
Holiday
Readiness
2023

IBM Sterling Order
Management

Payments
Deep Dive

Have a Question(s)?

Your Holiday Readiness Team
... and today’s speakers

Mike Callaghan
Program Director –
WW Supply Chain Support

Paresh Vinaykya
Executive Technical Account
Manager – Expertise Connect

IBM Sterling / © 2023 IBM Corporation

Chris Burgess
Manager –
Americas & AP Support Experience Team

Vijay Gosavi
Development Lead - Payments
Order Management Support

Jyothi Guptha
Customer Engagement Manager –
Order Management Support

Jitendra Buge
Technical Support Engineer
Order Management Support

3

Shoeb Bihari
Technical Lead / SRE Advisor –
Order Management Support

Damini Tacouri
Technical Support Analyst
Order Management Support

CB

IBM OMS Holiday Readiness
Our Mission Statement

Proactive Engagement

Early and regular identification,
communication, and mitigation
of potential risks

Prescriptive Guidance

Deeper partnership with
specific clients in need of direct
analysis and prescriptive
guidance via our Enhanced
Event Readiness offering

Stable Platform

Continuous improvement of
platform and monitoring,
with focus on performance,
stability, reliability

Best Practices

Establish, expand and apply a
robust collection of proven self-
help best practices focused on
peak season success

4IBM Sterling / © 2023 IBM Corporation MC

The Path Ahead

Journey to Peak Success

IBM Sterling / © 2023 IBM Corporation 5

March

Journey to Peak Success

Retrospect
Common issues
Enhancements
Your role!

May

Payment Integration & UE
Implementation

Hear from IBM Payment SMEs on
common payment configurations
and customizations.
Walk-thru of new features.

July

Recommendations & Best
Practices

Hear from IBM OMS Support
SMEs.

October

Execution

Peak Day Mitigation!

August

Panel Discussion

Open discussion with IBM
engineering and community
experts on peak readiness.

The IBM OMS Support team are continuously expanding our technical best practices based
on the observations and learnings over our supported launches and peak events!

MC/SB

Agenda

IBM Sterling / © 2023 IBM Corporation 6

1. Serviceability & Performance Enhancements
– Payment Audit & Reasons

2. Dynamic Charge Transaction Request (CTR)
Distribution

3. Recommendations & Best Practices

4. Common issues

5. Do’s & Dont’s

SB

What’s New?
↓
Performance
Transparency
Serviceability

7IBM Sterling / © 2023 IBM Corporation SB

8IBM Sterling / © 2023 IBM Corporation JG/PV

On the horizon…

1. Performance improvements in
collection getJobs query to help
with thread contention.

2. Automatic detection and
avoidance of thread contention
resulting from excessive charge
transaction records.

New Product FeaturesContinuous
Improvement

The IBM Order Management

Continuous improvement into
our core platform to promote
performance, stability,
resiliency, self-service, security

Challenges:

– Infinite Loop
– Multiple open authorizations
– Settlement delay
– Partial cancellation throwing

Insufficient funds
– Orders with too many charges

transaction records
– Database contention

OMS Version: 23.1.2.2 (10.0.2303.2)+

#OMSDemoDays

Enhancement for publishing refund
and settlement details

– Payment serviceability enhancement to
track payment reason and mapping with
additional metadata.

– New event
ON_REFUND_OR_SETTLEMENT event

Enhanced rounding logic

– 592940:
yfs.useNewRoundOffPriceForConv
entional=Y

– 593403: Rounding logic is now
implemented for sub-total column
variables during invoicing in IBM Sterling
Call Center.

– 593276: Addressed the 6-digit rounding
logic for multi-line orders during
invoicing.

SB

Automatic order hold

– Automatic hold is applied via
changeOrder if looping condition is
detected due to payment mismatch.

–yfs.payment.infiniteLoop.pay
mentHoldType

–yfs.payment.infiniteLoop.all
owViewingOfOrder

DB managed properties

– Payment reason feature configuration
properties maintained in DB as well
(i.e., properties will be configurable
from SMA).

https://community.ibm.com/community/user/supplychain/discussion/order-management-suite-demo-day-q1-2023-recording-posted

x

Payment Audit & Reasons Required configuration

– Enable
yfs.yfs.payment.reason.enab
lePaymentAudit=Y property.

