
Holiday
Readiness
2023

IBM Sterling Order
Management

Recommendations
Best Practices

Have a Question(s)?

Your Holiday Readiness Team
... and today’s speakers

Mike Callaghan
Program Director –
WW Supply Chain Support

Senthil Ponnusamy
Technical Lead / SRE Advisor –
Order Management Support

IBM Sterling / © 2023 IBM Corporation

Chris Burgess
Manager –
WW Support Experience Team

Abdul Shad
Technical Lead –
Order Management Support

Jitendra Buge
Technical Support Engineer
Order Management Support

3

Shoeb Bihari
Technical Lead / SRE Advisor –
Order Management Support

CB

Paresh Vinaykya
Executive Technical Account
Manager – Expertise Connect

Damini Tacouri
Technical Support Analyst
Order Management Support

Agenda

IBM Sterling / © 2023 IBM Corporation 4

Our Journey to peak success

Recommended Configuration
ü Application
ü Integrations
ü Database
ü Sterling Intelligent Promising
§ Inventory Visibility

ü Payments

Performance Testing & Optimization

Self Service & Monitoring Overview

Proactive Engagement

CB

Journey to Peak Success

IBM Sterling / © 2023 IBM Corporation

What Not to Do
Plan

q Aggressive rollout plans

q Outdated product, stack

q Narrow test coverage

q Unclear peak workloads

Prepare

q Poor DB hygiene

q Major DG changes

q Defer Q3 push

q Last-minute fix, deploy

q Open recommendations

Execute

q Oversell detected

q BOPIS orders delayed

q Major Escalation

q Chaotic War-room

q Tedious triage

q Tune on the fly

MC

IBM OMS Holiday Readiness
Our Mission Statement

Proactive Engagement

Early and regular identification,
communication, and mitigation
of potential risks

Prescriptive Guidance

Deeper partnership with
specific clients in need of direct
analysis and prescriptive
guidance via our Enhanced
Event Readiness offering

Stable Platform

Continuous improvement of
platform and monitoring,
with focus on performance,
stability, reliability

Best Practices

Establish, expand and apply a
robust collection of proven self-
help best practices focused on
peak season success

6IBM Sterling / © 2023 IBM Corporation MC

Journey to Peak Success

IBM Sterling / © 2023 IBM Corporation 7

Execute
q Roles & responsibilities

q Escalation paths

q Critical Workloads

q Triage Runbooks

q Mitigation Techniques

q Communication Plan

Prepare
q Implement Best Practices

q Ongoing housekeeping

q Performance test, tune

q Know, test Breaking points

q Failover, DR scenarios

q Monitoring & Alerting

Plan
q Retrospective

q Align Business and IT

q Platform Enhancements

q Align Schedules

q Know the Best practices

q Identify Risks

MC

The Path Ahead

Journey to Peak Success

IBM Sterling / © 2023 IBM Corporation 8

March

Journey to Peak Success

Retrospect
Common issues
Enhancements
Your role!

May

Payment Integration & UE
Implementation

Hear from IBM Payment SMEs on
common payment configurations
and customizations.
Walk-thru of new features.

August

Recommendations & Best
Practices

Hear from IBM OMS Support
SMEs.

October

Execution

Peak Day Mitigation!

September

Panel Discussion

Open discussion with IBM
engineering and community
experts on peak readiness.

The IBM OMS Support team are continuously expanding our technical best practices based
on the observations and learnings over our supported launches and peak events!

MC

Best Practices

Apply Recommended Configuration

IBM Sterling / © 2023 IBM Corporation 9

The IBM OMS Support team are continuously expanding our technical best practices based on the observations and
learnings over our supported launches and peak events!

JB

Integration

ü Use JMS session pooling
ü Avoid message selectors
ü Enable service retry (transaction

reprocessing)
ü Have timeout’s for up/down stream

synchronous calls
ü Inventory Visibility (SIP)

Database

ü Maintain transactional tables, Purge
(set appropriate retentions)

ü Serviceability & Monitoring
ü Minimize contention, maximize

concurrency
ü Optimize long-running or expensive

queries
ü Enable stmt_conc (LITERALS)*

Application

ü Use Optimal API and optimize output
template

ü Fine tune entity cache, disable
redundant.

ü Use HOTSku & OLA configuration
ü Enable capacity cache
ü Set API isolation level based on the

use case
ü Use pagination for getter APIs

API Performance API Template Optimization

– Keep only required attributes

– Strive not to use the
TotalNumberOfRecords attribute
all the time

– Limit the number of records returned
– MaximumRecords

– API template sequence Read more →

Blank open-ended queries
– SELECT YFS_ORDER_HEADER.* FROM
YFS_ORDER_HEADER YFS_ORDER_HEADER
WHERE ((? = ?)) ORDER BY
ORDER_HEADER_KEY

– In custom code, ensure to search with
some filters to avoid whole table scans

–Select wait method
– WAIT or NO_WAIT mode

– Query timeout properties:
– yfs.agentserver.queryTimeout
– yfs.ui.queryTimeout

 Read more →

Timeouts for external calls

– Ensure the processing time of the user
exits and events are small.

