
Tom ‘Captain COBOL’ Ross
Feb 24, 2020
Session 26536

Enterprise COBOL V6.3 was announced!
What’s New?

Agenda

2

 Announce/GA key dates & offerings

 Major features
 z15 exploitation using ARCH(13)
 FUNCTION keyword optional
 AMODE 64 (64-bit) support
 Dynamically sized elementary items
 UTF-8 native data type support

 Miscellaneous changes
 z/OS versions supported
 New Reserved Words
 Predefined compilation variable changes
 Compiler listing changes
 PPA changes
 CEEDUMP changes

Announce/GA dates & offerings

 Announce: September 3, 2019
 Note: IBM z15 announcement was Sep 12, 2019, so compiler Announcement

letter does not mention z15, and the Enterprise COBOL doc library was not
published until Sep 12 since our documentation includes z15 material

 GA: September 6, 2019

 There are 3 versions of IBM Enterprise COBOL V6.3:
 5655-EC6: IBM Enterprise COBOL for z/OS (MLC based product)
 5697-V61: IBM Enterprise COBOL Value Unit Edition for z/OS

 OTC based pricing (One Time Charge)
 Product ID unique to ordering process, product registration & SMF

Type 1 record generation for sub-capacity reporting
 Under the covers, it’s the ’same product’ (ie. same

FMIDs/COMPIDs as MLC version) and customers apply same PTFs
as MLC version in order to get fixes

 5655-TY6: IBM Enterprise COBOL Developer Trial for z/OS
 90-day free trial
 Refreshed with each PTF to keep it up to date

z15 exploitation using ARCH(13)

4

Changed ARCH compiler option

ARCH(7) (the default in 6.2)
 2094-xxx models (IBM System z9 EC) 2096-xxx models (IBM System z9® BC)

ARCH(8) (the default in 6.3)
 2097-xxx models (IBM System z10 EC) 2098-xxx models (IBM System z10 BC)

ARCH(9)
 2817-xxx models (IBM zEnterprise z196 EC) 2818-xxx models (IBM zEnterprise z114 BC)

ARCH(10)
 2827-xxx models (IBM zEnterprise EC12) 2828-xxx models (IBM zEnterprise BC12)

ARCH(11)
 2964-xxx models (IBM z13) 2965-xxx models (IBM z13s)

ARCH(12)
 3906-xxx models (IBM z14) 3907-ZR1 models (IBM z14)

ARCH(13)
 8561-xxx models (IBM z15)

z15 exploitation using ARCH(13)

 Aligned Vector Load/Store Hints
 Mask bits added to existing vector load and store instructions
 Compiler can indicate when loads/stores are aligned, possibly allowing

hardware to be more efficient
 Mostly applies in spills (vector load/store) or when saving and restoring

vector registers in prolog/epilog code (vector load/store multiple)

 Vector Packed-Decimal Enhancement Facility
 Mask bit added to existing vector packed instructions to tell hardware

to suppress overflow and ignore decimal-overflow mask in the PSW
 COBOL doesn't have an exception when there's an overflow; COBOL

doesn't touch the decimal-overflow mask
 Other languages (C++, Java) do have exceptions; they set the mask
 In mixed-language applications, overflows in COBOL code trigger an

exception (because the mask is on)
 LE handles the exception and suppresses for COBOL; lots of overhead
 New mask bit allows COBOL overflows to be suppressed without LE

support; much faster for mixed-language applications

6

z15 Acceleration for Multi-Language Applications
COBOL 6.3 Using ARCH(13)

01 WS-VAR-1 PIC S9(5)V9(2) COMP-3.
01 WS-VAR-2 PIC S9(5)V9(2) COMP-3.
01 WS-VAR-3 PIC S9(5)V9(2) COMP-3.

ADD WS-VAR-1 TO WS-VAR-2 GIVING WS-VAR-3

MVC 32(4,8),24(8)
AP 32(4,8),16(4,8)
ZAP 32(4,8),32(4,8)

COBOL

C,Java,PL/I etc.

VLRL VRF24,24(R3),3
VLRL VRF25,16(R3),3
VAP VRF24,VRF24,VRF25,0x87,0

Very slow LE
handling to
suppress decimal
overflow exceptions
from COBOL in a
multi-language
application

Prior to z15 and ARCH(13) z15 using ARCH(13)

New z15 facility used at
ARCH=13 to suppress decimal
overflow exceptions on all
vector packed decimal
instructions  No LE
overhead to handle and huge
performance speedups

z15 using COBOL 6.3 ARCH=13 is:
100x faster in a

microbenchmark
20% faster in realistic

banking simulation multi-
language benchmark

Decimal
Overflow
Exception

z15 exploitation using ARCH(13)

 Vector-Enhancements Facility 2
 FUNCTION REVERSE is implemented using vector load/store

reverse instructions instead of with a runtime call
 Loop with VLBR to load 16-byte chunks in reverse order
 Remaining 1-15 bytes reversed with VSTEBR[G|F|H]

 VECTOR STRING SEARCH used for some INSPECT statements
 These were already done inline; new code used for narrow cases

where there's a performance improvement over existing code
 Loop with VSTRS
 INSPECT TALLYING: search string of 6-16 bytes, or 4-16 if a

pattern in the string is repeated (e.g. "ABAB")
 INSPECT REPLACING: search string of exactly 6 bytes

 Miscellaneous Instruction-Extensions-Facility 3
 SELR/SELGR used for ternary operations
 Very minor increase; saves a LR (load register) instruction

