Automatic Binary Optimizer for z/OS
Version 1 Release 3

User's Guide

.||I

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 83.

Fourth Edition (September 2019)

This edition applies to Version 1.3 of IBM® Automatic Binary Optimizer for z/OS® (program number 5697-AB1), and IBM
Automatic Binary Optimizer for z/OS Trial (program number 5697-TR1), and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.

© Copyright International Business Machines Corporation 2015, 2019.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

L= 1+ 1 - N v
=T - T o - T vii
FaY o YoYU L o TE 31 oo o SRR vii

FAN o1 o] LA PN (= Ta I (=T 0 TP vii

HOW t0 read SYNtaX diagramS. ... ciicuiiiiieeiiiieicieeseiee st e s st e s eeesseteessreesssteesssseesssseesssseesssseesnsseesnnsees vii
SUMMATY OF CRANZES. . iiiiiiie ittt e et e st e e s s et e s sate e s st e e sseee s sseesasseessssaessseessnseessnseesan vili
HOW t0 SENA YOUI COMMENTS.....uiiiieiieciieeecccitee e eercrre e e eestre e e e estreee e seebaeeeeesssaeeeessseseeeesnssaeesesassasessennseseens Xi
Accessibility features for Automatic Binary Optimizer for Z/OS......uoi e Xi
Chapter L. OVEIVIEW. . ..cuieiieieieniecenteseetestecentassocasassscasssssssssssssssssssssssssssssssssassassssans 1
21T L= 31 (TR SRSTR 1
Choosing between using the Enterprise COBOL compiler and using Automatic Binary Optimizer........... 1
Chapter 2. System reqUIremMeNtS....cccccieiieieieiieieiiertecentecatecsocessessecessossssessscassssascans 3
SUPPOItEd OPEIAtiNG SYSTEMIS..ciiiiiiiictitiiceeeeieeeeieeeeree e steeestee e s tee e s teeesbaeessbaeesseeesssaeesseeesseeessaeesseeennne 3
Target NardWare LEVELS......ii ettt e s e s ee e s ae e e s ate e e aeeesssteessseeesssaesnsseesnnses 4
Chapter 3. COBOL module reqUirements......c..cccccieereceiieceecentececessecessossesessscassacsncans 7
ST ={] o] E= T oo 1 a1 011 £=T o 3PP PP 7
COBOL language feature and compiler Option SUPPOIT.....cccciiiicieiiiieiicies e see e eee e eee e sree e ree e s e 8

e TaTe [T a Y= =N o] OS] = O TP 9
Chapter 4. Installing and verifying installation........ccccccviieiiniiniiniiiciiccicicinnecnene, 11
Installing IBM Automatic Binary Optimizer fOr Z/OS.. ...ttt eeee e e see e ee s e 11
Verifying installation using the Installation Verification Program (IVP)......cccecceecievireceenee e 11
Chapter 5. Optimizing Modulesccccciiiiniiniiniieiiniiniiiiiiieieiineieeiassnee. 15
T [UTTg=Te I B D=3 =X (=T g =T 3 TN 15

(O] oY T 0] V4=Y e [T =To A1V 16
20 R 16

O]SSP 18

(O] oY T a0]V4=T o] o] {10] 1 13RS 19

Y I S 20

Y 01 SR PRSTRP 20
L0350 TSRS 21

0 S 23

LOG e ittt et ettt et e et e et e e te et e e e teeate e et e et e e et e e bee et e e bee e bt e baeateaareeanteeteeanaeeseearaeeteenneeareennaeanreann 24
REPLACE teeetteeteeete et e tte et e st e e te et e e s te e see s te e seeaaseesseeasesanseessseanseessseenseeasaeanseessaesnseessesnseesseesnsennes 25

1S 07 1) S 25

(07] 1010 0T=T 01 £ OO PP OO PO ROUPUPROUPPPPPRIORt 26

[T o=l oTe] oL AT o TUE= Ao o PSPPSR 27
N[O I ==Y 0] o] (=SSRt 28
Specifying optimization With BOPTciiiiiiiiiieiiieeetessee sttt see s e e s sre e s s aa e e ssaeesbaeesssaeesaneeens 28
Specifying optimization With IEFOPZ..........c.uiiiiiiiieicee ettt s see e see e s see e s ae e snaee s 31
Recommended settings for the z/OS JCL REGION and JCL MEMLIMIT parameters......cccocceeeevveeercveennne 32
Specifying the language to be used for ABO MESSAZES......cuiiriirirvieririieeerieeesieeeseeeeseeeesseessseesssseessssees 32
Invoking ABO from TSO, REXX and assembler COOE.....uuiiiiiiiiiiniieiciiee ettt sve e svee e svee e svae e 33

(O] o1 AT aaTrATaY =S U oo [T 1] R 33

Starting the optimizer from an assembler Program. ... e 37

Chapter 6. Understanding output from the optimization process.........cccceevvruncnnen. 41
[0 = 11 1= TP PPRRPPPRRPRTPRIRY 41
TS AT oY= (=T A 1S3 o T4 1 O OSSR 43

LiSting tranSTOrmM CONTENTS. c..uiiiiiei ittt e e st e e s bee s s bt e e sbee e sbee s sabeessabeessnnees 43
SYSPRINT DD aNd LIST OPtiON.ceiicciiiieeiciitieeeeetieeeeeetieeeesettree e seenseeeseesssaeessennseeessesnssseesssssssnesssnnsenns 49

Chapter 7. Managing optimization and optimized module deployment process...... 51

Optimization and deployment USQZE SCENATIOSccvevveerrrieerriiieisiiiersieessreessseesssseesssseesssseesssseesssseessssees 51
Scenario 1: Optimization process with static deployment.......ccoccieericcciiee e 52
Scenario 2: Optimization process with dynamic deployment........ccccovcciereiecciiiee et 53
Scenario 3: Optimization process using a hybrid approach..........cceceevecieiniieincieeceeeeee e 54

RIS A =10 o1 a T UATo] o PR 55

Chapter 8. Resolving problems with optimization and optimized module

deploymentcoceiiiiiieiiieiiiiiieiiiiiietieteiteteetestecatestesastassssassessssesssssssassssassasas 57
Resolving problems that occur during optimization tiMe. ... 57
Resolving problems encountered during @XECULION......cciviiiiriiieiiiieerte st sae e ee s 57
Changes in COBOL module size after Optimization.......ccovceeiriieeinieiineeesee sttt esee e ssee e s e s 57
Error message and abend code differEnCeS......ccuiiiiiiiiiiieieceee et 58
Application Delivery FOuNdation fOr Z SYSTEMSciiiicciiiee et e e e e e rree e e e naeeeeeas 58
Run Time INStrumentation Profiler. ... ettt ettt ssbe e s sae e s sbee s saeeas 59
AppendiX A. JCL SAMPLe....cuieiieiiiieiiieiieiiieiteteitettotestecstessecasssssssssssssssssssssssssassans 63
Appendix B. RetUIN COUES.....ccciuiiieiinieiieiiieiieieiienietetiesetestosastessecasssssssesssssssessees 65
APPENUIX C. MESSAGES.cuctuireireireiieiiaiisisecresresrestestestsssassssssssssssessessessasssssassassssssess 67
0 o= ROt 83
=T =T 0 g = T OO SR UOTSRI 83
LiSt Of F@SOUICES....ccuureeuiriniiiiniiiiniitiiiteiiteireeiteeeteeetaeisteeiteasiseessssessrsnssssssssanenes 85
IBM Automatic Binary Optimizer for z/OS publiCatioNS.......ccccuiieiieeciieeecceee e e eeee s 85
=] =N (Yo o TU] o] L Tox= Y o] 1SS 85

Tables

1. Comparing optimizer and COMPILEr USE CASES....uiiiiiiiciieeieieeecieeecteeeeteeeeteeseteeessteesssteesssteesssseessssessssesennns 2
2. SUPPOIEA NArAWAIE LEVELS....uvieiieiriee ettt ettt e et e e e e ree e e e ebaae e e e s bsae e e e e sseeeesenstaeessenssaaeesensssees 4
3. COBOL modules that ABO dOES NOt SUPPOIT.....ccicieeicieeieieeeeieeeeieeeeteeeeteeesteeessteesssteeseseeessssesssssessnsssesanes 7
4. Ineligible CSECTS and MESSAZE ISSUBT.....uiiiiiiiiiieiiiieriieeesreeesreesssteessbeeesbeeesseeessseeessseesssseessssesessseessnsens 9
5. Return code and corresponding MiSSING LE PTFS......ciiciiiiciie ettt ecee e ee e s vee e s aee e svee e svae e eaneas 12
6. The ddnames used for binary OptimizZatioN.........cecccciiiie e e e e e e rre e e e e rra e e e e anreeas 15
o] 014 g1 72=Y g oY o 4 o] T3S 19
8. Input modules and their coNtaiNiNg CSECTS....uuiiiiiiiiiieiiiieirreesereessreessreessreessreeesreessreessseesssseessseesns 50
9. Output 1: Optimized Mmodules and their CSECTS....cciuiiiiiiiieiieeciee et eecteeeetre e etee e eteeestee e ebeeessaeessaeennes 50
10. OULPUL 2: LiStiNG TranSTOrMIS. ciieii ittt ettt sttt e st e s te e s s be e s s be e e sate e esateeesaseessaseesnsseeeaees 50
11. Recommended alloCation PAramMETerS......c.uiicciiiieiieeciee ettt eetee e eee s rree e e e e e ste e s e atee e eabeessaseeesnsaeeneeas 60
12. Recommended alloCation PAramMELEIS.....cccccuviieieccreeeeeccite e e ettt e e eerre e e e e eraeeeeessbaeeeessraeeesenraaeeeesnsseeens 63
13. IBM Automatic Binary Optimizer for z/OS return COUES.... ittt 65

Preface

About this book

This book is for IBM COBOL compiler customers who use IBM Automatic Binary Optimizer for z/OS to
improve the performance of their already compiled COBOL programs.

Abbreviated terms

Certain terms are used in a shortened form in this information. Abbreviations for the terms used most
frequently are listed alphabetically in the following table.

Term used Long form

ABO IBM Automatic Binary Optimizer for z/OS

CSECT Control section

EBCDIC Extended binary coded decimal interchange code
HFS Hierarchical file system

JCL Job control language

PDS Partitioned data set

PDSE Partitioned data set extended

Other terms, if not commonly understood, are spelled out the first time they appear.

How to read syntax diagrams
Use the following description to read the syntax diagrams in this information:
 Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The >>=--- symbol indicates the beginning of a syntax diagram.
The -==> symbol indicates that the syntax diagram is continued on the next line.
The >=-- symbol indicates that the syntax diagram is continued from the previous line.
The =-==>< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >=-- symbol and end with
the ===> symbol.

« Required items appear on the horizontal line (the main path).

»— required_item >«

Optional items appear below the main path.

»— required_item L _j >«
optional_item

« If you can choose from two or more items, they appear vertically, in a stack. If you must choose one of
the items, one item of the stack appears on the main path.

© Copyright IBM Corp. 2015, 2019 vii

»— required_item Trequired_choicel j—N
required_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below:

default_choice
»— required_item required_choicel

required_choice2

« An arrow returning to the left, above the main line, indicates an item that can be repeated.

<

»— required_item Lrepeatable_item ln

« Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent user-supplied names or
values.