– Ensure that call-out (requests) to
external systems can scale beyond
anticipated peak processing rates

– Ensure that you do not hold critical
record locks during the call out.

These best practices can help you
achieve required API response times.

10

Common issues:
1. getAvailableInventory call taking

more than 30 secs
2. getOrderDetails and getOrderList

API call has high response time
3. OMS services response time is high

JB
IBM Sterling / © 2023 IBM Corporation

Long running queries

– Very large data to retrieve
– Poor indexing
– DB statistics very old
– Reorg not done timely
– lock-wait
– Purges not running
– Use 'Database metrics' SST dashboard
– Use Pagination for get APIs

Overhead of excessive
logging

– Increases response time of all
transactions

– Logging can cause high
Memory/GC utilization

– Use appropriate logging levels
–TraceTTL enhancement

Monitor API Response Time

– SST OMS API Performance dashboard

–YFS_STATISTICS_DETAIL Table

– SMC
– Slow response time for a user exit
– Response Time By JVM panel

https://www.ibm.com/docs/en/order-management?topic=templates-api
https://www.ibm.com/support/pages/changeorder-api-hangs

JMS performance tuning
and Best Practices

Performance Properties

– Use JMS Session Pooling
– yfs.yfs.jms.session.disable.pooling
=N

– Use anonymous reuse (requires JMS
Session pooling to be enabled)
– yfs.jms.sender.anonymous.reuse=true

– Enable multi-threaded PUT’s
– yfs.yfs.jms.sender.multiThreaded=Y

– Bulk sender properties
– yfs.agent.bulk.sender.enabled=Y

– yfs.agent.bulk.sender.batch.size=5000

Read More

Message Persistence

– For agents, define your queues as
non-persistent which can improve
agent performance

– All integration queues used for
external communications must be
defined as persistent.

Measuring the
performance

– Review MessageBufferPutTime
relative to ExecuteMessageCreated
statistic from

–YFS_STATISTICS_DETAIL table for
any slowness

– Ensure JMS performance properties
are in place

Enable reconnect from
external applications

– In case of connection errors/ MQ server
restarts, ensure that your application is
either configured for auto reconnect or
have the ability to retry the connection.

Enable retries for JMS
Sender

– While using JMS Sender, ensure you are
configuring the number of retries and
retry interval.

– Configure minimum three reties with the
interval of 100 milliseconds

These best practices can help you
achieve your NFRs.

11

Other Recommendations

– Validate MQ settings

– Avoid long-running transactions

– Avoid using message Selector, instead
have dedicated queues.

– Ensure necessary queue-depth alerts
are configured

Common issues

1. Message PUT slowness
2. Agent (GetJobs) is slow
3. Consumer is slow

ASIBM Sterling / © 2023 IBM Corporation

https://www.ibm.com/docs/en/order-management-sw/10.0?topic=yfsproperties-jms

Database performance Database Size

– Ensure purges are running for all
tables and records are becoming
eligible for purge.

– Enable compression on CLOB
columns to reduce its footprint. Read
more →

– Disable unwanted audits &
debugging message flowing into
YFS_EXPORT table

Query Optimization

– Suboptimal query tuning, there could
be a cases where custom queries aren’t
using correct filtering columns or
pulling out large data set

– Blank queries, one of the common use
case when non optimal API input is
passed in. Ensure APIs are invoked
with key filtering input.

Lock-Wait / Long running
Queries

– Long running queries
– Non optimized SQL
– Pulling out large amount of data
– Not using correct filtering clause
– Indexing
– DB maintenance

– Lock-Wait Condition
– Along with the above details,
– HOTSku
– Capacity caching
– API input (select method)
– Workload separation etc.,

Cache Management

– Identify the optimal cache sizing
through your performance testing

– Monitor the frequently invalidated
table caches and disable them if
needed

– Ensure SQLs aren’t formed with
unique values at runtime, it impacts
the cache reusability.

– Enable stmt_conc (LITERALS)*

Proactive monitoring

– Use SST to proactively monitor long
running and lock wait queries during
your performance testing and ongoing
basis.

– Keep an eye on table size growth and
address it regularly.

Maintaining a healthy database can
prevent unexpected performance
issues during peak days.

12SPIBM Sterling / © 2023 IBM Corporation

DB CPU / IO / Transaction
log space

– Heavy query execution from DBQuery
client tool or like EOD report through
REST calls

– Blank queries without correct filtering
condition (API template issue)

– Waiting on external system without
releasing the DB lock.

– Timeboxing non critical (like purge)
workloads during off hours.

https://developer.ibm.com/articles/optimize-ibm-sterling-order-management-database-size/
https://developer.ibm.com/articles/optimize-ibm-sterling-order-management-database-size/

Sterling Inventory
Visibility (IV)

Token Management

– Reuse IV token as much as
possible

– Generating token instead of
reusing can negatively affects
performance.

– Automatically regenerate a token
before the expiration time or as
part of error handling on 401
Unauthorized or 403 Forbidden
response. Read more →

Use Optimal Payload

– Adhere to best practice when
invoking IV APIs. Read more →

– IBM recommends no more than 100
items per payload when invoking IV
APIs with multiple lines.