– Enable
ON_REFUND_OR_SETTLEMENT
event under PAYMENT_COLLECTION
transaction.

Read more →

Payment Audits

– Comprehensive payment audit
information is logged in payment
audit database tables:

• YFS_PAYMENT_REASON
• YFS_PAYMENT_REASON_CHARGE
• YFS_PAYMENT_REASON_MAPPING
• YFS_PAYMENT_REASON_ORDLINE
• YFS_PAYMENT_REASON_TAX

IBM Sterling / © 2023 IBM Corporation

– New enhancement to track
payment reason and mapping
with additional metadata,
providing transparency and
serviceability for payment
transactions. Read more →

– With this feature enabled, a
message providing details of
what activities caused it is
published

– ON_REFUND_OR_SETTLEMENT
event has been added to the
PAYMENT_COLLECTION
transaction to publish order and
collection details processed by
the transaction.

– For typical payment processing,
new event will be raised after the
second payment collection
transaction (i.e., after the second
requestCollection API call).

9DT/VG

Details

For any changes such as adding a line, changes in price, cancelling, etc. the system
will populate the related data along with a reason code to indicate what caused the
transaction, here are the sample reason codes:

Settlement: Returns:

This feature also allows for customization of what details are included in the published
message and whether the message is published.

https://www.ibm.com/docs/en/order-management?topic=overview-publishing-settlement-refund-details
https://www.ibm.com/docs/en/order-management?topic=overview-publishing-settlement-refund-details

Payment Audit & Reasons

IBM Sterling / © 2023 IBM Corporation

10VG

Scenario 1 - Adding a line to an order
Message published will have the reason code along with details on the new line added.

<Order DocumentType="0001" OrderHeaderKey="..." OrderNo="SO1000001" >

<ChargeTransactionDetailList>
<ChargeTransactionDetail ChargeType="CHARGE" CreditAmount="52.50" RequestAmount="52.50" Status="CHECKED">

<PaymentMethod PaymentType="CREDIT_CARD"></PaymentMethod>
</ChargeTransactionDetail>

</ChargeTransactionDetailList>

<ReasonCodeList>
<ReasonCode Type="SETTLEMENT" Code="ADDITION" ReasonText="Add Order Line">

<HeaderCharges/></HeaderCharges>
<HeaderTaxes/></HeaderTaxes>
<OrderLines>

<OrderLine OrderLineKey="..." PrimeLineNo="2" SubLineNo="1" ChangedQuantity="" ChangedUnitPrice="" Quanity="1">
<LinePriceInfo LineTotal="52.50" UnitPrice="50.00"/>
<LineCharges></LineCharges>
<LineTaxes>

<LineTax LineTaxKey="..." ChangedLineTax="" Tax="2.50" TaxName="Tax"></LineTax>
</LineTaxes>

</OrderLine>
</OrderLines>
</ReasonCode>

</ReasonCodeList>

</Order>

– One or more
payment
transaction
details.

– One or more
reason codes and
associated order
lines.

Payment Audit & Reasons

IBM Sterling / © 2023 IBM Corporation

11DT

Scenario 2 – Decreasing line quantity
Message published will have the reason code along with details on the line and changed quantity.

<Order DocumentType="0001" OrderHeaderKey="..." OrderNo="SO1000001" >

<ChargeTransactionDetailList>
<ChargeTransactionDetail ChargeType="CHARGE" CreditAmount= "-105.00 RequestAmount="-105.00" Status="CHECKED">

<PaymentMethod PaymentType="CREDIT_CARD"></PaymentMethod>
</ChargeTransactionDetail>

</ChargeTransactionDetailList>

<ReasonCodeList>
<ReasonCode Type="REFUND" Code="CANCEL" ReasonText="Cancel Quantity">

