

IBM Tivoli Service Management
Products

Performance Test Best Practices
With HP LoadRunner

White Paper

Document version 1.1

NOTICES

The information contained in this document is distributed AS IS, without warranty of any
kind.

This paper presents best practices for performance testing IBM Tivoli service management
products by using HP LoadRunner.

This document applies to the following IBM Tivoli service management products and
releases:

• IBM Maximo Asset Management 7.1 and 7.5

• IBM Tivoli Change and Configuration Management Database 7.1 and 7.2

• IBM Tivoli Provisioning Manager 7.1 and 7.2

• IBM Tivoli Service Automation Manager 7.1 and 7.2

• IBM Tivoli Service Request Manager 7.1 and 7.2

© Copyright International Business Machines Corporation 2010, 2011. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

September 2011 Page 2 of 28

CONTENTS

Notices ..2

1 Importance of Performance Testing IBM Tivoli Service Management Products ...5

2 Defining Performance Benchmark Test Objectives...6

3 Defining Test Methodology..7

3.1 Defining Test Types...7

3.1.1 Baseline Measurements ... 7
3.1.2 Performance Load Tests .. 7
3.1.3 Stress Tests .. 8
3.1.4 Endurance Tests... 8
3.1.5 Sizing/Capacity Tests ... 8
3.1.6 Performance Tuning/Debugging... 9
3.1.7 Batch Testing.. 9

4 Test Cases, Workloads, and Scenarios ..10

4.1 Test Case Development ..10

4.2 Workloads..10

4.3 Test Scenarios...12

5 Benchmark Test Environment Considerations ..13

5.1 Application Servers..14

5.2 Database Servers ..14

5.3 Build Administration Servers..14

September 2011 Page 3 of 28

5.4 Monitoring Considerations ...14

6 LoadRunner Script Development Essentials ...15

6.1.1 Load Simulation .. 15
6.1.2 Recording a Script .. 15
6.1.2.1 Before Recording.. 15
6.1.2.2 VuGen Settings... 16
6.1.2.3 Recording.. 16
6.1.3 Script Clean-up ... 16
6.1.4 Correlating Values .. 16
6.1.5 Text Checks .. 18
6.1.6 Parameters ... 18
6.1.7 Think Time .. 18

7 Troubleshooting Performance Problems ...20

7.1 Performance Problem Determination ..20

7.1.1 Problem Determination Techniques ... 20
7.1.2 Problem Determination Tools ... 21

7.2 Monitoring the System...23

7.2.1 Monitoring Tools ... 23

8 Analyzing Results ..25

September 2011 Page 4 of 28

1 Importance of Performance Testing IBM
Tivoli Service Management Products
A common misconception is that performance testing of IBM Tivoli service management
products in a customer environment is not necessary, because the product has been
thoroughly tested by the IBM Tivoli Performance and Scalability teams, and the product is
initially configured to provide optimal performance when it is installed.

The problem with that misconception is that internal tests performed by a development
organization might not reflect conditions experienced in a production environment.

Internal tests focus on discovering defects, determining whether the product is scalable to
accommodate the largest organizations, and determining overall performance of each of
the applications. Customers who deploy IBM Tivoli service management products in a
production environment should not exclusively rely on the results of internal testing.
Instead, they should use the internal results as a guideline when determining the optimal
configuration needed to support the mix of applications, number of JVMs, number of users,
and number of transactions that are typical of the actual production environment.

This document provides guidelines for conducting performance tests of IBM Tivoli service
management products in a customer environment.

Four common reasons to conduct your own performance tests are:

• To validate sizing estimates for a new IBM Tivoli service management products
implementation.

• To ensure that IBM Tivoli service management products meet the current
requirements of the business processes and to document the performance of the
existing system.

• To ensure that IBM Tivoli service management products will meet the business
demands for future growth and to assist the organization with predicting
performance bottlenecks.

• To analyze, tune and debug current performance issues in production
environments.

September 2011 Page 5 of 28

2 Defining Performance Benchmark Test
Objectives
A well-defined set of performance test objectives is critical to the success of any
performance test project. Careful planning and consideration of all factors should be the
first step of all projects. The most common reason for failed projects is that too little time is
spent on planning.

Define the test objectives with a set of business questions that are expected to be
answered by the results of the tests. All further details of test design should map back to
answering a specific business question.

The following are examples of some business questions that you should address for a new
deployment:

• Will the architecture being deployed meet our business requirements?

• Will IBM Tivoli service management products provide a satisfactory response time,
given your own requirements for a certain number of concurrent users, performing
a given number of transactions in a period of time, on the hardware that you
currently have in place?

• Given the combination of IBM Tivoli service management products that you intend
to run, and given the transaction volume and concurrent users that you expect,
which component is likely to be a bottleneck to overall performance?

• Is your existing hardware sufficient to provide acceptable performance, given the
expected number of transactions and concurrent users, or is new hardware or
reconfiguration of existing hardware necessary?

If you are planning a new installation, or if you expect changes to your current IBM Tivoli
service management products environment, such as an increase in the number of users,
you should load test the entire application. Stress and stability tests are performed before
you configure the product for a production environment. However, this type of testing is not
always possible because of time, cost, or other constraints. Consequently, it is critical that
you identify the business questions with the highest risks and rewards and test accordingly.

Document the test objectives, including the business questions to address, in a project test
plan. When testing is complete, you should be able to provide concise answers to each of
the business questions in a test report.

September 2011 Page 6 of 28

3 Defining Test Methodology

3.1 Defining Test Types

The type of test you perform should be determined by the business questions you ask. The
following test types are commonly performed during IBM Tivoli service management
products performance test projects, but your unique business questions might require
additional testing.

