
Workload Automation
Version 8.6

Developer's Guide: Extending Tivoli
Workload Automation

SC14-7623-00

���

Note
Before using this information and the product it supports, read the information in Notices.

This edition applies to version 8, release 6, modification 0 of IBM Tivoli Workload Automation (program numbers
5698-A17, 5698-WSH, and 5698-WSE) and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
What is new in this publication v
What is new in this release for extending Tivoli
Workload Automation v
What is new in this publication v
Who should read this publication v
Publications v
Accessibility vi
Tivoli technical training vi
Support information vi

Chapter 1. Introduction to extending
Tivoli Workload Automation 1

Chapter 2. Integration Workbench . . . 3
Installing the Integration Workbench 3
Using the Integration Workbench help 3

Chapter 3. Tivoli Workload Scheduler
event management plug-ins 5

Event management plug-in project 6
Event management plug-in project structure . . . 6
Creating a plug-in project from scratch 9
Creating a project from a plug-in example . . . 10
Prepare for deployment 10
Generating and sending an event 10

Connect to Tivoli Workload Scheduler 10
Reference material 11

Chapter 4. Custom job type with
advanced options plug-in. 13
Structure of custom job-type plug-in 18

Chapter 5. Java jobs 23
Creating Java job jar 23

Notices 27
Trademarks 28

Index 31

© Copyright IBM Corp. 2011 iii

iv IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

About this publication

Developer's Guide: Extending Tivoli Workload Automation describes how to use the
Web Services Interface to control IBM® Tivoli® Workload Scheduler and IBM Tivoli
Workload Scheduler for z/OS® objects in their respective plans.

What is new in this publication
This is a new publication, but it has been developed from those chapters of the
Tivoli Workload Scheduler API Guide on version 8.5 which related to the Web
Services interface. Treat all information in it as new.

What is new in this release for extending Tivoli Workload Automation
This section describes what has changed in this release regarding extending Tivoli
Workload Automation since version 8.5 Fix Pack 01.

You now have the possibility to create a custom job-type plug-in. This plug-in adds
a new job type to the job definition selection in the Dynamic Workload Console.
You can also create an appropriate JSDL file for use in job definition in composer.
The plug-in also contains a part that runs the job on the dynamic agent.

What is new in this publication
This is a new publication, but it has been developed from those chapters of the
Tivoli Workload Scheduler API Guide and the topics of the Integration Workbench
help of version 8.5 which related to plug-ins. Treat all information in it as new.

Who should read this publication
This publication provides information about how to add functionality to Tivoli
Workload Automation products by creating Java plug-ins.

The reader of this book should be an application programmer expert in Java, who has
a reasonable understanding of the Tivoli Workload Automation infrastructure and
its inter-component interactions. Alternatively, it should be the manager of such a
person, who wants to better understand what you can achieve using plug-ins.

The publication assumes that the application programmer is experienced at
creating and working with plug-ins and Java. It also assumes that any product
knowledge required to program the API or the web services interface is obtained
from the product documentation. This publication does not attempt to explain any
of the Tivoli Workload Automation concepts, procedures, and practices to which it
refers.

This book also contains information useful to the IT administrator and the Tivoli
Workload Automation IT administrator, for planning purposes.

Publications
Describes where to find information about

© Copyright IBM Corp. 2011 v

Full details of Tivoli Workload Automation publications can be found in Tivoli
Workload Automation: Publications. This document also contains information about
the conventions used in the publications.

A glossary of terms used in the product can be found in Tivoli Workload Automation:
Glossary.

Both of these are in the Information Center as separate publications.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For full information with respect to the Dynamic Workload Console, see the
Accessibility appendix in the Tivoli Workload Scheduler: User's Guide and Reference,
SC32-1274.

Tivoli technical training
For Tivoli technical training information, see the following IBM Tivoli Education
website:

http://www.ibm.com/software/tivoli/education

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Troubleshooting Guide
For more information about resolving problems, see the problem
determination information for this product.

For more information about these three ways of resolving problems, see the
appendix on support information in Tivoli Workload Scheduler: Troubleshooting Guide,
SC32-1275.

vi IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

Chapter 1. Introduction to extending Tivoli Workload
Automation

Provides an overview and introduction to how you can extend Tivoli Workload
Automation.

You can extend Tivoli Workload Automation by creating plug-ins that add
functionality relevant to your business activities in two main areas:
v Event-driven workload automation
v Job types with advanced options

In addition, you can create Java jobs that implement a Java project of your creation
on the target workstation.

Event-driven workload automation

Event-driven workload automation is a feature of Tivoli Workload Scheduler which
you use to trigger Tivoli Workload Scheduler or external actions when Tivoli
Workload Scheduler events or external events occur.

Event actions are started automatically when they are triggered because a certain
event condition took place. An event condition and the corresponding action are
normally defined in an event rule. When a rule is active, this means that a
monitoring device runs to detect if the event defined in the rule takes place. When
the event is detected, the action defined in the rule is started.

