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Transport Layer Security
Transport Layer Security (TLS) describes how to use TLS on your system.

Secure Sockets Layer (SSL) and TLS are generic terms for a set of industry standards that are used for
enabling applications for secure communication sessions over an unprotected network, such as the
Internet. SSL evolved into and was replaced by TLS. TLS is the more accurate term; therefore, TLS is used
throughout this topic.

The version of the TLS protocol specification identifies the relative level of security provided. No version of
the SSL protocol specification should be used today. Not all versions of the TLS protocol are allowed for
security compliance in some industries.

What's new for IBM i 7.4
Read about new or significantly changed information for Transport Layer Security.

What's new as of November 2019
The following support was added to System TLS as part of these PTFs: SI71373, SI71547, SI71363,
SI71361, and MF66742.

• ChaCha20Poly1305 cipher suite support was added for the TLSv1.2 protocol.
*ECDHE_ECDSA_CHACHA20_POLY1305_SHA256 and *ECDHE_RSA_CHACHA20_POLY1305_SHA256
were added to both the supported and default cipher suite lists. See “Cipher suite configuration” on
page 7 for updates to the cipher suite lists.

• Elliptic Curve support for Curve25519(x25519) and Curve448(x448) were added to both the supported
and default lists of supported groups. See “Supported groups” on page 17 for updates to the list of
supported groups.

• System TLS added support for Online Certificate Status Protocol (OCSP) stapling in the TLSv1.3 and
TLSv1.2 protocols. This support allows client applications to send a certificate status request extension
as part of the TLS handshake, as defined in RFC 6066, requesting that the server complete OCSP
requests on behalf of the client. Based on the server's OCSP configuration, server applications enabling
this new support query an OCSP responder and send the OCSP response back to the client. See “Online
Certificate Status Protocol” on page 20 for more information on OCSP stapling.

System TLS Enhancements in IBM i 7.4
• Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are generic terms for a set of industry

standards that are used for enabling applications for secure communication sessions over an
unprotected network, such as the Internet. SSL evolved into and was replaced by TLS. TLS is the more
accurate term; therefore, TLS is used throughout this topic.

• RFC 8446 defines version 1.3 of the TLS protocol. Support for TLSv1.3 was added this release. See the
System TLS enabled and default attributes that were updated to include the new TLSv1.3 values and
remove weaker values from the different lists.

– See “Protocol configuration” on page 5 for updates to the System TLS enabled and default
protocols.

– See “Cipher suite configuration” on page 7 for updates to the System TLS enabled and default
cipher suites.

– See “Signature algorithms” on page 11 for updates to the System TLS enabled and default
“Certificate selection” on page 12 and “Message signature” on page 14.

– See “Supported groups” on page 17 for more information on how TLSv1.3 and TLSv1.2 protocols
interpret the elliptic curve groups setting.
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• The TLSv1.3 protocol significantly altered existing handshake message formats, and added and
removed other handshake messages. Early TLSv1.3 adopters encountered handshake failures as a
result of middleboxes on the network between the client and server not understanding the new
protocol. TLSv1.3 RFC 8446 Appendix D defines an optional Middlebox Compatibility Mode applications
can use to mitigate middlebox issues in the network. For more information, see “Middlebox
compatibility mode” on page 18.

• The TLSv1.3 protocol eliminated renegotiation. “Renegotiation” on page 19 is only applicable to
TLSv1.2 and earlier protocol versions. The TLSv1.3 protocol uses “Key update” on page 20 processing
to generate new read and write keys for an existing secure session. This replaces renegotiation and its
deficiencies with a simple key update mechanism.

• System TLS allows up to four certificates to be assigned to a secure environment. The certificate
selection process depend on the secure protocol for the secure environment. For more information, see
“Multiple certificate selection” on page 25.

• Digital Certificate Manager (DCM) manages an application database that contains application
definitions. System TLS users know this application definition as an “Application ID. The application
definitions were updated to encapsulate the following System TLS attributes for the application.

– “TLS signature algorithms for key exchange” on page 30
– “TLS signature algorithms for certificate” on page 30
– “TLS secure session cache time to live” on page 31

• The Retrieve TLS Attributes (QsoRtvTLSA) API allows the retrieval of the system-wide System TLS
current default properties. The properties can be changed and viewed with TLSCONFIG. The benefit of
QsoRtvTLSA is it can be included in programs or scripts for health check actions.

How to see what's new or changed
To help you see where technical changes have been made, the information center uses:

• The  image to mark where new or changed information begins.
• The  image to mark where new or changed information ends.

In PDF files, you might see revision bars (|) in the left margin of new and changed information.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for TLS
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Transport Layer Security (TLS).

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site .
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TLS implementations
The system contains multiple TLS implementations. Each implementation implements one or more
versions of the TLS protocols according to the industry definitions.

The implementations must interoperate with other implementations according to the Internet
Engineering Task Force (IETF) specifications for each protocol version. Each implementation has unique
characteristics and provides different sets of optional functionality.

The set of APIs used determines which implementation is used for each secure application on the system.
With Java™, the configured JSSE provider determines the implementation since the Java interfaces are
standardized. An application can also embed an implementation that is only known to the application.

These implementations are available to develop applications with on the IBM® i.

• System TLS

ILE applications use System TLS. Certificate management is performed with the Digital Certificate
Manager (DCM) and the certificate store type is Certificate Management Services (CMS) with a file
extension of *.KDB. Java applications can use System TLS, however it is not typical. The most obscure
case, would be a Java application that uses System TLS while also using a Java Keystore.

• IBMJSSE2 (IBMJSSEProvider2)

This Java Secure Socket Extension (JSSE) provider contains a pure Java implementation of the TLS
protocols and is available on multiple platforms. This implementation is known as the
com.ibm.jsse2.IBMJSSEProvider2 in the java.security provider list. Most Java applications on the
system use this JSSE since it is the default provider for all JDK versions. The certificates are typically
found in a Java keystore file (JKS) and are managed by using the Java keytool command or IBM Key
Management (iKeyman) utility.

For general JSSE information on the system, see Java Secure Socket Extension (JSSE)

For specific details, see the IBMJSSE2 platform independent documentation for the appropriate JDK
version. For JDK8, see Security Reference for IBM SDK, Java Technology Edition, Version 8.

• OpenSSL

OpenSSL is an Open Source toolkit that implements TLS protocols and a full-strength general-purpose
cryptography library. It is only available in the IBM Portable Application Solutions Environment for i
(PASE for i). The certificates are typically found in PEM files and are managed with OpenSSL commands.

Common Information Model Object Manager is an application that uses this implementation. For more
information, see Common Information Model.

Application embedded implementations:

• Domino® for i

Uses its own native TLS implementation that is embedded in the product. Configuration and certificate
management is provided by the application.

Domino HTTP can be configured to use System TLS with DCM certificates, but by default uses the
Domino native implementation.

Related concepts
Security bulletins
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A security bulletin is created when an implementation provides a mitigation to a disclosed vulnerability.
The vulnerability can be specific to an implementation or generic to the protocol.

Security bulletins
A security bulletin is created when an implementation provides a mitigation to a disclosed vulnerability.
The vulnerability can be specific to an implementation or generic to the protocol.

It is important for administrators to keep current with all mitigations provided by the implementations.
Due to implementation differences, not all implementations are vulnerable to a specific vulnerability. If
vulnerable, the mitigation might not be the same for each of the implementations.

The security bulletin contains the actions that must be taken to mitigate the issue. When a protocol or
algorithm cannot be fixed, the mitigation might disable that feature.

Note : The disabled feature might result in interoperability issues for environments that depend on the
vulnerable protocol.

Subscribe to receive notification when TLS security bulletins are created or updated. For more information
about this process, see My notifications: How to subscribe to valuable product information
notifications in the IBM Support Portal.

Manage My notifications to subscribe to "Security bulletin" to receive a notification each time the Security
Bulletin publication is updated.

The Security Bulletin publication is an aggregation of individual security bulletins that are created for
specific vulnerabilities. Read each individual security bulletin to keep up to date. Security bulletins can be
updated after their initial publication when new information becomes available. Updated bulletins are
moved back to the top of the aggregation bulletin. The updated bulletin does not have change flags but
includes a brief note that indicates what was added to or changed in the bulletin. Re-read the full bulletin
contents to see all the updates.

System TLS
System TLS is a set of generic services that are provided in the IBM i Licensed Internal Code (LIC) to
protect TCP/IP communications by using the TLS protocol. System TLS is tightly coupled with the
operating system and the LIC sockets code specifically providing extra performance and security.

How to code to use System TLS
System TLS is accessible to application developers from the following programming interfaces and JSSE
implementation.

• Global Security Kit (GSKit) APIs

– These ILE C APIs are accessible from other ILE languages.
– For more information about the Global Security Kit (GSKit) APIs, see the Socket programming topic.

• Integrated IBM i SSL_ APIs

– These ILE C APIs are accessible from other ILE languages.
– Do not code to this deprecated interface. This API set does not provide the newer security features

available in GSKit, which is the recommended C interface.

• Integrated IBM i JSSE implementation

– The IBM i JSSE implementation is available for JDK 8. This implementation is known as
com.ibm.i5os.jsse.JSSEProvider in the java.security provider list.

TLS applications that are created by IBM, IBM Business Partners, independent software vendors (ISV), or
customers that use one of the three System TLS interfaces previously listed use System TLS. For example,
FTP and Telnet are IBM applications that use System TLS. Not all TLS enabled applications that run on
IBM i use System TLS.

4  IBM i: Transport Layer Security

https://www-01.ibm.com/support/docview.wss?uid=swg21686621
https://www-01.ibm.com/support/docview.wss?uid=swg21686621
http://www-01.ibm.com/software/support/einfo.html


System TLS system level settings
System TLS has many attributes that determine how secure sessions are negotiated.

Each attribute value is set in one of three ways:

1. The application developer sets an explicit value for the attribute by using code.
2. The application developer provides a user interface to allow the application administrator to indirectly

set the attribute value.
3. The application developer does not set a value for the attribute. System TLS uses the default value for

the attribute.

Security compliance requirements change over the lifespan of a release. To remain compliant, system
administrators need to override some attribute values. System TLS provides various system level settings
to implement this level of control.

There are two types of system level control:

• Completely disable the value for an attribute

– The disabled value is ignored when it is used by any of the three methods of setting the attribute
value

– Application encounters a hard failure if no valid value remains enabled for the attribute
– Application encounters a soft failure if peer requires the disabled value

• Disable a default value for an attribute

– Changes only applications that use System TLS defaults for setting this specific attribute
– Application soft failure if peer requires the disabled value

The system level settings are controlled by using a combination of these interfaces:

• TLS System Values
• System Service Tools (SST) Advanced Analysis command TLSCONFIG as specified.

The following System TLS attributes can have their enabled values, default values, or both changed at the
system level.

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Related information
TLS system value: QSSLPCL
TLS system value: QSSLCSLCTL
TLS system value: QSSLCSL

Protocol configuration
System TLS has the infrastructure to support multiple protocols.