8

z15 exploitation using ARCH(13)

New Instructions

SELGR SELR VLBR VSTEVBF VSTEVBG

VSTEVBH VSTRS

Modified Instructions (mask bits)

VAP VCVB VCVBG VCVD VCVDG

VDP VL VLM VLR VMSP

VPSOP VRP VSDP VSP VSRP

VST VSTM
9

z15 exploitation using ARCH(13)

Statement Types Comments

IF X > 0
Y = 1

ELSE
Y = 0

Binary Ternary (three way) operations are slightly
faster

COMPUTE:
ADD/SUBTRACT
MULTIPLY/DIVIDE
REMAINDER

Packed/Zoned Overflows are just as fast in a mixed-language
application as in a pure COBOL application

COMPUTE X =
FUNCTION REVERSE(Y)

Alphanumeric Avoids a runtime call; big performance increase

INSPECT X TALLYING
ALL “ABCDEF”

Alphanumeric Some performance increase over old inlined
INSPECT code

INSPECT X REPLACING
ALL “ABCDEF” WITH
“UVWXYZ”

Alphanumeric Some performance increase over old inlined
INSPECT code

COBOL Statements That Will Benefit

10

FUNCTION keyword optional

11

REPOSITORY paragraph, FUNCTION specifier
 The REPOSITORY paragraph FUNCTION specifier INTRINSIC allows declaration of

intrinsic-function-names that may be used without specifying the word FUNCTION.

 Syntax:

>>-REPOSITORY.--+--+--><
| .-----------------------------. |
| V | |

‘-FUNCTION--+--+--intrinsic-function-name-1--+--+--INTRINSIC---’
| |
‘-----ALL---------------------------’

• intrinsic-function-name-1

• The name of a supported Enterprise COBOL intrinsic function

• ALL
• If ALL is specified, it is as if each of the supported Enterprise COBOL intrinsic function names were

specified

Notes:
1. See the Enterprise COBOL for z/OS V6.2 Language Reference, Intrinsic Functions for a list of supported Intrinsic

functions
2. If any intrinsic-function-name-1 is specified more than once in the REPOSITORY paragraph, all the specifications for that

name shall be identical.
3. Intrinsic-function-name-1 shall not be specified as a user-defined word within the scope of this REPOSITORY paragraph.
4. If ALL is specified, none of the names of the intrinsic functions may be specified as a user-defined word within the scope

of this REPOSITORY paragraph.
5. Since WHEN-COMPILED is both a special register and an intrinsic function name, WHEN-COMPILED may not be

specified in the FUNCTION clause of the REPOSITORY paragraph.
12

Environment Division.
Configuration section.

Repository.
function ABS intrinsic.

Data division.
Working-storage section.
01 int1 pic s9(8) comp value -999.
01 intresult pic 9(8) comp.

Procedure division.
compute intresult = ABS(int1)

if intresult = 999 display "success"
else display "fail"
end-if
goback.

REPOSITORY paragraph, FUNCTION specifier

13

 COBOL finally has AMODE 64!
 IBM has been working on this for over 10 years

 C/C++ was first, then PL/I, now COBOL
 Some decisions about AMODE 64 support in LE

were made 15 years ago
 We are working with other parts of IBM to get

support for AMODE 64 programs
 Debug Tool and CICS are the most important

AMODE 64 support

14

 Use the LP compiler option to indicate whether an AMODE 31 or AMODE 64
program should be generated with the related language features enabled.

Syntax: LP(32|64)

Default: LP(32)

 When LP(64) is in effect, the compiler generates an AMODE 64 program
using the z/Architecture® 64-bit instructions

 When LP(32) is in effect, the compiler generates an AMODE 31 program.

 This is the default and is the same as in previous compilers.

 You can specify LP in any of the ways that you specify other compiler options.

 In a sequence of programs in the same source, if you specify LP in a
PROCESS (or CBL) statement it will apply to all programs in the sequence.

• LP(32) and LP(64) are mutually exclusive. If they are specified multiple times,
the compiler will take the last one specified:

CBL LP(64) LP(32) LP(64) *> Will get LP(64)

LP(32|64) compiler option

15

 You can compile AMODE 64 COBOL applications under z/OS using job
control language (JCL), TSO commands, CLISTs, or ISPF panels. The
process is the same as for AMODE 31 applications.

 The key differences are as follows:

//COMPILE EXEC PGM=IGYCRCTL,REGION=0M,
// PARM=’LP(64)’ << add LP(64) option
// ...
//BIND EXEC. PGM=IEWBLINK,REGION=0M,
// PARM=’RENT,DYNAM=DLL << add RENT and DYNAM=DLL
//SYSLIB DD. DSN=CEE.SCEEBND2,DISP=SHR << include SCEEBND2
// ...
//SYSLIN DD ...
// DD DSN=CEE.SCEELIB(CELQV004),DISP=SHR << include CELQV004
// ...

Compiling and binding AMODE 64 programs

16

 If an ENTRY statement is used, you must specify ENTRY CELQSTRT
 If you specify any other ENTRY name, the program will ABEND
 The entry point now defaults to CELQSTRT, ENTRY not required
 With LP(32), as in previous compilers, the entry point defaults to the

PROGRAM-ID name

 When compiling with JCL, IBM provides a set of cataloged procedures
which can reduce the amount of JCL coding that you need to write.
 IGYQC - A single-step cataloged procedure for compiling a AMODE 64

COBOL program
 IGYQCB - A two-step cataloged procedure for compiling and binding an

AMODE 64 COBOL program
 IGYQCBG - A three-step cataloged procedure for compiling, binding, and

running a AMODE 64 COBOL program

Compiling and binding AMODE 64 programs

17

Mixing AMODE 64 and non-AMODE 64 programs is not
supported (neither AMODE 24 nor AMODE 31)

 This decision was made around 2004 by LE and z/OS

 We are working on solutions to this!