Go to http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/
com.ibm.tivoli.itws.doc_8.5.1.1/awsrgmst84.htm#dqx2evntdrivworkauto for more
information about event-driven workload automation.

Tivoli Workload Scheduler comes supplied with a useful set of event conditions
and actions which you configure into event rules. However, if these are not
sufficient for your uses, you can use the Integration Workbench to create Java
plug-ins for event conditions and event actions to perform the required tasks.

For example, suppose you want to send a Java Message Service message when a
job stream fails. You can create a Java plug-in to perform this service, implement it
in Tivoli Workload Scheduler and combine it in an event rule with the appropriate
condition in the Dynamic Workload Console.

Custom job types with advanced options

When you create a job definition you have the choice of job types between those
with standard options and those with advanced options. These latter are
implemented differently than the job types with standard options, in these ways:
v They require the dynamic agent to be installed on the workstation where they

are to be run
v They are implemented by a separate plug-in for each type.

For example, File Transfer type jobs can be run only on workstations where the
dynamic agent is installed, and are run by a File Transfer plug-in.

© Copyright IBM Corp. 2011 1

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.tivoli.itws.doc_8.5.1.1/awsrgmst84.htm#dqx2evntdrivworkauto
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.tivoli.itws.doc_8.5.1.1/awsrgmst84.htm#dqx2evntdrivworkauto

If you have a job with characteristics that cannot be accommodated within the job
types predefined in Tivoli Workload Scheduler or Tivoli Workload Scheduler for
z/OS (as appropriate), you can create a plug-in with the required characteristics.
Once implemented in the product it then becomes available for selection as a job
type in the Dynamic Workload Console.

Java jobs

When you define a new scheduling job in Tivoli Workload Scheduler or Tivoli
Workload Scheduler for z/OS, one of the job types you can choose is "Java". For
each Java job you choose to define, you identify:
v A jar containing the Java classes and methods you want to run on the target

workstation (on which the dynamic agent must be installed)
v A set of parameters to be used as input to those classes and methods

The Java project to be run can do more or less what you want it to, but to make
this option effective you must follow a set of rules, which are described in this
publication.

2 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Chapter 2. Integration Workbench

Describes the Integration Workbench of the Software Development Kit.

IBM Tivoli Workload Automation: Software Development Kit comes with an
Integration Workbench which you can use to work with the Java application
programming interface and the web services interface to develop your own
applications.

This section tells you how to install and use the Integration Workbench help. The
help contains detailed information about the tasks you can perform with the
Integration Workbench, and the detailed reference information about the methods
and classes available:

Installing the Integration Workbench
Gives an overview of the Integration Workbench installation.

The Integration Workbench (part of the Software Development Kit - SDK) runs
under Eclipse. The installation, which is fully described in the Tivoli Workload
Scheduler: Planning and Installation Guide, SC32-1273, gives you the opportunity to
install the Integration Workbench and a bundled, supported version of Eclipse in
one action. Alternatively, you can install the Integration Workbench as an Eclipse
site using an existing supported version of Eclipse available in your network.

In both cases, at the end of the installation, on the panel where you click Finish,
there is an option to display the file readmefirst.html. This contains information
about the workbench, and how to run it. This information is also given here, in
“Using the Integration Workbench help.”

For more information about Eclipse, go to http://www.eclipse.org/.

Using the Integration Workbench help
Describes how to access the Integration Workbench help facility for the Tivoli
Workload Scheduler API and plug-in projects.

To use the Integration Workbench help, do the following:
1. Launch the workbench, as follows:

Integration Workbench installed with Eclipse

UNIX Launch the following file: <TWS_home>/TWS/
IntegrationWorkbench/eclipse/eclipse

Windows
Go to Start → Tivoli Workload Scheduler → Integration
Workbench

Integration Workbench installed as Eclipse site
Open your version of Eclipse, as you normally do.

2. Select the location to save your Eclipse workspace. Eclipse requests this every
time you run it or the workbench within it, unless you check the option to save
a particular location as the default.

© Copyright IBM Corp. 2011 3

http://www.eclipse.org/

3. When the Eclipse window opens, select Help → Help Contents

4. Expand IBM Tivoli Workload Scheduler Integration Workbench

5. The options shown provide a variety of information about the Tivoli Workload
Scheduler Integration Workbench. For example, to see details of all the classes
and methods employed in the API, expand Reference and select API reference.

Note: This information can also be read by opening the following document in a
Web browser: <TWS_home>/TWS/IntegrationWorkbench/readmefirst.html

4 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Chapter 3. Tivoli Workload Scheduler event management
plug-ins

Describes the different types of event management plug-ins.