The following protocols can be supported by System TLS:

• Transport Layer Security version 1.3 (TLSv1.3)
• Transport Layer Security version 1.2 (TLSv1.2)
• Transport Layer Security version 1.1 (TLSv1.1)
• Transport Layer Security version 1.0 (TLSv1.0)
• Secure Sockets Layer version 3.0 (SSLv3)

CAUTION :
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IBM strongly recommends that you always run your IBM i server with the following network
protocols disabled. Using configuration options that are provided by IBM to enable the weak
protocols results in your IBM i server being configured to allow use of the weak protocols. This
configuration results in your IBM i server potentially being at risk of a network security breach. IBM
DISCLAIMS AND YOU ASSUME ALL RESPONSIBILITY AND LIABILITY FOR ANY DAMAGE OR LOSS,
INCLUDING LOSS OF DATA, ARISING OUT OF OR RELATED TO YOUR USE OF THE SPECIFIED
NETWORK PROTOCOL.

Weak protocols (as of April 2019):

• Transport Layer Security version 1.1 (TLSv1.1)
• Transport Layer Security version 1.0 (TLSv1.0)
• Secure Sockets Layer version 3.0 (SSLv3)
• Secure Sockets Layer version 2.0 (SSLv2)

Enabled protocols
The QSSLPCL system value setting identifies the specific protocols that are enabled on the system.
Applications can negotiate secure sessions with only protocols that are listed in QSSLPCL. For example, to
restrict the System TLS implementation to use only TLSv1.3 and not allow any older protocol versions, set
QSSLPCL to contain only *TLSV1.3.

The QSSLPCL special value *OPSYS allows the operating system to change the protocols that are enabled
on the system. The value of QSSLPCL remains the same when the system upgrades to a newer operating
system release. If the value of QSSLPCL is not *OPSYS, then the administrator must manually add newer
protocol versions to QSSLPCL after the system moves to a new release.

Table defining system value QSSLPCL option *OPSYS value for a particular IBM i release.

IBM i release QSSLPCL *OPSYS definition

i 6.1 *TLSV1, *SSLV3

i 7.1 *TLSV1, *SSLV3

i 7.2 *TLSV1.2, *TLSV1.1, *TLSV1

i 7.3 *TLSV1.2, *TLSV1.1, *TLSV1

i 7.4 *TLSV1.3, *TLSV1.2

Default protocols
When an application does not specify the protocols to enable, the System TLS default protocols are used.
Applications use this design to pick up new TLS support without requiring application code changes. The
default protocol setting has no meaning for applications that explicitly specify the protocols to enable for
the application.

The default protocols on a system are the intersection of the enabled protocols from QSSLPCL and the
eligible default protocols. The eligible default protocol list is configured by using the System Service Tools
(SST) Advanced Analysis command TLSCONFIG.

To determine the current value of the eligible default protocol list and the default protocol list on the
system, use TLSCONFIG option display. The Retrieve TLS Attributes (QsoRtvTLSA) API retrieves TLS
attributes allowing the eligible default protocol list to be retrieved from a program.

An administrator should consider changing the default protocol settings only when no other configuration
setting allows an application to interoperate with peers successfully. It is preferred to enable an older
protocol for only the specific application that requires it. When the application has an “application
definition,” then this enablement is accomplished through the Digital Certificate Manager (DCM).
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Warning : Adding an older protocol version to the default list results in opening up all applications that
use the default list to known security vulnerabilities. Loading a Group Security PTF might result in the
removal of a protocol from the default protocol list. Subscribe to the Security Bulletin to receive
notification when a security mitigation includes this type of change. If an administrator adds back an
eligible protocol that was removed by a Security PTF, the system remembers this change and does not
remove it a second time when the next Security PTF is applied.

If the default protocols must be changed on the system, use TLSCONFIG option
eligibleDefaultProtocols to change the value. TLSCONFIG option h displays the help panel that
describes how to set the protocol list. Only protocol versions that are listed in the help text can be added
to the list.

Note : The TLSCONFIG eligibleDefaultProtocols setting is reset by installing the Licensed Internal
Code (LIC).

Example of setting TLSv1.3 to be the only default protocol on the system:

TLSCONFIG -eligibleDefaultProtocols:20

Table defining eligible default protocol list with latest Security Group PTF for a particular IBM i release.

IBM i release Eligible default protocol list with latest Security Group PTF

i 6.1 TLSv1.0

i 7.1 TLSv1.2, TLSv1.1, TLSv1.0

i 7.2 TLSv1.2, TLSv1.1, TLSv1.0

i 7.3 TLSv1.2, TLSv1.1, TLSv1.0

i 7.4 TLSv1.3, TLSv1.2

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Security bulletins
A security bulletin is created when an implementation provides a mitigation to a disclosed vulnerability.
The vulnerability can be specific to an implementation or generic to the protocol.
Related information
TLS system value: QSSLPCL
Retrieve TLS Attributes (QsoRtvTLSA) API

Cipher suite configuration
System TLS has infrastructure to support multiple cipher suites.

The cipher suites are specified in different ways for each programming interface. The following table
shows the cipher suite specifications, which are shown here in the system value format, that can be
supported by System TLS for each protocol version. The supported cipher suite specifications for each
protocol are indicated by the "X" in the appropriate column.

Table 1. Supported cipher suite specifications supported for TLS protocols

QSSLCSL System
Value
Representation

TLSv
1

.2 TLSv
1

.1 TLSv
1

.0 SSLv
3

*AES_128_GCM_SHA
256

X
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Table 1. Supported cipher suite specifications supported for TLS protocols (continued)

QSSLCSL System
Value
Representation

TLSv
1

.2 TLSv
1

.1 TLSv
1

.0 SSLv
3

*AES_256_GCM_SHA
384

X

*CHACHA20_POLY13
05_SHA256

X

*ECDHE_ECDSA_AES
_128_GCM_SHA256

X

*ECDHE_ECDSA_AES
_256_GCM_SHA384

X

*ECDHE_RSA_AES_1
28_GCM_SHA256

X

*ECDHE_RSA_AES_2
56_GCM_SHA384

X

*ECDHE_ECDSA_CHA
CHA20_POLY1305_S
HA256

X

*ECDHE_RSA_CHACH
A20_POLY1305_SHA
256

X

*RSA_AES_128_GCM
_SHA256

X

*RSA_AES_256_GCM
_SHA384

X

*ECDHE_ECDSA_AES
_128_CBC_SHA256

X

*ECDHE_ECDSA_AES
_256_CBC_SHA384

X

*ECDHE_RSA_AES_1
28_CBC_SHA256

X

*ECDHE_RSA_AES_2
56_CBC_SHA384

X

*RSA_AES_128_CBC
_SHA256

X

*RSA_AES_128_CBC
_SHA

X X X

*RSA_AES_256_CBC
_SHA256

X

*RSA_AES_256_CBC
_SHA

X X X

*ECDHE_ECDSA_3DE
S_EDE_CBC_SHA

X
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Table 1. Supported cipher suite specifications supported for TLS protocols (continued)

QSSLCSL System
Value
Representation

TLSv
1

.2 TLSv
1

.1 TLSv
1

.0 SSLv
3

*ECDHE_RSA_3DES_
EDE_CBC_SHA

X

*RSA_3DES_EDE_CB
C_SHA

X X X X

*ECDHE_ECDSA_RC4
_128_SHA

X

*ECDHE_RSA_RC4_1
28_SHA

X

*RSA_RC4_128_SHA X X X X

*RSA_RC4_128_MD5 X X X X

*RSA_DES_CBC_SHA X X X

*RSA_EXPORT_RC4_
40_MD5

X X

*RSA_EXPORT_RC2_
CBC_40_MD5

X X

*ECDHE_ECDSA_NUL
L_SHA

X

*ECDHE_RSA_NULL_
SHA

X

*RSA_NULL_SHA256 X

*RSA_NULL_SHA X X X X

*RSA_NULL_MD5 X X X X

Enabled cipher suites
The QSSLCSL system value setting identifies the specific cipher suites that are enabled on the system.
Applications can negotiate secure sessions with only a cipher suite that is listed in QSSLCSL. No matter
what an application does with code or configuration, it cannot negotiate secure sessions with a cipher
suite if it is not listed in QSSLCSL. Individual application configuration determines which of the enabled
cipher suites are used for that application.

To restrict the System TLS implementation from using a particular cipher suite, follow these steps:

1. Change QSSLCSLCTL system value to special value *USRDFN to allow the QSSLCSL system value to be
edited.

2. Remove all cipher suites to be restricted from the list in QSSLCSL.

The QSSLCSLCTL system value special value *OPSYS allows the operating system to change the cipher
suites that are enabled on the system. The value of QSSLCSLCTL remains the same when the system
upgrades to a newer operating system release. If the value of QSSLCSLCTL is *USRDFN, then the
administrator must manually add in newer cipher suites to QSSLCSL after the system moves to a new
release. Setting QSSLCSLCTL back to *OPSYS also adds the new values to QSSLCSL.

A cipher suite cannot be added to QSSLCSL if the TLS protocol that is required by the cipher suite is not
set in QSSLPCL.
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The cipher suites that are enabled with QSSLCSLCTL *OPSYS in the latest PTF CUM package are
displayed in the QSSLCSL system value. They are as follows:

• *AES_128_GCM_SHA256
• *AES_256_GCM_SHA384
• *CHACHA20_POLY1305_SHA256
• *ECDHE_ECDSA_AES_128_GCM_SHA256
• *ECDHE_ECDSA_AES_256_GCM_SHA384
• *ECDHE_RSA_AES_128_GCM_SHA256
• *ECDHE_RSA_AES_256_GCM_SHA384
• *ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
• *ECDHE_RSA_CHACHA20_POLY1305_SHA256

CAUTION :

IBM strongly recommends that you always run your IBM i server with the following cipher suites
disabled. Using configuration options that are provided by IBM to enable the weak cipher suites
results in your IBM i server being configured to allow use of the weak cipher suite list. This
configuration results in your IBM i server potentially being at risk of a network security breach. IBM
DISCLAIMS AND YOU ASSUME ALL RESPONSIBILITY AND LIABILITY FOR ANY DAMAGE OR LOSS,
INCLUDING LOSS OF DATA, ARISING OUT OF OR RELATED TO YOUR USE OF THE SPECIFIED
CIPHER SUITES.

Weak cipher suites (as of April 2019):

• SSL_RSA_WITH_RC4_128_SHA
• SSL_RSA_WITH_RC4_128_MD5
• SSL_RSA_WITH_NULL_MD5
• SSL_RSA_WITH_NULL_SHA
• SSL_RSA_WITH_DES_CBC_SHA
• SSL_RSA_EXPORT_WITH_RC4_40_MD5
• SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
• TLS_ECDHE_ECDSA_WITH_NULL_SHA
• TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
• TLS_ECDHE_RSA_WITH_NULL_SHA
• TLS_ECDHE_RSA_WITH_RC4_128_SHA
• TLS_ECDHE_ECDSA_3DES_EDE_CBC_SHA
• TLS_ECDHE_RSA_3DES_EDE_CBC_SHA
• TLS_RSA_3DES_EDE_CBC_SHA

Default cipher suites
When an application does not specify the cipher suites to enable, the ordered System TLS default cipher
suite list is used. Applications use this design to pick up future new TLS support without requiring
application code changes. The default cipher suite setting has no meaning for applications that explicitly
specify the cipher suites to enable for the application.