 When preparing to run an application that contains
AMODE 64 COBOL programs, ensure that the
SCEERUN2 and SCEERUN Language Environment load
libraries are available in the system library search order,
for example, by using a STEPLIB DD statement.

Note that users can compile AMODE 64 COBOL
programs on z/OS V2R2 or above, but must be on z/OS
V2R3 or above to run AMODE 64 COBOL programs.

Running AMODE 64 programs

18

 COBOL-specific runtime options can be specified using the
new IGZOPTS DD statement
Below shows an example of setting the DEBUG option to on:

//…
//IGZOPTS DD *

DEBUG
/*

 The option syntax is the same as the corresponding specifications

in AMODE 31 using the LE CEEOPTS DD statements.

 When running in z/OS UNIX, you can specify COBOL
runtime options using the new _IGZ_RUNOPTS
environment variable. The option syntax is the same as
their corresponding specifications in AMODE 31 using the
LE environment variable _CEE_RUNOPTS.
 The example below specifies the DEBUG option:

export _IGZ_RUNOPTS=”DEBUG”

Specifying COBOL runtime options

19

COBOL runtime options for AMODE 64 programs can only
be specified using the two methods just described:
 IGZOPTS DD statements, or
 _IGZ_RUNOPTS environment variable

The CBLOPTS runtime option is not supported for AMODE
64 programs. When specifying runtime options on the
parameter string, runtime options must be specified before
program arguments. This behavior is consistent with other
Language Environment high- level languages.

The example below shows the JCL for invoking a COBOL
main program with program argument '20190901' and
runtime option RPTOPTS(ON)

//GOSTEP EXEC PGM=COBMAIN,PARM=’RPTOPTS(ON)/20190901’

Specifying COBOL only runtime options (cont.)

20

 LE Runtime Options

 ALL31: This runtime option is not supported for AMODE 64 programs.
 MSGFILE: This runtime option is not supported for AMODE 64 programs.
 CBLPSHPOP: This option affects the behaviour of CICS. It has no effect as

CICS does not support AMODE 64 programs
 XPLINK: Always in effect for AMODE 64 programs, cannot be turned off
 In order to be consistent with other LE programming languages, runtime options

in JCL EXEC statement are specified before the slash (/) character. Program
parameters are specified after the slash.

 COBOL-only runtime options

 COBOL only runtime options in AMODE 64 must be specified using IGZOPTS
DD JCL statement or _IGZ_RUNOPTS environment variable. Syntax of the
options remain the same as in CEEOPTS and _CEE_RUNOPTS.

 The following COBOL only runtime options are supported when LP(64) is in
effect:

• AIXBLD
• CBLQDA
• DEBUG
• SIMVRD
• UPSI

 RTEREUS is not supported

Example. The following JCL fragment
specifies AIXBLD and UPSI:

//IGZOPTS DD *
AIXBLD, UPSI(10010000)

/*
//*

AMODE 64 – Runtime Options

21

AMODE 64 – Limitations
 The following are not currently supported in V6.3 for AMODE 64

 CICS compiler option

 SQLIMS compiler option

 XML & JSON support

 THREAD option

 Object-oriented COBOL applications

 Interoperability with 31-bit programs

 Db2 programs using the separate Db2 precompiler

 The SQL compiler option (integrated SQL coprocessor) *is*
supported when LP(64) is in effect

22

AMODE 64 – Limitations
• The following are not (and will not be) supported for AMODE 64

 ALTER statement

• GOTO without a target is a bad idea!

 CALL xx USING file-name-1

• Still supported for AMODE 31

 DATA(24) compiler option

• WORKING-STORAGE will be above the 2GB BAR

 DLL/NODLL compiler option has no effect

 LP(64) programs always behave as if DLL was in effect

 NORENT compiler option -- must be RENT

 RMODE(24) compiler option -- must be RMODE(ANY)

• Note: RMODE 64 not supported (yet?)

 RTEREUS runtime option

23

 Compilation Listing changes

 In the Pseudo Disassembler section of the listing, at the end of a
program (CSECT), the text "Size of dynamic storage" is changed to
"Size of storage acquired". For example:

 Some of the section headings in the compilation listing are changed in
COBOL V6.3.

V6.2 Section Name V6.3 Section Name

STATIC MAP INITIAL HEAP STORAGE MAP

WORKING-STORAGE MAP ABOVE THE BAR HEAP MAP (for LP(64)

WORKING-STORAGE MAP BELOW THE BAR HEAP MAP (for LP(32))

WSA24 MAP BELOW THE LINE HEAP MAP

AUTOMATIC MAP STACK STORAGE MAP

*** General purpose registers used: 1111111111111000
*** Floating point registers used: 1100000000000000
*** Vector registers used: 11000000000000000000000000000000
*** Size of storage acquired: 704
*** Size of executable code: 2966

AMODE 64 – Other considerations (cont.)

