

Building a REST service with
integrated web services server for
IBM i: Part 2

Deploying a simple RESTful application

By Nadir Amra, IBM Software Engineer
Published 08 May 2015 (updated 05 May 2024)

Abstract: Rapidly changing application environments require a flexible mechanism to
exchange data between different application tiers. Representational State Transfer
(REST) has gained widespread acceptance across the Web as the interface of choice for
mobile and interactive applications.

You may already be using integrated web services server to expose ILE programs and
service programs as SOAP-based web services. This series of articles introduces a
powerful new feature of the integrated web services server – the ability to deploy ILE
programs and services programs as RESTful web services. In this second installment,
you will learn how to deploy a simple application as a RESTful web service.

IBM i – Integrated Web Services

 2

Introduction
For several years now IBM i users have had the ability to deploy ILE programs and
services programs as web services based on the SOAP protocol using the integrated web
services server support that is part of the operating system. REST web services were not
supported by the integrated web services server, until now.

This article is the second in a series of articles about the integrated web services server
REST support. Future installments in this series will build upon the basic concepts:

• Part one starts out by explaining the basic concepts behind REST web services and
how the integrated web services server supports REST services.

• In part two, we will take you through the steps of deploying a simple ILE
application as a RESTful web service.

• Part three will take you through the steps of deploying a more complex ILE
application that uses more of the REST features.

Prerequisites

Software
To get all the PTFs required by the integrated web services server in support of REST, you
will need to load the latest HTTP Group PTF. The IBM Support web page IBM i Group
PTFs with level lists the HTTP group PTFs for each of the supported releases of the IBM i
operating system.

Note: The steps in this article were performed on IBM i 7.3. Panels may look different if
you are on an older or newer release. And if you are on an older release, some features
discussed in this article may be unsupported on that release.

Assumptions
Before reading this article, you should have read part one of the article in the series to
have a basic understanding of REST principles and the terminology used.

A simple RESTful application
The example we will use in this discussion is an application written in ILE RPG that
converts the temperature from Fahrenheit to Celsius. The application is packaged within
the service program QIWSSAMPLE in library QSYSDIR. This service program is
shipped as part of integrated web services server support and contains one exported
procedure, CONVERTTEMP.

The source (see Listing 1) for the procedure can be found at the following path:
/QIBM/ProdData/OS/WebServices/samples/server/ConvertTemp/CNVRTTMP.RPGLE

Listing 1. RPG Source for simple REST application

 h nomain PGMINFO(*PCML:*MODULE)

https://www.ibm.com/support/pages/ibm-i-group-ptfs-level
https://www.ibm.com/support/pages/ibm-i-group-ptfs-level

IBM i – Integrated Web Services

 3

 d ConvertTemp pr
 d tempIn 10 const
 d tempOut 10

 p ConvertTemp b export
 d ConvertTemp pi
 d tempIn 10 const
 d tempOut 10

 d tempI s 8P 2
 d tempO s 8P 2
 d value S 50A
 /free
 value = %STR(%ADDR(tempIn));
 tempI=%DEC(value:7:2);
 tempO = (5/9)*(tempI - 32);
 value = %CHAR(tempO);
 tempOut = value;
 %STR(%ADDR(tempOut):10)=tempOut;
 /end-free
 p ConvertTemp e

The RESTful web service to be deployed is very simple. The only thing that is needed by
the application is the temperature that is to be converted from Fahrenheit to Celsius. And
what is returned is the temperature in Celsius.

Things to get done before deployment
It is always a good idea to sit down and figure out things before deploying a RESTful web
service. When deploying a RESTful web service, you should have answers to the
following questions at the bare minimum:

1. What HTTP methods will the resource support?
2. How do I want the URIs to look like?
3. What incoming content types should be supported?
4. What type of data should be returned?

Let us quickly go through these basic questions in the context of the simple application
that will be deployed.

What HTTP methods will the resource support?
The supported HTTP methods are GET, POST, PUT, PATCH, and DELETE. Which
HTTP methods you choose to support will affect how a client will send data. For
example, if we wanted a resource method to receive XML or JSON documents, then we
would probably bind the resource method to either the POST or PUT HTTP methods.

For the simple application that we will be deploying, the only input that is expected is the
temperature that is to be converted, and this can be handled by having the client pass in
the temperature as part of the URL. So, there is no payload that a client needs to send, and
thus the HTTP method will be GET.

IBM i – Integrated Web Services

 4

Since we only have one procedure (resource method), we are done.

How do I want the URIs to look like?
REST services are based on manipulating resources. Resources for RESTful services are
addressable, and URLs are the primary way of achieving addressability in REST. The
design of REST URIs is an art in itself and beyond the scope of this article. What I will
say is simplicity and consistency is key.