The default cipher suites on a system are the intersection of the enabled cipher suites from QSSLCSL and
the eligible default cipher suites. The eligible default cipher suites list is configured by using the System
Service Tools (SST) Advanced Analysis command TLSCONFIG. The order of the default cipher suite list is
the order the cipher suites appear in the QSSLCSL system value. To change the order, change QSSLCSL.
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To determine the current value of the eligible default cipher suite list and the default cipher suite list on
the system, use TLSCONFIG option display. The Retrieve TLS Attributes (QsoRtvTLSA) API retrieves TLS
attributes allowing the eligible default cipher suite list to be retrieved from a program.

An administrator should only consider changing the default cipher suite list settings when no other
configuration setting allows an application to interoperate with peers successfully. It is preferred to
enable an older cipher suite for only the specific application that requires it. When the application has an
“application definition,” then this enablement is accomplished through the Digital Certificate Manager
(DCM).

Warning : Adding an older cipher suite to the default list results in opening up all applications that use the
default list to known security vulnerabilities. Loading a Group Security PTF might result in the removal of a
cipher suite from the default cipher suite list. Subscribe to the Security Bulletin to receive notification
when a security mitigation includes this type of change. If an administrator adds back an eligible cipher
suite that was removed by a Security PTF, the system remembers this change and does not remove it a
second time when the next Security PTF is applied.

If the default cipher suite list must be changed on the system, use TLSCONFIG option
eligibleDefaultCipherSuites to change the value. TLSCONFIG Option h displays the help panel
that describes how to specify the changed cipher suite list. The help text includes the short hand values
that are required by the option. Only cipher suites that are listed in the help text can be added to the list.

Note : The TLSCONFIG eligibleDefaultCipherSuites setting is reset by installing the Licensed
Internal Code (LIC).

Example of setting only ECDHE cipher suites as the default on the system:

TLSCONFIG -eligibleDefaultCipherSuites:YF,YG,YH,YE,YD,YC,YB,YA,Y9,Y8,Y7

The cipher suites included in the shipped eligible default cipher suite list with the latest PTF CUM package
installed are as follows:

• *AES_128_GCM_SHA256
• *AES_256_GCM_SHA384
• *CHACHA20_POLY1305_SHA256
• *ECDHE_ECDSA_AES_128_GCM_SHA256
• *ECDHE_ECDSA_AES_256_GCM_SHA384
• *ECDHE_RSA_AES_128_GCM_SHA256
• *ECDHE_RSA_AES_256_GCM_SHA384
• *ECDHE_ECDSA_CHACHA20_POLY1305_SHA256
• *ECDHE_RSA_CHACHA20_POLY1305_SHA256

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Related information
TLS system value: QSSLCSLCTL
TLS system value: QSSLCSL
Retrieve TLS Attributes (QsoRtvTLSA) API

Signature algorithms
The TLSv1.3 protocol provides two extensions for indicating which signature algorithms may be used in
digital signatures. The "signature_algorithms_cert" extension applies to signatures in certificates and the
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"signature_algorithms" extension, which originally appeared in TLSv1.2, applies to signatures in
handshake messages.

If no “signature_algorithms_cert" extension is present, then the "signature_algorithms" extension also
applies to signatures appearing in certificates. The "signature_algorithms_cert" extension was added to
allow implementations which support different sets of algorithms for certificates and in TLS itself to
clearly signal their capabilities.

Some TLSv1.2 implementations process and use the "signature_algorithms_cert" extension. TLSv1.2
implementations that do not process it continue to use "signature_algorithms" extension for both
purposes.

System TLS system level settings and GSKit attributes are tailored for TLSv1.3. During the transition while
TLSv1.2 is supported alongside TLSv1.3, System TLS merges both settings into the original
"signature_algorithms" extension when appropriate for increased interoperability.

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Related information
The Transport Layer Security (TLS) Protocol Version 1.3

Certificate selection
The ordered signature algorithm certificate list is sent to the peer when System TLS requests a certificate
during the handshake. The peer uses the received list to guide the certificate selection process.

The peer should select a certificate that conforms to the list, however, that is not true for all
implementations and configurations. System TLS treats a received certificate with an undesired signature
algorithm as a session error unless optional client authentication is configured. When System TLS
receives a client certificate request and is unable to select a conforming certificate, its behavior depends
on the TLS protocol version. TLSv1.3 does not send a client certificate. TLSv1.2 sends an available
nonconforming RSA or ECDSA certificate. The peer determines whether this certificate results in a session
error. For more information about System TLS certificate selection logic, see “Multiple certificate
selection” on page 25.

System TLS has the infrastructure to support the following certificate signature algorithms:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• ECDSA_SHA224
• ECDSA_SHA1
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256
• RSA_SHA224
• RSA_SHA1
• RSA_MD5
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Enabled certificate signature algorithms
The System Service Tools (SST) Advanced Analysis command TLSCONFIG identifies the signature
algorithms that are enabled for use in certificates on the system. Applications can negotiate secure
sessions only with certificates that use the signature algorithms that are listed for TLSCONFIG option
supportedSignatureAlgorithmCertificateList.

To determine the current value of the enabled signature algorithm certificate list on the system, use
TLSCONFIG option display or the Retrieve TLS Attributes (QsoRtvTLSA) API. If the enabled signature
algorithm certificate list must be changed on the system, use TLSCONFIG option
supportedSignatureAlgorithmCertificateList to change the value. TLSCONFIG option h
displays the help text that describes how to set the signature algorithm certificate list. Only signature
algorithm values that are listed in the help text can be added to the list.

Note : The TLSCONFIG supportedSignatureAlgorithmCertificateList setting is reset by
installing the Licensed Internal Code (LIC).

Example of setting SHA2 signature algorithms as the supported certificate signature algorithms on the
system:

TLSCONFIG -supportedSignatureAlgorithmCertificateList:36,35,34,16,15,14

System TLS with the latest PTF CUM package installed has the following list of supported certificate
signature algorithms:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• ECDSA_SHA224
• ECDSA_SHA1
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256
• RSA_SHA224
• RSA_SHA1
• RSA_MD5

Default certificate signature algorithms
When an application does not specify a signature algorithm certificate list, the System TLS default
signature algorithm certificate list is used. Applications use this design to pick up new TLS support
without requiring application code changes. The default signature algorithm certificate list has no
meaning for applications that explicitly specify the signature algorithm certificate list for the application.

The default signature algorithm certificate list on a system is the intersection of the enabled signature
algorithm certificate list and the eligible default signature algorithm certificate list. The eligible default
signature algorithm certificate list is configured by using TLSCONFIG option
defaultSignatureAlgorithmCertificateList.

To determine the current value of the eligible default signature algorithm certificate list on the system,
use TLSCONFIG option display or the Retrieve TLS Attributes (QsoRtvTLSA) API.

Consider changing the default signature algorithm certificate settings only when no other configuration
setting allows an application to interoperate with peers successfully. It is preferred to enable an older
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signature algorithm for only the specific application that requires it. When the application has an
“application definition,” this enablement is accomplished through the Digital Certificate Manager (DCM).

If the default signature algorithm certificate list must be changed on the system, use TLSCONFIG option
defaultSignatureAlgorithmCertificateList to change the value. TLSCONFIG option h displays
the help text that describes how to set the signature algorithm certificate list. Only signature algorithm
versions that are listed in the help text can be added to the list.

Note : The TLSCONFIG defaultSignatureAlgorithmCertificateList setting is reset by installing
the Licensed Internal Code (LIC).

Example of setting the ECDSA signature algorithms as the default signature algorithms allowed for
certificates on the system:

TLSCONFIG -defaultSignatureAlgorithmCertificateList:36,35,34

The following displays the order of the shipped default signature algorithm certificate list with the latest
PTF CUM package installed:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256

Message signature
The list of algorithm pairs restricts which signature and hash algorithms can be used for handshake
message digital signatures. A handshake message signature algorithm might be different from the
signature algorithm of the certificate that is used for the session.

For instance, the handshake message might be protected by SHA256 even though a SHA1 certificate is
selected for the session.

System TLS has the infrastructure to support the following message signature algorithms:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• ECDSA_SHA224
• ECDSA_SHA1
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256
• RSA_SHA224
• RSA_SHA1
• RSA_MD5
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Enabled signature algorithms
The System Service Tools (SST) Advanced Analysis command TLSCONFIG identifies the signature
algorithms for use in handshake messages that are enabled on the system. Applications can negotiate
secure sessions with only the signature algorithms that are listed for TLSCONFIG option
supportedSignatureAlgorithmList.

To determine the current value of the enabled signature algorithm list on the system, use TLSCONFIG
option display or the Retrieve TLS Attributes (QsoRtvTLSA) API.

If the enabled signature algorithm list must be changed on the system, use TLSCONFIG option
supportedSignatureAlgorithmList to change the value. TLSCONFIG option h displays the help text
that describes how to set the signature algorithm list. Only signature algorithm values that are listed in the
help text can be added to the list.

Note : The TLSCONFIG supportedSignatureAlgorithmList setting is reset by installing the
Licensed Internal Code (LIC).

Example of setting the ECDSA signature algorithms as the supported signature algorithms on the system:

TLSCONFIG -supportedSignatureAlgorithmList:36,35,34

System TLS with the latest PTF CUM package installed has the following list of supported signature
algorithms:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256

Default signature algorithms
When an application does not specify a signature algorithm list, the System TLS default signature
algorithm list is used. Applications use this design to pick up new TLS support without requiring
application code changes. The default signature algorithm list has no meaning for applications that
explicitly specify the signature algorithm list for the application.

The default signature algorithm list on a system is the intersection of the enabled signature algorithm list
and the eligible default signature algorithm list. The eligible default signature algorithm list is configured
by using TLSCONFIG option defaultSignatureAlgorithmList.

To determine the current value of the eligible default signature algorithm list on the system, use
TLSCONFIG option display or the Retrieve TLS Attributes (QsoRtvTLSA) API.

Consider changing the default signature algorithm settings only when no other configuration setting
allows an application to interoperate with peers successfully. It is preferred to enable an older signature
algorithm for only the specific application that requires it. When the application has an “application
definition,” then this enablement is accomplished through the Digital Certificate Manager (DCM).

If the default signature algorithm list must be changed on the system, use TLSCONFIG option
defaultSignatureAlgorithmList to change the value. TLSCONFIG option h displays the help text
that describes how to set the signature algorithm list. Only signature algorithm values that are listed in the
help text can be added to the list.

Note : The TLSCONFIG defaultSignatureAlgorithmList setting is reset by installing the Licensed
Internal Code (LIC).
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Example of setting the ECDSA signature algorithms as the default signature algorithms on the system:

TLSCONFIG -signatureAlgorithmList:36,35,34

The following displays the order of the shipped default signature algorithm list with the latest PTF CUM
package installed:

• ECDSA_SHA512
• ECDSA_SHA384
• ECDSA_SHA256
• RSA_PSS_SHA512
• RSA_PSS_SHA384
• RSA_PSS_SHA256
• RSA_SHA512
• RSA_SHA384
• RSA_SHA256

Minimum RSA key size
The minimum RSA key size that is allowed for a certificate that is used by either side of a handshake can
be restricted for System TLS.

