
Solving Application Installation Issues
During Migration

Introduction
Each new release of IBM WebSphere Application Server provides new features and improves
on existing features in the WebSphere runtime, the Java runtime, and in the Java EE
technologies used by enterprise applications. The migration tools provided with WebSphere
help bring the old configuration settings and the associated set of installed applications
forward into the new WebSphere release. The main goal of a WebSphere migration is to
have the new environment behave or function as close as possible to the old environment,
thus allowing the new features to be leveraged over time.

Various application deployment issues can occur during the migration process in a mixed-cell
environment due to “sleeper” constructs contained within the application. Although the
application deployed and ran successfully in the old release environment, the unchanged
application cannot deploy in the mixed-cell environment because the old node does not
support applications configured with Java EE 6 constructs. By using the methods described in
this paper, you can identify and handle these possible application installation issues when you
migrate to V8.0 or V8.5.5.

Background
In a standard cell migration scenario, the deployment manager (dmgr) must be migrated first
because it is required to be at the highest release level of all the nodes that make up the cell.
The new dmgr is allowed to manage federated nodes running at the same release level or
any of the three prior release levels. In this mixed-cell environment, the dmgr identifies which
Java EE levels are supported by each node based on its WebSphere release level.
Therefore, the V8.5.5 dmgr does not allow applications running at a Java EE 6 level to be
deployed to nodes running a release prior to V8.0. During deployment, an application's Java
EE level can be determined in three ways:

• By looking at the application's deployment descriptors
• By scanning the application code for certain annotations associated with a particular

Java EE level
• By how the application itself is coded – for example, EJB's “no-interface view”.

Problem
During the migration process, you might encounter a scenario where an application deploys
successfully onto a dmgr running V7.0, but this same application will not deploy onto that
same dmgr after it is migrated to V8.0 or V8.5.5. This scenario occurs because the
application contains at least one Java EE 6 construct that was previously ignored by the V7.0
deployment process. In V7.0 these so-called “sleeper” constructs are unused when the

application is deployed and when the application is running. When a dmgr migrates to V8.0
or V8.5.5, the applications are re-deployed to this new level - which is fully aware of Java EE
6 constructs. If these constructs are present, the application is automatically promoted,
regardless of whether the application actually uses the constructs. And because the
application is targeted to a V7.0 node, which only supports Java EE 5 constructs, the
deployment process fails.

Some possibilities for how these Java EE 6 constructs might have been included in an
application targeted for a Java EE 5 environment include:

• Developer tools might automatically add them, or present them to developers who
unknowingly accept them.

• An application might package a third-party utility JAR file that includes at least one
Java EE 6 construct.

Analyzing Applications For Java EE 6 Constructs
As always, you should thoroughly test the migration process, which includes migrating the
applications, before you perform the migration in a production environment. During this
testing phase you will need to determine which applications encounter the automatic app-
promotion issues described in the previous section. Note that WebSphere's migration
process simply re-deploys the applications “as-is” into the new release.

During this testing phase, it is recommended that you use WASPostUpgrade's “-includeApp
script” parameter and option. Using this option separates the migration of the server's
configuration settings from the re-deployment of the applications into the new environment.
The “script” option produces the necessary installation scripts so that the applications can be
deployed manually after WASPostUpgrade finishes its other work.

For applications that fail to deploy, search the log and trace files for indications that the
application has been automatically promoted and cannot be deployed to a node running a
previous release. The following Java EE 6 constructs are known to cause migration
application deployment issues:

• No Interface View (ejb 3.1)
• Web Fragments (servlet 3.0)
• EJBs in WAR files (Java EE 6)
• Certain Java EE6 annotation (@WebServlet (servlet 3.0),

 @ServletFilter (servlet 3.0),
 @Singleton (ejb 3.1))

These constructs will most commonly show up as errors in the log and trace files as
something similar to the following example:

com.ibm.websphere.management.exception.AdminException: ADMA5055E: Errors in validating application target
association for SampleApp -
ADMA0110E: This type of J2EE application 50 is not supported on nodes [testNodeAppserver] of version [7]
 at com.ibm.ws.management.application.task.ValidateAppTask.performTask(ValidateAppTask.java:424)
 at com.ibm.ws.management.application.SchedulerImpl.run(SchedulerImpl.java:315)
 at java.lang.Thread.run(Thread.java:773)

Other key phrases that indicate an application was automatically promoted include:

• "Upgrade triggered by servlet 30 annotations"
• "Updating versions for Web Descriptor"
• "Upgrade triggered by EJB content"
• "Upgrade triggered by fragments"
• "ADMA5074W" or "has web modules with a version 3.0 deployment descriptor and EJB content"
• "descriptor will be promoted"

To get the above messages, you might need to enable these trace settings:

com.ibm.config.eclipse.wtp=finer:
com.ibm.ws.management.application.*=all:
com.ibm.websphere.management.application.*=all

Disabling Java EE 6 Constructs
A set of properties controls whether certain Java EE 6 constructs are ignored when the
application is deployed or are disabled when the application is running. They can be used in
solving the application deployment issues discussed previously. Note that deployment and
runtime are independently controlled. For deployment these properties can be set at the
process, application, or module level. Likewise, for runtime these properties can be set at the
server, application, or module level.

◦ To set these properties at the module or application level, locate the corresponding
META-INF/MANIFEST.MF file and add one or more of the following properties:

Ignore-No-Interface-View: true
Ignore-Web-Fragment: true
Ignore-JEE6-Annotation: true
Ignore-Ejb-In-War-Annotation: true

** Properties set at the application level apply to all modules in the application.
** Both deployment and runtime will use the application and module level settings.