3.1.1 Baseline Measurements

Baseline measurements should be performed before any other tests are run. Baseline
measurements consist of a single user test that you run for several iterations. The purpose
of this type of test is to verify that the test is working as expected, and to allow you to
identify aspects of an application that are not performing well, even when only one user is
using it. If an application does not meet your requirements in this situation, obviously the
problems must be resolved before you attempt additional tests with more users. You might
have to reconfigure both the hardware and the software to eliminate the failures.

Once a set of single user baseline measurements has been completed with satisfactory
results, a “benchmark-under-load” test is performed. In this type of test, your test script
should simulate a subset, such as 25%, of the total activity that you expect to see in the
production environment. Like the initial test, any problems with the performance of the
application must be resolved before you conduct additional tests with higher load levels.

There are certain situations where it is advantageous to schedule a scenario with a single
functional flow. One situation is when the performance testing coincides with a delivery of a
functionally stable customization and you want to see how this particular function performs
before it is included in a workload mix. Another situation is when performance issues are
identified during the mixed mode scenario. In order to isolate where the performance
issues are in a specific functional flow, you might need to run single functional flow tests.

3.1.2 Performance Load Tests

After the baseline and benchmark-under-load tests are completed, the full suite of load
tests can begin. For these load tests, the Performance and Scalability team suggests that
you run at least 5 load points, where the tests simulate 50%, 75%, 100%, 125%, and 150%
of the expected system load. By doing this, the knee of the performance curve can be
clearly identified. You can test each load point as an individual test, or use the performance
test tool scheduling options to drive all 5 load points from a single test that presents
multiple load levels. There are advantages and disadvantages to each method. Each load
point should be allowed to plateau and remain at a constant user load/transaction rate for a
period long enough to make clear observations before scaling to the next load point.

The objective of the load test is to measure the response times of transactions and verify
that business requirements and service level agreements are met under load conditions.
Another result of load tests is that they can expose defects in functionality that might not
otherwise be revealed. By monitoring the success and failure rate of transactions, you can
determine if the application is performing as expected and identify bottlenecks that may
cause functional issues.

September 2011 Page 7 of 28

The design of your load tests is crucial to understanding test results and tuning the
environment for optimal performance. Poorly defined workloads and test approaches can
have dramatic effects on test results and lead you to false conclusions.

3.1.3 Stress Tests

Load tests focus on testing the performance of software using simulations that approximate
conditions of real users using the application. Stress tests focus on identifying the server
break points and how the application behaves when a failure occurs. Customized
deployments of IBM Tivoli service management products are good candidates for stress
tests.

For this type of testing, you gradually increase the number of concurrent users until the
server breaks. Unlike load testing, you do not need to consider “think time” or the browser
cache during stress testing. The duration of the stress test is not predetermined, because
you increase concurrent users gradually to a point where all server resources are
exhausted. You identify the conditions that caused the failure by monitoring the server
resources during stress testing and analyzing system logs after a failure. Stress test results
indicate whether the system remains stable under extreme loads or whether its
performance degrades or the system crashes.

Detailed result analysis with project architects and implementers should be routine with
stress tests due to the potential significant impacts to customer environments when a
system becomes stressed.

3.1.4 Endurance Tests

Endurance testing differs from load and stress testing in that endurance tests examine how
the application performs when running a significant number of concurrent users for
extended periods of time. The purpose of endurance tests is to identify memory leaks,
performance degradation over time, and overall system stability. It is common for these
tests to be executed over a period of time, ranging from 12 hours to 1 week.

Key indicators to monitor during an endurance test are consistent transaction response
times, stable memory usage, stable CPU utilization, constant throughput levels, and server
crash avoidance.

3.1.5 Sizing/Capacity Tests

Sizing and capacity tests are important when the results of the tests will be needed by
deployment teams to properly size new deployments and to determine the capability of
existing environments to absorb anticipated increases to system load.

For IBM Tivoli service management products, the results of sizing tests are commonly
reported in concurrent-users-per-JVM, and as transaction rates per server.

Sizing and capacity tests are designed differently from the standard performance tests. It is
important to design series of tests that focus on each tier as well as the individual
components of those tiers. For example, to determine the maximum concurrent users per
JVM for a given workload, it would be necessary to ensure that the JVM itself will be the
limiting factor. One way to achieve this is to restrict the number of JVMs on a system so
that the JVM will reach capacity well before the CPU reaches its limitations. Once the JVM
capabilities have been determined, the JVM count should be increased so that it is no
longer a bottleneck, but the CPU could be. A continual increase in concurrent users should
be staged to the point that the CPU reaches 100% utilization. At that point, the maximum

September 2011 Page 8 of 28

number of concurrent users per CPU can be reported. This approach should be continued
until all components of each tier have been fully characterized.

In addition to the components and tiers, the various combinations of IBM Tivoli service
management products can be sized by following the same methodology. Once
characteristics of each component within each tier of each application have been
established, integrated testing of various applications should be executed to add another
dimension to the results. This will provide additional data that can be used to estimate
sizing “rules of thumb” as combinations of applications are expected to be deployed.

3.1.6 Performance Tuning/Debugging

Through creative manipulation of the hardware resources on the IBM Tivoli service
management products system, bottlenecks can be controlled. For example, if JVM memory
is determined to be a bottleneck, it might be easier and faster to debug and tune if you only
start a single JVM in a server cluster. That way, a smaller load can recreate the problem.

If one particular use case is not performing as expected, it is often useful to test that use
case by itself under load to gain insight into the resources consumed. By weeding out the
other traffic, it can be much easier to review traces and logs.

For details about logging, tracing, and debugging, refer to the System Administrator Guide.

For the latest IBM Tivoli service management products tuning information, refer to the Best
Practices for System Performance white paper.

3.1.7 Batch Testing

Batch testing refers to testing the components of IBM Tivoli service management products
that are non-interactive. Batch testing plays a vital role in successful IBM Tivoli service
management products performance analysis and it should not be excluded. Data loads
during customer deployments, integrations with outside vendors, and use of the integration
framework can significantly affect both the middleware and database servers.

