
IBM Tivoli Workload Scheduler

Scheduling Workload Dynamically
Version 8 Release 6

SC23-9856-03

IBM

IBM Tivoli Workload Scheduler

Scheduling Workload Dynamically
Version 8 Release 6

SC23-9856-03

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 61.

This edition applies to version 9, release 2, modification level 0 of Tivoli Workload Scheduler (program number
5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

About this guide vii
Who should read this publication vii
Publications vii
Accessibility vii
Tivoli technical training vii
Support information viii

Chapter 1. Scheduling jobs 1
Creating Tivoli Workload Scheduler jobs managed by
dynamic workload broker 1
Using variables in dynamic workload broker jobs . . 1
Using variables in Workload Broker jobs 3
Defining affinity relationships 5
Alias definition in Tivoli Workload Scheduler . . . 5
Monitoring and canceling jobs 6

Chapter 2. Identifying the resources for
jobs 9
Checking physical resources on computers 10
Creating logical resources. 12
Creating resource groups 14

Chapter 3. Writing JSDL definitions
with the Job Brokering Definition
Console 17
Job definitions 19
Resources in the job definition 22
Using variables in job definitions 26
Using JSDL job definition templates 26
Scenarios for creating job definitions 29

Scenario: Creating a job definition using a
computer resource group 30
Scenario: Creating a job definition using a logical
resource group 30

Scenario: Creating a job definition for a job to
run on x86 processors 31
Scenario: Creating a job definition for a script to
run on a specific operating system. 33
Scenario: Alternative operating system
requirements 34

Chapter 4. Submitting and tracking
jobs 37
Submitting jobs with affinity relationships 37

Submitting a job with affinity from the Dynamic
Workload Console 37
Submitting a job with affinity from the command
line 38

Submitting jobs with variables 38
Submitting a job with variables from the
command line 38

Job statuses 39
Monitoring submitted jobs 39

Chapter 5. Using the command line
interface 43
Command-line configuration file 44
jobsubmit command - Submitting jobs 47
jobquery command - Performing queries on jobs . . 49
jobdetails command - Viewing details on jobs . . . 52
jobcancel command - Canceling jobs 54
jobstore command - Managing job definitions . . . 55
jobgetexecutionlog command - Viewing job output 57

Notices 61
Trademarks 62

Index 65

© Copyright IBM Corp. 1999, 2012 iii

iv Tivoli Workload Scheduler: Scheduling Workload Dynamically

Figures

1. Computer Search Results page 11

© Copyright IBM Corp. 1999, 2012 v

vi Tivoli Workload Scheduler: Scheduling Workload Dynamically

About this guide

Provides an overview of the guide, with information about changes made to it
since the last release, and who should read it. It also supplies information about
obtaining resources and support from IBM.

This guide explains how to dynamically allocate resources to run your workload
using the services of the dynamic workload broker component of Tivoli Workload
Scheduler.

Dynamic workload broker is an on-demand scheduling infrastructure which
provides dynamic management of your environment.

Who should read this publication
Describes the type of user who should read the documentation.

This guide is intended for administrators responsible for defining user roles and
performing high-level tasks and for operators responsible for creating and
submitting jobs.

Readers should be familiar with the following topics:
v Working knowledge of IBM Tivoli Workload Scheduler
v PC and UNIX operating systems
v Graphical and command line interfaces

Publications
The Tivoli Workload Automation product is supported by a set of publications.

For a list of publications in the Tivoli Workload Automation product library, see
Publications under Reference in the product documentation.

For a list of terms used in the Tivoli Workload Automation product, see Glossary
under Reference in the product documentation.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate all
features of the graphical user interface.

For full information with respect to the Dynamic Workload Console, see the
Accessibility Appendix in the IBM Tivoli Workload Scheduler User’s Guide and
Reference.

Tivoli technical training
Tivoli provides technical training.

© Copyright IBM Corp. 1999, 2012 vii

For Tivoli technical training information, refer to the following IBM Tivoli
Education website:

http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a
problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.
v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see the
appendix on support information in Tivoli Workload Scheduler: Troubleshooting Guide.

viii Tivoli Workload Scheduler: Scheduling Workload Dynamically

http://www.ibm.com/software/tivoli/education

Chapter 1. Scheduling jobs

This chapter explains how to define and submit jobs.

This guide applies to customers which have been using Tivoli Workload Scheduler
version 8.5.1 and have now moved to version 8.6.

Creating Tivoli Workload Scheduler jobs managed by dynamic
workload broker

This section explains how to create Tivoli Workload Scheduler jobs to be managed
by dynamic workload broker.

To create a Tivoli Workload Scheduler job and have resources allocated
dynamically, perform the following steps:
1. Create a JSDL job definition in dynamic workload broker using the Job

Brokering Definition Console. This job contains the instructions or program to
be run.

2. Create a job to be submitted in Tivoli Workload Scheduler. This job contains the
reference to the job in dynamic workload broker defined in step 1. Define the
Tivoli Workload Scheduler job as follows:
a. In the Dynamic Workload Console, from the navigation bar, click

Administration > Workload Design > Manage Workload Definitions.
b. Select New > Job Definition > Cloud > Workload Broker.
c. In the General tab, in the Workstation field specify the workload broker

workstation.
d. In the Task tab, in the Workload Broker job name field specify the name of

the JSDL job definition you created in step 1.

When you submit the Tivoli Workload Scheduler job, this job causes the referenced
job to be submitted on dynamic workload broker. This method is known as
submission by reference because you only need to reference the job you want to
submit, without having to write or import the whole job in Tivoli Workload
Scheduler.

Using variables in dynamic workload broker jobs
This section explains how to add variables to jobs you plan to run with dynamic
workload broker.

When importing jobs from Tivoli Workload Scheduler, you can add variables to
obtain higher flexibility for your job.

The variables are assigned a value when you submit the job in Tivoli Workload
Scheduler. The supported Tivoli Workload Scheduler variables are as follows:

Table 1. Supported Tivoli Workload Scheduler variables in JSDL definitions.

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.host.workstation Name of the host workstation

tws.job.date Date of the submitted job.

© Copyright IBM Corp. 1999, 2012 1

Table 1. Supported Tivoli Workload Scheduler variables in JSDL definitions. (continued)

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.job.fqname Fully qualified name of the job
(UNISON_JOB)

tws.job.ia Input arrival time of the job

tws.job.interactive Job is interactive. Values can be true or
false. Applies only to backward-compatible
jobs.

tws.job.logon Credentials of the user who runs the job
(LOGIN). Applies only to
backward-compatible jobs.

tws.job.name Name of the submitted job

tws.job.num UNISON_JOBNUM

tws.job.priority Priority of the submitted job

tws.job.promoted Job is promoted. Values can be YES or No.
For more information about promotion for
dynamic jobs, see the section about
promoting jobs scheduled on dynamic pools
in Tivoli® Workload Scheduler: User's Guide and
Reference.

tws.job.recnum Record number of the job.

tws.job.resourcesForPromoted Quantity of the required logical resources
assigned on a dynamic pool to a promoted
job. Values can be 1 if the job is promoted or
10 if the job is not promoted. For more
information about promotion for dynamic
jobs, see the section about promoting jobs
scheduled on dynamic pools in Tivoli
Workload Scheduler: User's Guide and
Reference.

tws.job.taskstring Task string of the submitted job. Applies
only to backward-compatible jobs.

tws.job.workstation Name of the workstation on which the job is
defined

tws.jobstream.id ID of the job stream that includes the job
(UNISON_SCHED_ID)

tws.jobstream.name Name of the job stream that includes the job
(UNISON_SCHED)

tws.jobstream.workstation Name of the workstation on which the job
stream that includes the job is defined

tws.master.workstation Name of the master domain manager
(UNISON_MASTER)

tws.plan.date Start date of the production plan
(UNISON_SCHED_DATE)

tws.plan.date.epoch Start date of the production plan, in epoch
format (UNISON_SCHED_EPOCH)

tws.plan.runnumber Run number of the production plan
(UNISON_RUN)

2 Tivoli Workload Scheduler: Scheduling Workload Dynamically

If you want to create a dynamic workload broker job to be submitted from Tivoli
Workload Scheduler, you can add one or more of the variables listed in Table 1 on
page 1 in the Variables field of the Overview pane as well as in the Script field of
the Application pane in the Job Brokering Definition Console.

If you plan to use the variables in a script, you also define the variables as
environment variables in the Environment Variables field in the Application pane.
Specify the Tivoli Workload Scheduler name of the variable as the variable value.
You can find the Tivoli Workload Scheduler name of the variable in the Variables
inserted in the dynamic workload broker job definition column.

You then create a Tivoli Workload Scheduler job which contains the name of the
job definition, as explained in “Creating Tivoli Workload Scheduler jobs managed
by dynamic workload broker” on page 1.

The following example illustrates a JSDL file with several of the supported Tivoli
Workload Scheduler variables defined:
...<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod
/scheduling/1.0/jsdl" xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdle"
description="This jobs prints UNISON Variables received
from TWS in standard OutPut "
name="sampleUNISON_Variables">

<jsdl:annotation>This jobs prints UNISON Variables
received from TWS in
standard OutPut </jsdl:annotation>

<jsdl:variables>
<jsdl:stringVariable name="tws.jobstream.name">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.fqname">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.master.workstation">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.runnumber">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.date">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.date.epoch">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.logon">none</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable output="${tws.plan.runnumber}">

<jsdle:environment>
<jsdle:variable name="UNISON_SCHED">${tws.jobstream.name}

</jsdle:variable>
<jsdle:variable name="UNISON_JOB">${tws.job.fqname}

</jsdle:variable>
<jsdle:variable name="UNISON_MASTER">${tws.master.workstation}

</jsdle:variable>
<jsdle:variable name="UNISON_RUN">${tws.plan.runnumber}

</jsdle:variable>
<jsdle:variable name="UNISON_SCHED_DATE">${tws.plan.date}

</jsdle:variable>
<jsdle:variable name="UNISON_SCHED_EPOCH">${tws.plan.date.epoch}

</jsdle:variable>
<jsdle:variable name="LOGIN">${tws.job.logon}

</jsdle:variable>
</jsdle:environment>

...

Using variables in Workload Broker jobs
This section explains how to define and use variables in jobs for additional
flexibility.

Chapter 1. Scheduling jobs 3

Dynamic workload broker supports the use of variables in jobs for additional
flexibility. You can assign values to the variables or leave them blank, so that you
can define the value when the job is submitted.

When you define jobs that will be processed through dynamic scheduling, you can
include variables that can be used at run time to valorize or override the variables
defined in the JSDL job definition.

You define the variables in the Task String section of the Tivoli Workload
Scheduler job, as described in the following example:
jobName -var var1Name=var1Value,...,varNName=varNValue

To define variables in the Tivoli Workload Scheduler job, perform the following
steps:
1. Create a JSDL job definition using the Job Brokering Definition Console.
2. Define the variables for the job. For example, you can define the memory

variable to specify the amount of memory required for the job to run.
3. Move to the Resources tab, Hardware Requirements section and type the

name of the variable in the Exact value field in the Physical Memory section.
When the job is submitted, the value assigned to the memory variable defines
the amount of physical memory.

4. Save the job definition in the Job Repository database.
5. Create a job to be submitted in Tivoli Workload Scheduler. This job contains

the reference to the job in dynamic workload broker created in step 1. Define
the Tivoli Workload Scheduler job as follows:
a. In the Dynamic Workload Console, from the navigation bar, click

Administration > Workload Design > Manage Workload Definitions.
b. Select New > Job Definition > Cloud > Workload Broker.
c. In the General tab, in the Workstation field specify the workload broker

workstation.
d. In the Task tab, in the Workload Broker job name field specify the name

of the JSDL job definition you created in step 1.
6. Add the Tivoli Workload Scheduler job to a job stream.
7. Submit or schedule the Tivoli Workload Scheduler job using either the

Dynamic Workload Console or conman.
8. After any existing dependencies are resolved, the master domain manager

submits the Tivoli Workload Scheduler job to dynamic workload broker via
the workload broker workstation.

9. The workload broker workstation identifies the job definition to be submitted
based on the information on the Task String section of the Tivoli Workload
Scheduler job. It also creates an alias which contains the association with the
job.

10. The job definition is submitted to dynamic workload broker with the value
specified for the memory variable.

11. Dynamic workload broker manages and monitors the whole job lifecycle.
12. Dynamic workload broker returns status information on the job to the

workload broker workstation, which communicates it to the Master Domain
Manager. The job status is mapped to the Tivoli Workload Scheduler status as
described in Table 2 on page 6.

4 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Defining affinity relationships
Affinity relationships cause jobs to run on the same resource. The resource on
which the first job runs is chosen dynamically by dynamic workload broker, and
the affine job or jobs run on the same resource.

In dynamic workload broker, you can define affinity relationships between two or
more jobs when you want them to run on the same resource. When submitting the
job from the Tivoli Workload Scheduler environment, you can define affinity that
will be resolved by dynamic workload broker by adding an affinity definition to
the Task String section of the Tivoli Workload Scheduler job in one of the
following ways:
v Identifying affine job with the dynamic workload broker job ID
v Identifying affine job with the dynamic workload broker job alias
v Identifying affine job with the Tivoli Workload Scheduler job name

Identifying affine job with the dynamic workload broker job ID
jobName [-var varName=varValue,...,]-affinity jobid=jobid

Identifying affine job with the dynamic workload broker job alias
jobName [-var varName=varValue,...,]-affinity alias=alias

where

jobid Is the ID dynamic workload broker assigns when the job is submitted.

alias Is one of the following:
v The alias defined by the user at submission time for dynamic workload

broker jobs.
v The alias automatically generated by the workload broker workstation

when the job is submitted from Tivoli Workload Scheduler.

