

WebSphere Application Server

WebSphere Liberty Batch:
Thoughts on Performance

This document can be found on the web at:
www.ibm.com/support/pages/node/6398358

Version Date: January 6, 2021
See "Document change history" on page 31 for a description of the changes in this version of the document

IBM Software Group
Application and Integration Middleware Software

Written by:

David Follis
IBM Poughkeepsie

845-435-5462
follis@us.ibm.com

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 2 - Version Date: Wednesday, January 06, 2021

Many thanks go to Beena Hotchandani for her patience...

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 3 - Version Date: Wednesday, January 06, 2021

Contents
Introduction ... 5
The Application ... 5

The Reader .. 5

The Processor .. 5
The Writer ... 6
Listeners .. 6

Establishing a Baseline ... 6
How Many Items? ... 7
Where to Start with Item Count? .. 7

Starting Values for Checkpoint Data and Processing Results ... 7
What are the Numbers for our Baseline? .. 7
Can We Enable the Chunk Listener Monitor? .. 7

Playing with Checkpoint Intervals .. 8
The Raw Results ... 9
Looking at the Read Time ... 10

Looking at the Writer .. 11
Bulk Inserts vs One by One Deletes ... 13
Container Overhead .. 16
Conclusions ... 19
Sidebar: Creating the graphs .. 20

Playing with Checkpoint Info Sizes .. 21
Playing with Write Object Size ... 22

Changing Our Application .. 22
The Results .. 24

Experimenting with Partitions .. 27
Enabling Batch Events .. 29
A Few More Thoughts .. 29
Conclusions ... 30
Document change history ... 31

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 4 - Version Date: Wednesday, January 06, 2021

Tables and Figures

Figure 1 - Step Elapsed Time for Various Item Count Values ... 10
Figure 2 - Writer Time for Various Item Count Values ... 12
Figure 3 - Insert Time for Various Item Count Values ... 14
Figure 4 - Delete Time for Various Item Count Values ... 15
Figure 5 - Inserts and Deletes as Components of Total Step Time .. 16
Figure 6 - Container Time for Various Item Count Values .. 17
Figure 7 - Number of Checkpoints vs Item Count .. 18
Figure 8 - Components of Elapsed Time for Various Item Count Values .. 19
Figure 9 - Container Time for Various Checkpoint Data Sizes .. 22

Table 1 - Step Elapsed Time for Different Item Count Values .. 9
Table 2 - Writer Time for Various Item Count Values ... 11
Table 3 - Insert Time for Various Item Count Values .. 13
Table 4 - Delete Time for Various Item Count Values ... 14
Table 5 - Container Time for Various Item Count Values ... 16
Table 6 - Container Time for Variously Sized Checkpoint Data .. 21

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 5 - Version Date: Wednesday, January 06, 2021

Introduction
Unlike OLTP, there don’t seem to be any standard benchmarks for batch applications. There are
batch applications that get used to measure the performance of other things (like z/OS pervasive
encryption), but no standard batch metrics. But that’s ok because what I really wanted to write
about was how design decisions you might make when creating a JSR-352 Liberty Batch
application affect the performance of the job. In this paper we’ll start by looking at the batch
application I used for measurements. Then we’ll start changing some parameters to affect how it
behaves and crawl around in the resulting performance differences.

The Application
The goal was to create a single step batch job that behaved like a real application but wasn’t
actually. We wanted it to be extremely consistent in its behavior so that we could accurately
determine the effect of changing different aspects of how it ran.
To that end, we decided on a job with a chunk step which read data from a flat file, did no
processing (more on that in a bit), and then interacted with a database in the writer.

The Reader
Most normal applications that read data from a file will read until the file ends. In our case we
wanted to be able to vary how much data was read (how many records were processed) without
having to fuss around with changing the contents of the input file.
Therefore, the reader takes an input parameter called NumRecords that controls how many records
it will read. The parameter FileName points us to the file to read from. The reader will read from
the file until it hits the required number of records or the end of the file. If the end of the file comes
first, the reader closes and re-opens the file to start over. Thus, we didn’t need different files in
different sizes to control the number of records. We did need a file big enough that we wouldn’t be
opening and closing it all the time.
Finally, the reader has an input parameter called ReaderCheckpointDataSize which controls
the amount of data provided on the checkpointInfo method. This data has to be serialized and
written into the Job Repository. Our application won’t restart in any of our runs but handling
checkpoint data that is excessively large might slow things down.