An RSA digital certificate has a public/private key pair. The key size for the pair is measured in bits.
Security compliance policies exist that require the RSA key size meet a minimum level.

The RSA key size is set when the certificate is created. The system administrator must create new
certificates with a larger RSA key to replace any certificate that uses a key size smaller than the minimum
RSA key size value set.

System TLS has a system level setting to restrict the RSA key size that is allowed for a certificate it uses.
The restriction applies to local and peer certificates and includes both client and server certificates.
Setting a minimum key size results in a handshake failure when either side's certificate contains an RSA
key smaller than the minimum size.

Before the administrator changes the system level setting for minimum key size, manually check and
replace existing local certificates that have keys smaller than the desired minimum to avoid application
failures. Setting the minimum RSA key size restriction prevents inter-operation with peers that use RSA
certificates with a key size smaller than the minimum.

The initial minimum RSA key size system level setting has a value of 0. A value of 0 places no restriction
on the key size.

The System TLS system level setting is changed by using the System Service Tools (SST) Advanced
Analysis command TLSCONFIG. To determine the current setting, use TLSCONFIG option display. Use
TLSCONFIG option minimumRsaKeySize to change the value. TLSCONFIG option h displays the help
panel that describes how to set the key size.

For example, use the following command to set 2 K (2048 bits) as the minimum RSA key size allowed on
the system:

TLSCONFIG -minimumRsaKeySize:2048

The GSKit attribute GSK_MIN_RSA_KEY_SIZE can be set by the application to a higher minimum key size
to allow individual applications to be more restrictive than the rest of the system. If the application sets
GSK_MIN_RSA_KEY_SIZE to a value lower than TLSCONFIG option minimumRsaKeySize, the
TLSCONFIG minimumRsaKeySize value is used, ignoring the application's attempt to reduce the
minimum key size.

ECDSA certificates are not impacted by this setting since they do not have an RSA key.
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Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.

Supported groups
The TLSv1.3 and TLSv1.2 protocols share an extension in the handshake messages that each protocol
label and interpret differently. The TLSv1.3 protocol refers to it as "supported_groups" and uses it to
determine the elliptic curve group that is used for key exchange. The TLSv1.2 protocol refers to it as
"elliptic_curves" and uses it to determine the elliptic curve group that is used for key exchange and also
uses it to determine supported certificates.

System TLS system level settings and GSKit attributes are tailored for TLSv1.3 though also used for
TLSv1.2 when appropriate.

System TLS supports Elliptic Curve Digital Signature Algorithm (ECDSA) based certificates. The key size
for an ECDSA certificate is determined by the named curve set when the certificate is created.

System TLS and the Digital Certificate Manager (DCM) have the infrastructure to support the following
named curves:

• x25519
• x448
• Secp521r1
• Secp384r1
• Secp256r1

When you view a certificate in DCM, the key size that is associated with the named curve is displayed in
bits.

Enabled named elliptic curve groups
The System Service Tools (SST) Advanced Analysis command TLSCONFIG identifies the system level
setting to restrict the supported named elliptic curve groups.

When used for TLSv1.3 protocol negotiation, it restricts which named elliptic curve groups are allowed for
key exchange. It has no impact on certificate selection or support.

When used for TLSv1.2 protocol negotiation, it is used for two different purposes. Like TLSv1.3, it restricts
which named elliptic curve groups are allowed for key exchange. The second purpose is to restrict the
ECDSA key sizes that are allowed for a certificate. The restriction applies to local and peer certificates and
includes both client and server certificates. Restricting the supported list of named elliptic curves results
in a handshake failure when the server or client certificate contain an ECDSA key size not in the supported
list.

To determine the current value of the enabled named elliptic curve group list, use TLSCONFIG option
display or the Retrieve TLS Attributes (QsoRtvTLSA) API. If the enabled named elliptic curve group list
on the system must be changed, use TLSCONFIG option supportedNamedCurve to change the value.
TLSCONFIG option h displays the help text that describes how to set the named elliptic curve group
values. Only named curve values that are listed in the help text can be added to the list.

Note : The TLSCONFIG supportedNamedCurve setting is reset by installing the Licensed Internal Code
(LIC).

Example of setting 256 and 384-bit key sizes as the supported named elliptic curve group list on the
system:

TLSCONFIG -supportedNamedCurve:23,24

System TLS with the latest PTF CUM package installed has the following list of supported named elliptic
curve groups:
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• x25519
• x448
• Secp256r1
• Secp384r1
• Secp521r1

Default named elliptic curve groups
When an application does not specify a named elliptic curve group list, the System TLS default named
elliptic curve group list is used. Applications use this design to pick up new TLS support without requiring
application code changes. The default named elliptic curve group list has no meaning for applications that
explicitly specify the named elliptic curve group list for the application.

The default named elliptic curve group list on a system is the intersection of the enabled named elliptic
curve group list and the eligible default named elliptic curve group list. The eligible default named elliptic
curve group list is configured by using TLSCONFIG option defaultNamedCurve.

To determine the current value of the default named elliptic curve group list on the system, use
TLSCONFIG option display or the Retrieve TLS Attributes (QsoRtvTLSA) API.

Consider changing the default named elliptic curve groups settings only when no other configuration
setting allows an application to interoperate with peers successfully. It is preferred to enable a weaker
named elliptic curve group for only the specific application that requires it. When the application has an
“application definition,” then this enablement is accomplished through the Digital Certificate Manager
(DCM).

If the default named elliptic curve group list must be changed on the system, use TLSCONFIG option
defaultNamedCurve to change the value. TLSCONFIG option h displays the help text that describes
how to set the named elliptic curve group list. Only named elliptic curve groups that are listed in the help
text can be added to the list.

Note : The TLSCONFIG defaultNamedCurve setting is reset by installing the Licensed Internal Code
(LIC).

Example of setting 384 and 256-bit key sizes as the default named elliptic curve group list on the system:

TLSCONFIG -defaultNamedCurve:23,24

The following displays the order of the shipped default named elliptic curve groups with the latest PTF
CUM package installed:

• Secp256r1
• Secp384r1
• x25519
• Secp521r1
• x448

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.

Middlebox compatibility mode
TLSv1.3 RFC 8446 Appendix D defines an optional Middlebox Compatibility Mode applications can use to
mitigate middlebox issues in the network.

The TLSv1.3 protocol significantly altered existing handshake message formats, and added and removed
other handshake messages. Early TLSv1.3 adopters encountered handshake failures as a result of
middleboxes on the network between the client and server not understanding the new protocol. The
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problem middleboxes didn’t adhere to previous TLS protocol versions’ specifications making them brittle
to the new protocol.

Middlebox Compatibility Mode makes the TLSv1.3 handshake flow look more like a TLSv1.2 handshake.
This is accomplished by filling in legacy fields in handshake messages and by sending a TLSv1.2
handshake message eliminated from the pure TLSv1.3 implementation. These changes make the TLSv1.3
handshake appear similar to a TLSv1.2 session resumption which misbehaving middleboxes understand
and generally allow through.

System TLS does not initiate middlebox compatibility mode by default. If needed in your network, this
mode can be turned on globally for System TLS using TLSCONFIG option
middleboxCompatibilityMode. Individual GSKit applications can enable this mode with
gsk_attribute_set_enum(). System TLS always responds with middlebox compatibility mode processing
when a peer is detected using this mode.

Related information
The Transport Layer Security (TLS) Protocol Version 1.3

Renegotiation
The TLSv1.3 protocol eliminated renegotiation. The information in this section is only applicable to
TLSv1.2 and earlier protocol versions.

Starting a new handshake negotiation inside of an existing secure session is called renegotiation. There
are two properties that determine System TLS renegotiation characteristics.

Multiple reasons exist for an application to use renegotiation. Renegotiation can be started by either the
client or server. The application layer might not be aware that a secure session is renegotiated at the
request of a peer.

Note : A GSKit System TLS application uses gsk_secure_soc_misc() to initiate renegotiation.

The TLS protocol architecture as defined by their base RFCs contain a flaw with renegotiation. The
protocols fail to provide cryptographic verification that a session renegotiation is linked to the existing
secure session. Supplemental RFC 5746 defines an optional extension to the base protocols to correct
the issue.

Since RFC 5746 is an addition to a previously defined protocol, not all TLS implementations currently
support it. Some TLS implementations have not or cannot be updated to support RFC 5746. To allow for
business continuity/interoperability during various stages of the transition, two renegotiation properties
exist to specify the renegotiation mode.

TLS Renegotiation Mode
The System TLS default requires RFC 5746 semantics are used for all renegotiated handshakes. The
default mode can be changed with option renegotiation on the System Service Tools (SST) Advanced
Analysis command TLSCONFIG.

The mode can be set to allow all unsecure renegotiations or to allow only abbreviated unsecure
renegotiations. Use these modes only after careful consideration. TLSCONFIG option h displays the help
panel that describes how to set the TLS renegotiation mode

A mode exists to disable all peer initiated handshake renegotiation. This mode prevents secure (RFC 5746
semantics) and unsecure renegotiation. This mode can result in interoperability issues for applications
that require the use of renegotiation. Locally initiated secure renegotiation such as
gsk_secure_soc_misc() is still allowed in this mode.

TLS Extended Renegotiation Critical Mode
Extended Renegotiation Critical Mode determines when System TLS requires all peers provide the RFC
5746 renegotiation indication during initial session negotiation.
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To completely protect both sides of the secure session against the renegotiation weakness, all initial
negotiations must indicate support for RFC 5746. This indication can be in the form of the
“renegotiation_info” TLS Extension or the Signaling Cipher Suite Value (SCSV) as defined by RFC 5746.

Critical mode is disabled by default to maintain interoperability with TLS implementations that do not
implement RFC 5746. When critical mode is enabled, System TLS is restricted to negotiating with systems
that implement RFC 5746. The restriction exists even if neither side supports or uses renegotiation. If it is
determined that all System TLS peers support RFC 5746, then this mode should be changed to be
enabled.

The default extended renegotiation critical mode can be changed with the System Service Tools (SST)
Advanced Analysis command TLSCONFIG. There is a property for client applications, TLSCONFIG option
rfc5746NegotiationRequiredClient, and a separate property, TLSCONFIG option
rfc5746NegotiationRequiredServer, for server applications.

System TLS always sends the “renegotiation_info” TLS Extension or the SCSV in the ClientHello. SCSV is
sent only if no other extensions are part of the ClientHello.

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Related information
RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension"

Key update
The TLSv1.3 protocol uses key update processing to generate new read and write keys for an existing
secure session. This replaces renegotiation and its deficiencies with a simple key update mechanism.

Note : A GSKit System TLS application uses gsk_secure_soc_misc() to initiate key update for TLSv1.3
the same way it would initiate renegotiation for TLSv1.2 and earlier.

