

Accessing IBM DB2 for i data from
Linux applications running on IBM i

Optimize Linux access to your DB2 for i database

.

Kent Milligan
Systems and Technology Group ISV Enablement

March 2014

© Copyright IBM Corporation, 2014

https://twitter.com/IBMSystemsISVs�

Table of contents
Abstract..1
Introduction ...1
Using the IBM i middleware ...2

Using the IBM i Access ODBC driver .. 2
Getting the IBM i Access for Linux ODBC driver... 2
Installation ... 3
Configuration ... 4
Changes to existing applications... 5
Example ODBC application... 6
Addressing locale issues... 6
Connection keywords .. 7
Techniques for improving ODBC performance ... 8

Reusable open data paths ... 8
Connection pooling .. 10
Blocking, stored procedures, and result sets... 11

Troubleshooting... 12
DB2 engine feedback... 12
ODBC trace.. 12

Using the IBM i JDBC driver .. 14
Initial configuration considerations .. 14

Java runtime environment.. 14
Virtual or physical LAN... 15

Techniques for improving JDBC performance .. 16
Connection pooling .. 17
Extended dynamic SQL and statement caching.. 19
Reusable ODPs ... 20
Block inserts... 20

Troubleshooting... 21
DB2 engine feedback... 22
JDBC Trace utility .. 22

Using the DB2 Connect middleware ...23
DB2 Connect environment overview ... 23
Configuring the IBM i ... 24
Installing the Data Server Driver Package... 25
Using the Data Server Driver ODBC support .. 25

Configuring a DB2 for i connection.. 26
Testing the ODBC connectivity ... 27
Testing CLI connectivity .. 27

Using the Data Server Driver JDBC support ... 28
Installation and configuration... 29
Obtaining a connection to DB2 for i... 29

Accessing IBM DB2 for i data from Linux applications running on IBM i

Accessing IBM DB2 for i data from Linux applications running on IBM i

Troubleshooting ... 30

Summary..30
Appendix A: Resources..31
Appendix B: Source listing of testJDBC.java...32
Appendix C: Client Configuration Assistant steps..35
About the authors ...42
Trademarks and special notices..43

Abstract
This paper provides implementation tips and a number of coding examples that illustrate how to
optimize the access to your IBM DB2 for i database from Linux systems using middleware
provided by IBM for ODBC and JDBC access.

Introduction
The Linux® operating system, an open-source implementation of the UNIX® operating system, is rapidly
gaining acceptance among users of the IBM® Power Systems™ family of servers. With IBM Power
Systems, partitions can run Linux alongside partitions running the IBM i and IBM AIX® operating systems.

Traditionally, many organizations use the IBM i platform as a reliable and highly scalable database
server. The IBM i database, IBM DB2® for i, is fully integrated into the IBM i operating environment and
uses its robust features, such as single-level storage, tight security, and object-based architecture. For

these reasons, IBM believes that DB2 for i remains the database of choice for most IBM i shops.

Generally, Linux applications use ODBC or JDBC connections to access business data stored in DB2 for i
databases. Applications can use either the database middleware offerings that are included with the IBM i

operating system or those provided by the IBM DB2 Connect™ product. This paper details how to use
these middleware solutions and the differences between them.

Note that the Linux command and utility examples included in this paper were run using the Red Hat

Enterprise Linux 6 distribution. The command syntax and location of directories might differ slightly for
other Linux distributions.

Accessing IBM DB2 for i data from Linux applications running on IBM i

1

Using the IBM i middleware
The IBM i operating system includes database middleware to make access of DB2 for i databases simple
and easy for application developers. ODBC drivers are available with the IBM i Access software brand

while the IBM Toolbox for Java provides a JDBC driver. As you might expect, these drivers only support
access of DB2 for i databases due to the tight integration with the IBM i operating system.

Using the IBM i Access ODBC driver

IBM i operating system actually includes the following two ODBC drivers for Linux clients that are

provided at no additional charge:

 IBM i Access ODBC driver from the IBM i Access Client Solutions Linux Application Package
(refer: ibm.com/systems/power/software/i/access/solutions.html)

 IBM iSeries® Access for Linux ODBC Driver

Both of these drivers are based on the ODBC driver that is provided by IBM i Access for Windows
(formerly known as System i Access for Windows and iSeries Access for Windows). These Linux ODBC

drivers use the IBM i database host servers as the access point to the system and communicate with the
back-end database server job through a socket connection. Both Linux ODBC drivers also provide
support for Linux running on IBM PowerPC® and Intel® Xeon® processors.

IBM recommends the usage of the IBM i Access Linux ODBC driver from the IBM i Access Client
Solutions Linux package because this is the only Linux ODBC driver that IBM plans on enhancing. The
IBM i Access ODBC driver provides the following key advantages when compared with the iSeries

Access for Linux ODBC driver.

 Provides support for latest versions of unixODBC on 64-bit platforms. ODBC applications and

abstraction layers such as PHP ODBC compiled on recent 64-bit Linux systems do not work with
the iSeries Access for Linux ODBC driver

 Provides support for PowerPC version of unixODBC (requires December 2013 service pack)

 Provides support for both RPM and deb packages. This should help those of you who are using
Debian or Ubuntu to access your IBM i

 Provides support for 32-bit co-installable libraries by including additional RPM and deb packages

to install the 32-bit libraries along with the 64-bit package

 Includes recent fixes and enhancements from the IBM i Access for Windows ODBC driver

Getting the IBM i Access for Linux ODBC driver

The IBM i Access Client Solutions Linux Application Package can be downloaded from IBM Entitled
Software Support (ESS) (at ibm.com/servers/eserver/ess/index.wss) by any customer with an IBM i
software maintenance contract. For information on how to easily download the packages, refer to

Obtaining Access Client Solutions (at ibm.com/support/docview.wss?uid=nas8N1010355).

Accessing IBM DB2 for i data from Linux applications running on IBM i

2

Installation

After downloading the package to your system, you need to extract the contents of the .zip file and

then find the directory appropriate for your system’s architecture. Developers wanting to use the
ODBC driver from a Linux partition on a Power System server would use the installation image in the
ppc_64Bit directory. The directories contain both .rpm and .deb installers

To install this Linux application package, you can use the package manager suitable for your Linux
distribution; this includes zipper, yum, apt-get, rpm, or dpkg. Here is an example installation request
that uses the rpm command.

rpm –i ibmi-access-1.1.0.1-1.0.ppc64.rpm

Unfortunately, when the unixODBC project added full 64-bit support in unixODBC 2.2.14, the shared
library version did not get incremented from so.1 to so.2. This library version was finally fixed with
unixODBC 2.3.1, but many distributions are not yet including this version. Many distributions did

realize that there was a break in compatibility and updated their packages to reflect this. On Red Hat,
Fedora, and others, you might see an error when trying to install the IBM i Access Client Solutions
Linux Application Package about a missing dependency on libodbcinst.so.1. To fix this, you need to

force install the package and create a symbolic link from libodbcinst.so.2 to libodbcinst.so.1.

Here is an example invocation of the rpm command to force the installation:

rpm –i --nodeps ibmi-access-1.1.0.1-1.0.ppc64.rpm

The following instructions specify how to create the required symbolic links for each of the
distributions.

 64-bit RPM-based distributions:
ln -s libodbcinst.so.2 /usr/lib64/libodbcinst.so.1

 32-bit RPM-based distributions:
ln -s libodbcinst.so.2 /usr/lib/libodbcinst.so.1

 64-bit Debian-based distributions:
ln -s libodbcinst.so.2 /usr/lib/x86_64-Linux-gnu/libodbcinst.so.1

 32-bit Debian-based distributions:
ln -s libodbcinst.so.2 /usr/lib/i386-Linux-gnu/libodbcinst.so.1

IBM hopes to address this library version issue in a future release.

You can quickly verify that the driver works properly by using the CWBPING utility that is part of the
driver installation package. The mysystem identifier in this example invocation of the utility is the
TCP/IP host name of the IBM i system that is being accessed:

/opt/ibm/iSeriesAccess/bin/cwbping mysystem

Accessing IBM DB2 for i data from Linux applications running on IBM i

3

Configuration

The driver installation process registers the IBM i Access Linux ODBC driver with the unixODBC

driver manager by adding the driver information to the odbcinst.ini configuration file. For this
installation, this file was located in the /etc directory. The odbc_config utility can be used to locate
this configuration file with the following invocation: odbc_config --odbcinstini

Here is an example of the content within the odbcinst.ini file:

[IBM i Access ODBC Driver]
Description = IBM i Access for Linux ODBC Driver
Driver = /opt/ibm/iSeriesAccess/lib/libcwbodbc.so
Setup = /opt/ibm/iSeriesAccess/lib/libcwbodbcs.so
Driver64 = /opt/ibm/iSeriesAccess/lib64/libcwbodbc.so
Setup64 = /opt/ibm/iSeriesAccess/lib64/libcwbodbcs.so
Threading = 2
DontDLClose = 1
UsageCount = 1

[IBM i Access ODBC Driver 64-bit]
Description = IBM i Access for Linux 64-bit ODBC Driver
Driver = /opt/ibm/iSeriesAccess/lib64/libcwbodbc.so
Setup = /opt/ibm/iSeriesAccess/lib64/libcwbodbcs.so
Threading = 2
DontDLClose = 1
UsageCount = 1

Even though the installer updates the odbcinist.ini automatically, it is important to understand the
contents of this file because the ODBC driver name (values in brackets) is required when constructing
a data source name (DSN) entry for your DB2 for i database.