24

PPA4 and finding WORKING-STORAGE
section in 64bit

 The layouts of PPA1, PPA2 and PPA3 remain the same between
AMODE 31 and AMODE 64

 There is a new layout for PPA4
 The information in PPA4 is needed to find the WORKING-

STORAGE section
 The AMODE 64 PPA4 layout is included in the Technical Note for

COBOL 6.3 Runtime Enablement PTF
 It is also in the latest Programming Guide

 Note: Refer to the Technical Note for COBOL 6.3 Runtime
Enablement PTF
A. SCEELKED and SCEERUN datasets for Enterprise COBOL 6.3
B. Updates in the LE Vendor Interface Guide for PPA4 layout
C. Steps to locate the WORKING-STORAGE section of COBOL V5 and

later programs

25

 Storage allocation for the following COBOL data types depends on the setting of
the LP compiler option. They are 4 bytes when LP(32) is in effect, they are 8
bytes when LP(64) is in effect:
 USAGE POINTER (also the ADDRESS OF and LENGTH OF special registers, which implicitly

have this usage)
 USAGE FUNCTION-POINTER
 USAGE OBJECT REFERENCE
 USAGE INDEX

• If the SYNCHRONIZED clause is specified for a data item that has one of the
usages shown above, the item is aligned on a full-word boundary if LP(32) is in
effect, or on a double-word boundary if LP(64) is in effect. (This applies to
PROCEDURE-POINTER as well).

 Index-names are not data-names they are compiler generated and managed
special registers for the use of this object program only. However, there are
operations that can be specified between an index-name and a data-name. For
example, there can be operations between an index-name and a USAGE INDEX
data item. If LP(64) is in effect, index names will be larger than with LP(32).

AMODE 64 – Storage allocation

26

 LENGTH OF special register

 If LP(32) is in effect, the LENGTH OF special register has this
implicit definition:

PICTURE 9(9) USAGE IS BINARY

 If LP(64) is in effect, the LENGTH OF special register has this
implicit definition:

PICTURE 9(18) USAGE IS BINARY

 Intrinsic functions:

 If LP(32) is in effect, the returned value of the LENGTH, UPOS,
UVALID, ULENGTH and USUPPLEMENTARY intrinsic function
is a 9-digit integer. If LP(64) is in effect, the returned value is an
18-digit integer.

AMODE 64 – Storage allocation (cont.)

27

 A data item defined with USAGE IS POINTER-32 is a pointer data item. A
POINTER-32 data item can be used in both LP(32) and LP(64) programs. It is a 4-
byte elementary item regardless of the LP compiler option setting.

 You can use POINTER-32 data items to accomplish limited base addressing.
Pointer data items can be compared for equality or moved to other pointer items.

 Note: We will not support PROCEDURE-POINTER-32 and FUNCTION-POINTER-32 as the
code CSECTs of Language Environment must reside below the bar.

 POINTER-32 can be used wherever POINTER data item can be used. POINTER-
32 can be set to a POINTER data item and vice versa. POINTER-32 data item can
be compared to a POINTER data item.

 When the LP(32) compiler option is in effect, USAGE POINTER and USAGE
POINTER-32 are synonyms. A POINTER-32 data item behaves exactly the same
as a POINTER data item as-if the POINTER-32 keyword is replaced by the
POINTER keyword in the compilation.

AMODE 64 – POINTER-32 data item

28

 The ALLOCATE statement obtains dynamic storage.

Format

>>-ALLOCATE--+-arithmetic-expression-1--CHARACTERS-+------------>
'-data-name-1-------------------------'

>--+-------------+--+----------------+-------------------------->
'-INITIALIZED-’ '-LOC--integer-1-'

>--+------------------------+----------------------------------><
'-RETURNING--data-name-2-’

Note:

• The LOC phrase controls how ALLOCATE acquires storage:
 LOC 24 causes ALLOCATE to acquire storage below the 16MB line
 LOC 31 causes ALLOCATE to acquire storage below the 2GB bar
 LOC 64 causes ALLOCATE to acquire storage above the 2GB bar

• If LOC 64 is specified and data-name-2 references a USAGE POINTER-32 data item, a diagnostic
message will be issued. The size of the data item is too small for the 64bit address.

• If the LOC phrase is omitted and data-name-2 references a USAGE POINTER data item:

1. If LP(64) is in effect, the allocated storage will be above the 2 GB bar
2. Otherwise, the allocated storage will be below the 2 GB bar

• If the LOC phrase is omitted and data-name-2 references a USAGE POINTER-32 data item, the

allocated storage will always be below the 2 GB bar regardless of the LP compiler option.

AMODE 64 – ALLOCATE statement changes

29

 The FREE statement releases dynamic storage that was
previously obtained with an ALLOCATE statement..

Format
.--------------.
V |

>>-FREE-+--data-name-1-+---------------------------------------><

 Additional syntax rules for data-name-1 are as follows:

 data-name-1 must be defined as USAGE POINTER or USAGE
POINTER-32.

AMODE 64 – FREE statement changes

30

 The CALL statement transfers control from one program to another
within a run unit. In addition to existing syntax rules, the following
rules apply in AMODE 64 mode:

1. Static, Dynamic, and DLL calls can be used to call other AMODE 64
Language Environment conforming programs

2. AMODE 64 COBOL programs cannot be called by non-Language
Environment conforming programs

 Assembler programs using LOAD and then branch to the entry point of the
subprogram will not work. Instead, use the LE macro CEEFETCH and call
AMODE 64 COBOL programs

3. Parameter passing convention is XPLINK
 The LE runtime option XLPLINK behavior is always in effect

AMODE 64 – CALL statement changes

31

 Predefined compilation variable IGY-LP gives the setting
of the LP compiler option
 values are 32 or 64

 The variable can be used in conditional compilation
directive as shown in the sample code below:

>>IF IGY-LP = 64
ALLOCATE 100 CHARACTERS

LOC 64
RETURNING WS-P1.