« If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Summary of changes

This section lists the major changes that have been made to this document for IBM Automatic Binary
Optimizer for z/OS in Version 1. The latest technical changes are highlighted in the HTML version, or
marked by vertical bars (]) in the left margin in the PDF version.

Version 1 Release 3 document refresh in September 2019

« Adds the LINK option requirements when rebinding for the RTI Profiler. (See “Run Time
Instrumentation Profiler” on page 59)

« Adds support for z14 ZR1. (See “Target hardware levels” on page 4)

Version 1 Release 3 document refresh in January 2019

« Adds support for COBOL modules that are built with the CMPR2 compiler option. (See “COBOL language
feature and compiler option support” on page 8)

« Adds information on alternate ABO invocations. (See “Invoking ABO from TSO, REXX and assembler
code” on page 33)

« Adds information on required record format for OPTLOG and OPTERR, and the data sets specified by the
LOG option. (See “LOG” on page 24 and Appendix A, “JCL sample,” on page 63)

- Clarifies the IEFOPZ configuration activation steps. (See “Scenario 2: Optimization process with
dynamic deployment” on page 53)

Version 1 Release 3 document refresh in September 2018

- Adds a new optimizer option, LOG, to allow generating additional member-level log files into a particular
data set. (See “LOG” on page 24)

viii Preface

« Adds a binder APAR, OA55985, to the list of PTFs that are required on the systems where ABO is
running. (See “Supported operating systems” on page 3)

« Adds the severity indicator (I, W, E, S, or U) to each ABO message. (See Appendix C, “Messages,” on
page 67)

« Adds messages BOZ4120S and BOZ4121S, and updates messages BOZ1409S, BOZ1446U. (See
Appendix C, “Messages,” on page 67)

« Updates the JCL sample for the first step of using the RTI Profile. (See “Run Time Instrumentation
Profiler” on page 59)

Version 1 Release 3 document refresh in June 2018

« Adds line continuation support for SYSIN files. (See “Line continuation” on page 27)

« Adds a topic describing the reasons for COBOL module size increase after optimization. (See “Changes
in COBOL modaule size after optimization” on page 57)

« Adds message BOZ4119, and removes message BOZ1434. (See Appendix C, “Messages,” on page 67)

Version 1 Release 3 document refresh in February 2018

« The signature bits produced in the ABO listing transform for COBOL CSECTs are now decoded and
detailed information about the CSECT are added to the listing transform. (See “Listing transform
contents” on page 43)

« Adds support to allow excluding modules from ABO processing. (See “BOPT” on page 16 and
“Specifying optimization with BOPT” on page 28)

« Adds a summary table of ineligible COBOL modules. (See Chapter 3, “COBOL module requirements,” on
page 7)

« Adds TEST to the list of supported COBOL compiler options. (See “COBOL language feature and
compiler option support” on page 8)

« Adds items to the ineligible CSECTs table. (See “Handling ineligible CSECTs” on page 9)

« Adds messages BOZ1437,B0Z1457, B0Z4097, B0Z4116, B0Z4117. (See Appendix C, “Messages,” on
page 67)

« Updates the description of the following messages: BOZ1421, BOZ1428, BOZ1429, BOZ1430,
B0OZ1431, BOZ4101. (See Appendix C, “Messages,” on page 67)

« Removes the return code 8. (See Appendix B, “Return codes,” on page 65)

Version 1 Release 3 with PTF for APAR PI89065 installed

« Adds support for user written SERVICE LABEL statements. (See “COBOL language feature and compiler
option support” on page 8)

Version 1 Release 3 with PTF for APAR PI89064 installed

« Adds support for program segmentation. (See “COBOL language feature and compiler option support”

on page 8)

Version 1 Release 3

« Adds ARCH(12) for generating COBOL code that exploits the new IBM z14 mainframe. (See “ARCH” on
page 20)

« Delivers a new tool, IBM Run Time Instrumentation Profiler, to help identify COBOL modules that are
good candidates for optimization using the Automatic Binary Optimizer. (See “Run Time
Instrumentation Profiler” on page 59)

Preface ix

Version 1 Release 2 document refresh in September 2017

Adds z/0OS Version 2.3 to the list of supported operating systems. (See “Supported operating systems”
on page 3)

Adds CMPR2 to the list of unsupported COBOL features. (See “COBOL language feature and compiler
option support” on page 8)

Adds notes to COBOL module requirements. (See Chapter 3, “COBOL module requirements,” on page
7)

Adds the SYSIN comment directive, which is used to insert comments in the SYSIN flow. (See
“Comments” on page 26)
Adds message BOZ1003. (See Appendix C, “Messages,” on page 67)

Updates the description of the following messages: BOZ1419, BOZ1455. (See Appendix C, “Messages,”
on page 67)

Version 1 Release 2 with PTF for APAR PI77901 installed

Adds the Installation Verification Program (IVP), BOZJIVP, which enables you to verify that the
optimizer is installed correctly and is functional. (See “Verifying installation using the Installation
Verification Program (IVP)” on page 11)

Adds information on the ABO optimization process requiring significantly more time and memory
compared to the original compilation process when using Enterprise COBOL V4 and earlier. (See
Chapter 7, “Managing optimization and optimized module deployment process,” on page 51 and
“Recommended settings for the z/0OS JCL REGION and JCL MEMLIMIT parameters” on page 32)

In the listing transform contents, adds an input instructions section that contains the complete list of
instructions for the CSECT being optimized. (See “Listing transform contents” on page 43)

Version 1 Release 2 with PTF for APAR PI73095 installed

Changes the symbol used to negate a CSECT option expression from a caret (*) to an exclamation point
(1). (See CSECT)

Version 1 Release 2

Adds optimization eligibility for COBOL programs that were compiled with pre-Version 3 IBM COBOL
compilers. (See “Eligible compilers” on page 7)

Adds support for partially bound modules. (See “ALLOW” on page 20)

Allows the optimizer to determine the output member name when using a specific member named on
the input. (See “BOPT” on page 16)

Adds the following supported COBOL language features. (See “COBOL language feature and compiler
option support” on page 8)

— CICS® HANDLE ABEND

— CICS HANDLE AID

Adds the following new compiler options:

- ALLOW

- CSECT

— HANDLERS

Adds the following error messages: BOZ1494, BOZ4109, BOZ4110, BOZ4111, BOZ4114. (See
Appendix C, “Messages,” on page 67)

Removes the following error message: BOZ1425.

X Preface

How to send your comments

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this documentation, contact us in one of these ways:

« Use the Online Readers' Comments Form at http:/www.ibm.com/software/awdtools/rcf.

« Send your comments to the following address: compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version of the product, and, if
applicable, the specific location (for example, the page number or section heading) of the text that you
are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

Accessibility features for Automatic Binary Optimizer for z/0OS

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Automatic Binary Optimizer for z/OS (ABO).

Accessibility features

z/OS includes the following major accessibility features:

« Interfaces that are commonly used by screen readers and screen-magnifier software
- Keyboard-only navigation
« Ability to customize display attributes such as color, contrast, and font size

z/0S uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (http://www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/section-508-standards) and Web Content
Accessibility Guidelines (WCAG) 2.0 (http:/www.w3.org/ TR/WCAG20/). To take advantage of
accessibility features, use the latest release of your screen reader in combination with the latest web
browser that is supported by this product.

The ABO online product documentation in IBM Knowledge Center is enabled for accessibility. The
accessibility features of IBM Knowledge Center are described at http://www.ibm.com/support/
knowledgecenter/en/about/releasenotes.html.

Keyboard navigation

Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/0S services by using IBM Developer for z Systems® Enterprise Edition.
For information about accessing these interfaces, see the following publications:

» 2z/0S TSO/E Primer (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.ikjp100/toc.htm)

« z/0S TSO/E User's Guide (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.ikjc200/toc.htm)

« z/0S ISPF User's Guide Volume I (http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/
com.ibm.zos.v2r2.f54ug00/toc.htm)

« IBM Developer for z Systems Knowledge Center (http://www.ibm.com/support/knowledgecenter/
SSQ2R2/rdz_welcome.html?lang=en)

Preface xi

https://www.ibm.com/marketing/iwm/iwm/web/signup.do?lang=en_US&source=swg-rcf2
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
https://www.ibm.com/support/knowledgecenter/SSERQD
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjp100/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikjc200/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54ug00/toc.htm
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSQ2R2/rdz_welcome.html?lang=en

How to send your comments

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information

The ABO online product documentation is available in IBM Knowledge Center (https://www.ibm.com/
support/knowledgecenter/SSERQD), which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/0S
interfaces.

Related accessibility information

In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility

For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

xii Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

http://www.ibm.com/support/knowledgecenter/en/SSERQD
https://www.ibm.com/support/knowledgecenter/SSERQD
https://www.ibm.com/support/knowledgecenter/SSERQD
http://www.ibm.com/able
http://www.ibm.com/able

Chapter 1. Overview

IBM Automatic Binary Optimizer for z/OS (ABO) improves the performance of already compiled IBM
COBOL programs. ABO does not require source code, source code migration, or performance options
tuning. It uses modern optimization technology to target the latest IBM Z mainframes, including IBM z14,
to accelerate the performance of COBOL applications.

The input to ABO is your COBOL program modules. ABO scans the program modules for eligible COBOL
programs to optimize. A program is eligible for optimization by ABO if all of the following conditions apply:

- It was generated by an eligible IBM COBOL compiler.
« All the language features are supported.

« The optimization verification passes all succeed.

After validating the input program, ABO processes the program module and produces an optimized
program module to target the latest IBM Z mainframes.

z/OS Version 2.1 or later is required to run ABO and the optimized programs. With z/OS Version 2.2 or
later, the optimized programs can be run on multiple levels of z/Architecture® without any changes to the
application JCL.

Benefits

The optimized programs created by ABO improves performance by exploiting the features in the latest
IBM Z mainframes, reduces processing costs, and shortens the programs' execution time.

ABO leverages the latest advancements in COBOL optimization technologies and generates code to target
the latest deployment systems that offer the processing power to improve performance.

Earlier COBOL compilers generate code at the ARCH(0) level only. Using the Automatic Binary Optimizer
for z/OS upgrades these ARCH(0) level COBOL applications to exploit the latest ARCH(12) z14/z14 ZR1,
ARCH(11) z13s/ z13°, and ARCH(10) zEC12/zBC12 mainframes.

Using the Automatic Binary Optimizer on the earlier COBOL programs delivers up to a 25-year jump
forward in the evolution of hardware technology, with access to over 600 new hardware instructions that
are already on the z14, z13s, z13, zEC12 and zBC12 mainframes.

Choosing between using the Enterprise COBOL compiler and using
Automatic Binary Optimizer

IBM Automatic Binary Optimizer for z/OS and the latest IBM Enterprise COBOL compiler serve different
but complementary purposes. This section provides you with considerations on when to use ABO and
when to enhance performance by recompiling your source code with the latest IBM Enterprise COBOL
compilers.

To improve your program's performance, select one of the following ways:

« Use IBM Enterprise COBOL for z/OS V5 or V6 to recompile your program source code

« Use IBM Automatic Binary Optimizer for z/OS to optimize your compiled programs that are not in your
recompile plan or if the program source code is not available

Choose which one to use according to Table 1 on page 2.