The next step in the configuration process is to create a DSN entry for the DB2 for i database that
needs to be accessed. This can be accomplished by editing the odbc.ini configuration file.

There are two types of DSN entries: system DSN and user DSN. The system DSN is usually created

by root and resides in the /etc directory. Any user on the system can use a system DSN. A user DSN
is scoped to a particular user and cannot be shared with other users on the system. The configuration
file for a user DSN is called .odbc.ini and is located in the user's home directory (for instance,

/home/userabc/.odbc.ini).

Here is an example entry for a system DSN added to the odbc.ini file:

[db2iserver1]
Description = IBM i Access ODBC driver
Driver = IBM i Access ODBC driver
System = mysystem
UserID = db2user
Password = userpwd
Naming = 0

The data source name, db2iserver1, is encapsulated in brackets. The DSN value is an arbitrary
value that can be selected independent of your IBM i system. The System keyword is where you

specify the TCP/IP host name of the target IBM i partition or server that needs to be accessed. In this

Accessing IBM DB2 for i data from Linux applications running on IBM i

4

example, that host name value is mysystem. The UserID, Password, and Naming keywords are

optional. Connection keywords are covered in more detail in a later section.

If you have trouble determining the location of the odbc.ini file, the odbc_config utility can be
invoked with the --odbcini option to determine which odbc.ini file is being used by the unixODBC

driver manager.

After the system DSN exists, you can use the isql utility (part of the unixODBC Driver Manager

installation) to obtain an ODBC connection to the target DB2 for i database and to run SQL

statements. The utility is pretty simple, but it is useful for testing your ODBC connection and running
basic SQL statements. Figure 1 shows a sample isql session.

Figure 1: Use an isql session to run SQL statements

Changes to existing applications

Applications using the original iSeries Access Linux ODBC driver might need to be updated to work

correctly with the new ODBC driver. Applications that use SQLLEN most likely just need a recompile.
Microsoft® changed the SQLINTEGER parameters in many application programming interfaces
(APIs) to SQLLEN (applications that intermixed the two might now get a bunch of errors about

conflicting types). This requires the application to be modified to use SQLLEN instead of
SQLINTEGER. For more information on changes for full 64-bit compatibility, refer to the Microsoft
article, ODBC 64-Bit Information, at http://msdn.microsoft.com/en-

us/library/windows/desktop/ms716287%28v=vs.85%29.aspx.

Applications using an abstraction layer such as PHP, Ruby or other scripting languages should not
have any issues. One exception to this claim is support for PDO_ODBC which has an error (refer to

https://bugs.php.net/bug.php?id=50444) that produces errors with the 64-bit version of the Linux

Accessing IBM DB2 for i data from Linux applications running on IBM i

5

https://bugs.php.net/bug.php?id=50444

ODBC driver. Users can either rebuild PDO_ODBC or use the 32-bit version of the Linux ODBC
driver.

Example ODBC application

This section covers the ODBC implementation details for a sample C++ program called testodbc.

To compile the source, use the following command in the Linux partition:

 g++ -o testodbc –lodbc testodbc.cc

The application retrieves a number of rows from the QCUSTCDT table in the QIWS schema (or
library). The selection criterion is based on the current value of the state column. Here is the
SELECT statement used by the testodbc program:

 SELECT lstnam, city FROM qiws.qcustcdt WHERE state = ?

Figure 2 shows the software components involved in the running of this sample application.

1Gb
VLAN

QZDASOINIT server job

Linux Partition IBM i Partition

DB2
for i

testodbc C++ application

unixODBC

ibmi-access-1.1.0.1

Figure 2: How an ODBC client accesses DB2 for i database

Although the testodbc application is fairly simple, it covers some important aspects of efficient ODBC

programming for DB2 for i.

Addressing locale issues

Let us start by examining the class constructor of the testodbc program, as seen in Example 1.

TestODBC_Class::TestODBC_Class()
{
 // Set the locale for the application
 setlocale(LC_ALL, ""); [1]

 // Allocate an environment handle
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &EnvHandle);

 // Set the ODBC application version to 3.x
 if (rc == SQL_SUCCESS)
 rc = SQLSetEnvAttr(EnvHandle, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);

 // Allocate a connection handle

Accessing IBM DB2 for i data from Linux applications running on IBM i

 if (rc == SQL_SUCCESS)

6

 rc = SQLAllocHandle(SQL_HANDLE_DBC, EnvHandle, &ConHandle);
}

Example 1: Class constructor for the sample application

At [1], the locale is set for the application. This is important in cases where the Linux application uses
the entire character set for a given client code page. For instance, it might use a special character,
such as a tilde (~), as a keyword delimiter in a literal within a WHERE clause. The IBM i ODBC driver

uses the locale that is set up by the application to convert the SQL statements. If the application does
not set up the locale in its class constructor or main() function, the default compiler "C" locale is used.
This means that a client code page of 367 is used for some client conversions. These conversions do

not handle much outside of the a-z, 0-9 character range. As a result, an SQL statement might not be
properly converted to the database-server code page. In this case, DB2 for i returns an SQLCODE
error value of –104 (Token was not valid). By specifying the locale in the application, this risk is

eliminated.

Connection keywords

The IBM i Access for Linux ODBC driver supports a number of connection keywords that control the

connection properties and improves the application's performance. The IBM i Information Center (at:
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaik%2Fconnectkeywords.htm
) has a complete list of the connection keywords.

There are several methods to specify the connection attributes. For instance, you can modify the
DSN entry in the odbc.ini file. Example 2 shows an example of a system DSN entry.

[db2iserver1]
Description = IBM i Access ODBC driver
Driver = IBM i Access ODBC driver
System = mysystem
CommitMode = 2
ExtendedDynamic = 1
DefaultPkgLibrary = DB2USER
DefaultPackage = A/DEFAULT(IBM),2,0,1,0,512
AllowUnsupportedChar = 1

Example 2: An example of a system DSN entry

Alternatively, you can specify the connection attribute keywords on the connection string in the

application. Example 3 shows a code snippet that illustrates this method.

char ConnectStr[512] = "DSN=db2iserver1;UID=db2user;PWD=userpwd;";
…
 // Create an instance of the TestODBC_Class class
 TestODBC_Class Example;
 ptr = strcat(ConnectStr,
 "CommitMode=2; ExtendedDynamic=1;DefaultPkgLibrary=DB2USER;");
 ptr = strcat(ConnectStr,
 "DefaultPackage=A/DEFAULT(IBM),2,0,1,0,512;");
 ptr = strcat(ConnectStr,
 "AllowUnsupportedChar = 1;");

 // Connect to DB2 for i database
 if (Example.ConHandle != NULL)
 {

Accessing IBM DB2 for i data from Linux applications running on IBM i

7

 rc = SQLDriverConnect(Example.ConHandle, NULL,
 (SQLCHAR *)ConnectStr, SQL_NTS, NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

Example 3: Specify the connection attribute keywords on the connection string

Here is an explanation of some of the keywords:

 CommitMode: Specifies the default transaction-isolation level. In this case, it is set to Read
Uncommitted (*CHG). This would require journaling if it is used.

 ExtendedDynamic: Specifies whether to use an extended dynamic (package) support. A
value of 1 enables the packages. This is the default for the IBM i ODBC driver.

 DefaultPkgLibrary: Specifies the library for the SQL package.

 DefaultPackage: Specifies how the extended dynamic (package) support behaves.

The SQL packages are server-side repositories for SQL statements. Packages contain the internal
structures (such as parse trees and access plans) necessary to run SQL statements. Because SQL

packages are a shared resource, the information built when a statement is prepared is available to all
the users of the package. This saves processing time, especially in an environment where many
users invoke the same or similar statements. Because SQL packages are permanent, this information

is also saved across job termination and across system IPLs. In fact, SQL packages can be saved
and restored on other systems. Usually, there is no need to delete SQL packages, but sometimes it is
still reasonable to delete them, especially when you make significant changes to the database
design. You can use the IBM i WRKOBJ command to locate and delete an SQL package. The

following command is used to find the SQL package for the testodbc application:

WRKOBJ OBJ(JAREK/*ALL) OBJTYPE(*SQLPKG)

The actual package name is TESTODBCVBA and is generated by the system. The SQL packages
are named by taking the client application name and appending three letters that are an encoded set

of the package configuration attributes.

