
IBM Business Automation Workflow User
Management Services on containers

IBM

Contents

User Management Services on Containers.. 1

Preparing to install User Management Services.. 1
Preparing the UMS database... 1

Preparing a Db2 database.. 1
Preparing an Oracle database..2
Preparing an MS SQL database.. 3
Preparing a PostgreSQL database..4

Configuring the UMS dedicated pod option...5
Creating the UMS database admin secret... 5
Securing communications with the UMS database...6
Securing communications with UMS... 8

Configuring User Management Services..9

Completing post-deployment tasks for User Management Service.........................15
Delegating authentication to a Security Assertion Markup Language (SAML) identity provider............. 15
Delegating authentication to an OIDC Identity Provider.. 18
Configuring UMS routes for load balancing...20

Using the User Management Services... 20
UMS single sign-on.. 20

Invoking OAuth 2.0 protected APIs...22
UMS Teams...29

Managing teams... 30
UMS Teams access control.. 31
UMS Teams REST API...33

User Management Services configuration parameters...49
UMS data source parameters.. 49
UMS parameters.. 52
UMS advanced parameters..65

ii

User Management Services on Containers

This document provides information for configuring and using User Management Services (UMS) in
Business Automation Workflow on containers.

Before you begin
The information in this document is complementary to the information contained in .The details in this
document are applicable to 21.0.3 and later versions of Business Automation Workflow

Preparing to install User Management Services

UMS includes two options: UMS SSO and UMS Teams. If you want your app users to benefit from single
sign-on and shared teams, you must install UMS before you install any apps that rely on it. Before you
deploy User Management Service, you must prepare your environment. These procedures include setting
up the database and creating secrets.

Before you begin
Make sure that you performed LDAP Configuration. In addition, if you want all communications between
UMS and your LDAP server to be encrypted, perform Preparing for SSL-enabled LDAP.

Procedure
To prepare to install User Management Services, perform the following actions:
1. Perform “Preparing the database for the User Management Services” on page 1.
2. Perform “Configuring the User Management Services dedicated pods option” on page 5.
3. Perform “Creating the UMS database admin secret ” on page 5.
4. Perform “Securing communications with the UMS database” on page 6.
5. Perform “Securing communications routes with User Management Services (UMS)” on page 8.

Preparing the database for the User Management Services
Create the database for UMS single sign-on and teams options.

About this task
The default Derby database is not suitable for a production system. When selected, the Derby database is
created automatically.

If you are not using a Derby database, perform the preparati0on task for your database:

Preparing a Db2 database for the User Management Services
Create dB2 databases for UMS single sign-on and teams options, and optional failover servers.

Procedure

1. Create the UMS SSO option database.
For example, you can create a database named UMSDB by running the following command:

db2 create database UMSDB automatic storage yes using codeset UTF-8 territory US pagesize
32768

User Management Services on Containers 1

https://www.ibm.com/docs/BAW_22.0.2_test/com.ibm.wbpm.imuc.container.doc/ums-topics/ref_ums_ldap.html
https://www.ibm.com/docs/SSYHZ8_23.0.1/com.ibm.dba.install/op_topics/tsk_secprep_sslldap.html

2. Optional: Create a separate database for the UMS Teams option if you do not want it to share the UMS
SSO oauth database. For example, named UMSTSDB.

3. Optional: Create one or more failover servers for the UMS database(s).
To cover the possibility that the primary server is unavailable during the initial connection attempt, you
can configure a list of failover servers, as described in Configuring client reroute for applications that
use DB2® databases.

4. Make a note of the datasource information that you will need later to add to the
datasource_configuration section of the custom resource:

datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: db2
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 50000
 dc_ums_oauth_name: UMSDB
 dc_ums_oauth_schema: OAuth_DB_Schema
 dc_ums_oauth_driverfiles: db2jcc4.jar, db2jcc_license_cu.jar
 dc_ums_oauth_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_oauth_alternate_ports: "50443, 51443"
 dc_ums_oauth_ssl: true
 # teamserver database config
 dc_ums_teamserver_type: db2
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 50000
 dc_ums_teamserver_name: UMSTSDB
 dc_ums_teamserver_driverfiles: db2jcc4.jar, db2jcc_license_cu.jar
 dc_ums_teamserver_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_teamserver_alternate_ports: "50443, 51443"
 dc_ums_teamserver_ssl: true

Important:

If you do not have a separate teams database, UMSTSDB, specify identical values for the
dc_ums_teamserver_ parameters as for the dc_ums_oauth_ ones.

If you have multiple failover servers, for example,

• server1.db2.company.com on port 50443
• server2.db2.company.com on port 51443

You will specify them as comma-separated lists, for example:

 dc_ums_oauth_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_oauth_alternate_ports: "50443, 51443"
 ...
 dc_ums_teamserver_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_teamserver_alternate_ports: "50443, 51443"

Preparing an Oracle database for the User Management Services datasource
Create Oracle databases for User Management Services (UMS) single sign-on and teams options, and
optional failover servers.

Procedure

1. Create a user, for example, C##UMS, to represent the schema and grant the user privileges to create
resources:

sqlplus sys AS sysdba;

CREATE USER C##UMS IDENTIFIED BY secret_password;

GRANT CREATE TABLE TO C##UMS;
GRANT CREATE SESSION TO C##UMS;
GRANT CREATE SEQUENCE TO C##UMS;
GRANT UNLIMITED TABLESPACE TO C##UMS;

2 IBM Business Automation Workflow User Management Services on containers

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_config_reroute_db2.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_config_reroute_db2.html

Where secret_password is the password that you must specify with the user in the ibm-baw-ums-
secret secret.

2. Make a note of the following datasource information:

• host_name is the name of your database host
• SID is the SID of your database, for example orcl.

Tip: To determine the SID of your database, on the database host perform:

SELECT sys_context('userenv','instance_name') FROM dual;

The response provides the SID, for example:

SYS_CONTEXT('USERENV','INSTANCE_NAME')
--
orcl

• DB_user_ID is your database user ID, for example C##UMS
• If you connect to an Oracle Real Application Clusters (RAC) environment using Single Client Access

Name (SCAN), note DB_service_name, which is the database service name for the datasource, for
example ORCL.

Tip: To determine the service name, on the SCAN host perform:

select name from v$database;

The response provides the service name, which is case-sensitive, for example:

NAME

ORCL

Later, you will need update the datasource_configuration section of the custom resource:

 datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: oracle
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 1521
 dc_ums_oauth_name: SID
 dc_ums_oauth_schema: DB_user_ID
 dc_ums_oauth_oracle_service_name: DB_service_name
 dc_ums_oauth_ssl: false
 dc_ums_oauth_driverfiles: ojdbc8.jar, orai18n.jar
 # teamserver database config
 dc_ums_teamserver_type: oracle
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 1521
 dc_ums_teamserver_name: SID
 dc_ums_teamserver_oracle_service_name: DB_service_name
 dc_ums_teamserver_ssl: false
 dc_ums_teamserver_driverfiles: ojdbc8.jar, orai18n.jar

Important: For Oracle RAC, specify the host name of the SCAN listener as the value of the
dc_ums_oauth_host and dc_ums_teamserver_host parameters.

Preparing an MS SQL database for the User Management Services
datasource

Configure a MS SQL database for User Management Services (UMS) single sign-on and teams options.

Procedure

1. Create your MS SQL database, for example by issuing the command:

Preparing to install User Management Services 3

create database umsdb

For more information, refer to your database documentation.
2. Make a note of your values for the following configuration parameters that you will need later to add to

the datasource_configuration section of the custom resource:

datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: sqlserver
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 1433
 dc_ums_oauth_name: UMSDB
 dc_ums_oauth_driverfiles: mssql-jdbc-8.2.2.jre8.jar
 dc_ums_oauth_ssl: true
 # teamserver database config
 dc_ums_teamserver_type: sqlserver
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 1433
 dc_ums_teamserver_name: UMSDB
 dc_ums_teamserver_driverfiles: mssql-jdbc-8.2.2.jre8.jar
 dc_ums_teamserver_ssl: true

Where host_name is the host name of the database server, 1433 is the default port, and UMSDB is the
name of the database.

Preparing a PostgreSQL database for the User Management Services
datasource

Configure a PostgreSQL database for User Management Services (UMS) single sign-on and teams options.

Procedure
1. Using psql create a database and grant your database user privileges to create resources:

CREATE DATABASE umsdb OWNER db_user ENCODING UTF8;
GRANT ALL PRIVILEGES ON DATABASE umsdb to db_user;

Where umsdb is the name of the database and db_user is the database user.
2. Make a note of your values for the following configuration parameters that you will need later to add to

the datasource_configuration section of the custom resource:

 datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: postgresql
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 5432
 dc_ums_oauth_name: umsdb
 dc_ums_oauth_driverfiles: postgresql-42.2.14.jar
 # teamserver database config
 dc_ums_teamserver_type: postgresql
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 5432
 dc_ums_teamserver_name: umsdb
 dc_ums_teamserver_driverfiles: postgresql-42.2.14.jar

Important: If you configured PostgreSQL for high availability following the Patroni architecture
with an HAproxy for load balancing, make sure that you specify the host name and port number
of the HAproxy as the values for dc_ums_oauth_host and dc_ums_teamserver_host and
dc_ums_oauth_port and dc_ums_teamserver_port.

4 IBM Business Automation Workflow User Management Services on containers

Configuring the User Management Services dedicated pods option
User Management Services provides different capabilities. The default is to run each capability in a
dedicated pod so that each capability can scale horizontally as required. It is also possible to have a
single pod that contains all UMS capabilities.

About this task
User Management Services (UMS) provides the following capabilities:

• UMS SSO
• UMS Users and Groups (based on SCIM)
• UMS Teams

By default each capability runs in a dedicated pod so that each capability can scale horizontally as
required, independently of the other capabilities. You can configure these pods individually, based on the
load and resource demand that you expect for each of the capabilities. Alternatively, you can configure all
four capabilities to run a single pod, that can be scaled, but with every pod containing all UMS capabilities.
This option might be appropriate for evaluation or demo purposes.

This is option is selected by the UMS configuration parameter dedicated_pods, which defaults to the
value true, which is better suited for production environments.

Procedure
Later, when you are customizing your custom resource file in the task “Configuring User Management
Services” on page 9:
• To have dedicated pods for each UMS capability:

You will use the default dedicated_pods: true option and can adjust any configuration parameters
to suit your requirements for each pod type. For the replica_count, resources, autoscaling and
logs parameters, default values are provided, so it is optional to set their values explicitly.

• To have all UMS capabilities in one pod:
You must specify dedicated_pods: false and specify the configuration parameters for the all-in-
one pod type. For the replica_count, resources, autoscaling and logs parameters, default
values are provided, so it is optional to set their values explicitly.

Creating the UMS database admin secret
To avoid passing sensitive information in configuration files, you must create a secret manually before
you deploy User Management Services (UMS). The secret contains a UMS database admin user, database
users, and passwords.

Procedure
For your database (Db2, Oracle, PostgreSQL or MSSQL), generate the UMS database admin secret ibm-
baw-ums-secret.
1. Copy the following as ums-dba-secret.yaml, then edit it to specify the required user identifiers and

passwords.

apiVersion: v1
kind: Secret
metadata:
 name: ibm-baw-ums-secret
type: Opaque
stringData:
 adminUser: "umsadmin"
 adminPassword: "password"
 oauthDBUser: "oauthDBUser"
 oauthDBPassword: "oauthDBPassword"

Preparing to install User Management Services 5

 tsDBUser: "tsDBUser"
 tsDBPassword: "tsDBPassword"

Where
adminUser / adminPassword

Specify the user and password values for an internal UMS admin user that will be created in a local
user registry. This user must be unique and not exist in the LDAP user registry. If these parameters
are left out, the values will be generated.

oauthDBUser / oauthDBPassword
Specify the user and password for the OAuth (SSO) database.

tsDBUser / tsDBPassword
Specify the user and password for the UMS Teams database. If you do not have a separate
UMS Teams database, specify the same database user ID and password that you specify for
oauthDBUser and oauthDBPassword.

2. Create the secret by running the following command:

oc create -f ums-dba-secret.yaml

3. Make a note of the secret name ibm-baw-ums-secret, that you will need later to specify for the
ums_configuration.admin_secret_name in the custom resource.

Securing communications with the UMS database
To protect communications with the database, you must create a secret that contains the certificate for
the User Management Services (UMS) database.

Procedure
Perform the step for the database type that you use for UMS:
1. If you are using Db2®, create a secret to ensure that all communications between UMS and Db2 are

encrypted:
a) Import the database CA Certificate to UMS and create a secret to store the certificate:

oc create secret generic ibm-baw-ums-db2-cacert --from-
file=cacert.crt=path_to_certificate_PEM_file

Where path_to_certificate_PEM_file is the path to the PEM format certificate file. Do not change the
part --from-file=cacert.crt=.

b) Make a note of the datasource SSL information that you will need later to add to the
datasource_configuration section of the custom resource file:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-db2-cacert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-db2-cacert
 dc_ums_teamserver_ssl: true

2. If you are using Oracle, ensure that all communications between UMS and Oracle are encrypted:
a) Import the database CA Certificate to UMS and create a secret to store the certificate by running

the following command:

oc create secret generic ibm-baw-ums-oracle-cacert --from-file=cacert.crt=path-to-oracle-
certificate-file

Where path-to-oracle-certificate-file is the path to the local copy of the Oracle
certificate file, which must be in PEM format. Do not change the part --from-file=cacert.crt=

6 IBM Business Automation Workflow User Management Services on containers

b) Make a note of the name of the secret, for example ibm-baw-ums-oracle-cacert that you will
need later to add to the dc_ums_datasource section of the custom resource file:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-oracle-cacert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-oracle-cacert
 dc_ums_teamserver_ssl: true

3. If you are using MS SQL, ensure that all communications between UMS and MS SQL are encrypted:
a) Obtain the base-64 encoded X.509 signer certificate of your MS SQL server.
b) Create a configuration file for the secret, for example, named mssql.yaml and add the signer

certificate of the MS SQL server as the value of the property tls.crt for the secret named
ibm-baw-ums-mssql-cert, based on the following example:

apiVersion: v1
kind: Secret
metadata:
 name: ibm-baw-ums-mssql-cert
type: Opaque
stringData:
 tls.crt: |+
 -----BEGIN CERTIFICATE-----
 <Include the MS SQL certificate here>
 -----END CERTIFICATE-----

c) Create a secret that contains the MS SQL certificate by using the following command:

oc create -f mssql.yaml

d) Add the name of the MS SQL certificate to the list of trusted certificates in the custom resource:

shared_configuration:
 trusted_certificate_list:
 - ibm-baw-ums-mssql-cert

During the UMS deployment, the operator adds the MS SQL signer certificate to the truststore of
UMS.

e) In the datasource configuration enable SSL and specify the hostname that is used in certificate.
4. If you are using PostgreSQL, ensure that all communications between UMS and PostgreSQL are

encrypted:
a) Import the database CA Certificate to UMS and create a secret to store the certificate by running

the following command:

oc create secret generic ibm-baw-ums-postgresql-cacert --from-file=cacert.crt=path-to-
postgresql-certificate-file

Where path-to-postgresql-certificate-file is the path to the local copy of the
PostgreSQL certificate file, which must be in PEM format. Do not change the part --from-
file=cacert.crt=.

b) Make a note of the name of the secret, for example ibm-baw-ums-postgresql-cacert that you
will need later to add to the dc_ums_datasource section of the custom resource file:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-postgresql-cacert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-postgresql-cacert
 dc_ums_teamserver_ssl: true

Preparing to install User Management Services 7

Securing communications routes with User Management Services
(UMS)

To protect external routes that client communications use with UMS in a production environment,
you can use an external TLS certificate that is trusted by your clients. For a test
environment without an external TLS certificate, you can let UMS generate certificates using
shared_configuration.root_ca_secret.

Before you begin
Ensure that you have created the shared external TLS certificate secret as described in Providing
certificates for external routes.

Procedure
1. If you are creating a test environment and do not want to deal with certificates, you do not need

to generate any ums_configuration.external_tls_* secrets. Later, by removing them from the
custom resource file, the root_ca_secret will be used to generate an internal TLS secret for all UMS
services and an external TLS secret for each of the routes:
ums-route, ums-sso-route, ums-scim-route, and ums-teams-route.