Identifying affine job with the Tivoli Workload Scheduler job name
The jobs must belong to the same job stream
jobName [-var varName=varValue,...,]-twsaffinity jobname=twsJobName

where

twsJobName
Is the name of the instance of the Tivoli Workload Scheduler job
with which you want to establish an affinity relationship.

Alias definition in Tivoli Workload Scheduler
When the Tivoli Workload Scheduler job is submitted to the workload broker
workstation, an alias is automatically generated. This alias uniquely identifies the
job in the Tivoli Workload Scheduler environment and is displayed in the Dynamic
Workload Console.

The syntax of the alias is as follows:
cpuschedname#schedname.jobname.JNUM-nnnn

where:

cpuschedname
Is the job stream workstation.

Chapter 1. Scheduling jobs 5

schedname
Is the job stream name

jobname
Is the job name.

JNUM Is the job number created by Tivoli Workload Scheduler before submitting
the job. Identifies a specific instance of a job within a given production
date.

Monitoring and canceling jobs
This section explains how you can monitor and cancel jobs using the Dynamic
Workload Console or the conman command.

You can use the Dynamic Workload Console or the conman command line to
monitor the status of submitted jobs, retrieve the job output, and cancel jobs if
necessary, as you normally do in Tivoli Workload Scheduler. You can also use the
Dynamic Workload Console to view their status since it provides more detail on
jobs processed through dynamic workload broker.

Job statuses in dynamic workload broker correspond to the following statuses in
Tivoli Workload Scheduler:

Table 2. Status mapping between dynamic workload broker and Tivoli Workload Scheduler

Dynamic workload broker job status Tivoli Workload Scheduler job status

1. Run failed

2. Unable to start

3. Resource allocation failed

4. Unknown

1. ABEND

2. FAILED

3. FAILED

4. ABEND

1. Submitted

2. Submitted to Agent

3. Resource Allocation Received

4. Waiting for Reallocation

5. Waiting for Resources

1. INTRO

2. WAIT

3. WAIT

4. WAIT

5. WAIT

1. Running 1. EXEC

1. Completed Successfully 1. SUCC

1. Canceled

2. Cancel Pending

3. Cancel Allocation

1. ABEND

2. The status is updated when the job reaches the
Canceled state in dynamic workload broker

3. The status is updated when the job reaches the
Canceled state in dynamic workload broker

Note: The + flag written beside the INTRO and EXEC statuses means that the job
is managed by the local batchman process.

You can view the job output by using both the Dynamic Workload Console or the
conman command-line.

Consider the following Job Submission Description Language (JSDL) example,
called BROKER_COMMAND_JOB:

6 Tivoli Workload Scheduler: Scheduling Workload Dynamically

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"

name="BROKER_COMMAND_JOB">
<jsdl:variables>
<jsdl:stringVariable name="command">dir<jsdl:stringVariable>
<jsdl:stringVariable name="params">d</jsdl:stringVariable>
</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>${command} ${params}</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>

and the associated Tivoli Workload Scheduler job definition, called
TWS_COMMAND_JOB:
TTANCRED_BRK#TWS_COMMAND_JOB
SCRIPTNAME "BROKER_COMMAND_JOB -var command=ping,

params=ttancred.romelab.it.ibm.com"
STREAMLOGON tws86master
TASKTYPE BROKER
RECOVERY STOP

The following example displays the output of the previous job, submitted from
Tivoli Workload Scheduler to the workload broker workstation.
%sj TTANCRED_DWB#JOBS.TWS_COMMAND_JOB;std

==
= JOB : TTANCRED_DWB#JOBS[(0000 10/28/12),(JOBS)].TWS_COMMAND_JOB
= USER : twa86master
= TASK : <?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"

name="BROKER_COMMAND_JOB">
<jsdl:variables>
<jsdl:stringVariable name="command">dir<jsdl:stringVariable>
<jsdl:stringVariable name="params">d</jsdl:stringVariable>
</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>${command} ${params}</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>
= AGENT : TTAGENT
= Job Number: 318858480
= Wed Oct 24 15:58:24 CEST 2012
==
Pinging ttancred.romelab.it.ibm.com [9.168.101.100] with 32 bytes of data:

Reply from 9.168.101.100: bytes=32 time<1ms TTL=128
Reply from 9.168.101.100: bytes=32 time<1ms TTL=128
Reply from 9.168.101.100: bytes=32 time<1ms TTL=128
Reply from 9.168.101.100: bytes=32 time<1ms TTL=128

Ping statistics for 9.168.101.100:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

==
= Exit Status : 0
= Elapsed Time (Minutes) : 1
= Job CPU usage (ms) : 1406

Chapter 1. Scheduling jobs 7

= Job Memory usage (kb) : 3940
= Wed Oct 24 15:58:27 CEST 2012
==

The keywords in the job output are as follows:

JOB Is the host name of the Tivoli Workload Scheduler agent to which the job
has been submitted and the job name.

USER Is the Tivoli Workload Scheduler user who submitted the job to the
workload broker workstation. When a scheduled job is submitted, the user
name is retrieved from the STREAMLOGON keyword specified in the job
definition. When an ad-hoc job is submitted from conman and the logon is
not specified, the user name corresponds to the user who submitted the
job.

TASK Is the full JSDL job submitted with all the variables substituted.

AGENT
Is the agent that run the job.

Job Number
Is the job number.

Exit Status
Is the status of the job when completed.

System Time
Is the time the kernel system spent for the job.

User Time
Is the time the system user spent for the job.

Note: The same job output format is used for JSDL template job types.

You can also kill the job after submitting it. Killing a job in Tivoli Workload
Scheduler performs the same operations as issuing the cancel command in
dynamic workload broker.

8 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 2. Identifying the resources for jobs

To schedule jobs, dynamic workload broker first scans the computers in the
environment to retrieve hardware and operating system information from the
agent computers. You can also optionally create logical resources that represent
characteristics of the computers that are not gathered by the scan, such as software
licenses or installed applications, to further identify resources available in the
environment.

After the Tivoli Workload Scheduler agent is installed, an automatic scan is
performed on the discovered computers where the agent is installed. The scan
returns hardware and operating system information which is stored in the
Resource Repository.

The hardware and operating system information returned by the scan is considered
a physical resource. Physical resources collected from the agent computers include
the following:

Types of physical resources Examples

Computer system Computer system name, model, number of
processors, CPU speed

Operating system Operating system type and version, virtual
memory, physical memory, swap space

Network system IP address, network card, host name

File system File system storage capacity

The automatic discovery process of gathering physical resource information is
capable of identifying available computers with the resources required for jobs to
run on. The scan is scheduled and configurable. You can configure the scan from
the ResourceAdvisorAgentConfig.properties file on the master domain manager
and from the JobManager.ini file on the agents. Ensure the scan runs at regular
times to update any changes to resources. Refer to the Tivoli Workload Scheduler:
Administration Guide, SC23-9113 for more information about this configuration file.

When the physical resources gathered by the scan do not supply enough
information to accurately address specific job requirements, you can define logical
resources or resource groups using the Dynamic Workload Console. The Dynamic
Workload Console gives you the capability to set up additional logical resources
and link them to computers where the resources are available. Logical resources
help identify resources required by jobs to make allocation more accurate. Logical
resources can also be used when expressing a consumable quantity of a resource.
For example, you might use a logical resource to identify specific applications, and
you might also use them to define a limited number of software licenses available.
When a job is submitted, the job definition includes the physical and logical
resource requirements, and with this information dynamic workload broker finds
the most suitable computer.

You can also use the Dynamic Workload Console to define a resource group. A
resource group is a combination of physical and logical resources defined to
accurately match and allocate resources to job requirements when the job is
submitted. After creating logical resources and resource groups, you can

© Copyright IBM Corp. 1999, 2012 9

subsequently edit them using the Dynamic Workload Console. If a computer,
logical resource, or resource group becomes unavailable or you need to make it
unavailable to perform maintenance tasks, for example, you can set the status to
offline. You can subsequently set the status online using the Dynamic Workload
Console.

The following are tasks for configuring resources:
v “Creating logical resources” on page 12
v “Creating resource groups” on page 14

Checking physical resources on computers
You can browse and display the physical resources discovered by the agent scan
on the computers in your environment.

The automatically scheduled scan that runs on computers when the Tivoli
Workload Scheduler agent is installed returns hardware and operating system
information from the agent computers to the Resource Repository. You can use the
Dynamic Workload Console to view the information collected by the agent, in
addition to the other information about the computers. The following information
can be accessed:
v Operating system information
v Computer availability
v Processor information
v Machine information
v Free memory, free virtual memory, and free swap space
v System resources allocated to jobs
v A history of job instances that ran on the computers and are currently running

To view information about the physical resources available on the computers in
your environment, do the following:
1. In the Tivoli Dynamic Workload Broker navigation tree, expand System

Configuration and click Set Broker Server Connections

2. Define viable connections, test, and save them .
3. Expand System Status and Health and click Monitor Computers on Broker.
4. Specify the search criteria for the computers you want to find.
5. Click Search. The computers that meet the search criteria are displayed in the

Monitor Computers on Broker page.
6. To view the physical resources for a computer, select the display name link for

the computer. The Computer details page displays the physical resources on
the computer.

Figure 1 on page 11 shows the Monitor Computers on Broker page. From this
view you can perform the following tasks:
v Set computers offline so that they cannot be allocated to run jobs.
v Set offline computers back online so that they can be allocated to run jobs.
v Delete computers so that they are no longer visible when you search for

computers. When you delete a computer, it is temporarily removed from the
database for a period of time defined in the
ResourceAdvisorAgentConfig.properties file. After the deletion, the Tivoli
Workload Scheduler agent remains installed and running. Any jobs currently

10 Tivoli Workload Scheduler: Scheduling Workload Dynamically

allocated and running on the computer complete. To permanently delete a
computer, you must uninstall the Tivoli Workload Scheduler agent.

v Refresh the view of the computer search results to see updated information
about computers.

v View the number of jobs currently allocated on a given computer in the Active
Jobs column. For each computer this column shows the number of jobs that
have selected the computer as a target system, as well as the number of jobs that
are currently allocating the computer as a related resource. In the specific case
you defined a computer system as a type for a related resource required to run a
job (in the JSDL definition of the job), when the job is allocated it is displayed
twice in Active Jobs as follows:
– If the same computer is selected both as a target system and as a related

resource, the column shows 2 jobs for that computer, even though there is
only one job running.

– If different computers are selected for the target system and the related
resource, the column shows the same job twice (once for each computer).

v View additional information about a computer.

To perform these tasks, do the following:
1. Select a computer in the Monitor Computers on Broker table.
2. Select one of the following operations from the Actions menu:
v Set as online

v Set as offline

v Delete

v Refresh

3. Click Go to perform the operation.

You can display details on computers by clicking the computer name link in the
Monitor Computers on Broker table.

In general, you can click links for job names, job instance names, and computers
from the Dynamic Workload Console to display more details about them.

Figure 1. Computer Search Results page

Chapter 2. Identifying the resources for jobs 11

Creating logical resources
Using the Dynamic Workload Console, you can define logical resources and
resource groups for workstations with properties that are not discovered with a
system scan. You create a logical resource specifying the characteristics of the
resource that are required to run jobs.

To create a logical resource, perform the following steps:
1. In the Tivoli Dynamic Workload Broker navigation tree, expand Administration

and click Create Logical Resources on Broker. The wizard helps you create a
new resource and add it to computers in your environment.

2. In the General Properties page, define the general properties for the logical
resource:
a. In the Name field, type the name to be assigned to the logical resource. This

field is required. The name must start with an alphabetical character, and
can contain underscore symbols (_), minus symbols (-), and periods (.).
Spaces, special characters, accented characters are not supported.

b. In the Type field, type a meaningful name for the logical resource type. For
example, if the logical resource describes DB2® applications, you might call
the resource DB2. The name must start with an alphabetical character, and
can contain underscore symbols (_), minus symbols (-), and periods (.).
Spaces, special characters, accented characters are not supported.

c. In the Quantity field, specify a value that represents the availability of the
logical resource. For example, if the resource consists in a license server, you
can specify the number of licenses available on the server for a product.
This field is optional.

d. Select the Set as Offline check box to mark the resource as not available.
You can subsequently change the resource status by expanding Scheduling
Environment in the left pane and selecting Logical Resources. You can then
search for a resource and modify the status.

e. Click the Next button to proceed.
3. In the Computer Search Criteria page, specify the criteria for searching the

computers to be added to the logical resource. In this page, you can either
perform a search on all computers available in the dynamic workload broker
environment or you can search for specific computers. To search on all
available computers, leave all fields blank. As an alternative, you can specify
one or more of the search criteria listed below. The search criteria are
cumulative; each additional information you specify further refines the search:
v In the Host Name field, specify the host name of a computer. Wildcards are

supported. The search is performed on computers with the specified host
name or section of the host name. For example, if you enter test* in the Host
name field, the test1 and testing host names are returned.

v In the Logical resources already on the computer area, specify the name and
type of logical resources already present on the computer, if any. In the
Name field, specify the logical resource name and in the Type field specify
the logical resource type. Wildcards are supported.

v In the Availability area, specify whether the computer is:

Available
The computer is available and can be assigned jobs.

Unavailable
The computer is not available. The network might be down or the
computer might be switched off.

12 Tivoli Workload Scheduler: Scheduling Workload Dynamically

v In the Status area, define the status of the specified computer.

Online
The computer is online.