Refer to the FAQ section of the DB2 for i: Improving Performance with SQL Packages website (at:
ibm.com/systems/power/software/i/db2/support/tips/sqlperffaq.html) for details about the IBM i SQL

package support.

Techniques for improving ODBC performance

The Extended Dynamic support was one of techniques used by the sample application to try and

improve ODBC performance. Depending on your application architecture, this section covers other
methods of improving ODBC performance. It is highly recommended that you attend the DB2 for i
SQL performance workshop (at ibm.com/systems/power/software/i/db2/education/performance.html)

to ensure that you have the required skills for tuning the performance of SQL-based applications such
as Linux ODBC applications.

Reusable open data paths

An open data path (ODP) definition is an internal IBM i object that is created when certain SQL
statements (such as OPEN, INSERT, UPDATE, and DELETE) are run for the first time in a given job

(or connection). An ODP provides a direct link to the data so that I/O operations can occur. The

process of creating a new ODP object is expensive from a performance perspective. Therefore,

Accessing IBM DB2 for i data from Linux applications running on IBM i

8

when possible, the DB2 for i run time tries to reuse the existing ODPs. Therefore, it is important
that applications employ programming techniques that allow the DB2 run time to reuse ODPs.

With dynamic interfaces such as ODBC or JDBC, full opens are avoided by using a prepare once,
run many programming paradigm. It means that when an SQL statement is going to run more
than one time, you should prepare the statement just one time and then repeatedly run the

prepared statement on later runs of the SQL statement. The code snippet in Example 4 illustrates
how to implement the prepare once, run many programming technique.

Accessing IBM DB2 for i data from Linux applications running on IBM i

9

strcpy((char *) SQLStmt,
 "select lstnam, city from qiws.qcustcdt where state = ?"); [1]
// Prepare the SQL statement
rc = SQLPrepare(Example.StmtHandle, SQLStmt, SQL_NTS); [2]
// Bind the columns in the result data set returned to
// application variables
rc = SQLBindCol(Example.StmtHandle, 1, SQL_C_CHAR, (SQLPOINTER)
 Example.LastName, sizeof(Example.LastName), NULL);
rc = SQLBindCol(Example.StmtHandle, 2, SQL_C_CHAR, (SQLPOINTER)
 Example.City, sizeof(Example.City), NULL);
for (int i = 0; i < LOOPS ; i++)
 {
 //Set the current value for the parameter marker
 rc=SQLBindParameter(Example.StmtHandle,
 1,SQL_PARAM_INPUT,SQL_C_CHAR,SQL_CHAR,
 3,0,(SQLPOINTER) currentState[i%3],0,NULL); [3]
 //Execute the statament with the current parameter
 rc = SQLExecute(Example.StmtHandle); [4]
 cout << endl << "Current State : " << currentState[i%3] << endl;
 // Display The Results Of The SQL Query
 Example.ShowResults();
 if(rc != 0)
 break;
 }

Example 4: Use the "prepare once, run many" programming technique

The error-handling code has been removed for clarity. At [1], the statement text is assigned to a

variable. Note that a parameter marker is used in the WHERE clause. The statement is then
prepared just one time at [2]. The current value of the parameter is bound to the prepared
statement at [3]. The prepared statement is run at [4]. Steps [3] and [4] are repeatedly run in a

for loop.

Connection pooling

The unixODBC manager supports connection pooling, which can potentially limit the number of
connections required by your application that accesses the IBM i database. This depends on
whether your application processes that are running in a Linux partition can be shared or reused

by multiple clients. The unixODBC connection pooling implementation is scoped to a process. In
other words, the connection is reused if the calling process is the same as the process that
initiated it. If your application creates and drops connections from a limited number of persistent

processes, the connection pooling certainly improves performance. Setting up the connection
pooling is easy — edit the odbcinst.ini file so that it looks similar to Figure 7.

Accessing IBM DB2 for i data from Linux applications running on IBM i

10

[ODBC]

Trace = No
Trace File = /tmp/sql.log
Pooling = Yes

[IBM i Access ODBC Driver]
Description = IBM i Access for Linux ODBC Driver
Driver = /opt/ibm/iSeriesODBC/lib/libcwbodbc.so
Setup = /opt/ibm/iSeriesODBC/lib/libcwbodbcs.so
Threading = 2
FileUsage = 1
DontDLClose = 1
CPTimeout = 600

Example 5: Set up connection pooling by editing the odbcinst.ini file

The critical values are Pooling = Yes and CPTimout. You might want to experiment with the

latter value. In the example, it was set to 10 minutes. The settings shown in Example 5 work fine

with a test program that opens and closes a connection several times. When the program is run,
there is one QZDASOINIT job on the IBM i because the SQLDisconnect request is intercepted by
the driver manager, and the connection is actually not closed.

Notice that the connection pooling implemented by unixODBC is functionally similar to the
connection pooling on Microsoft Windows® provided by the Microsoft ODBC manager.

Blocking, stored procedures, and result sets

You can reduce the number of trips to the server with blocking of inserts and fetches, stored
procedures, and result sets. For specific DB2 for i implementation details, refer to the IBM i
Information Center.

Accessing IBM DB2 for i data from Linux applications running on IBM i

11

Troubleshooting

Troubleshooting a multitier application might be a bit tricky because you need to deal with software

components that reside in separate partitions. The experience at IBM shows that two tools are
particularly useful for pinning down the potential problem areas:

 Job log messages for an IBM i server job usually provide sufficient details to isolate issues.

 The ODBC trace utility provides granular information about the data flow between your Linux
application and the DB2 for i server.

DB2 engine feedback

As mentioned, an ODBC client communicates with a corresponding IBM i job. This server job
runs the SQL requests on behalf of the client. More precisely, when an ODBC client submits an
SQL statement, the statement is passed to a server job that, in turn, calls DB2 for i to run the

statement. The results are then reformatted and marshaled to the client. The IBM i database
server jobs are called QZDASOINIT, and they run in the QUSRWRK subsystem. At any given
time, there might be a large number of database server jobs active on the system. The first step

is to identify the job that serves your particular ODBC connection. The easiest method to
accomplish this task is to run the following IBM i CL command:

WRKOBJLCK OBJ(DB2USER) OBJTYPE(*USRPRF)

Here, DB2USER is the user profile you use to connect to the IBM i platform. Notice that a
QZDASOINIT job is assigned to an ODBC connection after the connection has been established.

So, you need to set a breakpoint in the client application after the SQLDriverConnect API call.

When the Work with Object Locks screen appears, type 5 (Work with Job) next to the only
QZDASOINIT job listed. This shows the Work with Job dialog box. Select option 10 to display the

job log for the database server job. Now, you can search the job log for error messages
generated by DB2 for i or the operating system.

Sometimes, it is also useful to activate the Database Monitor to collect a detailed DB2 for i SQL

trace. Database monitor collections can be helpful to diagnose both functional and performance
issues.The easiest way to collect monitor data for a Linux ODBC connection is to specify the
TRACE=2 keyword on the connection string. Here is an example:

Char ConnStr[512]="DSN=db2iserver1;UID=db2user;PWD=userpwd;TRACE=2;";

You can find more details on the Database Monitor in the IBM Redbooks® titled, SQL
Performance Diagnosis on IBM DB2 UDB for iSeries (SG24-6654-00).

ODBC trace

The IBM i ODBC driver provides the cwbtrc utility, which can be used to collect detailed client-

side traces and logs. Rather than writing all the data to a daemon and letting it format and store
the data (which is how the Windows tracing operates), the Linux tracing writes everything to

ASCII text files.

Accessing IBM DB2 for i data from Linux applications running on IBM i

12

The tracing is switched off by default. The following parameters are recommended when invoking
the cwbtrc utility: /opt/ibm/iSeriesAccess/bin/cwbtrc /dt:1 /hl:1

The /dt:1 parameter turns the detail trace on and /hl:1 turns the history log on. At this point,
tracing is activated and no further configuration is required. The trace files are placed in the
.iSeriesODBC directory that is located in your home directory. The output files have the following

naming convention:
 cwbdetail-<process name>-pid.csv
 cwbhistory-<process name>-pid.csv

For specific syntax and functionality of other cwbtrc parameters, refer to the IBM i Information

Center documentation

The detail trace and the history log store their data in semi-colon delimited text files. Example 6

shows a short excerpt from a sample detail trace that shows that the SQLDisconnect call failed
because the connection had a pending transaction.