2. If you are creating a production environment, and you want to use the shared secret
shared_configuration.external_tls_certificate_secret that contains a single HTTPS
wildcard certificate that can secure all routes, you should not define any of the UMS secrets with
names starting with the string ibm-baw-ums-external-tls. When they are not defined, the shared
secret is used, if it is defined.

3. If you are creating a production environment and you do not want to use a shared secret, you must
create one or more secrets that contain TLS certificates that represent the host names or a common
hostname suffix of the routes that your clients connect to.

a. Obtain or generate a TLS certificate that represents the host names or a common hostname suffix
of the routes that your clients will use to connect to UMS:

• ums-route
• ums-teams-route
• ums-scim-route
• ums-sso-route

Perform one of the following:

• Obtain a certificate that is signed by an external certificate authority (CA) that is trusted by your
clients.

• Generate a certificate by using OpenSSL:

i) Create a TLS certificate signing request by executing OpenSSL. Note that the final certificate
should have a Subject Alternative Names (SAN) value that matches the hostname.
Many certificate authorities allow you to specify SANs during the ordering process, otherwise
you must provide the SAN directly in the certificate signing request (CSR).

openssl req -new -newkey rsa:2048 -subj "/CN=UMS" -extensions SAN -days
365 -nodes -out ums.csr -config <(cat /etc/ssl/openssl.cnf <(printf "[SAN]
\nsubjectAltName=DNS:ums.mycluster.com"))

ii) Two files are generated: a private key (privkey.pem) and a certificate signing request that
can be sent to your certificate authority for signing.

b. Use the private key and your certificate authority's response to generate the following secrets

• ibm-baw-ums-external-tls-secret for the ums-route route
• ibm-baw-ums-external-tls-teams-secret for the ums-teams-route route

8 IBM Business Automation Workflow User Management Services on containers

https://www.ibm.com/docs/SSYHZ8_23.0.1/com.ibm.dba.managing/op_topics/tsk_ext_certs.html
https://www.ibm.com/docs/SSYHZ8_23.0.1/com.ibm.dba.managing/op_topics/tsk_ext_certs.html

• ibm-baw-ums-external-tls-scim-secret for the ums-scim-route route
• ibm-baw-ums-external-tls-sso-secret for the ums-sso-route route

If the response from your certificate authority does not include all certificates from its signing
chain, you can provide them in ibm-baw-ums-external-tls-ca-secret.

Create each TLS secret by running the following command:

oc create secret tls ibm-baw-ums-external-tls-secret --cert tls.crt --key tls.key

The result in a YAML structure like the following:

apiVersion: v1
kind: Secret
metadata:
 ...
type: kubernetes.io/tls
data:
 tls.crt: [very long base64 string of certificate]
 tls.key: [very long base64 string of private key]

For each secret, run your YAML file, for example:

oc create -f ums-external-tls-secret.yaml

c. Make a note of the secret names that you will need later to specify in the custom resource for the
ums_configuration.external_tls_* parameters:

ums_configuration:
 hostname:
 ## optional: create routes for backwards compatibility
 backwards_compatibility_routes:
 ## optional for secure communication with UMS
 external_tls_secret_name:
 ## optional for secure communication with UMS
 external_tls_ca_secret_name:
 ## optional for secure communication with UMS
 external_tls_teams_secret_name:
 ## optional for secure communication with UMS
 external_tls_scim_secret_name:
 ## optional for secure communication with UMS
 external_tls_sso_secret_name:

Configuring User Management Services

User Management Services configuration settings are stored in the shared custom resource (CR) file for
operator deployment.

About this task
Provide details for configuration settings that you want, including things that you have already created,
like the names of your persistent volume claims, secrets, and data sources that you created previously
during “Preparing to install User Management Services” on page 1. For more information about the
settings, see “User Management Services configuration parameters” on page 49.

Procedure

1. Edit the ums_configuration section of the custom resource file.
2. Specify the name of the UMS database admin secret that you created for the
ums_configuration.admin_secret_name during, for example ibm-baw-ums-secret.

3. Specify the UMS datasource settings for your database in the datasource_configuration section
of the custom resource.

Configuring User Management Services 9

For example:

• For Db2:

datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: db2
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 50000
 dc_ums_oauth_name: UMSDB
 dc_ums_oauth_schema: OAuth_DB_Schema
 dc_ums_oauth_driverfiles: db2jcc4.jar, db2jcc_license_cu.jar
 dc_ums_oauth_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_oauth_alternate_ports: "50443, 51443"
 dc_ums_oauth_ssl: true
 # teamserver database config
 dc_ums_teamserver_type: db2
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 50000
 dc_ums_teamserver_name: UMSTSDB
 dc_ums_teamserver_driverfiles: db2jcc4.jar, db2jcc_license_cu.jar
 dc_ums_teamserver_alternate_hosts: "server1.db2.example.com, server2.db2.example.com"
 dc_ums_teamserver_alternate_ports: "50443, 51443"
 dc_ums_teamserver_ssl: true

If you created a secret for the Db2 certificate to secure communications between UMS and Db2,
specify the name of the secret, and enable SSL, for example:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-db2-cacert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-db2-cacert
 dc_ums_teamserver_ssl: true

• For Oracle:

 datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: oracle
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 1521
 dc_ums_oauth_name: SID
 dc_ums_oauth_schema: DB_user_ID
 dc_ums_oauth_oracle_service_name: DB_service_name
 dc_ums_oauth_ssl: false
 dc_ums_oauth_driverfiles: ojdbc8.jar, orai18n.jar
 # teamserver database config
 dc_ums_teamserver_type: oracle
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 1521
 dc_ums_teamserver_name: SID
 dc_ums_teamserver_oracle_service_name: DB_service_name
 dc_ums_teamserver_ssl: false
 dc_ums_teamserver_driverfiles: ojdbc8.jar, orai18n.jar

Where host_name is the name of your database host, SID is the SID of your database, for example
UMSDB, DB_user_ID is your database user ID, for example C##UMS.

Important: For Oracle RAC, specify the host name of the SCAN listener as the value of the
dc_ums_oauth_host and dc_ums_teamserver_host parameters.

If you created a secret for the Oracle certificate to secure communications between UMS and
Oracle, specify the name of the secret, and enable SSL, for example:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-oracle-cacert
 dc_ums_oauth_ssl: true
 ...

10 IBM Business Automation Workflow User Management Services on containers

 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-oracle-cacert
 dc_ums_teamserver_ssl: true

• For MS SQL:

datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: sqlserver
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 1433
 dc_ums_oauth_name: UMSDB
 dc_ums_oauth_driverfiles: mssql-jdbc-8.2.2.jre8.jar
 dc_ums_oauth_ssl: true
 # teamserver database config
 dc_ums_teamserver_type: sqlserver
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 1433
 dc_ums_teamserver_name: UMSDB
 dc_ums_teamserver_driverfiles: mssql-jdbc-8.2.2.jre8.jar
 dc_ums_teamserver_ssl: true

Where host_name is the name of your database host, 1433 is the port number, UMSDB is the name
of your database.

If you created a secret for the MS SQL certificate to secure communications between UMS and MS
SQL, specify the name of the secret, and enable SSL, for example, ibm-baw-ums-mssql-cert:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-mssql-cert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-mssql-cert
 dc_ums_teamserver_ssl: true

• For PostgreSQL:

 datasource_configuration:
 dc_ums_datasource: # credentials are read from ums_configuration.admin_secret_name
 # oauth database config
 dc_ums_oauth_type: postgresql
 dc_ums_oauth_host: host_name
 dc_ums_oauth_port: 5432
 dc_ums_oauth_name: umsdb
 dc_ums_oauth_driverfiles: postgresql-42.2.14.jar
 # teamserver database config
 dc_ums_teamserver_type: postgresql
 dc_ums_teamserver_host: host_name
 dc_ums_teamserver_port: 5432
 dc_ums_teamserver_name: umsdb
 dc_ums_teamserver_driverfiles: postgresql-42.2.14.jar

Where host_name is the name of your database host and umsdb is the name of your database.

If you created a secret for the PostgreSQL certificate to secure communications between UMS
and PostgreSQL, specify the name of the secret, and enable SSL, for example, ibm-baw-ums-
postgresql-cacert:

datasource_configuration:
 dc_ums_datasource:
 ...
 dc_ums_oauth_ssl_secret_name: ibm-baw-ums-postgresql-cacert
 dc_ums_oauth_ssl: true
 ...
 dc_ums_teamserver_ssl_secret_name: ibm-baw-ums-postgresql-cacert
 dc_ums_teamserver_ssl: true

Important: If you configured PostgreSQL for high availability following the Patroni architecture
with an HAproxy for load balancing, make sure that you specify the host name and port number
of the HAproxy as the values for dc_ums_oauth_host and dc_ums_teamserver_host and
dc_ums_oauth_port and dc_ums_teamserver_port.

Configuring User Management Services 11

Important: If you do not have a separate teams database, UMSTSDB, specify identical values for the
dc_ums_teamserver_ parameters as for the dc_ums_oauth_ ones.

Trouble: If you plan to use UMS integration with other capabilities, you might encounter
registration failure errors during deployment. This can happen if the UMS deployment is not
ready by the time the other containers come up. The situation resolves in the next operator
loop, so the errors can be ignored.

4. Specify the certificates and routing for secure communications with UMS.

a. If you are creating a test environment and you do not want to deal with certificates, you do not
need the following secrets, and should remove them from the custom resource:

• external_tls_secret_name
• external_tls_ca_secret_name
• external_tls_teams_secret
• external_tls_sso_secret
• external_tls_scim_secret

This causes the root_ca_secret to be used to generate an internal TLS secret for all services
and an external TLS secret for each of the routes ums-route, ums-sso-route, ums-scim-
route, and ums-teams-route.

If you do not specify a root signing CA in the shared_configuration section of the custom
resource, root_ca_secret is generated by the operator with a self-signed root CA.

b. If you are creating a production environment, you can perform one of the following options:

• Specify the secrets that contain a TLS certificate that represents the host names of the routes
that your clients connect to.

• Use the shared secret shared_configuration.external_tls_certificate_secret
that contains a single HTTPS wildcard certificate that can be used to secure all routes.

c. If you upgraded from a version earlier than 21.0.2 and you have existing secrets that contain host
names, they will not conform to the new host name convention, if you do not want to regenerate
the secrets, you can set backwards_compatibility_routes to true to use the old host
naming pattern.

ums_configuration:
 hostname: <ums-host>
 admin_secret_name: ibm-baw-ums-secret
 # optional: create routes for backwards compatibility
 backwards_compatibility_routes: false
 # optional for secure communication with UMS
 external_tls_secret_name: ibm-baw-ums-external-tls-secret
 # optional for secure communication with UMS
 external_tls_ca_secret_name: ibm-baw-ums-external-tls-ca-secret
 # optional for secure communication with UMS
 external_tls_teams_secret_name: ibm-baw-ums-external-tls-teams-secret
 # optional for secure communication with UMS
 external_tls_scim_secret_name: ibm-baw-ums-external-tls-scim-secret
 # optional for secure communication with UMS
 external_tls_sso_secret_name: ibm-baw-ums-external-tls-sso-secret

5. Decide whether you want each UMS service (UMS SSO, UMS Teams, UMS SCIM-based Users and
Groups) to run in its own dedicated pod so that they can scale individually, which is the default. Or
whether you want all UMS services to run in a single pod.
Perform one of the following:
a) For dedicated pods:

i) In the section ums_configuration set

 dedicated_pods: true

12 IBM Business Automation Workflow User Management Services on containers

ii) For the UMS SSO service, default values are specified for the replica_count, resource,
autoscaling and logs parameters. If the default values do not meet your requirements, you
can change the values .

 # Configuration for sso pods
 sso:
 replica_count: 2
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 autoscaling:
 enabled: true
 minReplicas: 2
 maxReplicas: 5
 targetAverageUtilization: 98
 custom_xml:
 logs:
 traceSpecification: "*=info"

iii) For the UMS SCIM-based Users and Groups service, default values are specified for the
replica_count, resource, autoscaling and logs parameters. You can change the values
if the default values do not meet your requirements.

 # configuration for scim pods
 scim:
 replica_count: 2
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 autoscaling:
 enabled: true
 minReplicas: 2
 maxReplicas: 5
 targetAverageUtilization: 98
 custom_xml:
 logs:
 traceSpecification: "*=info"

iv) For the UMS Teams service, default values are specified for the replica_count, resource,
autoscaling and logs parameters. You can change the values if the default values do not
meet your requirements.

 # configuration for teamserver pods
 teamserver:
 replica_count: 2
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 autoscaling:
 enabled: true
 minReplicas: 2
 maxReplicas: 5
 targetAverageUtilization: 98
 custom_xml:
 logs:
 traceSpecification: "*=info"

b) To have all UMS services run in the same pod, set the value dedicated_pods: false.
Default values are specified for the replica_count, resource, autoscaling and logs
parameters. You can change the values if the default values do not meet your requirements.

 #### If dedicated_pods is set to false, the UMS capabilities sso, scim, teamserver
 #### run in the same pods with this configuration.

Configuring User Management Services 13

 replica_count: 2
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 autoscaling:
 enabled: true
 min_replicas: 2
 max_replicas: 5
 target_average_utilization: 98
 custom_xml:
 logs:
 traceSpecification: "*=info"

6. If you want to change the database connection pool sizes, health parameters, or certificate checking
options, you can modify the settings that are described in “UMS advanced parameters” on page 65
by using the custom_xml section.

7. From 23.0.1, JDBC drivers are provided for all databases.

a. For 21.0.3 and previous versions:

If you are using an Oracle, MS SQL, or PostgreSQL database, specify as shown in the
ums_configuration:

use_custom_jdbc_drivers: true
existing_claim_name: operator-shared-pvc

Where operator-shared-pvc is the persistent volume claim that you prepared for the operator.
b. For 23.0.1 and later versions:

If you want to use custom JDBC drivers, instead of the provided default JDBC drivers, specify as
shown in the ums_configuration

use_custom_jdbc_drivers: true
existing_claim_name: operator-shared-pvc

Where operator-shared-pvc is the persistent volume claim that you prepared for the operator.
8. Customize any other UMS configuration settings as necessary to suit your requirements. For example,

in the sections oauth, resources, autoscaling, or logs:

 oauth:
 # optional: full DN of an LDAP group that is authorized to manage OIDC clients, in
addition to primary admin from admin secret
 client_manager_group:
 # optional: full DN of an LDAP group that is authorized to manage app_tokens, in
addition to primary admin from admin secret
 token_manager_group:
 # optional: lifetime of OAuth access_tokens. default is 7200s
 access_token_lifetime:
 # optional: lifetime of app-tokens. default is 366d
 app_token_lifetime:
 # optional: lifetime of app-passwords. default is 366d
 app_password_lifetime:
 # optional: maximimum number of app-tokens or app-passwords per client. default is 100
 app_token_or_password_limit:
 # optional: encoding / encryption when sotring client secrets in OAuth database.
Default is xor for compatibility. Recommended value is PBKDF2WithHmacSHA512
 client_secret_encoding:
 use_custom_binaries: false
 service_type: Route
 routes_ingress_annotations:

 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 ## Horizontal Pod Autoscaler

14 IBM Business Automation Workflow User Management Services on containers

 autoscaling:
 enabled: true
 min_replicas: 2
 max_replicas: 5
 target_average_utilization: 98
 use_custom_jdbc_drivers: false
 use_custom_binaries: false
 custom_secret_name:
 custom_xml:
 logs:
 console_format: json
 console_log_level: INFO
 console_source: message,trace,accessLog,ffdc,audit
 trace_format: ENHANCED
 trace_specification: "*=info"

9. Specify the following:

shared_configuration
 sc_deploy_zen_with_iaf: false

10. Specify an LDAP group that is authorized to administer UMS Teams by adapting the following snippet,
where UMSTeamsAdmins is the name of the UMS Teams administration group:

ums_configuration:
 teamserver:
 admingroup: 'cn=UMSTeamsAdmins,dc=example,dc=org'

Remember: After deployment, you can administer teams for your business needs by logging on to
the UMS Teams Management UI at https://ums_host/teamserver/ui using a user ID that is in
the UMS Teams administration group.

Completing post-deployment tasks for User Management
Service

 Containers:
 20.x: You can perform optional configuration tasks for User Management Service (UMS) to
configure Business Automation Workflow or IBM® Process Federation Server to use UMS, or delegating
authentication to an OIDC or SAML identity provider..