<HeaderCharges/></HeaderCharges>
<HeaderTaxes/></HeaderTaxes>
<OrderLines>

<OrderLine ChangedQuantity="-1" ChangedUnitPrice="" OrderLineKey="..." PrimeLineNo="1" Quanity="1" SubLineNo="1">
<LinePriceInfo LineTotal="105.00" UnitPrice="100.00"/>
<LineCharges></LineCharges>
<LineTaxes>
<LineTax ChargeCategory="" ChangedLineTax="-5.00" ChargeName="" Tax="5.00" TaxName="Tax"></LineTax>

</LineTaxes>
</OrderLine>

</OrderLines>
</ReasonCode>

</ReasonCodeList>

</Order>

– One or more
payment
transaction
details.

– One or more
reason codes and
associated order
lines.

x

Dynamic Charge
Transaction Request
(CTR) Distribution

Required configurations

1. Only Authorize Charge Transaction
Request Total

2. Do Not Consolidate Settlement Or
Refund Requests Across Invoices (if not
selected, this is where things can go
wrong, and we can see inconsistent and
unexpected behavior.

– Disable following flags:

1. Use Same Authorization Multiple Times

IBM Sterling / © 2023 IBM Corporation

– Designed to get Authorization in
phase manner during every
release instead of taking the full
Authorization on an order at one
time in the beginning.

– For each release of a line,
authorization should only be
created for the corresponding
amount of the release (i.e., map
one CTR Authorization to one
release with one invoice).

– In case of any mismatch with
the amount authorized vs
amount invoiced, any remaining
authorized amount will be
considered excess and should
ideally be reversed.

– Authorization corresponding to
a release is created using
manageChargeTransaction
Request API.
Read more →

12

Happy Path

1. createOrder→ Total: $52, No Authorization Created, Line1: $32, Line2: $20
2. scheduleOrder→ Scheduled
3. releaseOrder→ Line1: $32
4. manageChargeTransactionRequest→ Create CTR for corresponding release of

$32
<ChargeTransactionRequestList OrderHeaderKey="CTR_Order03">

<ChargeTransactionRequest ChargeTransactionRequestId="1"
MaxRequestAmount="32.00 " Operation="Manage"/>

</ChargeTransactionRequestList>
5. Call Payment APIs to process the charge transaction request Created → Authorized

YFS_CHARGE_TRAN_REQUEST:

6. Ship Line1 (i.e., first line)
7. releaseOrder→ Line2: $20
8. manageChargeTransactionRequest→ Create authorization for $20
9. Call Payment APIs to process this authorization.

Now we have 1 CTR for each release which will later map to one invoice each.
10. createShipmentInvoice for release 1 ($32), & call Payment APIs to settle $32 →

$32 is COLLECTED, $20 is AUTHORIZED for release 2.
11. Cancel line 2 (release 2) → CANCEL entry created for -$20.
12. Call Payment APIs → AUTHORIZATION for $20 is reversed, order is moved to PAID

status.

DT/VG

https://www.ibm.com/docs/en/order-management?topic=process-dynamic-charge-transaction-request-ctr-distribution

Best Practices Payment
Integration

Excessive Charge
Transaction Records
Review orders having many charge
transaction records.

Having excessive YCT records shows
underlying issue.

Place orders having excessive YCT on
hold, to prevent further processing.

SELECT ORDER_HEADER_KEY, COUNT(*) FROM
OMDB.YFS_CHARGE_TRANSACTION GROUP BY
ORDER_HEADER_KEY HAVING COUNT(*) > 100
ORDER BY ORDER_HEADER_KEY DESC WITH UR;

These best practices can help
solidify y(our) solution, and it can
help avoid unforeseen issues in
future.

13

Common issues - 2022

1. Inconsistent authorization
reversals with CTR feature
enabled.

2. Penny differences causing error
infinite loop detected in dynamic
distribution best match.

3. Orders having excessive charge
transaction records.

4. Contention on
YFS_ORDER_HEADER table.

General Best Practices →

IBM Sterling / © 2023 IBM Corporation

Third Party Payment
Integrations

Handling Penny Differences

To avoid penny differences for returns,
when a quantity is cancelled, use the
return amount calculated by OMS instead
of calculating this externally and then
passing that amount to OMS.