The Processor
My original thought was to have a processor that just did some fixed amount of processing to
emulate a real application doing whatever it does with the data we read. However, as I started
doing some runs and analyzing the data, I realized that I could just subtract out the processing time
because it wasn’t interesting – it was the same for every run.
That led me to the conclusion that our measurements should use a job that didn’t have a processor
element in the chunk. Obviously many normal applications would, but that’s a factor in the
performance of the application itself and not an interesting part of how the JSR-352 implementation
in Liberty manages the step.
Which brings us to the first thing to consider if you’re looking at this paper to help improve the
performance of your own applications: consider the cost of processing separately. Unless it

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 6 - Version Date: Wednesday, January 06, 2021

somehow has contention issues (maybe running as a partitioned step?) you should be able to
measure and analyze your processor on its own.

The Writer
For the writer we wanted to access a database to emulate doing some database work using the
outcome of the processing. Of course, in our case there is no processor and so it isn’t producing
any results. But the writer knows the number of records processed in each chunk (because we
pass it in as a parameter), so it knows how many things it would be expected to write.
To keep things simple, the writer then just fabricates enough things to write and inserts them into
the database. The objects being written are the same as we use in the BonusPayout sample Java
Batch application.
However, as the job runs, we can’t just keep re-inserting the same rows over and over again
because primary keys will collide, and the inserts will fail. We could generate unique keys, but as
the job runs data will accumulate in the table and have to be cleared out between runs.
To avoid that problem the writer alternates between writing new rows and deleting the rows it added
last time. Essentially the job inserts rows in one chunk, deletes those rows in the next chunk, then
adds them back into the table in the third chunk, and so forth on and on until the job ends.
The inserts are done as a bulk (or batch) insert, while the deletes are done row-by-row using the
primary key values we know we inserted in the last chunk.
Doing alternating insert/deletes gets us more than just not having to clean up the database after
each run (which I was definitely going to forget to do). It allows us to compare bulk record
processing vs one-by one processing.
The writer also has a variable called WriterCheckpointDataSize to control the amount of
checkpoint data it provides.
And finally, the variable AccountNumberBase controls the starting index for the primary key values
inserted by the writer. Being able to set different values for this will let us avoid collisions if we use
this writer in a partitioned step.

Listeners
The WP102780 whitepaper (now IBM support document 6355729) describes a sample Java
program that can be included in a Java Batch job to gather information about elapsed time and
CPU usage for the reader, processor, and writer. This program implements the reader, processor,
writer, chunk, and step listeners and produces comma-separated-value (CSV) files.
Having this extra information will let us look inside the execution of the job to see where we are
spending our time (and CPU). However, before we can use it, we need to convince ourselves that
enabling this monitoring won’t have a serious adverse effect on the elapsed or CPU time for the job.

Establishing a Baseline
Before we could start fiddling around with the knobs we were interested in, we needed a baseline
configuration to compare against. We wanted to have the job run long enough that differences
would be visible. If a job that runs for 30 seconds now runs for 31, is that interesting? If a job that
runs for 30 minutes now runs for 31, is that interesting?

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 7 - Version Date: Wednesday, January 06, 2021

How Many Items?
After some experimentation we settled on a job that processed 10 million records. Using fewer
record showed some differences in different configurations, but the more records we processed the
more exaggerated the effects were. However, enabling the Chunk Listener produces one line of
output for each record processed and the .csv files produced were getting kind of large. Ten million
records produced a file around 170Mb which was about as big as we wanted to deal with.

Where to Start with Item Count?
The Item Count will control how frequently we take a checkpoint. It will affect the number of objects
that accumulate in memory to be passed to the Writer at the end of the chunk. That, in turn, will
affect how many objects are being written (or deleted) by the writer. As the Item Count is increased,
our job will take fewer, larger checkpoints. As the count decreases the job will take more, smaller
checkpoints.
We want to start with some “middle-ish” value that we can range both up and down to see what the
consequences are. We decided to start with a chunk size of 1000 with an intent to lower that down
until we are checkpointing every 25 items (cutting it roughly in half each step) and raise it up by
doubling to 2,000 then 4,000. Above that we increased by 1,000 for each test until something
interesting happened.