Procedure
1. Optional: If you want to configure Business Automation Workflow or IBM Process Federation Server to

use UMS single sign-on, perform the following task: .

2. Optional: .

3. Optional: .

Delegating authentication to a Security Assertion Markup
Language (SAML) identity provider

Optional: User Management Services (UMS) can delegate authentication to SAML identity provider (IdP).
For more information, see Delegating authentication to a third-party identity provider.

Before you begin
Your OIDC Identity Provider (IdP) must be accessible and you need the following information for your IdP:

Procedure
To configure UMS to delegate authentication to a SAML IdP, perform the following steps:

Completing post-deployment tasks for User Management Service 15

https://www.ibm.com/docs/SSYHZ8_20.0.x/com.ibm.dba.offerings/topics/con_ums_sso_delegating.html

1. Enable the samlWeb-2.0 feature in UMS.
a) Edit your custom resource ums_configuration.custom_xml file to include the following

snippet:

custom_xml: |
 <server>
 <featureManager>
 <feature>samlWeb-2.0</feature>
 </featureManager>
 <samlWebSso20 id="defaultSP" httpsRequired="true">
 <authFilter>
 <userAgent id="disable" matchType="equals" agent="samldefault" />
 </authFilter>
 </samlWebSso20>
 <samlWebSso20 id="umsSP" httpsRequired="true" idpMetadata="/opt/ibm/wlp/usr/shared/
resources/custom-binaries/idpMetadata.xml" >
 <authFilter>
 <requestUrl id="authorizeEndpoint" urlPattern="/oidc/endpoint/ums/authorize"
matchType="contains"/>
 <requestHeader id="allowBasicAuth" matchType="notcontain" name="Authorization"
value="Basic" />
 </authFilter>
 </samlWebSso20>
 </server>

Important: Because the SAML configuration is not yet complete, the authFilter configuration is
used to prevent UMS from delegating authentication at this point. The defaultSP configuration
is included to prevent the SAML feature from creating an incomplete (but active) default
configuration.

b) Apply the UMS configuration, by running the following command:

oc apply -f ums-saml.yaml

Where ums-saml.yaml is the full custom resource file that includes the previous snippet.
2. Configure UMS to delegate authentication to the IdP.

a) Create a persistent volume (PV) and a persistent volume claim (PVC) to make the
idpMetadata.xml file available to UMS.

i) Create a ums-saml-pvc.yaml file based on the following sample:

kind: PersistentVolume
apiVersion: v1
metadata:
 name: data-pv
 labels:
 type: icp4a-pv
spec:
 capacity:
 storage: 1Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 storageClassName: inf-node
 mountOptions:
 - nolock
 nfs:
 path: /data
 server: NFS_server_hostname_or_IP_address

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: data-pvc
spec:
 accessModes:
 - ReadWriteMany
 volumeMode: Filesystem
 storageClassName: inf-node
 resources:
 requests:
 storage: 1Gi
 selector:

16 IBM Business Automation Workflow User Management Services on containers

 matchLabels:
 type: icp4a-pv
 volumeName: data-pv

ii) Create the PV and PVC, by running the following command:
oc apply -f ums-saml-pvc.yaml

b) Copy the idpMetadata.xml metadata file for your IdP to the custom-binaries:

 /data
 +-- custom-binaries
 +-- idpMetadata.xml

During deployment, the operator mounts idpMetadata.xml from this location into
the /opt/ibm/wlp/usr/shared/resources/custom-binaries/ directory on the file system
where UMS is installed.

3. Edit the custom resource file.
a) In the section ums_configuration, configure the parameter existing_claim_name to

point to the persistent claim that you defined in the previous step and set the parameter
use_custom_binaries to true:

ums_configuration:
 …
 existing_claim_name: data-pvc
 …
 use_custom_binaries: true
 …

b) Modify the ums_configuration.custom_xml property to point to the location of the
idpMetadata.xml file and configure the authFilter to delegate authentication to the IdP for all
URLs that contain the string /oidc/endpoint/ums/authorize.

• If you use dedicated pods for UMS capabilities, add the following configuration information to the
custom_xml parameter in the configuration of the sso pod in the ums_configuration section.

• If you deploy all UMS capabilities in one pod, add the following configuration information to the
custom_xml parameter in the ums_configuration section.

custom_xml: |
 <server>
 <featureManager>
 <feature>samlWeb-2.0</feature>
 </featureManager>
 <samlWebSso20 id="defaultSP" httpsRequired="true">
 <authFilter>
 <userAgent id="disable" matchType="equals" agent="samldefault" />
 </authFilter>
 </samlWebSso20>
 <samlWebSso20 id="umsSP" httpsRequired="true" idpMetadata="/opt/ibm/wlp/usr/shared/
resources/custom-binaries/idpMetadata.xml" >
 <authFilter>
 <requestUrl id="authorizeEndpoint" urlPattern="/oidc/endpoint/ums/authorize"
matchType="contains"/>
 <requestHeader id="allowBasicAuth" matchType="notcontain" name="Authorization"
value="Basic" />
 </authFilter>
 </samlWebSso20>
 </server>

c) Apply the updated configuration by running the following command:

oc apply -f ums-saml.yaml

d) After the resources are updated, verify that UMS delegates authentication to the identity provider
by navigating your browse to one of the Business Automation Workflow resources that use UMS
SSO, for example UMS Teams:

https:/ums-teams-route/teamserver/ui/

Where ums-teams-route is the host name of the UMS Teams server.

Completing post-deployment tasks for User Management Service 17

Verify that you are redirected to the SAML endpoint of your identity provider, and that after entering
correct credentials, you are successfully logged into the UMS Teams UI.

e) If UMS does not delegate authentication to the identity provider, verify that the idpMetadata.xml
file is available in the custom-binaries directory of the UMS pod by running the following
command:

oc exec <ums-pod> -- ls /opt/ibm/wlp/usr/shared/resources/custom-binaries/

If necessary, modify the custom resource to point to that directory, and apply the changes:

<samlWebSso20
 id="umsSP"
 httpsRequired="true"
 idpMetadata="/opt/ibm/wlp/usr/shared/resources/custom-binaries/idpMetadata.xml" />

Results
This configuration ensures a seamless single sign-on experience for browser users.

What to do next
If you want to create a client application that will invoke the REST APIs of an Business Automation
Workflow component that uses UMS single sign-on (SSO), the client app must present an access token. To
learn how to obtain an access token from a command line, browser, mobile, or liberty-based application,
see “Invoking OAuth 2.0 protected APIs” on page 22.

Delegating authentication to an OIDC Identity Provider
Optional: User Management Services (UMS) can delegate authentication to an OIDC Identity Provider
(IdP). For more information, see Delegating authentication to a third-party identity provider.

Before you begin
Your OIDC Identity Provider (IdP) must be accessible and you need the following information for your IdP:

• authorizationEndpointUrl
• tokenEndpointUrl
• issuerIdentifier
• jwkEndpointUrl
• signatureAlgorithm

Procedure
To configure UMS to delegate authentication to an OIDC IdP, perform the following steps:
1. Register UMS as OIDC client of the OIDC IdP by following the instructions of your identity provider to

register UMS as an OIDC client.
2. Obtain the signer certificate of your OIDC IdP.
3. Create an OIDC IdP secret.

a) Create a configuration file for the secret, for example, named idp-secret.yaml, and add the
signer certificate that you obtained in the previous step as the value of the property tls.crt:

apiVersion: v1
kind: Secret
metadata:
 name: idp-tls
type: Opaque
stringData:
 tls.crt: |+
 -----BEGIN CERTIFICATE-----
 <include the IdP certificate>
 -----END CERTIFICATE-----

18 IBM Business Automation Workflow User Management Services on containers

https://www.ibm.com/docs/SSYHZ8_20.0.x/com.ibm.dba.offerings/topics/con_ums_sso_delegating.html

Where idp-tls is the name of the secret.
4. Create the secret.

In the namespace where UMS will be deployed, run the command:

oc apply -f idp-secret.yaml

5. To configure UMS to delegate authentication to the IdP, make the following edits to the Custom
Resource (CR):
a) Add the name of the IdP certificate secret to the
shared_configuration.trusted_certificate_list section of the CR.
For example:

 trusted_certificate_list:
 - idp-tls

During deployment, the operator adds the IdP signer certificate to the truststore of UMS.
b) In the ums_configuration section, specify the OpenID Client configuration in the custom_xml

parameter, including the information about the IdP and specify the authFilter value to redirect
only URLs that point to /oidc/endpoint/ums/authorize.

• If you use dedicated pods for UMS capabilities, add the following configuration information to the
custom_xml parameter in the configuration of the sso pod in the ums_configuration section.

• If you deploy all UMS capabilities in one pod, add the following configuration information to the
custom_xml parameter in the ums_configuration section.

For example:

 custom_xml: |
 <server>
 <openidConnectClient id="client_id"
 clientId="client_id"
 clientSecret="client_secret"
 authorizationEndpointUrl="authorizationEndpointUrl"
 tokenEndpointUrl="tokenEndpointUrl"
 issuerIdentifier="issuerIdentifier"
 jwkEndpointUrl="jwkEndpointUrl"
 signatureAlgorithm="signatureAlgorithm">
 <authFilter>
 <requestUrl matchType="contains" urlPattern="/oidc/endpoint/ums/authorize"></
requestUrl>
 <requestHeader id="allowBasicAuth" matchType="notcontain"
name="Authorization" value="Basic" />
 </authFilter>
 </openidConnectClient>
 </server>

Tip: For more information about the parameters in the OIDC client configuration see Configuring an
OpenID Connect Client in Liberty.

During deployment, the operator adds the OIDC client configuration to the server configuration of
UMS.

c) If you use dedicated pods for UMS capabilities. also include the following featureManager
section in custom_xml to add the required openidConnectClient-1.0 feature.

 <featureManager>
 <feature>openidConnectClient-1.0</feature>
 </featureManager>

For example:

 # Configuration for sso pods
 sso:
 ...
 custom_xml: |
 <server>
 <featureManager>
 <feature>openidConnectClient-1.0</feature>

Completing post-deployment tasks for User Management Service 19

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_config_oidc_rp.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_config_oidc_rp.html

 </featureManager>
 <openidConnectClient id="client_id"
 clientId="client_id"
 clientSecret="client_secret"
 authorizationEndpointUrl="authorizationEndpointUrl"
 tokenEndpointUrl="tokenEndpointUrl"
 issuerIdentifier="issuerIdentifier"
 jwkEndpointUrl="jwkEndpointUrl"
 signatureAlgorithm="signatureAlgorithm">
 <authFilter>
 <requestUrl matchType="contains" urlPattern="/oidc/endpoint/ums/
authorize"></requestUrl>
 <requestHeader id="allowBasicAuth" matchType="notcontain"
name="Authorization" value="Basic" />
 </authFilter>
 </openidConnectClient>
 </server>

Configuring UMS routes for load balancing
If you are not using Red Hat OpenShift Kubernetes Service (ROKS) or OpenShift Container Platform
(OCP) and you have a load balancer in front of your User Management Service services, you must define
serviceType: NodePort endpoints.

Procedure

1. If the ums_configuration.hostname parameter is defined, define a load balancer route for each of
the following endpoints:

• ums-sso-hostname:port
• ums-teams-hostname:port
• ums-scim-hostname:port
• ums-hostname:port

Where hostname is the value of the ums_configuration.hostname parameter, and port is the port
number (typically 443).

2. If the ums_configuration.hostname parameter is not defined, define a load balancer route for the
deprecated catch all endpoint:

• ums.hostname:port

Where hostname is the value of the shared_configuration.sc_deployment_hostname_suffix
parameter, and port is the port number (typically 443).

Using the User Management Services

User Management Services (UMS) provide single sign-on (SSO) and Teams options, which provide users of
multiple applications with a single sign-on experience and centrally administered teams.

User Management Service single sign-on
You can use the User Management Service (UMS) single sign-on (SSO) option to provide users of multiple
applications with a single sign-on experience.

You can use UMS SSO to provide a common login page for Business Automation Workflow apps that are
enabled to delegate authentication to the service. If you have multiple deployments, users can have a
single sign-on experience when they interact with more than one of them.

Because Business Automation Workflow combines several technologies and runtime servers in your
virtual cloud-based environments, UMS helps you manage this complexity by consolidating aspects of
user management in a single place.

20 IBM Business Automation Workflow User Management Services on containers

UMS SSO brings the following advantages:

• Reuses existing customizations of Trust Association Interceptors for single sign-on.
• Provides an authentication scheme that is based on the open standards OpenID Connect and OAuth

2.0.
• Familiarity for many administrators from a configuration and operations perspective.

If an unauthenticated user requests access to a protected resource that is owned by Business Automation
Workflow, then the user is redirected to UMS to sign on. After the authentication completes successfully,
the user is redirected back to the web application, which then checks the user’s authorization and, if
successful, returns the protected resource. The OpenID Connect protocol requires that the Offering Party
and Relying Party are made known to each other as part of the configuration. This happens as part of the
automated setup process when Business Automation Workflow is installed using the operator.

The following sections describe what happens between login and logout for containers that delegate
authentication to UMS.

OpenID Connect (OIDC) login
When an unauthenticated user requests a protected URL from an application, for example IBM Business
Automation Studio, the browser is redirected to UMS for authentication. Upon authentication in UMS,
a session with UMS is established that uses cookies, and the user is redirected back to Business
Automation Studio to complete the login sequence. Business Automation Studio also establishes a
session with the browser by using cookies. Two independent sessions with two servers are open from
the same browser.

Single Sign-On
When the same user from the same browser attempts to access a different application or another
instance of the same application, the user is redirected to UMS for authentication. Because the browser
already has an established cookie-based session with UMS, the user is not prompted for credentials.
The user is redirected to the second application, which completes the login sequence and another
cookie-based session is established.

Identity propagation
As part of the login procedure, an app, for example Business Automation Studio, obtains a set of tokens
that can be forwarded to other connected systems. This enables Business Automation Studio to invoke
APIs on behalf of the current end user.

Tip: You can register additional clients with UMS so that your custom web apps or mobile apps can use
UMS for authentication and invoke APIs on behalf of the end user. For more information about how to
register clients, see “Invoking OAuth 2.0 protected APIs” on page 22.

Logout
Users often interact with one or more applications from their browser. When a user clicks Logout in an
application, a request is sent from the browser to the server and the server-side session is invalidated and
cookies are removed.

Each application is configured to redirect a browser to the UMS logout endpoint /oidc/endpoint/ums/
logout. UMS invalidates the session and clears the related cookies.

Important: Other applications are not notified about the logout and session termination in UMS. The user
sessions with other applications remain open. To close all open sessions, a user must close the browser
or Logout from each application. Because App Engine does not expose a logout page for the user to
perform a logout, the user must close the browser.

Using the User Management Services 21

https://openid.net/connect/
https://oauth.net
https://oauth.net

Invoking OAuth 2.0 protected APIs
For your client application to invoke a REST API that is provided by a component that has been configured
to delegate authentication to User Management Service (UMS) single sign-on (SSO), the client app must
present an access token.

The following topics describe how different types of applications can use appropriate OAuth 2.0
authorization flows to obtain an access token.

How a custom command line application obtains an access token from UMS
SSO
Because a custom command line application cannot redirect a user to a browser UI for authentication,
such applications can use the Resource Owner Password Credentials flow to obtain an access token from
User Management Service (UMS) single sign-on (SSO) that can be used to invoke an OAuth 2.0 protected
REST API.

Understanding the Resource Owner Password Credential flow
In the Resource Owner Password Credentials flow, resource owner credentials, such as username and
password, are used directly to obtain an access_token. The custom command line application therefore
initially needs to obtain credentials from the resource owner (the end user). It can then invoke UMS
SSO, authenticate as a registered client application and exchange the user's username and password
combination for an access_token. This flow can also be used with client types other than command
line, but this is the most typical usage scenario.