These tests focus heavily on system resource consumption of the server tiers and
throughput rates. However, response time Service Level Agreements (SLAs) should also
be considered if required. The type of records to simulate, size of messages, and
transaction feed rates should be clearly defined in the test approach because mistakes in
design can vary results to a significant degree.

Batch tests typically do not use the standard performance simulation tools and typically
require some level of programming to develop. It is important to work with an implementer,
architect, or someone that is familiar with the components to be simulated.

September 2011 Page 9 of 28

http://publib.boulder.ibm.com/infocenter/tivihelp/v49r1/topic/com.ibm.mbs.doc/pdfs/pdf_mbs_sysadmin.pdf
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb

4 Test Cases, Workloads, and Scenarios

4.1 Test Case Development

When considering test cases for the performance tests, the goal is to keep the use cases
to as small a number as possible, while ensuring that they include the most frequently used
functions or the functions that present the most risk. Remember that the goal of the
performance test is different from functional testing. It is not possible to conduct
performance tests with the level of coverage found in functional testing, because producing
performance test scripts from the use cases can be time consuming and labor intensive. A
guideline is to concentrate on testing 20% of the scenarios that are most frequently
accessed. Expending effort on the remaining 80% of scenarios does not typically bring
considerable performance improvement.

If this is not the first performance test for the application, you should use the previous
performance benchmarks and existing production data as input for comparing results from
release to release.

Logons and logoffs should be structured in the scripts to match how they occur in a
production environment. If the end user typically logs on once in the morning and then
maintains that connection throughout the day, then the scripts should be recorded to reflect
that behavior. If the end user typically logs on, performs some work, and then logs off, the
script should reflect that behavior. If a specific logon/logoff use case is wanted, add a script
specifically for that so those transactions can be controlled and measured by the workload
mix.

4.2 Workloads

Developing a valid workload can be a challenge but can usually be determined from a
combination of historical data from production systems, database queries of live systems,
and interviews with application support personnel and end users. The workload is
comprised of two elements: the workload distribution and the workload rate. The workload
distribution is the percentage mix of all use cases in the test scenario. The workload rate is
determined by transaction rates: for example, as ‘x’ number of transactions, or as a given
type created per month, and then estimated down to the peak hour.

It is not enough to know that 20% of your users are creating work orders. You also need to
know the rate at which work orders are created. For example, are 20 created per hour, or
100?

September 2011 Page 10 of 28

Knowing the correct figures of simultaneous and concurrent users is vital to perform
performance testing of an application.

Sample workload distribution

Scenario Scenario description Weight factor
S01 Simple Search 20%
S02 Advanced Search 10%
S03 Simple Create 30%
S04 Advanced Create 20%
S05 Simple Close 10%
S06 Advanced Close 10%
 100%

Average Hourly Transaction Rates Peak Hour
S01 – Simple Search 2000
S02 – Advanced Search 650
S03 – Simple Create 900
S04 – Advanced Create 750
S05 – Simple Close 1700
S06 – Advanced Close 2000
Totals 8000

Sample workload transaction rates

It is possible to have multiple workloads during a test project, depending on the test type
and objectives of the test effort. The most common workload type simulates the concurrent
users and transactions for a peak hour during the target production environment.

When building the test scenarios for execution, the number of concurrent users to be
simulated should follow the workload mix that has been defined. Transaction rates per hour
during the simulation should correspond with the analysis done to derive the workload mix.
These rates can be reported as transactions per second, minute, or hour per user.

Concurrent and Simultaneous Users

There are two distinctions to make when reporting users. Concurrent users are the number
of users that have an active, but possibly idle, session with the application. Simultaneous
users are those actually doing work at a given time. This classification of users is important
when analyzing results.

The terms "concurrent users" and "simultaneous users" are not tightly defined terms. If you
are told that a web site had 150 concurrent users, you should not assume that means 150
requests were being processed all at once. Instead, it means that 150 users were logged
on and actively interacting with pages on that web site. In reality, many of them could be
reading the page, thinking, or typing responses, and thus would not be loading the server
simultaneously.

Real-time and Virtual User Mapping

It is important to map simulated virtual users to the equivalent real-time users to provide
realistic load levels. For applications that have the real-time usage history (for example, a
version of the application is already in production), the server load (requests handled per

September 2011 Page 11 of 28

second) during the peak traffic hour needs to be compared to the server load created on
the server during the performance test. This helps to confirm that the load simulated during
the performance test is realistic. The think times provided in the test scripts need to be
adjusted to create the appropriate load on the server. This is explained more in the Think
Time paragraphs below.

Analyzing the server load in terms of requests per second is recommended rather than the
user load measured in number of users because it is a more granular and appropriate unit
to measure the load handled by the server. The number of users handled by the server is a
user-perceived metric that needs to be reported to the business stakeholders, whereas
performance testers should focus on the number of requests handled by the server.

Think Time

“Think time” is the time taken by the users to think or to navigate to different pages in the
application. Think time must be considered when deciding the test strategy.

Users will have different think times, depending on what part of the application they are
using. When you run the load test, apply a randomization factor on the configured think
time. Performance test tools provide a mechanism for randomizing think times during a
run. Various tools use different terms, such as “think time”, “delay time”, and so on, to
describe this pause between interactions.

Another method of introducing randomization consists of adding code to the top of each
script’s Action() section to wait a random amount of time before executing that particular
iteration of the test. The Performance and Scalability teams use this technique and
calculate the random think time so that the transactions per second/user can be controlled
to provide the projected transaction rates over the test time.

Think time has an impact on the server load. Decreasing the think time will increase the
server load. Increasing think time reduces server load. By reducing the think time, you can
simulate the load of a large number of users, even though only a few users are used to run
the test. In order to calculate the appropriate think times, you must understand the desired
transactions per second, per user.