04/07/2013;00:57:58.134;ODBC;21748;21748;10008;0x82000001: odbcconn.SQLDisconnect
Entry
04/07/2013;00:57:58.134;ODBC;21748;21748;10008;odbcerr.storeError Entry
04/07/2013;00:57:58.135;ODBC;21748;21748;10008;odbcerr.finishAndInsertErr Entry
04/07/2013;00:57:58.135;ODBC;21748;21748;10009;err: [IBM][iSeries Access ODBC
 Driver]Invalid transaction state. dsn: db2iserver1 sys: os400
04/07/2013;00:57:58.135;ODBC;21748;21748;10008;odbcerr.finishAndInsertErr Exit
04/07/2013;00:57:58.135;ODBC;21748;21748;10008;odbcerr.storeError Exit
04/07/2013;00:57:58.136;ODBC;21748;21748;10008;0x82000001: odbcconn.SQLDisconnect Exit
rc=-1
Example 6: Sample Detail Trace showing that the SQLDisconnect call has failed

Accessing IBM DB2 for i data from Linux applications running on IBM i

13

Using the IBM i JDBC driver

The IBM i operating system also includes a JDBC driver to enable DB2 for i data access from Java™
applications running on Linux. The IBM Toolbox for Java library provides a JDBC driver which is a Type 4
driver optimized for accessing DB2 for i databases. The Toolbox does not require additional client support

over and above what is provided by the Java virtual machine (JVM) and TCP/IP. The JDBC driver itself
uses a native IBM i protocol to communicate with the back-end database server job.

JTOpen is the open-source version of the IBM Toolbox for Java offering that serves as a fast-path

mechanism to make fixes and enhancements available to developers.

The Toolbox jt400.jar file contains the classes for the JDBC driver. You can find client installation
instructions for the JDBC driver at the IBM i Information Center.

Initial configuration considerations

Practical experience shows that the JDBC application performance greatly depends on the
programming techniques and the type of SQL being run against the server. However, significant

performance gains can be achieved by tweaking the Linux partition environment. This section covers
the two configuration options: Java runtime environment (JRE) and virtual or physical LAN.

Java runtime environment

Although JRE is usually preinstalled in a Linux partition, it is strongly recommended that the latest
IBM SDK for Java (64-bit) is downloaded from the IBM Java support website. The JRE
implements the state-of-the-art, just-in-time (JIT) compiler that can dramatically improve

performance of a Java application, as illustrated in Figure 3 and Figure 4. In both cases, a simple
Java program runs in a loop.

Figure 3: Java application performance, no JIT

Accessing IBM DB2 for i data from Linux applications running on IBM i

14

http://dw.raleigh.ibm.com/developerWorks/java/jdk/linux140/

Figure 4: Java application performance with JIT-enabled

Virtual or physical LAN

One of the most significant benefits of installing Linux in an IBM i partition is the ability to use

virtual LAN and virtual disk storage. This usually results in reduced hardware costs through
improvements in data-transfer performance and enhanced disk protection. The performance tests
conducted by IBM show that the virtual 1Gb LAN delivers data throughput that is similar to the

dedicated 1 Gb Ethernet adapters (model 2743) that are connected with a point-to-point
multimode fiber. The test configuration is illustrated in Figure 5.

Figure 5: VLAN compared with a 1 Gb Ethernet input/output adapter (IOA) configuration

Accessing IBM DB2 for i data from Linux applications running on IBM i

15

Figure 6 shows the test results measured for a sample Java application.

Figure 6: VLAN compared with a 1 Gb Ethernet IOA throughput

Other real-life database-access scenarios tested for solution providers’ solutions show that similar
performance can be expected for VLAN and 1Gb Ethernet (model 2743). However, the VLAN
configuration has the following two advantages over a physical LAN connection.

 No additional communications gear is required.
 It is a dedicated point-to-point connection, so there is no interference from other devices on

the same network segment.

Alternatively, certain application scenarios might benefit from a physical LAN adapter that is
dedicated to a Linux partition. For instance, in a three-tier application architecture, clients connect
to an application server that is running in a Linux partition. The application server, in turn,

connects to DB2 for i where data is stored and retrieved. In this case, configuring a separate
physical LAN connection in a Linux partition has the following advantages:

 An unnecessary additional hop is eliminated from the network route.

 Client-application server traffic does not unnecessarily saturate IBM i communications.

Techniques for improving JDBC performance

This section covers JDBC implementation details for a sample Java program called TestJDBC (the

source is provided at the end of this paper in Appendix A). You can find many similarities with the
performance-tuning methods discussed previously with the ODBC driver.

The application uses the Java Naming and Directory Interface (JNDI) to get a database connection,

delete 5000 rows, generate and insert 5000 rows and, finally, retrieve the newly-inserted rows from
an SQL table called COFFEES. The application runs in a Linux partition and accesses DB2 for i
through the JTOpen driver. Figure 7 shows the software components involved in running this simple

application.

Accessing IBM DB2 for i data from Linux applications running on IBM i

16

1Gb
VLAN

QZDASOINIT server job

Linux Partition IBM i Partition

DB2
for i

TestJDBC Java app

JTOpen JDBC driver

Figure 7: JDBC client accessing DB2 for i

Apart from the JTOpen driver, you might need additional JAR files depending on your version of Java

Development Kit (JDK) to successfully compile and run the JDBCTest application in a Linux partition.
These JAR files are providerutil.jar and fscontext.jar and they can be accessed by downloading a
simple file system JNDI provider.

The location of the JAR files needs to be added to the CLASSPATH environment variable. For
instance, the following entry can be added to the Linux .profile script:

CLASSPATH=.:/home/code/JTOpen/jt400.jar
CLASSPATH=$CLASSPATH:/home/code/fscontext/providerutil.jar
CLASSPATH=$CLASSPATH:/home/code/fscontext/fscontext.jar
export CLASSPATH

To compile the source, use the following command in the Linux partition:

javac TestJDBC.java

Although the TestJDBC application is fairly simple, it illustrates several important aspects of efficient
JDBC programming for DB2 for i.

Connection pooling

A JDBC connection can be obtained either through the DataSource object or the
DriverManager object. Both methods consume a significant amount of system resources. A

fairly large amount of system resources is required to create and maintain the connection and
then release it when it is no longer needed. JTOpen allows you to establish a pool of database
connections that can be shared by multiple client applications. Connection pooling can improve

response time because the connection-pool manager can locate and use an existing connection.
When the database request is complete, the connection returns to the connection pool for reuse.

In the JDBCTest sample, JNDI is first used to register a connection pool-capable data source.
Example 7 is an excerpt from the deployDataSource method of the sample application.

Accessing IBM DB2 for i data from Linux applications running on IBM i

17

Hashtable<String, String> env = new Hashtable<String, String>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
Context ctx = new InitialContext(env); [1]

// Register an AS400JDBCConnectionPoolDataSource object.
AS400JDBCConnectionPoolDataSource tkcpds = new
AS400JDBCConnectionPoolDataSource(); [2]
tkcpds.setServerName(serverName) ;
tkcpds.setDatabaseName(databaseName) ;
tkcpds.setUser(userName) ;
tkcpds.setPassword(password) ;
tkcpds.setDescription("Toolkit Connection Pooling DataSource object");
…
ctx.rebind("jdbc/ToolkitDataSource", tkcpds); [3]

Example 7: Excerpt from the deployDataSource method that registers a connection pool-capable data
source

At [1], the initial JNDI context is created. Then at [2], an AS400JDBCConnectionPoolDataSource
object is instantiated. This is the JTOpen implementation of the
javax.sql.ConnectionPoolDataSource interface. An AS400JDBCConnectionPoolDataSource

object supports a number of methods that can be used to set specific System i properties of the
underlying DataSource object. Some of these properties are discussed in greater detail in the
following sections of this paper. At [3], the data source object is bound to an arbitrary name that

is used in the main application. Note that the deployDataSource method needs to be run just one
time, unless some of the data source properties need to be changed. In that case, you need to
rebind. The JNDI-registered data source is then used in the main application to initialize the

connection pool (refer to Example 8).

AS400JDBCConnectionPoolDataSource tkcpds = [1]
(AS400JDBCConnectionPoolDataSource)ctx.lookup("jdbc/ToolkitDataSource")
;
// Create an AS400JDBCConnectionPool object.
AS400JDBCConnectionPool pool = new AS400JDBCConnectionPool(tkcpds);[2]
// Adds 1 connection to the pool that can be used by the application
//(creates the physical database connections based on the data source).
pool.fill(1); [3]
…
con = pool.getConnection(); [4]

Example 8: Initializing the connection pool from the main application

At [1], the JNDI service is used to instantiate AS400JDBCConnectionPoolDataSource. Then at
[2], an AS400JDBCConnectionPool object is created. This object is responsible for managing the

connection pool. At [3], the connection pool is initialized with one connection. The pool object is
used at [4] to obtain a database connection. There are several additional things to understand
about this code snippet.

Accessing IBM DB2 for i data from Linux applications running on IBM i

18

 The advantage of using JNDI to register the data source object (as opposed to merely
instantiating it in the main method) is that, in a more realistic scenario, the data source is

registered just one time (at the application deployment time). Additionally, the data
source properties do not have to be hard coded in the main method and can be changed
at any time and then rebound without affecting the application.

 AS400JDBCConnectionPool is a proprietary JTOpen implementation of a connection
pool. Specifically, it does not implement the referenceable interface and, thus, cannot be
bound through JNDI services.