Online Certificate Status Protocol
Online Certificate Status Protocol (OCSP) provides applications a way to determine the revocation status
for a digital certificate. Certificate revocation status that is checked via OCSP provides more up-to-date
status information than is available through CRLs.

The implementation of OCSP revocation status checking is done in accordance with RFC 2560. OCSP
certificate revocation status checking is available for the end entity certificate. Protocol version 1 over
HTTP and the basic response type are supported.

Certificate revocation status is checked on behalf of the application via OCSP when at least one of the
following conditions are true:

• A URL address of an OCSP responder is configured.
• Authority Information Access (AIA) checking is enabled and the certificate to be validated has an AIA

extension. The AIA extension must contain a PKIK_AD_OCSP access method with a URI that indicates
the HTTP location of the OCSP responder.

Note : Only the first OCSP responder that is identified in the AIA extension is queried for revocation
status.

When URL and AIA checking are enabled, the URL responder is queried first. This order can be changed
for an individual application by setting the Global Security Kit (GSKit) API attribute,
GSK_OCSP_CHECK_AIA_FIRST. A query to the second responder is only sent if the query sent to the first
responder results in an undetermined revocation status.

Client sessions with certificate status request processing enabled can ask the server session to send a
stapled OCSP response as part of session negotiation for TLS protocols TLSv1.3 and TLSv1.2. The client
session processes the stapled OCSP response from the server eliminating the need for the client to query
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an OCSP responder for certificate revocation status. A server session must also enable certificate status
request processing in order to support OCSP stapling when requested by a client application.

Related concepts
Certificate revocation
Certificate revocation checking is one phase of certificate validation that is done as part of session
negotiation. The certificate chain is validated to ensure that the certificate is not revoked.
Related information
RFC 2560: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

OCSP configuration
In addition to enabling Online Certificate Status Protocol (OCSP), there are a number of properties that
can be configured by an application to customize the OCSP behavior.

When OCSP revocation checking is enabled, an HTTP request is sent to an OCSP responder. The request
contains information to identify the certificate for which revocation status is being queried and an optional
signature. The optional signature on the request is used to help the responder verify valid requests that
are received from clients. Request signatures are disabled by default. The request is sent to the responder
over HTTP by the GET or the POST method. Requests that are sent by the GET method enable HTTP
caching. If configuration indicates that the GET method is preferred and the request is smaller than 255
bytes, the request is sent by the GET method. Otherwise, the request is sent by the POST method. The
GET method is preferred by default.

After a request is sent, OCSP revocation checking blocks until a response is received from the responder
or it times out. Revocation checking happens as part of the session negotiation; therefore, the session
negotiation blocks while revocation checking is done. If the timeout set on the session negotiation is
smaller than the OCSP timeout configured, the smaller value is used for the OCSP timeout. The OCSP
timeout value defaults to 10 seconds, but can be configured by an application.

A valid response is signed and includes data to indicate the revocation status of the certificate queried.
The revocation status of the certificate can be good, unknown, or revoked. The response must be signed
by a certificate that meets at least one of the following requirements:

• The signing certificate is trusted by the local certificate store.
• The signing certificate is the certificate authority (CA) that issued the certificate to be validated.
• The signing certificate includes a value of id-ad-ocspSigning in an ExtendedKeyUsage extension and is

issued by the CA that issued the certificate in question.

The size of a response can vary. It is up to the application to determine the maximum response size
allowed. By default the maximum response size that is allowed is 20480 bytes. If a response is larger
than the maximum size allowed, the response is ignored and treated the same as a response that
indicates unknown certificate status.

A cryptographic nonce value is a security mechanism that can be used to verify that the response received
is a reply to a particular request. The nonce value, which is a random generated bit string, is computed
and included as part of both the request and response. If nonce checking is enabled, the nonce value
included on the response is verified with the value that is sent in the request. If the nonce values do not
match, the response is ignored. Nonce checking is disabled by default.

Revocation checking can slow down session negotiation. However, caching OCSP responses allows the
client to obtain revocation status from previous requests without sending the same request again. The
OCSP response cache is enabled by default, but can be disabled for an application.

A proxy HTTP server can be used as an intermediate server to handle OCSP requests from cached
responses, or forward requests to the configured responder. If a proxy server is configured for an
application, all the OCSP requests for the application are sent to the configured server. The default proxy
port is 80. A proxy server is not configured by default.

Client sessions have the ability to request that a server session send the OCSP request for the server
certificate on behalf of the client. Enabling this option on the client causes the client to send the
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certificate status request extension to the server. When the certificate status request extension is sent by
the client and certificate status request processing is enabled on the server session, the server sends a
stapled OCSP response to the client as part of session negotiation. A client session can require certificate
status request processing. This means that if the server certificate has the feature extension indicating
that it must staple, the server must staple an OCSP response or else the client fails session negotiation.
Certificate status request processing is disabled on both client and server sessions by default.

The Global Security Kit (GSKit) APIs, gsk_attribute_set_buffer(),
gsk_attribute_set_numeric_value(), and gsk_attribute_set_enum(), can be used to
configure OCSP with the following API attributes:

• GSK_OCSP_URL - URL of the OCSP responder to which OCSP requests are sent
• GSK_OCSP_ENABLE - Enable AIA checking
• GSK_OCSP_CHECK_AIA_FIRST - Determine if OCSP URL or OCSP AIA extension checking should be

done first
• GSK_OCSP_REQUEST_SIGKEYLABEL - Certificate label of the certificate that is used to sign the OCSP

request
• GSK_OCSP_REQUEST_SIGALG - Signature algorithm that is used to generate the signature of the OCSP

request
• GSK_OCSP_RETRIEVE_VIA_GET - Method with which the OCSP request is sent
• GSK_HTTP_CONNECT_TIMEOUT - Number of seconds to wait for a connection to the OCSP responder to

complete
• GSK_OCSP_TIMEOUT - Number of seconds to wait for a response from the OCSP responder
• GSK_OCSP_MAX_RESPONSE_SIZE - Maximum response size in bytes to be accepted from the OCSP

responder
• GSK_OCSP_CLIENT_CACHE_SIZE - Enable or disable the OCSP client response cache
• GSK_OCSP_NONCE_GENERATION_ENABLE - Send a nonce extension as part of the OCSP request
• GSK_OCSP_NONCE_CHECK_ENABLE - Verify that the nonce extension in the OCSP response matches

the one sent in the OCSP request
• GSK_OCSP_NONCE_SIZE - Number of bytes to be used to generate the nonce value
• GSK_OCSP_PROXY_SERVER_NAME - Server name of the proxy server to which OCSP requests are sent
• GSK_OCSP_PROXY_SERVER_PORT - Port number of the proxy server to which OCSP requests are sent
• GSK_SSL_EXTN_CERTSTATUSREQ_ENABLE - Enable or disable certificate status request processing on

a client or server session
• GSK_TLS_FEATURES_EXTN_ENABLE - Indicate if certificate status request processing is required by a

client session when the server's certificate includes the feature extension for must staple

Applications that use the integrated IBM i SSL_ APIs or IBM i JSSE implementation do not have an
interface to configure OCSP. However, any programs that use an "application ID" can enable or disable
OCSP revocation checking through DCM. The default values are used for all other OCSP configuration
options.

Related concepts
Online Certificate Status Protocol attributes
The Online Certificate Status Protocol (OSCP) attribute fields in the application definitions are used to
control OCSP enablement.
Related information
Global Security Kit (GSKit) APIs
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OCSP revocation status
OCSP revocation status is determined by the OCSP response sent in reply to an OCSP request. Two types
of responses can be received. One indicates that the OCSP responder sent a valid response; the other
signals that the responder encountered an issue as it processed the prior request.

The issues a responder might encounter while it processes a request include the following:

• malformedRequest - The request was malformed.
• internalError - An internal error occurred on the OCSP responder.
• tryLater - The OCSP responder is temporarily unable to respond; try the request again later.
• sigRequired - The OCSP responder requires that the request must be signed.
• unauthorized - The OCSP client is not authorized to query the OCSP responder.

A valid response contains certificate revocation status for the queried certificate. The possible certificate
status values are good, revoked, or unknown. OCSP revocation status checking is complete if it receives a
good or revoked revocation status for the certificate. A good status allows the handshake to continue and
revoked status causes the handshake to fail.

If the revocation status from both URL and AIA checking is undetermined, the certificate is allowed to be
used. Information about the certificate with an undetermined revocation status can be retrieved with
gsk_attribute_get_buffer() and attribute GSK_UNKNOWNREVOCATIONSTATUS_SUBJECT. The
application should close the connection if an undetermined revocation status is not allowed.

Undetermined revocation status
The following responses result in undetermined revocation status:

• No response received within the specified timeout
• OCSP response status that indicates the responder encountered an issue
• Valid response with one of the following conditions:

– Unknown response type (only PKIX_AD_OCSP_basic response type supported)
– Unknown response version (only version 1 supported)
– Invalid signature or invalid signing certificate

- The signing certificate must meet one of the following criteria:

• Is trusted by the local keystore
• Is the certificate of the certificate authority (CA) that issued the certificate in question
• Includes a value of id-ad-ocspSigning in an ExtendedKeyUsage extension and is issued by the CA

that issued the certificate in question
– No nonce included on the response when nonce checking is required
– Bad nonce value on the response when nonce checking is required
– Invalid or expired nextUpdate value is specified on the response
– Unknown certificate status value that indicates the responder does not know the status of the

certificate

Certificate revocation
Certificate revocation checking is one phase of certificate validation that is done as part of session
negotiation. The certificate chain is validated to ensure that the certificate is not revoked.

The following steps apply for certificate revocation checking:

1. Check revocation status with a Certificate Revocation List (CRL) location.

a. When a CRL location is configured through the Digital Certificate Manager (DCM), a CRL database
(LDAP) server is queried for CRLs containing the revocation status of the certificate.
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• If the certificate is revoked, the certificate revocation phase of certificate validation is complete
and the session negotiation fails.

• Otherwise, continue with certificate revocation processing.

Note : CRL locations are configured individually for each certificate authority (CA) in a local
certificate store.

2. Check revocation status with Online Certificate Status Protocol (OCSP).

When both URL and AIA checking are enabled, the order in which the responders are queried is
determined by the Global Security Kit (GSKit) API attribute, GSK_OCSP_CHECK_AIA_FIRST. The
default is to check the URL responder address first.

a. If a client session enables certificate status request processing, then the client uses a stapled
OCSP response received from the server to determine revocation status first. This step only applies
to client session negotiation using TLS protocols TLSv1.3 or TLSv1.2.

• If the client requires certificate status request processing and the server's certificate includes the
feature extension defined in RFC 7633 indicating that the server must staple, the client fails the
handshake when a stapled OCSP response is not received from the server. This completes the
certificate revocation phase of certificate validation and the session negotiation fails.

• If the certificate is revoked in the stapled OCSP response, the certificate revocation phase of
certificate validation is complete and the session negotiation fails.

• If the certificate is good in the stapled OCSP response, the certificate revocation phase of
certificate validation is complete and certificate validation continues.

