
IBM Software Information Management
Technical White Paper

Expert Stored Procedure
Monitoring, Analysis and
Tuning on System z

2 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Overview
This white paper addresses DB2® stored procedures, in
particular how you can use the IBM® Tivoli
OMEGAMON® XE for DB2 Performance Expert on
z/OS to more effectively monitor, analyze and tune these
procedures on System z®. It contains a brief overview of
stored procedures in DB2, including their benefits and
limitations. It then discusses how dedicated tools from
IBM can help you monitor, analyze and effectively tune
the stored procedures in your DB2 environment.

The architecture of stored procedures
Stored procedures are user-written programs either in a
high-level language or the SQL procedures language.
They may be compiled and stored at a DB2 server and
can execute either Business Logic or SQL statements.
There are two types of stored procedures in general.

 External stored procedures

These are implemented using a high level language like
COBOL, Java or C++, and typically used to exploit
Business Logic in addition to invoking SQL statements.
They are called “external” because they involve an
external application program and load module.

 Internal stored procedures

These can also be known as native SQL stored
procedures and were introduced in DB2 9.

These two types of stored procedures have different
execution architectures within DB2, which have great

significance for any efforts to optimize their performance
and cost. The execution architecture of an external stored
procedure is shown in Figure 1.

Figure 1: Overview of external stored procedure
architecture

This figure shows a user executing a stored procedure
from an arbitrary environment, such as via a web
application on a remote Linux, UNIX or Windows based
application server or via a z/OS native program (such as a
CICS transaction). For distributed applications calling a
stored procedure, the call arrives in the DB2 DBM1
address space through the distributed data facility (DDF)
address space (shown on the right side of the figure). It is
then scheduled in the DBM1 address space for execution.
External stored procedures are running in the WLM

3 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

address space and their program logic/load module is
loaded from an external load library that is referenced in
the WLM address space STEPLIB.

As a consequence, all of the business logic and SQL
statements will execute from within a workload-managed
address space. Therefore this architecture features an
interaction between the DB2 and workload-managed
address space – indicated by the red lines – so there is an
overhead associated with address space switch going on
during the execution of the stored procedures. Note that,
when the SQL is executed, the package is loaded directly
from the DB2 directory.

As shown on the left side of the figure, the same stored
procedure could have been invoked also from a z/OS
local application, for instance one running in a CICS
transaction, without changing the other aspects of the
operation as described above.

Figure 2 shows the execution architecture of an internal,
or “native,” stored procedure and differentiates that from
the previous example.

Figure 2: Overview of internal, or native, stored
procedure architecture

As was the case with an external procedure, this internal
stored procedure could be initiated from a remote client
platform or from a local z/OS application. The major
difference in the example shown in Figure 2 is that, all of
the stored procedure logic is stored at the DB2 server in
the DB2 directory and is loaded directly into the DBM1
address space once the execution starts. Therefore, there
is no workload-managed address space associated with
this execution model and no address space switching
performance penalty is paid.

Furthermore, besides the fact that all the SQL activity
occurs within the DBM1 address space, the stored
procedure code itself is stored in the DB2 catalog as well.

4 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

The benefits of stored procedures
DB2 stored procedures can offer benefits to your
organization. These can be divided into two main
categories, as discussed in the following sections.

Programming benefits
The characteristics of stored procedures can provide your
organization with several important programming
benefits, such as the following:

 Modular application design

For instance, a particular logic set can be reused in
multiple execution environments.

 Consistent processing of data

Data will always be processed according to the rules
defined in the stored procedure.

 More reliable enforcement of business rules

Stored procedures can replace ad hoc constraints and
triggers.

 Increased application security

Security clearance can be granted upon execution of the
stored procedure, instead of requiring users to have
privileges for the underlying DB2 objects.

 Easier integration of a set of data resources

A stored procedure can encapsulate crucial access
requirements such as non-DB2 resources by VSAM
files or IMS transactions.

