
WebSphere Application Server z/OS Version 7

WebSphere Optimized Local Adapters

 Planning Guide Planning Guide
and Referenceand Reference

Version Date: November 12, 2012

See "Document Change History" on page 22 for a description
of the changes in this version of the document

IBM Advanced Technical Skills
Gaithersburg, MD

WP101490 at
ibm.com/support/techdocs

© IBM Corporation 2010

WP101490 – Design and Planning Guide

Many, many thanks to Jim Mulvey, Tim Kaczynski and
Dave Follis of the WAS z/OS development team.

The WAS z/OS support team in IBM Advanced Technical Skills
consists of John Hutchinson, Mike Kearney, Louis Wilen,

Lee-Win Tai, Mike Loos and Don Bagwell.

We also receive wonderful support from Ken Hain and Brian
Pierce.

Mike Cox, Distinguished Engineer, serves as technical advisor
to all our activities.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 2 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Table of Contents

Reference... 4
Quick Reference Facts...4
Key InfoCenter Search Strings...4

Framework of Approach to WOLA...5
Enabling WOLA in WAS z/OS...7
Overview...7
Validation..7

WOLA and CICS...8
Overview...8
Enabling support in CICS...8
Outbound to CICS using Link Server Task...9
Outbound to CICS using WOLA APIs..11
CICS inbound to WAS z/OS...12
Summary of CICS Support...14

WOLA and IMS...15
Overview...15
Enabling support in IMS..15
Outbound to IMS using OTMA..16
Outbound to IMS using WOLA APIs...16
IMS inbound to WAS z/OS ..17
IMS DL/I Batch..18
Summary IMS Support...18
..18

WOLA and Batch (Including IMS DL/I)...19
Overview...19
Enabling support in batch...19
Outbound to batch..19
Inbound from batch...20

Document Change History..22

© 2012, IBM Corporation
Americas Advanced Technical Skills - 3 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Reference
Quick Reference Facts

Minimum Level of WAS
z/OS

Function first made available in 7.0.0.4

Level of WAS z/OS with
Updates to WOLA

7.0.0.12

External Address Spaces
Supported in Latest

CICS, IMS (MPR, IFP, BMP, DL/I batch), Batch, USS and ALCS

Programming Languages
Supported

Java (in WAS), COBOL, C/C++, High Level Assembler

Transaction
(restrictions apply, see details
pages)

• 2PC inbound CICS to WAS in 7.0.0.4
• 2PC outbound WAS to CICS in 7.0.0.12
• SyncOnReturn IMS to WAS in 7.0.0.12
• CM0 or CM1 WAS into IMS in 7.0.0.12

Identity Propagation
(restrictions apply, see details
pages)

• WAS thread identity into CICS and IMS (MPP and IFP, but not BMP)
• CICS region ID or application ID into WAS
• IMS thread ID into WAS

InfoCenter publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp

Techdocs ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

Key InfoCenter Search Strings

WOLA in General

Introduction cdat_ola

Planning to use tdat_useola

Enabling in WAS z/OS tdat_enableconnector

WOLA samples cdat_olasamples

WOLA variables cdat_olacustprop

Custom Properties urun_rproperty_custproperties

Performance cdat_perfconsid

Security container_ola_security

Development Related

JCA adapter methods tdat_connect2wasapp

EJB development tdat_useola_in (Step 2, Develop an EJB Application)

WOLA APIs cdat_olaapis

CICS Related

Enabling in CICS tdat_enableconnectorcics

BBOC Transaction rdat_cics

Security tdat_security_out

IMS Related

Enabling in IMS tdat_enableconnectorims

Security cdat_olasecurityimsconsid

© 2012, IBM Corporation
Americas Advanced Technical Skills - 4 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Framework of Approach to WOLA
This is to help you focus on the specifics of your particular use of WOLA. See notes below.