• If the certificate revocation status is undetermined from the stapled OCSP response, the
certificate revocation phase of certificate validation is complete and certificate validation
continues.

b. When an OCSP URL responder address is configured, query the responder.

• If the certificate is revoked, the certificate revocation phase of certificate validation is complete
and the session negotiation fails.

• If the certificate is good, the certificate revocation phase of certificate validation is complete and
certificate validation continues.

• If the certificate revocation status is undetermined, continue with certificate revocation
processing.

c. When AIA checking is enabled and the certificate has a PKIK_AD_OCSP access method with a URI
that indicates the HTTP location, query the responder.

• If the certificate is revoked, the certificate revocation phase of certificate validation is complete
and the session negotiation fails.

• If the certificate is good, the certificate revocation phase of certificate validation is complete and
certificate validation continues.

• If the certificate revocation status is undetermined, the certificate revocation phase of certificate
validation is complete and certificate validation continues.

Note : If revocation status is undetermined, GSKit stores information about the certificate for which
revocation status is undetermined and continues as if the status is not revoked. The application can
retrieve undetermined certificate status information with gsk_attribute_get_buffer() and
attribute GSK_UNKNOWNREVOCATIONSTATUS_SUBJECT and make a policy decision on whether to
continue or end the connection.

Note : An application definition that is configured in DCM can override CRL and OCSP revocation checking
that is configured by an application that uses the application definition.

Related concepts
Online Certificate Status Protocol
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Online Certificate Status Protocol (OCSP) provides applications a way to determine the revocation status
for a digital certificate. Certificate revocation status that is checked via OCSP provides more up-to-date
status information than is available through CRLs.
Related information
Managing CRL locations

Multiple certificate selection
System TLS allows up to four certificates to be assigned to a secure environment. The purpose of multiple
certificates is to enable the use of Elliptic Curve Digital Signature Algorithm (ECDSA) certificates while still
allowing RSA certificates to be used with clients that require RSA.

For maximum interoperability, a server must be able to negotiate with a wide range of clients with varying
TLS capabilities. When one client does not support ECDSA certificates, the server must retain the ability to
use an RSA certificate in order to negotiate a secure connection with that client.

Two methods exist to configure multiple certificates for an environment:

• Use the Digital Certificate Manager (DCM) to assign multiple certificates to the application definition
configured for the secure environment.

• Use the GSKit API gsk_attribute_set_buffer(GSK_KEYRING_LABEL_EX) to configure a list of certificate
labels to be used.

During each TLS handshake, the appropriate certificate is selected for use by the session based on the
attributes for the session. The selection process uses the TLS attributes from both the client and server to
make the decision. It is possible that no certificate is usable for a combination of attributes.

Selection Considerations
When the negotiated protocol is TLSv1.1, TLSv1.0, or SSLv3 the first RSA certificate found that also has an
RSA signature is used.

When the negotiated protocol is TLSv1.2, the selection process involves several steps.

1. The key type of the server’s most preferred cipher suite that is supported by the client starts the
selection process. A certificate has either an ECDSA or RSA key. If the cipher suite name contains
“ECDSA”, then an ECDSA key/certificate must be used. If the cipher suite name contains “RSA”, then
an RSA key/certificate must be used. If a matching certificate does not exist, then selection moves to
the next cipher suite in the list until it finds a cipher suite that works with one of the certificates.

When one or more certificate key type matches are found, additional criteria are checked to determine
which if any can be used based on the rest of the handshake attributes.

2. When ECDSA is the key type that is being considered, the named curve (which equates to key size)
must be supported by the peer. If the ECDSA certificates under consideration have different named
curves, the peer’s preferred order of named curves is used to determine the preferred certificate. One
or more certificates can be tried for selection after this step. If no certificates remain eligible after this
step, revert to the previous step.

3. Both RSA and ECDSA certificates have a signature from the certificate’s issuing certificate authority.
The signature key type can be different from the server certificate key type. When multiple certificates
remain eligible for selection in this phase, the one with the signature most preferred by the peer is
selected.

An ECDSA certificate must have a signature algorithm that is allowed by the peer’s ordered signature
algorithm list. If no ECDSA certificates in this step have a supported signature algorithm, revert to the
previous step where a less preferred named curve can be considered for additional selection
processing.

If no RSA certificates in this step have a supported signature algorithm, revert to the first step where a
different key type can be considered for additional selection processing.

Transport Layer Security  25



If there are multiple certificates still equivalent after this step, the first one processed is selected. The
other equivalent certificates are never selected as they are cryptographically identical to the first
certificate. Remove the additional certificates from the configuration to eliminate the extra selection
processing.

4. When processing completes with no certificate that meets the preceding selection criteria, the first
RSA certificate that is processed is selected provided an RSA cipher suite is in the list. If no RSA
certificate is selected, then the first ECDSA certificate that is processed is selected provided an ECDSA
cipher suite is in the list.

The peer makes the final decision to allow the certificate and thus whether the connection works or not.

When the negotiated protocol is TLSv1.3, the selection process involves fewer steps than TLSv1.2.

1. The negotiated cipher suite is not part of the certificate selection process.
2. The named elliptic curve group list is not part of the certificate selection process.
3. The signature algorithm certificate list is the primary factor for certificate selection. Both RSA and

ECDSA certificates have a signature from the certificate’s issuing certificate authority. The certificate
with the signature most preferred by the peer list is selected. When ECDSA is the key type of the
certificate under consideration, the certificate’s key size must match the signature algorithm’s hash. If
a match, the certificate is selected. If key size does not match hash size, the certificate is selected if no
configured certificates match this requirement.

4. When processing completes with no certificate that meets the preceding selection criteria, the first
certificate encountered with a signature that is not SHA1 or MD5 is selected.

The peer makes the final decision to allow the certificate and thus whether the connection works or not.

DCM application definitions
Digital Certificate Manager (DCM) manages an application database that contains application definitions.
Each application definition encapsulates certificate processing information for a specific application. As of
the IBM i 7.1 release, the application definition also encapsulates some System TLS attributes for the
application. System TLS users know this application definition as an “Application ID.”

Many of the IBM i provided applications use application definitions to configure certificate information for
their application. Any application developer can design an application to use application definitions.

Application definitions can be managed under the Manage Applications menu in DCM.

• Manage application definitions in the *SYSTEM certificate store

1. Click Select a Certificate Store in the left navigation pane.
2. Select *SYSTEM and click Continue.
3. Enter the password that is associated with *SYSTEM certificate store and click Continue.
4. Expand the Manage Applications menu in the left navigation pane.

• View application definitions in the *SYSTEM certificate store

1. Click View application definition from the Manage Applications menu.
2. Select Server or Client for the type of application definition you want to view. Click Continue.
3. Select the application definition that you want to view. Click View.

• Update application definitions in the *SYSTEM certificate store

1. Click Update application definition from the Manage Applications menu.
2. Select Server or Client for the type of application definition you want to update. Click Continue.
3. Select the application definition that you want to update. Click Update Application Definition.
4. Update the TLS attributes that you want to change and click Apply to save your changes.

The DCM application definition contains two fields that are used to identify it. The Application
description field is used to find and interact with the application definition in DCM. The Application ID
field is used by System TLS to identify the application definition that holds the configuration information.
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Each of the following System TLS programming interfaces has a method for identifying the “Application
ID” to use.

• Global Security Kit (GSKit) APIs

– gsk_attribute_set_buffer(with attribute GSK_IBMI_APPLICATION_ID)
• Integrated IBM i SSL_ APIs

– SSL_Init_Application(set value in struct SSLInitAppStr)
• Integrated IBM i JSSE implementation

– Java system property os400.secureApplication

The following DCM application definition fields can be used to control the corresponding System TLS
attributes of an application:

TLS protocols
The TLS protocols application definition field determines which TLS protocol versions are supported by
the application.

The default value is *PGM, which means the program that uses this "application ID" sets the TLS protocol
attribute to the appropriate value. All System TLS programs have a protocol attribute value that is set
explicitly through an API call, or implicitly by allowing the system default to be used. Use *PGM unless it is
known that the required attribute value is not set by the program.

If *PGM does not result in the appropriate protocols, this application definition field can override the
protocols that are supported by this application. If at least one of the protocols that are identified here are
enabled on the system by the QSSLPCL system value, protocols that are not enabled on the system are
silently ignored. Where possible, follow the configuration steps that are included in the application
documentation to set the protocols instead of using the application definition field. An administrator can
configure weaker security properties for an IBM application than was previously possible by using this
field.

Related information
TLS system value: QSSLPCL

TLS cipher specification options
The TLS cipher specification options application definition field determines which TLS cipher suites are
supported by the application.

The default value is *PGM, which means the program that uses this "application ID" sets the supported
cipher suites attribute to the appropriate value. The program might set the value explicitly through an API
call or implicitly by allowing the system default to be used.

If *PGM results in the incorrect value, this field can define the TLS cipher suites that are supported by this
application. Cipher suites that are disabled by the QSSLCSL system value are ignored when at least one
cipher suite is enabled.

The server application controls the cipher suites that are supported by a prioritized list. A combination of
security policy, performance, and interoperability considerations is used by the administrator to
determine the appropriate configuration. Use caution when you consider changes to the list. The flexibility
of the user-defined list allows for a weaker security configuration than might be possible with *PGM.
Security can be weakened in several ways:

• Selecting a higher priority for a relatively weak encryption algorithm
• Disabling a relatively strong encryption algorithm
• Enabling a relatively weak encryption algorithm

A server is only as secure as the weakest cipher suite it allows regardless of its position in the ordered list.
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Related information
TLS system value: QSSLCSL

Extended renegotiation critical mode
This field has meaning for TLSv1.2 and prior versions; it does not apply to TLSv1.3 and newer versions.

This application definition field determines whether the application requires the peer provide the RFC
5746 renegotiation indication during the initial handshake.

For more information, see TLS Extended Renegotiation Critical Mode in the “Renegotiation” on page 19
topic under “System TLS system level settings” on page 5.

The default value is *PGM, which means the program that uses this "application ID" already set the mode
to the appropriate value. The program is either using the System TLS default value or a value that is set
explicitly by the gsk_attribute_set_enum() API call for this attribute.

Set to “Enable” to require the RFC 5746 renegotiation indication is included in the initial handshake for
the initial handshake to be successful. By design, this application is no longer able to handshake with
peers that have not or cannot be updated to support RFC 5746.

Set this application definition field to “Disable” if the application does not require RFC 5746 renegotiation
indication from the peer on initial handshake. The RFC 5746 renegotiation indication is still required for all
renegotiated handshakes.

Note : The application always provides the RFC 5746 renegotiation indication information to the peer
regardless of the value of this setting.

Related information
RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension"

Server Name Indication
The Server Name Indication (SNI) application definition field is used to tell System TLS to provide
limited SNI support for this application.

SNI, as defined by RFC 6066, allows TLS clients to provide to the TLS server the name of the server they
are contacting. This function is used to facilitate secure connections to servers that host multiple 'virtual'
servers at a single underlying network address. To use SNI in this way, as either the client or the server,
gsk_attribute_set_buffer() must be used to configure SNI in the application.