The two main objects that make up event rules are:
v Event conditions
v Actions

Event condition plug-ins

An event condition is represented by an instance of the EventCondition class,
which consists of the following:
v A pluginName, which identifies the event monitoring plug-in (or provider) that is

able to capture the event
v An eventName, which identifies the condition in the rule
v An eventType, which qualifies the event to be captured
v A filteringPredicate, which defines a filter that must be applied to the event

content in order to check that it matches the event condition
v A read-only scope attribute, which is calculated by the event plug-in when the

rule is created or updated. It includes a definition of the scope of the event
condition, which has different meanings for different types of events

An event plug-in is a collection of event types grouped because they share similar
characteristics, focus on the same operational area, or monitor similar objects.

Event action plug-ins

An action is represented by an instance of the RuleAction class, which consists of:
v A pluginName, which identifies the action plug-in (or provider)
v One or more specific action types to be run on a specific point in time defined

by responseType in the rule
v A read-only scope attribute, which is calculated by the action plug-in when the

rule is created or updated. It includes a definition of the scope of the specific
action.

An action plug-in is a collection of action types grouped because they share similar
characteristics, focus on the same operational area, or operate on similar objects.

Structure of an event condition or action

In Tivoli Workload Scheduler, event condition and action plug-ins are structured in
the following components:

TWSPluginConfiguration.xml
An XML file used to declare the event conditions or actions and the
attributes related to them.

TWSPlugin.properties
A properties file that defines the following configurable characteristics of
the plug-in:

© Copyright IBM Corp. 2011 5

v The name
v The type (condition or action)
v The Java class name that directly implements the plug-in interface

One or more Java compilation units
One of them contains a class that implements the Java interface for the
event plug-in (this class name is defined in TWSPlugin.properties). The
Java class can add features to the plug-in and can also generate events or
actions. In the sample plug-ins these features are generally included in
other compilation units contained in the same Java package.

Event management plug-in project
Describes the event management plug-in project.

A Tivoli Workload Scheduler plug-in project is a special type of Java Project that

can be identified in the Navigator view with the following icon:

To simplify the creation in Eclipse of event management plug-ins, the projects have
a specific structure and include a “Prepare for deployment” on page 10 action. This
action, starting from user-created files in the project structure, packages the plug-in
files together in a form ready to be copied onto the event processor.

“Event management plug-in project structure” describes the structure of a Tivoli
Workload Scheduler plug-in project and the contents of each folder in the project.

“Prepare for deployment” on page 10 describes how to package your new plug-ins
and deploy them to Tivoli Workload Scheduler.
v “Event management plug-in project structure”

v “Prepare for deployment” on page 10

v “Generating and sending an event” on page 10

Event management plug-in project structure
Describes the event management plug-in project structure.

6 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

The following figure shows the typical structure of an event management plug-in

project:

The structure shown is for an event condition plug-in named MailReader, but event
condition and action plug-in projects have the same structure:
v The Java classes contained in the src folder are described in “Java source tree

(src).”
v The Java Build Path of the plug-in project is described in “Java build path” on

page 8.
v The role and contents of other project folders are described in “Other project

folders” on page 8.
v The ANT build.xml file is described in “build.xml” on page 8.
v The TWSPlugIn.properties file is described in “TWSPlugin.properties” on page

9.
v The TWSPluginConfiguration.xml file is described in

“TWSPluginConfiguration.xml” on page 9.

Java source tree (src)
Describes the event management plug-in Java source tree.

When you create a plug-in project, it is set up as a Java project with separate
folders for source and class files. The source folder is named src. It contains the
Java code of the plug-in.

A Java class is also created together with the new plug-in project. This class
implements the Java interface for the event or action plug-in, as appropriate. This
class must be present in every event or action plug-in.

Follow the Java documentation (Javadocs) of the interfaces as a reference to figure
out which method to implement. For logging and tracing in your code, use
standard JSR-047 Java Logging APIs.

Chapter 3. Tivoli Workload Scheduler event management plug-ins 7

Java build path
Describes the event management plug-in Java build path.

Tivoli Workload Scheduler plug-in projects are created with the following libraries:

Default JRE System library
Even if the default JRE is set by default, remember that the IBM Tivoli
Workload Scheduler event processor uses IBM JDK version 1.5.

Use of IBM JDK version 1.5 is recommended for Tivoli Workload Scheduler
plug-in projects.

IBM Tivoli Workload Scheduler library
This library contains all the Tivoli Workload Scheduler jars required to
implement Tivoli Workload Scheduler plug-ins or to use Tivoli Workload
Scheduler APIs.

The library also defines the access rules for the classes in the jars: public
APIs are defined as Accessible, while internal classes are defined as
Discouraged.

Use of discouraged classes is marked with compiler warnings by default.
In any case the use of these classes is not supported.

Referenced libraries
These libraries contain all other classes, for example those required, in the
case of a mail reader plug-in, for downloading, accessing, and reading
mail.

Additional libraries needed for the plug-in Java code can be copied into the lib
folder and added to the Java build path.

Other project folders
Describes the event management plug-in other project folders.