Starting Values for Checkpoint Data and Processing Results
We’re going to perform experiments with different checkpoint data sizes. To start with we’ll perform
runs with both the reader and writer returning 1024 bytes of checkpoint data. This feels like it might
be a bit larger than is usually necessary but could easily happen if the checkpoint data object ends
up with some other odds and ends included. We’ll experiment with reducing that down in size to
understand if pruning out excess information in checkpoint data matters. We’ll also ramp up to
larger values to see what (if anything) dumping lots of information into your checkpoint data hurts.
Our normal runs don’t include a processor, but I did want to see what happened if the processor
produced a large result. So I created a simple processor that returns an object of some fixed size,
starting with 1024 bytes, and then varied that size as described later. Remember that our normal
runs don’t even include an ItemProcessor.

What are the Numbers for our Baseline?
Our baseline run with an item size of 1000 took 10,000 checkpoints. The elapsed time for the job
was 4:28:314 (four minutes, 28 seconds, 314 milliseconds). CPU usage as measured by SMF was
56912 milliseconds.
For elapsed time we had both the time reported by SMF and the start/end timestamps in the
messages around the step execution in the joblog. It was interesting to note that these values are
generally within just a few milliseconds of each other.
SMF times for Liberty Batch jobs are reported in the 120-12 record.

Can We Enable the Chunk Listener Monitor?
The Chunk Listener described earlier will give us information about the elapsed and CPU time
spent inside the reader, processor, and writer. But before we can enable it, we need to determine
how much enabling it costs and whether it skews the results too much.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 8 - Version Date: Wednesday, January 06, 2021

We performed a run with the listener enabled but otherwise configured exactly as for our baseline
run. Enabling the listener added another 4.469 seconds to the run time for the step. It used an
additional 3.935 seconds of CPU.
By comparison to the total time for the job (268 seconds) this is noticeable, but not excessive. As
we experiment with different configurations, we’ll see that this difference is pretty minor, and we can
safely ignore it.
Just to be sure, we also ran with an item count of 75 which caused us to take 133,333 checkpoints
(instead of just 10,000) and compared the elapsed time for runs with and without the listener
configured.
The listener writes one record to an ‘iteration’ file per record processed which will be the same each
run (because both runs process 10 million records). The listener also writes one record to a ‘chunk’
file per checkpoint taken. This had 13.3 times more records for the run with more checkpoints. Did
the overhead of the monitor increase significantly?
In this run the listener-enabled job took an extra 7.296 seconds above the baseline or about 3
seconds more than enabling the listener with an item count of 1000. When we look at the increase
in run times for lower item count experiments, we’ll see this difference is pretty negligible.

Playing with Checkpoint Intervals
One question that comes up a lot is, “How long should your checkpoint intervals be?” On the one
hand, checkpointing frequently means less work to potentially re-do if a fatal error occurs running
the step. On the other hand, we assume that there is some overhead to taking a checkpoint and so
taking a lot of them will make the job run longer. How much longer? And, even knowing that,
where is the optimal tradeoff point? Would you let a 10-hour job run five minutes longer if it meant
restarting on a failure was easier? What if the 10-hour job ran 2 hours longer? It probably depends
on how much easier, of course.
Our goal in this section is to try to get some sort of feel for the answer, or at least give you some
idea how you can find out for yourself. That’s because what we find for our sample job is probably
going to be different than for your own applications.
We’ll start by looking at the overall time for a chunk step as we vary the item count values from 25
to 8000. Using data from the chunk listener we’ll break out elapsed time for reading records,
inserting and deleting database records, and container overhead. We’ll see that at low item count
values container overhead from handling all the checkpoint processing dominates the time spent in
the step, but with larger checkpoints the record writing (and in particular one-by-one deletes of
database records) dominates. We’ll also discover that gains from increasing the checkpoint size
diminish as item count values increase beyond a few thousand.
Let’s take a look…

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 9 - Version Date: Wednesday, January 06, 2021

The Raw Results

We started out running our job as described earlier. We used a 1000-item checkpoint interval and
processed 10,000,000 records. Our chunk listener was enabled to give us more data about the
time spent within the parts of the chunk processing. Then we varied the item count up and down to
see how it affected the elapsed time for the step. Here are the results:

Table 1 - Step Elapsed Time for Different Item Count Values

Item Count Elapsed Time (m:s.ms) Elapsed Time (ms)
25 23:58.624 1438624
75 10:29.566 629566