© Copyright IBM Corp. 2015, 2019 1

Table 1. Comparing optimizer and compiler use cases

IBM Automatic Binary IBM Enterprise COBOL
Use case Optimizer for z/0S compilers
Significant performance v

improvements without requiring
source, migration, or options
tuning

Built-in support on z/OS V2.2 and
later for targeting multiple v
hardware levels

Interoperability and legacy v
compatibility (e.g. PDS input/
output, interoperate with OS/VS
COBOL and VS COBOL II NORES)

No need to downgrade ARCH v
setting to match disaster
recovery machine

New COBOL application v
development or to use new

COBOL features

Maintenance on existing COBOL Vv
programs

Maximum performance Vv

improvements (source,
migration, and options tuning
required)

2 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 2. System requirements

Supported operating systems

IBM Automatic Binary Optimizer for z/OS can be run on the following operating systems:
« z/0OS Version 2.3
« z/OS Version 2.2
« z/OS Version 2.1

ABO requires some PTFs to be applied on the systems where Automatic Binary Optimizer for z/OS is
installed and running. Other PTFs are required on systems where the ABO generated optimized modules
will be running, even if ABO is not installed on these systems. APAR/PTF (OA47689/UA90982), which is
available for z/OS 2.2 only, is required on systems where either ABO or the ABO generated modules are
running.

These PTFs are required on systems where ABO is running:
« z/OS V2.3
— 0A55985/UA97356 (Binder)
« z/OS V2.2
0A47829/UA78084 (Binder)
0A50640/UA82866 (Binder)
0A47689/UA90982 (IEFOPZxx SYS1.PARMLIB support)
0A55985/UA97372 (Binder)
- z/OS V2.1
— 0OA49419/UA90987 (Binder)
— OA50460/UA82868 (Binder)
— 0A55985/UA97377 (Binder)
These PTFs are required on systems where ABO optimized modules are running;:
« z/OS V2.3

— PI84561/UI49013 (Language Environment Automatic Binary Optimizer Runtime Engine)
- z/OS V2.2
P152354/U133525 (Language Environment Automatic Binary Optimizer Runtime Engine)
PI51546/U133445 (Language Environment Automatic Binary Optimizer Runtime Engine)
P151802/UI32944 (Language Environment CICS system definition sample update)
0A47689/UA90982 (IEFOPZxx SYS1.PARMLIB support)
PI84563/UI149033 (Language Environment Automatic Binary Optimizer Runtime Engine)
- z/OS V2.1
P155281/U134924 (Language Environment Automatic Binary Optimizer Runtime Engine)
P154804/U134935 (Language Environment Automatic Binary Optimizer Runtime Engine)
PI55010/UI34414 (Language Environment CICS system definition sample update)
PI84564/UI49032 (Language Environment Automatic Binary Optimizer Runtime Engine)

© Copyright IBM Corp. 2015, 2019

If the same system is going to be used to both run ABO and run the ABO optimized modules then all the
PTFs listed above per z/OS version must be installed on this system.

Optional programs that can be used with ABO:

 Application Delivery Foundation for z Systems V3.1

Developer for z Systems Enterprise Edition V14.1
Debug for z Systems V14.1

Fault Analyzer for z/OS V14.1

Application Performance Analyzer for z/OS V14.1

Itis highly recommended that the latest IBM Automatic Binary Optimizer or IBM Automatic Binary
Optimizer Trial PTFs be installed. See the fix list page.

Target hardware levels

IBM Automatic Binary Optimizer for z/OS can generate program modules for the latest IBM Z servers.

Automatic Binary Optimizer for z/OS uses the same hardware nhumbering scheme as the COBOL
compilers. Table 2 on page 4 lists the hardware levels that are supported by IBM Automatic Binary

Optimizer for z/OS Version 1.3. You can use the ARCH option to specify which hardware level you want
the ABO produced modules to target.

Table 2. Supported hardware levels

Hardware level

Description

10

Generates code that uses instructions available on the 2827-xxxx (IBM
zEnterprise® EC12) and 2828-xxxx (IBM zEnterprise BC12) models in z/
Architecture mode.

Specifically, these level 10 machines and their follow-ons add instructions
with support of the following facilities:

» Execution-hint facility

- Load-and-trap facility

« Miscellaneous-instructions-extension facility
» Transactional-execution facility

» Enhanced decimal floating point facility that enables more efficient
conversions between zoned decimal data items and decimal floating point
data items. Instead of converting zoned decimal data items to packed-
decimal data items to perform arithmetic operations, the compiler
converts zoned decimal data items directly to decimal floating point data
items, and then back again to zoned decimal data items after the
computations are complete.

11

Generates code that uses instructions available on the 2964-xxxx (IBM
z13°®) and 2965-xxx (IBM z13s) models in z/Architecture mode.

Specifically, these level 11 machines and their follow-ons add instructions
with support of the following facility:

« Enhanced decimal floating point facility that enables more efficient
conversions between packed-decimal data items and decimal floating
point intermediate result data items

4 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

http://www-01.ibm.com/support/docview.wss?uid=swg27047229

Table 2. Supported hardware levels (continued)

Hardware level

Description

12

Generates code that uses instructions available on 3906-xxx (IBM z14) and
3907-xxx (IBM z14 ZR1) models in z/Architecture mode.

Specifically, these level 12 machines and their follow-ons add instructions
that support the vector packed-decimal facility, which accelerates packed-
decimal computation by storing intermediate results in vector registers
instead of in memory.

Note: ABO can run on any system supported by the z/OS level. For a complete list of IBM Z servers that
support z/OS V2.1 and later, see z/OS Server Support.

Chapter 2. System requirements 5

http://www-03.ibm.com/systems/z/os/zos/support/zos_server_support.html

6 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 3. COBOL module requirements

IBM Automatic Binary Optimizer for z/OS optimizes program modules output from the binder and load
modules output from the linkage editor. The program modules output from the binder can be either
program objects or load modules. Load modules produced by the linkage editor must be acceptable input
to the binder for ABO to optimize them.

ABO is able to optimize both fully bound or partially bound program modules. A partially bound module is
one that has been bound with CALL=NO or NCAL option and are often contained in a link library. If the
ALLOW=NOUNRESEXE option has been specified, ABO will not optimize partially bound program
modules. See the ALLOW option for more details.

ABO does not support the following COBOL modules:

Table 3. COBOL modules that ABO does not support

COBOL modules that ABO does not support | Messages issued

Modules that the binder will not process B0Z4116I followed by BOZ1429U

For example, the binder will not process load modules
that have ESD names with invalid characters. When ABO
encounters a module with an invalid ESD name, ABO
will produce a BOZ41161 message and the BOZ41161
message includes the text of binder message
IEW2512E. The text of IEW2512E includes the name of
the invalid ESD name.

Modules bound with EDIT=NO B0Z1423S

Signed modules B0z1424S

Modules marked not executable BOZ1422S

Mod.ules that include obj:ect files from a B0Z4116I followed by BOZ1419S

prelink step but the prelink step was not done o) .

properly For example, prelinking may be improper if it was not

performed on all object files. This improper prelink
could result in load modules that the binder and ABO
will not process. ABO would produce a BOZ41161
message followed by a BOZ1419S message if the
binder would not process the module. Prelinking is also
not proper if the module includes output from multiple
prelink steps. In this case, the original module would
normally not run properly and ABO would produce a
module that would also not run properly.

ABO scans the CSECTs within the program modules for those that are eligible for optimization. A CSECT is
eligible for optimization by ABO if it was generated by an eligible COBOL compiler and all COBOL features
used in the original COBOL program are supported by ABO.

Eligible compilers

IBM Automatic Binary Optimizer for z/OS, V1.3, can optimize CSECTs within program modules that were
generated by the following COBOL compilers:

« Enterprise COBOL for z/OS V4
» Enterprise COBOL for z/OS V3

© Copyright IBM Corp. 2015, 2019 7

COBOL for 0S/390° & VM V2

COBOL for MVS™ & VM V1.2

COBOL/370V1.1

« VS COBOL IT V1.4.0 (LE enabled modules only)
« VS COBOL II V1.3.x (LE enabled modules only)

Note: COBOL modules that have been processed by CA-Optimizer cannot be optimized by ABO. For these
types of modules it is recommended to use ABO to optimize the original module created by the COBOL
compiler before it was processed by CA-Optimizer.

COBOL language feature and compiler option support

Supported COBOL language features and compiler options

The vast majority of COBOL language features are supported using IBM Automatic Binary Optimizer for
z/0S.

Here is a list of key COBOL features that are supported in IBM Automatic Binary Optimizer for z/OS
Version 1.3.

« ARITH(EXTEND | COMPAT)

- CICS

« CICS HANDLE ABEND

« CICS HANDLE AID

« CICS language translator generated SERVICE LABEL statements
« CMPR2

- DB2°

- DLL

« ENTRY

- IMS

« I/0 and debugging declaratives
« NOOPTIMIZE, OPTIMIZE(STD | FULL)
« NUMPROC(NOPFD | PFD | MIG)
« Program segmentation?

- RECURSIVE

« RENT and NORENT

- SORT and MERGE

- SOL

- SSRANGE

« TEST?

-« THREAD

1 Most cases of Program Segmentation are supported. The remaining unsupported case is when the source
for the CSECT processed by ABO contains independent segments, altered GO TO statements and GO TO
DEPENDING ON statements. In this case, the message BOZ1455W: unsupported feature "Program
Complexity 176" foundisissued and the CSECT is skipped.

2 Although programs compiled with TEST and any sub-option can be optimized by ABO, LE will not produce a
formatted variable dump for the ABO generated module. LE will produce this message instead <prog>
was not compiled with the SYM suboption of the TEST. A formatted variable dump
cannot be produced.

8 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

« TRUNC(STD | BIN | OPT)
« User written SERVICE LABEL statements
« XML

Unsupported COBOL language features and compiler options

IBM Automatic Binary Optimizer for z/OS Version 1.3 does not optimize program modules that use the
following COBOL features:

- ACCEPT FROM SYSIPT used in the LABEL declarative

- CLASS

« DISPLAY UPON SYSLST used in the LABEL declarative
« DISPLAY UPON SYSPCH used in the LABEL declarative
- ENTER

« INVOKE

« Java-based object oriented (O0) syntax

- RERUN

Handling ineligible CSECTs

Although IBM Automatic Binary Optimizer for z/OS (ABO) only optimizes CSECTs generated by the
compilers listed in the Eligible compilers section, ABO will tolerate modules containing CSECTs from
other COBOL compilers and languages.

ABO examines each CSECT before optimization begins. If any of the conditions in the following table
applies, the CSECT is not eligible for optimization, a message is issued and the CSECT is skipped.

Table 4. Ineligible CSECTs and message issued

Ineligible CSECT Message issued
The CSECT name does not match the CSECT filter expression specified. See |B0Z41131

CSECT.

The CSECT is generated from a language other than COBOL. For example, it No specific message
is from HLASM, C/C++, or PL/I. issued 3

The CSECT is not compiled by one of the eligible COBOL compilers. BOz1455W

The CSECT is compiled by one of the eligible COBOL compilers, but it BOzZ1455W

contains one or more unsupported COBOL statements listed in Summary of
unsupported COBOL features.

The CSECT is too complex for ABO to safely optimize and generate correct BOZ1455W
functioning code.