– Availability lookup
– Supply adjustment / sync
– Reservations

Event Management

– Do not miss failed events;
implement a process to retrieve
failed events.

 Read more →

– Supply/Demand audit looks
correct; however, cached inventory
picture does not match availability
in IV.

Avoid redundant
Snapshot calls

– Only publishes the current
inventory picture

– Space out the sync supply and
snapshot calls

– If possible, sync only items for
which inventory picture changed

Avoid redundant Network
availability recomputes

– Recompute Network Availability API
recomputes availability for existing
DG.

– Update DG API will recompute
availability for newly created or
modified DGs but not for existing
DG.

These best practices can help you
achieve your NFRs.

13

Use enhanced APIs

– Do not use depreciated APIs,
instead use updated APIs.

– Item FO/Threshold APIs
– Safety stock APIs
– Event Threshold APIs
– Ship node and DG management

APIs are moved under Sterling
Intelligent Promising.

Read more →

Common issues - 2022

1. Incorrect availability during
internal event-based audit.

2. Slow API response due to
excessive token generation.

3. Synchronize inventory for entire
catalog

SBIBM Sterling / © 2023 IBM Corporation

https://www.ibm.com/docs/en/intelligent-promising?topic=apis-api-best-practices
https://www.ibm.com/docs/en/intelligent-promising?topic=apis-api-best-practices
https://www.ibm.com/docs/en/intelligent-promising?topic=events-retrieving-failed
https://developer.ibm.com/apis/catalog/inventoryvis--inventory-visibility/Introduction

Payment Integration

Excessive Charge
Transaction Records
– Review orders having many charge

transaction records.

– Having excessive YCT records shows
underlying issue.

– Place orders having excessive YCT on
hold, to prevent further processing.

– SELECT ORDER_HEADER_KEY, COUNT(*) FROM
OMDB.YFS_CHARGE_TRANSACTION GROUP BY
ORDER_HEADER_KEY HAVING COUNT(*) > 100
ORDER BY ORDER_HEADER_KEY DESC WITH UR;

14IBM Sterling / © 2023 IBM Corporation

Automatic Hold

– Implement the Automatic order hold so
that if there is a looping condition
detected due to payment mismatch,
order can be put on hold via change
order. Read more →

–yfs.payment.infiniteLoop.pa
ymentHoldType

–yfs.payment.infiniteLoop.al
lowViewingOfOrder

UserExit

– Tax related UE output should include all
necessary taxes to avoid wiping out
previous existing taxes.

– Correct authorization IDs should be
stamped along with corresponding
expiration dates.

– Handle all the exceptions from the
collection UE. Otherwise, charge and
authorization transactions will get stuck
in the 'invoked' user exit status.

APIs

– Review javadocs before implementing
processOrderPayments, and use
RequestCollection,
ExecuteCollection,
RequestCollection.

– Do not call processOrderPayments
as part of long transaction boundary.

– This API is intended for In-person
scenarios e.g., carry lines.

Payment Collection
Failure

Ensure the following parameter is set
to ensure PAYMENT_COLLECTION
agent does not fail with
java.lang.IllegalArgumentExc
eption:
Comparison method violates
its general contract!

Read more →

DT

Monitor Backlog

– Query YFS_ORDER_HEADER table to
get payment collection backlog, refer to
getJobs query.

– Query YFS_CHARGE_TRANSACTION
table to get payment execution backlog,
refer to getJobs query

– Queries indicate how many orders are
eligible to be picked and processed by
the agents.

– Redundant processing of problematic
orders can lead to bottlenecks.

– Prior Webcast:

• Payments Deep Dive session

– Details on new serviceability
enhancements and walk-through
of the new Payment Audit
feature.

– Example happy path scenario
with the Dynamic Charge
Transaction Request Distribution
feature.

– Recommendations, best
practices, common payment
configurations, Do’s & Don’ts
based on lessons learned from
common issues seen during prior
peak seasons.

https://www.ibm.com/docs/en/order-management?topic=updating-resolved-issues
https://www.ibm.com/support/pages/paymentcollection-agent-fails-javalangillegalargumentexception
https://www.ibm.com/support/pages/node/6995885

Performance Testing &
Optimization

15Intelligent asset management

Performance is a non-functional requirement, impacting the quality of the user experience

A strategy for a good performance test is to use a mixture of concurrent scenarios that involve read
and write operations.

Plan
Establish and quantify
goals and constraints

What business wants?

Identify KPI’s & NFR’s

Prepare
Populate the application
with realistic data

Use a phased ‘stair-case’
model

Execute

Simulate workload

Tune!

Scale

Until it meets your NFRs!

SB

Performance Testing & Optimization

Performance Testing Guidance

IBM Sterling / © 2023 IBM Corporation 16

Performance testing is an art, but a mandatory one! It is imperative to vet out issues in advance on pre-production load testing,
rather than wait for it to surface as a business-critical production issue!

SB

1. Projected peak volumes – Ensure business and IT are in sync on expected peak loads to
ensure planned tests are accurate.