125 7:54.214 474214
250 6:13.130 373130
500 5:03.840 303840

1000 4:32.783 272783
2000 4:16.833 256833
4000 4:04.517 244517
5000 4:07.129 247129
6000 4:04.723 244723
7000 4:03.701 243701
8000 18:37.523 1117523

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 10 - Version Date: Wednesday, January 06, 2021

Let’s have a look at that in graphical form:

Figure 1 - Step Elapsed Time for Various Item Count Values

Our first, high level observation would be that decreasing the item count (which significantly
increases the number of checkpoints taken) has a detrimental effect on the run time of the job as
you get into small item-count values. Additionally, as item count increases and the checkpoints
grow larger and fewer the improvements grow less and less.
And something rather interesting happened at an item count of 8000. That’s an anomaly caused by
an issue with DB2 and the number of updates in a single commit scope. We’ll see the details later,
but you can really just ignore it.

Looking at the Read Time
The Chunk Listener reports the elapsed time spent doing each of our 10 million reads. However,
the granularity of that time is just one millisecond and z/OS is pretty good at doing I/O. Almost all of
our reads reported taking zero milliseconds, with only around .019% reporting one millisecond. I
was initially concerned that we were missing a lot of time here, but it can’t be that much. Suppose
each of those zero read times were actually 0.1ms. If that was true, then read time for the whole
step would be 10,000,000 * 0.1ms which is 1000 seconds which is over 16 minutes. Elapsed time
for the entire step only got above that twice and both times we’ll see that write processing is most of
it.
I concluded that read time is pretty negligible and largely ignored it.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 11 - Version Date: Wednesday, January 06, 2021

Looking at the Writer
The Chunk Listener also reports time spent in each call to the Writer. For each run we took the
write times for each chunk and added them up to find the total time spent writing data. Here are the
results:

Table 2 - Writer Time for Various Item Count Values

Item Count Total Writer (ms)
25 228595
75 202233

125 199447
250 219000
500 224786

1000 229436
2000 230579
4000 228580
5000 232573
6000 231554
7000 231179
8000 1104194

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 12 - Version Date: Wednesday, January 06, 2021

And in graphical form including the total time for the step so we can see how most of the time
consumed in the step is by the Writer (except at low item count values). We also see the Writer is
responsible for that spike at 8000.

Figure 2 - Writer Time for Various Item Count Values

If read time is negligible and writer time is most of the step time, what happened at low item count
values? Before we look at that, we should dig a bit deeper into the Writer times.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 13 - Version Date: Wednesday, January 06, 2021

Bulk Inserts vs One by One Deletes

Remember that our Writer alternates between inserting and deleting the same rows. The inserts
are done with a single bulk insert, while the deletes are done one-by-one using the primary key for
the row. Do they contribute differently to the elapsed time for the job? They sure do.
First, we pulled out the data for the inserts. Remember that the item count determines the number
of rows being inserted in each chunk.

Table 3 - Insert Time for Various Item Count Values

Item Count Insert Write Time (ms)
25 43231
75 27568

125 25572
250 23129
500 21107

1000 20256
2000 19562
4000 18758
5000 18687
6000 18278
7000 18116
8000 18242

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 14 - Version Date: Wednesday, January 06, 2021

Looking at it graphically

Figure 3 - Insert Time for Various Item Count Values

As you would hope (and perhaps expect) bulk inserts become more efficient as you insert more
items. Although the efficiencies taper off as the number increases, it definitely seems as if larger
chunk sizes are beneficial if you are doing bulk inserts in the writer for each chunk.
It also appears that the inserts aren’t responsible for that spike on the right. Is it the delete
processing? Let’s see:

Table 4 - Delete Time for Various Item Count Values

Item Count Delete Write Time (ms)
25 185364
75 174665

125 173875
250 195871
500 203679

1000 209180
2000 211017
4000 209822
5000 213886
6000 213276
7000 213063
8000 1085952

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 15 - Version Date: Wednesday, January 06, 2021

And in graphical form:

Figure 4 - Delete Time for Various Item Count Values

It appears that delete times make up the bulk of the Writer processing (which in turn makes up the
bulk of the step time). However, those times are essentially flat across the different chunk sizes.
That makes sense…if you are going to delete 5 million rows one by one it doesn’t matter a lot if you
do that committing every 500 items or every 5000. It is a bit cheaper at lower chunk sizes
suggesting some efficiency in commit processing in DB2 perhaps.
Of course, the big question is what happened at an item count of 8000. I believe we ran into some
tuning problem with DB2 trying to process 8000 separate deletes in a single transaction. The
inserts avoid this. There may be some setting we could have adjusted to push this out farther to the
right, but the gains from increasing the item count value were becoming less interesting.
Now let’s put the Inserts and Deletes together so we can see how they contribute to the overall
elapsed time for the step.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 16 - Version Date: Wednesday, January 06, 2021

Figure 5 - Inserts and Deletes as Components of Total Step Time

Container Overhead

Which brings us to our final component of the elapsed time for the step: the batch container. At
every checkpoint the batch container is going through the work of getting checkpoint data and
committing the transaction for the chunk. The more chunks in the step, the more times that will
happen. We calculate the container time by subtracting the reader and writer time from the elapsed
time for the step. Here are the results:

Table 5 - Container Time for Various Item Count Values

Item Count Container Time (ms)
25 1207965
75 425263

125 272758
250 152184
500 77179

1000 41500
2000 24413
4000 14068
5000 12747
6000 11410
7000 10742
8000 11408

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 17 - Version Date: Wednesday, January 06, 2021

Looking at it graphically

Figure 6 - Container Time for Various Item Count Values

As you would expect, the overhead from the batch container increases as you increase the amount
of work it has to do by decreasing the item count (which increases the number of checkpoints
taken) to process 10 million records. The cost goes from a huge component of the total step time to
a barely noticeable part (around 11 seconds out of four minutes above an item count of 4000).

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 18 - Version Date: Wednesday, January 06, 2021

Just for comparison, here’s a graph showing how the number of checkpoints increases as the item
count decreases. Looks just like the Container Time curve doesn’t it?

Figure 7 - Number of Checkpoints vs Item Count

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 19 - Version Date: Wednesday, January 06, 2021

Here’s one final graph that shows each component (inserts, deletes, container overhead)
contributing to the total elapsed time for the step.

Figure 8 - Components of Elapsed Time for Various Item Count Values

Conclusions
So, where does all this leave us? We’ve seen that very small chunks create more overhead from
the container. Larger chunks reduce that, but above 1000 to 2000 each increase in chunk size
produces minor improvements. And as we saw from the spike at 8000, you might run into other
limitations or issues as you push the commit size larger and larger. I should also point out that I did
no tuning of DB2 at all and there is nothing else running on this system for it to contend with.
We’ve seen that batch or bulk inserts are more efficient than doing things one row at a time. But it
is important to note that the improvements are pretty minor as chunk size increases.
Increasing the chunk size to very large values isn’t going to get you much per/item improvement.
Depending on your application and environment, cleaning up from a job that failed mid-chunk might
involve costs that become unacceptable for large chunks.
Looking at our data from this specific step, an item count value of 1000 or 2000 is probably a
reasonable value.
Of course, remember that all this is based on a very specific application and environment. Your
results will probably vary. Add in the chunk listener to your own application and experiment with
different item count values to draw your own conclusions.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 20 - Version Date: Wednesday, January 06, 2021

Sidebar: Creating the graphs
I used an open source statistical package called ‘R’ to produce the graphs above. I started with a
table with three columns: Time, ItemCount, and Type. The Type field indicated whether the Time
value was total time, insert time, delete time, etc. I used the subset command to create new tables
with different slices of the table depending on which values I was graphing and then used the ggplot
function from the tidyverse package to produce the graphs. I’m really new to R so there’s probably
a better/easier way to do this, but if it helps somebody produce similar graphs for your own data,
here’s how I did it:

Summary <- read_csv("path/to/data/Summary.csv”)
StepTotal<-subset(Summary,Type=="Total”)
ggplot(data=StepTotal,mapping=aes(x=ItemCount,y=Time))+geom_line()+geom_point()
WriterData<-subset(Summary,(Type=="Total"|Type=="Writer”))
ggplot(data=WriterData,mapping=aes(x=ItemCount,y=Time,color=Type))+geom_line()+geom_point()
DeleteData<-subset(Summary,(Type=="Total"|Type=="Delete”))
ggplot(data=DeleteData,mapping=aes(x=ItemCount,y=Time,color=Type))+geom_line()+geom_point()
WriteTotalData<-subset(Summary,(Type=="Total"|Type=="Delete"|Type=="Insert”))
ggplot(data=WriteTotalData,mapping=aes(x=ItemCount,y=Time,color=Type))+geom_line()+geom_point()
ContainerData<-subset(Summary,(Type=="Total"|Type=="Container”))
ggplot(data=ContainerData,mapping=aes(x=ItemCount,y=Time,color=Type))+geom_line()+geom_point()
InsDelContData<-subset(Summary,Type!="Total"&Type!="Writer")
ggplot(data=InsDelContData,mapping=aes(x=ItemCount,y=Time,fill=Type))+geom_area()