Also, make sure that think times are placed in the script outside of the start and end of the
transactions being measured. If this is not done, the think times will be included in the
response time results.

4.3 Test Scenarios

Test scenarios should be designed to start off using few system resources, then increase
resource use, but at a stable level, and then taper down the use of resources. During the
stable period, the target user load needs to perform various operations on the system with
realistic think times. All the metrics measured should correspond only to the stable period
and not during the ramp up and ramp down periods. Ensure that enough data samples
have been gathered before making conclusions about the response time metrics, because
there could be some reason for faster or slower response times at any single point of time.
Using the 90th percentile response time to report the response time metrics is another
guideline to follow to eliminate response-time spikes.

September 2011 Page 12 of 28

5 Benchmark Test Environment
Considerations
Many components make up the performance test environment. Consider each component
during the planning phase of the project. Having a mirror image of the production system
would be ideal, but it is often not possible for many reasons. Therefore, special attention
should be paid to each component to ensure that extrapolations from test environments
can be applied to production environments. A comprehensive understanding of the
intended production environment is a prerequisite to planning the test environment.

At a minimum, the test environment should have:

• The same overall architecture as the production environment, including:

o The same OS and middleware platforms. For example, if the production
system uses AIX and DB2, so should the test configuration.

o Similar tiers, hardware proportions, and topology. For example, the same
number of JVMs on the application server, the same distributed database
and application servers, and so on.

o The same configuration for the integration framework and cron settings.
For example, using a dedicated server as opposed to dedicated JVMs on
the same physical server that has JVMs being used for the user interface.

• Matching software stack versions (the same versions of the OS, the middleware,
and IBM Tivoli service management products).

• Comparable data volumes and distributions in the database.

• Identical server configurations. For example, both environments use SSL, and both
have the same maximo.properties file and security layers, such as policies, firewall
rules, and so on.

If you do not closely match the characteristics of the production environment, you cannot
accurately correlate results from the test environment to the production environment, and
CPU and memory consumption could be different between the two environments.

Always identify the system configuration details of the server machines in the production
and test environments, including the number of CPUs, CPU capacity (clock speed), RAM
capacity, disk capacity, free space available on the disk, NIC card capacity, and network
bandwidth. These details need to be identified before scheduling the performance test, and
should be documented in the test plan document.

Having a dedicated testing environment is imperative to successful performance testing.
Random application traffic or rogue processes can skew performance results and create
confusion and variances in the tests. The dedicated resources should include both the
server and network components. Network isolation is critical when the primary focus of the
test includes bandwidth testing, because general traffic on the LAN (traffic that is not
caused by the testing) can affect the test results.

September 2011 Page 13 of 28

When you configure the test environment for the first time, apply the best practices to the
IBM Tivoli service management products and to the other hardware and software.
Document any modifications you make during the testing process.

5.1 Application Servers

Unless the testing is focused on tuning or debugging a specific application, the standard
load tests performed should include all of the applications and processes that will be used
on the production system. This comprehensive type of test will be the only way to validate
the overall performance expectations.

For the latest IBM Tivoli service management products tuning information, refer to the Best
Practices for System Performance white paper.

5.2 Database Servers

When preparing for a performance test, you must have sufficient data in the test database.
The execution of a SQL query could be significantly less when a database contains 1000
records as compared with 100000 records. Database performance in the production
environment may be significantly worse than in the test environment if the production
database has a higher volume of data than what was tested.

Ensure that a representative amount of data exists in the test database to allow for data
usage during the tests. The way that table records are arranged and indexed will affect
performance. Run database maintenance utilities before creating a database backup. Use
the back up to restore to the same state before each test run to allow test repeatability.

For the latest IBM Tivoli service management products tuning information, refer to the Best
Practices for System Performance white paper.

5.3 Build Administration Servers

During performance testing, you might want to adjust values in the properties files and
build multiple EAR files to deploy for testing. Keep copies of any files you might change in
case you need to fall back to an earlier configuration. Document the changes that you
make.

5.4 Monitoring Considerations

Some monitoring tools can affect system performance. Be selective about what you
monitor to minimize the effects of the monitoring tool on performance. If you set the
sampling interval too small, that too can negatively affect performance; however, setting
the interval too high will miss potential bottleneck situations.

September 2011 Page 14 of 28

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb

6 LoadRunner Script Development
Essentials

6.1.1 Load Simulation

Load testing tools such as LoadRunner are typically thought of as having two parts:

1. The load test controller, which is used to create and drive the required load.

2. The load test generators, which send the actual load to the server.

Depending on the number of virtual users you plan to simulate, the load test controller and
the load test generators can reside on the same hardware. The LoadRunner
documentation might provide guidance for when hardware should be dedicated or shared.

Load Test Controller

The load test controller is sometimes referred to as the test scheduler. When the load test
controller is configured to simulate some number of virtual users, LoadRunner, depending
on the configuration, will generate the same number of threads or processes to send the
client requests to the server based on the think time defined in the scripts. Either the load
test controller needs to have enough hardware resources (CPU and memory) to handle the
running threads/processes, or a separate load test generator needs to be used.

Load Test Generators

A load test generator, sometimes called an agent or driver, can be installed on several
systems to spread the load. To perform a 1000 user test, load generators can be installed
on four machines, and each load generator could be configured to create 250 virtual users.
The user load, created on four different IP addresses is then sent to the server under test.
From the load test controller, the load generated by each load test generator can be
collated when viewed.

Load Test Data

Depending on the complexity of the test data, data population could be done by the
performance test engineer or by a database administrator. A database dump from a
production system should be used, when possible, to populate the test database.