The CSECT contains any unexpected data or code. This can include, but is BOz1455W
not limited to, any missing, corrupted or other erroneous strings ABO relies
on to properly understand the CSECT contents and perform correct
optimizations.

The CSECT has previously been optimized by ABO. BOz1455W

If at least one eligible CSECT for optimization is found in a module then any ineligible CSECTs are copied
over unchanged to the target module along with the optimized CSECTs.

3 The optimizer option SCAN=Y can be used to determine the types of CSECTs present in a module.

Chapter 3. COBOL module requirements 9

10 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 4. Installing and verifying installation

Installing IBM Automatic Binary Optimizer for z/0S

Allinformation about installing IBM Automatic Binary Optimizer for z/OS is included in the Program
Directory provided with the product.

It is highly recommended that the latest IBM Automatic Binary Optimizer for z/OS PTFs also be installed.
See the fix list page for a list of IBM Automatic Binary Optimizer for z/OS PTFs and APARs.

Related reference
“IBM Automatic Binary Optimizer for z/OS publications” on page 85

Verifying installation using the Installation Verification Program (IVP)

After you complete the SMP/E installation of ABO, use the ABO Installation Verification Program (IVP),
BOZJIVP, to verify that ABO is installed correctly and is functional.

Overview of BOZJIVP

The ABO Installation Verification Program (IVP), BOZJIVP, is located in the ABO sample library
HLQ.SBOZJCL, where HLQ is the prefix used for the target libraries in your ABO SMP/E installation.

Run the IVP on any system on which you plan to use ABO and on any system where the optimized
modules produced by ABO will be running.

Note: ABO can run on any hardware level supported by the minimum z/OS level but the ABO generated
optimized modules can only run on zEC12/zBC12, z13/z13s, and z14 systems. See “Target hardware
levels” on page 4 for more information. Keep these minimum hardware requirements in mind when you
examine the IVP results.

Using BOZJIVP

To proceed with the IVP process on the selected system, edit BOZJIVP according to the included JCL
description, and then submit it.

This job contains the following steps:

1. LKED - Link-edit the original COBOL program using as input the object BOZOBJ1 in the same sample
library.

Note: The BOZOBJ1 program was compiled using Enterprise COBOL for z/OS V4R2 with the OPT(STD)
option in effect. The program source example, BOZSRC1, is also available in the same library for your
convenience.

. GOBEFORE - Run the original program.

. VERIFY1 - Verify z/OS version eligibility to run ABO.

. OPTIMIZE - Optimize the original program using ABO.

. VERIFY2 - Verify IBM z server type eligibility to run ABO optimized modules.
. GOAFTER - Run optimized version of the original COBOL program.

. REPORT - Report IVP results.

N o o A WON

© Copyright IBM Corp. 2015, 2019 11

http://www-01.ibm.com/support/docview.wss?uid=swg27047229

Results

You will receive a return code of 0 or 4 for each of the preceding steps when the IVP runs successfully.
After the REPORT step completes, a report is available in the SYSTSRPT output file and in the JESMSGLG
JOBLOG.

The following example shows a sample IVP report in the SYSTSRPT output file:

*%% The original program start time is: 10:42:22.72

*%% The original program end time is: 10:44:10.71

*kk *k%k
Fokk Optimization successful! Fokk
*k*k *k*k

*%% The optimized program start time is: 10:44:11.41

*%%x The optimized program end time is: 10:44:15.63

*k*k *k*k
*%%x The elapsed time is reduced by 103.77 sec *kk
*k*k *k*k
Fkk Hkk
Fokk Installation verification successful! Fokk
*k*k *k*

The following example shows a sample JESMSGLG JOBLOG. Note that the Installation
verification successful! message is presentin both the JOBLOG and in the console.

10.42.22 JOBO7227 HTRTO1I CPU (Total)
Elapsed

10.42.22 JOB07227 HTRTO2I Jobname Stepname ProcStep RC I/0 hh:mm:ss.th
hh:mm:ss.th

10.42.22 JOBO7227 HTRTO3I BOZIVP LKED 00 176 00.01
00.10

10.44.10 JOBO7227 HTRTO3I BOZIVP GOBEFORE 00 192 01:47.49
01:48.14

10.44.11 JOBO7227 HTRTO3I BOZIVP OPTIMIZE 00 13457 00.06
00.54

10.44.15 JOBO7227 HTRTO3I BOZIVP GOAFTER 00 205 04.21
04.37

10.44.15 J0BO7227 +x%% Installation verification successful!

*hk

10.44.15 JOBO7227 HTRTO3I BOZIVP REPORT 00 64 00.01
00.03

If the VERIFY1 step fails, you will see the following message in both the JOBLOG and in the console: z/0S
version: xx.xx is not a supported z/0S version to run ABO.

If the VERIFY2 step fails, you will see the following message in both the JOBLOG and in the console: IBM
z server: (xxxx) is not a supported hardware level to run ABO optimized
modules.

If the OPTIMIZE step fails, verify the messages in this step log file to see which system or Language
Environment component is possibly missing. Fix the problem, and then run the BOZJIVP job again.

If the GOAFTER step fails, verify which Language Environment PTF is possibly missing. If one or more of
the "Language Environment Automatic Binary Optimizer Runtime Engine" PTFs listed in Supported
operating systems are not installed, an 0C1 abend is likely to occur. If instead of an abend the GOAFTER
step fails with a non-zero return code, the return code corresponds to a missing Language Environment
PTF as follows:

Table 5. Return code and corresponding missing LE PTFs
Return code z/0S 2.1 z/0S 2.2 z/0S 2.3
17 P184564 P184563 PI184561

12 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Install the required PTFs, and then run the BOZJIVP job again.

An 0C1 abend will also occur if you attempt to run the ABO generated modules on a system that is not
supported by ABO. See “Target hardware levels” on page 4 for the supported systems.

Chapter 4. Installing and verifying installation 13

14 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 5. Optimizing modules

To use the Automatic Binary Optimizer for z/OS, write your JCL for the optimization process.
Invoking ABO with the EXEC statement

Use the EXEC job control statement in your JCL to invoke ABO. The EXEC statement is as follows:

//0PT EXEC PGM=BOZOPT

Required DD statements

The optimization process requires that you specify data sets for specific uses in the optimization process.
You can define these data sets in DD statements with the required ddnames. The ddnames that are used
by ABO and their characteristics are shown in Table 6 on page 15.

Specifying the optimizer directive BOPT or IEFOPZ

Use BOPT or IEFOPZ to direct ABO. You can include one or more of the BOPT or IEFOPZ directives in the
SYSIN DD. For details, see “BOPT” on page 16 and “IEFOPZ” on page 18.

Required DD statements

The table shows the ddnames that are used by the Automatic Binary Optimizer for z/OS.

Table 6. The ddnames used for binary optimization

ddname Type Required Description

STEPLIB Input Yes Specifies the name of
the data set containing
ABO and the dependent

Language Environment®
runtime data sets.

SYSIN Input Yes Specifies the location of
the file that contains the
optimizer directives
BOPT and IEFOPZ and
optimizer options. As a
convenience, you can
specify the in-stream file
in the JCL using DD *.

OPTLOG Output Yes Specifies that the
optimization summary
information (such as
what is optimized and
the location of the
optimized binaries) is
written to this DD. SCAN
output is also written

here.
SYSPRINT Output No, if the LIST optionis | Specifies the default
specified location for the listing

. __ |transforms. See also
Yes, if the LIST optionis [«gySpRINT DD and LIST
not specified option” on page 49.

© Copyright IBM Corp. 2015, 2019 15

Table 6. The ddnames used for binary optimization (continued)
ddname Type Required Description
OPTERR Output No Specifies that the
optimization diagnostic
information is written to
this DD in exceptional
circumstances.
CEEDUMP Output No Specifies that the
optimization dump
information is written to
this DD in exceptional
circumstances.
CEEOPTS Input No, if you want English | SPecifies the language
messages. to be used for
) messages. See also
Yes, if you want “Specifying the language
Japanese messages. to be used for ABO
messages” on page 32.

Optimizer directives

Use BOPT or IEFOPZ to direct ABO.

BOPT

You can use the BOPT optimizer directive to produce optimized modules based on explicit input and

output specifiers.

»— BOPT — IN= dsn — (— mem_expr —)—————»
DD: — ddname
L (— mem_expr —) J
path 7

v

] LOUT= dsn f
L (— mem —)J

DD: — ddname
L (— mem —) J

path J

A

t

L optimizer_option J

)

»d
L)

IN

Specifies one input module that you want to optimize or multiple input modules when wildcards are

given in the mem_expr specifier.

16 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

ouT
Specifies one output module, or a PDS(E) for one or more output modules when the mem specifier is

omitted.

DD:ddname
Specifies a ddname.

dsn
Is a data set name that must include the high-level qualifier.

mem
Is a data set member name.

mem_expr
Is a data set member name that might include an expression. Only the members whose name string
match the expression will be processed. Matching is case insensitive.

A regular expression accepts the following symbols:
*
Matches any string.

Matches any character.

Can be used as a separator for multiple expressions, with multiple expressions any expression
matching the string counts as a match.

Negates the entire expression that follows it. For example:

« To skip a single member named MEMA:;
IN=DD:SYSBIN(!MEMA)

 To skip all members whose names begin with MEMB:
IN=DD:SYSBIN(!MEMBx)

 To skip members named SUB1 and SUB2:

IN=DD:SYSBIN(!SUB1|SUB2)

path
Is a full HFS path that starts with a slash (/), for example, /home/userl/a.out.opt.

optimizer_option
Is an optimizer option. For a list of optimizer options that you can specify, see “Optimizer options” on
page 19.

Notes:
1. The OUT option on BOPT is optional when the SCAN optimizer option is setto Y.

2. When mem_expr is specified on the IN option, all members that match mem_expr are selected for
optimization. Do not include a mem specifier on the OUT option when mem_expr is specified.

3. When there is no mem specifier on the OUT option, the member names for OUT are determined to be
those that match the mem or mem_expr specifier on the IN option.

4. The IN specifier, the OUT specifier, and optimizer options can be in any order.
For examples of the BOPT directive see “JCL examples” on page 28. For sample scenarios of using the

BOPT optimizer directive, see “Scenario 1: Optimization process with static deployment” on page 52
and “Scenario 3: Optimization process using a hybrid approach” on page 54.

Chapter 5. Optimizing modules 17

IEFOPZ

You can use the IEFOPZ optimizer directive to produce optimized modules based on the IEFOPZ
configuration.

Note: IEFOPZ is only supported on z/OS V2.2 and later. On z/0OS 2.2 the APAR/PTF 0A47689/UA90982
must be applied.

For information about IEFOPZ configuration, see step 2 in “Scenario 2: Optimization process with
dynamic deployment” on page 53.