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 21 - Version Date: Wednesday, January 06, 2021

Playing with Checkpoint Info Sizes
For the next experiment I wanted to explore how changing the size of the serializable checkpoint
data returned by the reader or writer impacts the elapsed time of the job. At every checkpoint the
batch container gets this information from the reader and writer and updates the relevant row in the
Job Repository table as part of the chunk commit scope. A minor change in elapsed time, multiplied
by a large number of checkpoints, could theoretically impact the runtime for the job.
In theory the state data required to restart from a checkpoint shouldn’t have to be very big. But if
you’re using a non-transactional resource you might have to do some rollback-type cleanup yourself
and that might require more data.
And, of course, sometimes objects just accumulate information. I’ve seen HTTP session state
objects that were several megabytes.
The question we’re looking at here is how much it matters. Of course, there are a lot of other
factors at play. Checkpoint data is hardened in the Job Repository which is just a database. The
main consideration is how quickly that database row update can take place. In my experiments I
was on z/OS accessing a local DB2 instance over a type-4 connection. Switching to a remote
database is going to require checkpoint data to flow over a physical network which is going to
significantly slow things down.
Note that while the default size for the BLOB that contains the checkpoint data is 2GB, your DBA
might have pruned that down (mine did) and you’ll get SQL errors trying to save very large
checkpoint data (I did). Remember that both the reader and writer checkpoint data are placed
together into one column. It is easy enough to alter the table to make it as big as you need,
assuming you can convince your DBA you need the space.
For our runs we began with our same baseline, processing 10 million records in 1000 record
chunks. I updated the checkpoint data size for both the reader and writer to the same value. Our
baseline run uses a 1024 byte object so the total checkpoint data was 2048 bytes. We scaled that
up and down by factors of 10. For each run, as before, we determined the reader and writer time
from the chunk listener and subtracted that from the elapsed time for the step to determine the time
spent in the container (which includes the time spent updating the checkpoint information in the Job
Repository).
Our results:

Table 6 - Container Time for Variously Sized Checkpoint Data

Data Size (bytes) Container Time (ms)
20 41851

2048 42271
20480 45636

204800 66454
2048000 303026

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 22 - Version Date: Wednesday, January 06, 2021

Graphically that’s a pretty straight line:

Figure 9 - Container Time for Various Checkpoint Data Sizes

Which means that, as you’d probably expect, the larger your checkpoint data, the longer it takes to
commit it at each checkpoint. For my environment making it a little bigger didn’t hurt very much. It
just added a few seconds to the elapsed time for the job. Making it a lot bigger added about two
minutes to the length of the job.
Does that matter? Probably not, but in a different, less co-located, environment it might matter
more. As a general rule there’s probably no great need to keep your checkpoint data as small as
possible. Some extra fluff in the object isn’t a big deal. But as it grows and grows eventually it will
matter. So pay some attention to checkpoint object size, but don’t obsess about it.

Playing with Write Object Size
For this experiment we’re going to change the size of the object returned by the processor. These
objects are held in memory until they are passed to the writer as part of end-of-chunk checkpoint
processing. Basically, this means you can multiply the size of the processing-result object by the
number of items processed per checkpoint to estimate how much Java heap you need available for
this chunk to run. Remembering, of course, that your job might not be the only one running in the
server at the time.

Changing Our Application
All our tests so far haven’t had a processor involved, but we’ll need one for this experiment. We
don’t want it to take very long and we don’t want it to use much heap beyond what it needs for the
returned result.
To achieve this, the constructor for the processor creates a byte array of a specific length and fills it
with the alphabet (repeating). We don’t want to build the array every time through the processor to

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 23 - Version Date: Wednesday, January 06, 2021

save CPU. The processItem method then new’s up a byte array as long as our initialized string
and uses System.arraycopy to copy the data and returns the now populated array.

