

TLS/SSL Handshake
Analysis in Wireshark

Lesley Nuttall

17 April 2019

Version 1

SSL Connections

SSL/TLS is between the transport and the application layer and is protocol independent. Many IBM

products make use of GSKit to establish a secure connection. The following graphic shows an

example flow of API calls on a secure client using the GSKit APIs.

As you can see, the secure socket is opened after a connect() has been completed. In TCP

conversations, you would see the SSL/TLS protocol traffic after a socket has been opened and a TCP

connection successfully ESTABLISHED (as seen in netstat).

Wireshark Setup

Edit -> Preferences -> Protocols

If none SSL/TLS ports are used and Wireshark does not recognise packets as SSL/TLS, you may need

to define the port to be decoded as SSL. Can add this to ‘Analyze -> Decode as’:

To keep track of SSL ID and SSL ID length, you can add two columns via Edit -> Preferences ->

Columns, as follows:

SSL transaction flow
Source: ww.cisco.com

The Hello Exchange

When an SSL client and server begin to communicate, they agree on a protocol version, select

cryptographic algorithms, optionally authenticate each other, and use public key encryption

techniques to generate shared secrets. These processes are performed in the handshake protocol. In

summary, the client sends a Client Hello message to the server, which must respond with a Server

Hello message or a fatal error occurs, and the connection fails.

Interpreting a Client Hello

The Client Hello sends these attributes to the server:

• Protocol Version: The version of the SSL protocol by which the client wishes to communicate

during this session.

• Session ID: The ID of a session the client wishes to use for this connection. In the first Client

Hello of the exchange, the session ID is empty (as in the example below).

• Cipher Suite: The combinations of cryptographic algorithms supported by the client in order

of the client's preference (first choice first). Each cipher suite defines both a key exchange

algorithm and a cipher spec. The server selects a cipher suite or, if no acceptable choices are

presented, returns a handshake failure alert and closes the connection.

• Compression Method: Includes a list of compression algorithms supported by the client. If

the server does not support any method sent by the client, the connection fails. The

compression method can also be null.

Interpreting a Server Hello

You can view information about the certificates presented during an SSL handshake.
In the example Server Hello below, you can see the following:

• Protocol Version: The chosen version of the SSL protocol that the client supports.

• Session ID: This is the identity of the session that corresponds to this connection. If the

session ID sent by the client in the Client Hello is not empty, the server looks in the session

cache for a match. If a match is found and the server is willing to establish the new

connection using the specified session state, the server responds with the same value that

was supplied by the client. This indicates a resumed session and dictates that the parties

must proceed directly to the finished messages. Otherwise, this field contains a different

value that identifies the new session. The server might return an empty session_id to

indicate that the session will not be cached, and therefore cannot be resumed.

• Cipher Suite: As selected by the server from the list that was sent from the client.

• Compression Method: As selected by the server from the list that was sent from the client.

• Certificate Request: The server sends the client a list of all the certificates that are

configured on it and allows the client to select which certificate it wants to use for

authentication.

New SSL connection

This is a fresh connection from a client and it will not have any reference to any previous SSL session

id, so will normally set the ‘Session ID length' field to 0. The server will establish a new session, by

performing a full SSL handshake and negotiating keys with the client. The server will assign an SSL

session ID that the client will remember. The server application would also normally have an SSL

session cache that it maintains, with a list of all SSL session ids.

Note: A handshake may have an additional ServerKeyExchange with
ServerHello, for DHE key generation.

In the first Client Hello of an exchange, the session ID is empty. You can search for these packets

using the display filter “ssl.handshake.type == 1 and ssl.handshake.session_id_length == 0”

Resumed SSL connection

If the Client Hello presents a session id that the Server recognises, the session is resumed – meaning

the session reuses previously negotiated keys. A full SSL handshake is not required. This is quicker

and less ‘expensive’ than full key negotiation.

You can search for these packets using the display filter “ssl.resume”. Wireshark expert info also

tells you the session reuses previously negotiated keys.

Renegotiated SSL connection

The client thinks it is re-using an SSL session, so it will present the previously used SSL session ID to

the server. If the server does not recognise the session ID, a full SSL handshake is required in order

to negotiate keys again. As a new session must be negotiated, the Server Hello response will contain

a new SSL ID that does not match the one presented in the Client Hello. This is resource intensive

(similar to a new ssl session).

The server may not recognise the SSL id for various reasons - the server ssl cache is full, the server ssl

cache timeout has triggered, the ssl session id has been invalidated in the cache, in a cluster/load

balanced env the connection has switched to a new server, etc.

Example delay from establishing TCP connection to SSL handshake

0.82 second delay from establishing connection to sending ssl handshake

0.45 second delay from establishing connection to sending ssl handshake

This could indicate that there is a performance issue on the server acting as the SSL client. Key

negotiation is resource expensive, so check to see if sessions are not being resumed where you

would expect them to be (i.e. there are many unnecessary renegotiated SSL handshakes).