»— IEFOPZ >
L INACTIVE
SEL_STATE= ACTIVE

ANY

L SEL_OLD= — dsn_wc J
L (— mem_wc —) J

L SEL_ARCH= 10 J L optimizer_option J -

11

\ 4

>
>

A 4

12
ANY

SEL_STATE
Instructs the optimizer to optimize mappings that match the given state.
ANY
Instructs the optimizer to optimize mappings marked as ACTIVE or INACTIVE.
ACTIVE
Instructs the optimizer only to optimize mappings marked as ACTIVE.
INACTIVE
Instructs the optimizer only to optimize mappings marked as INACTIVE.
SEL_OLD
Restricts optimization to mappings with OLD data sets that match the given selector.

dsn_wc
Is a data set name that might include wildcards using the asterisk (*) symbol. For example,
IN.LOAD.
mem_wc
Is a data set member name that might include wildcards using the asterisk (*) symbol. For example,
M*,
SEL_ARCH
Instructs the optimizer to optimize mappings marked with the given architecture.
10
Instructs the optimizer only to optimize mappings marked as ARCH(10).
11
Instructs the optimizer only to optimize mappings marked as ARCH(11).

12
Instructs the optimizer only to optimize mappings marked as ARCH(12).

18 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

ANY
Instructs the optimizer to optimize mappings marked as ARCH(10), ARCH(11), or ARCH(12).
optimizer_option
Is an optimizer option. For a list of optimizer options that you can specify, see “Optimizer options” on
page 19.

Notes:

1. Mapping refers to the association of OLD to NEW modules in the IEFOPZ configuration.

2. By default, all INACTIVE modules in OLD data sets of an IEFOPZ configuration are optimized at
architecture levels as determined by NEW data sets and as determined by the IncludeMembers and
ExcludeMembers configuration specifiers. The SEL_OLD= and SEL_ARCH= are selectors that can be
used to restrict optimization or scanning to a subset of these modules.

The SEL_STATE= is a selector that can be used to change optimization or scanning to ACTIVE modules
or to modules of ANY state. While scanning of ACTIVE modules poses no risk, optimization of ACTIVE
modules could cause problems for programs that use the ACTIVE modules. Care should be used with
selectors SEL_STATE=ACTIVE or SEL_STATE=ANY and when optimization (as opposed to scanning) is
performed.

3. The IN specifier, the OUT specifier, and optimizer options can be in any order.
For examples of the IEFOPZ directive see “JCL examples” on page 28. For a sample scenario of using

the IEFOPZ optimizer directive, see “Scenario 2: Optimization process with dynamic deployment” on page
53.

Optimizer options

An optimizer option is an Automatic Binary Optimizer for z/OS option that is applicable to both the BOPT
and IEFOPZ optimizer directives.

Optimizer options can be placed at the start of the SYSIN file on one or more lines, or on the BOPT or
IEFOPZ optimizer directives.

A global option is an optimizer option that is specified on a line that does not include a BOPT or IEFOPZ
optimizer directive. The value of a global option is referred to as the global setting for the option.

When an optimizer option is specified on a particular line that has an optimizer directive, the value applies
to that optimization optimizer directive only and reverts back to the global setting for subsequent
statements.

Table 7 on page 19 summarizes the optimizer options that apply to both BOPT and IEFOPZ.

Table 7. optimizer options

Option Default Description
“ALLOW” on page 20 ALLOW=UNRESEXE Controls the type of program
modules that ABO will accept.
“ARCH” on page 20 ARCH=10 Specifies the target hardware
level.
“CSECT” on page 21 If you do not specify the CSECT Allows the user to limit
option, ABO will process all processing to one or more
eligible CSECTs. CSECTs.
HANDLERS HANDLERS=Y Specifies if user written or CICS

ABEND handlers may be present
and active anywhere in the
application.

Chapter 5. Optimizing modules 19

Table 7. optimizer options (continued)

Option

Default

Description

“LIST” on page 23

If you do not specify the LIST
option, the listing transforms are
placed in the location according
to SYSPRINT DD.

Specifies the location of the
generated listing transforms.

“LOG” on page 24

If you do not specify the LOG
option, ABO will not generate
member-level log files.

Specifies the location of the
member-level log files to be
additionally generated.

“REPLACE” on page 25 REPLACE=Y Controls whether the output
module is written or not.
“SCAN” on page 25 SCAN=N Controls whether to optimize or

scan the program modules.

Note: The ARCH option can be specified at a global level and on the BOPT directive. It cannot be
specified on the IEFOPZ directive. For IEFOPZ, use the SEL_ARCH option to select parts of an IEFOPZ
configuration matching the SEL_ARCH value to optimize.

ALLOW

Purpose

The ALLOW option controls the type of program modules that the Automatic Binary Optimizer for z/OS will

L,

accept.

_C UNRESEXE
»— ALLOW= NOUNRESEXE

Default
ALLOW=UNRESEXE
Usage

When ALLOW=UNRESEXE is specified, ABO accepts fully bound modules or partially bound modules. The

only type of partially bound program modules accepted by the optimizer are those linked with the

CALL=NO or NCAL binder option. If the input module is fully bound then the optimized output module will

be fully bound. If the input module is partially bound then the optimized module will be partially bound.

When ALLOW=NOUNRESEXE is specified, ABO only accepts fully bound program modules (program
object or load module) and always produces a fully bound program module. If partially bound modules
are processed when ALLOW=NOUNRESEXE is specified then message BOZ1494S is issued.

ARCH

Purpose

The ARCH option specifies the target hardware level.

10
»— ARCH= { 11 }—N
12

Default
ARCH=10

20 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Usage

Use the ARCH option to specify the hardware level that the optimized modules produced by ABO will
target.

Optimized modules produced using a lower ARCH setting will run on a higher ARCH system. However
optimized modules from a higher ARCH setting will not work on a lower ARCH system.

ARCH setting Can only be run on IBM Z mainframe level
ARCH=10 zEC12/zBC12, z13/z13s, z14, z14 ZR1
ARCH=11 z13/z13s, z14,z14 ZR1

ARCH=12 714,714 ZR1

If an invalid combination is attempted then the program is likely to terminate with the following runtime
LE message:

CEE3201S The system detected an operation exception (System Completion Code=0C1)

For details of these ARCH levels, see “Target hardware levels” on page 4.

CSECT

Purpose

The CSECT option allows you to limit processing to zero or more CSECTs.

»— CSECT= — expr »«

Default
By default, if you do not specify the CSECT option, ABO processes all eligible CSECTs.
Parameter

expr
A regular expression for the CSECTs that you want to process. Only the CSECTs whose name string
match the expression will be processed. Matching is case insensitive.

Usage
A regular expression accepts the following symbols:

*
Matches any string.

Matches any character.

Can be used as a separator for multiple expressions, with multiple expressions any expression
matching the string counts as a match.

Negates the entire expression that follows it. For example:
« To skip a single CSECT named PROGA:

CSECT=!PROGA
« To skip all CSECTs whose names begin with PROGB:
CSECT=!PROGB*

« To skip CSECTs named SUB1 and SUB2:

Chapter 5. Optimizing modules 21

CSECT=!SUB1|SUB2

Notes:

 Spaces and brackets are not allowed in a regular expression.

= An expression must match the entire string. A partial match does not count as a match. This means the
expression M*2 matches the string MA2 but not the string MA2A.

« Due to different character encodings across EBCDIC code pages for the special characters usable in
regular expressions, this option should only be used in the following code pages:

IBM-1047
IBM-37/1140
IBM-285/1146
IBM-924

Example 1
In the following example, the CSECTs that do not match the wildcard filter are not processed.

JCL COMMAND

BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT CSECT=SUBx1x%

OUTPUT (in OPTLOG)

10:46:04 Processing CSECT filter expression 'SUBx1x' on member CALLLITT
10:46:04 CSECT CALLLIT was excluded by filter - skip
10:46:04 Processing CSECT SUBO1LOO, in member CALLLITT

10:46:04 Optimizing CSECT SUBO1LOO for zEC12
10:46:04 Succeeded in optimizing SUBQ1LGO
10:46:04 Generating listing transform into DD:SYSPRINT

10:46:04 CSECT SUBO2LOO was excluded by filter - skip
10:46:04 CSECT SUBO3LOO was excluded by filter - skip
10:46:04 CSECT SUBQ4LOO was excluded by filter - skip
10:46:04 CSECT SUBO5LO0O was excluded by filter - skip
10:46:04 CSECT SUBO6LOO was excluded by filter - skip
10:46:04 CSECT SUBO7LOO was excluded by filter - skip
10:46:04 CSECT SUBO8LOO was excluded by filter - skip
10:46:04 CSECT SUBO9LOO was excluded by filter - skip
10:46:04 Processing CSECT SUB10LOO, in member CALLLITT

10:46:04 Optimizing CSECT SUB10LOO for zEC12
10:46:04 Succeeded in optimizing SUB10LGO
10:46:04 Generating listing transform into DD:SYSPRINT

10:46:04 Finished processing, processed 2 of 11 CSECTs in member CALLLITT

Example 2
The following example shows how to specify multiple expressions for matching.

JCL COMMAND

BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT CSECT=SUB0O1L0O|SUBO2LOO

OUTPUT

10:49:13 Processing CSECT filter expression 'SUBO1LOO|SUBO2LOA' on member CALLLITT
10:49:13 CSECT CALLLIT was excluded by filter - skip
10:49:13 Processing CSECT SUBO1LOO, in member CALLLITT

10:49:13 Optimizing CSECT SUBO1LOO for zEC12

10:49:13 Succeeded in optimizing SUBO1LOO

10:49:13 Generating listing transform into DD:SYSPRINT
10:49:13 Processing CSECT SUB02LOO, in member CALLLITT
10:49:13 Optimizing CSECT SUBO2LOO for zEC12

10:49:13 Succeeded in optimizing SUBO2L0OO

10:49:13 Generating listing transform into DD:SYSPRINT

10:49:13 CSECT SUBO3LOO was excluded by filter - skip
10:49:13 CSECT SUBO4LOO was excluded by filter - skip

22 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

10:49:13 CSECT SUBO5LOO was excluded by filter - skip
10:49:13 CSECT SUBO6LOO was excluded by filter - skip
10:49:13 CSECT SUBQO7L00 was excluded by filter - skip
10:49:13 CSECT SUBO8LOO was excluded by filter - skip
10:49:13 CSECT SUBO9LOO was excluded by filter - skip
10:49:13 CSECT SUB10LOO was excluded by filter - skip
10:49:13 Finished processing, processed 2 of 11 CSECTs in member CALLLITT

Example 3

In the following example, MEM1 in dataset HLQ.IN.LOAD has two CSECTs named Al and B1. To limit ABO
processing to only A1, use a CSECT=A* filter as follows:

JCL COMMAND
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) CSECT=Ax

With this CSECT=A* filter in place the OPTLOG looks like the following:
OUTPUT

17:46:04 Processing CSECT filter expression 'Ax’ on member MEM1
17:46:04 Processing CSECT A1, in member MEM1

17:46:04 Optimizing CSECT A1 for zEC12
17:46:04 Succeeded in optimizing Al
17:46:04 Generating listing transform into DD:SYSPRINT

17:46:04 CSECT B1 was excluded by filter - skip
17:46:04 Finished processing, processed 1 of 2 CSECTs in member MEM1

Alternatively CSECT=A* can be specified as a global option so it applies to all subsequent BOPT and
IEFOPZ directives unless overridden by a particular directive:

//SYSIN DD *
CSECT=A*
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1A)
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1B) CSECT=Bx*

After processing, the member MEM1A will contain the optimized CSECT Al and the original CSECT B1,
and member MEM1B will contain the optimized CSECT B1 and the original CSECT Al.

LIST

Purpose

The LIST option specifies the location of the generated listing transforms.