 The JTOpen AS400JDBCConnectionPoolDataSource does not support statement
caching as described in the JDBC 3.0 specification. Statement caching is implemented
through SQL packages. This feature is covered in the following section.

Note: The native JDBC driver for the IBM i operating system supports both connection pooling
and statement caching in a JDBC-compliant manner.

Extended dynamic SQL and statement caching

As mentioned, the JTOpen data source object supports a number of properties that can be used
to fine tune the database performance. In this section, the properties used to enable extended-
dynamic SQL support and local-statement caching is discussed. Example 9 is a relevant code

excerpt from the deployDataSource method.

AS400JDBCConnectionPoolDataSource tkcpds = new
AS400JDBCConnectionPoolDataSource();
…
tkcpds.setExtendedDynamic(true);[1]
tkcpds.setPackage("JDBCDS"); [2]
tkcpds.setPackageCache(true); [3]
tkcpds.setPackageCriteria("select"); [4]

Example 9: Code excerpt from the deployDataSource method

At [1], the extended dynamic SQL support is enabled. Note that the default is disabled for
JTOpen. The extended dynamic SQL function is often referred to as SQL package support. The

SQL packages are server-side repositories for SQL statements. Packages contain the internal
structures, such as parse trees and access plans that are needed to run the SQL statements.
Because SQL packages are a shared resource, the information built when preparing a statement

is available to all users of the package. This saves processing time, especially in an environment
where many users use the same or similar statements. Also, because SQL packages are
permanent, this information is saved across job initiation and termination and during IPLs. In fact,

SQL packages can be saved and restored on other servers.

At [2], the SQL package is named. Note that the actual package name on the IBM i model is
JDBCDSBAA. The package name is generated by taking the name specified on the client and

appending three characters that are an encoded set of the package configuration attributes. By
default, an SQL package does not contain unparameterized Select statements. This behavior is
overridden at [4] by setting the PackageCriteria property to select.

At [3], the local statement cache is enabled. A copy of the SQL package is cached on the Linux
client. This might improve application performance in a way that is similar to JDBC 3.0 statement

Accessing IBM DB2 for i data from Linux applications running on IBM i

19

caching. However, notice that local-statement caching is not recommended for large SQL
packages. The copy of an SQL package is cached when the database connection is obtained.

This might cause increased network traffic and also slow down the connection setup time.

Reusable ODPs

As described in the ODBC section of this paper, it is very important from a performance

perspective that the applications employ programming techniques that allow the DB2 run time to
reuse ODPs.

With the JDBC interface, the most efficient way to avoid full opens is to employ the prepare once,

run many programming paradigm. Ideally, an SQL statement that is run more than one time must
be prepared just one time — for example, in the class constructor — and then reused for the
consecutive executions. On the first run, the ODP that is created for a given statement is

associated with the appropriate entry in the statement cache. On consecutive executions, the
prepared statement and the corresponding ODP can be quickly located in the statement cache
and reused. The code snippet in Example 10 illustrates the prepare once, run many programming

technique.

PreparedStatement pstmt = con.prepareStatement("INSERT INTO COFFEES
VALUES(?, ?, ?, ?, ?)");[1]
…
for (int i = 0; i < outerNumOfLoops; i++) {
 // insert
 for (int j = 0; j < numOfLoops; j++) {
 pstmt.setString(1, "Lavaza_" + Integer.toString(j));
 …
 pstmt.addBatch();
 }

 int [] updateCounts = pstmt.executeBatch();[2]
 con.commit();
}

Example 10: Code snippet that illustrates the “prepare once, run many” programming technique

At [1], a PreparedStatement pstmt object is instantiated for a parameterized INSERT statement.

The statement is prepared just one time. The PreparedStatement object is then repeatedly used
at [2] to perform blocked inserts.

Block inserts

Occasionally, you might need to populate a table initially or insert a modified result set into a
temporary table. The efficiency of the insert operation for a large set of records can be improved
dramatically by using the executeBatch method rather than the executeUpdate method. The

JTOpen driver converts parameterized INSERT statements in an executeBatch method to a
block-insert statement. This significantly reduces the data flow and system resources required to
perform the insert. The following code in Example 11 shows how to take advantage of the

executeBatch method.

Accessing IBM DB2 for i data from Linux applications running on IBM i

20

PreparedStatement pstmt =
con.prepareStatement("INSERT INTO COFFEES VALUES(?, ?, ?, ?, ?)"); [1]
for (int j = 0; j < numOfLoops; j++) {
 pstmt.setString(1, "Lavaza_" + Integer.toString(j));
 pstmt.setInt(2, i);
 pstmt.setFloat(3, 4.99f);
 pstmt.setInt(4, 0);
 pstmt.setInt(5, 0);
 pstmt.addBatch(); [2]

 }
int [] updateCounts = pstmt.executeBatch(); [3]

 Example 11: Excerpt from the deployDataSource method

At [1], a parameterized INSERT statement is prepared. Note that all the columns must be

parameterized. Otherwise, the executeBatch method might throw an SQL error. In other words,
you must not mix parameter markers with literals or special registers in the VALUE clause. At [2],
the addBatch method is used to add a new record to the client-record buffer. At [3], all locally

buffered data is sent to the server that, in turn, performs a block insert.

Figure 20 shows the performance data for the executeBatch and executeUpdate methods.

Figure 8: Comparing the performance of executeBatch() and executeUpdate()

Troubleshooting

Troubleshooting a multitier application might be a bit tricky because you need to deal with software
components that reside in separate partitions. Some tools are particularly useful for pinning down

the potential problem areas:

 Joblog messages for a database server job provide sufficient details to isolate DB2 for i
runtime issues.

 Database monitor provides a detailed trace of SQL requests processed by DB2.
 JDBC trace utility provides granular information about the data flow between the Linux

application and the IBM i job.
Accessing IBM DB2 for i data from Linux applications running on IBM i

21

DB2 engine feedback
The techniques documented in the DB2 engine feedback of the ODBC driver can also be applied
with the IBM i JDBC driver to collect feedback from the DB2 for i engine.

JDBC Trace utility
The JTOpen driver provides a tracing utility that can be used to collect detailed client-side traces.
The JDBC tracing is turned off by default. It can be enabled by setting the trace property to true.

Here is an example of how to switch on tracing using the setTrace method on the data source
object:

tkcpds.setTrace(true);

The trace can also be enabled when using the DriverManager.getConnection() method for
obtaining a connection to DB2 for i. In this case, you can add the trace property to the connection

string. This approach is illustrated in the following code snippet.

Class.forName("com.ibm.as400.access.AS400JDBCDriver"); [1]
…
con = DriverManager.getConnection("jdbc:as400://teraplex;trace=true;",
 "db2user","db2pwd"); [2]

Example 12: Enabling a JDBC trace

At [1], an instance of the JTOpen JDBC driver is initiated. Then at [2], the driver is used to obtain

a connection to the server. Note how the trace property is added to the database URL. Refer to
the IBM Toolbox for Java JDBC properties documentation on the IBM i Information Center
website for a complete list of properties supported by the JTOpen driver.

Accessing IBM DB2 for i data from Linux applications running on IBM i

22

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzahh/javadoc/JDBCProperties.html

Using the DB2 Connect middleware
DB2 Connect provides the capability of accessing data stored in DB2 for i and DB2 for z/OS® databases.
DB2 Connect offers capabilities to access DB2 family members through several SQL interfaces (for

example, JDBC and ODBC), gateway functions (such as connection pooling) and federated database
functionality. Many applications that support the DB2 family of products use DB2 Connect as a key
middleware component. DB2 Connect is offered as a separate license product.

 IBM DB2 Connect Personal Edition
 IBM DB2 Connect Enterprise Edition
 IBM DB2 Connect Application Server Edition

 IBM DB2 Connect Unlimited Edition for System i

In reality, the full DB2 Connect product does not need to be installed in order for a Linux application to
interoperate with DB2 for i databases. The actual DB2 middleware drivers can be downloaded and

installed separately using one of the IBM drivers and clients. This white paper uses the IBM Data Server
Driver Package for its examples. The IBM Data Server Driver Package is a lightweight solution and the
best package for end user code deployment. It provides robust runtime support for applications using

ODBC, CLI, .NET, OLE DB, PHP, Ruby, JDBC, or SQLJ without the need of installing IBM Data Server
Runtime Client or IBM Data Server Client.

The only reason that it is necessary to purchase a DB2 Connect product license is for the license file that

enables the DB2 Connect drivers to access DB2 for i databases. For production usage, the DB2 Connect
Unlimited Edition for System i packaging typically offers the best terms for IBM i customers. Contact your
local IBM representative or business partner for pricing information. For more information on this product,

refer to: ibm.com/software/data/db2/db2connect/edition-uei.html. A trial DB2 Connect license file for
evaluation purposes can be obtained by sending an email to: rmahendr@us.ibm.com.