2. Representative Combination Tests – Assemble components to reflect real time DATA,
scenarios and run in parallel to ensure adherence with NFR; Stage data for various
components and run them under full load (ie. Create + Schedule + Release+ Create Shipment
+ Confirm Shipment + Inventory Snapshot (IV))

3. Agent and integration servers – ensure asynchronous batch processing components are
tested in isolation and in combination with broader workload; ensure to tune agents
(processes, threads, profile) to meet expected peak SLAs/NFRs on throughput

4. Test Failure Scenarios – validate resiliency of overall system and operations, ensuring graceful recovery if front-end channel (web, mobile, Call Center, Store, EDI, JMS),
backend OMS, or external integration endpoints fail. Include ‘kill switches’ in any components that can be disabled to avoid magnifying an isolated issue into system
wide one, especially for any synchronous calls.

5. Confirm Peak days and Hours - Share any specific key dates or max burst times with IBM Support, including code freezes, flash sales.

6. Coordinate with IBM - Inform IBM (CSM/Support) in advance when load tests are planned if any data or diagnostics (such as against Database) are needing to be
captured; IBM can also then review internal metrics and response in parallel. à Inform IBM in advance of major configuration changes (sourcing rule: Increase in Ship
from Store orders).

Refer to Knowledge Center for detailed Tuning and performance guidance.

Metric 2022 Peak 2023 Projected
Peak

2023 Load Test Peak

Orders / hour (max) ? ? ?

Orderlines / hour (max) ? ? ?

Get Inventory Availability ? ? ?

Reserve Inventory ? ? ?

Inventory Adjustment trickle ? ? ?

Inventory Adjustment burst ? ? ?

Concurrent Store/CC users ? ? ?

https://www.ibm.com/docs/en/order-management?topic=performance

17IBM Sterling / © 2023 IBM Corporation

Performance Testing &
Optimization

Server Profile

Order Capture

↓

Payment Collection

↓
Payment Execution

↓

Hold Processing

↓

Schedule Order

↓
Release Order

↓
Consolidate

To
Shipment

↓

Select optimal performance profile
Select optimal server profile and thread configuration for agent processes and integration service to ensure service
can scale w/ custom logic and configuration.

Recommendations:
• Spawning additional (untuned) instances of agent to try and improve throughput let to exhaustion of resource allocation available

• Review KC Guidelines to select performance profile | Review community article on Sterling OMS Performance Profiles

Example: Target to achieve 30k TPH for createOrder w/ 2.5 average lines

Optimal Solution:
Threads = 3
Performance Profile = Compute
JVM Instances = 1

Approach:

Configure create order
integration server in OMS

Execute and monitor the server
performance via Self Service Tool

Observe and Adjust the configuration
until throughput is achieved

↓

↓

Initial Threads =1, Performance Profile = Balanced
Default # of JVM Instances = 1

Monitor KPI’s: API Response time (ms), Invocations (rpm),
Container CPU Utilizations, GC CPU Utilizations,
JVM Heap Utilization, and Order Lines Throughput

Increase the # of threads
Switch Performance Profile
Increase the # of JVM instance

NOTE: Below numbers represent OOB createOrder with some customization

SB

O
rder Processing Funnel

Next-generation

https://www.ibm.com/docs/en/order-management?topic=platform-guidelines-select-performance-profile
https://www.linkedin.com/pulse/sterling-oms-performance-profiles-bobby-Thomas

Order
Processing
Funnel

Order Flow

01

18

Best Practices

– Apply recommended JMS performance properties Read more →
– Review order and shipment monitors for redundancy, review and remove obsolete monitor rules.

– Avoid reprocessing of order once condition evaluates to false. Read more →
yfs.yfs.monitor.stopprocessing.ifcondition.eval.false=Y

– Tune next task queue interval of "Process order hold type" agent from 15 minutes to the customized
value yfs.omp.holdtype.reprocess.interval.delayminutes

– Have dedicated schedule order server to process backorders using OrderFilter= N|B agent criteria
parameter.

– Use workload separation to isolate the transaction by order or release attributes Read more →
– Apply and Tune OMoC default HOTSku and OLA configuration Read more →
– Enable Capacity cache and tune node locking properties based on business use case.
– Apply sourcing optimization (reduce DG size, region-based sourcing)
– When using YFSGetAvailabilityCorrectionsForItemListUE, make sure output of the UE

excludes the items with ZERO supply quantity before passing the result to OOB API.
– Apply solver/sourcing interrupt properties to prevent runaway transactions
– If capacity is enabled, then make sure to check the calendar setting (store hours, etc.) for peak.
– Disable capacity instead of setting it very high value.
– Control/Throttle use of createInventoryActivityList API when using capacity filled event.
– Run Inventory purge

IBM Sterling / © 2023 IBM Corporation SB

https://www.ibm.com/support/pages/mq-omoc-gearing-peak
https://www.ibm.com/support/pages/node/480961
https://www.ibm.com/support/pages/enhanced-order-monitor-agent-updates-nextalertts-current-date-causing-performance-issue
https://www.ibm.com/docs/en/order-management?topic=transactions-workload-segregation-task-queue-agents
https://developer.ibm.com/articles/ibm-sterling-order-management-system-hot-sku-performance-tuning/

Plan and take necessary action to position y(our) solution for
success, it is critical to TAKE ACTION NOW!