Programming Model Intended 
 External Address Space Type

Outbound
from WAS z/OS 1

Inbound
to WAS z/OS 2

CICS Link Server
Note 1

APIs
Note 2 Note 3

IMS OTMA
Note 4

APIs
Note 5 Note 6

Batch | USS | IMS DL/I Batch Note 7 Note 8

ALCS Note 9

xx
Note 1 Outbound CICS using Link Server Task

• This provides ability to shield target CICS program from WOLA API programming
• Transaction: Provides the support for two phase commit propagation from WAS out to CICS
• Security: Provides ability to assert WAS thread identity into CICS with that ID used for DPL
• Requires the installation of WOLA support in CICS (page 8)
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• See "Outbound to CICS using Link Server Task" on page 9

Note 2 Outbound CICS using WOLA APIs
• You may bypass the Link Server task to achieve greater performance
• It would require at least one program in CICS be written to the outbound APIs
• Transaction: No propagation of transaction from WAS into CICS possible
• Security: No asssertion of WAS identity into CICS
• Requires the installation of the WOLA support in CICS (page 8)
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• See "Outbound to CICS using WOLA APIs" on page 11

Note 3 Inbound CICS
• The Link Server Task plays no role in an inbound exchange
• This requires at least one CICS program be written to the inbound APIs
• Transaction: Provides the ability to assert global transaction into WAS z/OS
• Security: Provides the ability to assert CICS region ID or the application thread ID into WAS z/OS
• Requires the installation of the WOLA support in CICS (page 8)
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• See "CICS inbound to WAS z/OS" on page 12

Note 4 Outbound IMS using OTMA
• This provides the ability to shield target IMS programs from WOLA API programming
• Does not require WOLA support installation in IMS (completely transparent to IMS)
• Transaction: Able to assert CM0 or CM1 transaction into IMS at this time
• Security: Able to assert WAS thread ID into IMS (MPP, IFP but not BMP)
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• See "Outbound to IMS using OTMA" on page 16

1 The program in WAS initiates the exchange. It is outbound with respect to WAS z/OS. This occurs after a valid registration into the WAS
z/OS server has been completed.

2 The program in the external address space initiates the exchange. Again, after a valid registration has been completed.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 5 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Note 5 Outbound IMS using WOLA APIs
• You may call directly to programs hosting a WOLA service for greater performance
• Requires at least one IMS program to be written to the WOLA outbound APIs
• Transaction: No propagation of transaction from WAS into IMS possible
• Security: No asssertion of WAS identity into IMS
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• Requires enabling WOLA support in IMS (page 15)
• See "Outbound to IMS using WOLA APIs" on page 16

Note 6 Inbound IMS
• Requires at least one IMS program to write to the WOLA APIs
• Transaction: Only SyncOnReturn into WAS z/OS at this time
• Security: Assertion of IMS thread ID into WAS z/OS
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• Requires enabling WOLA support in IMS (page 15)
• See "IMS inbound to WAS z/OS" on page 17

Note 7 Outbound batch, USS or IMS batch DL/I
• Requires batch program to write to the outbound WOLA APIs
• Transaction: No transaction propagation
• Security: No identity assertion
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• Batch process must have STEPLIB access to WOLA native module library

Note 8 Inbound batch, USS or IMS batch DL/I
• Requires batch program to write to the inbound WOLA APIs
• Transaction: No transaction propagation
• Security: No identity assertion
• Requires enabling WOLA support in WAS z/OS server node (page 7)
• Batch process must have STEPLIB access to WOLA native module library

Note 9 ALCS
• See "ALCS and OLA Brochure" under WP101490 Techdoc at ibm.com/support/techdocs

© 2012, IBM Corporation
Americas Advanced Technical Skills - 6 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Enabling WOLA in WAS z/OS

Overview

InfoCenter tdat_enableconnector

Essential steps • Create symlinks from node's configuration file system to the WOLA files in
the SMP/E installation file system. olaInstall.sh provides this function.

• Copy WOLA modules to a preallocated module library for use by external
address space. olaInstall.sh provides this function.

• Install JCA resource adapter ola.rar into the node with a connection
factory created and assigned a JNDI name. The olaRar.py WSADMIN
script does this, or you may do it manually.

• Create environment variable WAS_DAEMON_ONLY_enable_adapter at the
cell level with a value of true. The olaRar.py WSADMIN script does
this, or you may do it manually.