»— LIST= dsn >«
1——(——-mem ———)—~I
DD: — ddname
1——(——-mem ———)—~I
path J
Default
By default, if you do not specify the LIST option, the listing transforms are placed in the location according
to SYSPRINT DD.
Parameters
dsn

Is a data set name that must include the high-level qualifier.

mem
Is a data set member name.

Chapter 5. Optimizing modules 23

DD:ddname
Specifies a ddname.

path
Is a full HFS path that starts with a slash (/), for example, /home/userl/a.list.

Usage
The target of the LIST option can be one of the following items:

« A sequential data set or member of a PDSE (not PDS). The output of multiple CSECT optimizations are
added to this single sequential data set.

« A PDS or PDSE. When a CSECT is optimized, the listing transform particular to that CSECT is placed in a
member of the PDS or PDSE where the member name is based on the CSECT name (upper cased and
truncated to 8 characters). The contents of the member, if any, are overwritten even if the former
contents are produced by the optimizer in previous invocations.

« An HFS path. The output of multiple CSECT optimizations are added to this HFS file.
Related information
SYSPRINT DD.

LOG

Purpose

The LOG option specifies the location of the member-level log files to be additionally generated.

»— LOG= dsn
F DD: — ddname %
path

Default

By default, if you do not specify the LOG option, ABO will not generate member-level log files. Note that
regardless of the LOG option the output from the entire ABO invocation will always be generated in the
location according to OPTLOG DD.

Parameters

dsn
Is a data set name that must include the high-level qualifier.

DD:ddname
Specifies a ddname.

path
Is a full HFS path that starts with a slash(/).

Usage
The target of the LOG option can be one of the following items:

« A PDS or PDSE. When a member is optimized, the log output particular to that member is placed in a
member of the PDS or PDSE where the member name is based on the optimized member name (upper-
cased and truncated to 8 characters). The contents of the member, if any, are overwritten even if the
former contents were produced by ABO in previous invocations.

= An HFS path pointing to a directory. When a member is optimized, the log output particular to that
member is placed in a file in the specified HFS directory where the file name is based on the optimized
member name appended with . 1og. The contents of the member, if any, are overwritten even if the
former contents were produced by ABO in previous invocations.

Notes:

24 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

1. The target of the LOG option must be either a PDS or PDSE with no member specified, or an HFS path
that points to a directory. If the target of the LOG option is specified as a PDS or PDSE with a member
specified, a sequential data set, or an HFS file, an error message will be issued.

2. The target data set of the LOG option should follow the recommended allocation parameters of the
OPTLOG in Table 12 on page 63.

Example 1
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=HLQ.LOG.OUT

Example 2
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=DD:LOG

Example 3
BOPT IN=DD:SYSBIN(*) OUT=DD:SYSBOUT LOG=/home/userl/logdir

For more information, see “Log files” on page 41.

REPLACE

Purpose

Controls whether the output module is written or not.

I,
»— REPLACE= N lN

Default
REPLACE=Y
Usage

When REPLACE=Y and SCAN=N, the optimized module is written to the output module regardless of
whether the output module exists.

- If the output module does not exist, the output module will be created and written.
« If the output module already exists, its content will be overwritten.

However, if there are no eligible COBOL CSECTSs present that can be optimized, nothing is written to the
output module.

When REPLACE=N is specified, optimization or scanning of the input module is bypassed if the output
module already exists; nothing is written to the output module.

You can use REPLACE=N to bypass optimization for already optimized modules. For example, if after
binary optimization, you add new members to the original data sets and you want to optimize only the
new members, you can use a member wildcard with REPLACE=N as follows:

BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD REPLACE=N
In some cases, the optimizer prematurely terminates because of exceeded time or other abnormal
conditions. To solve the problem, you can incrementally build the optimized modules in a sequence of

jobs without spending time repeating optimizations done in an earlier job. Or you can use REPLACE=N in
these cases.

SCAN

Purpose

The SCAN option instructs ABO whether to optimize or to scan the program modules
_r,
»— SCAN= Y 1»4

Chapter 5. Optimizing modules 25

Default

SCAN=N

Usage

When SCAN=N is in effect, ABO performs optimization on the input program modules.

When SCAN=Y is in effect, ABO scans the input program modules instead of performing optimization. No
output modules are produced.

The REPLACE=N option can affect whether scanning is performed:

« If REPLACE=N is specified on the BOPT directive and the output module on the OUT option already
exists, scanning of the module on the IN option is bypassed.

- If REPLACE=N is specified on the IEFOPZ directive, scanning of the member of the OLD data set is
bypassed if the member of the NEW data set already exists.

If you exclude the OUT option on the BOPT directive, scanning is always performed regardless of the
value of the REPLACE option.

In the scanning mode, the optimizer checks the input and output program modules, and lists the CSECTs
in the modules. Scanning output is written to the OPTLOG DD.

You can use SCAN=Y to test the SYSIN setup or to see what modules are present and their contents. If
the program is ineligible for optimization due to the original compiler used, this is also indicated in the
scanning output.

For more information, see “The log file for scanning” on page 42.

Comments

A comment is specified by starting with the (#) character.
When using the (#) character, the following rules apply:

« If the first non-blank character on a line of the SYSIN file is the (#) character, the rest of the line is
ignored.

« If ABO sees a (#) character, which is preceded by a blank, on an input line of SYSIN file, the rest of the
line is ignored.

Example 1

#BOPT IN=DD:SYSBIN OUT=SYSBOUT
#BOPT IN=SYSBIN OUT=SYSBOUT

In example 1, both of the BOPT directives are commented out. On the first line, the # character is in
column 1 and the rest of the line is ignored. On the second line, the first non-blank character is the #
character and the rest of the line is ignored.
Example 2
Optimizing all members of library
Note: we don't compile a member optimized earlier and found in the OUT dataset
BOPT IN=SYSBIN(*) OUT=SYSBOUT REPLACE=N
Example 2 shows adding two full lines of informational comments to the SYSIN file.
Example 3
BOPT IN=SYSBIN(%) OUT=SYSBOUT #
In example 3, the # character at the end of a line is ignored.
Example 4
BOPT IN=SYSBIN(*) OUT=SYSBOUT #toptimizing library files
Example 4 shows adding a comment after a directive.

26 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Line continuation

Line continuation in a SYSIN file is specified by the (+) or (-) continuation character, which indicates the
next line should be read as if it were a part of the previous line. Line continuation is not required but can
be used to break up long lines to simplify editing or to ease consumption by other tooling that may have
line length restrictions.

The (+) or (-) continuation character must be the last non-blank and non-comment character on a line.
When using the continuation characters, the following rules apply:

« The (-) character can only be used to continue a line following complete options, directives, or
specifiers. Line continuation begins at column 1 on the next line. The (-) character must be preceded by
one or more blanks.

« The (+) character can be used to continue a line following complete options, directives, or specifiers, or
in the middle of options, directives, or specifiers. Line continuation begins with the first non-blank
character on the next line. When continuing complete options, directives, or specifiers, the (+) character
must be preceded by one or more blanks.

« Blanks that precede the line continuation character will be included in the concatenated line.

« The comment character (#) takes precedence over the line continuation character. If a line continuation
character is part of a comment, it will be ignored as part of that comment and not continue the
comment.

An error message might be issued if the continuation character is in an unexpected position.

These examples show the JCL using the BOPT optimizer directive. The examples are not full examples.
They are intended to reflect what the user should specify in the SYSIN file. For basic JCL configuration,
see Appendix A, “JCL sample,” on page 63.

Example 1

//SYSIN DD *

HANDLERS=Y -

ARCH=11 -

ALLOW=UNRESEXE

BOPT IN=HLQ.LOAD.APPXYZ1.0RIG(*) -
OUT=HLQ.LOAD.APPXYZ1.ABO

This example is interpreted by ABO as the following:
//SYSIN DD =

HANDLERS=Y ARCH=11 ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.0RIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

Note that blanks preceding the continuation character are included in the concatenated string in all cases.

Example 2

//SYSIN DD *
ARCH=12 +

ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.0R+
IG(*) -
OUT=HLQ.LOAD.APPXYZ1.ABO

Chapter 5. Optimizing modules 27

This example shows how the (+) character allows continuing wherever desired on the next line (at the first
non-blank) instead of only at column 1, and how the (+) character can be used to continue an option,
directive, or specifier that is not complete. This example is interpreted by ABO as the following;:

//SYSIN DD *
ARCH=12 HANDLERS=Y ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.0RIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

Example 3
//SYSOPTF DD =
some comment + (1)
ARCH=12 + {tother comment - (2)
HANDLERS=Y + (3)
ALLOW=UNRESEXE (4)
BOPT IN=HLQ.LOAD.APPXYZ1.0RIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO (5)

This example is processed by ABO as the following;:

//SYSOPTF DD *
ARCH=12 HANDLERS=Y ALLOW=UNRESEXE
BOPT IN=HLQ.LOAD.APPXYZ1.0RIG(*) OUT=HLQ.LOAD.APPXYZ1.ABO

The (+) character on line 1 and the (-) character on line 2 are ignored because they are part of comments.
The (+) characters on line 2, 3 are treated as line continuation characters because they are the last non-
comment and non-blank characters on the lines.

JCL examples

You can use the job control language (JCL) statements that are shown in these examples to process
compiled COBOL modules with the Automatic Binary Optimizer for z/OS.

Specifying optimization with BOPT
These examples show the JCL using the BOPT optimizer directive.

The examples in this section are not full examples. They are intended to reflect what the user should
specify in the SYSIN file. For basic JCL configuration, see Appendix A, “JCL sample,” on page 63.

Example 1. Specifying I/0 modules using data set names

In this example, input and output modules are determined by the BOPT line. Input and output data set
names are given precisely rather than specified in ddnames.

//SYSIN DD *
ARCH=12
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1)

Example 2. Specifying I/0 modules using ddnames

In this example, input and output modules are specified using ddnames.
//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD, DISP=SHR
//SYSIN DD =

ARCH=12
BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT (MEM1)

Example 3. Specifying I/0 modules using HFS paths

In this example, the input and output modules are specified using HFS paths. You must use fully qualified
HFS paths that start with a slash (/).

28 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

//SYSIN DD *
ARCH=12
BOPT IN=/home/userl/a.out OUT=/home/userl/a.out.opt

Example 4. Specifying an input module and omitting the output member specifier

In this example, an input module is specified and the output member specifier is omitted. The member
name in the output PDS(E) for the optimized module will be the same name as the specified member of
the input PDS(E).

//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *

ARCH=10

BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT

Example 5. Specifying multiple input modules using an expression

In this example, multiple input modules are specified using an expression. The member name in the
output PDS(E) for an optimized module will be the same name as the corresponding member of the input
PDS(E).