Design considerations for the custom command line application
1. The custom command line application must register with UMS SSO as an OIDC Relying Party, for

example:

curl -v -k -s -X POST -H "Content-Type:application/json" -u "umsadmin:passw0rd" -d @-
"https://<ums-host>/oidc/endpoint/ums/registration" <<+++
{
 "scope": "openid",
 "preauthorized_scope": "openid",
 "introspect_tokens": true,
 "client_id": "customApp",
 "client_secret": "passw0rd",
 "client_name": "customApp",
 "grant_types": ["password"],
 "response_types": ["token"]
}
+++

Where

• passw0rd is an example client_secret to authenticate as the custom command line application to
UMS - make sure that you use a much stronger secret

• customApp is a human-readable identifier for your custom command line application
• grant_types must be set to “password”
• response_types must be set to “token”

2. Then the app can obtain an access token. For example:

curl -k -X POST -u "customApp:passw0rd" -d
"grant_type=password&scope=openid&username=user_name&password=user_password" "https://ums-
host/oidc/endpoint/ums/token"

Where

• option -u "customApp:passw0rd" is used by the client to authenticate with UMS, it is the
combination of the values for client_id and client_secret that you registered in the previous
step.

22 IBM Business Automation Workflow User Management Services on containers

https://tools.ietf.org/html/rfc6749#section-1.3.3

• grant_type must be set to "password".
• user_name and user_password are the credentials of the resource owner user name for whom

the access token is being requested.
• ums-host is the hostname of the UMS server.

The response contains the access token, access_token, for example:

{
 "access_token": "uEsdnucnBtjt8llTYQDqKHxcPF7a06YLX1IbzQH8",
 "token_type": "Bearer",
 "expires_in": 7199,
 "scope": "openid"
}

3. The custom command line application uses the access_token in the authorization header of the
request to invoke the OAuth 2.0 protected REST API. For example:

curl -k -s -H "Authorization: Bearer $access_token" https://my.server:9443/rest/bpm/wle/v1/
user/current

How a browser or mobile application obtains an access token from UMS
A browser or mobile application can use the Implicit flow to obtain an access token from User
Management Service (UMS) single-sign-on (SSO) that can be used to invoke an OAuth 2.0 protected
REST API.

Understanding the Implicit flow
In the Implicit flow, the client is issued an access token directly. This contrasts with the Authorization
flow, which issues the client with an authorization code.

When UMS issues an access token, the client identity is verified by using the redirection URI that is
used to deliver the access token to the client. The URI must be registered when the client application is
registered with UMS SSO. It is not possible to make use of a client secret because a browser cannot keep
secrets.

Design Considerations for the custom app
1. The client app must register with UMS SSO as an OIDC Relying Party. For example:

curl -v -k -s -X POST -H "Content-Type:application/json" -u "umsadmin:passw0rd" -d @-
"https://<ums-host>/oidc/endpoint/ums/registration" <<+++
{
 "scope": "openid",
 "preauthorized_scope": "openid",
 "introspect_tokens": true,
 "client_id": "browser",
 "client_name": "browser",
 "response_types": ["token"],
 "grant_types": ["implicit"],
 "redirect_uris": ["https://your-browser-app-IP/tokenReceiver.html "]
}
+++

Where

• grant_types must be set to implicit.
• response_types must be set to token.
• redirect_uris acts as a whitelist, you can specify a list of URIs.

Tip: If you want to use wild-cards or regular expressions in the redirect_uris, you must include

"allow_regexp_redirects": true

Using the User Management Services 23

https://tools.ietf.org/html/rfc6749#section-1.3.2

For more information, see Configuring an OpenID Connect Provider to accept client registration
requests.

2. The browser application requests an access token from the OAuth authorization server, for example,
by making the user's browser visit the /authorize endpoint and including a link that redirects to
UMS SSO for authentication. For example:

<body>
 <h1>OAuth 2.0 Implicit</h1>
 <p>Have a look at the URL bar. If there is no token, click
 <a href="https://<ums-host>/oidc/endpoint/ums/
authorize?response_type=token&client_id=browser&scope=openid&state=none&redirect_uri=http://
192.168.99.100:8080">here</p>
 </p>
...
</body>

In this example, the browser application passes the following parameters:

• response_type=token because the app is requesting an access_token (not an id_token)
• client_id=browser: The app needs to identify itself so that the authorization server can verify

that the redirect_uri is one of the preregistered URLs and so that it can also include the
client_id in the token information.

• scope=openid is pre-authorized.
• state=none is a short-cut in this example. This parameter is meant to allow the client (browser

app) to make sure that it sent the user to the authorization server and prevent any unsolicited
invocations. It can also help re-establishing context if the browser app had saved several
parameters, such as in HTML5 session storage.

• redirect_uri is the URI to come back to after the user has authenticated and given their consent
(depending on the scopes).

3. When the request is redirected back to the browser application, several parameters are passed in the
URL, including the access token.

In the following code snippet, readTokenFromUrl() demonstrates how to parse name value pairs
out of the URL bar and store them in a complex variable named params.

var api_base_url = "https://sample.api.server/rest/objectstore" //construct the target API
URL for the service you want to invoke
var params = {};

function readTokenFromUrl() {
 var queryString = location.hash.substring(1);
 var regex = /([^&=]+)=([^&]*)/g;
 var m;
 while (m = regex.exec(queryString)) {
 params[decodeURIComponent(m[1])] = decodeURIComponent(m[2]);
 }

 if (params.access_token==undefined) {
 addTextNode("access_token", "not available yet");
 } else {
 addTextNode("access_token", params.access_token);
 addTextNode("scopes", params.scope);
 addTextNode("token_type", params.token_type);
 addTextNode("expires_in", params.expires_in);
 }
}

function getValue() {
 var key = document.getElementById("key").value;
 var xmlhttp = new XMLHttpRequest();
 try {
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {

document.getElementById("response").innerText=xmlhttp.responseText;
 }
 }
 xmlhttp.open("GET",api_base_url+"/" + key, true);
 xmlhttp.setRequestHeader("Authorization","Bearer " + params.access_token);
 xmlhttp.send();

24 IBM Business Automation Workflow User Management Services on containers

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_client_registration.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_client_registration.html

 } catch (err) { Console.log(err.message); }
}

function setValue(key, value) {
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;
 var xmlhttp = new XMLHttpRequest();
 try {
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4) {
 if (xmlhttp.status==200)
{ document.getElementById("response").innerText="success" }
 } else if (xmlhttp.satus==403)
{ document.getElementById("response").innerText="not authorized" }
 }
 xmlhttp.open("PUT",api_base_url+"/" + key, true);
 xmlhttp.setRequestHeader("Authorization","Bearer " + params.access_token);
 xmlhttp.setRequestHeader("Content-Type","application/json");
 xmlhttp.send(value);

 } catch (err) {return err.message; }
}

function addTextNode(elementId, text) {
 var textnode = document.createTextNode(text);
 var parent = document.getElementById(elementId);

 parent.appendChild(textnode);
}

4. The code in the custom application can now use the access token to make XML HTTP Requests (XHR)
to invoke OAuth 2.0 protected REST APIs. It must pass the value of the access token with each API
request in the request header Authorization.

How a Liberty-based application obtains an access token from UMS SSO
A Liberty-based application can use the Authorization Code flow to act as an OIDC Relying Party (RP) to
delegate authentication to UMS single sign-on (SSO), which acts as an OIDC Offering Party (OP).

Understanding the Authorization code flow
1. The user’s browser has attempted to access a protected resource on the RP and is redirected to the

OP (UMS SSO), including values for client_id and redirect_url as registered.
2. The user authenticates.
3. The OP redirects back to the RP, including an authorization code.
4. The RP sends the authorization code and client credentials using a back-channel communication.
5. The OP responds with id_token, refresh_token, access_token.

Register your server with UMS as shown below and configure your server as OIDC client based
on the UMS configuration available at: https://<ums-host>/oidc/endpoint/ums/.well-known/
openid-configuration

Design Considerations for the custom app
1. Register the Liberty server as an OIDC client with UMS SSO. For example:

curl -k -s -X POST -H "Content-Type:application/json" -u "umsadmin:passw0rd" -d @- "https://
ums-host/oidc/endpoint/ums/registration" <<+++ | jq '.'
{
 "scope": "openid profile",
 "preauthorized_scope": "openid profile",
 "introspect_tokens": true,
 "client_id": "liberty",
 "client_secret": "liberty-secret",
 "client_name": "liberty",
 "redirect_uris": [
 "https://liberty-host:10001/oidcclient/redirect/umsClient"
]

Using the User Management Services 25

https://tools.ietf.org/html/rfc6749#section-1.3.1

}
+++

Where

• -u "umsadmin:passw0rd": The user and password used by the client to authenticate with UMS
SSO.

• Optional: "client_id": "liberty" corresponds to the configuration in the server.xml
configuration file.

• Optional: "client_secret": "liberty-secret" corresponds to the configuration in the
server.xml configuration file.

• "redirect_uris" are the URIs to which the user (and the authorization code) are redirected upon
successful authentication. This must match one of the redirect URIs that were specified when the
custom application registered with UMS SSO.

• "scope": "openid profile" are the scopes that are represented by the access token,
access_token, that is included in the final response to the authentication request. The openid
scope is required to complete the flow. The profile scope should allow calling the UserInfo
endpoint. Additional scopes are possible and depend on the application(s) where the token will be
used.

Note: If you omit the optional client_id and client_secret parameters, random values are
generated and returned in the registration response.

2. Extend the Liberty server configuration in wlp/usr/servers/server_Name/server.xml to
configure your UMS host name and port number. Choose a clientId and a clientSecret and
add them to the configuration.

<variable name="ums_prefix" value="https://<ums-host>" />

<openidConnectClient id="umsClient"
 authorizationEndpointUrl="${ums_prefix}/oidc/endpoint/ums/authorize"
 clientId="liberty"
 clientSecret="liberty-secret"
 tokenEndpointUrl="${ums_prefix}/oidc/endpoint/ums/token"
 validationEndpointUrl="${ums_prefix}/oidc/endpoint/ums/introspect"
 validationEndpointUrl="${ums_prefix}/oidc/endpoint/ums/userinfo"
 userInfoEndpointEnabled="true"
 userInfoEndpointUrl="${ums_prefix}/oidc/endpoint/ums/userinfo"
 validationMethod="userinfo"
 inboundPropagation="supported"
 signatureAlgorithm="RS256"
 jwkEndpointUrl="${ums_prefix}/oidc/endpoint/ums/jwk">
</openidConnectClient>

3. When an end user attempts to access a protected resource on the RP without having an established
authenticated session, the RP redirects the user's browser to the UMS authorization endpoint
https://ums-host/oidc/endpoint/ums/authorize?
response_type=code&client_id=liberty&state=001558899960297TBjhvTZSn&redirect
_uri=https%3A%2F%2Fliberty-
host%3A10001%2Foidcclient%2Fredirect%2FumsClient&scope=openid+profile.

In the Authorization flow, the request to handle delegated authentication contains the following
parameters:

• response_type=code indicates the authorization code flow.
• client_id=liberty corresponds to the configuration in the server.xmlconfiguration file.
• state=random_number a nonce that the RP can use later to validate that an invocation belongs to

a flow that it triggered.
• redirect_uri specifies the URI to which the user (and the authorization code) are redirected upon

successful authentication. This must match one of the redirect URIs that were specified when the
custom application registered with UMS.

• scope=openid+profile specify the scopes that are represented by the access token,
access_token, that is included in the final response to the authentication request. The openid

26 IBM Business Automation Workflow User Management Services on containers

scope is required to complete the flow. The profile scope should allow calling the UserInfo
endpoint. Additional scopes are possible and depend on the application(s) where the token will be
used.

4. The request returns an authorization code. The Liberty server application can call the UMS SSO token
endpoint to exchange the authorization code for access_token, refresh_token, and id_token.

UMS SSO provides all three tokens if the token endpoint is invoked with a valid recent authorization
code and a matching client_id and client_secret for the client that requested authentication.

5. The Liberty server application can now establish an authenticated session based on the information in
the id_token. Several configurations are possible:

• The default is to use all information from the id_token to create a security context.
• Use just the user name from the id_token and create a security context with information that is

found in the locally configured user registry for that user name.
• Perform some sort of identity mapping. For example, the id_token might contain an email address

that represents the user, but the RP creates a security context for the employee serial number, which
might be contained in some other claim of the id_token.

Using long-lived access tokens
If it is inconvenient for your programmatic clients that the User Management Service (UMS)
access_token tokens have a default validity of two hours, you can exchange an access_token for
an app_token that is valid for 366 days.

Understanding app tokens
App tokens were introduced to support enforcing multi-factor authentication (MFA) for command line
clients. Because Liberty does not support MFA natively, it is expected that authentication is delegated
further to an existing identity provider that supports MFA. Therefore, the client should use the browser-
based implicit flow to obtain an initial access_token, which is then exchanged for an app_token
that has a much longer validity.

Design considerations for the custom app
1. The custom application must register with UMS SSO, specifying the implicit grant_type

and token response_type. For clarity and convenience, in the following examples, the UMS
admin credentials are stored in the environment variables umsuser and umspassword and
localhost:9443 are used for the UMS host and port:

a. Create a new file named json.txt with content similar to the following, substituting your values
where necessary:

{
 "scope": "openid",
 "preauthorized_scope": "openid",
 "introspect_tokens": true,
 "response_types": ["token"],
 "grant_types": ["implicit"],
 "redirect_uris": ["http://192.168.99.100:8080", "myapp://token"],
 "appTokenAllowed": true
}

b. Run the following commands:

umsuser=umsadmin
umspassword=passw0rd
curl -k -s -X POST -H "Content-Type:application/json" -u "$umsuser:$umspassword" -d
@json.txt "https://localhost:9443/oidc/endpoint/ums/registration"

Example response:

{
 "client_id_issued_at": 1572602365,

Using the User Management Services 27

 "registration_client_uri": "https://localhost:9443/oidc/endpoint/ums/registration/
1657e00324474d8b9fbe637b0883515d",
 "client_secret_expires_at": 0,
 "token_endpoint_auth_method": "client_secret_basic",
 "scope": "openid",
 "grant_types": ["implicit"],
 "response_types": ["token"],
 "application_type": "web",
 "preauthorized_scope": "openid",
 "introspect_tokens": true,
 "resource_ids": [],
 "proofKeyForCodeExchange": false,
 "publicClient": false,
 "appPasswordAllowed": false,
 "appTokenAllowed": true,
 "hash_itr": 0,
 "hash_len": 0,
 "client_id": "1657e00324474d8b9fbe637b0883515d",
 "client_secret": "5a8pw7rQWN3VeKGcfvsIs039zHHrmiliprDAVKlLvbK9yrnhHgOulvKpbLgN",
 "client_name": "1657e00324474d8b9fbe637b0883515d",
 "redirect_uris": ["http://192.168.99.100:8080", "myapp://token"],
 "allow_regexp_redirects": false
}

c. Note the values for client_id and client_secret. For demonstration purposes, you might
store them in environment variables:

clientid=1657e00324474d8b9fbe637b0883515d
clientsecret=5a8pw7rQWN3VeKGcfvsIs039zHHrmiliprDAVKlLvbK9yrnhHgOulvKpbLgN

2. The app obtains a short-lived access token. If UMS is not configured to delegate authentication further,
we can use basic authorization, for example:

curl -k -s -v -u "$umsuser:$umspassword" 'https://localhost:9443/oidc/endpoint/ums/authorize?
response_type=token&client_id=$clientid&scope=openid&state=none&redirect_uri=myapp://token'

Where

• response_type=token indicates that the app wants an access token (not an id token).
• client_id=$clientid identifies itself so that the authorization server can verify that the

redirect_uri is in the preregistered whitelist and that it can include the client_id in the token
information.

• scope=openid is required.
• state=none is a short-cut in this example. You can use this parameter to help re-establishing the

context, for example, if the browser app had saved some parameters in HTML5 session storage or to
make sure that the client actually sent the user to the authorization server.

• redirect_uri the URI to come back to after the user authenticated and gave consent (depending
on scopes).

The 302 redirect response will contain an HTTP response header location that is pointing to the
registered and requested location (myapp://token) with an appended fragment that includes among
other things your access_token, for example:

location: myapp://
token#scope=openid&access_token=C87wJE2Mst7DEdBJMfV9Rw6I8RUlZ9bilITmZqhK&token_type=Bearer&ex
pires_in=7199&state=none

The short-lived access_token is C87wJE2Mst7DEdBJMfV9Rw6I8RUlZ9bilITmZqhK expires in
7199 seconds.