Offline
The computer is offline. The administrator might have set the
computer offline for maintenance purposes.

v In the Hardware Characteristics area, specify the number of processors
available on the computer:

Single processor
The computer contains one processor.

Double processor
The computer contains two processors.

Multi processor
The computer contains three or more processors.

v In the Operating System area, specify the operating system installed on the
computers for which you want to search. The search is performed only for
computers with the selected operating systems. Available operating systems
are:
– Windows

– Linux

– AIX®

– Oracle Solaris

– HP-UX

– zOS

– IBM i

The results of the search are displayed in the Computer Search Results pages.
4. In the Computer Search Results page, you specify to which computers you

want to add the logical resource you are creating. Your selections are displayed
in the Summary page.

5. In the Summary page, you can optionally remove the selected computer from
the logical resource you are defining. Click Finish to save the logical resource.

The logical resource has been created and can be accessed using the System Status
and Health > Monitor Logical Resources on Broker task. You can perform the
following operations using this task:
v Set the online or offline status of the logical resource.
v Delete the logical resource.
v Edit the logical resource specifications, including the computers where the

logical resource is located, the online or offline status of the computers, and the
logical resource name, unless the logical resource was imported from the Change
and Configuration Management Database. A Change and Configuration
Management Database logical resource can be identified in the table of logical
resources by the value CCMDB in the Owner column.

Chapter 2. Identifying the resources for jobs 13

Creating resource groups
Using the Dynamic Workload Console, you can create resource groups to group
computers, logical resources, or both. A resource group represents a logical
association between computers, logical resources, or both with similar hardware or
software characteristics. It is a combination of physical and logical resources to
accurately match and allocate resources to job requirements when the job is
submitted.

To create a resource group, perform the following steps:
1. In the console navigation tree, expand Administration and click Create

Resource Groups on Broker. The wizard helps you create a new resource
group.

2. In the Group Type Selection page, specify a name, the status, and a type for
the resource group:
a. In the Name field, type the name to be assigned to the resource group. The

name must start with an alphabetical character, and can contain underscore
symbols (_), minus symbols (-), and periods (.). Spaces, special characters,
and accented characters are not supported. This field is required.

b. Select the Set as Offline check box to mark the resource group as not
available. You can subsequently change the resource group status by
expanding Scheduling Environment in the left pane and selecting Resource
Groups. You can then search for a resource group and modify the status.

c. In the Select items to be grouped area, select the elements the group
consists of. Supported values are computers, logical resources or both. This
field is required.

d. Click the Next button to proceed.
3. In the Computer Search Criteria page, specify the criteria for searching

available computers to be added to the resource group. In this page, you can
either perform a search on all computers available in the dynamic workload
broker environment or you can search for specific computers. To search on all
available computers, leave all fields blank. As an alternative, you can specify
one or more of the search criteria listed below. The search criteria are
cumulative; each additional information you specify further refines the search:
v In the Host Name field, specify the host name of a computer. Wildcards are

supported. The search is performed on computers with the specified host
name or section of the host name. For example, if you enter test* in the Host
name field, the test1 and testing host names are returned.

v In the Logical resources already on the computer area, specify the name and
type of logical resources already present on the computer, if any. In the
Name field, specify the logical resource name and in the Type field specify
the logical resource type. The name and type must start with an alphabetical
character, and can contain underscore symbols (_), minus symbols (-), or
periods (.). Spaces, special characters, and accented characters are not
supported.

v In the Availability area, specify whether the computer is:

Available
The computer is available to be allocated.

Unavailable
The computer is not available. The network might be down or the
computer might be switched off.

v In the Status area, define the status of the specified computer.

14 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Online
The computer is online.

Offline
The computer is offline. The administrator might have set the
computer offline for maintenance purposes.

v In the Hardware Characteristics area, specify the number of processors
available on the computer:

Single processor
The computer contains one processor.

Double processor
The computer contains two processors.

Multi processor
The computer contains three or more processors.

v In the Operating System area, specify the operating system installed on the
computers for which you want to search. The search is performed only for
computers with the selected operating systems. Available operating systems
are:
– Windows

– Linux

– AIX

– Oracle Solaris

– HP-UX

– zOS

– IBM i

Click Next to perform the search based on the criteria specified. The results of
the search are displayed in the Computer Search Result page.

4. In the Computer Search Result page, you specify to which computers you
want to add the group you are creating. Click Next.

5. If the resource group you are defining includes a logical resource, then the
Logical Resource Search Criteria page prompts you to specify the following
search criteria:
a. The name of the logical resource.
b. The type of logical resource.

Click Next to display the Logical Resources Search Results page.
6. Select the logical resource to add to the resource group you are defining and

click Next to display the Summary page.
7. In the Summary page, you can optionally remove any computer or logical

resource that you included in the resource group. Click Finish to save the
resource group.

The resource group has been created and can be accessed using the System Status
and Health > Monitor Resource Groups on Broker task. You can perform the
following operations using this task:
v Set the online or offline status of the resource group.
v Delete the resource group.
v Edit the resource group specifications, including adding and removing

computers and logical resources from the group, changing their online or offline
status, and changing the resource group name.

Chapter 2. Identifying the resources for jobs 15

16 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 3. Writing JSDL definitions with the Job Brokering
Definition Console

The Job Brokering Definition Console provides an easy-to-use graphical interface
that helps you create and edit JSDL job definitions for use with dynamic workload
broker.

The Job Brokering Definition Console graphical interface helps you create and edit
job definitions based on the Job Submission Definition Language (JSDL) schema.
Each text field in the Job Brokering Definition Console corresponds to an element
or attribute in the JSDL file and vice versa. You can use the Job Brokering
Definition Console to create existing job types. If you need to create job types with
advanced options, use the Dynamic Workload Console or composer command.

The Job Brokering Definition Console simplifies the task of creating a JSDL file by
hiding the complexity of the file itself and validating the file structure against the
JSDL schema. Information defined in the Job Brokering Definition Console is
automatically converted to the corresponding element or attribute in the JSDL file.

You can save a JSDL file locally or upload it as a job definition in the Job
Repository where it becomes available for submission. When you save the file in
the Job Brokering Definition Console, the JSDL file is checked against an .xsd file
provided with the product installation which contains the syntax rules. A message
is displayed if a syntax error is encountered in the JSDL file, allowing you to
correct the error.

The Job Submission Description Language (JSDL) is an XML-based language used
for specifying the characteristics and requirements of a job, as well as instructions
on how to manage and run it. These include the following:
v Job identification information
v Program running information
v Resource requirements
v Scheduling and running requirements
v Resource quantity to be allocated or required
v Logical allocation of the resource quantity

Selecting target types

When creating a JSDL file, you can choose between the following resource types as
targets for your job:

Resources
A resource is a computer system. You can use this resource type to define a
basic requirement for your job.

Related resources
A related resource is a set of resource types. You can use this resource type
to define a basic requirement for your job. A related resource includes the
following resource types:
v A set of hardware and software properties of a computer such as

operating system, file system and network system.

© Copyright IBM Corp. 1999, 2012 17

v Logical resources and logical entities that can be associated to one or
more computers to represent applications, groups, licenses, servers and
so on.

Related resources have two main functions:
v You can specify related resources as an additional requirement adding to

the resource requirement. In this case, you must create a relationship
between the resource and the related resource.

v You can use the related resource to indicate that the presence of a certain
resource in your environment is a co-requisite for running the job. In
this case, you must not create a relationship between the resource and
the related resource. A related resource having no relation to a resource
is a global resource. For example, if you want to move a file from
resource A to resource B, resource B is a co-requisite for running the job
which moves the file. Computers can only be defined as global
resources.

Selecting resource types

Dynamic workload broker manages the resource types listed in Table 3. For each
resource type, you can specify requirements on the properties listed in the
Available properties column. Table 3 also lists consumable properties and
properties that can be optimized. Consumable properties can be allocated
exclusively to the job while it runs using the allocation mechanism. Properties that
can be optimized can be used to provide a more effective load balancing on the
resource property.

Table 3. Resource types and properties

Resource Type Available properties Is consumable Can be optimized Supports wildcards

ComputerSystem CPUUtilization No Yes No

HostName No No Yes

Manufacturer No No Yes

Model No No Yes

NumOfProcessors Yes Yes No

ProcessingSpeed No Yes No

ProcessorType No No No

LogicalResource DisplayName No No Yes

SubType No No Yes

Quantity Yes Yes No

OperatingSystem DisplayName No No Yes

FreePhysicalMemory No Yes No

FreeSwapSpace No Yes No

FreeVirtualMemory No Yes No

OperatingSystemType No No No

OperatingSystem
Version

No No No

TotalPhysicalMemory Yes Yes No

TotalSwapSpace Yes Yes No

TotalVirtualMemory Yes Yes No

18 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Table 3. Resource types and properties (continued)

Resource Type Available properties Is consumable Can be optimized Supports wildcards

FileSystem DisplayName No No Yes

FileSystemRoot No No Yes

FileSystemType No No No

FreeStorageCapacity No Yes No

TotalStorageCapacity Yes Yes No

NetworkSystem NetworkAddress No No No

NetworkSystem
HostName

No No Yes

When you define the requirements for a job definition, you can define the amount
of a consumable property which will be allocated to the job. When a resource
property is allocated to a job, the amount you specify is logically reserved for the
job. If another job is submitted which allocates a value greater than the remaining
capacity of the same consumable property, this job cannot run on the same
resource as the previous job because the required property is already reserved. If
no property allocation is specified in the job definition, the job can run on the same
resource as the previous job because the allocation mechanism applies only if both
jobs allocate the same property.

You can use the allocation mechanism to limit concurrent use of the same quantity
by several jobs and improve system performance.

To allocate a property for a job, use the allocation element in the JSDL file or the
Software Requirements and Hardware Requirements tabs in the Job Brokering
Definition Console.

This allocation type applies to computer systems. To allocate a property for a
resource other than a computer system, you define the resource whose property
you want to allocate in the Related resource pane and define the allocation setting
for one or more of its properties. You then define a relationship between the
resource and the related resource you created. In this way you define the related
resource and the allocated property as a requirement for the job to run.

Job definitions
This topic provides an overview of the possible content of job definitions and
describes how the different types of job definition content are added using the Job
Brokering Definition Console.

A job definition contains all the information required to determine the computer
system or systems on which a job could run, any scheduling and job balancing
rules that are to be applied when allocating resources, as well as the information
required to identify and run the application. It is defined using the Job Submission
Description Language (JSDL).

JSDL is an XML-based language used for specifying the characteristics and
requirements of a job, as well as instructions on how to manage and run the jobs.
A JSDL file can include the following types of information

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 19

Basic job information
Includes the job name, any job categories to which you want to assign it,
and any variables that are used in the job.

Variables can be used in several ways in a job definition. For example:
v A set of variables can describe a command and its arguments. These can

be added to program running information and within the script of the
job.

v Variables can also be used to identify resources, for example, a target
host.

The default value assigned to the variable in the job definition is used
when the job is run, unless it is overridden at submission time. See “Using
variables in job definitions” on page 26.

Program running information
Identifies the script or executable to be run and, if necessary, standard
input, output, and error files and the working directory. If the job needs to
provide credentials these can also be specified.

You can define the required credentials to run a job if the credentials are
different from those under which the Tivoli Workload Scheduler agent
runs.

On Windows targets, jobs with no specified credentials, run under the user
account specified during the Tivoli Workload Scheduler agent installation,
unless the agent runs under the Local System account. In this case, any job
submitted to the agent runs under the default administrator's account.

On UNIX targets, jobs with no specified credentials, run under root.

Required resource specifications
Enables dynamic workload broker to identify the computer systems on
which the job can run based on hardware and software requirements.

Related requirements
Allow you to specify required relationships between resources and
co-requisite resources for a job.

Allocation
Resource quantity to be allocated or required.

Optimization and load-balancing policies.

The following load balancing policies are available:

Balance load between resources by number of jobs running
Jobs are assigned to targets based on the number of jobs currently
running on each target. The objective is to ensure that each
resource runs the same number of jobs during the same time
interval. This policy is the default. It is suitable for situations
where many similar jobs, which consume similar quantities of
system resources, are to be run on a set of resources

Balance load between resources by optimization objective
You define an objective by selecting a resource type and related
resource property and specifying the objective to maximize or
minimize the property. For example, you could balance load with
the aim of keeping the amount of free physical memory available
on operating system resources as high as possible. The objective
would be set to maximize free physical memory and when jobs
with this objective are submitted, they are allocated to available

20 Tivoli Workload Scheduler: Scheduling Workload Dynamically

resources so that more jobs go to the resources that currently have
the greatest amount of free physical memory.

Select best resource by optimization objective
You define the optimization objective in exactly the same way as
described for the Balance load between resources by optimization
objective. However, when a job with this policy is submitted, it
would always be assigned to the resource that best matched the
objective. For example, if the objective is to maximize free physical
memory, the job would run on the resource that had the highest
amount of free physical memory at submission time.

Enterprise Workload Manager
If you have Enterprise Workload Manager installed, you can define
jobs with an optimization policy to use the load-balancing
capabilities of this product.

In the JSDL schema, the Optimization page corresponds to the
optimization element.

Scheduling and running requirements.
Allows you to define a priority, the time a job can wait for resources before
failing, and recovery actions in the event of a failure.

The maximum priority is 100 and priority settings between 90 and 100
should only be used for critical jobs. Jobs with these priorities are always
allocated resources ahead of other waiting jobs regardless of how long the
other jobs have been waiting. At lower priorities than 90, jobs are allocated
resources based on the priority setting and the age of the job. As time
passes, jobs with a low priority setting increase their priority so that they
eventually are allocated resources even if jobs with higher initial priorities
are waiting.