Given that the IBM i ODBC and JDBC drivers are provided at no additional charges, you might be

wondering why would an IBM i client ever purchase a DB2 Connect product license. Here are several
possible scenarios that require usage of the DB2 Connect in a Linux partition.

 Linux application uses embedded SQL interface to access the DB2 for i server.

 A single SQL interface is needed to access different back-end DB2 or IBM Informix® servers.
 Specific DB2 Connect functions such as a distributed join (for example, a federated database), is

needed between DB2 and Informix servers.

DB2 Connect environment overview

DB2 Connect uses the Distributed Relational Database Architecture (DRDA) standard from The Open
Group to reduce the cost and complexity of accessing data that is stored in DB2 for i and other DRDA-
compliant database servers. DRDA defines the rules, the protocols, and the semantics for accessing

distributed data. Applications can access data in a distributed relational environment by using SQL
statements. In a distributed environment, the system that runs the application and sends the SQL
requests across the network is called an application requester (AR). A remote database server that runs

SQL requests that are submitted by an application requester is an application server (AS). In the example

Accessing IBM DB2 for i data from Linux applications running on IBM i

23

shown in Figure 9, DB2 Connect plays the role of an application requester; and DB2 for i is an application
server.

Figure 9: Using DB2 Connect to access IBM i data

In this case, DB2 Connect uses a TCP/IP connection with the IBM i system. The IBM i DRDA application
server implementation is based on multiple connection-oriented server jobs that run in the QUSRWRK
subsystem. A DRDA listener job (QRWTLSTN) listens for TCP connect requests on port 446. After an

application requester connects to the listener job, the listener wakes up one of the QRWTSRVR prestart
jobs and assigns it to a given client connection. Any further communication occurs directly between the
client application and the assigned QRWTSRVR job.

Configuring the IBM i

The following configuration steps are needed to ensure that your IBM i system can be accessed with a
DB2 Connect driver.

1. Verify that the TCP/IP stack works correctly. It is assumed that the virtual LAN is used to

communicate with the IBM i partition. First, obtain the IBM i system’s IP address (or host name)
and ping the IBM i system from the Linux partition.

2. Determine the name of the local database entry in the IBM relational database directory. This

name can be displayed by using the DSPRDBDIRE (Display Relational Database Entries)
command. Record the entry name with a location value of *LOCAL. In this example, the name is
mysystem and the TCP/IP host name is also mysystem. For simplicity, it is recommended that

the TCP/IP host name and local entry be the same value. In the rare case where a *LOCAL entry
does not exist, use the ADDRDBDIRE (Add Relational Database Directory Entry) command. For
example, the following command adds an entry named mysystem.
ADDRDBDIRE RDB(MYSYSTEM) RMTLOCNAME(*LOCAL)

3. Create a schema called NULLID. This is necessary because the utilities included with DB2
Connect and DB2 for Linux store their packages in the NULLID schema. Because it does not

exist by default on the IBM i system, you must create it using the following command:

Accessing IBM DB2 for i data from Linux applications running on IBM i

24

CRTLIB LIB(NULLID)

4. Products that support DRDA automatically perform any necessary code-page conversions at the
receiving system. For this to happen, both systems need a translation table from their code page
to the partner code page. The default coded character set identifier (CCSID) on the IBM i platform

is 65535, so a good number of DB2 for i tables have character columns defined with a CCSID of
655535. Because DB2 Connect does not have a translation table for this code page, the drivers
will be unable to translate the data to an encoding that can be consumed by the Linux application.

One way to get the data properly translated is to change the user profile that will be used on a
DB2 Connect connection to contain a CCSID that can be properly converted. If US. English is
stored in the character columns, the CCSID value of 037 can be used. The following command

changes the CCSID for an individual user profile to 037:

CHGUSRPRF db2user CCSID(37)

5. Verify that the default port 446 for DRDA service is used. To do this, go to the Configure TCP/IP
menu (CFGTCP), select Configure Related Tables, and then select Work with service table

entries. Verify that the DRDA service is set for port 446.

6. The Distributed Data Management (DDM) job must be started for DRDA to work. If you want the
DDM job to be started automatically whenever TCP/IP is started, change the attributes of the

DDM job by using the CHGDDMTCPA command and set the Autostart server parameter to *YES. If
the system administrator chooses not to automatically start the server, issue the following
command to start the DDM server job:

STRTCPSVR SERVER(*DDM)

Installing the Data Server Driver Package
You can download the IBM Data Server Driver Package from the following link:
ibm.com/support/docview.wss?rs=4020&uid=swg27016878

Detailed installation instructions are document in the IBM DB2 Information Center at the following link:
https://ibm.biz/BdRzv6

Perform the following steps to install this package in the Red Hat 64-bit environment used in this paper:

1. Run the installDSDriver command to the extract the ODBC and JDBC drivers. This

command also creates the db2profile script file that is needed for the Red Hat Bash shell
environment.

2. Set the IBM Data Server Driver environment by running the db2profile script with the following
command: . db2profile

Using the Data Server Driver ODBC support

The IBM Data Server Driver Package enables ODBC-based access of DB2 for i with its ODBC driver and

DB2 call level interface (CLI) support. DB2 CLI is based on the Microsoft ODBC specification and the
International Standard for SQL/CLI. These specifications were chosen as the basis for the DB2 CLI in an

Accessing IBM DB2 for i data from Linux applications running on IBM i

25

effort to follow industry standards and to provide a shorter learning curve for those application
programmers already familiar with either of these database interfaces. In addition, some DB2-specific

extensions have been added to help the application programmer to specifically use the DB2 features.

The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC driver manager. In contrast,
the IBM i Access ODBC drivers can only be used when loaded by an ODBC driver manager. Usage of an

ODBC driver manager enables an application to interact with multiple types of database servers.

Configuring a DB2 for i connection

The next step is updating the IBM Data Server Driver configuration file (db2dsdriver.cfg in the

…/dsdriver/cfg subdirectory) with the attributes of the DB2 for i database that you want to access.
This file contains the database directory information and configuration parameters for the database
servers that need to be accessed by your applications.

You can use the db2dsdriver configuration file with ODBC, CLI, embedded SQL applications, .NET,
OLE DB, PHP, or Ruby drivers. It is recommended that you use the db2dsdriver.cfg file instead of the
db2cli.ini file because it supports a wide variety of drivers (the db2cli.ini file only supports ODBC/CLI

access). Creating and populating the db2dsdriver.cfg configuration file is not required for these
drivers. The applications can function without this configuration file. However, instead of specifying
detailed information about the database name, host, port, and configuration parameters in your

applications, you can use the configuration file to define aliases.

As shown in the following configuration file in Example 13, the db2dsdriver configuration file is an
XML file. The DB2 for i server that is being accessed needs both a data source name (DSN) and a

database entry. The name, host, and port attributes are the keys that tie together a DSN and
database entry. The alias name for the DSN entry in this example is db2isrvr (and you can enter

any value for the DSN entry). The remaining DSN entry attributes come directly from your IBM i
server. The name attribute, mysystem, is the name of the local database directory that was identified

in the Configuring the IBM i section. The port value of 446 is required because that is the TCP/IP port
used by the DRDA protocol to communicate with IBM i.

<configuration>
 <dsncollection>
 <dsn alias="db2isrvr" name="mysystem" host="mysystem.mydomain.com"
 port="446">
 </dsn>
 </dsncollection>
 <databases>
 <database name="mysystem" host="mysystem.mydomain.com" port="446">
 <parameter name="CurrentSchema" value="MYSCHEMA" />
 </database>
 </databases>
 <parameters>
 </parameters>
</configuration>

Example 13: A sample db2dsdriver configuration file

The attributes of database entry duplicate the name, host, and port attributes of the DSN entry. In this

example, an optional current schema parameter is defined for the DB2 for i database.

Accessing IBM DB2 for i data from Linux applications running on IBM i

26

Earlier versions of DB2 for Linux, UNIX and Windows and DB2 Connect included a graphical
interface known as Client Configuration Assistant for building a database entry for DB2 for i servers.

“Appendix C: Client Configuration Assistant steps” documents how to use this graphical wizard with
DB2 for i databases.

The final configuration step for a DB2 for i database is applying the DB2 Connect license file. Multiple

DB2 for i databases can be accessed as soon as the DB2 Connect license file has been applied to
your Linux installation. For this installation, the DB2 Connect license was applied by placing the
license file in the /root/dsdriver/license directory.

Testing the ODBC connectivity

Before the DB2 CLI driver can be used as a ODBC driver by the application running on a Linux
server, a PowerPC version of the unixODBC driver manager must be installed.

The isql command provides an easy way to test out ODBC connectivity through the unixODBC
driver manager. A couple of configuration steps are necessary before the isql utility can be used.