3. Exchange the access_token for long-lived app_token by using the access token to call the UMS
app-tokens endpoint. For example:

curl -k -X POST -u "$clientid:$clientsecret" -d "app_name=myapp" -H "Accept: application/
json" -H "access_token: $accesstoken" "https://localhost:9443/oidc/endpoint/ums/app-tokens"

28 IBM Business Automation Workflow User Management Services on containers

The response contains the app-token: GGONoU7vG9uJ6jJQOwKO7nBouq9sB08WHiOLzv0qBO

{
 "app_token": "GGONoU7vG9uJ6jJQOwKO7nBouq9sB08WHiOLzv0qBO",
 "app_id": "Lk088OmmPgwAmglhR4skWd4OzKmYT4nprrR4xR3e",
 "created_at": "1572603852658",
 "expires_at": "1580379852658"
}

For demonstration purposes, you might store the token in an environment variable:

apptoken=GGONoU7vG9uJ6jJQOwKO7nBouq9sB08WHiOLzv0qBO

Tip: You can set the following lifetimes and limits for app tokens and app passwords in the custom
resource file:
ums_configuration.oauth.app_token_lifetime

The lifetime of app tokens. The default is 366d.
ums_configuration.oauth.app_password_lifetime

The lifetime of app passwords. The default is 366d.
ums_configuration.oauth.app_token_or_password_limit

The maximum number of app tokens or app passwords per client. The default is 100.
4. Use the app_token just like any other access_token to invoke an API. for example:

curl -k -s -H "Authorization: Bearer $apptoken" https://sample-host/rest/bpm/wle/v1/user/
current

User Management Service Teams
You can use the User Management Service (UMS) Teams option to administer global teams across
different Business Automation Workflow components.

The UMS Teams option is a microservice that manages global teams for Business Automation Workflow
apps and components.

What are UMS Teams?
A team is a collection of users, groups, and other teams that already exist. Unlike users and groups, teams
are not stored in LDAP. The nesting depth of teams is unlimited, but cycles are not allowed. The UMS
Teams option provides the team management capability, but does not perform authorization on behalf of
the apps and components, which apply their own authorization policies. Teams can be associated with
resources in the various Business Automation Workflow components, such as desktops in Navigator or
apps in App Engine to control authorization to these resources.

This approach has several advantages over using your company-wide user registry, such as LDAP, groups
directly:

• Teams can be short-lived or frequently changing, whereas user registry groups are often long-living.
• Global teams can be defined and changed without modifying your company user registry.
• A company-wide administrator is not required to manage these business-oriented teams.
• Avoids the performance problems that can be caused when a company-wide user registry has too many

groups.

Identifying teams across different environments
Because each environment (development, test, production) is connected to a different instance of the
UMS Teams server, when you move resources between environments the teams that are associated with
the resources are not automatically moved with the resources, so you must create corresponding teams
on the target environment, if they do not already exist. However, because creating a team in multiple
environments with the same team name and for the same purpose will have different unique team IDs

Using the User Management Services 29

(UUID), it might not be easy to identify corresponding teams just by their display name, which is not
guaranteed to be unique, for example, many teams might be named "managers".

To avoid confusion, use team distinguished names (which are guaranteed to be unique in a given
environment) consistently across all your environments to identify teams that serve the same purpose.
This will make it easier to identify the correct team in a target environment and map it to the resources
that you deploy.

Using multiple email addresses
When the user repository contains multiple email addresses for a user, by default, UMS Teams
returns only the primary email address of the user, for example when using the REST API call GET /
teamserver/rest/users. But you can search for users that match with an alternative email address.

You can configure the UMS federated user repository so that UMS Teams delivers all email addresses,
but in this case, it marks the first email address as the primary email address, regardless of any
other marker that might exist to indicate the primary email address. To enable UMS to return all email
addresses, add the following code to the federatedRepository section of server.xml file, or in the
ums-configmap.yaml.j2 when used to generate the server.xml file:

<extendedProperty dataType="String" name="emails" entityType="PersonAccount"
multiValued="true" />

Administrating UMS Teams
If you are an administrator of the UMS Teams feature, you can create and manage teams by using either
the Team Management UI or the UMS Teams REST APIs.

Managing teams
Administrators can use the Team Management page to view, create, modify, or delete teams. You can
build a team out of users, groups, and other teams.

Using the Team Management page
1. In a browser, open the URL https://ums_host/teamserver/ui, where ums_host is the host name

of your UMS server.
2. If you are prompted to log in to your account, enter a valid administrator user name and password.
3. The Team List view is displayed as a table of the first page of existing teams.

• To filter the list of teams by Display Name, click the magnifier icon then enter the text to match. To
search on a different field, you can change the search scope from Display Name to Distinguished
name, Description or Team ID.

• To sort the teams by a column field, click the column heading.
• To edit a team, click on its display name.
• To delete one or more teams, select the teams then click Delete selected teams.
• To copy a team ID to the clipboard, select the team's menu icon then click Copy team ID.
• To create a new team, click Create a team, then on the Basic Team Data tab, enter the Display

Name, Distinguished Name, and Description.

– To add users to the team, select the Users tab, then for each user, enter their distinguished user
name and click Add.

On this tab, you can also search for users and add them to the team: Click Search, to open the
window, enter at least three characters of the string to enable the Search button then click it. In
the search results you can select one or more users then click Add selected to add them to the
current team.

30 IBM Business Automation Workflow User Management Services on containers

– To add groups to the team, select the Groups tab, then for each group, enter the distinguished
group name and click Add.

On this tab, you can also search for a group by its display name (as defined in the user registry)
and add it to the team: Click Search, to open the window, enter at least three characters of the
string to enable the Search button then click it. In the search results you can select one or more
groups then click Add selected to add them to the current team.

– To add an existing team to the new team, select the Teams tab, and perform one of the following:

- If you copied the ID of an existing team (as described earlier), paste the team ID and click Add.
- On this tab, you can also search for existing teams and add them to the team: Click Search, to

open the window, enter at least three characters of the string to enable the Search button then
click it. In the search results you can select one or more teams then click Add selected to add
them to the current team.

– When you are finished, click Save to save the updates and exit or click Save and Back to save
the updates and remain in the editor so that you can make further changes or to validate that the
users or groups in a modified team exist in the user registry.

– After saving any changes, you can validate that the users or groups in a team exist in the user
registry, by clicking Validate on the Users or Groups tab. The results are indicated by check mark
icons in the list of users or groups next to those that were verified to exist in the user registry.

• To display all team members, including those that are in member groups and teams, select the All
Users tab and click Load all. The members of the team are calculated and displayed in a table with
the following details for each member:

– Display name
– Distinguished user name
– User name
– Email

User Management Service Teams access control
You can control who is authorized to create User Management Service (UMS) teams, change a team,
or read the details of a team either by using J2EE roles when installing the UMS Teams service, or, by
specific teams whose members have particular access rights on other teams.

The access permissions have two levels of granularity:

• “Global access permissions” on page 31
• “Team scoped access permissions” on page 32

Global access permissions
The following permissions provide access control for all teams.

Administrators with full access
Global administrators act like a superuser, and can call any UMS Teams service REST API. Global
administrators are:

• All members of the J2EE role teamserveradmin.
• All members of the global administrators team, which has the uuid
10000000-0000-0000-0000-000000000000.

Users that can create or update a team
All users of UMS Teams are members of the J2EE role teamserveruser. These users can create or
write a team if they satisfy one or more of the following conditions:

• The user is member of the creators team, which has the uuid
20000000-0000-0000-0000-000000000000.

• The user is a global administrator.

Using the User Management Services 31

Reading details of a team
When creating or updating a team, the user can use the following REST APIs to find out which users
exist in the user repository:

• GET /teamserver/rest/groups
• GET /teamserver/rest/users

To call these APIs, a user must satisfy one or more of the following conditions:

• The user is a global administrator.
• The user is member of the "creators" team, which has the uuid
20000000-0000-0000-0000-000000000000.

• The user is member of the "repository readers" team, which has the uuid
30000000-0000-0000-0000-000000000000.

• If the user passes the uuid of a team as context and has the permission to update that team. When a
user can update a team, the user also has a reasonable need for obtaining the list of users or groups
from the user repository.

Granting users authorization
To add a user to one of the predefined teams that has a uuid, uuid, a global administrator can call one
of the following REST API calls:

• PUT /teamserver/rest/teams/uuid
• PATCH /teamserver/rest/teams/uuid

For example:

PUT /teamserver/rest/teams/30000000-0000-0000-0000-000000000000

For examples that use PUT and PATCH, see “Examples: Using the User Management Service Teams
REST API” on page 34.

Team scoped access permissions
Each team has the following administrative fields:
owner

A user who is the main administrator of the team. The owner cannot be null.
administratorTeam

A team whose members are also administrators of the team. Members of this team can read and write
the entire contents of the team, including the admin part. The administratorTeam field can be
null.

writerTeam
A team whose members have the permission to change the team content. Members of this team can
read and write the entire content of the team except the admin part. The writerTeam field can be
null.

readerTeam
A team whose members have the permission to read the team content. Members of this team can
read the entire contents of the team except the admin part. The readerTeam field can be null.

What the owner of a team can and can't do
The owner (or administrator) of team has the permission to choose which user should be the owner of
the team, or which team should be used as reader team, writer team, or administrator team. This does
however not imply any permissions on the chosen team.

32 IBM Business Automation Workflow User Management Services on containers

In the following example, although John Doe is the owner of the exampleteam team and can specify
which teams are the readerTeam, writerTeam, and administratorTeam, he can't choose the
individual members of those teams unless he is also owner, administrator or writer of them.

{
 "uuid": "a1c81405-429a-4fc2-803e-b6e8cf03f7f1",
 "distinguishedName": "cn=exampleteam,ou=team,dc=example,dc=com",
 "displayName": "Example Team",
 "description": "This is a new team",
 "users": [
 "cn=John Doe,ou=User,dc=example,dc=com",
 "cn=Jane Doe,ou=User,dc=example,dc=com"
],
 "groups": [
 "cn=Example,ou=Group,dc=example,dc=com"
],
 "teams": [
 "a3c90404-419a-4fc5-804e-b7e9cf14f8f2"
],
 "admin": {
 "owner": "cn=John Doe,ou=User,dc=example,dc=com",
 "administratorTeam": "aabb0000-517a-44de-413e-a78ccef3f2f2",
 "writerTeam": "ccdd0101-517a-34de-112e-a7616273f343",
 "readerTeam": "eeff0202-732a-5a4f-ee12-b86211c79ff1",
 }
 "metadata": {
 "created": "2020-10-25T14:37:08.198Z",
 "lastModified": "2020-10-25T14:37:08.198Z"
 }
}

User Management Service Teams REST API
Your applications can access and administer User Management Service (UMS) teams by using REST calls.

Documentation
After you have deployed UMS Teams, you can access the OpenAPI documentation for the REST APIs
that are available on the server by directing your browser to the URL https://ums_host/ibm/api/
explorer

The Team Service API on the context path /teamserver manages global teams as a central service for
enabled Business Automation Workflow apps and components.

Teams
The teams REST API supports the discovery, creation, retrieval, modification, and deletion of team
resources.

The following summary lists the operations that are available on the teams context path:
/teamserver/rest/teams

• GET: Retrieve team definitions.
• POST: Create a Team definition.

/teamserver/rest/teams/{uuid}

• GET: Retrieve a team definition.
• PUT: Replace a team definition.
• DELETE: Delete a team definition.
• PATCH: Update a team definition incrementally.

/teamserver/rest/teams/{uuid}/contained_users

• GET: Retrieve the users that are contained in the specified team.

Using the User Management Services 33

/teamserver/rest/teams/{uuid}/contained_groups

• GET: Retrieve the groups that are contained in the specified team.

Users
The users REST API supports retrieving information about the current user, checking their team
memberships, and checking their permissions.

The following summary lists the operations that are available on the users context path:
/teamserver/rest/users/current_user

• GET: Retrieve information about the current user.

/teamserver/rest/users/current_user/teams

• GET: Retrieve information about the which teams the current user is a member of.

/teamserver/rest/users/current_user/member_of_any_team

• GET: Returns true if the current user is a member of any of a specified list of teams.

/teamserver/rest/users/current_user/permission

• GET: Returns a list of team actions, where the value true indicates that the current user is allowed
to perform the action. For example:

{
 "canListMyTeams": true,
 "canListAllTeams": true,
 "canViewTeamDetails": true,
 "canCreateTeam": true,
 "canModifyTeam": true,
 "canReplaceTeam": true,
 "canDeleteTeam": true
}

/teamserver/rest/users

• GET: Retrieves information about the list of users. You can use it to search for users that match a
filter.

Important: If users can have have multiple email addresses, see “Using multiple email addresses”
on page 30.

/teamserver/rest/users/{userDN}/teams

• GET: Returns a list of team definitions for the teams that the user is a member of.

/teamserver/rest/users/{userDN}/member_of_any_team

• GET: Returns true if the specified user is a member of any of a specified list of teams.

Groups
The groups REST API supports retrieving information about the groups.

The following summary lists the operations that are available on the groups context path:
/teamserver/rest/groups

• GET: Retrieves information about the list of groups from the user repository, for example LDAP, by
using SCIM. It allows you to search for groups that match a filter.

Examples: Using the User Management Service Teams REST API
The following examples illustrate how to perform common actions on teams by using the REST API.

• “Creating a new team” on page 35

34 IBM Business Automation Workflow User Management Services on containers

• “Creating a new team that includes an existing team” on page 36
• “Retrieving a team” on page 36
• “Incrementally updating a team” on page 36
• “Replacing a team” on page 37
• “Retrieving a list of teams that you are a member of” on page 37
• “Deleting a team” on page 38

Creating a new team
To create a new UMS team you can use the following REST API call:

POST /teamserver/rest/teams

You must pass the team definition as input parameters in a JSON object in the request body of the call. A
team definition consists of the team's distinguished and optional display name, optional description, and
its members, which can consist of LDAP users, LDAP groups, and other teams. The distinguished name
is required, and must be unique, which helps when you have to move a team from a test system to a
production system. It is meaningful to follow the DN naming rules when creating distinguished names for
teams. It is also advisable to provide a display name when creating a new team to make it easy to look-up
when searching for a particular team.

To add users and groups as member of the new team, you must provide their distinguished names from
the connected LDAP repository. To include another team, you must specify its internal ID (uuid).

For example, to create a new team that is build out of the users "John Doe", "Joe Bloggs" and the group
"Department 4711" you can pass the following JSON object:

{
 "distinguishedName": "cn=Authors,ou=bpm,dc=example,dc=com",
 "displayName": "Authors",
 "description": "This team writes the technical documentation.",
 "users": [
 "cn=John Doe,ou=User,dc=example,dc=com",
 "cn=Joe Bloggs,ou=User,dc=example,dc=com"
],
 "groups": [
 "cn=Department 4711,ou=Group,dc=example,dc=com"
]
}

The response includes the internal ID (uuid) of the new team, which you will need for example, to modify
the team or add this team as member of another team:

{
 "description": "This team writes the technical documentation.",
 "displayName": "Authors",
 "distinguishedName": "cn=authors,ou=bpm,dc=example,dc=com",
 "groups": [
 "cn=Department 4711,ou=Group,dc=example,dc=com"
],
 "metadata": {
 "created": "2020-02-18T14:28:33.040Z",
 "lastModified": "2020-02-18T14:28:33.040Z"
 },
 "teams": [],
 "users": [
 "cn=Joe Bloggs,ou=User,dc=example,dc=com",
 "cn=John Doe,ou=User,dc=example,dc=com"
],
 "uuid": "e60d02c1-7e55-4534-81f8-b3c079e83ee3"
}

Using the User Management Services 35

Creating a new team that includes an existing team
To create another team that includes the "Authors" as a team member you would call POST /
teamserver/rest/teams with the following JSON object:

{
 "distinguishedName": "cn=Reviewers,ou=bpm,dc=example,dc=com",
 "displayName": "Reviewers",
 "description": "This team is responsible for reviewing the documentation.",
 "teams": [
 "e60d02c1-7e55-4534-81f8-b3c079e83ee3"
]
}

Retrieving a team
To retrieve an UMS team you can use the following REST API call:

GET /teamserver/rest/teams/{uuid}

For example, to retrieve the "Authors" team (that has the uuid e60d02c1-7e55-4534-81f8-
b3c079e83ee3) you can invoke the following REST API call:

GET /teamserver/rest/teams/e60d02c1-7e55-4534-81f8-b3c079e83ee3

The response object returns the information about the team. For example:

{
 "description": "This team writes the technical documentation.",
 "displayName": "Authors",
 "distinguishedName": "cn=authors,ou=bpm,dc=example,dc=com",
 "groups": [
 "cn=Department 4711,ou=Group,dc=example,dc=com"
],
 "metadata": {
 "created": "2020-02-18T14:28:33.040Z",
 "lastModified": "2020-02-18T14:28:33.040Z"
 },
 "teams": [],
 "users": [
 "cn=Joe Bloggs,ou=User,dc=example,dc=com",
 "cn=John Doe,ou=User,dc=example,dc=com"
],
 "uuid": "e60d02c1-7e55-4534-81f8-b3c079e83ee3"
}

Incrementally updating a team
To update an UMS team incrementally you can use the following REST API call:

PATCH /teamserver/rest/teams/{uuid}

You must pass the update operation in a JSON object in the request body of the call.