The Job Brokering Definition Console graphical interface allows you to create and
edit job definitions based on the JSDL schema. Fields in the Job Brokering
Definition Console correspond to elements in the JSDL schema. When creating a
job definition using the Job Brokering Definition Console, you can view the job
definition structure in the Outline pane.

The JSDL schema offers great flexibility in defining jobs and their requirements. A
job can have a very open definition, with few defined requirements, allowing it to
run on a wide range of resources and to follow default rules for load balancing.
Other jobs could have a much more detailed set of hardware and software
requirements, as well as specific resource allocations and a load balancing policy.
Using the graphical interface simplifies the task of creating JSDL files and
eliminates many of the risks of error that occur when the files are edited manually.
The different elements that make up a job definition are available, in many cases
with a set of fixed values from which you can choose. Information defined in the
Job Brokering Definition Console is validated, ensuring that any values you have
entered are correct and consistent with each other.

In addition, the Job Brokering Definition Console also includes content assistance
that provides server-side values for several fields on the interface, for example,
candidate host names and logical resources, to name a few. Fields with content
assistance are identified by a light-bulb icon next to the field. Position your mouse
over the light-bulb and press Ctrl + Space to display a list of possible values.
Server-side values are populated using the server cache for the currently active
server connection. Server data is cached automatically when the initial connection

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 21

to a server is made or each time the server connection is changed. You can refresh
the cache at any time, for example, if you have defined a new resource
requirement on the server, by selecting Server > Refresh Server Data Cache.

When you save the file in the Job Brokering Definition Console, the JSDL file is
checked against an .xsd file provided with the product installation which contains
the syntax rules. A message is displayed if a syntax error is encountered in the
JSDL file, allowing you to correct the error. You can save the JSDL files locally or
upload them as job definitions in the Job Repository where they become available
for submission.

Resources in the job definition
This topic provides an overview of how resources and their properties are used in
the job definition to identify possible targets, to reserve allocations of consumable
resources, and to optimize load balancing between available resources.

An understanding of physical and logical resources and their properties is the key
to creating a job definition that accurately targets suitable resources for running the
job, determines the resource allocation requirement, and contributes to balancing
the load between available resources. Each resource has one or more properties
associated with it. Properties can have the following characteristics:

Is consumable
Properties of resources that are consumable have finite amount associated
with them which can be consumed by the jobs that are allocated to the
resource. For example, a computer system has a finite number of
processors.

Can be optimized
Some properties can be used to define optimization objectives, which
determine how load is to be balanced when jobs are allocated to a group of
resources. For example, you could choose to allocate a job to the matching
resource that has the lowest CPU usage.

Supports wildcards
Some properties can be specified in the job definition using wildcards. For
example, a requirement for a particular series of computer models could be
defined by specifying the model using wildcards.

Table 4 shows the different resource types that can be included in a job definition
and their available properties.

Table 4. Resource types and properties

Resource Type Available properties Is consumable Can be optimized Supports wildcards

ComputerSystem CPUUtilization No Yes No

HostName No No Yes

Manufacturer No No Yes

Model No No Yes

NumOfProcessors Yes Yes No

ProcessingSpeed No Yes No

ProcessorType No No No

22 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Table 4. Resource types and properties (continued)

Resource Type Available properties Is consumable Can be optimized Supports wildcards

LogicalResource DisplayName No No Yes

SubType No No Yes

Quantity Yes Yes No

OperatingSystem DisplayName No No Yes

FreePhysicalMemory No Yes No

FreeSwapSpace No Yes No

FreeVirtualMemory No Yes No

OperatingSystemType No No No

OperatingSystem
Version

No No No

TotalPhysicalMemory Yes Yes No

TotalSwapSpace Yes Yes No

TotalVirtualMemory Yes Yes No

FileSystem DisplayName No No Yes

FileSystemRoot No No Yes

FileSystemType No No No

FreeStorageCapacity No Yes No

TotalStorageCapacity Yes Yes No

NetworkSystem NetworkAddress No No No

NetworkSystem
HostName

No No Yes

Resource properties can be used in the job definition in the following ways:

Identifying targets for the job
On the Resources page of the Job Brokering Definition Console, you can
supply information about the resources required for the job. Using this
information, dynamic workload broker can identify the computer systems
on which the job could run. In addition to the basic hardware and software
requirements, you can use the Advanced Requirements tab to include
requirements for specific resource properties. For example, you can add a
requirement for a specific processor type or specify a required range of
processor speeds. In the JSDL schema, the Resources page corresponds to
the resources element.

When you define a resource requirement, the underlying relationship
between the required resource and the computer system which contains
the resource is automatically created by the Job Brokering Definition
Console to facilitate the usage of the product.

Resource property requirements to be used when identifying targets for job
can also be specified on the Related Resources page. A related resource
includes the following resource types:
v A set of hardware and software properties of a computer such as

operating system, file system, and network system.
v Logical resources, which are a flexible means of providing information

about your environment in addition to the information collected by the

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 23

hardware scan. For example, you could create logical resources to
represent applications, groups, licenses, or database access. A logical
resource can be linked to one or more specified computers or it can be a
freestanding global resource, available to all computers.

Related resources have two main functions:

To specify additional requirements, making the matching criteria for
possible targets more precise

Targets can only match if they either contain or are associated with
the specified resource. In addition to defining the related resource
in the job definition, you must also define its relationship to the
target resource and specify the relationship type as contains or
associates with. Related resource that define hardware and
software properties always have a contains relationship while
logical resources often have an associates with relationship. For
example, if a related requirement for a logical resource that
represents a node-locked license is included, the target system
must be one of those that is associated with this resource, and
therefore a target where the license is available.

To specify global resources that must be available for the job to run
These related resources are not related to the target resource and
have no role in finding matching resources for the job to run on.
The resource must be available to the job at submission time. For
example, if a license required to run the software used by the job is
of a type that is not assigned to any computer, a logical resource
could be created to identify it and to track the number of licenses
that exist and that are in use. No computers are associated with
this logical resource and so it is referred to as a global resource,
available to all computers. The job definition includes a related
resource identifying the floating license logical resource and the
number of licenses required. Before the job can run, it must be
possible to meet this requirement.

In the JSDL schema, the Related Resources page corresponds to the
relatedResources element.

When the resource requirements for the job are defined, logical rules are
applied to determine whether the requirements are alternatives to each
other (OR) or whether they are inclusive (AND). In general, the different
types of requirements have an AND relationship, for example, if you
specify an operating system type, CPU architecture, and a value for
minimum physical memory, the target resource for the job must meet all of
these requirements.

Within the following requirement types, you can specify alternatives that
have an OR relationship:
v Candidate hosts
v Candidate CPU architectures
v Candidate operating systems

If several entries are added for any of these requirement types, they are
considered as alternatives. For example, if Linux, AIX, and HP-UX are
specified as candidate operating systems, the target resource for the job
must have one of these operating system types.

Within the following requirement types, all requirements specified must be
met by the target resource for the job.

24 Tivoli Workload Scheduler: Scheduling Workload Dynamically

v Logical resources
v File systems

For example, if you add Local Disk and CD ROM to the File system
requirements, the target resource for the job must have both a local disk
and a CD ROM.

Reserving resources
When defining the requirements for a job definition, you can define the
amount of a consumable property which will be allocated to the job. When
a resource property is allocated to a job, the amount you specify is
logically reserved for the job. If another job is submitted which allocates a
value greater than the remaining capacity of the same consumable
property, this job cannot run on the same resource as the previous job
because the required property is already reserved. If no property allocation
is specified in the job definition, the job can run on the same resource as
the previous job because the allocation mechanism applies only if both jobs
allocate the same property.

You can use the allocation mechanism to limit concurrent use of the same
quantity by several jobs and improve system performance.

On the Job Brokering Definition Console, you can allocate a specified
quantity of a consumable property. You can use the allocation pane from
the Advanced Requirements tab of the Resources page or you can define
a required resource and property in the Related resource page and specify
the amount of the property to be allocated. From the Advanced
Requirements tab on the Resources page, you can only allocate
consumable properties of computer system resources.

Defining load-balancing policies
You can use the Optimization page in the Job Brokering Definition
Console to define custom rules for load-balancing to be applied when the
job is submitted. The default method of load-balancing is to aim to
equalize the number of jobs running on each resource.

Dynamic workload broker provides two types of optimization policy types
that use rules based on resource properties:
v Balance load between resources by optimization objective
v Select best resource by optimization objective

For both policies, you define an objective to distribute jobs minimizing or
maximizing the property of a computer system, a file system, a logical
resource, or an operating system. For example, you could balance loads
with the aim of keeping the free physical memory available on operating
system resources as high as possible.

When the Balance load between resources by optimization objective
policy is used, jobs are distributed between matching resources based on a
statistical probability that the resource currently has highest amount of free
physical memory of all matching resources. When the Select best resource
by optimization objective policy is used, the job is allocated to the
resource that has the highest amount of free physical memory.

When defining an objective, you must select a resource that is included in
the job definition as part of the identification of targets for the job. For
example, if you want to define the objective to minimize free physical
memory, at least one operating system requirement must be included in
the job definition. This could be candidate operating systems, a physical or
virtual memory requirement, or a related requirement involving operating

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 25

system properties. Computer system properties are the exception to this
rule. Optimization objectives using computer system properties can be
always defined even if the job definition includes no explicit computer
system requirements.

For information about all available load balancing policies, see “Job
definitions” on page 19.

Using variables in job definitions
This section explains how to use variables to add flexibility to the job definitions.

There are two types of variables in a job definition:

Job variables
There are three types of job variables: String, Double, Integer. You can
define job variables in your job definition that are resolved or overwritten
at job submission time. This enables the job definition to be used for
different situations by specifying different values for the variable at
submission time. You define variables in the variable element, but you can
refer to the variable from several other elements.

You define variables and assign them values from the Overview page on
the Job Brokering Definition Console. Job variables are referenced in the
job definition in the format ${variable_name}. For example, to use a variable
to set the minimum amount of physical memory required for a job to 512
MB, do the following:
1. In the Variables pane of the Overview page, add the string variable

memory and assign it a value of 512.
2. On the Hardware Requirements tab of the Resources page, select

Range value for Physical memory and set the Minimum value to
${memory}.

When jobs are submitted, using Dynamic Workload Console, Tivoli
Workload Scheduler Task field, or the dynamic workload broker CLI,
default values for variables defined in the job definition can be overridden
and new variables can be added.

Environment variables
Environment variables are set in the run time environment for the dynamic
workload broker job definition. Environment variables can be used to
change the run time environment for the job on the assigned resource. This
enables you to change only the values of the environment variables when
you change the resources for the job definition. Environment variables are
referenced in the job definition in the format $variable_name where
variable_name is the name of the environment variable.

Environment variable values cannot be set or overwritten when the job is
submitted.

Using JSDL job definition templates
Use job definition templates to be able to run multiple jobs based on a single JSDL
document, or to turn a traditional job into a dynamic job without the need to create
a specific JSDL definition for it.

You have two options for writing the JSDL job definitions for the workload you
want to submit with dynamic workload broker:

26 Tivoli Workload Scheduler: Scheduling Workload Dynamically

v Writing a separate definition for each job
v Writing a generalized definition that you can use as a template to run more jobs

Writing and using templates is an option that lets you reuse the same JSDL
document on multiple jobs when they use the same resources and candidate hosts
and share similar scheduling and optimization preferences. This requires that you
also define an extended agent workstation for each template you implement, so
that at runtime the JSDL template can be properly identified by selecting the
extended agent on which the job you want to run is defined. In this way, you can
make up classes of jobs where all the jobs that belong to the same class are defined
to run on the same extended agent and therefore select, by means of the workload
broker workstation, the same JSDL document to submit to the broker.

Traditional Tivoli Workload Scheduler jobs can be routed to dynamic workload
broker by simply changing their CPU to an appropriate extended agent, without
changing the job definition and without requiring a different JSDL definition for
each job. This is the recommended way for changing static workload into dynamic
workload in Tivoli Workload Scheduler.

Writing a JSDL job definition template

Specific, prepackaged JSDL templates that you can fill in do not exist. Rather, you
work a number of steps so that you can write in the Job Brokering Definition
Console a JSDL file that can be referenced by more Tivoli Workload Scheduler job
definitions.

To write a template you use the following:
v The composer command line or the Dynamic Workload Console to define

extended agents (with their access method) and to create or modify job
definitions in Tivoli Workload Scheduler.

v The Job Brokering Definition Console to write the JSDL file that you then use as
a template.

The steps are:
1. In the Job Brokering Definition Console, you create a JSDL document, give it a

name, and save it in the Job Repository of dynamic workload broker. Like for
regular job definitions, fill in the data throughout the pages of the Job
Brokering Definition Console, specifying the required resources, and
optimization and scheduling details. Unlike you do in regular job definitions, in
the Application page, after setting the Type to Executable (or to Extended Job),
specify the following variable name in the Script (or Task string) field:
${tws.job.taskstring}

2. With composer or the Dynamic Workload Console define a workstation of type
extended agent hosted by the workload broker workstation.
If you need background information about extended agents, see the Tivoli
Workload Scheduler: User's Guide and Reference, SC32-1274. For the purpose of
creating the template, however, you only need to know the following facts
about an extended agent:
v It is a logical definition that must be hosted by a physical workstation. In

this case the physical workstation must always be the workload broker
workstation. This workstation can host as many extended agents as you
need.

v It requires an access method. An access method can be a complex program,
but in this case it is only a statement that references the name of the JSDL

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 27

file that will be your template. The access method statement is included in
the definition of the extended agent and must have the following syntax:
ACCESS "/jsdl/filename_of_the_ JSDL_template -var name=value,name=value,..."

where -var name=value is optional and represents one or more variables
passed by the workload broker workstation to dynamic workload broker at
job submission time.