01
User Exit

IBM Sterling / © 2023 IBM Corporation 19

02
External Calls

– Make sure correct authorization IDs are stamped along with
corresponding expiration dates.

– Records having the same authorization IDs should have the same
authorization expiration date.

– Handle all the exceptions from the collection UE. Otherwise,
charge and authorization transactions will get stuck in the
'invoked' user exit status.

– RecalculateLineTaxUE and RecalculateHeaderTaxUE
output should include all necessary taxes to avoid wiping out
previous existing taxes.

↓

– Periodically review the response time of the external calls to
payment system.

– Implement both connect and socket read time to ensure external
call does not wait in socket-read indefinitely.

– Long running transaction can lead to DB contention, and resource
problem on JMS (MQ Server).

– Unforeseen performance issues and impact to other components.

JB/VG

Dont’s

q Do not take authorization as part of createOrder when Dynamic CTR Distribution is
enabled.

q Do not call processOrderPayments as part of long transaction boundary. This API is
intended for In-person scenarios e.g., carry lines.

Note: This API cannot be used with any of the order modification APIs or any APIs that modify
orders - either through events, multiApi calls or services.

The requestCollection() API will be invoked in a new transaction boundary and with a
special condition - each Charge and Authorization request created will have
UserExitStatus set to "ONLINE". When requestCollection() is complete, it will
return to processOrderPayments() and execute a commit in the new transaction
boundary then close it. Thus, even if an error is thrown after this point, the database will not
rollback the changes made by requestCollection(). Javadoc →

q Do not useUnlimitedCharges on the payment method.

Do’s

q If Dynamic CTR feature is enabled, use manageChargeTransaction API and create
separate authorizations for each release/shipment. If single line has multiple releases, then
one CTR should be created for each release.

q Review the javadocs before implementing processOrderPayments, and use
RequestCollection, ExecuteCollection, RequestCollection.

q Avoid redundant processing of orders by the payment agents. Use the getJobs query to
verify eligible orders.

Plan and take necessary action to position y(our) solution for
peak success, it is critical to TAKE ACTION NOW!

01
Database Hygiene

q Ensure all necessary purges are running to maintain healthy & lightweight database, which
in-turn minimizes performance issues.

q Disable unnecessary transaction audits (Order Audits, General Audits, etc.)

q Implement entity level database compression for custom and OOB CLOB column types.

q Leverage Self-Service database dashboards; continuously review top tables optimization
opportunities.

q Review and consolidate agent and integration workload to optimize resource allocation.

q Select correct JVM profile (*OMoC NextGen) based on analysis from verbose GC logs or
your -Xmx/-Xms parameters (Legacy/On-Premise)

q Review and optimize long running transactions; average async transaction response time
should be below 1 seconds.

q Review common configuration (RTAM, HotSku, JMS), based on the prior recommendations.

q Reduce message payload by optimizing API, event templates, pull only required data.
q Restrict output by setting the MaximumRecords in the inputs to any list API calls; use

pagination (link)

q Review reference data cache; catch redundancy by analyzing application logs for frequent
cache drops (i.e., ‘Clearing cache’). Frequent refreshes of MCF reference data cache can
lead to performance issues. (link)

q Review errors and ensure errors are addressed to avoid noise, if not address it could
mislead during crunch time, also it could cost performance during elevated load, impacts
our ability to monitor the system effectively.

IBM Sterling / © 2023 IBM Corporation 20

02
Slow Transactions

Y(our) actions

– Mmaintaining healthy database can prevent disruption
in production.

– Reduce the IBM Sterling Order Management database
size with entity level compression and enhanced purges.

More details →

↓

– Long running transaction can lead to DB contention, and
resource problem on JMS (MQ Server).

– Limits your ability to (auto) scale based on KPIs.

– Achieve scalability with smaller lightweight transactions
boundaries.

SB

https://www.ibm.com/docs/en/order-management?topic=platform-guidelines-select-performance-profile
https://www.ibm.com/support/knowledgecenter/en/SSGTJF/self_service/tasks/serverProcesses.html
https://www.ibm.com/support/knowledgecenter/en/SSGTJF/self_service/ss_configservers_nonIKS.html
https://www.ibm.com/support/pages/rtam-troubleshooting-and-useful-features
https://developer.ibm.com/articles/ibm-sterling-order-management-system-hot-sku-performance-tuning/
https://www.ibm.com/support/pages/mq-omoc-gearing-peak
https://www.ibm.com/docs/en/order-management?topic=database-order-management-apis-services
https://www.ibm.com/support/pages/what-can-cause-frequent-mcf-reference-data-cache-refreshes

1. Resource/Hardware sizing based on segment profile, but is validated as OUTCOME
of performance testing, not a replacement for it

2. Database is common bottleneck, not due to capacity, but untuned queries, missing
indexes, competing processes, unqualified end-user searches

3. Underlying config data has significant impact on performance, including database
query execution plans, inventory sourcing rule evaluation