We’re going to allocate a new array every time through the read/process loop. Staying with our
baseline item count value of 1000, the writer will receive one thousand of these byte arrays. The
storage will be released when the writer returns. As before, we’ll do this for ten million records.
The JVM for our server is configured with a min of 8M and a max of 512M.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 24 - Version Date: Wednesday, January 06, 2021

The Results

It turned out we could just do two runs to prove the point we wanted to make. If you didn’t already
know, excessive garbage collection is bad. Let’s see how bad.
For the first run the processor returned a 1k byte array. That means we built up 1000k (1MB) of
data for each chunk. That’s not very much. So our results looked much like they did when we ran
without a processor at all. The chunk step took just over 4 minutes and 37 seconds (compared to 4
minutes and 32 seconds with out the processor). I captured the verbose GC output and fed it to the
GCMV Eclipse plugin. This provided me with the graph below of heap usage over the run time for
the job.

You can see it jiggling around but nothing very exciting happens.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 25 - Version Date: Wednesday, January 06, 2021

For the next run we increased the size of the returned byte array to 100K which means each chunk
loop will build up 100,000K of data (or 100MB). We’ll look at the GC picture returned by GCMV first
and then talk about what it did to the elapsed time for the step.

Wow. That stirred things up. The elapsed time for the step increased to almost 16 minutes and the
heap thrashing affected every part of the job. In the following table we’ll compare the elapsed time
for the reader, processor, writer, and container where the only change is the increase in the size of
the byte array returned by the processor.

Processor Data Size
(bytes)

Reader Time
(ms)

Processor Time
(ms)

Writer Time
(ms)

Container Time
(ms)

1000 1704 2443 227055 46651
100000 7281 640866 247327 62242

Looking at this data you can see that most of the 12 extra minutes of elapsed time for the job was
spent in the processor copying a 100k byte array. But time spent in the reader, which has been
consistent for all our other runs, jumped around by about 3x. The writer and container times were

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 26 - Version Date: Wednesday, January 06, 2021

also affected by the excessive amount of garbage collection being performed. Make sure you have
enough heap to contain the processor results that will accumulate.
Looking at it graphically:

In case you’re wondering, I created that in R by restructuring the table above to have just three
columns: Processor Data Size, Component, and Time. Then I used this command to create the
table:

ggplot(data=Summary)+geom_bar(mapping=aes(x=Component,y=Time,fill=`Proces
sor Data Size`),stat='identity',position='dodge2')

The stat value of identity tells it to use the specified ‘y’ value for the height of the bars, and the
position value of dodge2 tells it to place the values for different data sizes side by side instead of
stacked.

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 27 - Version Date: Wednesday, January 06, 2021

Experimenting with Partitions
The next item of interest was how use of partitions can reduce elapsed time. In this experiment we
used the same reader/writer (no processor) job we started with and continued to process
10,000,000 records with an item-count value of 1000.
What we changed was the level of concurrency. In all our runs so far we used a single thread to
process all the records. This time we’ll split up processing of the records across multiple threads.
We’ll begin with just two partitions each processing 5,000,000 records and proceed to 10 partitions
processing 1,000,000 records each.
Our partition mapper arranged for each partition to use different primary key value ranges for the
database inserts/deletes to avoid contention. In a real application we’d hopefully be inserting (or
deleting) different rows, but how the table is locked (row etc) could impact you.
Remember that just because we have 10 partitions doesn’t mean all 10 will run concurrently on 10
separate threads. Instead 10 work items will be queued up inside the server and will be picked up
when a thread is available to run the work. Liberty will dynamically adjust the number of threads it
has to try to handle the work, but we don’t pre-configure the server with some number of threads.
After 10 partitions, we’ll proceed to 20 and then 100 and finally 1,000 partitions each processing a
single chunk of 1,000 records.
Looking at the data below you can see that the first increment to two partitions nearly cut the
elapsed time in half. Moving to 10 threads cut the time to not quite 1/10 of the single threaded
version (32 seconds instead of 27 as you might hope). But 20 partitions almost cut the time in half
from 10 partitions. But our gains began to max out as going to 100 partitions didn’t even cut the
time from 20 partitions in half. Why is that?
Most likely it is because the server can’t spin up 100 threads very fast and instead just re-used
existing threads to process different partitions sequentially. And we can see that when we moved to
1000 partitions the step actually took longer than with just 20).
I should point out that these experiments were run on a dedicated LPAR. Nothing else was running
on this OS image, nothing else was touching DB2. The system I was running on was a z14 with 20
GPs. Clearly a real-world test would involve some contention for resources and affect the results.
Nevertheless, it seems quite clear that, when possible, the use of partitions can dramatically reduce
elapsed time for a step.