Validation

InfoCenter cdat_olasamples

Essential steps • Install the sample OLASample1.ear into a WOLA-enabled server. Make
sure it starts and you can access it with the following URL:
http://<host>:<port>/OLA_Sample1_Web/

• Review the OLACC01 (language: C) or OLACB06 (language: COBOL)
samples. Both are the simplest examples of inbound programming.

• Copy the file to a FB 80 source data set.

• Edit and modify the values as directed in the comments.

• Compile and invoke. It will invoke the sample EJB and receive an echo in
return.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 7 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

WOLA and CICS
Overview

Supplied elements • A set of WOLA definitions to be installed into the CICS region CSD
• Includes a Task Related User Exit (TRUE)
• Includes a Link Server Task for outbound support
• Includes a BBOC 3270 control transaction
• A set of native API modules

Role of the TRUE
required in all cases

InfoCenter:
The adapter is designed to run in a CICS region as a resource manager. In CICS,
the Task Related User Exit (TRUE) is the primary vehicle used by resource
providers. TRUE support provides the boundary between the CICS application
threads and the external resource manager threads. Currently, DB2, WebSphere
MQ, and TCPIP sockets execute in CICS using the TRUE support. The optimized
local adapters support TRUE.

Role of the Link
Server Task
use is optional

The Link Server Task provides a way to shield your CICS programs from the
specifics of WOLA programming. The Link Server Task handles the WOLA
calls from WAS and invokes the named CICS program with EXEC CICS LINK.

Its use is optional, and if used it is only applicable to outbound calls.

Role of the BBOC
control transaction
use is optional

The BBOC control transaction provides a convenient way to start and stop the
TRUE and the Link Server Task and pass in parameters to modify the behavior
of the environment.

Its use is optional. There are other ways to achieve the same results.

Enabling support in CICS

InfoCenter tdat_enableconnectorcics

Overview • Install definitions into CSD
• Place WOLA module library on DFHRPL
• Start the TRUE or update PLTPI and restart CICS

© 2012, IBM Corporation
Americas Advanced Technical Skills - 8 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Outbound to CICS using Link Server Task

Overview The Link Server Task is provided as part of the definitions installed into the
CICS CSD. It provides a way to shield your CICS programs from the specifics
of WOLA programming. The Link Server Task handles the WOLA calls from
WAS and invokes the named CICS program with EXEC CICS LINK.

The Link Server Task is named BBO$ by default. The Link Server Invocation
Task is named BBO# by default. Both may be changed.

BBOC Commands BBOC is the 3270 control transaction that is part of the definitions installed into
the CSD. InfoCenter search rdat_cics provides details of syntax:

Start TRUE -- BBOC START_TRUE <parameters>
Stop TRUE -- BBOC STOP_TRUE <parameters>
Start Link Server -- BBOC START_SRVR <parameters>
Stop Link Server -- BBOC STOP_SRVR <parameters>

Infocenter
Install WOLA Trans

tdat_installwastranscics
Key: When CICS security is enabled, the user ID where the BBOC START_TRUE
and STOP_TRUE parameters run must have authority to issue EXEC CICS
ENABLE PROGRAM(BBOATRUE) and DISABLE PROGRAM(BBOATRUE)
EXITALL.

Messages issued by WebSphere Application Server modules under CICS are
routed to the BBOQ extra partition transient data queue (TDQ). This is allocated
under DD BBOOUT in the CICS region.

InfoCenter
WOLA security

tdat_security_out
Key Ensure that the CICS region is running with security enabled and EXEC
CICS START checking enabled. Security is enabled at start up with the
parameter SEC=YES. The EXEC CICS START checking is enabled at start up
with the parameter XUSER=YES.

Create a SAF surrogate class that grants the identity that the optimized local
adapters Link server is running with the authority to issue EXEC CICS START
TRANSACTION API and pass the USERID that was propagated to CICS from
WebSphere Application Server.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 9 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Validation • The OLASample1.ear sample file has a web interface that will allow you to
drive an outbound request into CICS. Insure it is installed and started. See
"Validation" on page 7.