4. Accumulation of transactional data over long periods of time (and failure to purge as
possible), may degraded query performance

5. Item distribution and commonality must reflect realistic peak load; high-demand /
hot items (free-gift) may significantly impact concurrent processes

6. Composition of a custom service (Service definition framework) can lead to
inefficient execution or potential lock contention, reducing throughput

7. Understanding queueing/de-queueing rates to align with business SLA / expectation
(ie. create order, confirm shipment); SI needs to know when there is an issue to
intervene / troubleshoot (ie. particular queue depth)

8. Agent/integration server throughput must be sufficient, but remain below max
resource allocation; varies on number of instances, server profile

9. Important to understand / validate impact to upstream application (eComm) if
specific synchronous calls into OMS slow or become unavailable

• In recent years more stores enabled for BOPIS/SFS which made DG significantly larger,
which led to more time for synchronous inventory availability calls; similar scenarios
where client had to split nodes in DG to improve throughput

• Rapid ramp up of in-store associates led to several unqualified searches in Store and
Call Center apps which caused significant overall degradation

• multiAPI made 8 successive API calls led to poor response, needed to be refactored to
use asynchronous requests (via MQ to drop message on queue)

• Custom service call to getOrderList API was missing OHK in input, each invocation
caused fetch of 5K records which led to a crash, had to limit records

• Needed to throttle down instances/threads of agent to reduce concurrency contention
issues (Create/Schedule/Release) and optimize throughput

• Gradual memory leak led to out-of-memory condition after a couple days; similarly,
untuned heap led to excessive GC overhead, high CPU, slowness

• Daily manual processing of orders via java client against single JVM bypassed load
balancer and overwhelmed JVM to OOM/crash

• Upstream eComm site was unable to gracefully handle a short period of unavailability
from backend OMS and took hours to recover

• Unintentionally carrying capacity for high volume node during the peak. (Example:
Popup /Temporary fulfilment warehouse)

• Avoid changes to DG in IV during peak time

To best position for success on the OMS platform, it is important to understand how your application handles various scenarios known to
challenges performance or stability. Testing in pre-production with data/workloads representative of production enables ability identify
and address issues without impact to production business and operations.

Real Scenarios (Real impact…)

Position for Peak Success

21SBIBM Sterling / © 2023 IBM Corporation

Self Service Tool Dashboards

Leverage Self Service tool dashboards to proactively monitor the
environments and take ongoing house keeping actions to keep it in a
healthy state

The following types of dashboards are available Read more → :

• Service Resource Utilization
• Agent and Integration Server Performance
• Database metrics
• Application Server Performance
• API Performance
• Service Performance
• Business Performance
• JMS metrics
• JVM metrics

IBM Sterling / © 2023 IBM Corporation SP

SaaS

https://www.ibm.com/docs/en/order-management?topic=management-monitoring-dashboards

Robust Monitoring & Runbooks
The OMS SaaS Proactive Support & Notification Model aims to
quickly detect and mitigate issues before they become impactful

IBM performs proactive monitoring 24x7 to assess the health of your
production infrastructure and application

If a potentially impactful condition is detected, IBM Support will proactively
notify you, and inform if your action is required to mitigate.
- EMAIL () for issue with Multi-tenant shared infrastructure

- SUPPORT CASE () via IBM Support Portal for client-specific component

Important Reminders!
- Self-manage your distribution lists via Self-Serve Tool , add any necessary distribution lists

or programmatic IDs (ie. PagerDuty address) as Stakeholder role
- Maintain Support case access and visibility via IBM Support Portal!

- Respond and take action on any Proactive Case opened by IBM Support!

IBM SRE

IBM Support

SST Notification
(email/inbox)

IBM Support Case

Client /
SI Partner

Route to
DL, Slack,

 Pager Duty

SST Notification
(Queue depth)

Alert

Application

Platform /

Infrastructure

IBM Support and SRE teams are focused on driving continuous improvement of

alerts and internal runbooks based on lessons learned across infrastructure,

database, app servers, agent/integration servers, error conditions

Continuous Improvement

SP

SaaS

OMoC Production
Alert Handling

IBM Sterling / © 2023 IBM Corporation

IBM are continuously improving
monitoring, alerting and runbooks to
allow quick handling of production
issues:

1. Proactive case will be opened by
IBM Support to inform client/SI of
triggered alert, and that
investigation is underway

2. IBM capture diagnostics, review,
determine source of alert

3. IBM act to, mitigate, if possible,
inform / get consent from
client/SI as needed (such as
restarting an agent/integration
server)

4. In event client/partner need to
take action, the proactive case
will be used to convey this
information

MQ Connectivity issue
(JMS Metrics Dashboard)
(Max connections, JMS Transaction
Failures)
ü Critical MQ connection issue
ü Excessive MQ Connection Reset
ü MQ - Invalid Message à 2 in 10 min.