If limited SNI support is needed, enter the fully qualified domain name (FQDN) for the server application.
If not required, accept the default value of *NONE for the limited SNI support which does not override
existing SNI application configuration.

If the application configures SNI information with gsk_attribute_set_buffer(), then the value that is set for
this application definition field is appended to the end of that existing information. If the existing
information is configured to be critical, then this value would also be critical. Critical means that if the
client FQDN does not match a name in the server list, then the server generates a failure for the session
negotiation. If no existing information exists, then the limited SNI support is not critical.

A use case for setting the limited support SNI field: Your Company is contacted by a user of your services.
The user has a new security requirement that all TLS servers they communicate with provide the server
SNI acknowledgement. Your server is a simple server that is used for just one service with no need for
virtual server configuration.

By setting the FQDN of the server, System TLS can send the SNI server acknowledgement if asked. The
server certificate that is sent is the one assigned to the application definition. Nothing is changed from the
server perspective, yet the peer client satisfied their requirement.

If the client requested FQDN does not match (because this field was not set or had a different value), no
server SNI acknowledgment is sent. The server continues with handshake negotiation as if no SNI request
was made. The client determines whether this condition is a critical error for the session negotiation.
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Related information
RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions"

Online Certificate Status Protocol attributes
The Online Certificate Status Protocol (OSCP) attribute fields in the application definitions are used to
control OCSP enablement.

OSCP is a mechanism for determining the revocation status of a certificate. See the detailed OCSP
description to understand how that processing works. The GSKit APIs allow for configuring numerous
attributes that determine OCSP processing.

The application definition has two OCSP attribute fields that are used to control OCSP enablement. The
other OCSP attributes cannot be changed by the application definition. Those other attribute values are
determined by GSKit API settings or by internal default values.

Related concepts
Online Certificate Status Protocol
Online Certificate Status Protocol (OCSP) provides applications a way to determine the revocation status
for a digital certificate. Certificate revocation status that is checked via OCSP provides more up-to-date
status information than is available through CRLs.
Related information
RFC 2560: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

OCSP URL
The Online Certificate Status Protocol (OCSP) URL application definition field determines whether this
application uses a general OCSP responder to send requests during certificate validation for end entity
certificates.

When a URL is present, the specified OCSP responder is contacted for all end entity certificates to
determine revocation status.

The default value for the field is *PGM meaning the program that uses this "application ID" sets the
attribute to the appropriate value. All System TLS attributes have an initial default value, which for this
attribute is no URL value. Programs can also call gsk_attribute_set_buffer() to explicitly set a URL value.

If *PGM does not result in the required OCSP responder, enter the appropriate OCSP responder URL in this
field. HTTP is the only supported URL protocol; therefore, this value must begin with "http://". Setting this
value overrides the configuration that is set internally by the program for the URL destination. However,
the other configured OCSP attributes continue to be used.

If *PGM results in the application that uses an OCSP responder, yet no general OCSP responder
processing is wanted, set this field to “Disable.” This setting overrides a URL internally configured by using
gsk_attribute_set_buffer(). Disabling OCSP weakens the security model for the application, so use due
diligence before you make this choice.

Related concepts
Certificate revocation
Certificate revocation checking is one phase of certificate validation that is done as part of session
negotiation. The certificate chain is validated to ensure that the certificate is not revoked.

OCSP certificate revocation checking
The Online Certificate Status Protocol (OCSP) Certificate Revocation Checking application definition
field determines whether OCSP certificate revocation checking is done with AIA certificate extension
information and if OCSP stapling is enabled or required.

Revocation checking is done with AIA certificate extension information if OCSP revocation status is
undetermined and both of the following conditions are true:

• OCSP AIA checking is enabled.
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• The certificate to be validated has an AIA extension with a PKIK_AD_OCSP access method that contains
a URI of the HTTP location of the OCSP responder.

Note : The first OCSP responder that is identified in the AIA extension is queried for revocation status.

Enabling OCSP stapling on a client application causes the client to request OCSP stapling by sending the
certificate status request extension as part of the client hello. Server applications with OCSP stapling
enabled support the certificate status request extension and query the OCSP responder on behalf of the
client when receiving the extension.

A client application can also indicate that they require OCSP stapling. This means that if the client does
not receive a stapled OCSP response from the server and the server's certificate indicates that it must
staple, then the client fails the secure connection.

The default value for the field is *PGM meaning the program that uses this "application ID" sets the
attribute to the appropriate value. All System TLS attributes have an initial default value. For this attribute,
the default value is disabled for both AIA checking and OCSP stapling. Programs can explicitly enable or
disable OCSP AIA and OCSP stapling with gsk_attribute_set_enum().

If *PGM does not result in OCSP AIA validation and revocation checking is wanted, set this field to
“Enable.” The internal setting is overridden and OCSP checking happens when AIA information is
available.

If *PGM does not result in OCSP stapling and support is wanted, set this field to “Stapling.” The internal
setting is overridden and OCSP stapling is requested by client applications and supported by server
applications. Additionally, this enables OCSP AIA checking when AIA information is available on the
certificate.

Setting this field to “Stapling Required” overrides the internal setting and enables OCSP AIA checking for
client and server applications, enables OCSP stapling for client and server applications, and requires
OCSP stapling for client applications.

If *PGM results in OCSP AIA validation or OCSP stapling, yet revocation checking is not wanted, set this
field to “Disable.” Disabling OCSP weakens the security model for the application, so use due diligence
before you make this choice.

Related concepts
Certificate revocation
Certificate revocation checking is one phase of certificate validation that is done as part of session
negotiation. The certificate chain is validated to ensure that the certificate is not revoked.

TLS signature algorithms for key exchange
The TLS signature algorithms application definition field determines which algorithms are supported by
the application for handshake message digital signatures.

For more information about signature algorithms and how they are used, see the “Message signature” on
page 14 under “System TLS system level settings” on page 5.

The default value is *PGM, which means the program that uses this "application ID" sets the TLS signature
algorithms used for handshake message signatures to the appropriate value. All System TLS attributes
have an initial default value. Programs can explicitly define the list by using gsk_attribute_set_buffer().

If *PGM results in an inappropriate configuration, set this field to contain the required ordered list of
supported signature algorithms.

TLS signature algorithms for certificate
The TLS signature algorithms for certificate application definition field determines which algorithms are
supported by the application for certificate selection.

For more information about signature algorithms and how they are used, see the “Certificate selection” on
page 12 under “System TLS system level settings” on page 5.
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The default value is *PGM, which means the program that uses this "application ID" sets the TLS signature
algorithms certificate list to the appropriate value. All System TLS attributes have an initial default value.
Programs can explicitly define the list by using gsk_attribute_set_buffer().

If *PGM results in an inappropriate configuration, set this field to contain the required ordered list of
supported signature algorithms for the certificate.

TLS secure session cache time to live
The TLS secure session cache time to live application definition field determines the session cache time
out used by the application.

The default value is *PGM, which means the program that uses this "application ID" sets the secure
session cache time to live to the appropriate value. All System TLS attributes have an initial default value.
Programs can explicitly define this value by using gsk_attribute_set_numeric().

If *PGM results in an inappropriate configuration, set this field to contain the required secure session
cache time to live.

TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.

To use the TLS configuration IBM-supplied command support, follow these steps:

1. Access System Service Tools by using the CL command Start System Service Tools (STRSST).
2. Select Start a service tool.
3. Select Display/Alter/Dump.
4. Select Display/Alter storage.
5. Select Licensed Internal Code (LIC) data.
6. Select Advanced analysis. (You must page down to see this option.)
7. Page down until you find the TLSCONFIG option. Then, place a 1 (Select) next to the option and press

Enter. You are now on the Specify Advanced Analysis Options window. The command shows
as TLSCONFIG.

8. Enter '-h' without the quotation marks and press Enter to display the available options.

Retrieve TLS Attributes
The Retrieve TLS Attributes (QsoRtvTLSA) API allows the retrieval of the system-wide System TLS
current default properties.

The properties can be changed and viewed with TLSCONFIG. The benefit of QsoRtvTLSA is it can be
included in programs or scripts for health check actions.

Related concepts
TLSCONFIG command
TLSCONFIG is a System Service Tools (SST) Advanced Analysis command that allows viewing or altering
of system-wide System TLS default properties.
Related information
Retrieve TLS Attributes (QsoRtvTLSA) API
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How to determine what System TLS protocols and cipher suites are used on
the system

The System TLS protocols and cipher suites that are used on the system can be determined by audit or
trace functions available on the system.

Audit journal
The protocol and cipher suite for a System TLS connection are captured when secure socket connections
are audited.

Secure socket connection auditing is enabled when *NETSECURE is set for the QAUDLVL/QAUDLVL2
system value. Each successful connection generates an SK (Sockets Connections) journal entry with an
entry type of S (Successful secure connection). The journal entry contains the protocol information in the
"Secure version" field and the cipher suite in the "Secure properties" field.

In the following example SK journal entry type S, the "Secure version" field indicates TLSv1.2 was
negotiated along with cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256 shown in the "Secure
properties" field. The signature algorithm used was ECDSA_SHA512, which is also in the "Secure
properties" field.

             Entry specific data                                                
 Column      *...+....1....+....2....+....3....+....4....+....5                 
 00901      '                                                  '                
 00951      '          TLSV1.2   TLS_RSA_WITH_AES_128_CBC_SHA25'                
 01001      '6 ECDSA_SHA512                                    '                
                                                                        More... 

In the following example SK journal entry type S, the "Secure version" and the "Secure properties" fields
indicate TLSv1.2 was negotiated along with cipher suite
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384. The signature algorithm was ECDSA_SHA512 and
the named elliptic curve, which determines key size, was Secp521r1.

             Entry specific data                                               
 Column      *...+....1....+....2....+....3....+....4....+....5                
 00901      '                                                  '               
 00951      '          TLSV1.2   TLS_ECDHE_ECDSA_WITH_AES_256_G'               
 01001      'CM_SHA384 ECDSA_SHA512 SECP521R1                  '               
                                                                        More...

For more information about interpreting all the SK entry fields, see SK (Sockets Connections) journal
entries. For more information about analyzing the logged events, see Analyzing audit journal entries in the
Security reference topic.

Related information
Copy Audit Journal Entries (CPYAUDJRNE)

LIC trace
The Trace Licensed Internal Code (LIC) service tool can capture a System TLS trace point that contains
the System TLS protocols and cipher suites. The Trace Internal (TRCINT) command is the command
interface to the Trace LIC Service tool.

To trace all protocol versions, issue the following command to start the trace:

TRCINT SET(*ON) TRCTBL('SCKTLS-1700x') TRCTYPE(*SCKSSL) SLTTRCPNT((17000 17009))

Wait for new secure connections to establish and end the trace with the command:

TRCINT SET(*OFF) TRCTBL('SCKTLS-1700x') OUTPUT(*PRINT)
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To delete the trace, issue the following command:

TRCINT SET(*END) TRCTBL('SCKTLS-1700x')

To trace specific protocol version connections, use one or more of the following trace points.