3. Add the extended agent to the plan as you do with any other workstation. The
workload broker workstation has the task of managing the lifecycle of the
extended agent, notifying the master domain manager that it is up and
running.

When jobs are run on the extended agent, they are routed to the workload broker
workstation, which handles them differently from other jobs. Instead of searching
for the name of the JSDL definition in the task string of the job, the workload
broker workstation:
1. Gets the name of the target JSDL from the access method, and passes the task

string as a value for variable ${tws.job.taskstring}.
2. The task string value is replaced in the script element of the target JSDL, and is

used as a command string to run on the target agent that is dynamically
selected by the dynamic workload broker.
Thus, the JSDL definition invoked by the workload broker workstation works
as a sort of template that you can use to run different task strings defined in
different Tivoli Workload Scheduler jobs: the same JSDL document is reused for
multiple jobs.

Example

You want to exploit dynamic workload broker to run a job named SUBMIT_JOBXA
and you want to use a JSDL template. The following definitions accomplish this:
1. The definition of the workload broker workstation. It is named DGCENTER_DWB

and it is of type BROKER. There can be only one workload broker workstation
running at a time in a Tivoli Workload Scheduler network (this applies also to
the dynamic workload broker server).
CPUNAME DGCENTER_DWB

OS OTHER
NODE DGCENTER TCPADDR 41111
ENGINEADDR 31111
DOMAIN MASTERDM
FOR MAESTRO
TYPE BROKER
AUTOLINK ON
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

2. The definition of extended agent DGCENTER_DWBXA. The extended agent must:
v Be hosted by the workload broker workstation (DGCENTER_DWB in this

example).
v Include the access method. While normally the ACCESS keyword is followed

by the name of the program that implements the specific access method, in
the case of JSDL templates it needs only to define the name of the JSDL
document you use as template - that must be stored in the dynamic
workload broker Job Repository in the Tivoli Workload Scheduler database
and available in a local folder in the workstation where you run the Job

28 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Brokering Definition Console- and whatever other parameters you want to
use. These items must be enclosed between double quotes.
This requires that you created the JSDL document you will be using as a
template (named SJT in this example), defining the required resources,
candidate hosts, and scheduling and optimization preferences, and specifying
${tws.job.taskstring} in the Script field of the executable.

CPUNAME DGCENTER_DWBXA
OS OTHER
NODE DGCENTER TCPADDR 41111
FOR MAESTRO HOST DGCENTER_DWB ACCESS "/jsdl/SJT -var

target=D:\vmware,RES=RES1"
TYPE X-AGENT
AUTOLINK OFF
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

3. The definition of job SUBMIT_JOBXA in Tivoli Workload Scheduler:
DGCENTER_DWBXA#SUBMIT_JOBXA
SCRIPTNAME "C:\TWS\Utils\Jobs\javacount_on.bat"
STREAMLOGON Administrator
DESCRIPTION "Added by composer."
TASKTYPE WINDOWS
RECOVERY STOP

The fact that the job is defined to run on extended agent DGCENTER_DWBXA,
hosted by the workload broker workstation and matched with the SJT JSDL
definition, drives the process that:
a. Submits the job via dynamic workload broker
b. Uses the specifications of the SJT JSDL definition
c. Replaces variable ${tws.job.taskstring} in SJT with the task string of

SUBMIT_JOBXA, that is:
C:\TWS\Utils\Jobs\javacount_on.bat

Scenarios for creating job definitions
These scenarios provide examples of creating job definitions with different types of
requirements.

JSDL and the Job Brokering Definition Console provide very flexible tools for
defining jobs. The following scenarios provide examples of how to set up a job
definition to achieve your objectives for identification of targets, resource
allocation, and load balancing:
v “Scenario: Creating a job definition using a computer resource group” on page

30.
This scenario demonstrates the use of a resource group to specify candidate
target systems.

v “Scenario: Creating a job definition using a logical resource group” on page 30.
This scenario demonstrates the use of a resource group to specify logical
resources required for the job..

v “Scenario: Creating a job definition for a job to run on x86 processors” on page
31
This scenario demonstrates the use of advanced requirements for resources and
the use of resource properties for defining load-balancing rules.

v “Scenario: Creating a job definition for a script to run on a specific operating
system” on page 33

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 29

This scenario demonstrates the creation of relationships between an operating
system type software resource and an additional resource requirement.

v “Scenario: Alternative operating system requirements” on page 34
This scenario demonstrates the definition of two resource requirements related to
specific operating system types and a minimum free physical memory
requirement.

Scenario: Creating a job definition using a computer resource
group

In this scenario, a job is created to run the inventory update program, selecting the
target system from the invadmin resource group set up to include the computers
that are suitable for running the script.

To create a job definition that does this, perform the following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named compgroupjob. The job
definition opens at the Overview page with the job name assigned.

2. Open the Application page and identify and attach the script, as follows:
a. In the Type menu, select Executable.
b. In the Executable pane, select the Executable File radio button.
c. Click Browse and locate the executable file.
d. Click OK.

3. Open the Resources page and specify the resource group, as follows:
a. Select the Advanced Requirements tab.
b. In the Resource Group pane, click Add. The Resource Group Details dialog

box is displayed.
c. In the Group Name field, type invadmin (the resource group name, as

defined in the Dynamic Workload Console).
4. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle JSDL-Native.xsd"
description="Run inventory update script on a computer from the
invadmin resource group.
" name="compgroupjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/invupdate">

</jsdle:executable>
</jsdl:application>
<jsdl:resources>
<jsdl:group name="invadmin"/>

</jsdl:resources>
</jsdl:jobDefinition>

Scenario: Creating a job definition using a logical resource
group

In this scenario, the target for the job is determined by several requirements
defined as logical resources. A resource group has been created to include all the
logical resources required for the job.

30 Tivoli Workload Scheduler: Scheduling Workload Dynamically

To create a job definition that does this, perform the following steps:
1. In the Job Brokering Definition Console selectFile > New > Job brokering

definition and create a new job definition named loggroupjob. The job
definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Related Resources page and create a requirement for a logical
resource, as follows:
a. In the Resource Requirements pane, click Add. The Resource Requirement

Details dialog box is displayed.
b. In the ID field, specify a meaningful ID, in this example, loggroup.

4. Open the Resources page and create a relationship to the resource requirement,
as follows:
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Associates with.
d. In the Target menu, select the resource requirement that you created and

click OK.
5. Switch back to the Related Resources page and add the logical resource group

as follows:
a. In the Resource Group pane, click Add. The Resource Group Details dialog

box is displayed.
b. In the Group Name field, type the resource group name, as defined in the

Dynamic Workload Console.
6. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd"
description="A job whose requirements are defined by a number of logical
resources. " name="loggroupjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>
<jsdl:relationship target="loggroup" type="AssociatesWith"/>

</jsdl:resources>
<jsdl:relatedResources id="loggroup" type="LogicalResource">
<jsdl:group name="logresgroup"/>

</jsdl:relatedResources>
</jsdl:jobDefinition>

Scenario: Creating a job definition for a job to run on x86
processors

In this scenario, a job is created to run the application, appx86. The application
must run on a workstation with an x86 processor where the CPU usage between 3
and 30%. Load balancing is to be defined by an objective to keep CPU use on
matching resources to a minimum.

To create the job definition, perform the following steps:

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 31

1. In the Job Brokering Definition Console select File > New > Job brokering
definition and create a new job definition named x86job. The job definition
opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the appx86
application that the job is to run.

3. Open the Resources page and specify the processor and CPU usage
requirements as follows:
a. Select the Advanced Requirements tab.
b. Click Add Requirement. The Resource Property Details dialog box is

displayed.
c. In the Property Name menu, select CPU Utilization.
d. In the Property Value section, select the Range Value radio button and

assign values of 3 to Minimum and 30 to Maximum.
e. Click Add Requirement. The Resource Property Details dialog box is

displayed.
f. In the Property Name menu, select Processor type.
g. In the Property Value section, select the Exact Value radio button and

assign a values of x86.
4. Open the Optimization page and specify the load balancing requirement as

follows:
a. In the Type menu, select Balance load between resources by optimization

objective.
b. In the Resource Type menu, select Computer System.
c. In the Resource Property menu, select CPU Utilization.
d. In the Optimization Objective menu, select the Minimize.

5. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd"
description="Job to run on X86 processors" name="x86job">
<jsdl:application name="executable">

<jsdle:executable path="/opt/appx86">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>
<jsdl:properties>

<jsdl:requirement propertyName="CPUUtilization">
<jsdl:range>

<jsdl:minimum>3</jsdl:minimum>
<jsdl:maximum>30</jsdl:maximum>

</jsdl:range>
</jsdl:requirement>
<jsdl:requirement propertyName="ProcessorType">
<jsdl:exact>x86</jsdl:exact>

</jsdl:requirement>
</jsdl:properties>

</jsdl:resources>
<jsdl:optimization name="JPT_JSDLOptimizationPolicyType">
<jsdl:objective propertyObjective="minimize"

resourcePropertyName="CPUUtilization"
resourceType="ComputerSystem"/>

</jsdl:optimization>
</jsdl:optimization>
</jsdl:jobDefinition>

32 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Scenario: Creating a job definition for a script to run on a
specific operating system

In this scenario, a job is created to run a script on a Red Hat Enterprise Linux
system.

By specifying candidate operating systems, you can define the type of operating
system on which a job is to run, in this case Linux. To direct the job to a specific
flavor of Linux, you must define a related resource and link it to the job resources
by creating a relationship. To create a job definition that does this, perform the
following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named rhjob. The job definition
opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Resources page and specify the operating system type requirement,
as follows:
a. Select the Software Requirements tab.
b. In the Candidate Operating Systems pane, click Add. The Operating

System Details dialog box is displayed.
c. In the Type menu, select LINUX and click OK.

4. Open the Related Resources page and create a resource requirement for the Red
Hat flavor of Linux, as follows:
a. In the Resource Requirements pane, click Add. The Resource Requirement

Details dialog box is displayed.
b. In the ID field, specify a meaningful ID, in this example, redhat.
c. In the Type menu, select Operating System.
d. In the Resource Properties pane, click Add Requirement. The Resource

Property details dialog box is displayed.
e. In the Property Name menu, select Display Name.
f. In the Property Value , type Red*.

5.

6. Switch back to the Resources page to link the resource requirement to the
operating system resource.
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Contains.
d. In the Target menu, select the Red Hat resource requirement that you

created and click OK.
7. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl
JSDL.xsd" description="Job to run on Red Hat Linux" name="rhjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 33

<jsdl:resources> <jsdl:resources>
<jsdl:candidateOperatingSystems>

<jsdl:operatingSystem type="LINUX"/>
</jsdl:candidateOperatingSystems>
<jsdl:relationship target="redhat" type="Contains"/>

</jsdl:resources>
<jsdl:relatedResources id="redhat" type="OperatingSystem">
<jsdl:properties>

<jsdl:requirement propertyName="DisplayName">
<jsdl:exact>red*</jsdl:exact>

</jsdl:requirement>
</jsdl:properties>

</jsdl:relatedResources>
</jsdl:jobDefinition>

Scenario: Alternative operating system requirements
In this scenario, a definition is created for a job that can run on either a Linux or
an AIX computer.

The job can run on Linux operating systems with a minimum of 512 MB of RAM
or on AIX operating systems with a minimum of 1024 MB of RAM. The job
definition must include a resource requirement that specifies the two alternative
requirements.

To create job definition for this job, perform the following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named jobWithRequirementsByOS.
The job definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Related Resources page.
4. In the Resource Requirements pane, click Add then specify a meaningful value

for the ID field. In this example it is OperatingSystemType.
5. In the Resource Properties pane, define the logic that describes the two

alternative operating system requirements, as follows:
a. Click Add OR Operand to indicate that you are defining alternatives.
b. Highlight the OR operand and click Add AND Operand to indicate that the

alternative includes more than requirement.
c. Highlight the AND operand and click Add Requirement.
d. In the Resource Property Details dialog, select Operating System Type from

the Property Name menu and type LINUX in the Property value field.
e. Highlight the AND operand again and click Add Requirement.
f. In the Resource Property Details dialog, select Total Physical Memory from

the Property Name menu and type 512 in the Property value field.
g. Highlight the OR operand again and click Add AND Operand to add the

requirements for the second alternative.
h. Highlight the new AND operand and click Add Requirement.
i. In the Resource Property Details dialog, select Operating System Type from

the Property Name menu and type AIX in the Property value field.
j. Highlight the AND operand again and click Add Requirement.
k. In the Resource Property Details dialog, select Total Physical Memory from

the Property Name menu and type 1024 in the Property value field.