To include modules with names that start with MEM:

//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *

ARCH=10

BOPT IN=DD:SYSBIN(MEMx) OUT=DD:SYSBOUT

To exclude a single module named MEMA:

//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *

ARCH=10

BOPT IN=DD:SYSBIN(!MEMA) OUT=DD:SYSBOUT

To exclude all members whose names begin with MEMB:

//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *

ARCH=10

BOPT IN=DD:SYSBIN(!MEMB*) OUT=DD:SYSBOUT

To exclude members named SUB1 and SUB2:

//SYSBIN DD DSN=HLQ.IN.LOAD,DISP=SHR
//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
ARCH=10
BOPT IN=DD:SYSBIN(!SUB1|SUB2) OUT=DD:SYSBOUT

Example 6. Specifying multiple input modules by using multiple BOPT optimizer directives

In this example, multiple input modules are specified using multiple BOPT optimizer directives:

//SYSIN DD *
ARCH=10

Chapter 5. Optimizing modules 29

BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1)
BOPT IN=HLQ.IN.LOAD(MEM5) OUT=HLQ.OUT.LOAD (MEM5)

Example 7. Bypassing optimizations or scans with the REPLACE option

In this example, the REPLACE option is used. REPLACE=N bypasses optimization or scanning if the
associated output modules already exist. In this example, the optimizer performs optimization in the first
and third BOPT directives. The optimizer bypasses optimization in the second BOPT directive and
scanning in the last BOPT directive REPLACE=N is specified, and the output modules were created in the
first and third BOPT directives.

//SYSIN DD *
ARCH=10
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) REPLACE=Y
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=HLQ.OUT.LOAD(MEM1) REPLACE=N
BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD REPLACE=Y
BOPT IN=HLQ.IN.LOAD(*) OUT=HLQ.OUT.LOAD SCAN=Y REPLACE=N

Example 8. Specifying global and local optimizer options

In the example, global and local options are used. ARCH=11, REPLACE=N and HANDLERS=N apply to the
first BOPT directive; ARCH=10, REPLACE=Y and the default setting of HANDLERS=Y apply to the second
BOPT directive.

//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR

//SYSIN DD *
ARCH=10 REPLACE=N
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) ARCH=11 HANDLERS=N
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) REPLACE=Y

Example 9. Switching to scan mode by using global SCAN

The following example changes the mode from optimizing input modules to scanning input modules using
the global option SCAN. In this scan mode, output modules are not written. The OUT option is processed,
for example for correct syntax, but otherwise ignored. For details about the SCAN option, see “SCAN” on
page 25.

The optimizer reverts back to the optimization mode for the second BOPT directive.

//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
ARCH=11 SCAN=Y
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1)
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT(MEM1) SCAN=N

Example 10. Specifying ALLOW options

This example shows a global setting of ALLOW=NOUNRESEXE being specified with a local override for the
second BOPT directive.

The first (MEM1) and third (MEM3) BOPT directives are done using ALLOW=NOUNRESEXE meaning that
only fully bound program modules will be accepted. If a partially bound program module is encountered
then the BOZ1494S message will be issued.

The second (MEM2) BOPT directive is done using ALLOW=UNRESEXE so both fully and partially bound
program modules are accepted as input.

//SYSBOUT DD DSN=HLQ.OUT.LOAD,DISP=SHR
//SYSIN DD *
ARCH=11 ALLOW=NOUNRESEXE
BOPT IN=HLQ.IN.LOAD(MEM1) OUT=DD:SYSBOUT (MEM1)

30 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

BOPT IN=HLQ.IN.LOAD(MEM2) OUT=DD:SYSBOUT(MEM2) ALLOW=UNRESEXE
BOPT IN=HLQ.IN.LOAD(MEM3) OUT=DD:SYSBOUT (MEM3)

Specifying optimization with IEFOPZ
These examples show the JCL using the IEFOPZ optimizer directive.

The examples in this section are not full examples. They are intended to reflect what the user should
specify in the SYSIN file. For basic JCL configuration, see Appendix A, “JCL sample,” on page 63.

Example 1. Single ARCH configuration
This example shows the minimal JCL for running ABO with the IEFOPZ directive.
You can use this JCL when your IEFOPZ configuration includes only one ARCH level.

//SYSIN DD *
TEFOPZ

Example 2. Multiple ARCH configuration

If your IEFOPZ configuration includes more than one ARCH level, specify separate IEFOPZ directives lines
to avoid listing file name collisions.

//SYSIN DD *
TEFOPZ SEL_ARCH=11 LIST=HLQ.OUT1.ARCH11.LIST
TEFOPZ SEL_ARCH=12 LIST=HLO.OUT1.ARCH12.LTIST

Example 3. Restricting optimization using the SEL_STATE and SEL_ARCH selectors

The following example produces optimized modules for those OLDNEW mappings that are marked as
INACTIVE. As with example 2, if mappings have more than one ARCH level, the LIST option is used to
avoid listing file name collisions.

//SYSIN DD *
TEFOPZ SEL_STATE=INACTIVE SEL_ARCH=10 LIST=HLQ.OUT.ARCH16.LIST
TEFOPZ SEL_STATE=INACTIVE SEL_ARCH=11 LIST=HLQ.OUT.ARCH11.LIST

Example 4. Restricting optimization using the SEL_OLD selector

The following example produces optimized modules for members of OLD data sets that match given
patterns.

In the first line, optimized modules will be produced for all members of HLQ.IN.LOAD.

In the second line, optimized modules will be produced for data set members that match M* in OLD data
sets matching HLQ.IN.*. REPLACE=N is specified on the second line to avoid re-optimizing modules from
the first line.

//SYSIN DD *
TEFOPZ SEL_OLD=HLQ.IN.LOAD
TEFOPZ SEL_OLD=HLO.INx.% (M%) REPLACE=N

Chapter 5. Optimizing modules 31

Recommended settings for the z/0S JCL REGION and JCL MEMLIMIT
parameters

ABO optimization techniques

To generate high performing optimized modules, beyond those possible from Enterprise COBOL V4 and
earlier, ABO performs advanced analysis and uses code optimization techniques that require substantial
machine resources.

In addition, since ABO is easily invoked on many compiled programs at once, the overall resources can be
high due to the amount of processing requested. An entire data set, potentially composed of many
modules, where each module can itself contain many compiled programs (CSECTSs), can be optimized in
bulk using ABO. Therefore, the total resources required by ABO for optimizing hundreds or thousands of
compiled programs at once will be higher compared to a compilation process that is operating on a single
source file at a time.

The time and memory required to optimize a module is based on the following factors:

« The number of CSECTs in the module.

« The complexity of each CSECT. Complexity is impacted by both the size of the compiled PROCEDURE
DIVISION statements and also by the size of the input program's DATA DIVISION.

Setting the z/0S JCL REGION and JCL MEMLIMIT parameters appropriately

As shown in the Appendix A, “JCL sample,” on page 63, the JCL REGION parameter should be set to OM
to allow ABO the memory it requires to operate.

ABO will use storage above the 2 GB BAR to optimize large CSECTs. This means that the z/0S MEMLIMIT
parameter should be set to a high enough value in order to allow ABO processing to complete
successfully.

The recommended REGION setting of OM will set MEMLIMIT to NOLIMIT. However, this NOLIMIT value
may have been overriden to a lower value by a MEMLIMIT setting on JOB or EXEC statements or by the
exit routine IEFUSI. The amount of storage required by ABO will depend on the number and size of
CSECTs being optimized.

If MEMLIMIT=NOLIMIT has been overridden to a lower value and this MEMLIMIT setting is not high
enough, you may get one of these ABO messages:

B0Z1145U Insufficient memory in the compiler to continue compilation.

B0Z1428U Insufficient memory encountered during binder API "&1": return code=&2
reason code=&3. Terminating optimizer.

B0Z1449U Unhandled out of memory exception

A MEMLIMIT setting of 10GB or more may be required for optimizing very large CSECTs, or a high number
of smaller CSECTs. If any of the ABO BOZ1145U, BOZ1428U or BOZ1449U messages are encountered
then increase the MEMLIMIT setting to a higher value.

For more information on JCL REGION and JCL MEMLIMIT parameters, see the z/OS MVS Initialization and
Tuning Reference and the z/OS MVS Initialization and Tuning Guide.

Specifying the language to be used for ABO messages
The CEEOPTS DD is used to specify the language for ABO produced messages.

By default, messages are in English. To specify that you want Japanese messages, add the following code
to your JCL:

32 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

//CEEOPTS DD =
NATLANG (JPN)
/*

Invoking ABO from TSO, REXX and assembler code

This section describes how to invoke ABO from TSO, REXX and the assembler.

Optimizing under TSO

Under TSO, you can use TSO commands, command lists (CLISTs), REXX execs, or ISPF to optimize COBOL
programs using traditional MVS data sets. You can use TSO commands or REXX execs to optimize
programs using z/OS UNIX files.

With each method, you need to allocate the data sets and request the optimization following these steps:

1. Use the ALLOCATE command to allocate data sets. You can allocate data sets in any order. However,
you must allocate all needed data sets before you start to optimize.

2. Provide the optimizer parameters within your SYSIN data set.

3. Use the CALL command at the READY prompt to request optimization:
CALL "hlgboz.SB0zZMOD1(BOZOPT) '

You can specify the ALLOCATE and CALL commands on the TSO command line, or, if you are not using
z/0S UNIX files, you can include them in a CLIST.

You can allocate z/OS UNIX files for all the optimizer data sets if they are not PDS or PDSE libraries. For
example, if ABO parameters are stored in the UNIX file /u/myu/abo.pazrms, then the ALLOCATE
statements have the following form:

Allocate File(SYSIN) Path('/u/myu/abo.parms’) Pathopts(ORDONLY) Filedata(TEXT)

ALLOCATE and CALL for optimizing under TSO

The following example shows how to specify the ALLOCATE and CALL commands when you are
optimizing under TSO. Notice that all the files can be either new or existing ones, except the input files
SYSIN and SYSBIN that must exist before optimization starts.

[READY]
FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN
SYSBOUT)
[READY]
ALLOC F(SYSPRINT) DA(ABO.LISTING) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
[READY]
ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
[READY]
ALLOC FI(OPTERR) DA(ABO.OPTERR) SPACE(10,10) CYL NEW CATALOG RECFM(V B) LRECL(512)
BLKSIZE(27998) DSORG(PS)
[READY]
ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SPACE(50,10) CYL NEW CATALOG RECFM(F B) LRECL(133)
BLKSIZE(27930) DSORG(PS)
[READY]
ALLOC FI(SYSIN) DA(ABO.SYSIN) SHR /* supply ABO parameters within SYSIN file
*/
[READY]
ALLOC FI(SYSBIN) DA(IN.LOAD) SHR /* supply COBOL load library to be optimized x*/
[READY]
A%LOC F%(SYSBOUT) DA(OUT.LOAD) SHR /* supply load library for optimized load modules x/
READY
CALL ‘hlgboz.SB0ZMOD1(BOZOPT)'
[READY]
FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN SYSBOUT)

Chapter 5. Optimizing modules 33

CLIST for optimizing under TSO
The following example shows a CLIST for optimizing under TSO:

PROC 1 HLQBOZ

FREE F(SYSPRINT SYSIN OPTLOG OPTERR CEEDUMP SYSBIN

SYSBOUT)

ALLOC FI(SYSPRINT) DA(ABO.LISTING) SHR

ALLOC FI(SYSIN) UNIT(SYSDA) SPACE(1,0) TRACKS NEW +
RECFM(F B) LRECL(80) BLKSIZE(800) DSORG(PS)

OPENFILE SYSIN OUTPUT

SET SYSIN = &STR(BOPT IN=DD:SYSBIN(MEMBER) OUT=DD:SYSBOUT (MEMBER))
PUTFILE SYSIN

CLOSFILE SYSIN

ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SHR

ALLOC FI(OPTERR) DA(ABO.OPTERR) SHR

ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SHR

ALLOC FI(SYSBIN) DA(IN.LOAD) SHR

ALLOC FI(SYSBOUT) DA(OUT.LOAD) SHR

CALL '&HLQBOZ..SBOZMOD1(BOZOPT) '