For the temperature conversion example, we want the URI to look like the following:

<context-root>/ftoc/{temp}

Where {temp} is the temperature in Fahrenheit that is to be converted to Celsius. For
example, if we wanted to know what the temperature 123 Fahrenheit is in Celsius, the URI
that would be sent by a client would be as follows:

/web/services/ftoc/123

Note: The above URI assumes the default context root (/web/services) was not
changed for the server.

What incoming content types should be supported?
Since there is no payload with the HTTP GET request, we really do not care what the
incoming content-type is. In our example, we left the default, and that is to accept all
content-types.

What type of data should be returned?
We have 3 choices. We can return XML, JSON, or both depending on what the client is
willing to accept. In this example we will return JSON.

Now we are ready to deploy the simple application as a RESTful web service.

Step 1. Create the integrated web services server
To deploy an ILE program object as a REST service, you need to have an integrated web
services server created, and it must be version 2.6 or greater. If you have one already
created, you can skip this section and go to the section titled “Deploy the ILE application
as a REST web service”.

Nothing has changed as far as the steps to create an integrated web services server. The
server can contain both SOAP and REST web services.

To launch the web services server wizard, you need to sign on to the Web Administration
GUI for IBM i and click on the Create Web Services Server wizard link. Point your
browser to the Web Admin GUI for IBM i by specifying the following URL:

IBM i – Integrated Web Services

 5

http://hostname:2001/HTTPAdmin, where hostname is the host name of your server (note
that if SSL has been configured for the Web administration server the URL would be
https://hostname:2010/HTTPAdmin) and sign on. You must have *ALLOBJ and
*IOSYSCFG special authorities to create a web services server, or, if you are on IBM i 6.1
or newer release, you must have been given permission to create web services servers.
Launch the Create Web Services Server wizard by either clicking on the link in the
navigation bar under the Common Tasks and Wizards heading, or on the main page of
the Setup tab (see Figure 1 below).

Figure 1. Links to Create Web Services Server

Step 1-1. Specify web services server name
You have the option of naming (see Figure 2) the web services server that is to be created.
You can also provide a short description if you so choose. By default, an HTTP server
associated with the integrated web services server is created. Deselect the option to create
an HTTP server if you do not want an HTTP server associated with the integrated web
services server.

Figure 2. Specify web services server name

Accept the defaults and click on the Next button at the bottom of the form.

IBM i – Integrated Web Services

 6

Step 1-2. Specify network attributes for server
Specify the IP addresses and ports for the server. The Web Admin GUI attempts to select
ports that are unused (see figure 3). You can change the ports. For this example, we will
use the default ports chosen.

Figure 3. Specify network attributes for the server

Click on the Next button at the bottom of the form.

Step 1-3. Specify subsystem for server
Specify the operating environment for the server's jobs by specifying work management
attributes the controls what subsystem is used to run the server's jobs. The default values
for work management attributes will result in server jobs running in subsystem
QHTTPSVR (see Figure 4).

Figure 4. Specify subsystem for server

IBM i – Integrated Web Services

 7

Click on the Next button at the bottom of the form.

Step 1-4. Specify server user ID
Specify the user ID to run the jobs associated with the server. You have the option of
specifying an existing user ID, creating a new user ID, or using the default user ID. We
will use the default user ID, QWSERVICE.

Note: Any user ID specified for the server must be enabled and the password set to a value
other than *NONE. Ensure this is true for the specified user ID.

Figure 5. Specify user ID for the server

Click on the Next button at the bottom of the form.

Step 1-5. Summary
The wizard shows you a summary page (see Figure 6), giving you the chance to see the
details relating to the web services server before it starts the task of creating the server.

IBM i – Integrated Web Services

 8

Figure 6. Server creation summary

Clicking on the Finish button at the bottom of the summary page will kick off the creation
of the server. After the server is created, the wizard will start the web services server and
HTTP server. If all goes well, you will eventually see the server in Running as shown in
Figure 7.

Figure 7. Server running

Congratulations, you have now successfully created an integrated web services server. If
you click on Manage Deployed Services button, you will see the state and the deployed

IBM i – Integrated Web Services

 9

services (a sample web service that is shipped with the server) active (green dot to the left
of service name) as shown in in Figure 8.

Figure 8. Deployed services

The next steps will guide you through deploying your first ILE program object as a
RESTful web service.