Database Connectivity Issue
(Database Metrics Dashboard)
(

ü Excessive Database Query Timeouts (YFC0006)
ü Critical DB connection issue (YFC0003 - DB Error)
ü Max connections, DB Transaction Failures)

Network/Connectivity Failures
ü Connectivity Issue (ConnectException,

SocketException)
ü Data Extract Failure - YFS: SFTP server not reachable

Application Server
 (App Server Performance & JVM Metrics Dashboard)

(Real Time Failure / Sync Calls)
ü GC (Global) Overhead (High) à 5% for 10 min.
ü Heap memory usage (High) à 80% for 15 min.
ü Server Hung/Unresponsive à 90% threads used for

5 min.
ü Excessive Errors by JVM - critical
ü Server Startup Failure (YIC10004) – Cache

Initialization
ü Excessive REST:HTTP 401
ü Process DOWN (Health Check , Missing POD)
ü Response time alerts for web requests

MQ Server
(JMS Metrics Dashboard)
ü MQ Listener Down: No listener running for

(OM_QMGR)
ü MQ Server Down
ü Generic Queue depth alert 50%
ü MQ failover alert

Stale Agent/Integration Server
(Agent, Integration Server Performance
& JVM Metrics Dashboard)
(Stale Agents)
ü Heap memory usage (High) à 80% for 60 min.
ü GC (Global) Overhead (High) à 5% for 10 min.
ü Custom Queue Depth Alert
ü Agent & Integration Process DOWN

Stale/Stuck Database Query
(Database Metrics Dashboard)
ü DB: Lock-Wait
ü DB: Long Running Query
ü DB: Not enough storage is available, SQLCODE=-973

DB: Too many open statements, SQLCODE=-805

OOB Integration
(Application Server Performance Dashboard)
ü IV Integration Failures (Connectivity issue & Error

Response)
ü SIM Integration Failures (Connectivity issue & Error

Response)

Low Severity alerts
(Error count widget – App, Agent & Int Performance
Dashboard)
(Based on Exceptions)
ü Data Extract Failures
ü JMS: Configuration errors
ü DB: Inserted Column Data > Column Size, Error:

YDB92_001 (10+)
ü DB: Failed Update due to concurrent modification,

Error: YFC0009 (100+)
ü Search index size alerts

Database Server
(Database Metrics Dashboard)
ü Database CPU, Disk Utilization
ü Host is not responding for 5 minutes.
ü Transaction logs size
ü HADR/TSA connection
ü DB Read/Write/Disk Utilization

Other VM Host
(Server Resource Utilization)
ü Local , NFS Disk Utilization
ü VM (host) is not responding
ü CPU, Memory , Disk Usage
ü CPU Steal
ü Cluster Health

Availability Check
ü Order Management Components
ü Sterling Intelligent Promising APIs
ü Self-Serve Tooling
ü Order Hub
ü Store Inventory Management APIs

Infrastructure
Synthetics

SP

SaaS

Self Service Features
Several key features within the Self-Service tool help keep you
informed on critical information to help ensure smooth operation

The Event Calendar helps you plan and manage major upgrade and
maintenance events for your environments

A Banner of one or more notifications help the System Implementer (SI) when
they log into SST showing important updates or messages.

Users with the Organization Administrator and Developer roles can view
messages and use the Inbox notification feature to preview messages, about
application alerts, proactive cases opened, upcoming maintenance, and
upgrade events of their environments. For any type of event update, you will
receive both an email and Inbox message.

The preview panel displays following information:
- Severity: The level of importance of the message - High (), Medium (), and Low ()
- Product: The name of the product the message is about, such as Order Management

Software (OMS), Inventory Visibility (IV), Sterling Inteligent Promising (SIP), and more.
- Message Type: The type of the message such as General, Service Issue, Maintenance, and

Update.
- Subject: The subject of the message.
- Summary: A brief of the message.

SP

SaaS

Journey to Peak Success

How to Succeed
Plan

q Retrospective

q Latest product levels

q Detailed projections

q Catch prior webcasts

q Engage help as needed

Prepare

q Align to IBM schedule

q Representative testing

q Proactive housekeeping

q Clean up the noise

q Track risks

Execute

q Clear runbooks, RACI

q Quickly detect issues

q Throttle as necessary

q Quick mitigation

MCIBM Sterling / © 2023 IBM Corporation

Enhanced
Event Readiness
Offering

A proactive engagement
leveraging a methodical
approach to provide
targeted, prescriptive
guidance toward stability
and success on IBM Order
Management

27

IBM Event Readiness Team

OMS Performance Experts apply
years of proactive preparation and
support of worldwide clients for
successful go-lives and peak events

ü Identify, mitigate potential risks

ü Align to proven best practices

ü Peak day mitigation techniques

Support Experience Team prioritize
Support workload, augment
communication and escalation to help
avoid blockers

Expert Labs (optional)
available to perform comprehensive
reviews and health checks

Event Readiness is modelled as 80-120 hour
engagement over 4 months – partnering as you prepare,
test, and execute go-live or peak event; For November
peak, our Engagement must begin no later than
September 1,
ensuring ample time to proactively review, implement,
and validate recommendations

Database
workload

review

Application
workload

review

Production
performance

review

Peak Projection
and Capacity

validation

Application
Configuration

Audit

Best Practice
Enablement,
Consultation

SWAT
Peak Day
Standby

Support Backlog
Reviews,

Prioritization

Peak Day
Readiness
Checklist

IBM Sterling / © 2023 IBM Corporation

IBM Advanced
Support Offering

An enhanced support
experience on top of your
active IBM support
subscription, providing
prioritized case handling
and shorter response time
objectives

Priority access to Senior
Technical Support for

accelerated issue resolution

7x24 coverage for mutually
agreed Sev-2 requiring

urgent attention

Named IBM Advanced
Support Focal (ASF)

within business hours

Monitor, manage, escalate critical
cases and provide period case

status reports and trends

Cases handled with higher
ongoing prioritization
within Severity level

Enhanced Initial Response
SLOs including <30 min

for Severity 1

IBM Sterling / © 2023 IBM Corporation

NEW in
2Q23!