>>END-IF

AMODE 64 – Predefined compilation variable
IGY-LP

32

 I/O

 QSAM and VSAM files created by AMODE 31 programs can be
accessed (read, write and rewrite) by AMODE 64 programs, and vice-
versa. Data files are fully compatible between AMODE 64 and AMODE
31 programs.

 Note: Under the covers, macros provided by DFSMS have to run
under AMODE 31/24. The runtime library will handle AMODE
switching between the generated code and DFSMS. The record buffer
also needs to be below the bar. The runtime library will allocate
storage for FD records.

Code for I/O declarative sections are treated by the compiler as if they
are nested subprograms (similar to the handling of SORT
INPUT/OUTPUT procedure). This simplifies the transfer of control to
the declarative sections. The external behavior behavior of the COBOL
program is not affected.

AMODE 64 – Other considerations

33

Dynamic-length Data Items

34

• A data item where the length may change at runtime depending on the
size of the data being moved into it.

• Data description entry syntax for the DYNAMIC LENGTH clause:

>>---DYNAMIC---+--------+--+------------------------+---<<
| | | |
+-LENGTH-+ +-LIMIT-+----+-integer-1-+

| |
+-IS-+

• Example data description entries

01 MY-DYN PIC X DYNAMIC.
01 DLEI-02 PIC X DYNAMIC LIMIT 500.

• The LENGTH keyword is optional.
• The LIMIT phrase specifies the maximum length of the data item.

• The data item will not grow past this limit.
• If a sender is longer than the receiver LIMIT value then the data will

be truncated on the right.
• integer-1 defaults to 999999999 if the LIMIT phrase is not specified.

Dynamic-length Data Items - Overview

35

 When a dynamic-length elementary item is the receiving
operand in a COBOL statement, the compiler generates
code to allocate a data buffer at runtime to contain the
data. A new data buffer may be allocated if an existing
one was not large enough to contain the new data (in
which case the old data buffer will be freed).

 Dynamic-length elementary items - general usage rules.
• They may not be variably-located or located within an

OCCURS DEPENDING ON table.
• They cannot be REDEFINED or RENAMED.
• They cannot be JUSTIFIED RIGHT.
• Their address cannot be taken with the ADDRESS-OF

special register

Dynamic-length Data Items - Overview

36

 There are now two kinds of data items: fixed-length items and dynamic-
length items. Dynamic-length elementary elementary items and groups
that contain dynamic-length elementary items are dynamic-length
items. Everything else (including OCCURS DEPENDING ON tables)
are fixed-length items.

 Any comparisons involving dynamic-length group items are not yet
supported (see continuous delivery)

 When you compare a dynamic-length item with a fixed-length item, the
comparison follows the normal comparison rules (extend and pad the
shorter operand on the right with spaces, then compare).

 When you compare two dynamic-length elementary items, there are
new rules:

• The lengths are compared first. Depending on the comparison
operator (EQ, NEQ, GT, LT, GTE, LTE), the comparison may result in
a true or false result before any characters are examined.

• If the length comparison passes, the characters are examined.

Dynamic-length Data Items - Overview

37

• Example comparison between two dynamic-length elementary items

*> DL-A is length 5, DL-B is length 4
*> Notice a space at the end of DL-A
1 DL-A PIC X DYNAMIC VALUE 'abcd '.
1 DL-B PIC X DYNAMIC VALUE 'abcd'.

IF DL-A = DL-B THEN
DISPLAY 'DL equal'

ELSE
DISPLAY 'DL not equal'

END-IF

Output is:
DL not equal

Dynamic-length Data Items - Overview

38

• Contrast with comparison between two fixed-length elementary items

*> FL-A is length 5, FL-B is length 4
*> Notice a space at the end of FL-A
1 FL-A PIC X(5) VALUE 'abcd '.
1 FL-B PIC X(4) VALUE 'abcd'.

IF FL-A = FL-B THEN
DISPLAY 'FL equal'

ELSE
DISPLAY ‘FL not equal'

END-IF

Output is:
FL equal

Fixed-length Data Items - Review

39

 The following are supported for dynamic-length items

• In the DATA DIVISION
• Dynamic-length elementary items of class and category

alphanumeric, with PICTURE X or PICTURE U.
• Level 01, 02-49, and level 77.
• The VALUE clause is allowed.
• The LIMIT phrase is allowed.
• Dynamic-length elementary items in an OCCURS table.

• Not OCCURS DEPENDING ON
• WORKING-STORAGE and LOCAL-STORAGE sections.

• In the PROCEDURE DIVISION
• Reference modification and subscripting.
• Using dynamic-length elementary items in the MOVE

statement as a sender and/or receiver.
• Using dynamic-length elementary items in relation

conditions in IF and EVALUATE statements.

Dynamic-length Items – Available support

40

Also in the PROCEDURE DIVISION
 Intrinsic functions are supported except for MIN

and MAX
 The LENGTH OF special register is supported

(note: LENGTH OF a dynamic-length item that is a
table element is NOT supported)
• Class conditions are supported
• The STOP RUN, CANCEL, EXIT PROGRAM,

and GOBACK statements are supported
• In the appropriate context, the compiler will

generate code to free any allocated buffers
for dynamic-length elementary items with
data description entries in the WORKING-
STORAGE SECTION.