Beside the standard source and class file folders, the following folders are used by
the Prepare for TWS Deployment file to package the plug-in for deployment on the
event processor.

config Use this folder to store additional configuration files (such as property
files) that the Tivoli Workload Scheduler administrator must edit for this
operation. The Prepare for TWS Deployment action copies these files into
the dist folder outside the plug-in jar. To access these files from the Java
code, load them as resources from the class loader.

doc Use this folder to store the plug-in documentation like Javadocs or
documentation about the defined events and actions.

lib Contains additional jar libraries required by the plug-in Java class. The
Prepare for TWS Deployment action copies these jars into the dist folder
for use at run time. Jars in this directory must be added manually to the
Java Build Path Libraries.

dist This is the target directory of the Prepare for TWS Deployment process.
After you have run the Prepare for TWS Deployment action from the
project menu, this folder will contain all the files that must be copied onto
Tivoli Workload Scheduler.

build.xml
Describes the event management plug-in build.xml file.

8 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

This is a standard ANT build file. You can modify it according to your needs, but
keep in mind that the dist target in the file is used by the Prepare for TWS
Deployment action.

TWSPlugin.properties
Describes the event management plug-in TWSPlugin.properties file.

TWSPlugin.properties is a properties file that is read by Tivoli Workload Scheduler
when the plug-in is loaded.

When a plug-in project is created, it already contains a TWSPlugin.properties file
set with the information collected from the new plug-in project wizard. You will
not need to modify it unless any of the information is changed later.

TWSPlugin.properties defines the following configurable characteristics of the
provider:
v The plug-in name. It must be the same value returned by the plug-in Java class

with the getPluginName method, and the same value defined as plug-in name in
TWSPluginConfiguration.xml.

v The type: event or action.
v The Java class name that directly implements the plug-in interface.

Example

This is a sample TWSPlugin.properties file for a plug-in named MailReader.
TWSPlugIn.name=MailReader
TWSPlugIn.type=event
TWSPlugIn.className=mycompany.mailreader.MailReaderPlugin

“Java source tree (src)” on page 7

TWSPluginConfiguration.xml
Describes the event management plug-in TWSPluginConfiguration.xml file.

TWSPluginConfiguration.xml is used to declare all the events or actions provided
by the plug-in.

The file defines the list attributes for the events or actions, their syntactical
constraints, and - for events only - the permitted filtering conditions.

When deployed on Tivoli Workload Scheduler, this file is used to drive the
configuration of the event filtering predicates or action attributes inside event
rules.

Edit this file to specify the structure of the events or actions provided by the
plug-in.

Creating a plug-in project from scratch
Describes how to create an event management plug-in project from scratch.

Using the Integration Workbench you can create plug-in projects from scratch. You
supply the basic information about the project you want to create and the wizard
does the rest.

Chapter 3. Tivoli Workload Scheduler event management plug-ins 9

Creating a project from a plug-in example
Describes how to create an event management plug-in project from an example.

Using the Integration Workbench you can create projects based on provided
examples. Using this method you avoid the need to create the full plug-in project
structure from scratch. You choose an example which most approximates your
requirements and then modify it accordingly.

The examples you can choose from
Describes the examples available to create an event management plug-in project.

The examples you can select from are as follows:

MailReaderPlugin
Generates a Tivoli Workload Scheduler event when an email is received.

SmsSenderPlugin
Generates and sends an SMS.

Prepare for deployment
Describes how to prepare to deploy an event management plug-in.

This action is available on the menu of Tivoli Workload Scheduler plug-in projects.
It runs the dist target of the build.xml ANT build file in the project.

This action places in the project's dist folder the files that you must later copy
onto the Tivoli Workload Scheduler event processor. They are:
v A jar file with the Java class files and a copy of TWSPlugin.properties and

TWSPluginConfiguration.xml

v A copy of the user jar libraries present in the lib folder, if any
v A copy of the configuration file present in the config folder, if any
v A doc folder with your plug-in documentation in html

“build.xml” on page 8
“Other project folders” on page 8

Generating and sending an event
Describes the different methods you can use to generate and send an event.

You can use several ways to generate events and to send them to Tivoli Workload
Scheduler. Some of them are:
v Coding the instructions directly in the definition of your plug-in
v Using the sendevent action externally from the definition of your plug-in in one

of the following ways:
– Use the sendEvent method invoked by Java classes
– Run the conman sendevent command

Connect to Tivoli Workload Scheduler
Describes how to connect to Tivoli Workload Scheduler from an event management
plug-in.