• Use the supplied sample OLACB01, which is a CICS COBOL application
that will accept a COMMAREA. The sample WAS application is written to
understand the layout expected by OLACB01.

• Insure the Link Server Task is started

• Invoke the web interface with the URL (see page 7)

• Consult the InfoCenter samples page (cdat_olasamples) for directions
on how to populate the web page to drive the OLACB01 sample in CICS.

• Insure the sample application in CICS has been successfully invoked.

Identity and
Transaction
Assertion

• With the Link Server Task started and SEC=Y specified, WAS will assert
into CICS the identity of the execution thread from WAS.

• Before WAS z/OS 7.0.0.12 WAS z/OS is limited to SyncOnReturn only for
transactions started within the WAS container.

• With WAS z/OS 7.0.0.12 WAS z/OS may assert its transaction into CICS
4.1 or higher with two phase commit coordination provided by RRS.

Performance
Considerations

InfoCenter: cdat_perfconsid

BBO# Invocation Task and SEC=Y
The BBO# invocation task is what issues the EXEC CICS LINK against the
named program in CICS. If security is enabled in CICS and SEC=Y is
specified on the BBOC START_SRVR command, then each outbound call from
WAS will result in the WAS thread ID being propagated into CICS. That
results in separate instances of BBO# being invoked. Each with a SAF check
for validity of the asserted ID.

If you determine the ID used to start the link server task in CICS is sufficient
for your security needs, you should consider using the BBOC START_SRVR
parameters SEC=N, REU=Y. This allows re-use of the BBO# invocation task
and less setup/teardown overhead in CICS.

Balancing Concurrent Outbound with Defined BBO# Limits
The number of servant regions for a server times the number of threads in
that server determines the maximum potential concurrent outbound requests.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_serv
determines how many outbound services can be engaged concurrently for
the WOLA registrations in the cell. The default value is 100.

If your application exceeds this number there's a potential for delays and
timeout issues. Evaluate the maximum potential against the default 100 and
adjust accordingly.

Further, the MNC= and MXC= parameters on BBOC START_SRVR determines
how many BBO# invocation tasks may be active at one time. The default is
MNC=1 and MXC=10. If your WAS application overdrives the limit there will be
delays invoking the CICS programs. However, setting the maximum
unnecessarily high results in wasted CICS resources.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 10 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Outbound to CICS using WOLA APIs

Overview If you have determined not to use the Link Server Task for outbound calls to
CICS, the your alternative is to code to the WOLA native APIs and use the
"outbound" APIs to "host a service."

The Link Server Task is not required for outbound calls to CICS. It provides
certain benefits (described next), but it may be bypassed if you wish to achieve
maximum efficiency of operations.

TRUE The TRUE is still required. It must be started for programs in CICS that use
WOLA to work.

Registration Is always required and the external address space always initiates.

Without the Link Server task you have two ways to register: use the BBOC
REGISTER command, or use the BBOA1REG API.

InfoCenter search rdat_cics provides details of BBOC REGISTER.

InfoCenter search cdat_olaapis provides details of BBOA1REG

Identity and
Transaction
Assertion

If you choose to bypass the Link Server Task you lose the ability to assert the
WAS thread identity into CICS, and you lose the ability to assert the WAS
transaction into CICS. Those require the Link Server Task.

Hosting a Service This implies having the program in CICS enter a "listen state" so that it can
receive and handle the outbound call from WAS.

Basic APIs: BBOA1SRV, BBOA1SRP, BBOA1CNR

Primitives: BBOA1RCA, BBOA1RCS, BBOA1CNG, BBOA1CNR, BBOA1GET and
BBOA1SRX.

Samples The OLACB03 sample described at InfoCenter cdat_olasamples provides an
illustration of the simplest form of "hosting a service." OLACB04 and 05 provide
illustrations of more advanced usages.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 provides many examples of using the outbound APIs. The
examples there show batch, but they may be used equally well in CICS.

Be sure to install the OLASample1.ear application into the WAS server.