6.1.2 Recording a Script

6.1.2.1 Before Recording

Before recording your script, document the steps you will be taking. For example, after
entering text into a filter, will you tab to the next field, press the Return key, or click the
binocular icon? Define the names of your transactions so that when you execute the test
in the controller and the results are processed by the analysis tool, the transaction names
are displayed in the correct order. A useful format would be
<ScriptName>_<StepNumber>_<StepDescription>. For example,
AM01_01_Login or AM01_05_EnterStatusWAPPR.

September 2011 Page 15 of 28

6.1.2.2 VuGen Settings

After opening the LoadRunner Virtual User Generator, select File > New. When the New
Virtual User dialog appears, select New Single Protocol Script from the left pane, select
Popular Protocols from the Category pull-down, select Web (HTTP/HTML), and then click
OK. When the Start Recording dialog appears, click the Options button, then select
Recording from the left pane. Select HTML-based script for the HTTP / HTML Level, then
click the HTML Advanced button. Then select Recording from the left pane. Click the
button for HTML Advanced and select the option to produce a script that contains explicit
URLs.

6.1.2.3 Recording

If you are performing an action against a specific value (such as an item or asset number),
you should precede the value with an equal sign in the filter. Once the script is recorded,
save the script as-is and do your modifications from a copy of the script.

6.1.3 Script Clean-up

Comment out all web_add_cookie and lr_think_time entries that were recorded. You
will likely want to replace the recorded lr_think_time entries with those containing the
appropriate think times. Make sure that your script includes
web_set_max_html_param_len("1024"); just inside of the brackets in the
vuser_init() section.

6.1.4 Correlating Values

The most important areas to make LoadRunner scripting of IBM Tivoli service
management products successful are text checks, correlating the uissessionid, and
correlating the dynamic UI values (the mx values).

A uisessionid is generated for each user at login time to associate that user’s login session
with each request submitted to the server. If the uisessionid is not correlated, the server
will not be able to process any request sent, resulting in an error.

Without correlating the mx values, the scripts are unlikely to work from one build (release)
to another. Without the text checks, you will get a false sense of accuracy in your tests.

Depending on the version of IBM Tivoli service management products you are running, you
may not need to do the correlations on all MXid values. If you are running IBM Tivoli
service management products 7.5 or greater, and are using static MXids (update
maxpropvalue set propvalue='true' where propname='mxe.webclient.staticid')
you will not need to correlate most MXids.

After recording a script, you will notice that most of the web_submit_data stanzas
contain entries similar to the following:

"Name=targetid", "Value=mx282", ENDITEM,
"Name=changedcomponentid", "Value=mx450", ENDITEM,
"Name=currentfocus", "Value=mx450", ENDITEM,
"Name=uisessionid", "Value=3", ENDITEM,

There will even be some variation on the above:

"Name=targetid", "Value=mx520[R:24]", ENDITEM,

September 2011 Page 16 of 28

"Name=currentfocus", "Value=mx206_anchor", ENDITEM,

You will also see entries similar to the following in the web_url stanzas:

"URL=http://<servername>/maximo/ui/?event=loadapp&value=asset&uises
sionid=3",

Each of the uisessionid and mx values needs to be correlated. Generally you find the
value to correlate in the server response from the previous web_submit_data stanza. If
it is not there, it will be further back in the script, in the server response from the previous
web_url stanza. Start in the vuser_init() section of your script and look for the
correlation for each value in order. Position your cursor in the stanza you want to search,
and click on the tree view icon, then on the Server Response tab. Once in the Server
Response tab, search for the mx value. The first mx value you want to search for will likely
correspond to the GoTo menu. For example, in a search for mx43, several occurrences are
found:

id="mx43_compHolder" class="bc"
ctype="label" id="mx43" tabindex="0" ev="goto"
ev="goto" targetid="mx43" mxevent="click" accesskey='G'
<img id='mx43_image' src='..
new Array(false, true, "mx43", "click")

The second and third occurrences look to be unique enough that if the value were to
change in a future build, LoadRunner would be able to correlate to the correct value.
Consider the second line for this example. Switch back to script view and, from the menu
bar, select Insert > New Step > web_reg_save_param.

Name the parameter MxValue1 for the first mx value you are correlating. The left boundary
should be ctype=\"label\" id=\". The right boundary should be \"
tabindex=\"0\" ev=\"goto\". Click OK. The following stanza should have
been created.

 web_reg_save_param("MxValue1",
 "LB=ctype=\"label\" id=\"",
 "RB=\" tabindex=\"0\" ev=\"goto\"",
 LAST);

Place the following comment before the stanza:
// Original value mx43

Search through the entire script and change all mx43 values to {MxValue1}. Be careful
not to change a value like mx4312 to {MxValue1}12.

Once you have changed this value, you can go on to the next mx value. Usually, the mx
values on a "Name=currentfocus", line do not need to be correlated. The exception
would be a value that is later used in a "Name=targetid", line. To be sure you are
correlating those values to the most accurate location, it is best to correlate the values on
the "Name=currentfocus", lines also.

You will encounter lines in the format of
"Name=targetid", "Value=mx520[R:18]", ENDITEM,

The entry corresponds to a selection choice you made while recording. It will likely be
either a menu selection from a list of statuses, or a selection from a screen of items.
Correlate the mx520 in the same manner you correlate the other values. If it is from a

September 2011 Page 17 of 28

selection of items on a screen, you should correlate the value from the initial list (find the
code with the value mx520[R:0]), even if it is back several web_submit_data stanzas.

You will likely want to put in code to make a random selection from 0-19, or always take
the first item [R:0] from the list. If the value were above 19, you would have paged
forward one or more screens of items. You might consider putting in code to randomly go
forward some number of screens and multiply the random number between 0-19 by 1 + the
number of screens you paged forward. In the case of a selection from various statuses,
you will not want to change the recorded value.

Entries in the format

"Name=currentfocus", "Value=mx206_anchor", ENDITEM,

are from changing tabs within the application. Those do not need correlating but are useful
to note when creating text checks.