Connect to Tivoli Workload Scheduler with the following code:

10 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

private Subject getSubject(String serverName,
String serverPort,
String uid,
String pwd){

Subject subject = null;
try {

LoginContext lc = null;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,INITIAL_CONTEXT_FACTORY);
env.put(Context.PROVIDER_URL,"corbaloc:iiop:"+serverName+":"+serverPort);

final InitialContext initialContext = new InitialContext(env);
Object obj = initialContext.lookup("");

lc = new LoginContext(JAAS_MODULE, new WSCallbackHandlerImpl(uid,pwd));
lc.login();

subject = lc.getSubject();

} catch(javax.naming.NoPermissionException exc) {
System.err.println("[TWSConn] - Login Error: "+exc);

} catch(Exception exc) {
System.err.println("[TWSConn] - Error: "+exc);

}
return subject;

}

The following user input data is required:
v serverName: your Tivoli Workload Scheduler installation name
v serverPort: usually 33116 or 33117
v uid: your Tivoli Workload Scheduler user ID
v pwd: your Tivoli Workload Scheduler account password

Reference material
Describes where to look for reference material on event management plug-ins.

The Integration Workbench help contains all the reference material you require.

To access this material, take the following steps:
1. From the Integration Workbench select Help → Help Contents

2. Expand Tivoli Workload Scheduler Integration Workbench and then
Reference

3. Obtain reference material for any of the following:
v What information is required to run the wizards that create plug-in projects,

either from scratch or from an example
v Information about the libraries of object and runtime jars
v Description of the XML schemas
v A link to information about the Tivoli Event Integration Facility
v Full reference for every Java class and method used in the plug-in

Chapter 3. Tivoli Workload Scheduler event management plug-ins 11

12 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Chapter 4. Custom job type with advanced options plug-in

Provides an overview of the custom job-type with advanced options plug-in.

In Tivoli Workload Scheduler and Tivoli Workload Scheduler for z/OS, you can
create jobs of different types. The job type determines the characteristics of the job.
For example, a file transfer type job has all the characteristics necessary to perform
a file transfer. When you select to create a job of this type, you are invited to enter
the file transfer parameters (which file, from where, to where) in a dedicated panel
on the Dynamic Workload Console.

When you choose a job type in the Dynamic Workload Console the job types are
divided into two groups:

Jobs with standard options
The basic jobs that run scripts and commands.

Jobs with advanced options
These run more specialized jobs. They are implemented with a plug-in,
and can be run only on workstations where the dynamic agent has been
installed, even if they are not to be scheduled dynamically. In the Dynamic
Workload Console, you choose from a set of these job types which cover
the more common activities that an organization might want to run (for
example, File Transfer, Web Services, Database, and Java). However, if you
want to schedule a type of job that has different requirements from any of
those pre-defined job types, you can create your own plug-in to add a new
job type appropriate to your business needs. Do this with the Integration
Workbench.

To perform the operations included in custom job-type with advanced options
plug-ins, you need the run access defined in the security file on the workstation on
which you plan to run the plug-in. The following conditions apply:
v If the operation is performed on the Tivoli Workload Scheduler Connector,

display and run access is required on the CPU corresponding to the workstation
where the job is created.

v If the operation is performed on the workstation where the job runs, display
access is required on the workload broker workstation.

For more information about the security file, see Configuring the security file. For
more information about defining the run access keyword, and the object access
keywords, see Access keywords for composer actions.

The anatomy of a custom job-type plug-in

A custom job-type plug-in consists of:
v A Dynamic Workload Console panel where the user enters the job definition

details
v The server part of the plug-in which performs optional validation and creates

the job definition
v The agent part of the plug-in which runs the job on the target workstation

© Copyright IBM Corp. 2011 13

The steps to create a custom job type plug-in

The creation of a custom job type plug-in requires the following steps:

1. Design a graphic interface panel
You generate your own panel for the Dynamic Workload Console to be
used as an input form for your custom job type. You use the Abstract User
Interface Markup Language (AUIML) VisualBuilder tool to create a user
interface panel. You can add:
v Buttons
v Check boxes
v Combo boxes
v Edit boxes
v List boxes
v Groups
v Radio boxes
v Dynamic lists
v Dynamic pairs lists

Note the following restrictions:
v When you name your GUI objects, do not use the tws prefix which is

reserved for internal use. For the same reason, avoid using the following
terms as distinct names (but they can be parts of strings):
– name
– member
– workstation
– job
– jobstream

v No two level of nesting is allowed for check box or radio groups. Also,
you cannot place required fields in two level nested groups.

If you include user name and password fields in your panels, you can take
advantage of the following widget (provided with the product) that
enables the user (who would define the job in most cases) to choose the
source for the requested password. The widget is displayed by clicking on
an ellipsis (...) button placed next to the password field and it looks as
follows:

14 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

|
|
|
|
|
|
|

where the choices are as follows:

Password
Takes the password value entered in the Password field.

User

Adds the ${password:value_of_user_name_field} string in the
password field.

On dynamic agents
It is resolved at runtime with the password value defined
for User Name in the Tivoli Workload Scheduler database
using either the Windows User panel or the composer user
command (Windows user definition).

You can also specify the user (and its password) of another
workstation if it is defined in the database. See the
description of the Variable button.