Partitions Elapsed Time
(ms)

Elapsed Time
(m:ss:nnn)

1 272783 4:32.783
2 137946 2:17.946

10 32170 0:32.170
20 17960 0:17.960

100 10485 0:10.485
1000 23204 0:23.204

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 28 - Version Date: Wednesday, January 06, 2021

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 29 - Version Date: Wednesday, January 06, 2021

Enabling Batch Events
The JSR-352 implementation in WebSphere Liberty includes the ability to publish messages into a
topic tree at interesting points in the lifecycle of a job. Messages (or events) are published around
the start and end of a job, as well as the start and end of each step. Most interesting to us is the
event published at each checkpoint. In our baseline job there will be 10,000 checkpoints and thus
10,000 messages published. Does enabling this feature (which allows a monitor to track the status
of the job) significantly slow down execution of the job itself? Let’s find out.
We can configure the server to publish batch event messages by pointing it to a messaging engine.
We can use the WAS messaging server built into Liberty or point to an instance of MQ running on
our z/OS system. If we use MQ we can connect over TCP/IP or cross-memory (Client or Bindings
mode).
For my experiment I choose to run using the built in Liberty messaging services located in the same
server running the batch job. I thought that would probably interfere the most with the running job
and be slower (going through TCP/IP) than a Bindings mode connection to MQ.
Remember that we’re comparing to our baseline run with no ItemProcessor, handling 10 million
records, checkpointing every 1000 items. That step ran in about 4 minutes and 32 seconds. For
our test I ran the exact same configuration except that the server was publishing messages as the
job progressed. This time the job took 4 minutes and 42 seconds.
So there is clearly a cost, but not a very big one. There is no way to configure the server to only
publish messages for selected events (e.g. skipping the checkpoint messages). A very long running
job that had hundreds of millions of checkpoints (instead of the 10,000 we had) might see the job
run a few minutes longer with events enabled. That seems to be acceptable to me.

A Few More Thoughts
I should point out that all of these runs were done using a Job Repository co-located on the same
z/OS image as the Liberty server running the job and I accessed it using a Type-4 JDBC driver. It is
possible some of the numbers might improve if I’d used a Type-2 (local) connection. It seems
almost certain things would have gotten worse if I’d moved to using a remote database.
Likewise for the batch event measurements, everything was local using a TCP/IP connection. I
could have configured the server to use a remote messaging engine would surely have slowed
things down a bit.
In addition, I made no attempts to tune the database or messaging engine or adjust the heap size
or other JVM options. I just took the environment as I found it.
Finally, all of these experiments were done using a single Liberty server. Configuring a
dispatcher/executor model would affect overall job performance, but shouldn’t have any effect on
the execution of the step itself (unless the partition experiments were performed with the partitions
spread across multiple servers).

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 30 - Version Date: Wednesday, January 06, 2021

Conclusions
Looking back across all the experiments and all the data and analysis our conclusions are pretty
simple and, truth be told, should probably have been obvious from the start.
1. Checkpoint processing has a cost and if you do a lot of it your job will take longer
2. Larger and larger checkpoint intervals have decreasing benefits and eventually you’ll hit some

limit
3. Bulk interactions with DB2 are more efficient than one-by-one interactions
4. Pushing excessively large checkpoint data to the Job Repository will slow things down, but you

don’t have to get obsessive about making it as small as possible
5. Excessive garbage collection will slow down your job, so don’t let your processing result object

(or checkpoint interval) get so big you run tight on heap every chunk.
6. Partitions are good, but don’t go crazy..there’s a limit.
7. Turning on batch events doesn’t cost very much

And finally, probably most importantly

8. Your results will vary, do your own measurements

6398358 – WebSphere Liberty Java Batch: Thoughts on Performance

© 2021, IBM Software Group, Application and Integration Middleware
Software, Poughkeepsie, NY - 31 - Version Date: Wednesday, January 06, 2021

Document change history
Check the date in the footer of the document for the version of the document.

January 6, 2021 Initial Version

End of 6398358