◦ To set these properties for the deployment process, go to the dmgr profile's properties
directory and locate the wsadmin.properties file and add one or more of the following
properties:

org.eclipse.jst.j2ee.commonarchivecore.ignore.no.interface.view=true
org.eclipse.jst.j2ee.commonarchivecore.ignore.web.fragment=true
org.eclipse.jst.j2ee.commonarchivecore.ignore.jee6.annotation=true
org.eclipse.jst.j2ee.commonarchivecore.ignore.ejb.in.war=true

** Properties set at the process level apply to all applications being deployed.
◦ Use the administrative console to set one or more of the previously mentioned

org.eclipse.* properties in the server's Java runtime process settings.
** Properties set at the process level apply to all applications running on the server.
** Deploying an application through the administrative console requires that one or
more of the org.eclipse.* properties be set in the dmgr's Java runtime process settings.

Solutions:
Fixing the Application in the Current Release
The best solution to avoid application deployment issues is to ensure that all applications are
properly assembled for the current targeted WebSphere release before you migrate. For
example, deployment descriptors should indicate the correct version, code should not contain

unsupported annotations, and so on. This solution, however, requires coordinating with the
development teams to re-test and re-deploy applications that are currently working. This
solution is ideal because the constructs that cause deployment and runtime behavior changes
are eliminated. Newer releases of WebSphere always support older levels of the Java EE
technologies, so the application migrates forward “as-is” without the need for any special
handling.

“All-at-once” Migration
A solution that avoids the single deployment issue of the application Java EE level not being
supported by the WebSphere release of the target node is to migrate the entire cell all at once
and to delay deploying any applications until after all nodes have been migrated to the new
release. This strategy might require extensive downtime, especially if there are a lot of nodes
to be migrated and apps to be installed. It also requires using WASPostUpgrade's “-
includeApp script” option to separate the application install process from the configuration
portion of the dmgr's migration. Be aware that this solution does not address possible Java
EE 6 behavior changes during deployment or when the application is running on a server at
the new release level. This is inconsistent with WebSphere migration's goal of “no behavior
changes”. To address these concerns, see the discussion above on “Disabling Java EE 6
Constructs” for both deployment and runtime.

“Mixed-cell” Migration
The solution that supports a mixed-cell migration is to have the deployment process ignore
these Java EE 6 constructs during the dmgr's migration. See the discussion above on
“Disabling Java EE 6 Constructs”. This solution also requires using WASPostUpgrade's “-
includeApp script” option to separate the application install process from the configuration
portion of the dmgr's migration. Over time the other nodes will be migrated to the new release.
As these nodes are migrated, applications containing Java EE 6 constructs might change
behavior running at a newer level of WebSphere. See the discussion “Disabling Java EE 6
Constructs” above on how to handle these runtime behavior changes.

When you migrate profiles, keep the following in mind:

• WASPostUpgrade's “-installApp script” option generates an install script for each
application migrated. These scripts are located in the migration backup directory.
Each application is staged for deployment in the dmgr profile's installableApps
directory. Instructions are provided in the install_all_apps.jy script.

• Applications containing deployment descriptors with versions belonging to Java EE 6
that were previously deployed to a federated node running a WebSphere release prior
to V8.0 will not deploy when migrated to V8.0 or V8.5.5. WebSphere does not provide
a special property to ignore deployment descriptor version settings. The application
staged in the new dmgr's installableApps directory will have to be manually changed.

• If an application is not deployed on the dmgr after it is migrated and the old node is
synchronized, whether automatically or manually, the application will be stopped and
removed from the old node. Be sure that all nodeagents are stopped before you start
the new dmgr.

Additional Help with Applications and Annotation Scanning:

How an application is coded, packaged, and assembled can make a difference in its
deployment and runtime behavior. The following suggestions and articles can help you to
work with applications.

Deployment Descriptors:

Some deployment descriptors support a “metadata-complete” flag. If set to true, that
portion of the application will not be scanned for annotations. Consider using this flag if
you know your application does not use annotations.

Shared Library Support:
Consider using shared libraries for utility type JAR files, especially if they are from a
third party. Using shared libraries not only reduces the size of your application and the
amount time spent scanning it, but it can also avoid the automatic “app-promotion”
problems discussed earlier. Shared libraries are simply made available to applications
as part of the class path. You can configure these libraries for visibility and scope. The
drawback to this approach is that the applications are now dependent on the
environment. The shared libraries need to be configured on each system the same
way, which places more of a burden on the system administrator. For more information
about using shared libraries, see Best Practices for Integrating Open Source Software
Frameworks (https://www.ibm.com/support/pages/node/494997).

Use Annotation Filtering:
WebSphere provides files that list a set of archives that, if found, should not be
scanned for annotations. These lists are found at the install, profile, application, and
module level and are enabled by setting a property to point to its locations. For more
information about managing application scanning from a runtime point of view, see
How to speed up annotation processing in WAS V7/V8
(http://wasdynacache.blogspot.com/2012/05/how-to-speed-up-annotation-
processing.html).

WebSphere Application Migration Toolkit:

The WebSphere Application Migration Toolkit can also help to identify code issues for
target WebSphere releases. For more information, see the documentation
(https://www.ibm.com/support/pages/websphere-migration-knowledge-collection-
downloads).