OMS supports 2-digit decimals.

Consume latest fix pack, contains
rounding enhancement

Reusing Authorization IDs

Reuse the same authorization by enabling
Use Same Authorization multiple
times option under financial rules.

However, when using Dynamic CTR
Distribution – get a new authorization for
each release. Do not reuse the same
authorization.

Authorization Reversal
Strategy

We can generate an authorization reversal
before the authorization expires using the
Reverse Authorization feature.

Reverse authorization immediately in case
of any cancellations. This will ensure that
the system has authorization
corresponding to the correct amount.

For this, enable Partial Reversal
Supported along with the Reverse Excess
reversal strategy.

Read more →

Subscribe to a payment solution provider
that can capture PAN data in a secure way

Ensure that payment information is
captured and submitted to external
payment gateway via it's iFrame URL

Sensitive data should never be entered
directly into IBM applications before
tokenizing them.

JG/PV

Payment Collection
Failure

Ensure the following parameter is set
to ensure PAYMENT_COLLECTION
agent does not fail with
java.lang.IllegalArgumentExc
eption:
Comparison method violates
its general contract!

Read more →

https://www.ibm.com/docs/en/order-management?topic=considerations-best-practices-payment-processing
https://www.ibm.com/docs/en/order-management?topic=processing-authorization-reversal
https://www.ibm.com/support/pages/paymentcollection-agent-fails-javalangillegalargumentexception

Case Study

14IBM Sterling / © 2023 IBM Corporation

Problem:

Payment Collection agent's
getJobs is taking time

Impact

– Delay in payments
processing

– Potential impact to order
flow, and cascading impact
on other components.

Challenge

– Orders were not getting authorized in time
due to delayed get jobs of Payment
collection agent.

– This was delaying orders being dropped
to fulfillment and creation of chained
orders were getting affected.

– Cascading impact on other flows of
system

Root cause

– Payment Collection getJobs query was
consuming high CPU and I/O.

– Contention around YFS_ORDER_HEADER
table due to large number of charge
transaction records

– Oracle DB was doing a full table scan
instead of using existing index

– REORG was not done in recent time
– YFS_PERSON_INFO query was also

taking CPU
– Contention around
YFS_INVENTORY_ITEM and
YFS_RES_POOL_CAPCTY_CONSMPTN
table.

Mitigation

– Place hold on older orders by running
getJobs query manually

– Put hold on order having large number of
charge transaction records

– Make sure JMS session pooling is on and
bulk sender properties are set:

– yfs.agent.bulk.sender.enabled
– yfs.agent.bulk.sender.batch.si
ze → set to 5000

– Increase the number of message to
buffer to 50K

– Explicitly call ProcessOrderPayments
or requestCollection APIs to
reduce load on agents

Solution

– Use the attribute
ConsiderOracleDateTimeAsTimeStamp →

– Regularly perform DB maintenance on
YFS_ORDER_HEADER

– JMS Performance properties →
– Validate the index on YFS_PERSON_INFO

table →

Recommendation

– Regularly run database maintenance
jobs such as REORG and RUNSTAT

– In case of oracle DB, explore the
attribute
ConsiderOracleDateTimeAsTimeStamp

– Explore the JMS session property and
use it as required

– Review the long running SQLs and
explore the indexing opportunity

– For item contention, explore the use of
hot sku feature →

– JMS Performance properties →

– For
YFS_RES_POOL_CAPCTY_CONSMPTN
contention, review capacity cache and
locking properties →

JB

https://www.ibm.com/support/pages/node/516445
https://www.ibm.com/support/pages/node/516445
https://www.ibm.com/support/pages/mq-omoc-gearing-peak
https://www.ibm.com/support/pages/why-select-query-yfspersoninfo-called-part-apis-createorder-expensive
https://www.ibm.com/support/pages/why-select-query-yfspersoninfo-called-part-apis-createorder-expensive
https://www.ibm.com/support/pages/node/516445
https://www.ibm.com/docs/en/order-management?topic=sku-hot-feature
https://www.ibm.com/support/pages/mq-omoc-gearing-peak
https://www.ibm.com/docs/en/order-management?topic=optimization-node-capacity-locking
https://www.ibm.com/docs/en/order-management?topic=optimization-node-capacity-locking

Case Study

15IBM Sterling / © 2023 IBM Corporation

Subject

Infinite Loop Detected in Dynamic
Distribution Best Match error

Impact

– Delay in payments processing
– Slowness in the Store

Challenge

– Processing of notifications from external
payment gateway was affected.