Total cost of ownership benefits
The second category of benefits relates to total cost of
ownership. These can include the following:

 Reduced network traffic

A set of SQL statements can be stored at the server and
executed as a set with one network communication
across the network. The results of that execution can
then be transferred back to the calling client, thereby
minimizing the overall network traffic.

 Direct reductions in cost of ownership

In the case of internal or native stored procedure, the
execution costs can be reduced further by redirecting a
portion to a specialty engine called a System z9®
Integrated Information Processor (zIIP).

This cost reduction potential is significant because
everything in the transaction, including the call statement
and results that are processed, may be eligible for
specialty engine redirection, lowering the billable costs
associated with that execution. Furthermore, if the stored
procedure is executed or delivered in the Java
programming language, DB2 provides the option of
redirecting these Java execution costs onto a System z
Application Assist Processor (zAAP) specialty engine,
which can also lower the costs associated with this

5 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

execution. In the example of a native stored procedure,
there is no workload managed processing.

To give context for this performance benefit, Figure 3
shows a comparison between several common execution
languages and models. (Results may vary)

Language/API
Base CPU/Tran
Cost

Billable CPU/Tran Cost
after zIIP/zAAP redirect

COBOL Stored
Proc 1X (BASE) 0.80x (Some zIIP)

C Stored Proc 1.02x 0.82x (Some zIIP)

SQLJ Stored Proc 2.01x 1.11x (zAAP+ some
zIIP)

JDBC Stored Proc 2.97x 1.84x (zAAP+ some
zIIP)

Native SQL Stored
Proc 1.09x 0.59x (Significant

zIIP)

Figure 3: Comparison of common execution languages
and models, taken on a z10™ with DB2 10 environment

If the COBOL stored procedures form a baseline with
execution cost “1,” this chart compares it to various
programming languages in terms of the base cost and the
portion, if any, of that cost that might be redirected to a
specialty engine.

A native stored procedure presents a clear opportunity to
use the zIIP specialty engine to improve upon the billable
execution cost by a factor of about 40 percent.

Figure 3 may be a useful guide to selecting an
implementation language and execution model if
performance is the key criterion.

Performance reporting tools

For external stored procedures, the DB2 instrumentation
facility gives users the ability to trace elapsed and CPU
times from an application perspective, and generate a
performance reports using the data collected.

Figure 4: Performance reporting for external stored
procedure

Figure 4 shows an overview of application costs in terms
of application and DB2 elapsed and CPU times for an
external stored procedure.

The so called “Class 1” times (reflected as blue and violet
vertical lines) represent the times traced from either
connect to commit of the application (Class 1 non-nested
times), or the time spent from stored procedure start to
end (Class 1 nested time), The term “nested” can be

6 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

understood as a “nested activity within DB2” (UDFs and
Triggers are also considered nested activities).

For the Class 2 times the exact same categorization into
non-nested and nested can be done (reflected as red and
orange vertical lines), with the major difference that Class
2 times measure the time spent in DB2 itself.
In addition to the Class 1 and 2 times, by enabling further
detail traces, Class 3 time traces, additional data can be
collected which mainly details on the wait times that are
part of the execution time in DB2 (these trace points are
not shown in the figure).

Similar performance reporting is available for internal or
native SQL stored procedure, as shown in Figure 5.

Figure 5: Performance reporting for native SQL stored
procedure

The key difference in figure 5 compared to figure 4 is that
due to the different execution architecture for native SQL
stored procedures (mainly the absence of a WLM address
space) the class 1 and class 2 nested times are identical,
meaning that all of the native stored procedure execution
time is in DB2.

Challenges of stored procedure track and
trace
Tracking, tracing and analysis of stored procedures has
traditionally included several well-known difficulties,
each of which can affect the overall usefulness of the
analysis efforts. The three most-relevant challenges are as
follows:

 Single transactions can involve more than one stored

procedure call.

It is possible to have multiple stored procedures
invoked in a single transaction. If these are summed at
the plan level it is very difficult to analyze the details of
any individual invocation of that stored procedure or a
given stored procedure.