Dynamic-length items – Available support

41

 Also in the PROCEDURE DIVISION

• The STRING statement is supported.
• Users may mix-and-match fixed length and dynamic-length items

as senders and/or delimiters.
• The receiver may be a dynamic-length elementary item.
• The WITH POINTER phrase may point to a character position

outside of the existing receiver data area, in which case the
dynamic-length receiver will be appropriately padded and re-
sized. (The pointer position must still be within the dynamic-
length receiver LIMIT value).

• The UNSTRING statement is supported.
• Users may mix-and-match fixed length and dynamic-length items

as receivers and/or delimiters.
• The sender may be a dynamic-length elementary item.
• The WITH POINTER phrase may point to a character position

outside of the existing receiver data area, in which case the
dynamic-length receiver will be appropriately padded and re-
sized. (The pointer position must still be within the dynamic-
length receiver LIMIT value).

Dynamic-length Items – Available support

42

 The following new syntax is available
• SET LENGTH OF identifier-1 TO identifier-2

• identifier-1 must be a dynamic-length elementary item.
• identifier-2 must be a numeric item or a numeric literal.
• Allows setting the length of a dynamic-length elementary item.
• The value of identifier-2 must be greater than or equal to 0, and

less than or equal to the value of the dynamic-length elementary
item LIMIT.

• CALL ... USING AS FIXED LENGTH integer-1 phrase
• Allows passing dynamic-length elementary items as if they were

fixed length items of length integer-1. The called program may
receive these arguments as fixed-length PIC X(integer-1) items.

• The AS FIXED LENGTH phrase is only allowed to be specified
with dynamic-length elementary items.

• If the length of the item is shorter than integer-1, then the item
will be extended and padded with blanks up to integer-1.

• After the CALL statement, the length of integer-1 will remain the
same as before the call (regardless of the value of integer-1).

Dynamic-length Items – Available support

43

 Dynamic-length items are not allowed in the following cases at
GA. Work will continue and these items are in plan for
subsequent continuous delivery releases.
 ACCEPT format 1
 INITIALIZE, SEARCH, INSPECT
 XML and JSON support
 Dynamic-length group items in statements
 PROCEDURE DIVISION USING
 Dynamic-length structure names in the ENVIRONMENT

division (not group names)
 National (PIC N) with the DYNAMIC-LENGTH clause
 Intrinsic functions MIN and MAX
 GLOBAL, EXTERNAL

Dynamic-length Items - Limitations

44

UTF-8 native data type support

45

 A new USAGE is available: UTF-8
 USAGE UTF-8 is a new UTF-8 “class” of data as well as a new

UTF-8 “category” of data.
 A new picture symbol ‘U’ is introduced that indicates UTF-8

character data.
 Enterprise COBOL treats a single UTF-8 “character” as equivalent

to a single Unicode code point.
 UTF-8 characters are different from NATIONAL or DBCS

characters in that the byte length of each UTF-8 character varies
between 1 and 4 bytes.

 ASCII characters are a subset of UTF-8 and are always
encoded in UTF-8 with a single byte.

 Most commonly used characters can be encoded in UTF-8
with 1-3 bytes (e.g., symbols in the Unicode “Basic
Multilingual Plane” (BMP)).

UTF-8 data item support – Overview

46

 Three methods of defining UTF-8 data items will be supported:

 Method 1: Fixed character-length UTF-8 items

01 u1 PIC U(n) [USAGE UTF-8]. *> USAGE is optional

 This defines a fixed character-length UTF-8 data item that holds
exactly n UTF-8 “characters” that occupy between n and 4*n bytes.
 In move operations, UTF-8 data items are always padded

with UTF-8 spaces to a character length of n. Truncation is
done on UTF-8 character boundaries.

 NOTE: While 4 * n bytes are always reserved for this type of
UTF-8 item, the number of bytes that are actually in use at
any one time varies between n and 4*n bytes due to the
length of UTF-8 characters (between 1 and 4 bytes each).
 When a fixed-character length UTF-8 item is used as a

receiver in a COBOL statement, unused bytes are always
padded with the UTF-8 blank character (x‘20’).

UTF-8 data item support

47

 Method 2: Fixed byte-length UTF-8 items

 01 u2 PIC U BYTE-LENGTH [IS] n [USAGE UTF-8].

• This defines a fixed byte-length UTF-8 data item that
holds exactly n bytes of valid UTF-8 data and <= n UTF-8
characters.

• When used as receivers in COBOL statements, these
UTF-8 data items are always padded with UTF-8 spaces
to a byte length of n.

• Truncation is performed at UTF-8 character boundaries.

 Fixed byte-length UTF-8 data items are provided for ease of
interoperability with Db2, MQ and are strongly recommended
to be used when a UTF-8 SORT/MERGE key is needed.

UTF-8 data item support

48

 Method 3: Dynamic length UTF-8 items

01 u3 PIC U DYNAMIC LENGTH [LIMIT n] [USAGE UTF-8].

 Defines a dynamic length (dynamically sized) UTF-8 data item
 These UTF-8 data items have no fixed number of characters and

no fixed number of bytes unless the LIMIT clause is specified
 Dynamic length UTF-8 data items are not padded during MOVE

operations
 Dynamic length UTF-8 data items are only truncated if the

specified limit (or max limit for the type) is reached. Truncation is
done on UTF-8 character boundaries.