34 Tivoli Workload Scheduler: Scheduling Workload Dynamically

6. Open the Resources page and create a relationship to the resource requirement,
as follows:
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Contains.
d. In the Target menu, select the resource requirement OperatingSystemType

and click OK.
7. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/

1.0/jsdl" xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xmlns:xmi="http://www.omg.org/XMI" xmi:version="2.0" description="This job
has different requirements for memory based on the operating system it will
run on " name="jobWithRequirementsByOS">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>
<jsdl:relationship target="OperatingSystemType" type="Contains"/>

</jsdl:resources>
<jsdl:relatedResources id="OperatingSystemType" type="OperatingSystem">
<jsdl:properties>

<jsdl:or>
<jsdl:and>

<jsdl:requirement propertyName="OperatingSystemType">
<jsdl:exact>LINUX</jsdl:exact>

</jsdl:requirement>
<jsdl:requirement propertyName="TotalPhysicalMemory">

<jsdl:range>
<jsdl:minimum>512</jsdl:minimum>

</jsdl:range>
</jsdl:requirement>

</jsdl:and>
<jsdl:and>

<jsdl:requirement propertyName="OperatingSystemType">
<jsdl:exact>AIX</jsdl:exact>

</jsdl:requirement>
<jsdl:requirement propertyName="TotalPhysicalMemory">

<jsdl:range>
<jsdl:minimum>1024</jsdl:minimum>

</jsdl:range>
</jsdl:requirement>

</jsdl:and>
</jsdl:or>

</jsdl:properties>
</jsdl:relatedResources>

</jsdl:jobDefinition>

Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console 35

36 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 4. Submitting and tracking jobs

Although you should normally use the standard Tivoli Workload Scheduler means
to schedule and submit workload, there is also an additional way to submit jobs
directly to dynamic scheduling using either the Dynamic Workload Console or the
dynamic workload broker command line, described in the next chapter. This
implies that you only need to write a JSDL job definition. You do not need to write
a job definition in Tivoli Workload Scheduler and the workload broker workstation
does not come into play. Choosing to do so, however, results in not exploiting the
scheduling and choreography services of Tivoli Workload Scheduler. This chapter
explains how to submit and track jobs using the Dynamic Workload Console.

Job definitions are stored in the Job Repository and you search for them and select
them when the job needs to be submitted. At submission time, you can also specify
that a job run on the same resource as a job that has previously run. The job
definition provides all necessary parameters for a job to run, however, you can add
to and change the parameters defined in the job definition for the job instance you
are submitting. This does not change the job definition stored in the Job
Repository.

The lifecycle of a job involves the following sequence of phases:

Using the Dynamic Workload Console, you can manage the whole lifecycle of a job
by performing the following task:
v “Monitoring submitted jobs” on page 39

Submitting jobs with affinity relationships
An affinity relationship is established between two or more jobs when you want
them to run on the same resource.

An affinity relationship is useful when the results of one job are required for the
next job to run. You can define an affinity relationship between two or more jobs in
the following ways:
v “Submitting a job with affinity from the Dynamic Workload Console”
v “Submitting a job with affinity from the command line” on page 38
v “Defining affinity relationships” on page 5 in Tivoli Workload Scheduler.

Submitting a job with affinity from the Dynamic Workload
Console

To submit a job to run on the same resources as a previous job, do the following:
1. In the console navigation tree, expand Definitions and click Jobs.
2. Search for a job definition stored in the Job Repository database.
3. Select the job definition that you want to submit.
4. Click Submit...
5. Click Go. The Job Definitions wizard starts.
6. You can optionally define an alias for the job by selecting Provide an alias to

the job for this submission. Subsequently, you can use the alias name to
submit a new job using the jobsubmit command to define an affinity
relationship with the job you are submitting now. You can also use the alias as

© Copyright IBM Corp. 1999, 2012 37

a user-friendly alternative to the job ID when performing queries on jobs from
the command line or tracking job instances.

7. In the Target Resource area, select the option Specify that this job runs on
the same resources as a previous job.

8. Click Next. If you selected to specify an alias, then you are prompted to
provide the alias name. Click Next.

9. Search and select the job with which you want to establish an affinity
relationship. The current job will then run on the same resource as the job you
select. Click Next.

10. On the summary page, review your selections and click Finish to submit the
job.

The job is submitted on the same resources as the job you selected. You can now
check the job status by selecting Tracking > Job Instances from the navigation. See
“Monitoring submitted jobs” on page 39 for more information.

Submitting a job with affinity from the command line
The jobsubmit command requires a job ID or an alias name for the affine job.

Submit the following command to make the job defined in job definition
WinJob2.jsdl, with the alias WJ220070606, run on the same resource as the
previously run job, WinJob1, which was submitted with the alias, WJ120070606:
jobsubmit -jsdl WinJob2.jsdl -alias WJ220070606 -affinity alias=WJ120070606

Submitting jobs with variables
When you submit a job, you can define or change a variable to be used by the job.

During job submission, you can define variables that are to be used by the job
itself or to assign the job to a resource. You can add new variables or override the
default values for variables that are included in the job definition. For more
information about including variables in the job definitions see “Using variables in
job definitions” on page 26.

Submitting a job with variables from the command line
The jobsubmit command submits jobs from the command line interface. You can
include arguments to change the value of predefined variables and add new ones.
For example, the job definition for Job1 includes the variable memory with the value
512 which is used to set the free physical memory requirement. To increase the
requirement to 1024 when submitting the job, issue the following command:
jobsubmit -jdname Job1 -var memory=1024

38 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Job statuses
This section describes all supported statuses for a job as returned both by the
command line interface and by the Dynamic Workload Console. It also lists the
operations a user can perform depending on the status the job is in.

Table 5. Job statuses and supported operations

Dynamic
Workload
Console status

Icon Command line status
You can cancel
the job

You can browse
the job output

You can
define
affinity

Run failed RED FAILED_
EXECUTION

' '

Resource
allocation failed

RED RESOURCE_
ALLOCATION_
FAILED

Unable to start RED NOT_EXECUTED '

Unknown YELLOW UNKNOWN ' '

Submitted WAITING SUBMITTED '

Waiting for
resources

WAITING WAITING_FOR_
RESOURCES

'

Resource
allocation
received

WAITING RESOURCE_
ALLOCATION_
RECEIVED

'

Submitted to
agent

WAITING SUBMITTED_
TO_ENDPOINT

' '

Waiting for
reallocation

WAITING RESOURCE_
REALLOCATE

'

Cancel pending ABORT PENDING_
CANCEL

' '

Cancel allocation ABORT CANCEL_
ALLOCATION

' '

Canceled ABORT CANCELLED ' '

Running RUNNING EXECUTING ' ' '

Completed
successfully

GREEN SUCCEEDED_
EXECUTION

' '

Note: You can define an affinity relationship with a job in Canceled state only if
the job was canceled while running.

Monitoring submitted jobs
A job instance is a job that is submitted to run at a specific time. You can track the
outcome of a submitted job from the Dynamic Workload Console.

Prerequisite:A job must be submitted to dynamic workload broker before you can
view its instances. Submitted jobs are stored in the Job Repository for a default
time interval. See the Tivoli Workload Scheduler: Administration Guide, SC23-9113 for
information about configuring this interval in the JobDispatcherConfig.properties
file. You can access the following information about job instances:
v Status of the job instance.
v The host name of the computer where the job instance ran.

Chapter 4. Submitting and tracking jobs 39

v The return code of the job instance.
v The date and time the job was submitted.
v The date and time the job started and finished running.

For example, to view all jobs that have resulted in error within the last 24 hours,
follow these steps:
1. In the console navigation tree, expand Tracking and click Job Instances. The

Track Job Instance Search Criteria page is displayed
2. Specify the search criteria for the job instances as follows:

a. In the Submission Time section, select the Last 24 Hours radio button.
b. In the Job Status section, select Error Conditions.
c. Click Search.

The results are displayed in the Job Tracking page.

As an alternative, you can take the following steps:
1. In the console navigation tree, expand Definitions and click Jobs. The Job

Definition Search Criteria page is displayed.
2. Specify the search criteria for the job definition associated with the job instance

that you want to view.
3. Select the job for which you want to show instances.
4. Click Show Instances. The results are displayed in the Job Definitions Search

Result page.

Once a job is submitted to the Job Dispatcher, it goes through the phases of job
scheduling, allocation of resources, and finally, job execution. Problems might occur
along the way, and there are specific job statuses that identify at which point
things went wrong. The following is a list of job statuses that a job can assume
after it is submitted to be run:

Job completing successfully
The job goes through the following statuses: Submitted > Waiting for
resources > Resource allocation received > Submitted to agent > Running
> Completed successfully.

Job being canceled
The job goes through the following statuses: Submitted > Waiting for
resources > Resource allocation received > Submitted to agent > Running
> Cancel pending > Canceled.

Job being reallocated
The job is allocated to a computer which is temporarily unreachable, for
example because of a network problem. The job goes through the
following statuses: Submitted > Waiting for resources > Resource
allocation received > Waiting for reallocation > Waiting for resources .

Job encountering an error
There can be several reasons for the error. Here are some examples:
v The job encounters an error because the selected working directory does

not exist on the target system. The job goes through the following
statuses: Submitted > Waiting for resources > Resource allocation
received > Submitted to agent > Unable to start. As the job cannot
start, no output is available.

40 Tivoli Workload Scheduler: Scheduling Workload Dynamically

v The job requires an operating system which is not available in the
environment. The job goes through the following statuses: Submitted >
Waiting for resources > Resource allocation failed.

v The job encounters an error because one of the parameters specified in
the job is not supported on the target system. The job goes through the
following statuses: Submitted > Waiting for resources > Resource
allocation received > Submitted to agent > Running > Run failed.

When viewing the job instance details for this job Job Tracking page, the
reason for the error is displayed. You can also use the ID indicated in the
Identifier field to retrieve more information on the job results, which is
stored in a series of log files on the computer where the job ran. The name
of the computer where the job ran is also indicated in the Job Tracking
page. Locate the computer and analyze the log files available in the folder
named with the job ID in the following path:
TWA_home/TWS/stdlist/JM/yyyy.mm.dd/archive

Every job has a compressed file whose name is the job ID, for example:
ed1d4933-964b-3f5e-8c73-f720919491d6.zip

The compressed file contains the following:

diagnostics.log
May or may not include diagnostic information.

jm_exit.properties
Includes the return code as well as other job statistics, like CPU
and memory usage.

out.log
Includes the full job output.

trace.log
Includes the output trace of the task launcher process spawned by
the Tivoli Workload Scheduler agent to run the job.

trace.log_cmd
Includes the command used to run the task launcher.

Chapter 4. Submitting and tracking jobs 41

42 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 5. Using the command line interface

Dynamic workload broker provides a command line for running a set of
commands. You can use the command line interface to save, submit, query,
monitor, cancel jobs, and view the job output. You can also archive database tables.

Commands are stored in the following location on the master domain manager:
TWA_home/TDWB/bin

The following commands are available:

Table 6. Dynamic workload broker commands

Command Purpose See

exportserverdata Downloads the list of
dynamic workload broker
instances from the Tivoli
Workload Scheduler database
to a temporary file. Use to
record a port number or host
name change.

the section about
exportserverdata command
in Tivoli Workload Scheduler:
User's Guide and Reference

importserverdata Uploads the list of dynamic
workload broker instances
from the temporary file to
the Tivoli Workload
Scheduler database after you
are done recording a port
number or host name
change.

the section about
importserverdata command
in Tivoli Workload Scheduler:
User's Guide and Reference

jobsubmit Submits a job to the Job
Dispatcher.

“jobsubmit command -
Submitting jobs” on page 47

jobdetails Returns property information
for the specified job.

“jobdetails command -
Viewing details on jobs” on
page 52

jobquery Returns a list of submitted
jobs matching the selection
criteria.

“jobquery command -
Performing queries on jobs”
on page 49

jobcancel Cancels a submitted job. “jobcancel command -
Canceling jobs” on page 54

jobstore Manages job definitions. “jobstore command -
Managing job definitions” on
page 55

jobgetexecutionlog Displays the results of
submitted jobs.

“jobgetexecutionlog
command - Viewing job
output” on page 57

movehistorydata Moves data present in the
Job Repository database to
the archive tables.

the section about
movehistorydata command
in Tivoli Workload Scheduler:
User's Guide and Reference

resource Creates and manages
resources and groups.
Manages associated
computers.

the section about resource
command in Tivoli Workload
Scheduler: User's Guide and
Reference

© Copyright IBM Corp. 1999, 2012 43

Command-line syntax

This chapter uses the following special characters to define the syntax of
commands:

[] Identifies optional attributes. Attributes not enclosed in brackets are
required.

... Indicates that you can specify multiple values for the previous attribute.

| Indicates mutually exclusive information. You can use the attribute to the
left of the separator or the attribute to its right. You cannot use both
attributes in a single use of the command.

{} Delimits a set of mutually exclusive attributes when one of the attributes is
required. If the attributes are optional, they are enclosed in square brackets
([]).

\ Indicates that the syntax in an example wraps to the next line.

Command-line configuration file
The CLIConfig.properties file contains configuration information which is used
when typing commands. By default, arguments required when typing commands
are retrieved from this file, unless explicitly specified in the command syntax.

The CLIConfig.properties file is created at installation time and is located on the
master domain manager in the following path:
TWA_home/TDWB/config

The CLIConfig.properties file contains the following set of parameters:

Dynamic workload broker default properties

ITDWBServerHost
Specifies the IP address of dynamic workload broker.

ITDWBServerPort
Specifies the number of the dynamic workload broker port. The
default value is 9550.

ITDWBServerSecurePort
Specifies the number of the dynamic workload broker port when
security is enabled. The default value is 9551.

use_secure_connection
Specifies whether secure connection must be used. The default
value is false.

KeyStore and trustStore file name and path

keyStore
Specifies the name and path of the keyStore file containing private
keys. A keyStore file contains both public keys and private keys.
Public keys are stored as signer certificates while private keys are
stored in the personal certificates. The default value is
/Certs/TDWBClientKeyFile.jks.

trustStore
Specifies the name and path of the trustStore file containing public

44 Tivoli Workload Scheduler: Scheduling Workload Dynamically

keys. A trustStore file is a key database file that contains public
keys. The public key is stored as a signer certificate. The keys are
used for a variety of purposes, including authentication and data
integrity. The default value is /Certs/TDWBClientTrustFile.jks.