First, the Data Server Driver needs to be registered with the unixODBC driver manager by adding the

driver information to the odbcinst.ini configuration file. For this installation, this file was located in the
/etc directory. Here is an example of the content within the odbcinst.ini file:

[DB2_DSD]
Description = DB2 Data Server driver
Driver = /root/dsdriver/lib/libdb2o.so
fileusage = 1
DontDLClose = 1

The next step in the configuration process is to add a DSN entry to the odbc.ini configuration file for
the DB2 for i database that needs to be accessed. This can be accomplished by adding the following

entry to the odbc.ini configuration file. The DSN entry name, db2isrvr, matches the alias value defined
for the DSN defined in the db2dsdriver.cfg file.

[db2isrvr]
Description = DB2 DS driver
Driver = DB2_DSD

With this configuration in place, the ODBC connection can be tested with the following isql command:

 isql db2isrvr db2user userpwd

This isql invocation includes the user ID and password because those values were not specified in
any of the configuration files.

Testing CLI connectivity

The IBM Data Server Driver installation provides a db2cli command in the bin subdirectory which can
be used to test CLI connectivity to a DB2 for i back-end server. Before using the db2cli command,

you need to verify that the prerequisite IBM XL C/C++ for the Linux compiler is installed on your Linux
system. If not, this compiler needs to be installed before using the db2cli utility.

Accessing IBM DB2 for i data from Linux applications running on IBM i

27

The following example shows how the db2cli command invocation references the DSN entry,

db2isrvr, defined in your db2dsdriver.cfg file. In addition, the IBM i user profile and password must be

specified so that the utility can authenticate with the specified IBM i system.

 db2cli validate -dsn db2isrvr –connect –user db2user –passwd userpwd

The db2cli command displays the specified DSN value along with the connection test results.
Example 14 contains selected output from the db2cli command.

...
==
db2dsdriver.cfg validation for data source name "db2isrvr":
==
[Parameters used for the connection]

Keywords Valid For Value
--
DATABASE CLI,.NET,ESQL mysystem
HOSTNAME CLI,.NET,ESQL mysystem.mydomain.com
PORT CLI,.NET,ESQL 446
CURRENTSCHEMA CLI,.NET MYSCHEMA

==
Connection attempt for data source name "db2isrvr":
==

[SUCCESS]

==
The validation is completed.
==

Example 14: db2cli command output

Using the Data Server Driver JDBC support

The IBM Data Server Driver Package actually includes two JDBC drivers. One of the drivers is known as
the Universal JDBC driver. The Universal JDBC driver is a Type 4 driver meaning that its implementation
is pure Java. The other driver is known as the CLI legacy driver because it is a Type 2 JDBC driver that

requires the DB2 CLI support for accessing back-end DB2 databases. IBM recommends the usage of the
Universal JDBC driver because it is more strategic and simpler to deploy.

The Universal JDBC driver uses the same DRDA protocol discussed in the “DB2 Connect environment

overview” section. The deployment environment for a Java application running on Linux that accesses
DB2 for i databases with the Universal JDBC driver is illustrated in Figure 10.

Accessing IBM DB2 for i data from Linux applications running on IBM i

28

Figure 10: Accessing DB2 for i with DB2 Universal JDBC driver

Installation and configuration

The JDBC driver is installed as part of the IBM Data Server Driver Package installation process that
was reviewed earlier. The IBM Data Server Driver installation does not address the prerequisite JDK.
The Universal JDBC driver requires JDK 1.4.2 or later. Usage of JDBC 4.0 functions requires JDK 7

and usage of JDBC 4.1 functions requires JDK 8. If no Java development is going to be done, then
the Linux system needs only a JRE to be installed. You can find more details about the JDBC
installation at: https://ibm.biz/BdRzud.

The next consideration is modifying the CLASSPATH environment variable. The CLASSPATH needs
to contain the JAR file that supports the JDBC driver and the DB2 Connect license file. Refer to the
“Using the DB2 Connect middleware” section for more information about the DB2 Connect licensing

requirements.

The license file name is db2jcc_license_cisuz.jar. The JDBC driver JAR file name depends on the
level of required JDBC functionality. The db2jcc.jar file supports JDBC 3.0 and earlier functions while

the db2jcc4.jar file supports JDBC 3.0 and earlier along with JDBC 4.0 and later levels. This example
deployment requires only the JDBC 3.0 functionality, so the CLASSPATH is set in the following
manner.

export CLASSPATH=.:/root/dsdriver/java/db2jcc.jar
export CLASSPATH=$CLASSPATH:/root/dsdriver/java/db2jcc_license_cisuz.jar

Obtaining a connection to DB2 for i

When Type 4 connectivity is used, the DB2 Universal Driver connects directly to the DB2 for i
databases through TCP/IP. The Data Server Driver configuration file is not used. The code snippet in
Example 15 shows how to use the DB2 Universal Driver to obtain a connection to DB2 for i.

Accessing IBM DB2 for i data from Linux applications running on IBM i

29

try {
 Class.forName("com.ibm.db2.jcc.DB2Driver"); [1]
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
 }

try {
 DriverManager.getConnection(
 "jdbc:db2://mysystem.mydomain.com:446/MYSYSTEM", [2]
 "db2user", "userpwd");
 …
 } catch(SQLException ex) {
 System.err.println(
 "SQLException: " + ex.getMessage());
 }

Example 15: Code snippet that uses the DB2 Universal Driver to obtain a connection to DB2 for i

At [1], an instance of the DB2 Universal JDBC Driver is initiated. Then at [2], the driver is used to

obtain a connection to the System i model. Notice the proper form of the database URL that is
required by the driver.

Troubleshooting

The methods used for troubleshooting connections made with DB2 Connect middleware are similar to

those discussed previously for IBM i middleware in the “DB2 engine feedback” section.

A key difference to remember is that the DRDA-based requests run in IBM i server jobs that are called
QRWTSRVR. Note that a QRWTSRVR job is assigned to a client after the connection is established.

Therefore, you need to set a breakpoint in the Linux application after the connection has been established
before determining the IBM i server job that has been assigned.

Summary
This white paper has made you aware of the different interfaces that IBM provides for accessing DB2 for i
data from applications running on Linux and the techniques for streamlining the data-access performance
in these Linux applications.

Accessing IBM DB2 for i data from Linux applications running on IBM i

30

Appendix A: Resources
The following websites provide useful references to supplement the information contained in this paper.

 IBM i Information Center

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp

 IBM i on PartnerWorld

ibm.com/partnerworld/i

 IBM i Access Client Solutions Linux Application Package

ibm.com/systems/power/software/i/access/solutions.html

 Obtaining Access Client Solutions

ibm.com/support/docview.wss?uid=nas8N1010355

 Linux ODBC Connection Keywords

pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaik%2Fconnectkeywords.htm

 DB2 for i SQL Performance Workshop

ibm.com/systems/power/software/i/db2/education/performance.html

 IBM Redbooks: SQL Performance Diagnosis on IBM DB2 for i

ibm.com/redbooks/abstracts/sg246654.html

 IBM i cwbtrc utility

pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzatv%2Frzatvcwbtrc.htm

 Toolbox JDBC Driver installation instructions

pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahh%2Frzahnm09.htm

 IBM DB2 for Linux, UNIX and Windows Information Center

pic.dhe.ibm.com/infocenter/db2luw/v10r5

 DB2 Connect Unlimited Edition for System i

ibm.com/software/data/db2/db2connect/edition-uei.html

 IBM Data Server Driver Package download

Accessing IBM DB2 for i data from Linux applications running on IBM i

31

ibm.com/support/docview.wss?rs=4020&uid=swg27016878

 IBM Data Server Driver Package Installation Instructions

ibm.biz/BdRzv6

 IBM data server driver configuration file

ibm.biz/BdRz8L

 DB2 Universal JDBC Driver Installation Instructions

ibm.biz/BdRzud

Appendix B: Source listing of testJDBC.java
This is the source listing that is referenced in the “Techniques for improving JDBC performance” section.

import java.sql.*;
import javax.naming.*;
import java.util.Hashtable;
import java.util.*;
import javax.sql.*;
import com.ibm.as400.access.*;

public class TestJDBC
{
 public static void main(java.lang.String[] args)
 throws Exception
 {

 int numOfLoops = 5000;
 int outerNumOfLoops = 5;
 boolean firstExec = true;
 Connection con;
 Statement s;
 PreparedStatement ps;
 PreparedStatement pstmtdel;
 CallableStatement cstm;
 PreparedStatement pstmt;
 Hashtable<String,String> env = new Hashtable<String, String>();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 Context ctx = new InitialContext(env);
 System.out.println("Deploying connection pooling data source");
 deployDataSource();
 // Do the work with connection pooling only.
 AS400JDBCConnectionPoolDataSource tkcpds =
(AS400JDBCConnectionPoolDataSource)ctx.lookup("jdbc/ToolkitDataSource");
 // Create an AS400JDBCConnectionPool object.
 AS400JDBCConnectionPool pool = new AS400JDBCConnectionPool(tkcpds);
 // Adds 1 connection to the pool that can be used by the
 //application (creates the physical database connections based on
 //the data source).
 pool.fill(1);
 System.out.println("\nStart timing Toolkit connection pooling...");