 Package-level analysis can be difficult if a stored
procedure can be invoked by different paths.

Package-level accounting detail makes it difficult to
differentiate between scenarios where particular logic
or data access is called directly, as opposed to being
invoked as part of a stored procedure.

 Package-level analysis does not apply to stored

procedures that do not execute SQLs.

7 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

For instance, a user trying to integrate VSAM and CICS
transactions via a stored procedure in his/her
application without the added stored procedure
executing any SQL, would not be able to generate any
useful information for package-level analysis, as DB2
does not create a package under these circumstances
(i.e. no SQL coded in the stored procedure).

In order to address most of the challenges described
above, expensive DB2 performance traces can be started,
thus incurring high costs be it from a CPU consumption
during the trace collection or being it for the time spent to
analyze the potentially huge amount of data to analyze a
problem. Such an approach might not be doable for the
vast majority of users and therefore IBM looked at a
smarter alternative to tackle the challenges indicated
above.

The IBM solution
DB2 10 has introduced new instrumentation that users can
use to trace additional information from a DB2
perspective. This additional information can be exploited
in reports that the user can analyze and use as a basis for
better tuning and analysis of the DB2 stored procedures.

New tracing records for more granular data
The above mentioned new DB2 10 instrumentation
introduced a new IFCIDs 380 that is written at the
beginning and the end of a stored procedure invocation.
The data contents of this new trace record can be used to
determine the nested class 1 and class 2 times of the
stored procedure call and a further break down into time
spent on a general purpose processor, or redirection to a
specialty engine. This more granular information is

helpful for more granular tuning of a DB2 stored
procedures and can also assist in capacity planning
questions for specialty engines.

The new DB2 10 instrumentation also keeps track of the
SQL that is associated with the invocation of a stored
procedure. This is accomplished by IFCID 499.
IFCID 499 keeps a list of statement identifiers along with
the statement type (dynamic or static) and the number of
executions of the statement in the context of the stored
procedure call.

This information and in particular the statement ID can be
captured to correlate the SQL statements that are invoked
by a DB2 stored procedure to the DB2 dynamic or static
statement cache. Performance details that are tracked at
the statement cache level can therefore be correlated back
to a DB2 stored procedure implementation. The detailed
information this provides can be used for detailed analysis
of DB2 stored procedures.

8 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Figure 7 shows some additional detail on how the 499
trace record is added to the IFCID 380 record.

Figure 7: Additional detail provided by the 380 and 499
trace records

Referring to the figure above, when the stored procedure
exits, a 499 trace record is written externalizing all of the
SQL statements that were executed within the body of
that stored procedure. An IFCID 499 record is also
written before a nested stored procedure call is made in
order to being able to track those SQL statements that
have been run before the nested call starts and therefore to
allow a “drill down” type of functionality.

After this information is gathered, a functional tool is
needed to use it, and this functionality can be found in the
Tivoli® OMEGAMON XE for DB2 Performance Expert

for z/OS®. The OMEGAMON DB2 collector started task
can accept the instrumentation trace records that are
written by DB2, aggregates them on a system level and
sends that information to the Repository Server
component of OMEGAMON DB2. The collector sends
also information on the calling path of a stored procedure
to the Repository Server In correlating this new
information with the information collected from the
statement caches, the Web Console SQL Statements
Dashboard allows for a detailed analysis for stored
procedures.

With the combination of these new records and tools,
users now have the ability to generate a full picture of
what took place in the stored procedure invocations.

Example scenario
An example scenario can help illuminate these new
granular capabilities, as well as the functionality
embedded in the OMEGAMON XE for DB2 Performance
Expert Web Console to help analyze that information. In
our example we will analyze a workload called “family
workload” where within the family stored procedure calls
can be made to a nested stored procedure for the son, a
daughter stored procedure and for a grandchild.
Furthermore, from the son and daughter nested stored
procedure calls can be made for a grandchild stored
procedure. As shown in Figure 8, this results in a top
level, a level one and a level two invocation all in this
workload.