Passwords for keyStore and trustStore files

keyStorepwd
Specifies the password for the keyStore file.

trustStorepwd
Specifies the password for the trustStore file.

File types for keyStore and trustStore files

keyStoreType
Specifies the file type for the keyStore file. The default value is JKS.

trustStoreType
Specifies the file type for the trustStore file. The default value is
JKS.

Default user ID and password for dynamic workload broker

tdwb_user
Specifies the user name for a user authorized to perform
operations on dynamic workload broker when security is enabled.
The default value is ibmschedcli. This password must be
previously defined on IBM WebSphere. For more information on
security considerations, see the Tivoli Workload Scheduler:
Administration Guide, SC23-9113.

tdwb_pwd
Specifies the password for a user authorized to perform operations
on dynamic workload broker when security is enabled. This
password must be previously defined on IBM WebSphere . For
more information on security considerations, refer to Tivoli
Workload Scheduler: Administration Guide.

Detail level for command-line log and trace information

logger.Level
Specifies the detail level for the command-line trace and log files.
The command-line trace and log files are created in the following
location:

log file
TWA_home/TDWB/logs/Msg_cli.log.log

trace file
TWA_home/TDWB/logs/Trace_cli.log

The default value is INFO.

logger.consoleLevel
Specifies the detail level for the log and trace information to be
returned to standard output. The default value is FINE. Supported
values for both the consoleLevel and loggerLevel parameters are
as follows:

ALL Indicates that all messages are logged.

SEVERE
Indicates that serious error messages are logged.

Chapter 5. Using the command line interface 45

WARNING
Indicates that warning messages are logged.

INFO Indicates that informational messages are logged.

CONFIG
Indicates that static configuration messages are logged.

FINE Indicates that tracing information is logged.

FINER
Indicates that detailed tracing information is logged.

FINEST
Indicates that highly detailed tracing information is logged.

OFF Indicates that logging is turned off.

logger.limit
Specifies the maximum size of a log file in bytes. The default value
is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

logger.count
Specifies the maximum number of log files. The default value is 6.
When the maximum size is reached, a new file is created, until the
maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.pattern
Specifies that the trace information for the Java™ Virtual Machine is
logged in the Trace_cli.log file. The default value is INFO.

java.util.logging.FileHandler.limit
Specifies the maximum size of a trace file in bytes. The default
value is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

java.util.logging.FileHandler.count
Specifies the maximum number of trace files. The default value is
6. When the maximum size is reached, a new file is created, until
the maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.formatter
Specifies the formatter to be used for the Trace_cli.log file. The
default value is com.ibm.logging.icl.jsr47.CBEFormatter.

DAO common configuration
This section defines the RDBMS settings for the exportserverdata,
importserverdata, and movehistorydata commands. These commands use
the RDBMS installed on dynamic workload broker These parameters are

46 Tivoli Workload Scheduler: Scheduling Workload Dynamically

valorized at installation time and should not be modified, except for
com.ibm.tdwb.dao.rdbms.useSSLConnections as noted below.

com.ibm.tdwb.dao.rdbms.rdbmsName
Specifies the RDBMS name.

com.ibm.tdwb.dao.rdbms.useDataSource
Specifies the data source to be used.

com.ibm.tdwb.dao.rdbms.jdbcPath
Specifies the path to the JDBC driver.

com.ibm.tdwb.dao.rdbms.jdbcDriver
Specifies the JDBC driver.

com.ibm.tdwb.dao.rdbms.userName
Specifies the name of the RDBMS user.

com.ibm.tdwb.dao.rdbms.password
Specifies the password of the RDBMS user.

com.ibm.tdwb.dao.rdbms.useSSLConnections
Specifies that access to the Tivoli Workload Scheduler DB2
database by some of the CLI commands is over SSL. Is set to FALSE
by default. You must set to TRUE, if the database is DB2 and you
use FIPS security, for the following commands to work:
v exportserverdata

v importserverdata

v movehistorydata

jobsubmit command - Submitting jobs
Use the jobsubmit command to submit jobs to the Job Dispatcher.

Syntax

jobsubmit ?

jobsubmit [-usr user_name -pwd password] {-jsdl jsdl_file | -jdname
job_definition_name} [-alias job_alias] [-var variable=value...] [-affinity {jobid=job_id |
alias=alias}] [-configFile configuration_file]

Description

This command submits a job to the Job Dispatcher. When the job is submitted, it is
assigned a unique ID, which can be used for retrieving information on and
canceling jobs.

You can use this command to submit jobs saved locally on the dynamic workload
broker server or saved in the Job Repository. To submit a local job, use the -jsdl
option and specify the path to the JSDL file. To submit a job saved in the Job
Repository, use the -jdname option and specify the job definition name.

When submitting jobs, you can also define an alias to be used as an alternative to
the job ID when performing queries on the job, or for defining subsequent jobs as
affine. To define affinity between two or more jobs, use the -affinity option when
submitting the subsequent jobs. You define jobs as affine when you want them to
run on the same resource, for example when the second job must use the results
generated by the previous job.

Chapter 5. Using the command line interface 47

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-jsdl jsdl_file
Specifies the name and path to a local JSDL file which provides the parameters
for a job when it is submitted. This parameter is required when the jdname
parameter is not specified.

-jdname job_definition_name
Specifies the name of a job definition stored in the Job Repository database.
The job definition name is defined within the JSDL file and can be modified
only by editing the JSDL file. This parameter is required when the jsdl
parameter is not specified. To obtain this name, you can use the Definitions >
Jobs task from the Dynamic Workload Console console navigation tree, or the
jobstore command specifying one or more of the query options. For more
information on the jobstore command, see “jobstore command - Managing job
definitions” on page 55.

-alias job_alias
Indicates that an alias must be generated for the job being submitted. You can
use the alias as a user-friendly alternative to the job ID when performing
queries on the job. You can also use the alias when submitting new jobs so that
the new job is affine to the job having this alias. To define affinity between two
or more jobs, use the -affinity option when submitting the new jobs. You
define jobs as affine when you want them to run on the same resource. On
Windows systems, the maximum length for the alias is 200 characters, if you
used the default installation paths for WebSphere Application Server and
dynamic workload broker.

-var variable=value
Specifies a variable and the associated value. You can also specify a list of
variables by separating them with a comma. This value overrides the value
specified when creating the JSDL file. You can also specify new variables
without previously defining them in the JSDL file.

-affinity jobid=job_id
Specifies that the current job is affine to a previously submitted job. To
establish the affinity relationship, specify the job ID for the previous job. The
job ID is automatically generated at submission time.

-affinity alias=alias
Specifies that the current job is affine to a previously submitted job. To
establish the affinity relationship, specify the job alias for the previous job. The
job alias is generated at submission time when you specify the -alias option.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is

48 Tivoli Workload Scheduler: Scheduling Workload Dynamically

optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 44.

Return Values

The jobsubmit command returns one of the following values:
0 Indicates that jobsubmit completed successfully.
< > 0 Indicates that jobsubmit failed.

Examples
1. To submit the local job test_job located in the /staging_area/accounts/ path

using the configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobsubmit -jsdl /staging_area/accounts/test_job -configFile
/opt/test/custom_config.properties

2. To submit the job definition domestic_accounts saved in the Job Repository,
type the following command:
jobsubmit -jdname domestic_accounts

See Also

“jobdetails command - Viewing details on jobs” on page 52

jobquery command - Performing queries on jobs
Use the jobquery command to perform advanced queries on submitted jobs.

Syntax

jobquery ?

jobquery [-usr user_name -pwd password] {[-status status...] [-submitter submitter]
[-name job_definition_name] [-alias job_alias] [-sdf submit_date_from] [-sdt
submit_date_to] [-jsdf job_start_date_from] [-jsdt job_start_date_to] [-jedf
job_end_date_from] [-jedt job_end_date_to]} [-configFile configuration_file]

Description

This command performs advanced queries on submitted jobs based on the
following attributes:
v job status
v name of the user who submitted the job
v job name
v job alias
v job submission date
v job start date

Chapter 5. Using the command line interface 49

v job completion date

You can also use this command to retrieve the job ID generated at submission
time, which is required when running the jobstatus, jobdetails and jobcancel
commands. To retrieve the job ID, specify the -name option.

Options

? Displays help information.

-usr user name
Specifies the user name for a user authorized to perform operations on the
command line. This option is required when security is enabled and the user
name is not defined in the CLIConfig.properties configuration file (with the
tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This option is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-status status
Specifies the status of the jobs to be searched. Separate statuses using commas;
spaces are not supported. Supported statuses are as follows:

0 all supported statuses

1 submitted

2 waiting for resources

3 resource allocation received

4 submitted to agent

5 running

6 cancel pending

7 canceling allocation

8 waiting for reallocation

10 bound

41 resource allocation failed

42 run failed

43 completed successfully

44 canceled

45 unknown job

46 job not started

48 error

-submitter submitter
Specifies the name of the user who submitted the job.

-name job_definition_name
Specifies the job name. This option returns the unique job ID, which can be
used for retrieving information on and canceling jobs. This option supports the
asterisk (*) wildcard character as described below:

50 Tivoli Workload Scheduler: Scheduling Workload Dynamically

as a single parameter
it must be enclosed in inverted commas, for example
C:\Program Files\TDWB\bin>jobquery -name "*"

This command returns a list of all submitted jobs.

to complete a job name
it does not require inverted commas, for example
C:\Program Files\TDWB\bin>jobquery -name batchsub*

This command returns a list of all submitted jobs starting with the
batchsub suffix.

-alias job_alias
Specifies the job alias. The job alias is generated at submission time using the
-alias option. For more information see “jobsubmit command - Submitting
jobs” on page 47.

-sdf submit_date_from
Specifies a time range starting from the date when the job was submitted. The
query is performed starting from the date you specified to the present date,
unless the -sdt option is specified. Use both the -sdf and -sdt options to define
a specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-sdt submit_date_to
Specifies a time range starting from the date when the job was submitted. The
query is performed starting from the date when the dynamic workload broker
database was populated to the date you specified, unless the -sdf option is
specified. Use both the -sdf and -sdt options to define a specific time range.
Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-jsdf job_start_date_from
Specifies a time range starting from the date when the job started. The query is
performed starting from the date you specified to the present date, unless the
-jsdt option is specified. Use both the -jsdf and -jsdt options to define a
specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-jsdt job_start_date_to
Specifies a time range starting from the date when the job started. The query is
performed starting from the date when the dynamic workload broker database
was populated to the date you specified, unless the -jsdf option is specified.
Use both the -jsdf and -jsdt options to define a specific time range. Specify the
date in the dd/MM/yyyy-hh:mm:ss format.

-jedf job_end_date_from
Specifies a time range starting from the date when the job completed. The
query is performed starting from the date you specified to the present date,
unless the -jedt option is specified. Use both the -jedf and -jedt options to
define a specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss
format.

-jedt job_end_date_to
Specifies a time range starting from the date when the job completed. The
query is performed starting from the date when the dynamic workload broker
database was populated to the date you specified, unless the -jedf option is
specified. Use both the -jedf and -jedt options to define a specific time range.
Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This option is

Chapter 5. Using the command line interface 51

optional. If this option is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 44.

Return Values

The jobquery command returns one of the following values:
0 Indicates that jobquery completed successfully.
< > 0 Indicates that jobquery failed.

Examples
1. To retrieve the job ID for a job named CLIJSB11, type the following command:

jobquery -usr john -pwd BCA12EDF -name CLIJSB11

The following output is displayed. The job ID is associated to the Job Identifier
key:
Call Job Dispatcher to query jobs. There are 10 Jobs found for your request
Details are as follows:

Job Name: CLIJSB11
Job Alias: alias
Job Identifier: 617c9bf7095787c83e1c36744e569ceb
Status: FAILED_running
Job EPR: http://lab135200.romelab.it.ibm.com:955
/JDServiceWS/services/Job
Job Submitter Name:
Submit Time: Tue May 23 15:41:54 CEST 2006
Start Time: Tue May 23 14:48:09 CEST 2006
End Time: Tue May 23 14:48:09 CEST 2006
Job Last Status Message:
Job Duration: PT0S
Returncode: 0
Job Resource Name: LAB237010
Job Resource Type: ComputerSystem

2. To retrieve all jobs submitted by test_user in submitted, resource allocation
failed, and canceled state, type the following command:
jobquery -status 1,3,44 -submitter test_user

See Also

“jobsubmit command - Submitting jobs” on page 47

jobdetails command - Viewing details on jobs
Use the jobdetails command to view details on submitted jobs.

Syntax

jobdetails ?

52 Tivoli Workload Scheduler: Scheduling Workload Dynamically

jobdetails [-usr user_name -pwd password] -id job_ID [-v][-configFile
configuration_file]

Description

This command displays details on submitted jobs using the unique ID created at
job submission. To retrieve the job ID after submitting the job, use the jobquery
command specifying the -name parameter.

Options

? Displays help information.

-usr username
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-v
Displays job details.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 44.

Return Values

The jobdetails command returns one of the following values:
0 Indicates that jobdetails completed successfully.
< > 0 Indicates that jobdetails failed.