Protocol Version Trace Identifier

TLSv1.3 17005

TLSv1.2 17004

TLSv1.1 17003

TLSv1.0 17002

SSLv3 17001

For example, to find only TLSv1.0 connections use trace point 17002:

TRCINT SET(*ON) TRCTBL('SCKTLS-17002') TRCTYPE(*SCKSSL) SLTTRCPNT((17002))

To trace a range of protocol versions, specify the beginning Trace ID followed by the end Trace ID. This
example illustrates tracing SSLv3 through TLSv1.1.

TRCINT SET(*ON) TRCTBL('SCKTLS-1700x') TRCTYPE(*SCKSSL) SLTTRCPNT((17001 17003))

A spooled file named QPCSMPRT is created for the user that ran the TRCINT SET(*OFF) command.
Submit the TRCINT SET(*OFF) command to a background job when you are managing a large trace
capture. The following trace point output outlines the connection properties included in the trace point.

SOCKETS              IDENTIFIER : SC#17003                         TIME 02/17/15  11:03:33.151908   TDE# 000000003C94
  #1    (   21)    +0000   C3D6D5D5C5C3E3C9  D6D540D7D9D6D7C5   D9E3C9C5E2                    *CONNECTION PROPERTIES
  #2    (    7)    +0000   E3D3E2E5F14BF1                                                    *TLSV1.1
  #3    (   28)    +0000   E3D3E26DD9E2C16D  E6C9E3C86DC1C5E2   6DF1F2F86DC3C2C3  6DE2C8C1   *TLS_RSA_WITH_AES_128_CBC_SHA
  #4    (   10)    +0000   D3D6C3C1D340D7D6  D9E3                                            *LOCAL PORT
  #5    (    3)    +0000   F9F9F2                                                            *992
  #6    (   16)    +0000   D3D6C3C1D340C9D7  40C1C4C4D9C5E2E2                                *LOCAL IP ADDRESS
  #7    (   20)    +0000   7A7A868686867AF1  F9F84BF5F14BF1F0   F04BF1F5                     *::ffff:198.51.100.15
  #8    (   11)    +0000   D9C5D4D6E3C540D7  D6D9E3                                          *REMOTE PORT
  #9    (    5)    +0000   F6F1F8F5F2                                                        *61852
  #10   (   17)    +0000   D9C5D4D6E3C540C9  D740C1C4C4D9C5E2   E2                           *REMOTE IP ADDRESS
  #11   (   20)    +0000   7A7A868686867AF1  F9F84BF5F14BF1F0   F04BF1F6                     *::ffff:198.51.100.16
  #12   (   16)    +0000   E3D5C1C3C3C5D7E3  E3C1E2D240404040                                *TNACCEPTTASK    
  #13   (   22)    +0000   D8C9C2D46DD8E3E5  6DE3C5D3D5C5E36D   E2C5D9E5C5D9                 *QIBM_QTV_TELNET_SERVER

The following information is in the trace point entry data:

• Protocol Negotiated
• Cipher suite Negotiated
• Local port and IP address
• Remote port and IP address
• Job/Task/Device name
• Application ID (if used)

System TLS protocol version counters
The System Service Tools Advanced Analysis command TLSCONFIG can be used to turn on System TLS
protocol version counters. The counters show protocols that are actively being negotiated by System TLS.

If you want to determine the System TLS protocols that are used on your system, you can use TLSCONFIG
option connectionCounts. When enabled, TLSCONFIG option connectionCounts keeps a running
count of new System TLS connections that are grouped by the negotiated TLS protocol. There is a slight
performance cost to count the connections.

TLSCONFIG option -h displays the help panel that describes how to use TLSCONFIG option
connectionCounts.
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The following steps can be used to determine whether a particular protocol is used on your system before
you disable support for the protocol.

1. Reset the connectionCounts to clear the current protocol version counts.

TLSCONFIG -connectionCounts:reset

2. Track the System TLS connections to determine which protocols are used for active connections.

TLSCONFIG -connectionCounts:enable

3. After the connection counts run over an interval that exhibits normal System TLS traffic on your
system, display the number of TLS connections by protocol type since the last reset.

TLSCONFIG -connectionCounts:display

4. Determine what applications are using the protocols that you would like to disable. Update the
application's configuration to no longer use these protocols.

Note : The count does not provide guidance as to which application is using a particular protocol. For
more information about how to determine what application uses a particular protocol, see “How to
determine what System TLS protocols and cipher suites are used on the system” on page 32.

5. Reset the connectionCounts to clear the current protocol version counts.

TLSCONFIG -connectionCounts:reset

6. After another interval that exhibits normal System TLS traffic on your system, display the number of
TLS connections by protocol type since the last reset.

TLSCONFIG -connectionCounts:display

If the protocol to disable has a connection count of 0, you know that protocol version was not used
during the monitored interval.

7. Turn off TLS connection counting.

TLSCONFIG -connectionCounts:disable

Troubleshooting TLS
This basic troubleshooting information is intended to help you reduce the list of possible problems that
System TLS can encounter.

It is important to understand this information is not a comprehensive source for troubleshooting
information, but rather a guide to aid in common problem resolution.

Verify that the following statements are true:

• Your IBM i meets all the “TLS prerequisites” on page 36.
• Your certificate authority and certificates are valid and are not expired. For more information about

validating certificates, see Validating certificates and applications in Digital Certificate Manager.
• You verified that your IBM i and the remote server both support at least one of the same TLS protocols

and ciphers suites.

– Review the System TLS system values: QSSLPCL, QSSLCSLCTL, and QSSLCSL
– Check the “DCM application definitions” on page 26 to identify the TLS protocols and cipher suites

that are enabled for the application
– Review settings in the System Service Tools (SST) Advanced Analysis command TLSCONFIG

- Use TLSCONFIG option display to view the default TLS attributes
– Review application-specific TLS attributes

More problem determination options:
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• The TLS error code in the server job log can be cross referenced in an error table to find more
information about the error. For example, this table maps the -93 that might be seen in a server job log
to the constant SSL_ERROR_SSL_NOT_AVAILABLE.

– A negative return code (indicated by the dash before the code number) indicates that the application
used an SSL_ API.

– A positive return code indicates that the application used a GSKit API.

If more detailed information is required, the message ID provided in the table can be displayed on an
IBM i to show potential cause and recovery for this error. More information that explains these error
codes might be in the individual documentation for the secure socket API that returned the error.

• The following two header files contain the same constant names for System TLS return codes as the
table, but without the message ID cross-reference:

– QSYSINC/H.GSKSSL
– QSYSINC/H.QSOSSL

Remember although the names of the System TLS return codes remain constant in these two files, more
than one unique error can be associated with each return code.

If you think an application is failing during TLS negotiation but is not logging or otherwise providing error
details, you can try to find more information by using auditing.

System TLS failed connections are captured when secure socket connection auditing is enabled. Secure
socket connection auditing is enabled when *NETSECURE is set for the QAUDLVL/QAUDLVL2 system
value. Each failed connection generates an SK (Sockets Connections) journal entry with an entry type of X
(Failed System TLS connection). The “Secure information” field contains a string that describes the
failure.

In the following example Sockets Connection journal entry type X, the "Secure version" field indicates that
TLSv1.2 protocol was used to try to negotiate a secure handshake. However, the handshake failed with
error code GSK_ERROR_NO_CIPHERS, which is shown in the "Secure properties" field. The "Secure
information" field contains a string that describes the failure.

            Entry specific data                          
Column      *...+....1....+....2....+....3....+....4....+....5 
00901      '                                                  '
00951      '          TLSV1.2   GSK_ERROR_NO_CIPHERS          '
01001      '                                                  '
01051      '                    No compatible cipher suite ava'
01101      'ilable between SSL end points.                    '
01151      '                    '

For more information about all of the SK entry fields, see SK (Sockets Connections) journal entries.

Application problem determination options:

• Programmers can code the gsk_strerror() or SSL_Strerror() API in their programs to obtain a
brief description of an error return code. Some applications use this API and print a message to the job
log containing the brief error description.

• Additional information about the last certificate validation error on the current secure session can be
retrieved by using the GSK_LAST_VALIDATION_ERROR attribute on
gsk_attribute_get_numeric_value(). If gsk_secure_soc_init() or
gsk_secure_soc_startInit() returned an error, this attribute might provide more error
information.

Related concepts
TLS prerequisites
This topic describes the prerequisites for System TLS on the IBM i, as well as some helpful tips.
Related information
Secure socket API error code messages
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TLS prerequisites
This topic describes the prerequisites for System TLS on the IBM i, as well as some helpful tips.

Verify that you have the following options installed before you use TLS:

• IBM Digital Certificate Manager (DCM) (5770-SS1 Option 34)

Note : IBM Java Secure Socket Extension (JSSE) and OpenSSL do not require DCM.
• IBM TCP/IP Connectivity Utilities for i (5770-TC1)
• IBM HTTP Server for i (5770-DG1)
• If you are trying to access the IBM Navigator for i or DCM applications on port 2001/2005, ensure that

you have the required IBM Developer Kit for Java (5770-JV1) product options installed. Otherwise, the
IBM i HTTP admin server does not start. The required product options are defined by the IBM HTTP
Server group PTF cover letter.

• You might also want to install cryptographic hardware to use with TLS to speed up the TLS handshake
processing. If you want to install cryptographic hardware, you must also install the IBM CCA Service
Provider (5770-SS1 Option 35) and IBM Cryptographic Device Manager (5733-CY3).

Related concepts
Troubleshooting TLS
This basic troubleshooting information is intended to help you reduce the list of possible problems that
System TLS can encounter.
Related information
Cryptographic hardware
Public certificates versus private certificates
Configure DCM

Application security with TLS
A number of applications on IBM i can be secured with TLS. Refer to each application's documentation for
details.
Related information
Enterprise Identity Mapping
Securing File Transfer Protocol
Setting up TLS for the administration (ADMIN) server for HTTP Server
Add TLS protection on HTTP Server
Telnet scenario: Secure Telnet with TLS
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) with the Directory Server
Secure Sockets APIs
Scenario: Protect private keys with cryptographic hardware

Related information for TLS
Use this information to learn about other resources and information relevant to using Transport Layer
Security(TLS).

Web sites

• RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3" (https://www.ietf.org/rfc/
rfc8446.txt)

• RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2"  (https://www.ietf.org/rfc/
rfc5246.txt)
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• RFC 4346: "The Transport Layer Security (TLS) Protocol Version 1.1"  (https://www.ietf.org/rfc/
rfc4346.txt)

• RFC 2246: "The TLS Protocol Version 1.0 "  (https://www.ietf.org/rfc/rfc2246.txt)

• RFC2818: "HTTP Over TLS"  (https://www.ietf.org/rfc/rfc2818.txt)

• RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension"  (https://
www.ietf.org/rfc/rfc5746.txt)

• RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions"  (https://
www.ietf.org/rfc/rfc6066.txt)

• RFC 2560: "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP" 
(https://www.ietf.org/rfc/rfc2560.txt)

• RFC 4492: "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)" 
(https://www.ietf.org/rfc/rfc4492.txt)

Other information
• SSL and Java Secure Socket Extension
• IBM Toolbox for Java
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Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A. 

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.
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Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.
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Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.
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