On Tivoli Workload Scheduler for z/OS agents
It is resolved at runtime with the password value defined
for User Name in the Tivoli Workload Scheduler for z/OS
database using the USSREC initialization statement, where
the value of User Name is defined by the USRNAM parameter
and the password by USRPSW.

The Windows user definition can be used on all operating systems.

Agent User

Adds the ${agent:password.value_of_user_name_field} string in
the password field.

It is resolved at runtime with the password value defined for User
Name locally on the dynamic agent or Tivoli Workload Scheduler for

Chapter 4. Custom job-type with advanced options plug-in 15

|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

z/OS agent that will run the job (or on any agent of a pool or
dynamic pool that may run the job) with the param command.

Variable

It is resolved at runtime with the value defined for the variable
you enter in the field (using the ${variable_name} notation).

On dynamic agents
The variable must have been defined in the Tivoli
Workload Scheduler database using either the Variable
Table panel or the composer vartable command.

You can also specify the user of a different workstation (as
long as it was defined as Windows user in the database)
and enter the following string for the password:
${password:workstation_name#value_of_user_name_field}

On Tivoli Workload Scheduler for z/OS agents
The variable must have been defined in the Tivoli
Workload Scheduler for z/OS database using either the
Variable Table panel or the corresponding ISPF panels.

You must add the following statement in the coding of the password field
to display the widget and associate the chosen option to the field:
BINDING="passwordSelector#modeling.widgets.password.PasswordSelector:<userName>"

2. Optionally add buttons to the panel to perform service actions
You can add buttons to your custom-made panels in the Dynamic
Workload Console, for example to perform the following service actions:
v Open a pick list of possible values for a job parameter from the

connector
v Open a pick list of possible values for a job parameter from an agent

When you add the button you associate the corresponding action in an
ACTION field within the plug-in. The definition of an action requires the
following:
v A definition of the action in the AUIML plug-in definition
v An option which determines whether the action is to be performed on

the connector (as an immediate and direct result of clicking the button)
v A method which performs the required action

One or more of the following actions can be triggered:
v A field can be put in an error state with a message explaining what is

wrong
v A pop-up menu can be displayed
v Diagnostic information can be traced on the Tivoli Integrated Portal

server
v A pick list can be displayed

3. Create a plug-in project
Use the Integration Workbench to generate a plug-in project.

This step consists in creating a package with your plug-in files and all you
need to deploy them. Do the following:
1. On the toolbar select File→New→Project.... The New Project window

opens.

16 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

|
|

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|

2. In the list of wizards double-click first on IBM Tivoli Workload
Scheduler and then on TWS Executor Project. The TWS Executor
Project wizard opens.

3. Enter a name for your project.
4. Enter a package name for the plug-in.
5. Enter the name of the job executor related to the plug-in.
6. Enter the panel_filename.AUIML name (or use the search tool).
7. Enter the names of the one or more panel_filename.properties files (or

use the search tool to select them).
8. Enter the name of the related icon file (or use the search tool). The icon

file can be of type PNG only.
9. Click Finish.

The wizard creates the executor project and generates:
v An .XSD file that defines the schema of the job definition
v All the classes required to map the JSDL file
v A labels.properties file where you can insert your labels

To insert more labels, edit labels.properties located in the RESOURCES
folder for the project. The file already includes a default label. Add each
localized label in the format:
language code = label

using the same locale used in the corresponding properties file.

The plug-in ID is the plug-in name in lower case.

Edit the plug-in project files
Edit the files created for the project:
v Give a name to the panel that will be shown in the New � Job

Definition drop-down menu on the Dynamic Workload Console (you
can add localized names as well)

v Set the plug-in version if you do not want to use the default of 1.0.0
v Add messages, including any localized messages, that you want to refer

to in your coding
v Code any validation that you want performed, both on input and on

execution
v Create pick lists for field values
v Code any special output requirements you need for this job type

4. Test the plug-in
Use the test project (automatically generated by the TWS Executor Project
wizard when you created the plug-in project) to test the plug-in.

5. Deploy the plug-in
Export the packaged plug-in files from the Eclipse workbench to a folder
in your, or another, computer so that you can then install them on the
agents and make them operational. Do the following:
1. In the Package Explorer panel right click on the package name and

select Export....
2. In the Export window double-click first on IBM Tivoli Workload

Scheduler and then on TWS Executor. A list of defined TWS Executor
projects is displayed.

Chapter 4. Custom job-type with advanced options plug-in 17

3. Select the project in the list and enter the destination folder in your or
another computer.

4. Click Finish.

This results in the creation of a jar file named plug-in_id_version.jar (where
plug-in_id is the name of your plug-in in lower case) in the destination
folder of the computer you selected. This name cannot be modified.

6. Install the plug-in on the master domain managers, dynamic domain
managers, and related backup workstations, if any

Copy the jar file of the plug-in into the installation_dir/TWS/
applicationJobPlugIn path master domain managers, dynamic domain
managers, and related backup workstations, if any. Restart the embedded
WebSphere Application Server to make the changes effective.