Performance
Considerations

Balancing Concurrent Outbound with Defined Connection Limits
The number of servant regions for a server times the number of threads in
that server determines the maximum potential concurrent outbound requests.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_serv
determines how many outbound services can be engaged concurrently for
the WOLA registrations in the cell. The default value is 100.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 11 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

If your application exceeds this number there's a potential for delays and
timeout issues. Evaluate the maximum potential against the default 100 and
adjust accordingly.

Further, the MNC= and MXC= parameters on BBOC REGISTER (or the
equivalent parameter on the BBOA1REG API) determines how many
concurrent connections may be open. The default is MNC=1 and MXC=10. If
your WAS application overdrives the limit there will be delays invoking the
CICS programs. However, setting the maximum unnecessarily high results in
wasted CICS resources.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1SRP (send response) API program control is not returned to your
program until WAS invokes again. The thread and the WOLA connection is
tied up during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.
That allows your program to receive program control immediately. That
allows your program to go off and do other work, or pull a request off another
inbound connection. This allows for greater utilization of resources and in
turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

CICS inbound to WAS z/OS

Overview Inbound to WAS z/OS by definition implies no Link Server Task. By definition it
implies at least one application written to use the WOLA native APIs. Other
CICS applications may use DPL to invoke that CICS program and gain access
to WOLA.

TRUE The TRUE is still required. It must be started for programs in CICS that use
WOLA to work.

Registration Is always required and the external address space always initiates.

Without the Link Server task you have two ways to register: use the BBOC
REGISTER command, or use the BBOA1REG API.

InfoCenter search rdat_cics provides details of BBOC REGISTER.

InfoCenter search cdat_olaapis provides details of BBOA1REG

© 2012, IBM Corporation
Americas Advanced Technical Skills - 12 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Identity and
Transaction
Assertion

With inbound to WAS z/OS you have the ability to assert the CICS region ID or
the CICS application ID, and assert the CICS transaction into WAS z/OS with
full two phase commit processing coordinated by RRS. This has been the case
since the inception of WOLA with 7.0.0.4.

Enabling Identity
Assertion

tdat_security_in

• Grant the CICS ID being asserted into WAS READ to the WAS server's
CBIND class profiles. There should be two profiles: CB.<cluster_name>
and CB.BIND.<cluster_name>.3 The first controls access to the CR, the
second controls access to Java EE applications in the server.

• Create a WAS environment variable scoped at the cell level with the
following name and value: ola_cicsuser_identity_propagate = 1

• Make sure SEC=Y is specified on the BBOC REGISTER command or the
proper registration flag is set if BBOA1REG is used.

Enabling Transaction
Assertion

Assertion of CICS transaction into WAS z/OS requires TXN=Y on registration.

Samples The OLACB06 sample described at InfoCenter cdat_olasamples provides an
illustration of the simplest form of inbound invocation. OLACB04 and 05
provide illustrations of more advanced usages.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 provides many examples of using the inbound APIs. The examples
there show batch, but they may be used equally well in CICS.

Be sure to install the OLASample1.ear application into the WAS server.

Performance
Considerations

Balancing Concurrent Inbound with Defined Connection Limits
The BBOA1REG API specifies the minimum and maximum connections
permitted across the registration. The usual default for maximum is 10.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_conn
determines the maximum permitted into WAS. The default is 100.

If the BBOA1REG API specifies more than 100 there's a chance your external
program will receive errors on the "get connection" activity. That may lead to
retries and lost performance.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1INV (invoke) API program control is not returned to your program until
WAS returns the response. The thread and the WOLA connection is tied up
during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.
That allows your program to receive program control immediately. That
allows your program to go off and do other work. This allows for greater
utilization of resources and in turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

3 If the server is not clustered, then <cluster_name> referes to the "cluster transition name" for the server.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 13 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Summary of CICS Support

© 2012, IBM Corporation
Americas Advanced Technical Skills - 14 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

WOLA and IMS
Overview

Important Note • WAS z/OS must be at level 7.0.0.12 or higher
• The external modules you use must be from 7.0.0.12 or higher
• The JCA resource adapter (ola.rar) must be from 7.0.0.12 or higher

IMS Samples 7.0.0.12 shipped without a small handful of IMS-specific sample programs.
APAR PM21407 is currently scheduled to be included in 7.0.0.15.