For example, to update the description of the "Authors" team you can invoke the following REST API call:

PATCH /teamserver/rest/teams/e60d02c1-7e55-4534-81f8-b3c079e83ee3

and pass the following JSON object:

{
 "operations": [
 {
 "op": "replace",
 "path": "description",
 "value": "This team is responsible for the product documentation."
 }
]
}

36 IBM Business Automation Workflow User Management Services on containers

Replacing a team
To replace an UMS team you can use the following REST API call:

PUT /teamserver/rest/teams/{uuid}

You must pass the new team definition as an input parameter in a JSON object in the request body of the
call.

For example, to remove the user "John Doe" you can invoke the following REST API call:

PUT /teamserver/rest/teams/e60d02c1-7e55-4534-81f8-b3c079e83ee3

and pass the following JSON object:

{
 "distinguishedName": "cn=Authors,ou=bpm,dc=example,dc=com",
 "displayName": "Authors",
 "description": "This team is responsible for the product documentation.",
 "users": [
 "cn=Joe Bloggs,ou=User,dc=example,dc=com"
],
 "groups": [
 "cn=Department 4711,ou=Group,dc=example,dc=com"
]
}

Retrieving a list of teams that you are a member of
To retrieve a list of all UMS teams that you are a member of you can use the following REST API call:

GET /teamserver/rest/teams?my_teams=true

Note that only UMS Team administrators are authorized to perform this call without the my_teams query
parameter to retrieve all teams with arbitrary filters. UMS Team users are restricted to see only those
teams that they are a member of. To limit the list to those teams whose display name starts with "Aut" you
can add the filter query parameter. For more information about filters, see the OpenAPI documentation
for the full list of filters. Also, notice that for better readability the required URL query parameters
encoding is omitted:

GET /teamserver/rest/teams?my_teams=true&filter=displayName SW "Aut"

Here is the example response:

{
 "items": [
 {
 "description": "This team is responsible for the product documentation.",
 "displayName": "Authors",
 "distinguishedName": "cn=authors,ou=bpm,dc=example,dc=com",
 "groups": [
 "cn=Department 4711,ou=Group,dc=example,dc=com"
],
 "metadata": {
 "created": "2020-02-18T14:28:33.040Z",
 "lastModified": "2020-02-18T14:33:57.688Z"
 },
 "teams": [],
 "users": [
 "cn=Joe Bloggs,ou=User,dc=example,dc=com"
],
 "uuid": "e60d02c1-7e55-4534-81f8-b3c079e83ee3"
 }
],
 "metadata": {
 "startIndex": 1,
 "totalSize": 1
 }
}

Using the User Management Services 37

Deleting a team
To delete an UMS team you can use the following REST API call:

DELETE /teamserver/rest/teams/{uuid}

The delete request removes the corresponding team from the database and also removes all references
from other teams to that team.

For example, to delete the "Authors" team you can invoke the following REST API call:

DELETE /teamserver/rest/teams/e60d02c1-7e55-4534-81f8-b3c079e83ee3

User Management Service Teams GraphQL API
Your applications can access and administer User Management Service (UMS) Teams by using GraphQL
calls.

GraphQL is a powerful query language for APIs standardized by the GraphQL Organization. While the
normal REST API returns the response always in a fixed format, GraphQL allows you to specify the exact
list of fields that you want to receive in a response to a REST API call. The UMS Teams server supports
GraphQL with two REST endpoints:
/teamserver/rest/graphql

• GET: Retrieve team data according to a GraphQL query.
• POST: Retrieve or modify data according to a GraphQL query or mutation.

Remember: In GraphQL terminology, a modification is know as a "mutation".

Important:

Whereas the UMS Teams REST API (such as GET teamserver/rest/teams) usually omits any fields
with a null value in the response, GraphQL sets such requested fields explicitly to null.

UMS Teams does not support GraphQL subscriptions.

User Management Service Teams GraphQL schema
UMS Teams supports GraphQL queries with respect to a schema that is defined in the SDL language.

schema {
 query: Query
 mutation: Mutation
}

Root type for all queries
type Query {

 # Retrieve a team definition
 team(

 # The unique identifier of the team definition.
 uuid: String!,

 # If "shallow", the team definition contains only the directly
 # contained users, groups and teams. If "deep", the team definition
 # contains the recursively contained users, groups and teams
 # (but LDAP groups are not expanded).
 membership: MembershipEnum = shallow

): Team

 # Retrieve a teams collection
 teams(
 # When true, only those team are returned that contain the current user.
 myteams: Boolean = false,

 # When specified, only those team definitions matching the filter
 # expression are returned. A filter is a logical expression consisting
 # of an attribute test (e.g., displayName EQ "ABC") or logical
 # combinations (AND, OR, NOT) of attribute tests. Operator precedence

38 IBM Business Automation Workflow User Management Services on containers

https://graphql.org/

 # can be overridden by braces ```()```.
 filter: String = null,

 # Specifies the attributes whose value is used to order the returned
 # items.
 sortBy: TeamSortByEnum = displayName,

 # Specifies whether the sort order is ascending or descending.
 sortOrder: SortOrderEnum = ascending,

 # Specifies the index of the first retrieved result within the list
 # of all elements that match the search filter. The index starts at 1.
 startIndex: Int = 1,

 # Non-negative integer that specified the desired maximum number of
 # retrieved elements per page. If this parameter is missing, all
 # elements are retrieved.
 maxCount: Int = -1,

 # If "shallow", the team definition contains only the directly
 # contained users, groups and teams. If "deep", the team definition
 # contains the recursively contained users, groups and teams (but LDAP
 # groups are not expanded).
 membership: MembershipEnum = shallow

): TeamCollection!

 # Check if the current user is a member of any of the provided teams
 userMemberOfAnyTeam(

 # A list of unique identifiers of team definitions.
 teamIds: [String!]

): UserMemberOfAnyTeam!

 # Retrieve the info of the current user
 userInfo: UserInfo!

 # Retrieve the permissions of the current user
 userPermission: UserPermission!
}

Root type for all mutations
type Mutation {
 # Create a team definition
 createTeam(
 # The team definition when creating a new team
 team: TeamInput!
): Team

 # Replace a team definition
 replaceTeam(
 # The unique identifier of the team definition.
 uuid: String!

 # The new team definition for the team with the uuid
 team: TeamInput!
): Team

 # Delete a team definition
 deleteTeam(
 # The unique identifier of the team definition.
 uuid: String!
): String
}

The new team definition
input TeamInput {
 # The team definition's distinguished name
 # Distinguished names are used to identify a teams in a readable and unique way.
 # The distinguished name must be unique among all teams.
 distinguishedName: String!

 # The team definition's display name
 displayName: String

 # The team definition's description
 description: String

 # The distinguished names of users that belong to the team
 users: [String!]

Using the User Management Services 39

 # The distinguished names of groups that belong to the team
 groups: [String!]

 # The UUIDs of subteams that belong to the team
 teams: [String!]
}

The team definition
type Team {
 # The team definition's unique identifier
 uuid: String!

 # The team definition's distinguished name.
 # Distinguished names are used to identify a teams in a readable and unique way.
 # The distinguished name must be unique among all teams.
 # While the uuid is immutable, the distinguished name can be modified by the user.
 distinguishedName: String!

 # The team definition's display name
 displayName: String

 # The team definition's description
 description: String

 # The distinguished names of users that belong to the team
 users: [String!]

 # The distinguished names of groups that belong to the team
 groups: [String!]

 # The subteams that belong to the team
 teams: [Team!]

 # Meta data about the creation and update timestamps
 metadata: MetaData
}

Result of userMemberOfAnyTeam query
type UserMemberOfAnyTeam {
 # True, if the current user is a member of any of the provided teams
 memberOfAnyTeam: Boolean!
}

The information for a user.
type UserInfo {
 # This is a short name uniquely identifying a user. This is expected to be stable
 # and typically matches what the user specified during login.
 userName: String

 # The user's distinguished name.
 distinguishedName: String

 # The distinguished names of groups the user belongs to.
 groups: [String!]
}

The permissions of a user indicate what operations the user is allowed to perform.
type UserPermission {
 # True if the user is permitted to retrieve the list of his own teams.
 canListMyTeams: Boolean!

 # True if the user is permitted to retrieve the list of all teams.
 canListAllTeams: Boolean!

 # True if the user is permitted to view the details of each team.
 canViewTeamDetails: Boolean!

 # True if the user is permitted to create a new team.
 canCreateTeam: Boolean!

 # True if the user is permitted to modify each existing team.
 canModifyTeam: Boolean!

 # True if the user is permitted to replace each existing team.
 canReplaceTeam: Boolean!

 # True if the user is permitted to delete each existing team.
 canDeleteTeam: Boolean!
}

Meta data about the creation and update timestamps
type MetaData {

40 IBM Business Automation Workflow User Management Services on containers

 # The time stamp when the object was created
 created: String!

 # The time stamp when the object was modified
 lastModified: String!
}

Collection of team definitions.
type TeamCollection {
 # An array of team definitions.
 items: [Team!]

 # Meta data about a paginated collection.
 metadata: PagedCollectionMetaData
}

Meta data about a paginated collection.
type PagedCollectionMetaData {
 # The total number of elements that match the search filter.
 # A negative number is interpreted as unlimited total number.
 totalSize: Int!

 # The start index in the total list of elements if only a page of elements
 # is returned. The first element has index 1.
 startIndex: Int!

 # The total number of available pages if only a page of elements is returned.
 pageSize: Int

 # The page index if only a page of elements is returned. The first page has
 # page index 1.
 pageIndex: Int
}

Enumeration for team membership deepness
enum MembershipEnum {
 # Team definitions contains only the directly contained users, groups and teams.
 shallow

 # Team definition contains the recursively contained users, groups and teams.
 deep
}

Enumeration for team sorting
enum TeamSortByEnum {
 # Sort by distinguishedName
 distinguishedName
 # Sort by displayName
 displayName
 # Sort by description
 description
 # Sort by unique identifier
 uuid
 # Sort by creation timestamp
 created
 # Sort by modification timestamp
 lastModified
}

Enumeration for sort order
enum SortOrderEnum {
 # Ascending order
 ascending
 # Descending order
 descending
}

User Management Service Teams GraphQL error handling
The GraphQL system does not use the normal REST API error handling.

Most of the time, the two REST endpoints on teamserver/rest/graphql will return the HTTP status
OK (200), even when there is an error.

A response that includes an error might look like the following:

{
 "data": {
 "team": {

Using the User Management Services 41

 "uuid": "ddc12371-b71a-4a9a-b819-6cb29713ff65",
 "displayName": "Team1"
 }
 },
 "errors": [
 {
 "locations": [
 {
 "column": 33,
 "line": 1
 }
],
 "message": "CWLUM1017E: Error in GraphQL query: ..."
 }
],
 "extensions": {}
}

• The data field represents the valid response data. It might or might not be present, depending on
whether an error stopped the entire processing, whether there is no error, or an error is recoverable.

• The errors field contains the errors that occurred during the GraphQL processing, for example, when
the input query was syntactically wrong or if the caller is not authorized to perform the request. When
there are no errors, the errors field is missing.

• The extensions field is usually missing. The extension field might be filled with a GraphQL trace log
if the server has logging and tracing enabled at the level FINER.

There are cases when the two REST endpoints on teamserver/rest/graphql will return an HTTP
status code that is not the OK code (200). This happens if the error is outside the GraphQL processing, for
example, when the JSON input of the POST request cannot be parsed. In this case, the response will not
be in the GraphQL response format because the GraphQL processing was not even started.

User Management Service Teams GraphQL example queries
GraphQL queries can be sent through the GET API as well as through the POST API. The following sections
provide examples of GraphQL queries on teams and users:

• “GET API” on page 42
• “POST API” on page 43
• “Using GET to request the display name of a specific team” on page 43
• “Using POST to request the display name of a specific team” on page 43
• “Requesting more details for a specific team” on page 43
• “Using variables in queries” on page 44
• “Operation names” on page 44
• “Requesting a list of teams” on page 45
• “Requesting a list of teams with a filter” on page 45
• “Requesting information about the current user” on page 45
• “Checking if the current user is a member of any of the provided teams” on page 46
• “Checking the permissions of the current user:” on page 46

GET API

GET https://host:port/teamserver/rest/graphql?
query=someQuery&variables=someVariableMap&operation_name=opName

The query parameters are:

• query - The query string in GraphQL format.
• variables - A variable map in JSON format.
• operation_name - A name selecting a named query if the query string contains multiple named queries.

Note that query parameters require URL encoding.

42 IBM Business Automation Workflow User Management Services on containers

POST API

POST https://{host}:{port}/teamserver/rest/graphql

The POST API is similar to the GET API, but instead of query parameters, a JSON payload must be
specified.

{
 "query" : "{ team(uuid:\"72d8e3b6-d4a3-4d0f-a5a7-2e63cea03460\") { displayName }}"
}

The POST payload corresponds to the GET query parameters and looks in general form like this:

{
 "query" : "....",
 "variables" : {
 "variable1" : "Test",
 "variable2" : 123
 },
 "operationName" : "TestOp"
}

Using GET to request the display name of a specific team
The query parameter:

{ team(uuid:"72d8e3b6-d4a3-4d0f-a5a7-2e63cea03460") { displayName }}

A curl call for localhost would look like this:

curl -i -k -H "Authorization: Bearer oauthtoken" -H "Accept: application/json" -H "Content-
Type: application/json" -X POST https://host:port/teamserver/rest/graphql -d '{ "query" :
"{ team(uuid:\"72d8e3b6-d4a3-4d0f-a5a7-2e63cea03460\") { displayName }}" }'
Reply

Here is an example response:

{
 "data": {
 "team": {
 "displayName": "Team3"
 }
 }
}

Using POST to request the display name of a specific team

{
 "query" : "{ team(uuid:\"72d8e3b6-d4a3-4d0f-a5a7-2e63cea03460\") { displayName }}"
}

Remember: Because the value of the query field is a string that contains the GraphQL query, all quotes
inside the GraphQL query must be escaped.

A curl call for localhost would look like this:

curl -i -k -H "Authorization: Bearer oauthtoken" -H "Accept: application/json" -H "Content-
Type: application/json" -X POST https://localhost:9443/teamserver/rest/graphql -d '{ "query" :
"{ team(uuid:\"72d8e3b6-d4a3-4d0f-a5a7-2e63cea03460\") { displayName }}" }'

Requesting more details for a specific team
Here is a more interesting example for a query string that is formatted, without URL encoding or quote
escapes:

Using the User Management Services 43

{
 team(uuid:"66c0fffd-402f-4062-9280-9cbcc6df5da2", membership:deep) {
 uuid
 displayName
 description
 teams {
 uuid
 displayName
 }
 }
}

The corresponding example response:

{
 "data": {
 "team": {
 "uuid": "66c0fffd-402f-4062-9280-9cbcc6df5da2",
 "displayName": "Team3",
 "description": "This is a third test team",
 "teams": [
 {
 "uuid": "4eadae15-85e2-434a-924a-81e2f840f485",
 "displayName": "Team1"
 },
 {
 "uuid": "9aeb2195-c96a-452a-859f-14f1e740d661",
 "displayName": "Team2"
 }
]
 }
 }
}

Using variables in queries
GraphQL queries can contain variables. In this case, you must provide the variable map in the GET request
by using the variables parameter, or in the POST request in the variables payload field. For example:

query TestOp($muuid: String!) {
 team(uuid:$muuid) {
 uuid
 displayName
 description
 teams {
 uuid
 displayName
 }
 metadata {
 created
 lastModified
 }
 }
}

A suitable variable map could be:

{
 "muuid" : "9aeb2195-c96a-452a-859f-14f1e740d661"
}

Operation names
Because the query in the previous example is named, you could pass the string TestOp as the
operation_name parameter. Operation names are optional for unique queries and are only needed
when the query string contains multiple named queries, for example, when an application always passes
a query string with all possible queries and wants to select which query from the possible ones should be
executed.