7. Install and configure the plug-in on the agents
Do the following:
1. Copy the plug-in into the ../TWA/TWS/JAVAEXT/eclipse/plugins path of

every dynamic agent where you want to run it.
2. On every agent edit the config.ini file located in path

../TWA/TWS/JAVAEXT/eclipse/configuration by adding the line:
plug-in_id@4:start

where plug-in_id is the name in lower case of your plug-in.

Note: You can install only one version of the same plug-in on the master domain
manager, on the dynamic domain manager, and on the dynamic agents
where you want the plug-in to run. If you create a new version of the
plug-in, install it on the master domain manager, on the dynamic domain
manager, and on the dynamic agents and remove the previous version.

Structure of custom job-type plug-in
Provides an overview of the structure of a custom job-type plug-in.

18 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

When you create a custom job-type plug-in project in the Integration Workbench,
you see something similar to the following figure:

The following sections give some outline information about how you must modify
the project for your needs.

<ProjectName>Action.java

Chapter 4. Custom job-type with advanced options plug-in 19

This file contains the classes which control the job validation. As can be
seen from the screen capture, you can code validation to be performed
when the job is defined (typically, semantic validation) and when the job is
run (for example checking that a file exists).

Father of <ProjectName>Action.java
Contains various useful material including the following:
v The logger
v A method for discovering the job log name
v The possibility of customizing the success message label
v The possibility to change the exit codes
v Methods for Canceling the job

com.<CompanyName>.<ProjectName>.msg
Contains the properties file where you add the messages. Messages can be
localized by adding the locale code.

JSDL-<PROJECTNAME>.xsd
Contains the XML schema of the panel you created. It is not normally
necessary to edit the schema, but it can be a useful point of reference.

MANIFEST.MF
This file records the version of your plug-in project.

labels.properties
Where you assign the name of your job type, as you want it to be
displayed on the Create Workload Definition � New � Job Definition
drop-down in the Dynamic Workload Console. Localized versions can also
be specified here, and are automatically used when the console is in use on
systems with the corresponding locale set.

20 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Developing the plug-in

During the process of development, you might decide to modify the input data
panel. In this event, you can use the option to regenerate the plug-in using the
modified panel. Any coding you have added is treated as follows:
v If you have removed a field from the panel you must delete any associated

coding you have added, manually
v If you have modified a field in the panel you must check whether any

associated coding still applies and amend it if not
v If you have added fields, supply any additional coding required

Testing the plug-in

A test project is automatically created when you create the plug-in project. This
contains a file called job.xml which can be launched as a Java application to run a
Tivoli Workload Scheduler job. Alternatively, the file can be used as a job definition
template in composer.

Chapter 4. Custom job-type with advanced options plug-in 21

22 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Chapter 5. Java jobs

Describes how to create Java jobs which extend the capability of Tivoli Workload
Automation.

In Tivoli Workload Scheduler and Tivoli Workload Scheduler for z/OS, you can
define several types of jobs with advanced options. One of these types is called
"Java" (from the Dynamic Workload Console select Workload �Design � Create
Workload Definitions, select an engine, and then New � Java.)

When you define a job of this type you supply the following:
v A jar prepared by you, containing the classes and methods you want to

implement when the job is run
v A set of parameters which provide runtime information to the job

The following tells you how to prepare the jar. It also describes how you can use
the Get Class Information button, which is displayed on the interface, to obtain
information about the classes in the selected jar.

Creating Java job jar
Describes how to create the jar used with a Java job.

A Java job can use any jar that is created according to the following rules and
procedure.

1. Include Tivoli Workload Automation jar in build path

The class which implements the Dynamic Workload Console interface is in the
following jar:

On the server
<TWA_home>/TWA/TWS/applicationJobPlugIn/java_1.1.0.jar

On a dynamic agent
<TWA_home>/TWA/TWS/JavaExt/eclipse/plugins/java_1.1.0.jar

Note: The token "1.1.0" is a version number, and might change after a fix
pack has been installed.

This jar must be included in your Java build path.

2. Create your class which implements TWSExecutable

Create a class which implements a class called TWSExecutable, which has a
signature as follows:
public abstract interface TWSExecutable
{

public abstract void validateParameters(Parameters paramParameters)
throws Exception;

public abstract void execute(Parameters paramParameters)
throws Exception;

}

© Copyright IBM Corp. 2011 23

Note: This class can be used on agents either at V8.5.1 Fix pack 1 or V8.6.

This class implements two methods:

validateParameters
This is the method which is called first when a Java job is executed. It
validates the parameters input when the job was defined. If an exception
occurs it is written to the job log.

execute
This is the method which actually runs the job.

The following are methods of the validateParameters class:

getParameter
Supplied with the argument of one of the parameters, it returns the actual
value.

getParameterList
Returns a list of all the parameters defined as name/value pairs.

getOutputFile
Returns the path of the output job log.