Fix pack availability information can be found at the following URL:
www.ibm.com/support/docview.wss?rs=404&uid=swg27006970

Supplied elements • A set WOLA native API modules
• An IMS external subsystem module

Outbound from WAS Two options exist:
• OTMA, which provides complete shielding of applications and IMS. This

would be through the IMS controlling region using the OTMA call interface.
The WAS JCA resource adapter has been updated with OTMA-specific
methods to accomodate this outbound call through OTMA.

• WOLA APIs, which provides greater performance and control. This implies
at least one IMS program written to the APIs.

Inbound to WAS Inbound from IMS dependent regions is done using the supplied WOLA stub
and ESAF support. Programs in the IMS dependent region use the normal
WOLA APIs. They will recognize the IMS environment and invoke the ESAF
interface.

Batch DL/I See "WOLA and Batch (Including IMS DL/I)" on page 19.

Enabling support in IMS

InfoCenter tdat_enableconnectorims

If OTMA • IMS does not need to be updated to be aware of the WOLA modules.
• IMS security definitions may need modification. See specifics under the

outbound and inbound sections of IMS in this document.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 15 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

If ESAF • APF authorize the WOLA native modules
• Update external subsystem proclib member and reference the WOLA ESAF

support
• Add the WOLA native module library to the IMS dependent region STEPLIB

concatenation

If Batch • APF authorize the WOLA native modules
• Add the WOLA native module library to the batch region's STEPLIB

concatenation

Outbound to IMS using OTMA

Overview In this mode WAS z/OS invokes the OTMA call interface of the named IMS
controller region. There is no specific WOLA awareness inside of IMS. To IMS
it appears like any other OTMA call.

To use this feature you must use the ola.rar resource adapter that comes
with 7.0.0.12 or higher. That level of the resource adapter has OTMA-specific
methods that facilitate the call to the OTMA call interface.

Programming in WAS tdat_connect2wasapp

Identity Assertion
into IMS

cdat_olasecurityimsconsid

Note: This applys to MPP and IFP, but not BMP dependent regions.

• Configure WAS z/OS with SyncToOS Thread enabled

• Ensure that the OTMASE parameter for the target IMS environment is set to
F, FULL

Transaction Assertion
into IMS

cdat_callexisttrans

Two-phase commit starting with 8.0.0.5. Prior to that Synclevel NONE or
CONFIRM.

Grant the thread-level user ID effected in the WebSphere Application Server
application READ access to the OTMA resource IMSXCF.OTMACI in the
FACILITY SAF class.

Samples cdat_olasamples

The OTMAINIT sample JCL is provided to show how to start the IMS OTMA
callable interface SVCs on your system. The rest is done in the WAS program
by calling the OTMA methods on the JCA resource adapter.

Outbound to IMS using WOLA APIs

Overview In this mode the program in WAS z/OS interacts with the WOLA outbound APIs
being hosted in the IMS dependent region. The API modules must be at the
7.0.0.12 level or higher.

See InfoCenter cdat_olaapis for a reference of the APIs.

See the "Primer" document in WP101490 Techdoc for examples of outbound
API usage.

Registration Is always required and the external address space always initiates.

For IMS that means using the BBOA1REG API.

InfoCenter search cdat_olaapis provides details of BBOA1REG

Identity Assertion
into IMS

None

Transaction Assertion
into IMS

None. Transactional control is IMS application dependent.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 16 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Performance
Considerations

Balancing Concurrent Outbound with Defined Connection Limits
The number of servant regions for a server times the number of threads in
that server determines the maximum potential concurrent outbound requests.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_serv
determines how many outbound services can be engaged concurrently for
the WOLA registrations in the cell. The default value is 100.

If your application exceeds this number there's a potential for delays and
timeout issues. Evaluate the maximum potential against the default 100 and
adjust accordingly.