9 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Figure 8: Example scenario of a “family workload”

The basics: The SQL dashboard
The existing SQL Statements dashboard in the Web
Console can be used to analyze this family stored
procedure workload scenario in greater detail. The initial
analysis shows the SQL workload summarized across all
of the statements in an “All Statements View” for a
specified timeframe. A slider function in this dashboard
can be used to specify the range of time within which
DB2 stored procedures will be analyzed and thus provides
a history functionality. Figure 9 shows an aggregation of
all of the family workload stored procedures that were
invoked during a specific timeframe selected in the slider
function. The aggregation is done on a stored procedure
call level (by ROUTINE ID) or statement level (by
statement ID). Basically the system wide overall costs of
all statement executions of stored procedure executions
can be seen in this view.

Figure 9: SQL dashboard aggregation by ROUTINE ID

Each particular statement text or stored procedure call can
be highlighted and selected for further information, such
as the number of times those statements have been
invoked and how much CPU time and elapsed time is
associated with the invocation. Especially for stored
procedures the tool can also graph this data and show the
various breakouts of how much of the time was spent on
the general purpose processors and how much of it was
dispatched on the z/OS specialty engines, thus
externalizing the information collected via IFCID 380.

This additional level of detail is also available for a nested
stored procedure; for instance if the daughter stored
procedure is highlighted the tool can provide a summation
of all of the SQL statements and the calling paths
associated with the invocation of the daughter path, as
shown in Figure 10.

10 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Figure 10: Additional detail about the calling paths to the
daughter stored procedure

This particular procedure was called once via a path from
the family stored procedure and called once directly. The
direct call also included a call to the grandchild stored
procedure from within the body of the daughter’s stored
procedure. This additional detail can show exactly how a
stored procedure has been invoked and gives users the
ability to differentiate among the various calling paths,
thus resolving one of the issues of stored procedure
analysis.

Better instrumentation in DB2 10 allows drill
down analysis for stored procedures
The enhanced instrumentation in DB2 10 explained
earlier makes it possible to correlate the information on
the various calling paths to the underlying SQL activity
that was executed or the nested stored procedures that

were invoked. Therefore, as shown in Figures 11 and 12,
users now can have the ability to differentiate among
various invocations and see

1. What costs in terms of elapsed, CPU and specialty

engine time a stored procedure execution has incurred
in a specific calling path execution and

2. Exactly which SQL was invoked for which given
invocation (“Show SQL for This Calling Paths”), or to
aggregate the information to show the SQL for all of
the various calling paths in the aggregate that were
invoked (“Show SQL for All Calling Paths”).

Figure 11: Showing SQLs unique to particular calling
paths

11 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Figure 12: Additional detail of SQL for a family calling
path

This additional granularity in SQL call information can
then be correlated with the statement cache information
for the various statements executed by the stored
procedure to reveal details about the statement execution.
If package-level accounting traces are enabled and
accounting trace 3 or accounting trace 8 is active, further
detail can be seen for locking and I/O activity associated
with the statements that were invoked.

And finally, this entire analysis process is captured within
a history navigator, which functions much like a web
browser history, and can reveal the various levels of
analysis and provide users the option to go back to one of
the sets of analysis. Taken together, these additional
levels of functionality provide a very powerful and

flexible way to analyze and understand SQL statements of
interest.

Using better reporting for better tuning
The enhanced DB2 instrumentation and the
OMEGAMON DB2 reporting features described in
previous sections of this document can help you identify
the performance costs associated with specific stored
procedures. After these are identified, the next logical step
would be to use this information to perform one or both of
the following tasks:

 Isolate any applications that contain poorly performing

stored procedures so that their impact on the overall
environment is minimized.

 Tune the SQL statements in the poorly performing
stored procedures so that their performance is
improved.

Additional components of the DB2 performance tools
portfolio can be used to help achieve both of these goals.

