method GET
Request body None

IBM i – Integrated Web Services

 16

Returns 200 OK & JSON
404 Not found
500 Server error

GETALL URL /context-root/students
Method GET
Request body None
Returns 200 OK & JSON

500 server error

First procedure to be processed is the REMOVE procedure.

Figure 8. Deploy web service – step 5 (REMOVE)

Looking at Figure 8, you will find that:

• The HTTP request method (1) is set to DELETE.
• Recall from Table 3 that the URI has the following format: /context-

root/students/{id}. That is, the student identifier information is passed in as part of
the URI. So, we specify a URI path template (2) so that any HTTP DELETE
request that matches the URI will be passed to the REMOVE procedure. Notice that
a regular expression \w{9} is used to ensure the registration ID is a word
character that has a length of 9.

• We have indicated in that the httpStatus parameter (3) is to be used as the
HTTP response code since the procedure will be returning a response code.

IBM i – Integrated Web Services

 17

• There is no entity body returned by the procedure. However, we needed to specify
something for this procedure so we chose JSON (4) although we could have left
the default of XML or JSON.

• We want to inject the URI path variable id into the studentID parameter. We
do this by specifying the input source as *PATH_PARAM (5) and select the
identifier to be inserted.

Click on the Next button of the form to process the UPDATE procedure (Figure 9).

Figure 9. Deploy web service – step 5 (UPDATE)

Looking at Figure 9, you will find that:

• The HTTP request method (1) is set to PUT.
• We have indicated in that the httpStatus parameter (2) is to be used as the

HTTP response code since the procedure will be returning a response code.
• The format of the input data is JSON (3).
• There is no entity body returned by the procedure. However, we needed to specify

something for this procedure, so we chose JSON (4).

Click on the Next button of the form to process the CREATE procedure (Figure 10).

IBM i – Integrated Web Services

 18

Figure 10. Deploy web service – step 5 (CREATE)

Looking at Figure 10, you will find that:

• The HTTP request method (1) is set to POST.
• We have indicated in that the httpStatus parameter (2) is to be used as the

HTTP response code since the procedure will be returning a response code. In
addition, we have indicated that the procedure will be returning HTTP headers.
Recall that the HTTP Location header is set when a student registration is created
successfully.

• The format of the input data is JSON (3).
• There is no entity body returned by the procedure. However, we needed to specify

something for this procedure, so we chose JSON (4).

Click on the Next button of the form to process the GETBYID procedure (Figure 11).

IBM i – Integrated Web Services

 19

Figure 11. Deploy web service – step 5 (GETBYID)

Looking at Figure 11, you will find that:

• The HTTP request method (1) is set to GET.
• Recall from Table 3 that the URI has the following format: /context-

root/students/{id}. That is, the student identifier information is passed in as part of
the URI. So, we specify a URI path template (2) so that any HTTP GET request
that matches the URI will be passed to the GETBYID procedure. Notice that a
regular expression \w{9} is used to ensure the registration ID is a word character
that has a length of 9.

• We have indicated in that the httpStatus parameter (3) is to be used as the
HTTP response code since the procedure will be returning a response code. In
addition, we have indicated that the procedure will be returning HTTP headers.
Recall that the HTTP caching header is set when a student registration is returned.

• The format of the output data is JSON (4).
• We want to inject the URI path variable id into the studentID parameter. We

do this by specifying the input source as *PATH_PARAM (5) and select the
identifier to be inserted.

Click on the Next button of the form to process the GETALL procedure (Figure 12).

IBM i – Integrated Web Services

 20

Figure 12. Deploy web service – step 5 (GETALL)

Looking at Figure 12, you will find that:

• The HTTP request method (1) is set to GET.
• We have indicated in that the httpStatus parameter (2) is to be used as the

HTTP response code since the procedure will be returning a response code. In
addition, we have indicated that the procedure will be returning HTTP headers.
Recall that the HTTP caching header is set when a student registration is returned.

• The format of the output data is JSON (3).

At this point we are done with setting REST information. Click on the Next button of the
form.