Further, the minconn and maxconn parameters on the BBOA1REG API
determines how many concurrent connections may be open. The default is
minnconn=1 and maxconn=10. If your WAS application overdrives the limit
there will be delays invoking the IMS programs. However, setting the
maximum unnecessarily high results in wasted IMS resources.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1SRP (send response) API program control is not returned to your
program until WAS invokes again. The thread and the WOLA connection is
tied up during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.
That allows your program to receive program control immediately. That
allows your program to go off and do other work, or pull a request off another
inbound connection. This allows for greater utilization of resources and in
turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

IMS inbound to WAS z/OS

Overview In this mode the program in IMS must write to the WOLA native inbound APIs.
The WOLA API modules must be at the 7.0.0.12 level or higher. That is the
level of modules that is able to recognize they're operating in IMS and use the
IMS ESAF.

Registration Is always required and the external address space always initiates.

For IMS that means using the BBOA1REG API.

InfoCenter search cdat_olaapis provides details of BBOA1REG

Identity Assertion
into WAS

tdat_security_in

• Grant the IMS ID being asserted into WAS READ to the WAS server's
CBIND class profiles. There should be two profiles: CB.<cluster_name>
and CB.BIND.<cluster_name>.4 The first controls access to the CR, the
second controls access to Java EE applications in the server.

Transaction Assertion
into WAS

With WAS 8.0.0.4 IMS Dependent Region applications may assert RRS
transaction context into WAS. Prior to 8.0.0.4 only Sync on Return.

If 8.0.0.4 then two requirements to assert RRS context into WAS:

• Set WAS environment adapter_rrs_propagate_context = 1

• IMS Control Region must be running with RRS=Y

• Applications must set "Transaction Supported" flag on register API

Performance
Considerations

Balancing Concurrent Inbound with Defined Connection Limits
The BBOA1REG API specifies the minimum and maximum connections

4 If the server is not clustered, then <cluster_name> referes to the "cluster transition name" for the server.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 17 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

permitted across the registration. The usual default for maximum is 10.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_conn
determines the maximum permitted into WAS. The default is 100.

If the BBOA1REG API specifies more than 100 there's a chance your external
program will receive errors on the "get connection" activity. That may lead to
retries and lost performance.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1INV (invoke) API program control is not returned to your program until
WAS returns the response. The thread and the WOLA connection is tied up
during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.
That allows your program to receive program control immediately. That
allows your program to go off and do other work. This allows for greater
utilization of resources and in turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

IMS DL/I Batch

See "WOLA and Batch (Including IMS DL/I)" on page 19. The concepts and specifics are
identical.

Summary IMS Support

© 2012, IBM Corporation
Americas Advanced Technical Skills - 18 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

WOLA and Batch (Including IMS DL/I)

Overview

Overview Using WOLA with batch implies writing to the WOLA APIs, both inbound and
outbound.

Enabling support in batch

Overview This is simply a matter of providing the WOLA native API module library to the
STEPLIB concatenation of the batch program, including the

Outbound to batch

Overview This requires use of the WOLA outbound APIs.

Registration Is always required and the external address space always initiates.

Without the Link Server task you have two ways to register: use the BBOC
REGISTER command, or use the BBOA1REG API.

InfoCenter search cdat_olaapis provides details of BBOA1REG

Identity and
Transaction
Assertion

Neither is supported with batch.

Hosting a Service This implies having the batch program enter a "listen state" so that it can
receive and handle the outbound call from WAS.

Basic APIs: BBOA1SRV, BBOA1SRP, BBOA1CNR

Primitives: BBOA1RCA, BBOA1RCS, BBOA1CNG, BBOA1CNR, BBOA1GET and
BBOA1SRX.

Samples The OLACB03 sample described at InfoCenter cdat_olasamples provides an
illustration of the simplest form of "hosting a service." OLACB04 and 05 provide
illustrations of more advanced usages.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 provides many examples of using the outbound APIs. The
examples there show batch, but they may be used equally well in CICS.

Be sure to install the OLASample1.ear application into the WAS server.