UTF-8 data item support

49

 Two new types of literals are supported:

 Type 1: Basic UTF-8 literals

 U’character-data’

 Character-data is converted from EBCDIC to UTF-8.
 Character-data may contain double-byte EBCDIC

characters, but those characters must be delimited by
shift-out and shift-in characters.

 The maximum number of Unicode code points that can
be represented in a basic UTF-8 literal can vary
depending on the size of each UTF-8 character.
However, a maximum of 160 bytes after conversion to
UTF-8 is allowed before truncation occurs.

UTF-8 data item support

50

 Type 1: Basic UTF-8 literals (cont.)

 Character-data can contain the following Unicode escape
sequences:

 \uhhhh, where each h represents a hexadecimal digit in the
range '0' to '9', 'a' to 'f' and 'A' to ‘F’. Valid range is \u0000
through \uFFFF.

 This Unicode escape sequence indicates a Unicode code
point from the Basic Multilingual Plane (BMP).

 \U00hhhhhh, where each h represents a hexadecimal digit in
the range '0' to '9', 'a' to 'f' and 'A' to 'F’. Valid range is
\U00000000 through \U0010FFFF.

 This Unicode escape sequence can represent any valid
Unicode code point, including code points from outside
the Basic Multilingual Plane (e.g., an emoji symbol).

UTF-8 data item support

51

 Type 1: Basic UTF-8 literals (cont.)

 Character-data can contain the following Unicode escape
sequences:

 Wherever a Unicode escape sequence appears in a basic
UTF-8 literal, it is replaced by the compiler with the
corresponding UTF-8 encoding for the Unicode code point
corresponding to the escape sequence. This makes it
convenient to represent general Unicode code points in the
literal using only EBCDIC characters.

e.g., u'caf\u00E9' represents the string 'café'

UTF-8 data item support

52

 Type 2: Hexadecimal UTF-8 literals

 ux'hexadecimal-digits’

 hexadecimal-digits are converted to a sequence of
bytes to be used verbatim as the UTF-8 literal value.

 There is a minimum of 2 hexadecimal digits and up to a
maximum of 320 hexadecimal digits allowed.

 The sequence of bytes is validated to ensure it
represents a legal sequence of UTF-8 bytes.

UTF-8 data item support

53

 UTF-8 move rules
 The following categories of data items are allowed as

senders in a MOVE statement with a category UTF-8
receiver data item
 UTF-8
 Alphabetic
 Alphanumeric
 Alphanumeric-edited
 Numeric-edited (incl. usage DISPLAY and usage

NATIONAL)
 National
 National-edited

 When a legal sender in a move to UTF-8 is not already
of category UTF-8, a conversion of the sender data to
UTF-8 is done automatically during the move
processing

UTF-8 data item support

54

 UTF-8 move rules (cont.)
 When a category UTF-8 data item is used as a sender in a

MOVE statement, the following category of receivers are
permitted:
• UTF-8
• National

 When a category UTF-8 data item is used as a sender in a
MOVE statement and the receiver is category NATIONAL,
the UTF-8 data item is converted to NATIONAL
automatically as part of the move processing.

 Truncation is always done for UTF-8 receivers on character
boundaries, so that UTF-8 data items always contain valid
UTF-8 data.

UTF-8 data item support

55

 UTF-8 comparison rules
 A category UTF-8 data item may be compared to items in

the following categories:
 UTF-8
 Alphabetic
 Alphanumeric
 Alphanumeric-edited
 Numeric-edited (incl. usage DISPLAY and usage

NATIONAL)
 National
 National-edited

 When a compatible non-UTF-8 category item is compared
with a category UTF-8 item, a conversion of the non-UTF-8
item to UTF-8 is done automatically during the compare
processing

UTF-8 data item support

56

 Statements that accept UTF-8 data items in V6.3:

 MOVE
 INITIALIZE
 IF / EVALUATE
 SORT / MERGE (UTF-8 data items may be used as sort keys)
 ALLOCATE / FREE

 The following statements do NOT accept UTF-8 data items:

 ACCEPT
 INSPECT
 STRING
 UNSTRING
 JSON GENERATE / PARSE
 XML GENERATE / PARSE

UTF-8 data item support

57

 The following intrinsic functions can have UTF-8 arguments:
 BIT-OF
 BYTE-LENGTH
 DISPLAY-OF
 HEX-OF
 LENGTH
 LOWER-CASE
 NATIONAL-OF
 TRIM
 UPOS, ULENGTH, UPPER-CASE, USUBSTR, UVALID,

USUPPLEMENTARY

 Figurative constants are supported in UTF-8 moves and compares,
except for NULL:

 SPACE / SPACES ZERO / ZEROES QUOTE / QUOTES
 LOW-VALUE / LOW-VALUES HIGH-VALUE / HIGH-VALUES

UTF-8 data item support

58

• The following docs have been updated with UTF-8 information.
• Programming Guide:

• Chapter 7: Processing data in an international environment -> Processing UTF-8
data using UTF-8 data types

• Language Reference:
• Chapter 3. Character-strings: COBOL words and literals -> Literals -> UTF-8

literals
• Chapter 18. DATA DIVISION data description entry -> USAGE clause -> UTF-8

phrase

UTF-8 – Documentation

59

COBOL V6.3 Miscellaneous
Changes

60

z/OS versions supported

The following z/OS versions are supported with Enterprise COBOL V6.3

 z/OS 2.2 (no AMODE 64)
 z/OS 2.3
 z/OS 2.4 (GA: Sept 30, 2019)

61

New Reserved words

The following reserved words were added in Enterprise COBOL V6.3

 LIMIT
 POINTER-24 (potential reserved word)
 POINTER-31 (potential reserved word)
 POINTER-32
 POINTER-64 (potential reserved word)
 UTF-8

62

Predefined compilation variable changes

 Compilation variables are defined automatically by the compiler and
typically reflect things like the value of compiler options (e.g., SQL,
SQLIMS, CICS, OPT, etc.) or things like the compiler version. They are
read-only.