Note: If you want to write to the log you must always remember to close
it.

3. Optionally supply information to the person defining the job

The interface includes a button Get Class Information. To implement this button
use the class TWSExecutableInformation, which has a signature as follows:
public abstract interface TWSExecutableInformation
{

public abstract String getInformation();
}

Note: This class can be used only on V8.6.

This class is implemented when the user clicks the Get Class Information button,
so you can use it to supply help information about the job in the jar that the user
has selected.

4. Include any required libraries

If your Java job requires any libraries or other files, copy them to the folder where
you have saved the jar. When the person defining the job identifies the jar, the
product loads not just the jar, but also everything else in the folder on the agent.

The following is an example of the code discussed in this topic:
package com.test.Trial;

import java.io.BufferedWriter;
import java.io.FileWriter;

import com.ibm.scheduling.agent.java.jobexecutor.TWSExecutable;
import com.ibm.scheduling.agent.java.jobexecutor.TWSExecutableInformation;
import com.ibm.scheduling.agent.java.parametersdomain.Parameters;

public class Trial implements TWSExecutable, TWSExecutableInformation{

24 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

/*
* Writes the parameter "parm1" to the log
*/

@Override
public void execute(Parameters arg0) throws Exception {
String parm1 = arg0.getParameter("parm1");
String filename = arg0.getOutputFile();

BufferedWriter out = new BufferedWriter(new FileWriter(filename));
out.write(parm1);
out.close();

}

/*
* Validates the parameter "parm1", throwing the exception to the log
*/

@Override
public void validateParameters(Parameters arg0) throws Exception {
String parm1 = arg0.getParameter("parm1");
if(parm1.equals("XXX"))
throw new Exception("The parameter parm1 is not correct");

}

/*
* Tells the user of the interface who has clicked the Get Class
* Information button what the class does.
*/

@Override
public String getInformation() {
String msg = "This class writes the parm1 parameter in the output log";

return msg;
}

}

Chapter 5. Java jobs 25

26 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this publication
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this publication. The furnishing of this publication does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2011 27

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this publication and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

28 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 29

30 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

Index

A
accessibility vi

C
conventions used in publications vi
custom job-type plug-ins 13, 19

D
Dynamic Workload Console

accessibility vi

E
education vi
event management

generating events 10
sending events 10

event management plug-ins 5
build.xml file 9
connecting to Tivoli Workload

Scheduler
creating from scratch 10

deployment preparation 10
Java build path 8
Java source tree 7
other project folders 8
project 6

creating from example 10
creating from scratch 9
templates (examples) 10

reference material 11
structure 7
TWSPlugin.properties file 9
TWSPluginConfiguration.xml file 9

G
generating events 10
glossary vi

I
installing

Integration Workbench 3
Integration Workbench

installing 3
Integration Workbench help

using 3

J
Java

jobs 23
job types

Java 23

P
plug-ins

custom job-type 13, 19
event management 5

build.xml file 9
deployment preparation 10
Java build path 8
Java source tree 7
other project folders 8
project 6
project, creating from example 10
project, creating from scratch 9
project, templates (examples) 10
reference material 11
structure 7
TWSPlugin.properties file 9
TWSPluginConfiguration.xml

file 9
event management,

connecting to Tivoli Workload
Scheduler 10

publications vi

S
sendEvent action, method and

command 10
sending events 10

T
technical training vi
Tivoli technical training vi
Tivoli Workload Automation

extending 1
training

technical vi

U
using

Integration Workbench help 3

© Copyright IBM Corp. 2011 31

32 IBM Tivoli Workload Automation: Developer's Guide: Extending Tivoli Workload Automation

����

Product Number: 5698-A17, 5698-WSH, and 5698-WSE

Printed in USA

SC14-7623-00

	Contents
	About this publication
	What is new in this publication
	What is new in this release for extending Tivoli Workload Automation
	What is new in this publication
	Who should read this publication
	Publications
	Accessibility
	Tivoli technical training
	Support information

	Chapter 1. Introduction to extending Tivoli Workload Automation
	Chapter 2. Integration Workbench
	Installing the Integration Workbench
	Using the Integration Workbench help

	Chapter 3. Tivoli Workload Scheduler event management plug-ins
	Event management plug-in project
	Event management plug-in project structure
	Java source tree (src)
	Java build path
	Other project folders
	build.xml
	TWSPlugin.properties
	TWSPluginConfiguration.xml

	Creating a plug-in project from scratch
	Creating a project from a plug-in example
	Prepare for deployment
	Generating and sending an event

	Connect to Tivoli Workload Scheduler
	Reference material

	Chapter 4. Custom job type with advanced options plug-in
	Structure of custom job-type plug-in

	Chapter 5. Java jobs
	Creating Java job jar

	Notices
	Trademarks

	Index
	A
	C
	D
	E
	G
	I
	J
	P
	S
	T
	U