Performance
Considerations

Balancing Concurrent Outbound with Defined Connection Limits
The number of servant regions for a server times the number of threads in
that server determines the maximum potential concurrent outbound requests.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_serv
determines how many outbound services can be engaged concurrently for
the WOLA registrations in the cell. The default value is 100.

If your application exceeds this number there's a potential for delays and

© 2012, IBM Corporation
Americas Advanced Technical Skills - 19 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

timeout issues. Evaluate the maximum potential against the default 100 and
adjust accordingly.

Further, the minconn and maxconn parameters on the BBOA1REG API
determines how many concurrent connections may be open. The default is
minnconn=1 and maxconn=10. If your WAS application overdrives the limit
there will be delays invoking the batch programs.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1SRP (send response) API program control is not returned to your
program until WAS invokes again. The thread and the WOLA connection is
tied up during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.
That allows your program to receive program control immediately. That
allows your program to go off and do other work, or pull a request off another
inbound connection. This allows for greater utilization of resources and in
turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

Inbound from batch

Overview This requires use of the WOLA inbound APIs.

Registration Is always required and the external address space always initiates.

Without the Link Server task you have two ways to register: use the BBOC
REGISTER command, or use the BBOA1REG API.

InfoCenter search cdat_olaapis provides details of BBOA1REG

Identity and
Transaction
Assertion

Transaction propagation inbound to WAS is not supported.

The invoked target EJB will run under the effective ID of the batch job.

Samples The OLACB06 sample described at InfoCenter cdat_olasamples provides an
illustration of the simplest form of inbound invocation. OLACB04 and 05
provide illustrations of more advanced usages.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 provides many examples of using the inbound APIs. The examples
there show batch, but they may be used equally well in CICS.

Be sure to install the OLASample1.ear application into the WAS server.

Performance
Considerations

Balancing Concurrent Inbound with Defined Connection Limits
The BBOA1REG API specifies the minimum and maximum connections
permitted across the registration. The usual default for maximum is 10.

The WAS environment variable WAS_DAEMON_ONLY_adapter_max_conn
determines the maximum permitted into WAS. The default is 100.

If the BBOA1REG API specifies more than 100 there's a chance your external
program will receive errors on the "get connection" activity. That may lead to
retries and lost performance.

Synchronous vs. Asynchronous APIs
The "Basic" APIs provide ease of use but limit the flexibility of operations.
Specifically, they assume synchronous control: for example, on the
BBOA1INV (invoke) API program control is not returned to your program until
WAS returns the response. The thread and the WOLA connection is tied up
during that time.

The "advanced" (or "primitive") APIs allow you to operate asynchronously.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 20 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

That allows your program to receive program control immediately. That
allows your program to go off and do other work. This allows for greater
utilization of resources and in turn greater performance.

The "The WOLA Native APIs ... a COBOL Primer" under the Techdoc
WP101490 shows how outbound asynchronous operations work.

© 2012, IBM Corporation
Americas Advanced Technical Skills - 21 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

WP101490 – Design and Planning Guide

Document Change History
Check the date in the footer of the document for the version of the document.

September 12, 2010 Original document.

February 3, 2012 Updated the information regarding security assertion into WAS z/OS on inbound from
batch processing. The processing is as follows:

• WOLA pulls the ID from the ACEE on the TCB at the time of the WOLA
Register and validates it has access to the CBIND SAF class. This is the
access check for the server.

• WOLA pulls the ID from the ACEE on the TCB at the time of the WOLA Send
Request/ or Invoke API call and asserts it into the EJB container. So the EJB
runs under the effective ID of the batch job user.

Security identity assertion for other scenarios is as originally documented.

September 11, 2012 Updated IMS section to reflect 8.0.0.4 update that allows transaction assertion into
WAS from IMS for Dependent Region applications.

November 12, 2012 Updated IMS section to reflect 8.0.0.5 update that allows transaction assertion into IMS
over OTMA. Updated CICS section to reflect 8.0.0.5 that allows enhanced CICS
channels and containers support.

End of WP101490

© 2012, IBM Corporation
Americas Advanced Technical Skills - 22 -

ibm.com/support/techdocs
Version Date: Monday, November 12, 2012