Accessing IBM DB2 for i data from Linux applications running on IBM i

 long startTime = System.currentTimeMillis();

32

 for (int i = 0; i < outerNumOfLoops; i++) {
 con = pool.getConnection();
 con.setAutoCommit(false);
 delete //
 if (i == 0)
 {

 long startDelete = System.currentTimeMillis();
 cstm =
 con.prepareCall(
 "CALL qsys.qcmdexc('CLRPFM FILE(DB2USER/COFFEES)'," +
 "0000000028.00000)");
 cstm.executeUpdate();
 cstm.close();
 long endDelete = System.currentTimeMillis();
 System.out.println("Delete all records : " +
 (endDelete - startDelete) + "ms elapsed.");
 }
 String sqlinstr;
 long startInsert = System.currentTimeMillis();
 // insert
 pstmt =
 con.prepareStatement("INSERT INTO COFFEES VALUES(?, ?, ?, ?, ?)");
 for (int j = 0; j < numOfLoops; j++) {
 pstmt.setString(1, "Kona_" + Integer.toString(i));
 pstmt.setInt(2, 150);
 pstmt.setFloat(3, 9.99f);
 pstmt.setInt(4, 0);
 pstmt.setInt(5, 0);
 pstmt.addBatch();
 }
 int [] updateCounts = pstmt.executeBatch();
 con.commit();
 pstmt.close();
 long endInsert = System.currentTimeMillis();
 System.out.println("Time elapsed for " + numOfLoops + " inserts "
 + (endInsert - startInsert));
 // select
 long startSelect = System.currentTimeMillis();
 ps = con.prepareStatement("SELECT * FROM COFFEES");
 ResultSet rs = ps.executeQuery();
 rs.next();
 rs.close();
 con.commit();
 ps.close();
 long endSelect = System.currentTimeMillis();
 System.out.println("Time elapsed for select " +
 (endSelect - startSelect));
 con.setAutoCommit(true);
 con.close();
 }
 long endTime = System.currentTimeMillis();
 System.out.println("Time elapsed for " + outerNumOfLoops +
 " loops " + (endTime - startTime));
 System.exit(0);
 }

 private static void deployDataSource()
 throws Exception
 {
 String serverName = "teraplex" ;
 String databaseName = "TERAPLEX" ;
 String userName = "db2user" ;

Accessing IBM DB2 for i data from Linux applications running on IBM i

33

 String password = "db2pwd" ;

 // Establish a JNDI context and bind the connection pool data source
 Hashtable<String, String> env = new Hashtable<String, String>();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 Context ctx = new InitialContext(env);
 // Create an AS400JDBCConnectionPool object.
 AS400JDBCConnectionPoolDataSource tkcpds = new
 AS400JDBCConnectionPoolDataSource();
 tkcpds.setServerName(serverName) ;
 tkcpds.setDatabaseName(databaseName) ;
 tkcpds.setUser(userName) ;
 tkcpds.setPassword(password) ;
 tkcpds.setDescription("Toolkit Connection Pooling DataSource");
 tkcpds.setSavePasswordWhenSerialized(true);
 tkcpds.setExtendedDynamic(true);
 tkcpds.setPackage("JDBC ; DS")
 tkcpds.setPackageCache(true);
 tkcpds.setPackageCriteria("select");
 //enable the following properties as required
 //cpds.setTrace(true);
 //tkcpds.setServerTraceCategories(
 // AS400JDBCDataSource.SERVER_TRACE_DEBUG_SERVER_JOB);

 ctx.rebind("jdbc/ToolkitDataSource", tkcpds);

 }
}

Accessing IBM DB2 for i data from Linux applications running on IBM i

34

Appendix C: Client Configuration Assistant steps
The following steps show to use the Client Configuration Assistant through the process of configuring a
connection to a DB2 for i server. The Client Configuration Assistant is currently provided only with the
earlier versions of DB2 Connect (releases prior to version 10).

1. Log in to the Linux partition as the DB2 administrator.

2. Start the Client Configuration Assistant (db2ca from the command prompt). It is assumed that
VNC or a X-Windows server is used on the workstation so that the db2ca GUI can be properly

rendered.

3. From the Selected drop-down list, select Add Database using Wizard. The Select how you
want to setup a connection page appears. Select Manually configure a connection to a

database and click Next (refer to Figure 11).

Figure 11: Selecting manual configuration

Accessing IBM DB2 for i data from Linux applications running on IBM i

35

4. On the Select a communications protocol page, select TCP/IP and select the The database
physical resides on a host or OS/400 system check box. Then, select Connect directly to the

server and click Next.

Figure 12: Selecting a communications protocol

Accessing IBM DB2 for i data from Linux applications running on IBM i

36

5. On the TCP/IP tab, enter the host name of the IBM i system. The port number must be 446 (refer
to Figure 13). Click Next.

Figure 13: Specifying TCP/IP communication parameters

Accessing IBM DB2 for i data from Linux applications running on IBM i

37

6. On the Database tab, enter the relational database name. Use the RDB entry name (specified in
step 2 in the “Configuring the IBM i” section. Click Next.

Figure 14: Specifying the remote database

7. If you plan to use the ODBC applications, select Register this database for ODBC as a system
data source on the ODBC tab. Click Next.

Accessing IBM DB2 for i data from Linux applications running on IBM i

38

8. On the Specify the node option page, select OS/400 from the Operating System drop-down list
and click Finish.

Figure 15: Specifying the node options

9. The Test Connection dialog appears, allowing you to verify that the connection works. Select the
CLI and JDBC check boxes. You are also prompted for an IBM i user ID and password (refer to

Figure 16).

Figure 16: Testing the connection

Accessing IBM DB2 for i data from Linux applications running on IBM i

39

10. The successful connection to the database server is confirmed by the message box shown in
Figure 17.

Figure 17: Test connection results

11. A newly configured database connection appears in the main DB2 Configuration Assistant
window. It is recommended that the DB2 utilities are also bound to the IBM i database. The bind
process creates the necessary SQL packages on the remote database. In the main Configuration

Assistant window, click the TPLX database entry and then click Selected  Bind…

Accessing IBM DB2 for i data from Linux applications running on IBM i

40

12. In the Bind dialog box, click Select All and then enter the connection information (refer to Figure
18). Click Bind. The Results message box appears. It allows you to monitor the progress of the

binding process. Watch for any error and warning messages.

Figure 18: Binding the DB2 utilities

This concludes the Client Configuration Assistant steps.

Accessing IBM DB2 for i data from Linux applications running on IBM i

41

About the authors

out

 Kent Milligan is a Senior Certified DB2 for i Consultant on the ISV Enablement

team for IBM i in Rochester, Minnesota. After graduating from the University of
Iowa, Kent spent the first eight years of his IBM career as a member of the AS/400
and DB2 development group in Rochester. He speaks and writes regularly ab

relational database topics and DB2 for i. You can reach Kent at kmill@us.ibm.com.

Jarek Miszczyk is a Senior Software Engineer in IBM Software Defined Systems
Development organization. Before joining the Software Defined Systems
organization, Jarek provided DB2 for i expertise while working for the ISV

Enablement and International Technical Support Organization (ITSO) teams in the
IBM Rochester lab.

Accessing IBM DB2 for i data from Linux applications running on IBM i

42

https://twitter.com/IBMSystemsISVs�

Trademarks and special notices
© Copyright IBM Corporation 2014.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or

its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly

available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the

supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller

for the full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a
definitive statement of a commitment to specific levels of performance, function or delivery schedules with

respect to any future products. Such commitments are only made in IBM product announcements. The

Accessing IBM DB2 for i data from Linux applications running on IBM i

43

Accessing IBM DB2 for i data from Linux applications running on IBM i

44

information is presented here to communicate IBM's current investment and development activities as a
good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O

configuration, the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of

the materials for this IBM product and use of those websites is at your own risk.

	Abstract
	Introduction
	Using the IBM i middleware
	Using the IBM i Access ODBC driver
	Getting the IBM i Access for Linux ODBC driver
	Installation
	Configuration
	Changes to existing applications
	Example ODBC application
	Addressing locale issues
	Connection keywords
	Techniques for improving ODBC performance
	Troubleshooting

	Using the IBM i JDBC driver
	Initial configuration considerations
	Techniques for improving JDBC performance
	Troubleshooting
	DB2 engine feedback
	JDBC Trace utility

	Using the DB2 Connect middleware
	DB2 Connect environment overview
	Configuring the IBM i
	Installing the Data Server Driver Package
	Using the Data Server Driver ODBC support
	Configuring a DB2 for i connection
	Testing the ODBC connectivity
	Testing CLI connectivity

	Using the Data Server Driver JDBC support
	Obtaining a connection to DB2 for i

	Troubleshooting

	Summary
	Appendix A: Resources
	Appendix B: Source listing of testJDBC.java
	Appendix C: Client Configuration Assistant steps
	About the authors
	Trademarks and special notices