– Too many errors in system leads to
comparatively degraded system
performance.

– This also led to contention around
YFS_ORDER_HEADER table.

– Payment collection agent was holding lock
and on hitting getShipmentList from
webstore, the system would get hang

Root cause

– Could observe it in 4 scenarios for a client
– Change price after order was shipped,

invoiced, and paid.
– Rounding issue with split shipment at the

time of createShipmentInvoice
– Second shipment invoice creation post

change price at header level and
shipment, invoicing of first line.

– max_charge_limit was less than the
total_amount.

Mitigation

– Updated the authorization expiration
date to a future date for orders throwing
the infinite loop error

– Put a hold on the problematic orders.
– Set PAYMENT_HOLD in agent criteria

config field "HoldTypeOnRollback" of
payment collection agent

Solution

– Refactored
YFSRecalculateHeaderTaxUE
implementation to make sure the
header tax amount returned from UE is
not less than what was already invoiced
to make sure records do not reach to
inconsistent state.

– Allow reversing excess authorization
– Make sure that records with the same

authorization id should not have
different authorization expiration dates.

– Refactored the custom implementation
to fix the issue with
max_charge_limit being less than
total_amount

Recommendation

– Explore the use of
HoldTypeOnRollback criteria
parameter of collection agent

– Ensure to double check the payment
and pricing related UE implementation
to ensure it is not leading to
inconsistencies.

– Same auth id records should have same
auth expiration date

JB

Case Study

16IBM Sterling / © 2023 IBM Corporation

Subject

PaymentCollection on sales
order was not executing
automatically

Impact

– Tender posting were delayed,
and settlements were not
collected, causing direct
financial business impact.

Challenge

– Delayed processing of new orders.
– Huge backlog of orders waiting to be

processed by the payment collection
agent.

– Cascading impact on other flows of
system

Root cause

– 10k orders from earlier year were eligible
for processing

– Too many different types of errors during
agent processing

– Large number of charge transaction
records

– getJobs call pulling about 5000 records
in 1 hr but only 32 orders were getting
processed

– Custom issue of authorization expiration
dates were not being updated

Mitigation

– Apply hold on old orders from last year

– Apply hold on orders having large
charge transaction records

– Increase the number of records to
buffer to 25000

Solution

– Addressed the errors from agent
processing

– Applied hold on problematic orders

– Custom code was fixed to make sure the
authorization expiration date was
updated correctly

Recommendation

– Keep a check on old orders with high
number of charge transaction records
and put them on hold to avoid repeated
processing

– Regularly check the agent logs to
address the frequent errors

– Temporarily increase the number of
records to buffer criteria attribute to
clear the backlog

JB

Case Study

17IBM Sterling / © 2023 IBM Corporation

Problem

Payment collection agent is
slow/hung/ utilizing high CPU

Impact

– Delay in payments
processing

– Potential impact to order
flow, and cascading impact
on other components.

Challenge

– Payment collection agent was not able
to process orders in expected pace.

– Database contention having cascading
impact on other components such as
Order Monitor, Store server, etc.

– Impact to order fulfilment NFRs.

Root cause

– SQL query timeout’s while waiting to
fetch the Order Header data

– High number of orders with excessive
YFS_CHARGE_TRANSACTION records

Mitigation

– Apply hold on problematic orders

– Update
AUTHORIZATION_EXPIRATION_DATE
to future date in YFS_ORDER_HEADER
table

Solution

– Implement query timeout for agent
server. Read more →

– Stop payment agent server, apply hold
on orders, and start back the payment
servers

– In rare scenario, need to run manual
SQLs to unblock client by updating the
auth expiry date, if manual hold
approach not working.