 IGY-LP was added in V6.3

 IGY- was added to each of the other predefined compilation variables in
V6.3
 Old variables without the IGY- prefix are tolerated, but it is suggested that

the IGY- prefix be used when you defining the compilation variables to help
identify Enterprise COBOL specific variables

63

Predefined compilation variable changes
Predefined compilation
variable name

Value

IGY-ARCH The value of the ARCH option that was used to compile the
program: 8, 9, 10, 11, 12 or 13.

IGY-CICS B’1’ if CICS compiler option specified; B’0’ otherwise.

IGY-COMPILER-VRM An integer in the format VVRRMM, where:
• VV represents the version number.
• RR represents the release number.
• MM represents the modification number.
For example, compiler version 6.3.0 has a COMPILER-VRM value
of 060300.

IGY-DLL B’1’ if DLL compiler option is specified; B’0’ otherwise.

IGY-DYNAM B’1’ if DYNAM compiler option is specified; B’0’ otherwise.

IGY-LP The value of the LP option that is used to compile the program: 32
or 64.

IGY-OPTIMIZE Numeric value representing the value of the OPTIMIZE compiler
option.

IGY-SQL B’1’ if SQL compiler option is specified; B’0’ otherwise.

IGY-SQLIMS B’1’ if SQLIMS compiler option is specified; B’0’ otherwise.

IGY-THREAD B’1’ if THREAD compiler option is specified; B’0’ otherwise.

64

 In the Pseudo Disassembler section of the listing, at the end of a program (CSECT), the
text "Size of dynamic storage" is changed to "Size of storage acquired". For example:

 Some of the section heading in the compilation listing is changed in COBOL V6.3. This
affects LP(64) and LP(32).

Existing Section Name V6.3 Section Name

STATIC MAP INITIAL HEAP STORAGE MAP

WORKING-STORAGE MAP ABOVE THE BAR HEAP MAP (for LP(64)

WORKING-STORAGE MAP BELOW THE BAR HEAP MAP (for LP(32))

WSA24 MAP BELOW THE LINE HEAP MAP

AUTOMATIC MAP STACK STORAGE MAP

*** General purpose registers used: 1111111111111000
*** Floating point registers used: 1100000000000000
*** Vector registers used: 11000000000000000000000000000000
*** Size of storage acquired: 704
*** Size of executable code: 2966

Compiler Listing changes

65

CEEDUMP changes

6.2 6.3

66

CEEDUMP changes

where are they located and fit together? – Refer to the recent updates in LE Vendor interface

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.ceev100/IGZXAPI.htm

Note: PROGRAM STATIC and WORKING-STORAGE are the same.
67

CEEDUMP changes – With PH15116 Applied

CEEDUMP (6.3 64bit CEEDUMP can be still buggy and needs to be improved)

68

z/OS Academy: June 15-19, 2020
September 21-25, 2020

• On-site event in Poughkeepsie, NY with
lectures, demos, and hands-on instruction

• Designed for z/OS System Programmers with
2 – 5 years experience

• Networking opportunities with z/OS developers
• Eligible for z/OS System Programmer –

Advanced digital badge

To Register, please email
David Raften at Raften@us.ibm.com
Ryan Rawlins at RRawlins@us.ibm.com

FREE!
You need to just cover travel expenses

Topics may include:
Pervasive Encryption z/OSMF
Zowe™ Analytics
z/OS Upgrade zEscape Room
Cloud Provisioning Troubleshooting
SMP/E Tours
And more selected topics!

Resources

70

Resources
COBOL Marketplace and Documentation Library

 Enterprise COBOL product pages have been replaced by Marketplace pages:
https://www.ibm.com/us-en/marketplace/ibm-cobol

 Enterprise COBOL Documentation Library:
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Enterprise COBOL for z/OS V6.3 Fact Sheet
http://www-01.ibm.com/support/docview.wss?uid=swg22004707

Enterprise COBOL Migration Assistant
https://cobol-migration-assistant.mybluemix.net/

COBOL Portal on CTWEB: https://ctweb.torolab.ibm.com/wiki/index.php/COBOL_Portal

Test & Service wiki page (link from the CTWEB COBOL Portal):
https://ctweb.torolab.ibm.com/wiki/index.php/Enterprise_COBOL_Test_%26_Service
These slides will end up there too

71

Questions?

72

• The following docs have been updated with AMODE 64 (64-bit)
information.

• Programming Guide:
• Chapter 17: Compiling, binding and running COBOL AMODE 64 applications

• Chapter 18: Compiler options -> LP

• Chapter 25: Developing AMODE 64 programs

• Language Reference:
• Chapter 18. DATA DIVISION data description entry -> USAGE clause ->

POINTER-32 phrase
• Appendix B. Compiler Limits

AMODE 64 – Documentation

73

• The following docs have been updated with Dynamic Length Elementary
Item information.

• Language Reference:
• Chapter 16. DATA DIVISION overview -> Data relationships -> Dynamic-length

items
• Chapter 18. DATA DIVISION data description entry -> DYNAMIC LENGTH clause

Dynamic Length Elementary Items – Documentation

74