6.1.5 Text Checks

For every web_url or web_submit_data stanza, you should insert a text check by
using a web_reg_find stanza. Use the Server Response tab in tree view to help decide
what text to use. You need to locate text that is unique to that screen. A possible choice of
text for the initial screen is Welcome to Maximo®. The stanza would look like:

 web_reg_find("Text=Welcome to Maximo®",
 LAST);

When trying to find text to use, search for BEGINNING of returned STREAM or
Begin WARNING DIALOG. You should be able to find some unique text after that point.
Here are some styles of text you can look for:

window.name="startcntr";
event=loadapp&value=xxxx
xxx_xxx_dialog
menu0_xxxxx_xxxxxx
menuxxx
title=”xxxxx
dialogtoRemove
Record has been saved

6.1.6 Parameters

Parameterize the URL in a data file (for example, URL.dat). If you will have multiple
scripts that you intend to execute in the same scenario, the URL.dat file should be
shared. If your script performs an action against a specific item that was not the result of a
search, that item number should be parameterized. If multiple users will be executing the
script, parameterize the User/Password.

6.1.7 Think Time

In order to make your scripts run as if an actual user was performing the actions in a
browser, you add think time to your scripts. Before every action where you enter text on the
screen, or where you would normally pause to read the screen, insert a specific amount of
think time, such as 10 seconds; lr_think_time(10);. Be sure the think time is outside
of the transaction timer, between the lr_end_transaction and lr_end_transaction
entries. If you plan to run the script multiple times, you might also consider putting some

September 2011 Page 18 of 28

amount of random think time after the login, but before the first action from the Start
Center. This will allow you to control the iteration rate to achieve your desired
transactions/sec/user as discussed in Section 4.2.

Place:
int rand_time_int;

before Action(){.

Place this text:

rand_time_int=atoi(lr_eval_string("{RandThink}"));
lr_think_time(rand_time_int);

after Action() {.

Create a parameter RandThink that is a random number with a value from 0 – XXX that is
updated each iteration.

September 2011 Page 19 of 28

7 Troubleshooting Performance Problems
You should use the troubleshooting procedures in a development or test environment for
performance analysis and debugging. The procedures generally should not be used in a
production environment. Use these procedures in a production environment only if you
cannot isolate the problem in a test environment.

7.1 Performance Problem Determination

If possible, do load testing during the implementation phase to expose performance
problems before you put IBM Tivoli service management products into production.

If you have the equipment to perform load testing, you can use load testing after IBM Tivoli
service management products are in production to determine if there is any performance
impact from patches or from data growth over time.

7.1.1 Problem Determination Techniques

Application Server

WebSphere logs should be reviewed for any errors. For load-balanced implementations,
attention should be paid to the distribution of users across the JVMs. Monitor the JVM
memory utilization on the application server by enabling verbose garbage collection.

WebSphere Application Server Logs

SystemOut.log and SystemErr.log – any application errors, long running SQL queries, and
so on, can be found in these logs.

Native_system_err.log – verbose garbage collection information will be in this log if
verbosegc is enabled.

http_plugin.log – can be reviewed for any load balancing issues in a clustered
environment.

WebSphere Application Server Configuration

Ensure that the JVM heap size is set adequately and that heap exhaustion does not occur.

Ensure that thread pool sizes for the default and WebContainer thread pools are set to
appropriate levels.

Enable the Connection Pool Watchdog to monitor the database connection pool to ensure
connection leaks are not occurring by setting log4j.logger.maximo.dbconnection
to INFO.

Web Server

Web server logs should also be reviewed for errors. View the maximum connections and
total connection attempts to see if your web server can use as much of the connection as it

September 2011 Page 20 of 28

needs. Compare these numbers to memory and processor use figures to determine
whether a problem is caused by a connection, and not some other component.

On IBM HTTP Server, the logs of interest are access.log, admin_access.log,
admin_error.log, error.log, and http_plugin.log.

It may be necessary to raise the ThreadsPerChild setting in the httpd.conf file.

Database Server

The maxsession table and the number of database connections should be analyzed to
verify session activity is as expected.

Database server memory and instance memory should also be monitored. Database
traces and snapshots can be gathered to assist with database tuning issues. Refer to DB2
Query Tuning and Index Creation and Tuning and Indexing Oracle Databases for more
information.

Network

Monitoring the bytes per second processed by the network interface card can also give
insight into potential network overload.

Should more detailed network information be required to understand bandwidth
requirements, bandwidth-monitoring tools provide the ability to analyze HTTP requests, the
number of round trips between tiers, and TCP/IP packet information.

CPU

Monitor the CPU to ensure that all processors are being utilized as expected and that
overall CPU utilization remains healthy.

Memory

Be careful about monitoring total memory usage. For IBM Tivoli service management
products, JVM heap size is the most important memory metric to monitor on application
servers.

7.1.2 Problem Determination Tools

The following tools can be used to assist with performance problem determination of your
IBM Tivoli service management products.

IBM Tivoli Service Management Products Tools

The following tools are provided by IBM Tivoli service management products to assist with
problem determination:

• DB2 Snapshot Format Tool – is a Perl script that reads a DB2 snapshot file and
produces a semicolon-delimited text file. You can load this file into a spreadsheet
to assist with identifying slow-performing SQL queries.

September 2011 Page 21 of 28

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=9e8a4bf2-cf8e-428b-8a5d-91caa82a426d
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=e5ef42c1-3a59-4d3a-bd24-5b576b33926b

• Activity Dashboard (also called PerfMon) – For instructions on enabling and using
the activity dashboard, refer to Chapter 6 in DB2 Query Tuning and Index
Creation.

• IBM Support Assistant Tool – provides a workbench to help you with problem
determination.