Recommendation

– Keep a check on old orders with high
number of charge transaction records
and put them on hold to avoid
repeated processing

– SQL to identify such orders - SELECT
ORDER_HEADER_KEY, COUNT(*)
FROM YFS_CHARGE_TRANSACTION
GROUP BY ORDER_HEADER_KEY
HAVING COUNT(*) > 500 ORDER
BY ORDER_HEADER_KEY

– Try to identify pattern which lead to
this situation and fix it.

JB

https://www.ibm.com/support/pages/how-set-query-timeouts-custom-agent-servers

Plan and take necessary action to position y(our) solution for
success, it is critical to TAKE ACTION NOW!

01
User Exit

IBM Sterling / © 2023 IBM Corporation 18

02
External Calls

– Make sure correct authorization IDs are stamped along with
corresponding expiration dates.

– Records having the same authorization IDs should have the same
authorization expiration date.

– Handle all the exceptions from the collection UE. Otherwise,
charge and authorization transactions will get stuck in the
'invoked' user exit status.

– RecalculateLineTaxUE and RecalculateHeaderTaxUE
output should include all necessary taxes to avoid wiping out
previous existing taxes.

↓

– Periodically review the response time of the external calls to
payment system.

– Implement both connect and socket read time to ensure external
call does not wait in socket-read indefinitely.

– Long running transaction can lead to DB contention, and resource
problem on JMS (MQ Server).

– Unforeseen performance issues and impact to other components.

JB/VG

Dont’s

q Do not take authorization as part of createOrder when Dynamic CTR Distribution is
enabled.

q Do not call processOrderPayments as part of long transaction boundary. This API is
intended for In-person scenarios e.g., carry lines.

Note: This API cannot be used with any of the order modification APIs or any APIs that modify
orders - either through events, multiApi calls or services.

The requestCollection() API will be invoked in a new transaction boundary and with a
special condition - each Charge and Authorization request created will have
UserExitStatus set to "ONLINE". When requestCollection() is complete, it will
return to processOrderPayments() and execute a commit in the new transaction
boundary then close it. Thus, even if an error is thrown after this point, the database will not
rollback the changes made by requestCollection(). Javadoc →

q Do not useUnlimitedCharges on the payment method.

Do’s

q If Dynamic CTR feature is enabled, use manageChargeTransaction API and create
separate authorizations for each release/shipment. If single line has multiple releases, then
one CTR should be created for each release.

q Review the javadocs before implementing processOrderPayments, and use
RequestCollection, ExecuteCollection, RequestCollection.

q Avoid redundant processing of orders by the payment agents. Use the getJobs query to
verify eligible orders.

Enhanced
Event Readiness
Offering

A proactive engagement
leveraging a methodical
approach to provide
targeted, prescriptive
guidance toward stability
and success on IBM Order
Management

19

IBM Event Readiness Team

OMS Performance Experts
apply years of proactive preparation
and support of worldwide clients for
successful go-lives and peak events

ü Identify, mitigate potential risks

ü Align to proven best practices

ü Peak day mitigation techniques

Support Experience Team
prioritize Support workload, augment
communication and escalation to help
avoid blockers

Expert Labs (optional)
available to perform comprehensive
reviews and health checks

Event Readiness is modelled as 80-120 hour
engagement over 4 months – partnering as you
prepare, test, and execute go-live or peak event;
For November peak, our Engagement must
begin no later than September 1,
ensuring ample time to proactively review,
implement, and validate recommendations

Database
workload

review

Application
workload

review

Production
performance

review

Peak Projection
and Capacity

validation

Application
Configuration

Audit

Best Practice
Enablement,
Consultation

SWAT
Peak Day
Standby

Support Backlog
Reviews,

Prioritization

Peak Day
Readiness
Checklist

IBM Sterling / © 2023 IBM Corporation

Q&A

20

Technical Best Practices

IBM Sterling / © 2023 IBM Corporation