Examples
1. To view run information on a job with ID 617c9bf7095787c83e1c36744e569ceb,

type the following command:
jobdetails -id 617c9bf7095787c83e1c36744e569ceb

An output similar to the following is displayed:

Chapter 5. Using the command line interface 53

Call Job Dispatcher to get the job properties.
Success return from Job Dispatcher.
Job Identifier: 617c9bf7095787c83e1c36744e569ceb
Job Name: CLIJSB11
Job Alias: alias
Job State: SUBMITTED
Job Submitter: null
Client Notification: http://lab135200.romelab.it.ibm.com:9550
/RAServiceWS/services/Allocation
Job Last Status Message:
Job Submit Time: Tue May 23 15:43:44 CET 2009
Job Start Time: Tue May 23 14:49:51 CET 2009
Job End Time: Tue May 23 14:49:51 CET 2009
Job Duration: PT0S
Job Return Code: 0
Job Resource Name: LAB237010
Job Resource Type: ComputerSystem
Job Usage Metric Name: StartTime
Job Usage Metric Type: null
Job Usage Metric Value: 1148388591000
Job Usage Metric Name: EndTime
Job Usage Metric Type: null
Job Usage Metric Value: 1148388591000

2. To submit the job with ID 617l9jw7095787g83f1c36744e569glf using the
configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobdetails -id 617l9jw7095787g83f1c36744e569glf -configFile
/opt/test/custom_config.properties

3. To view the status of a job with ID 617c9bf7095787c83e1c36744e569ceb, type
the following command:
jobdetails -id 617c9bf7095787c83e1c36744e569ceb

An output similar to the following is displayed:
Call Job Dispatcher to get the job properties.
Success return from Job Dispatcher.
Job ID: 617c9bf7095787c83e1c36744e569ceb
Status: SUBMITTED

4. To view details on the job with ID 617c9bf7095787c83e1c36744e569ceb using
the configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobdetails -jsdl 617c9bf7095787c83e1c36744e569ceb -configFile
/opt/test/custom_config.properties

See Also
v “jobsubmit command - Submitting jobs” on page 47
v “jobquery command - Performing queries on jobs” on page 49

jobcancel command - Canceling jobs
Use the jobcancel command to cancel a submitted job.

Syntax

jobcancel ?

jobcancel [-usr user_name -pwd password] -id job_ID [-configFile configuration_file]

54 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Description

This command cancels the running of submitted jobs using the unique ID created
at job submission. To retrieve the job ID after submitting the job, you can use the
jobquery command specifying the job name.

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 44.

Return Values

The jobcancel command returns one of the following values:
0 Indicates that jobcancel completed successfully.
< > 0 Indicates that jobcancel failed.

Examples
1. To cancel the running of a job with ID 617l9jq7037529f83x1w36185e569fwl, type

the following command:
jobcancel -id 617l9jq7037529f83x1w36185e569fwl

See Also

“jobsubmit command - Submitting jobs” on page 47

jobstore command - Managing job definitions
Use the jobstore command to manage job definitions.

Chapter 5. Using the command line interface 55

Syntax

jobstore ?

jobstore [-usr user_name -pwd password]{[-create jsdl_file] | [-update jsdl_file] |
[-del job_definition_name] | [-get job_definition_name] | [-queryall] | [[
-queryname job_definition_name...] [-querydesc job_definition_desc...] [-queryowner
job_definition_owner...]]} [-configFile configuration_file }

Description

This command saves and updates JSDL files in the Job Repository. JSDL files are
saved in the database as job definitions with unique names. After saving JSDL files
in the database, you can perform the following operations on job definitions:
v Delete job definitions
v Print job definitions to standard output or save them to a file
v Perform queries on job definitions based on several attributes

You can submit job definitions using the jobsubmit command. For more
information about the jobsubmit command, see “jobsubmit command - Submitting
jobs” on page 47.

Options

? Displays help information.

-usr username
Specifies the user name for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
user name is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-create jsdl_file
Specifies the name and path to a JSDL file to be saved in the Job Repository
database. The JSDL file is saved as a job definition. The name for the job
definition is saved within the JSDL file and can be only modified by editing
the JSDL file. Delete and retrieve (get) operations are performed on the job
definition.

-update jsdl_file
Specifies the name and path to a JSDL file to be updated in the Job Repository
database. The JSDL file must be existing in the database.

-del job_definition_name
Deletes a job definition from the Job Repository database.

-get job_definition_name
Prints the JSDL file contained in the job definition to standard output or to a
file you specify. You can use this command for performing minor editing on
job definitions.

56 Tivoli Workload Scheduler: Scheduling Workload Dynamically

-queryall
Performs a query without any filters. This query returns all job definitions
stored in the dynamic workload broker database.

-queryname job_definition_name
Performs a search on job definitions based on the job definition name. The job
definition name is unique. This parameter is case-sensitive. Wildcards (*, ?) are
supported.

-querydesc job_definition_desc
Performs a search on job definitions based on the job definition description.
Wildcards are supported.

-queryowner job_definition_owner
Performs a search on job definitions based on the user who created the job
definition.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information about the configuration file, see
“Command-line configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information
about the CLIConfig.properties file, see “Command-line configuration file” on page
44.

Return Values

The jobstore command returns one of the following values:
0 Indicates that jobstore completed successfully.
< > 0 Indicates that jobstore failed.

Examples
1. To retrieve all jobs created by user Administrator, type the following

command:
jobstore -queryuser Administrator

2. To update the job branch_update already stored in the Job repository database,
type the following command:
jobstore -update ../jsdl/branch_update.xml

See Also
v “jobsubmit command - Submitting jobs” on page 47
v “jobquery command - Performing queries on jobs” on page 49

jobgetexecutionlog command - Viewing job output
Use the jobgetexecutionlog command to view the output of a submitted job.

Syntax

jobgetexecutionlog ?

Chapter 5. Using the command line interface 57

jobgetexecutionlog [-usr user_name -pwd password] -id job_ID -sizePage size Page
-offset offset [-configFile configuration_file]

Description

This command displays the job output for submitted jobs using the unique ID
created at job submission. To retrieve the job ID after submitting the job, you can
use the jobquery command specifying the job name. You can also specify the
length of the output page to be displayed and the number of the byte in the job
output from where you want to start displaying the output.

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-sizePage size Page
Specifies the number of bytes to be displayed in the job output page.

-offset offset
Specifies the number of the first byte to be displayed in the job output page.
This option can be used to view large job outputs.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 44.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 44.

Return Values

The jobgetexecutionlog command returns one of the following values:
0 Indicates that jobgetexecutionlog completed successfully.
< > 0 Indicates that jobgetexecutionlog failed.

58 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Examples
1. To view the output of a job with ID 617l9jq7037529f83x1w36185e569fwl

displaying the output in pages containing 400 bytes starting from the first byte
in the page, type the following command:
jobgetexecutionlog -id 617l9jq7037529f83x1w36185e569fwl -sizePage 400 -offset 1

The following output is displayed:
Call Job Dispatcher to get the output of the job
Success returned from Job Dispatcher
Get Execution Log request submitted
The Execution Log Page requested is:
al 5

drwxrwxrwx 7 root root 200 Aug 24 16:39 .
drwxrwxrwx 8 root root 208 Aug 22 15:11 ..
drwxrwxrwx 6 root root 248 Aug 22 15:11 eclipse
-rw-rw-rw- 1 root root 139 Aug 24 16:39 jsdef
drwxr-xr-x 2 root root 552 Aug 24 16:54 logs
drwxrwxrwx 5 root root 240 Aug 22 15:11 rcp
drwxrwxrwx 3 root root 72 Aug 22 15:11 shared
drwxrwxrwx 3 root root 80 Aug 22 15:11 workspace

The file size is:
381

See Also
v “jobsubmit command - Submitting jobs” on page 47
v “jobquery command - Performing queries on jobs” on page 49

Chapter 5. Using the command line interface 59

60 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Notices

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1999, 2012 61

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
Provides information about the trademarks and registered trademarks of IBM and
of the companies with which IBM has trademark acknowledgement agreements.

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Intel is a trademark of Intel Corporation in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

62 Tivoli Workload Scheduler: Scheduling Workload Dynamically

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 63

64 Tivoli Workload Scheduler: Scheduling Workload Dynamically

Index

A
accessibility vii
affine jobs

defining 47
submitting 37

affinity
defining 5, 37, 47
syntax 5

affinity relationship
defining 5

affinity with job alias 5
affinity with job ID 5
affinity with job name 5
alias

creating when submitting 37
defining when submitting 37

C
canceling TWS jobs

kill command 6
checking

scan results 10
CLIConfig.properties file

command-line configuration 44
command line

command location 43
command usage 43
managing jobs 43
setting the environment 43

command line job statuses 39
command line syntax 44
command-line configuration

CLIConfig.properties file 44
commands

jobcancel 54
jobdetails 52
jobgetexecutionlog 57
jobquery 49
jobstore 56
jobsubmit 47

computer
resource 22

computers
configuring 9
physical resources 10

conman command
monitoring TWS jobs 6
viewing job output 6

consumable resource
resource quantity 19, 25

conventions used in publications vii
creating job definitions

templates 26
creatng jobs 17
credentials 19
critical dynamic workload broker jobs 1
critical job

prioritization 1
promotion 1

critical job priority
enhancing 1

critical path
job promotion 1

D
dynamic workload broker

critical jobs 1
critical path 1

dynamic workload broker jobs
prioritizing 1

Dynamic Workload Console
accessibility vii

E
editing job definitions 30, 31
education viii
environment variables 26

F
file system

related resource 22

G
global resources

definition 24
glossary vii

J
job alias

alternative to job ID 37
defining 47

job association
defining 5

Job Brokering Definition Console 19
editing job definitions 30, 31, 33, 34
writing job definitions 17

job canceling
TWS kill command 6

job definition
creating 30, 31, 33, 34

job dependency
defining 5

job ID
jobcancel command 50
jobdetails command 50
jobquery command 50
jobstatus command 50
retrieving 50

job instances
showing 40
status 40

job monitoring 39

job priority
assigning 19

job promotion 1
job status mapping 6

TWS job status 6
job statuses

job statuses
monitoring 39

mapping 39
supported operations 39

job submission 39
Job Submission Description

Language 19
job targets

defining 19, 22
job variables 4

creating 37, 38
editing 37, 38

jobcancel command 54
jobdetails command 52
jobgetexecutionlog command 57
jobquery command 49
jobs

allocation 19, 22
creating 19, 22
defining 19, 22
jobs

consumable properties 22
optimizable properties 22

optimization 19, 22
scheduling 19
using variables 19

jobstore command 56
jobsubmit command 47
jsdl

template 26
JSDL 19

K
kill command

job canceling 6

L
load-balancing policies 19

defining 25
logical resource

related resource 22
logical resources

configuring 9
creating 12
defining 12
software information 9

M
monitoring TWS jobs

conman command 6

© Copyright IBM Corp. 1999, 2012 65

N
network system

related resource 22

O
operating system

related resource 22
optimization policies 19

P
physical resources

checking 10
priority 19

assigning to jobs 19
publication

who should read vii
publications vii

R
read the publication, who should vii
related resource

file system 22
logical resource 22
network system 22
operating system 22

resource
computer 22

resource groups
creating 14
definition 9

resource quantity
consumable resource 19, 25
defining 19, 25

resource types
consumable 22

resources
optimizable 22

S
scan results 10
submission by reference 1
submitted jobs

showing 40
submitting dynamic jobs from Tivoli

Workload Scheduler 1
syntax

command line 44

T
technical training viii
Tivoli technical training viii
Tivoli Workload Scheduler agent

computer scan 9
environment scan 9

trademarks 62
training

technical viii
TWS job status

job status mapping 6

TWS kill command
job canceling 6

U
user credentials 19
using variables 26

V
variable management 4
variables 19

defining 38
defining and using 4
Dynamic workload broker 4

variables in job
defining at submission 38
defining at submissions 37
defining in job definition 26
editing at submission 37, 38

viewing job output
conman command 6

W
Web Console job statuses 39
workload service assurance 1
writing job definitions

templates 26

66 Tivoli Workload Scheduler: Scheduling Workload Dynamically

IBM®

Product Number: 5698-WSH

Printed in USA

SC23-9856-03

	Contents
	Figures
	About this guide
	Who should read this publication
	Publications
	Accessibility
	Tivoli technical training
	Support information

	Chapter 1. Scheduling jobs
	Creating Tivoli Workload Scheduler jobs managed by dynamic workload broker
	Using variables in dynamic workload broker jobs
	Using variables in Workload Broker jobs
	Defining affinity relationships
	Alias definition in Tivoli Workload Scheduler
	Monitoring and canceling jobs

	Chapter 2. Identifying the resources for jobs
	Checking physical resources on computers
	Creating logical resources
	Creating resource groups

	Chapter 3. Writing JSDL definitions with the Job Brokering Definition Console
	Job definitions
	Resources in the job definition
	Using variables in job definitions
	Using JSDL job definition templates
	Scenarios for creating job definitions
	Scenario: Creating a job definition using a computer resource group
	Scenario: Creating a job definition using a logical resource group
	Scenario: Creating a job definition for a job to run on x86 processors
	Scenario: Creating a job definition for a script to run on a specific operating system
	Scenario: Alternative operating system requirements

	Chapter 4. Submitting and tracking jobs
	Submitting jobs with affinity relationships
	Submitting a job with affinity from the Dynamic Workload Console
	Submitting a job with affinity from the command line

	Submitting jobs with variables
	Submitting a job with variables from the command line

	Job statuses
	Monitoring submitted jobs

	Chapter 5. Using the command line interface
	Command-line configuration file
	jobsubmit command - Submitting jobs
	jobquery command - Performing queries on jobs
	jobdetails command - Viewing details on jobs
	jobcancel command - Canceling jobs
	jobstore command - Managing job definitions
	jobgetexecutionlog command - Viewing job output

	Notices
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