Are you ready?

29

Technical Best Practices

IBM Sterling / © 2023 IBM Corporation

Payment Collection Agent GetJobs Query - Reference

IBM Sterling / © 2023 IBM Corporation

30DT

select yfs_order_header.order_header_key, yfs_order_header.lockid from omdb.yfs_order_header yfs_order_header
where (yfs_order_header.payment_status in
('AWAIT_PAY_INFO','AWAIT_AUTH','REQUESTED_AUTH','REQUEST_CHARGE','AUTHORIZED','INVOICED','PAID',
'RELEASE_HOLD', 'FAILED_AUTH', 'FAILED_CHARGE', 'VERFIFY', 'FAILED')) and
yfs_order_header.authorization_expiration_date <=sysdate and yfs_order_header.draft_order_flag='N' and
Yfs_order_header.enterprise_key IN (select distinct enterprise_key from omdb.YFS_ORDER_HEADER) and
yfs_order_header.document_type='0001' and not exists (Select 1 from omdb.yfs_order_hold_type
yfs_order_hold_type where yfs_order_hold_type.order_header_key= yfs_order_header.order_header_key and
(yfs_order_hold_type.hold_type in (SELECT DISTINCT HOLD_TYPE FROM omdb.YFS_HOLD_TYPE WHERE DOCUMENT_TYPE =
'0001' AND ORGANIZATION_CODE = 'DEFAULT' AND BASE_PROCESS_TYPE_KEY =
'ORDER_FULFILLMENT' AND (HOLD_TYPE_KEY IN (SELECT HOLD_TYPE_KEY FROM omdb.YFS_HOLD_TYPE_TRAN
WHERE TRANSACTION_ID = 'PAYMENT_COLLECTION' AND PURPOSE = 'PREVENT'))) and
yfs_order_hold_type.status<'1300')) with ur;

Payment Execution Agent Query - Reference

IBM Sterling / © 2023 IBM Corporation

31DT

SELECT ORDER_HEADER_KEY, count(*) AS COUNT from omdb.YFS_CHARGE_TRANSACTION WHERE ORDER_HEADER_KEY in (SELECT
DISTINCT YFS_CHARGE_TRANSACTION.ORDER_HEADER_KEY FROM omdb.YFS_CHARGE_TRANSACTION YFS_CHARGE_TRANSACTION ,
omdb.YFS_ORDER_HEADER YFS_ORDER_HEADER WHERE YFS_CHARGE_TRANSACTION.STATUS =
'OPEN' AND (YFS_CHARGE_TRANSACTION.CHARGE_TYPE IN ('AUTHORIZATION' , 'CHARGE')) AND
YFS_ORDER_HEADER.ORDER_HEADER_KEY =
YFS_CHARGE_TRANSACTION.ORDER_HEADER_KEY AND YFS_ORDER_HEADER.PAYMENT_STATUS <>
'HOLD' AND YFS_ORDER_HEADER.DOCUMENT_TYPE = '0001' AND YFS_ORDER_HEADER.DRAFT_ORDER_FLAG = 'N'
AND YFS_ORDER_HEADER.ENTERPRISE_KEY = 'DEFAULT' AND NOT EXISTS (SELECT '1' FROM omdb.YFS_ORDER_HOLD_TYPE
yfs_order_hold_type WHERE yfs_order_hold_type.order_header_key=
yfs_order_header.order_header_key AND (YFS_ORDER_HOLD_TYPE.HOLD_TYPE IN (SELECT HOLD_TYPE FROM
omdb.YFS_HOLD_TYPE WHERE DOCUMENT_TYPE = '0001' AND ORGANIZATION_CODE =
'DEFAULT' AND BASE_PROCESS_TYPE_KEY = 'ORDER_FULFILLMENT' AND (HOLD_TYPE_KEY IN (SELECT HOLD_TYPE_KEY
FROM omdb.YFS_HOLD_TYPE_TRAN WHERE TRANSACTION_ID = 'PAYMENT_EXECUTION' AND PURPOSE =
'PREVENT')))) AND YFS_ORDER_HOLD_TYPE.STATUS <
'1300') AND ((YFS_CHARGE_TRANSACTION.USER_EXIT_STATUS <> 'ONLINE') OR
(YFS_CHARGE_TRANSACTION.CREATETS <= sysdate))) GROUP BY ORDER_HEADER_KEY having count(*) > 2 ORDER BY
COUNT DESC with ur;