Optim Configuration Manager for DB2 for z/OS
The IBM InfoSphere® Optim™ Configuration Manager
for DB2 for z/OS can be launched directly from within
the OMEGAMON XE for DB2 Performance Expert Web
Console SQL statements Dashboard. Optim Configuration
Manager can give you the flexibility to add rules as
needed to isolate one or more workloads and define an
action to take when that workload is invoked.

12 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Figure 13: Using Optim Configuration Manager to add a
rule set for workload isolation

When activated, this rule set implements the concept of a
“penalty box” wherein a workload or application that has
some problematic performance characteristics can be
isolated away from the remainder of the normal workload
that is achieving its throughput objectives. This isolation
prevents the problematic workload from consuming an
exorbitant amount of resources or using resources that
should available for other activity.

However, the functionality of this tool goes beyond
simple isolation. After the problematic workload is
isolated, other DB2 portfolio capabilities can be used to
tune and improve its performance.

SQL tuning
Returning back to the SQL Statements dashboard within
OMEGAMON XE for DB2 Performance Expert, users

can identify the slow performing SQL statements that are
invoked in the body of a stored procedure, and use the
“tune all” option in the Actions menu to tune them as a
workload via the InfoSphere Optim Query Workload
Tuner for DB2 for z/OS. As shown in Figure 14, the
Optim Query Workload Tuner gives users the option to
invoke a set of advisors that will analyze those SQL
statements to find parameters that can be optimized – for
instance, the advisors shown here will help ensure that all
the necessary statistics and indexes are available,
appropriate and up-to-date.

Figure 14: Advisor options within Optim Query Workload
Tuner

After any selected advisors are run, the tool will return a
set of recommendations for the workload. The user then
has the option to view the specific advice that the Optim
Query Workload Tuner provided for that workload. If the

13 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

user chooses to implement the recommended advice, it is
possible to run comparative statistics on the same SQL
workload to see how the performance of the workload
changes after the tuning advice is implemented.

Taken together, the information and analysis tools
discussed in this white paper can provide granular
information to help you understand the performance of
complicated stored procedure workloads and tune these
workloads for better performance.

Conclusion
Complex workloads such as applications calling DB2 on
z/OS stored procedures can be difficult to assess and
properly tune. Effective tuning requires granular
information about the performance of specific
subroutines, which is not always available from
conventional performance monitors. Intelligent, dedicated
tools such as Tivoli OMEGAMON XE for DB2
Performance Expert, the Optim Query Workload Tuner
and Optim Configuration Manager are designed to
provide detailed insights into your workloads and help
you tune them for better performance.

To learn more about useful tools for tuning stored
procedures for DB2 on z/OS, please contact your IBM
representative or IBM Business Partner, or visit the
following website:
ibm.com/software/data/db2imstools/products/db2-zos-
tools.html

About the Author
Matthias Tschaffler joined IBM at the Silicon Valley Lab
in 2000. At SVL he worked on the “IBM DB2 Text
Information Extender” and “IBM DB2 Warehouse
Manager Connector for the Web” product deliverables.
After transferring to IBM Germany in 2002, Matthias
worked on the “EIP Information Mining” and
“Information Integration for BPEL on WebSphere
Process Server” products. He currently works as an
Advisory Software Engineer in the “IBM Tivoli
OMEGAMON XE for DB2 Performance Expert/Monitor
on z/OS” team, where he acts as the technical
development lead.

14 Expert Stored Procedure Monitoring, Analysis and Tuning on System z

© Copyright IBM Corporation 2013

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United Stat es of America
May 2013

IBM, the IBM logo, ibm.com, DB2, OMEGAMON, System z, System
z9, z10, z/OS, Tivoli, Optim, and InfoSphere are trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available
on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Microsoft, Windows and Windows NT are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.
UNIX is a registered trademark of The Open Group in the United States
and other countries.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

The performance data discussed herein is presented as derived under
specific operating conditions. Actual results may vary. THE
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND ANY WARRANTY OR CONDITION OF NON-
INFRINGEMENT. IBM products are warranted according to the terms
and conditions of the agreements under which they are provided.