Step 3-6. Specify user ID for this service
We now need to specify the user ID that the service will run under. As shown in Figure
13, you can run the service under the server's user ID, or you can specify an existing user
ID that the service will run under. You cannot specify an authenticated user ID because in
our example we are not protecting (for example, with basic authentication) the APIs.

IBM i – Integrated Web Services

 21

Figure 13. Deploy web service – step 6

For the web service to run correctly, the user ID status must be set to *ENABLED and the
password must be set to a value other than *NONE. If a user ID is specified that is
disabled or has a password of *NONE, a warning message is displayed and the service
may not run correctly. In addition, ensure that the specified user ID has the proper
authorities to any resources and objects that the program object needs, such as libraries,
databases, and files.

In this example, we will accept the default. Click on the Next button of the form.

Step 3-7. Specify library list
Specify any libraries that the program object needs to function properly (see Figure 14).

Figure 14. Deploy web service – step 7

You have the option of putting the libraries at the start of the user portion of the library list
or at the end of the user portion of the library list. Click on the Next button of the form.

IBM i – Integrated Web Services

 22

Step 3-8. Specify transport information to be passed
Specify what transport information related to the client request is to be passed to the Web
service implementation code (see Figure 15). The information is passed as environment
variables.

Figure 15. Deploy web service – step 8

For example, the transport metadata REMOTE_ADDR is passed to web service
implementation code in an environment variable named REMOTE_ADDR.

HTTP headers indicates what transport headers (e.g. HTTP headers) to pass to the web
service implementation code. Transport headers are passed as environment variables. The
environment variable name for HTTP headers is made up of the specified HTTP header
prefixed with 'HTTP_', all upper-cased. For example, if 'Content-type' is specified,
then the environment variable name would be 'HTTP_CONTENT-TYPE'. If an HTTP
header was not passed in on the web service request, the environment variable value will
be set to the null string.

Click on the Next button of the form.

Step 3-9. Deploy web service – step 9
The Web service deployment wizard shows you a summary page (see Figure 16), giving
you a chance to see the details relating to the Web service being deployed.

IBM i – Integrated Web Services

 23

Figure 16. Deploy web service – step 9 (Summary)

Clicking on the Finish button at the bottom of the summary page will kick off the
installation process. When the web service is deployed the deployed service becomes
active (green dot to the left of service name) as in Figure 17:

Figure 17. Successfully deployed RESTful web service

Congratulations, you have now successfully deployed an ILE program object as a
RESTful web service.

Resource methods that are bound to the HTTP GET method could be tested by using a
browser. Figure 18 shows the result of the request that will return all registered students.

IBM i – Integrated Web Services

 24

Figure 18. Testing web service – return all registered students

Figure 19 shows the result of a request for a student record with a student ID of
823M934LA.

Figure 19. Testing web service – return a registered student

To test the other resource methods, an external tool needs to be used, such as SoapUI.
Figure 20 shows the result of a request to create a new student registration using SoapUI.

Figure 20. Testing web service – create a new student registration

Looking at Figure 20, since we are attempting to create a new student registration the
HTTP method is POST (1). The sub panel numbered (2) is the new student registration
data in JSON format that will be sent to the server as part of the HTTP POST request.
After submitting the request that server response did not return any JSON data (3). Since
the create request succeeded, the REST service returned the HTTP status code of 201
(Created) and a location header that contains the URL of the newly created student
registration resource (4).

Summary
In part one of this series, you learn the basic concepts behind REST web services and how
the integrated web services server supports REST services. In part two of this series, you
learned how to deploy a simple ILE application as a RESTful web service. In this article,
you learned how to deploy a more complex ILE application that uses more of the REST
features.

IBM i – Integrated Web Services

 25

The integrated web services server REST support provides a solid foundation for creating
and deploying REST APIs based on ILE programs or service programs on the IBM i
platform. Add the highly intuitive IBM Web Administration for i GUI for deploying web
services, and you've got everything you need to quickly prototype and deploy your own
custom REST API. So, what are you waiting for?

Resources

• For everything about the integrated web services support on IBM i see the product
web page.

• Parts one and two of the series can be found on the integrated web services web
site.