44 IBM Business Automation Workflow User Management Services on containers

Requesting a list of teams
Here is a query for the list of teams:

{
 teams(maxCount:2, startIndex:3, sortOrder:descending) {
 items {
 uuid
 displayName
 teams {
 uuid
 displayName
 }
 }
 metadata {
 startIndex
 totalSize
 pageIndex
 pageSize
 }
 }
}

The example response might be:

{
 "data": {
 "teams": {
 "items": [
 {
 "displayName": "Team2",
 "teams": [
 {
 "displayName": "Team1",
 "uuid": "6c009429-5240-4a29-b13a-36344e6a5504"
 }
],
 "uuid": "21172f8a-c242-406d-9b64-e84911d2862e"
 },
 {
 "displayName": "Team1",
 "teams": [],
 "uuid": "6c009429-5240-4a29-b13a-36344e6a5504"
 }
],
 "metadata": {
 "pageIndex": 2,
 "pageSize": 7,
 "startIndex": 3,
 "totalSize": 13
 }
 }
 }
}

Requesting a list of teams with a filter
Here is a query for a list of teams with a filter. Note the need to escape quotes inside the filter string:

{
 teams(filter: "displayName EQ \"Team1\"", membership:shallow) {
 items {
 displayName
 }
 }
}

Requesting information about the current user
Here is a query to return the information about the current user:

{
 userInfo {
 principalName

Using the User Management Services 45

 distinguishedName
 realm
 groups
 }
}

The example response might be:

{
 "data": {
 "userInfo": {
 "principalName": "John.Doe@example.com",
 "distinguishedName": "cn=John Doe,ou=User,dc=example,dc=com",
 "realm": "PrimaryRealm",
 "groups": ["cn=Example,ou=Group,dc=example,dc=com"]
 }
 }
}

Checking if the current user is a member of any of the provided teams
Here is a query to check if the current user is a member of any of the provided teams:

{
 userMemberOfAnyTeam(teamIds:"47c48aea-54ba-4007-9886-ba9cd81c67c0") {
 memberOfAnyTeam
 }
}

The example response might be:

{
 "data": {
 "userMemberOfAnyTeam": {
 "memberOfAnyTeam": true
 }
 }
}

Checking the permissions of the current user:
Here is a query to check the permissions of the current user:

{
 userPermission {
 canCreateTeam
 canDeleteTeam
 canListAllTeams
 canListMyTeams
 canModifyTeam
 canReplaceTeam
 canViewTeamDetails
 }
}

The example response might be:

{
 "data": {
 "userPermission": {
 "canCreateTeam": false,
 "canDeleteTeam": false,
 "canListAllTeams": false,
 "canListMyTeams": true,
 "canModifyTeam": false,
 "canReplaceTeam": false,
 "canViewTeamDetails": false
 }
 }
}

46 IBM Business Automation Workflow User Management Services on containers

User Management Service Teams GraphQL example mutations
You can use mutations to create, replace, or delete teams. Mutations should always use the POST API.

The following sections provide examples:

• “Creating a new team” on page 47
• “Replacing a team” on page 48
• “Deleting a team” on page 48

Creating a new team
Here is an unformatted example payload that creates a new team:

{
 "query" : "mutation { createTeam(team: { displayName: \"ABC\", distinguishedName:
\"cn=abc,ou=bpm,dc=example,dc=com\", description: ... }) { uuid displayName distinguishedName
description ... } } "
}

Remember: Because the value of the query field is a string that contains the GraphQL query, all quotes
inside the GraphQL query must be escaped.

Here is a query string (excluding the "query":) of another example, in clear formatted text:

mutation {
 createTeam(
 team: {
 displayName: "ABC",
 distinguishedName: "cn=abc,ou=bpm,dc=example,dc=com",
 description: "Desc",
 users: [
 "U1"
],
 teams: [
 "5183d3c6-d25e-4fe7-847e-8b2bd5a0e1d0"
]
 }
) {
 uuid
 displayName
 distinguishedName
 description
 users
 groups
 teams {
 uuid
 }
 }
}

Here is an example response:

{
 "data": {
 "createTeam": {
 "uuid": "9b62c908-b356-4de2-b784-527a782649dd",
 "displayName": "ABC",
 "distinguishedName": "cn=abc,ou=bpm,dc=example,dc=com",
 "description": "Desc",
 "groups": [],
 "teams": [
 {
 "uuid": "5183d3c6-d25e-4fe7-847e-8b2bd5a0e1d0"
 }
],
 "users": [
 "U1"
]
 }
 }
}

Using the User Management Services 47

Replacing a team
Here is an example query string to replace a team, in clear text:

mutation {
 replaceTeam(
 uuid: "9b62c908-b356-4de2-b784-527a782649dd",
 team: {
 displayName: "DEF",
 distinguishedName: "cn=def,ou=bpm,dc=example,dc=com",
 users: [
 "U2", "U3"
],
 teams: [
 "936783c6-d24e-41f1-217e-1a3cd4a1e201"
]
 }
) {
 uuid
 displayName
 distinguishedName
 description
 users
 groups
 teams {
 uuid
 displayName
 description
 teams {
 uuid
 teams {
 uuid
 teams {
 uuid
 teams {
 uuid
 teams {
 uuid
 teams {
 uuid
 }
 }
 }
 }
 }
 }
 }
 }
}

Note: In the previous example, the nesting of the teams illustrates how it is possible to query the result
arbitrarily deep in the relationship nesting

Deleting a team
Here is an example query string to delete a team, in clear text:

mutation {
 deleteTeam(
 uuid: "9b62c908-b356-4de2-b784-527a782649dd"
)
}

Here is an example response:

{
 "data": {
 "deleteTeam": "9b62c908-b356-4de2-b784-527a782649dd"
 }
}

48 IBM Business Automation Workflow User Management Services on containers

User Management Services configuration parameters

 Containers:
Configuration parameters for the User Management Services (UMS) on Kubernetes.

UMS data source parameters
 Containers:
Configuration parameters for the User Management Service (UMS) data source. These are specified in the
section dc_ums_datasource.

Most UMS data source configuration parameters are optional, the following parameters are required:

• datasource_configuration.dc_ums_datasource.dc_ums_oauth_type

If the OAuth database type is db2 or oracle then the following parameters are also required:

– datasource_configuration.dc_ums_datasource.dc_ums_oauth_host
– datasource_configuration.dc_ums_datasource.dc_ums_oauth_port
– datasource_configuration.dc_ums_datasource.dc_ums_oauth_name

• datasource_configuration.dc_ums_datasource.dc_ums_teamserver_type

If the teams database type is db2 then the following parameters are also required:

– datasource_configuration.dc_ums_datasource.dc_ums_teamserver_host
– datasource_configuration.dc_ums_datasource.dc_ums_teamserver_port
– datasource_configuration.dc_ums_datasource.dc_ums_teamserver_name

Table 1. UMS data source configuration parameters for the
datasource_configuration.dc_ums_datasource section

Parameter Description Default/Example
values

Required

dc_ums_oauth_type The type of OAuth
database.

Important: Derby can
only be used for test
scenarios. It will not
work in scenarios with
more than one UMS pod.
All data is lost when the
pod is restarted.

derby
db2
oracle
sqlserver
postgresql

Yes

dc_ums_oauth_host The host name of
the OAuth database.
It must be an
accessible address, such
as an IP, hostname,
or Kubernetes service
name.

If the OAuth database is
db2 or oracle.

dc_ums_oauth_port The OAuth database
port number.

50000 If the OAuth database is
db2 or oracle.

dc_ums_oauth_name The name of the OAuth
database.

UMSDB

User Management Services configuration parameters 49

Table 1. UMS data source configuration parameters for the
datasource_configuration.dc_ums_datasource section (continued)

Parameter Description Default/Example
values

Required

dc_ums_oauth_schem
a

For Oracle databases,
the schema name must
be the user name of the
database.

Can be specified if a
schema was created.

dc_ums_oauth_oracl
e_service_name

If you connect to
an Oracle Real
Application Clusters
(RAC) environment using
Single Client Access
Name (SCAN), configure
the database service
name in addition to
the name of the Oauth
database.

If you connect to
an Oracle Real
Application Clusters
(RAC) environment using
Single Client Access
Name (SCAN).

dc_ums_oauth_ssl Specify true if SSL
will be used to secure
the OAuth database
connection.

The default value is
false

If SSL will be used
to secure the OAuth
database connection.

dc_ums_oauth_ssl_s
ecret_name

The name of the SSL
secret.

ibm-dba-ums-db2-
cacert

If SSL will be used
to secure the OAuth
database connection.

dc_ums_oauth_drive
rfiles

If you are using a
database of type other
than Db2 or derby, copy
the driver files to the
connected persistent
volume (PV). Use the
property
spec.ums_configura
tion.existing_clai
m_name to point to the
PV claim. During the
deployment Operator
picks up the driver files
and configures the
connection to the
database

db2jcc4.jar
db2jcc_license_cu.
jar.

Note: Db2 driver
files are loaded
automatically, only
provide Oracle driver
files if you are using
Oracle.

If you are using a
database of type other
than Db2 or derby.

dc_ums_oauth_alter
nate_hosts

Only specify alternate
OAuth database hosts if
the OAuth database type
is set to db2HADR.

If the OAuth database
type is set to db2HADR.

dc_ums_oauth_alter
nate_ports

Only specify alternate
OAuth database ports if
the OAuth database type
is set to db2HADR.

If the OAuth database
type is set to db2HADR.

50 IBM Business Automation Workflow User Management Services on containers

Table 1. UMS data source configuration parameters for the
datasource_configuration.dc_ums_datasource section (continued)

Parameter Description Default/Example
values

Required

dc_ums_teamserver_
type

The type of UMS Teams
database.

Important: Derby can
only be used for test
scenarios. It will not
work in scenarios with
more than one UMS pod.
All data is lost when the
pod is restarted.

derby
db2
oracle
sqlserver
postgresql

Yes

dc_ums_teamserver_
host

The host name of
the UMS Teams db2
database.

If the UMS Teams
database is db2.

dc_ums_teamserver_
port

The UMS Teams db2
database port.

50000 If the UMS Teams
database is db2.

dc_ums_teamserver_
name

The name of the UMS
Teams database.

UMSTEAMSDB If the UMS Teams
database is db2.

dc_ums_teamserver_
schema

Can be specified if a
schema was created.
For Oracle databases,
the schema name must
be the user name of the
database.

Can be specified if a
schema was created.

dc_ums_teamserver_
oracle_service_nam
e

If you connect to
an Oracle Real
Application Clusters
(RAC) environment using
Single Client Access
Name (SCAN), configure
the database service
name in addition to the
name of the UMS Teams
database.

If you connect to
an Oracle Real
Application Clusters
(RAC) environment using
Single Client Access
Name (SCAN).

dc_ums_teamserver_
ssl

Specify true if SSL is
be used to secure the
UMS Teams database
connection.

The default value is
false.

If SSL is used to
secure the UMS Teams
database connection.

dc_ums_teamserver_
ssl_secret_name

If SSL is used to
secure the UMS Teams
database connection,
specify the name of the
SSL secret.

ibm-dba-ums-db2-
cacert

If SSL is used to
secure the UMS Teams
database connection.

User Management Services configuration parameters 51

Table 1. UMS data source configuration parameters for the
datasource_configuration.dc_ums_datasource section (continued)

Parameter Description Default/Example
values

Required

dc_ums_teamserver_
driverfiles

During the deployment
Operator picks up
the driver files
and configures the
connection to the UMS
Teams database

db2jcc4.jar
db2jcc_license_cu.
jar.

No

dc_ums_teamserver_
alternate_hosts

Only specify alternate
UMS Teams database
hosts if the UMS Teams
database type is set to
db2HADR.

If the UMS Teams
database type is set to
db2HADR

dc_ums_teamserver_
alternate_ports

Only specify alternate
UMS Teams database
ports if the UMS Teams
database type is set to
db2HADR.

If the UMS Teams
database type is set to
db2HADR

UMS parameters
 Containers:
Configuration parameters for User Management Services (UMS). These are specified in the section
ums_configuration.

Most configuration parameters are optional, only two parameters are required:

• ums_configuration.images.ums.repository: The repository from where the UMS image is
pulled.

• ums_configuration.images.ums.tag: The UMS image tag.

Table 2. UMS configuration parameters for the ums_configuration section

Parameter Description Default/
Example
values

Required

existing_claim_name The name of the Persistent Volume Claim for
JDBC drivers and custom binaries.

No

existing_claim_name_logs
tore

The existing PVC for UMS logs, FFDC and
access logs.

No

use_custom_jdbc_drivers If the JDBC driver offered over
shared_configuration.sc_drivers_ur
l or the default JDBC drivers from ICP4BA
should not be used, set this to true, so that
the JDBC driver is read from the PV set as
existing_claim_name. For more
information on the
shared_configuration.sc_drivers_UR
L, see Preparing customized versions of JDBC
drivers

The
default
value is
false.

No

52 IBM Business Automation Workflow User Management Services on containers

https://www.ibm.com/docs/SSYHZ8_23.0.1/com.ibm.dba.install/op_topics/tsk_custom_drivers.html
https://www.ibm.com/docs/SSYHZ8_23.0.1/com.ibm.dba.install/op_topics/tsk_custom_drivers.html

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

dedicated_pods Specifies whether the UMS capabilities each
run in dedicated pods. To run the UMS
capabilities sso, scim, and teamserver in
separate pods, use the value true. To run all
UMS capabilities in one pod, use the value
false.

In an
enterprise
deployme
nt the
default
value is
true. In a
demo
deployme
nt, the
default
value is
false.

No

pod_disruption_budget.mi
n_available

• If you are not using dedicated
pods locate the parameter
in the ums_configuration
section.

• If you are using dedicated
pods you must specify
the parameter for each
UMS capability's pod
separately within the
ums_configuration, for
example:

– ums_configuration.ss
o.pod_disruption_bud
get.min_available

– ums_configuration.sc
im.pod_disruption_bu
dget.min_available

– ums_configuration.te
amserver.pod_disrupt
ion_budget.min_avail
able

Specifies the minimum number of pods that
are available for the pod disruption budget.

The
default
value is 1

replica_count The number of pod replicas running by
default.

The
default
value is 2.

No

User Management Services configuration parameters 53

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

backwards_compatibility_
routes

From 21.0.2, UMS uses the following pattern
for host names:

ums-<suffix>
ums-sso-<suffix>
ums-teams-<suffix>
ums-profiles-<suffix>

If you are upgrading and want routes
to be created for backwards compatibility
using the previously defined host names
and certificates, set this to true. The old
hostname pattern was:

ums.<suffix>
ums-sso.<suffix>
ums-teams.<suffix>
ums-profiles.<suffix>

The
default
value is
false.

No

service_type The type to expose the service as, for
example, Route for external access or
NodePort for internal tests.

The
default
value is
Route.

No

iam.delegation_enabled Specifies whether authentication is delegated
to the Common Services Identity Access
Management (IAM).

On OCP
and ROKS,
the
default
value is
true.
Otherwise
, the
default is
false.

No

iam.namespace The namespace where IAM is installed. The
default
value is
ibm-
common-
services
.

No

54 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

hostname The name of the host where the User
Management Service will run.

If not
specified,
hostname
is
generated
from
shared_c
onfigura
tion.sc_
deployme
nt_hostn
ame_suff
ix.

No

port The port that will be used to access the User
Management Service, for example, 443 when
using SSL.

The
default
value is
443.

No

images.ums.repository The repository from where the UMS image is
pulled.

• If the
reposito
ry
sc_ima
ge_rep
ositor
y is
availabl
e, it is
used as
the
default.

• Otherwi
se,
cp.icr
.io/cp
/
cp4a/u
ms/ums
is used
as the
default
value.