Java Core, Heap Dump, and Garbage Collection Utilities

The following tools can be used to debug Java code:

• IBM Thread and Monitor Dump Analyzer for Java – analyzes javacores and
diagnoses monitor locks and thread activities in order to identify the root cause of
hangs, deadlocks, and resource contention, or to monitor bottlenecks.

For information on collecting thread dump files for Websphere Application Server,
refer to “To force a thread dump” in Web module or application server stops
processing requests.

• HeapAnalyzer – allows the finding of a possible Java™ heap leak area through its
heuristic search engine and analysis of the Java heap dump in Java applications.

For information on collecting heap dump files for Websphere Application Server,
refer to Generating heap dumps manually.

• IBM Pattern Modeling and Analysis Tool for Java Garbage Collector– parses
verbose GC trace, analyzes Java heap usage, and recommends key
configurations based on pattern modeling of Java heap usage.

Remote Connection Utilities

• PuTTY – is a Telnet and SSH client included in the PuTTY utilities that can be
used to connect to remote UNIX platforms that are secured with SSH.

• Remote Desktop Connection – comes with Windows and allows remote
connection to other Windows systems.

File Transfer Utilities

• WinSCP – is a free SFTP and FTP client for Windows that can be used for file
transfers to/from UNIX platforms.

• psftp – is a SFTP client included in the PuTTY utilities that can be used for file
transfers to/from UNIX platforms that are secured with SSH.

Application Profiling Utilities

The following tools can be used to profile and debug Java code:

• Performance Inspector – contains suites of performance analysis tools to assist in
understanding the performance of applications and the resources they consume.

• YourKit – is a CPU and memory Java Profiler that supports J2EE/J2ME.

September 2011 Page 22 of 28

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
http://www.ibm.com/software/support/isa/
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rtrb_appdies.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rtrb_appdies.html
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tprf_generatingheapdumps.html
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://winscp.net/eng/index.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://perfinsp.sourceforge.net/
http://www.yourkit.com/

• Eclipse Memory Analyzer – helps you find memory leaks and reduce memory
consumption.

• OProfile – is a system-wide profiler for Linux systems and can profile any running
code with low overhead.

Other Utilities

• ActivePerl – provides a Perl programming environment that can be useful for
writing scripts to assist with integration framework problem determination.

• Database SQL Query Tools – Each of the database platforms contain tools that
can be used to analyze SQL queries to assist with any long-running SQL
statements.

7.2 Monitoring the System

Ongoing monitoring of your system can prevent performance issues from arising in the first
place. Have a monitoring strategy in place before you put IBM Tivoli service management
products into production.

Monitoring the Maximo Platform provides an overview of how the Tivoli monitoring portfolio
can be used to monitor your environment.

7.2.1 Monitoring Tools

The following tools can also be used to monitor your IBM Tivoli service management
products.

Application Monitoring Tools

• Tivoli Monitoring Agent for Maximo is an optional feature pack that can be
downloaded to use the capabilities of IBM Tivoli Monitoring. The feature pack
includes Tivoli Monitoring software that you can use to monitor server memory
statistics, cron tasks, user connections, database connections, installed products
and licenses, and other system information.

For more information on using IBM Tivoli Monitoring with IBM Tivoli service
management products, refer to the IBM Maximo Monitoring Jam presentation.

• IBM Tivoli Composite Application Manager (ITCAM) – can be used to monitor
applications at a deeper level for potential issues. For more information on using
the ITCAM family with IBM Tivoli service management products, refer to System
Performance Monitoring and Diagnosis using ITCAM Products.

Middleware Monitoring Tools

The following monitoring tools can be used to monitor the middleware components
associated with IBM Tivoli service management products:

• Tivoli Performance Viewer – enables monitoring of the overall health of IBM
WebSphere Application Server from within the administrative console.

September 2011 Page 23 of 28

http://www.eclipse.org/mat/
http://oprofile.sourceforge.net/about/
http://www.activestate.com/activeperl/
https://www.ibm.com/developerworks/wikis/display/maximo/Monitoring+the+Maximo+Platform
http://www.ibm.com/support/docview.wss?rs=3214&context=SSLKT6&q1=itm&uid=swg24025477&loc=en_US&cs=utf-8&lang=en
https://www.ibm.com/developerworks/wikis/display/maximo/Monitoring+and+improving+performance+of+your+Maximo+environment
http://www.ibm.com/software/tivoli/products/composite-application-mgrproductline/
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=23b39fa5-1d51-4c6d-8c29-152f03e3f9cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=23b39fa5-1d51-4c6d-8c29-152f03e3f9cb
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tprf_tpvmonitor.html

• Database Monitoring – each database platform contains tools that can be used to
monitor the database and provide useful information.

System Resource Monitoring Tools

The following tools can be used to monitor system resources while performing tests:

• perfmon – can be used to gather performance metrics on Windows-based
systems. It is part of Windows and provides access to all of the Windows
performance counters.

• nmon – can be used to gather performance statistics on AIX- or Linux-based
systems. Nmon for AIX is included with AIX from 5.3 TL09, AIX 6.1 TL02, and
Virtual I/O Server (VIOS) 2.1, and is installed by default. Versions of Nmon for
previous versions of AIX and more information on using the tool can be found on
IBM developerWorks. Nmon for Linux is released to open source and is available
from the nmon for Linux wiki.

• rstatd – gathers performance metrics from a UNIX system kernel. Rpc.rstatd is
shipped with AIX and can be downloaded from the rstatd 4 Linux site for Linux
platforms.

• sysstat – is a package of utilities containing the sar, sadf, iostat, mpstat, and
pidstat commands for AIX/Linux. Sar provides system information related to I/O,
memory, paging, processes, network, and CPU utilization. Sadf formats data
collected by sar. Iostat gives CPU and I/O data disks and TTY devices. Pidstat
reports process data, and mpstat reports global and per-processor data.

• vmstat – reports statistics about kernel threads, virtual memory, disks, traps, and
CPU activity on UNIX systems.