Code Listings
Source code listing for the SRA application
**FREE

ctl-opt nomain pgminfo(*pcml:*module:*dclcase);

// ***
// * LICENSE AND DISCLAIMER *
// * ---------------------- *
// * This material contains IBM copyrighted sample programming source *
// * code (Sample Code). *
// * IBM grants you a nonexclusive license to compile, link, execute, *
// * display, reproduce, distribute and prepare derivative works of *
// * this Sample Code. The Sample Code has not been thoroughly *
// * tested under all conditions. IBM, therefore, does not guarantee *
// * or imply its reliability, serviceability, or function. IBM *
// * provides no program services for the Sample Code. *
// * *
// * All Sample Code contained herein is provided to you "AS IS" *
// * without any warranties of any kind. THE IMPLIED WARRANTIES OF *
// * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND *
// * NON-INFRINGMENT ARE EXPRESSLY DISCLAIMED. *
// * SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED *
// * WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. IN NO *
// * EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, *
// * SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THE SAMPLE *
// * CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS *
// * INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR INFORMATION *
// * HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF *
// * THE POSSIBILITY OF SUCH DAMAGES. *
// * *
// * <START_COPYRIGHT> *
// * *
// * Licensed Materials - Property of IBM *
// * *
// * 5770-SS1 *

https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy
https://www.ibm.com/support/pages/integrated-web-services-ibm-i-web-services-made-easy
https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

IBM i – Integrated Web Services

 26

// * *
// * (c) Copyright IBM Corp. 2015, 2024 *
// * All Rights Reserved *
// * *
// * U.S. Government Users Restricted Rights - use, *
// * duplication or disclosure restricted by GSA *
// * ADP Schedule Contract with IBM Corp. *
// * *
// * Status: Version 1 Release 0 *
// * <END_COPYRIGHT> *
// * *
// ***
// * TO CREATE SERVICE PROGRAM: *
// * (1) Database file STUDENTRSC/STUDENTDB needs to be created *
// * via following 2 SQL statments: *
// * CREATE TABLE STUDENTS/STUDENTDB *
// * ("studentID" FOR COLUMN studentID CHAR (9) NOT NULL, *
// * "firstName" FOR COLUMN firstName CHAR (50) NOT NULL, *
// * "lastName" FOR COLUMN lastName CHAR (50) NOT NULL, *
// * "gender" FOR COLUMN gender CHAR (10) NOT NULL, *
// * PRIMARY KEY (studentID)) *
// * RCDFMT studentr *
// * *
// * *
// * INSERT INTO STUDENTRSC/STUDENTDB *
// * (studentID, firstName, lastName, gender) *
// * VALUES('823M934LA', 'Nadir', 'Amra', 'Male'), *
// * ('826M660CF', 'John', 'Doe', 'Male'), *
// * ('747F023ZX', 'Jane', 'Amra', 'Female') *
// * *
// * (2) ADDLIBLE STUDENTRSC *
// * (3) CRTRPGMOD MODULE(STUDENTRSC/STUDENTRSC) *
// * SRCSTMF('/studentrsc.rpgle') *
// * (4) CRTSRVPGM SRVPGM(STUDENTRSC/STUDENTRSC) EXPORT(*ALL) *
// * *
// * *
// ***

DCL-F STUDENTDB DISK(*EXT) USAGE(*INPUT : *OUTPUT: *UPDATE : *DELETE)
KEYED;

// Declare HTTP status codes
DCL-C H_OK const(200);
DCL-C H_CREATED const(201);
DCL-C H_NOCONTENT const(204);
DCL-C H_BADREQUEST const(400);
DCL-C H_NOTFOUND const(404);
DCL-C H_CONFLICT const(409);
DCL-C H_GONE const(410);
DCL-C H_SERVERERROR const(500);

DCL-C ERR_DUPLICATE_WRITE const(01021);

dcl-ds studentRec qualified template;
 studentID char(9);
 firstName varchar(50);

IBM i – Integrated Web Services

 27

 lastName varchar(50);
 gender char(10);
end-ds;