Yes

User Management Services configuration parameters 55

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

images.ums.tag The UMS image tag. • If the
reposito
ry
sc_ima
ge_rep
ositor
y is
availabl
e, it is
used as
the
default.

• Otherwi
se, if the
current
reposito
ry in not
cp.icr
.io, the
current
version
is used
as the
default,
for
example
21.0.2.

• Otherwi
se, if the
reposito
ry
cp.icr
.io is
used,
the
image
digest is
used as
the
default
value.

No

admin_secret_name The name of the secret that was generated
for the UMS secret and database secret.

If not
specified,
the secret
ibm-dba-
ums-
secret
must be
created.

No

56 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

external_tls_secret_name Enables SSL with an existing certificate for
the ums-route route. If this is set this is
used rather than using
shared_configuration.external_tls_
certificate_secret.

If this is
not set,
the
default is
to use
shared_c
onfigura
tion.
external
_tls_cer
tificate
_secret,
but if that
is also not
set, then
no
external
TLS
certificate
is used.

No

external_tls_ca_secret_n
ame

Certificate Authority (CA) used to sign the
external TLS secret. If you don't want to
provide a CA to sign the external TLS
certificate, leave this empty, then .

The
default is
not to use
a CA to
sign the
external
TLS
certificate.

No

external_tls_teams_secre
t_name

A secret that specifies the TLS certificate that
represents the hostname or a common
hostname suffix of the ums-teams-route
route that your clients will use to connect to
UMS. If this is set this is used rather than
using
shared_configuration.external_tls_
certificate_secret.

If this is
not set,
the
default is
to use
shared_c
onfigura
tion.
external
_tls_cer
tificate
_secret,
but if that
is also not
set, then
no
external
TLS
certificate
is used.

No

User Management Services configuration parameters 57

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

external_tls_scim_secret
_name

A secret that specifies the TLS certificate that
represents the hostname or a common
hostname suffix of the ums-scim-route
route that your clients will use to connect to
UMS. If this is set this is used rather than
using
shared_configuration.external_tls_
certificate_secret.

If this is
not set,
the
default is
to use
shared_c
onfigura
tion.
external
_tls_cer
tificate
_secret,
but if that
is also not
set, then
no
external
TLS
certificate
is used.

No

external_tls_sso_secret_
name

A secret that specifies the TLS certificate that
represents the hostname or a common
hostname suffix of the ums-sso-route
route that your clients will use to connect to
UMS. If this is set this is used rather than
using
shared_configuration.external_tls_
certificate_secret.

If this is
not set,
the
default is
to use
shared_c
onfigura
tion.
external
_tls_cer
tificate
_secret,
but if that
is also not
set, then
no
external
TLS
certificate
is used.

No

oauth.client_manager_gro
up

The full DN of an LDAP group that is
authorized to manage OIDC clients, in
addition to the primary admin from the admin
secret.

No

oauth.token_manager_grou
p

The full DN of an LDAP group that is
authorized to manage tokens, in addition to
the primary admin from the admin secret.

No

58 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

oauth.access_token_lifet
ime

The lifetime of OAuth access_tokens. The
default
value is
7200s.

No

oauth.app_token_lifetime The lifetime of app-tokens. The
default
value is
366d.

No

oauth.app_password_lifet
ime

The lifetime of app-passwords. The
default
value is
366d.

No

oauth.app_token_or_passw
ord_limit

The maximum number of app-tokens or app-
passwords per client.

The
default
value is
100.

No

oauth.client_secret_enco
ding

The encoding / encryption when storing client
secrets in the OAuth database.

The
default
value is
xor for
compatibil
ity.
Recomme
nded
value is
PBKDF2Wi
thHmacSH
A512.

No

custom_secret_name The name of the existing secret for sensitive
Liberty configuration, specified in XML
format.

No

User Management Services configuration parameters 59

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

For UMS resources,
autoscaling, custom_xml,
and
logs.trace_specification
:

• If you are not using
dedicated pods locate them
in the ums_configuration
section.

• If you are using dedicated
pods you must specify
each UMS capability's
pod separately within the
ums_configuration, for
example:

– ums_configuration.ss
o

– ums_configuration.sc
im

– ums_configuration.te
amserver

Kubernetes controls resources such as
CPU and memory using requests and
limits mechanisms. Requests are what the
container is guaranteed to get. Limits make
sure a container never goes above a certain
value. A limit value cannot be lower than the
corresponding request value.

If you are not using dedicated
pods for UMS capabilities
(ums_configuration.dedicated_pods
= false) you can specify
resources, autoscaling, custom_xml,
and logs.trace_specification for
ums_configuration.

If you are using dedicated
pods for UMS capabilities
(ums_configuration.dedicated_pods =
true), you can specify resources,
autoscaling, custom_xml, and
logs.trace_specification for each
UMS capability: sso, scim, and
teamserver.

The
default
values are
listed in
the
following
rows.

No

• If you are not
using dedicated pods:
resources.limits.cpu

• If you are using dedicated
pods:

– sso.resources.limits
.cpu

– scim.resources.limit
s.cpu

– teamserver.resources
.limits.cpu

The maximum CPU limit. The
default
value is
500m.

No

• If you are not using dedicated
pods:
resources.limits.memor
y

• If you are using dedicated
pods:

– sso.resources.limits
.memory

– scim.resources.limit
s.memory

– teamserver.resources
.limits.memory

The maximum memory limit. The
default
value is
512Mi.

No

60 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

• If you are not using dedicated
pods:
resources.limits.ephem
eral_storage

• If you are using dedicated
pods:

– sso.resources.limits
.ephemeral_storage

– scim.resources.limit
s.ephemeral_storage

– teamserver.resources
.ephemeral_storage

The maximum ephemeral storage limit. The
default
value is
500Mi.

No

• If you are not
using dedicated pods:
resources.requests.cpu

• If you are using dedicated
pods:

– sso.resources.reques
ts.cpu

– scim.resources.reque
sts.cpu

– teamserver.resources
.requests.cpu

The minimum CPU. The
default
value is
200m.

No

• If you are not using dedicated
pods:
resources.requests.mem
ory

• If you are using dedicated
pods:

– sso.resources.reques
ts.memory

– scim.resources.reque
sts.memory

– teamserver.resources
.requests.memory

The minimum memory. The
default
value is
256Mi.

No

User Management Services configuration parameters 61

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

• If you are not using dedicated
pods:
resources.requests.eph
emeral_storage

• If you are using dedicated
pods:

– sso.resources.reques
ts.ephemeral_storage

– scim.resources.reque
sts.ephemeral_storag
e

– teamserver.requests.
ephemeral_storage

The minimum ephemeral storage limit. The
default
value is
500Mi.

No

• If you are not
using dedicated pods:
autoscaling.enabled

• If you are using dedicated
pods:

– sso.autoscaling.enab
led

– scim.autoscaling.ena
bled

– teamserver.autoscali
ng.enabled

If true, pods are automatically scaled within
the specified range.

The
default
value is
true.

No

• If you are not using dedicated
pods:
autoscaling.min_replic
as

• If you are using dedicated
pods:

– sso.autoscaling.min_
replicas

– scim.autoscaling.min
_replicas

– teamserver.autoscali
ng.min_replicas

The minimum number of replicas for
autoscaling.

The
default
value is 2.

No

62 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

• If you are not using dedicated
pods:
autoscaling.max_replic
as

• If you are using dedicated
pods:

– sso.autoscaling.max_
replicas

– scim.autoscaling.max
_replicas

– teamserver.autoscali
ng.max_replicas

The maximum number of replicas for
autoscaling.

The
default
value is 5.

No

• If you are not using dedicated
pods:
autoscaling.target_ave
rage_utilization

• If you are using dedicated
pods:

– sso.autoscaling.targ
et_average_utilizati
on

– scim.autoscaling.tar
get_average_utilizat
ion

– teamserver.autoscali
ng.target_average_ut
ilization

The average CPU utilization for autoscaling.
When the average utilization exceeds this
target, then new pods are created.

The
default
value is
98.

No

use_custom_binaries Specify if any custom binaries are used. The
default
value is
false.

No

custom_secret_name The name of the existing secret for sensitive
Liberty configuration, specified in XML
format.

No

• If you are not using dedicated
pods: custom_xml

• If you are using dedicated
pods:

– sso.custom_xml
– scim.custom_xml
– teamserver.custom_xm
l

Custom configuration settings (optional,
multi-line value). For LDAP configuration use
spec.ldap_configuration parameters.

No

User Management Services configuration parameters 63

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

logs.console_format The format of the UMS logs console. The
default
value is
json.

No

logs.console_log_level The log level for the UMS logs console. The
default
value is
INFO.

No

logs.console_source UMS logs console source. The
default
value is
message,
trace,ac
cessLog,
ffdc,aud
it.

No

logs.trace_format The format of the UMS logs trace. The
default
value is
ENHANCED
.

No

logs.max_files The maximum number of log files to use. The
default
value is 2.

No

logs.max_file_size The maximum size of the log files in MB. The
default
value is
20.

No

• If you are not using dedicated
pods:
logs.trace_specificati
on

• If you are using dedicated
pods:

– sso.logs.trace_speci
fication

– scim.logs.trace_spec
ification

– teamserver.logs.trac
e_specification

The UMS logs trace specification. The
default
value is
*=info.

No

64 IBM Business Automation Workflow User Management Services on containers

Table 2. UMS configuration parameters for the ums_configuration section (continued)

Parameter Description Default/
Example
values

Required

teamserver.admingroup The full DN of an LDAP group that is
authorized to administer UMS Teams.

• For the
IBM
Automat
ion
Docume
nt
Processi
ng demo
pattern,
the
default
is
cn=ADP
Enviro
nmentO
wners,
dc=exa
mple,d
c=org.

• For all
other
demo
patterns
, the
default
is
cn=Tea
msAdmi
ns,dc=
exampl
e,dc=o
rg.

• For all
enterpri
se (non-
demo)
patterns
, there is
no
default.

No

UMS advanced parameters
 Containers:
Configuration parameters for User Management Services (UMS).

Using these optional advanced UMS configuration parameters is described in the following sections:

• “Updating parameters if you do not have dedicated pods for UMS services enabled” on page 66
• “Updating parameters if you have dedicated pods for UMS services enabled” on page 66
• “UMS database JDBC connect pool sizes” on page 66

User Management Services configuration parameters 65

• “UMS Health host/port, logging, and certificate checking” on page 67
• “UMS Teams certificate checking” on page 68

Updating parameters if you do not have dedicated pods for UMS services enabled
Because all UMS services run together in shared pods, you must use the
ums_configuration.custom_xml property in the Custom Resource file to overwrite the default values
of any of the advanced parameters. For example:

ums_configuration:
 custom_xml: |
 <server>
 <variable name="Parameter_Name" value="Value"/>
 </server>

Updating parameters if you have dedicated pods for UMS services enabled
Because each UMS service runs in its own pod, to overwrite the default values of any of these advanced
parameters you must specify the custom_xml property for the appropriate UMS service pods separately
in the Custom Resource file. For example:

ums_configuration:

 sso:
 custom_xml: |
 <server>
 <variable name="Parameter_Name" value="Value" />
 </server>

 scim:
 custom_xml: |
 <server>
 <variable name="Parameter_Name" value="Value" />
 </server>

 teamserver:
 custom_xml: |
 <server>
 <variable name="Parameter_Name" value="Value" />
 </server>

Important: Not all parameters apply to all pods. If you have dedicated pods, refer to the "Valid for pods"
columns in the following tables to see which pods each parameter can be specified for.

UMS database JDBC connect pool sizes
You can configure the following database parameters:

Table 3. Optional UMS database advanced configuration parameters

Parameter Name Description Valid for
pods

Default
value

ums.oauthdb.maxPoolSize The maximum size of the pool of UMS JDBC
connections can be tuned to better utilize the
CPU of the UMS SSO pod.

sso 100

ums.oauthdb.minPoolSize The minimum size of the pool of UMS JDBC
connections can be tuned to better utilize the
CPU of the UMS SSO server pod.

sso 2

ums.tsdb.maxPoolSize The maximum size of the pool of UMS JDBC
connections can be tuned to better utilize the
CPU of the UMS Teams server pod.

teamserv
er

100

66 IBM Business Automation Workflow User Management Services on containers

Table 3. Optional UMS database advanced configuration parameters (continued)

Parameter Name Description Valid for
pods

Default
value

ums.tsdb.minPoolSize The minimum size of the pool of UMS JDBC
connections can be tuned to better utilize the
CPU of the UMS Teams server pod.

teamserv
er

2

UMS Health host/port, logging, and certificate checking
To configure UMS Health, you can use the following advanced parameters for all pods:

Table 4. Optional UMS Health advanced configuration parameters

Parameter Name Description Valid for
pods

Default
value

ums.health.useLocalHostA
ndPort

Specifies whether local host and local port
are used instead of server host and server
port if the health modules are automatically
detected or the URLs of modules do not
specify host and port explicitly. This setting
can be needed if a reverse proxy or load
balancer is used. By default, server host and
server port are used in this case, that is, the
load balancer or reverse poxy address, or in
general, the same host and port the original
request was sent to. This setting only has
an effect if the fallback host and port is not
specified.

All pods false

ums.health.fallbackHostA
ndPort

The fallback host and port are used when the
health modules are automatically detected
or the URLs of modules do not specify host
and port explicitly. If the fallback host and
port is not specified, either the server host
and server port or the local host and local
port are used in the case, depending on the
useLocalHostAndPort setting.

All pods https://
127.0.0.
1:9443

ums.health.logHealthFail
uresOnStartup

Specifies whether on server startup, all failing
results of health calls are logged as warnings.
This logging stops when the first health call
returns success. This feature can help to
analyze situations when the server fails to
start.

All pods true

ums.health.disableCNChec
k

Configures whether the common name
verification of server SSL certificates is
disabled. This allows UMS to connect to
an OpenID Connect provider with an SSL
certificate that does not match its host name.

All pods false

ums.health.disableCertif
icateCheck

Configures whether the certificate verification
is disabled. This allows connection to an
OpenID Connect provider whose certificate is
not in the truststore.

All pods false

User Management Services configuration parameters 67

UMS Teams certificate checking
You can configure the following advanced parameters:

Table 5. Optional UMS Teams advanced configuration parameters

Parameter Name Description Valid for
pods

Default
Value

ums.teams.registration.d
isableCNCheck

Configures whether the common name
verification of server SSL certificates is
disabled. This allows UMS Teams to connect
to an OpenID Connect provider with an SSL
certificate that does not match its host name.

sso and
teamserv
er

false

ums.teams.registration.d
isableCertificateCheck

Configures whether the certificate verification
is disabled. This allows UMS Teams to
connect to an OpenID Connect provider
whose certificate is not in the truststore.

sso and
teamserv
er

false

ums.teams.scim.disableCN
Check

Configures whether the common name
verification of server SSL certificates is
disabled. This allows UMS Teams to connect
to a SCIM server with an SSL certificate that
does not match its host name.

teamserv
er

false

ums.teams.scim.disableCe
rtificateCheck

Configures whether the certificate verification
is disabled. This allows UMS Teams to
connect to a SCIM server whose certificate
is not in the truststore.

teamserv
er

false

68 IBM Business Automation Workflow User Management Services on containers

IBM®

	Contents
	User Management Services on Containers
	Preparing to install User Management Services
	Preparing the UMS database
	Preparing a Db2 database
	Preparing an Oracle database
	Preparing an MS SQL database
	Preparing a PostgreSQL database

	Configuring the UMS dedicated pod option
	Creating the UMS database admin secret
	Securing communications with the UMS database
	Securing communications with UMS

	Configuring User Management Services
	Completing post-deployment tasks for User Management Service
	Delegating authentication to a Security Assertion Markup Language (SAML) identity provider
	Delegating authentication to an OIDC Identity Provider
	Configuring UMS routes for load balancing

	Using the User Management Services
	UMS single sign-on
	Invoking OAuth 2.0 protected APIs
	From a custom command line application
	From a browser or mobile application
	From a Liberty-based application
	Using long-lived access tokens

	UMS Teams
	Managing teams
	UMS Teams access control
	UMS Teams REST API
	Examples
	UMS Teams GraphQL API
	GraphQL schema
	GraphQL error handling
	GraphQL example queries
	GraphQL example mutations

	User Management Services configuration parameters
	UMS data source parameters
	UMS parameters
	UMS advanced parameters