Bandwidth Monitoring Tools

The following monitoring tools can be used to monitor network and HTTP bandwidth while
performing tests:

• Wireshark – is a network protocol analyzer that can be used to capture network
traffic for bandwidth analysis.

• WinPcap – is a packet capture and filtering engine used by many network protocol
analyzers, including Wireshark.

• HttpWatch – logs and allows inspection of HTTP and HTTPS traffic and can be
used to understand the requests/responses between a browser client and a web
server for bandwidth analysis.

September 2011 Page 24 of 28

http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon
http://nmon.sourceforge.net/
http://sourceforge.net/projects/rstatd/
http://www.wireshark.org/
http://www.winpcap.org/
http://www.httpwatch.com/

8 Analyzing Results
When analyzing the results of a performance test, remember what the goal is. The typical
goal of a performance test is to determine an optimal active concurrent user load for an
average implementation, with a given hardware and software configuration, where end-
user response times are within the criteria specified by the business requirements.

An optimal system environment should have sufficient CPU and memory capacities to
support occasional peaks in the number of active users without taxing the system to its
limits.

Since your workload mix is based on transaction rates, calculate the actually-executed
transaction rates to determine if you have a valid test. Also, consider the transaction pass-
and-fail rate to determine if your test should be rerun.

Graph your results for each load point. A good performance test will include results for
response times, transactions per second, CPU, memory usage/paging, and throughput
(mbps).

The following is an example graph that shows CPU use at different load levels:

Figure 1: Example Results Graph

These graphical results should be included in a final report that ties back to the business
requirements. The final report should document whether the performance requirements
were met, and should outline the potential risks and future actions that should be taken.

September 2011 Page 25 of 28

About Tivoli software from IBM
Tivoli software provides a comprehensive set of offerings and capabilities in support of IBM
Service Management, a scalable, modular approach used to deliver more efficient and
effective services to your business. Meeting the needs of any size business, Tivoli software
enables you to deliver service excellence in support of your business objectives through
integration and automation of processes, workflows, and tasks. The security-rich, open
standards Tivoli Service Management platform is complemented by proactive operational
management solutions that provide end-to-end visibility and control. It is also backed by
world-class IBM Services, IBM Support, and an active ecosystem of IBM Business
Partners. Tivoli customers and partners can also use each other’s best practices by
participating in independently run IBM Tivoli User Groups around the world—visit
www.tivoli-ug.org

September 2011 Page 26 of 28

 ®

© Copyright IBM Corporation 2011

IBM United States of America

Produced in the United States of America

All Rights Reserved

IBM Corporation
Route 100
Somers, NY 10589
U.S.A.

IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks
is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Other company, product and service names may be trademarks or
service marks of others.

References in this publication to IBM products and services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

No part of this document may be reproduced or transmitted in any form
without written permission from IBM Corporation.

Product data has been reviewed for accuracy as of the date of initial
publication. Product data is subject to change without notice. Any
statements regarding IBM’s future direction and intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS
DISTRIBUTED “AS IS” WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT.

IBM products are warranted according to the terms and conditions of the
agreements e.g. IBM Customer Agreement, Statement of Limited
Warrant, International Program License Agreement, etc. under which
they are provided.

The customer is responsible for ensuring compliance with legal
requirements. It is the customer’s sole responsibility to obtain advice of
comptent legal counsel as to the identification and interpretation of any

September 2011 27

http://www.ibm.com/legal/copytrade.shtml

White Paper Error! No text of specified style in document.

relevant laws and regulatory requirements that may affect the customer’s
business and any actions the customer may need to take to comply with
such laws. IBM does not provide legal advice or represent or warrant that
its services or products will ensure that the customer is in compliance
with any law or regulation.

September 2011 Page 28 of 28

	1 Importance of Performance Testing IBM Tivoli Service Management Products
	2 Defining Performance Benchmark Test Objectives
	3 Defining Test Methodology
	3.1 Defining Test Types
	3.1.1 Baseline Measurements
	3.1.2 Performance Load Tests
	3.1.3 Stress Tests
	3.1.4 Endurance Tests
	3.1.5 Sizing/Capacity Tests
	3.1.6 Performance Tuning/Debugging
	3.1.7 Batch Testing

	4 Test Cases, Workloads, and Scenarios
	4.1 Test Case Development
	4.2 Workloads
	Concurrent and Simultaneous Users
	Real-time and Virtual User Mapping
	Think Time

	4.3 Test Scenarios

	5 Benchmark Test Environment Considerations
	5.1 Application Servers
	5.2 Database Servers
	5.3 Build Administration Servers
	5.4 Monitoring Considerations

	6 LoadRunner Script Development Essentials
	6.1.1 Load Simulation
	Load Test Controller
	Load Test Generators
	Load Test Data
	6.1.2 Recording a Script
	6.1.2.1 Before Recording
	6.1.2.2 VuGen Settings
	6.1.2.3 Recording
	6.1.3 Script Clean-up
	6.1.4 Correlating Values
	6.1.5 Text Checks
	6.1.6 Parameters
	6.1.7 Think Time

	7 Troubleshooting Performance Problems
	7.1 Performance Problem Determination
	7.1.1 Problem Determination Techniques
	Application Server
	WebSphere Application Server Logs
	WebSphere Application Server Configuration
	Web Server
	Database Server
	Network
	CPU
	Memory

	7.1.2 Problem Determination Tools
	IBM Tivoli Service Management Products Tools
	Java Core, Heap Dump, and Garbage Collection Utilities
	Remote Connection Utilities
	File Transfer Utilities
	Application Profiling Utilities
	Other Utilities

	7.2 Monitoring the System
	7.2.1 Monitoring Tools
	Application Monitoring Tools
	Middleware Monitoring Tools
	System Resource Monitoring Tools
	Bandwidth Monitoring Tools

	8 Analyzing Results