Step 2. Deploy the ILE application as a RESTful web
service
The following table summarizes the various details of the RESTful web service that we
will be deploying:

Table 1. REST information for RESTful web service
Procedure CONVERTTEMP
URI ../ftoc/{temp}
HTTP method GET
Query string ignored
Request body ignored
Response code 200 OK
Response body JSON

Step 2-1. Deploy an IBM i program object as a web service
Click on the Deploy New Service wizard link that is in the navigation bar. You should see
the panel in Figure 9.

IBM i – Integrated Web Services

 10

Figure 9. Deploy web service – step 1

The panel gives you the option to either deploy a SOAP or REST web service. Since we
are deploying a REST web service, we have selected the REST radio button. For REST,
you have the option to deploy an ILE program or service program, or SQL statements as
REST APIs. Since we are deploying an ILE service program, we specify an ILE program
object name path from which the web service is generated. The path to the program object
is /QSYS.LIB/QSYSDIR.LIB/QIWSSAMPLE.SRVPGM.

Note that there is two ways to locate the program object on the system. The default way is
to specify the path to the program object. Another way is to search for the program object
by browsing the integrated file system (IFS), which could take a while if a directory is
specified that contains a lot of objects, such as /QSYS.LIB.

Click on the Next button at bottom of form.

Step 2-2. Specify name for the resource (web service)
Now we need to give the web service (i.e. resource) a meaningful service name and
description. By default, the service name and description are set to the name of the
selected program object (see Figure 10).

IBM i – Integrated Web Services

 11

Figure 10. Deploy web service – step 2

The resource name has been changed to ftoc. In addition, you can set a URI path
template for the resource. For this example, we have specified a URI path template for the
resource that has a variable named temp and a regular expression that limits the value
that can be specified for the variable to digits. This matches what we wanted the URI to
look like, which is of the following form:

../ftoc/{temp}

Click on the Next button at bottom of form.

Step 2-3. Specify security constraint
The security constraint limits who can access the web service. To protect the web service,
an authentication method other than *NONE needs to be specified (see Figure 11). If the
web service is protected and roles have been defined, you will have the option to indicate
what roles are authorized to the web service. If roles have not been defined, then all
authenticated users are allowed access to the web service.

IBM i – Integrated Web Services

 12

Figure 11. Deploy web service – step 3

The security constraint panel is beyond the scope of this article. We accept the default
values and click on the Next button at bottom of form.

Step 2-4. Select export procedures to externalize as resource
methods
The wizard will show a list of exported procedures as shown in Figure 12. For service
programs (object type of *SRVPGM), there may be one or more procedures. For programs
(object type of *PGM), there is only one procedure, which is the main entry point to the
program. Expanding the procedure row shows the parameters for the procedure and
various parameter attributes.

IBM i – Integrated Web Services

 13

Figure 12. Deploy web service – step 4

The parameter attributes are modifiable. In most cases you want to
modify the parameter attributes to control what data is to be sent by web
service clients and what data is to be returned in the responses to the
client requests.

In this example, the TEMPIN parameter is an input parameter, and the
TEMPOUT parameter is the output parameter. This means that a web
service client will need to only pass data corresponding to the TEMPIN
parameter, and the response to the client request will be returned in the
TEMPOUT parameter.

Click on the Next button at bottom of form.

Step 2-5. Specify ILE procedure information

This panel (Figure 13) is shown for each procedure to be deployed as a web service and
allows you to indicate how each procedure invocation handles web service calls.

Parameter Case
A new RPG enhancement
has been released for IBM
i releases 7.1 and 7.2 that
allows you to control the
identifier case of
parameter names. See the
following PTFs for
details:

SI55531 7.2
SI55442 7.2
SI55340 7.1

IBM i – Integrated Web Services

 14

Figure 13. Deploy web service – step 5

• Trim mode for character fields: Specify whether string data will have leading
and/or trailing blanks removed.

o Trailing indicates that trailing blanks should be removed.
o Leading indicates that leading blanks should be removed.
o Both indicates that leading and trailing blanks should be removed.
o None indicates that leading and trailing blanks should not be removed.

• User-defined error message: Specify the error message that will be returned if an
unexpected exception occurs. This message will replace the actual message
returned by the operating system.

• HTTP status code on procedure call success: Specifies the HTTP status code
that will be returned on a web service call that has run successfully. Note that if
your program object returns the HTTP status code, it will override the value
specified here.

• HTTP status code on procedure call failure: Specifies the HTTP status code that
will be returned on a web service call that failed to run successfully.

Accept the defaults and click on the Next button at bottom of form.

Step 2-6. Specify resource method information
This panel (Figure 14) is used to specify various REST attributes on a per procedure basis.