//***
// Open file *
//***
dcl-proc openStudentDB;
 dcl-pi *n int(10);
 end-pi;

 if NOT %open(STUDENTDB);
 open(e) STUDENTDB;
 if %ERROR;
 return 0;
 endif;
 endif;

 return 1;
end-proc;

//***
// closeStudentDB *
//***
dcl-proc closeStudentDB;
 dcl-pi *n int(10);
 end-pi;

 if %open(STUDENTDB);
 close(e) STUDENTDB;
 if %error;
 return 0;
 endif;
 endif;

 return 1;
end-proc;

//***
// getAll *
//***
dcl-proc getAll export;
 dcl-pi *n;
 students_LENGTH int(10);
 students likeds(studentRec) dim(1000) options(*varsize);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 clear httpHeaders;
 clear students;
 students_LENGTH = 0;

 openStudentDB();

 setll *loval STUDENTDB;

IBM i – Integrated Web Services

 28

 read(e) studentR;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 endif;

 dow (NOT %eof);
 students_LENGTH = students_LENGTH+1;
 students(students_LENGTH).studentID = STUDENTID;
 students(students_LENGTH).firstName = FIRSTNAME;
 students(students_LENGTH).lastName = LASTNAME;
 students(students_LENGTH).gender = GENDER;

 read(e) studentR;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 endif;
 enddo;

 httpStatus = H_OK;
 httpHeaders(1) = 'Cache-Control: no-cache, no-store';

 closeStudentDB();
end-proc;

//***
// getByID *
//***
dcl-proc getByID export;
 dcl-pi *n;
 studentID char(9);
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 clear httpHeaders;
 clear student;

 openStudentDB();

 chain(e) studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 student.studentID = studentID;
 student.firstName = firstName;
 student.lastName = lastName;
 student.gender = gender;

 httpStatus = H_OK;
 else;
 httpStatus = H_NOTFOUND;
 endif;

IBM i – Integrated Web Services

 29

 httpHeaders(1) = 'Cache-Control: no-cache, no-store';

 closeStudentDB();
end-proc;

//***
// create *
//***
dcl-proc create export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);
 httpHeaders char(100) dim(10);
 end-pi;

 openStudentDB();

 studentID = student.studentID;
 firstName = student.firstName;
 lastName = student.lastName;
 gender = student.gender;

 write(e) studentR;
 if NOT %ERROR;
 httpStatus = H_CREATED;
 // URL will need to change to your server and port
 httpHeaders(1) = 'Location: ' +
 'http://server:port/web/service/students/' + studentID;
 elseif %STATUS = ERR_DUPLICATE_WRITE;
 httpStatus = H_CONFLICT;
 else;
 httpStatus = H_SERVERERROR;
 endif;

 closeStudentDB();
end-proc;

//***
// update *
//***
dcl-proc update export;
 dcl-pi *n;
 student likeds(studentRec);
 httpStatus int(10);
 end-pi;

 openStudentDB();

 chain(e) student.studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 studentID = student.studentID;
 firstName = student.firstName;
 lastName = student.lastName;

IBM i – Integrated Web Services

 30

 gender = student.gender;

 update(e) studentR;
 if NOT %ERROR;
 httpStatus = H_NOCONTENT;
 else;
 httpStatus = H_NOTFOUND;
 endif;
 else;
 httpStatus = H_NOTFOUND;
 endif;

 closeStudentDB();
end-proc;

//***
// remove *
//***
dcl-proc remove export;
 dcl-pi *n;
 studentID char(9);
 httpStatus int(10);
 end-pi;

 openStudentDB();

 chain(e) studentID STUDENTDB;
 if (%ERROR);
 httpStatus = H_SERVERERROR;
 return;
 elseif %FOUND;
 delete(e) studentR;
 if NOT %ERROR;
 httpStatus = H_NOCONTENT;
 elseif NOT %FOUND;
 httpStatus = H_NOTFOUND;
 else;
 httpStatus = H_SERVERERROR;
 endif;
 else;
 httpStatus = H_NOTFOUND;
 endif;

 closeStudentDB();
end-proc;