IBM i – Integrated Web Services

 15

Figure 14. Deploy web service – step 6

The first two lines are the procedure name and URI path template for the resource,
respectively. We have chosen to bind the resource method (i.e. procedure) to the HTTP
request method of GET. We did not specify a URI path template for the resource method
and thus *NONE is specified. Similarly, there is no output parameter that will contain
HTTP header data or the HTTP response code, so we specify *NONE for those fields. We
are also not returning any hard-coded HTTP headers in the response, so *NONE is
specified.

Because the REST API is bound to the GET HTTP method for which there is no payload,
and thus no content type, the allowed input media types is set to *ALL. The REST web
service will return JSON data, so we specify JSON.

Finally, we have chosen to unwrap the parameters so that we can inject a value into the
parameter TEMPIN from a value in the URI. We specify the URI path template variable
temp that was defined in the URI path template for the resource.

Step 2-7. Specify user ID for this service
We now need to specify the user ID that the service will run under. As shown in Figure
15, you can run the service under the server's user ID, or you can specify an existing user
ID that the service will run under.

IBM i – Integrated Web Services

 16

Figure 15. Deploy web service – step 7

For the web service to run correctly, the user ID status must be set to *ENABLED and the
password must be set to a value other than *NONE. If a user ID is specified that is
disabled or has a password of *NONE, a warning message is displayed, and the service
may not run correctly. In addition, ensure that the specified user ID has the proper
authorities to any resources and objects that the program object needs, such as libraries,
databases, and files.

In this example, we will accept the default. Click on the Next button of the form.

Step 2-8. Specify library list
Specify any libraries that the program object needs to function properly (see Figure 16).

Figure 16. Deploy web service – step 8

You have the option of putting the libraries at the start of the user portion of the library list
or at the end of the user portion of the library list. Click on the Next button of the form.

IBM i – Integrated Web Services

 17

Step 2-9. Specify transport information to be passed
Specify what transport information related to the client request is to be passed to the web
service implementation code (see Figure 17). The information is passed as environment
variables.

Figure 17. Deploy web service – step 9

For example, the transport metadata REMOTE_ADDR is passed to the web service
implementation code in an environment variable named REMOTE_ADDR.

HTTP headers indicates what transport headers (e.g. HTTP headers) to pass to the web
service implementation code. Transport headers are passed as environment variables. The
environment variable name for HTTP headers is made up of the specified HTTP header
prefixed with 'HTTP_', all upper-cased. For example, if 'Content-type' is specified,
then the environment variable name would be 'HTTP_CONTENT-TYPE'. If an HTTP
header was not passed in on the web service request, the environment variable value will
be set to the null string.

Click on the Next button of the form.

Step 2-10. Deploy web service – step 10
The web service deployment wizard shows you a summary page (see Figure 18), giving
you a chance to see the details relating to the web service being deployed.

IBM i – Integrated Web Services

 18

Figure 18. Deploy web service – step 10 (Summary – Services tab)

On the Services tab, you will see information about the service being deployed.

If you click on the Security tab, you will see security related attributes and constraints for
the web service (see Figure 19).

Figure 19. Deploy web service – step 10 (Summary – Security tab)

If you click on the Methods tab, you will see the resource methods that correspond to the
procedures that were selected to be deployed (see Figure 20).

IBM i – Integrated Web Services

 19

Figure 20. Deploy web service – step 10 (Methods tab)

If you click on the Request Information tab, you will see the transport information to be
passed to the web service implementation code (see Figure 21).

Figure 21. Deploy web service – step 10 (Request Information tab)

Clicking on the Finish button at the bottom of the summary page will kick off the
installation process. When the web service is deployed the deployed service becomes
active (green dot to the left of service name) as in Figure 22:

IBM i – Integrated Web Services

 20

Figure 22. Successfully deployed RESTful web service

Congratulations, you have now successfully deployed your first ILE program object as a
RESTful web service.

Since the web service that we deployed has a resource method that is bound to the HTTP
GET request method, we can use any browser to quickly test the service (for services that
use other HTTP request methods, an external tool needs to be used, such as SoapUI).
Figure 23 shows the result of the request:

Figure 23. Testing web service

Summary
In part one of this series, you learn the basic concepts behind REST web services and how
the integrated web services server supports REST services. In this article, you learned
how to deploy a simple ILE application as a RESTful web service.

Part three will take you through the steps of deploying a more complex ILE application
that uses more of the REST features.

IBM i – Integrated Web Services

 21

Resources

• For everything about the integrated web services support on IBM i see the product
web page.

• Parts one and three of the series can be found on the integrated web services web
site.

http://www.ibm.com/systems/power/software/i/iws/
http://www.ibm.com/systems/power/software/i/iws/
https://www.ibm.com/support/pages/node/1142632
https://www.ibm.com/support/pages/node/1142632