FREE F(SYSIN SYSPRINT OPTLOG OPTERR CEEDUMP SYSBIN SYSBOUT)

REXX for optimizing under TSO
The following example shows a REXX for optimizing under TSO:

/% >> REXX << */
Parse Arg hlgboz . /* get argument */
IF HLQBOZ = '' THEN DO
SAY 'HLQBOZ ARGUMENT MISSING'
EXIT
END

ADDRESS TSO

msgstat = MSG("OFF")

"FREE FILE (SYSIN SYSPRINT)"

"ALLOC FI(SYSPRINT) DA(ABO.LISTING) SHR"

"ALLOC FI(OPTLOG) DA(ABO.OPTLOG) SHR"

"ALLOC FI(OPTERR) DA(ABO.OPTERR) SHR"

"ALLOC FI(CEEDUMP) DA(ABO.CEEDUMP) SHR"

"ALLOC FI(SYSBIN) DA(IN.LOAD) SHR"

"ALLOC FI(SYSBOUT) DA(OUT.LOAD) SHR"

"ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",

" LRECL(80) BLKSIZE(800) DSORG(PS)"

line.1 = 'ARCH=11'

line.2 = 'BOPT IN=DD:SYSBIN(MEMBER) OUT=DD:SYSBOUT (MEMBER)'
"EXECIO 2 DISKW SYSIN (STEM line. FINIS"

"CALL '"hlgboz".SB0ZMOD1(BOZOPT)""

"FREE FI(OPTLOG OPTERR CEEDUMP SYSPRINT SYSBIN SYSBOUT SYSIN)"
msgstat = MSG("ON")

REXX for optimizing under TSO batch, directing OPTLOG and SYSPRINT output to the library
members.

Sometimes you may need to optimize every member of the entire load library or even more than one load
library without having to type multiple BOPT statements.

The following example shows a TSO batch job used to run ABOMEMBS REXX located in the data set
referenced by the SYSEXEC DD name. ABOMEMBS goes through the SYSBIN data sets concatenation and
individually optimizes every data set member found in that concatenation.

//OPTMEMBS EXEC PGM=IKJEFTO1,PARM='ABOMEMBS',

REGION=0M

//STEPLIB DD DISP=SHR,DSN= hlgboz.SB0ZMOD1

//SYSEXEC DD DISP=SHR,DSN=hlq.CLIST /* supply ABOMEMBS REXX member within SYSEXEC
library */

//SYSTSPRT DD SYSOUT=*,DCB=(LRECL=132,RECFM=FBA, BLKSIZE=1320)

//SYSTSIN DD DUMMY

//OPTERR DD SYSOUT=x

//CEEDUMP DD SYSOUT=x

//SYSBIN DD DISP=SHR,DSN=hlq.INLOAD1 /* supply one or more COBOL load libraries to be
optimized */
// DD DISP=SHR,DSN=hlq.INLOAD2

// DD DISP=SHR,DSN=hlq.INLOAD3
//SYSBOUT DD DISP=SHR,DSN=hlq.OUTLOAD
//0PTLOG DD DISP=(,CATLG),DSN=hlq.0OPTLOG,UNIT=3390, /* supply new or existing PDS/PDSE or

34 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

SEQ file x/
// SPACE=(CYL, (5,5,20)) ,DSNTYPE=LIBRARY,
// DCB=(RECFM=VB, LRECL=512,BLKSIZE=0)
//SYSPRINT DD DISP=(,CATLG),DSN=hlq.SYSPRINT,UNIT=3390, /% supply new or existing PDS/PDSE or
SEQ file x/
// SPACE=(CYL, (5,5,20)) ,DSNTYPE=LIBRARY,
// DCB=(RECFM=VB, LRECL=512,BLKSIZE=0)
//SYSIN DD *
ARCH=11
SCAN=N
optionally put BOPTs below this line for specific library members optimization
BOPT IN=hlqg.INLOAD7(Ax) OUT=hlq.OUTLOAD LOG=hlq.OPTLOG LIST=hlq.SYSPRINT
/*

For every member found in the above SYSBIN DD concatenation, ABOMEMBS invokes ABO with SYSIN,
OPTLOG, SYSBIN and SYSPRINT files individually allocated for that member.

For example, for member MEM1 located in the hlq.INLOAD1 data set, it will allocate the SYSBIN file
hlg.INLOAD1, reallocate the OPTLOG file hlg.OPTLOG(MEM1) and the SYSPRINT file
hlg.SYSPRINT(MEMY), if the OPTLOG and SYSPRINT files allocated in the above JCL are PDS or PDSE
data sets. Otherwise, it will keep using JCL allocation of these files.

To construct the SYSIN file for MEM1, it will use all the ABO parameters listed in the above JCL SYSIN file
down to the first BOPT statement, and then append it with internally generated BOPT statement. Here is
an example of the SYSIN file for MEM1.:

ARCH=11
SCAN=N
BOPT IN=DD:SYSBIN(MEM1) OUT=DD:SYSBOUT (MEM1)

After all the individual SYSIN, OPTLOG, SYSPRINT and SYSBIN files are allocated, ABO is invoked to
optimize MEM1.

ABOMEMBS exec repeats this process for every member in the SYSBIN concatenation. If the BOPT
statement is present in the above JCL SYSIN file, after all the members in the SYSBIN concatenation are
optimized, ABOMEMBS reallocates the OPTLOG and SYSPRINT files to SYSOUT, reallocates the SYSIN file
containing all the same statement as the original JCL SYSIN file, and invokes ABO one more time to
proceed with the parameters explicitly specified in the SYSIN file.

This approach can be useful to optimize all the library members just by including it into the SYSBIN
concatenation, without having to specify any additional BOPT explicitly, and optionally, including an
additional BOPT statement when you need to optimize some members of the library only. The JCL cards
in the above JCL can be in any order.

ABOMEMBS generates the following SYSTSPRT output:

============== Processing hlq.INLOAD1 data set
Member ADD10 processed, rc=4

Member CALLEE processed, rc=0

Member CALLEE1 processed, rc=0

============== Processing hlq.INLOAD2 data set
Member COBPGM processed, rc=0

Member DJSIEV85 processed, rc=0

Member IAMASM processed, rc=4

============== Processing hlq.INLOAD3 data set
Member TEMPNAM6 processed, rc=12

Member TEMPNAM7 processed, rc=0

Member TEMPNAM8 processed, rc=0

============== Processing SYSIN statements
ARCH=11

SCAN=N

BOPT IN=hlq.INLOAD7(Ax) OUT=hlq.OUTLOAD LOG=hlq.OPTLOG LIST=hlq.SYSPRINT

READY
END

The following is an example of the ABOMEMBS REXX source code:

Chapter 5. Optimizing modules 35

BROWSE hlq.CLIST(ABOMEMBS)

Command ===>
kkkkkkkhkhkhkhkhkhkhhkkhkhkkhkkhkkhkkhkkhhkhkrhkhhhhhhkhkkhkhkkhkkhkkhhkihkhhhhhhhhkhhkkhkkhkhkhhikix TOp of Data
/*::::::::::::::::::::::::::>> REXX <<::::::::::::::::::::::::::::::::*/

Parse Arg

X = LISTDSI(STEPLIB FILE)
If x > 0 Then Do
Say 'Check STEPLIB allocation' ; Exit
End
optimizer = "'"||SYSDSNAME| | ' (BOZOPT)"'||"""
flaglog = 0 /% assume OPTLOG is sequential =/
X = LISTDSI(OPTLOG FILE)
IF x = 0 & SYSDSORG = 'PO' Then Do
optlogds = SYSDSNAME ; flaglog = 1
End
flaglist = © /* assume SYSPRINT is sequential =/
X = LISTDSI(SYSPRINT FILE)
IF x = 0 & SYSDSORG = 'PO' Then Do
sysprtds = SYSDSNAME ; flaglist = 1
End
"EXECIO +* DISKR SYSIN (STEM line. FINIS" /% read in SYSIN parameters into
line. array =*/

n = 1line.0 + 1 /* assume no explicit BOPT specified. n is per-member BOPT
line number x/
Do 1 =1 To
line.0
PARSE UPPER VALUE line.l WITH
line.1l
If POS('BOPT ',line.l) > O Then
Do
n=1,; flagbopt = 1 ; leave /x leave when first BOPT found
*/
End
linea.l = line.l /% copy all lines before first BOPT into linea. array
*/
End
X = LISTDSI(SYSBIN
FILE)
If x > 0 Then
Do
Say 'Check SYSBIN allocation' ;
Exit
End

X:
outtrap(concatl.)
lista
status

X =
outtrap(off)

/* 12 is a line with last dsn in SYSBIN concatenation
*/

i2 = concatl.0 - 1 /* assume that SYSBIN concatenation is a last in JCL
*/

Do i =1 To
concatl.o

If substr(concatl.i,3,6) = 'SYSBIN' Then

Do

*/
End

il =1 - 1 ; leave /* i1 line with first dsn in concatenation

End
k =1+ 2
If k < concatl.® Then Do

36 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Do i = k To concatl.® by 2

If substr(concatl.i,3,1) <> ' ' Then Do
i2 = i - 3 ; leave /* i2 line with last dsn in concatenation =*/
End
End
End
Else i2 = il /* when SYSBIN DD with a single data set is a last JCL caxd

*/
msgstat = MSG("OFF")

Do i = i1 To i2 by 2 /* loop trough SYSBIN concatenation x/

sysbinds = strip(concatl.i)
Say '============== Processing 'sysbinds' data set
x=outtrap('row.")
Address TSO "LISTDS '"sysbinds"' members"
x=outtrap('off')
If row.0 < 6 Then Do
Say 'Check SYSBIN file' ; Exit
End
DO J = 7 TO row.0 /* loop trough member list x/
PARSE VALUE row.J WITH memn alias
"FREE FI(SYSIN)"
"ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",
" LRECL(80) BLKSIZE(800) DSORG(PS)"
linea.n = 'BOPT IN=DD:SYSBIN('| |memn]||"') ',
'OUT=DD:SYSBOUT('| [memn]|]")"
"EXECIO * DISKW SYSIN (STEM linea. FINIS"
If flaglog = 1 Then Do
"FREE FI(OPTLOG)"
optlogm = "'"[|optlogds||'("|[memn||[")"|[|"""
"ALLOC FI(OPTLOG) DA("optlogm") SHR"
End
If flaglist = 1 Then Do
"FREE FI(SYSPRINT)"
sysprtm = "'"||sysprtds||'('|[memn||"') "]
"ALLOC FI(SYSPRINT) DA("sysprtm") SHR"
End
"FREE FI(SYSBIN)"
"ALLOC FI(SYSBIN) DA('"sysbinds"') SHR"
"CALL "optimizer /% optimize member x/
Say 'Member 'memn' processed, rc='rc
END /* end of member list loop */
End /* end of concatenation list loop */
If flagbopt = 1 Then Do
"FREE FI(SYSIN)"
"ALLOC FI(SYSIN) NEW CYL SPACE(1,1) RECFM(F B)",
" LRECL(80) BLKSIZE(800) DSORG(PS)"
"EXECIO * DISKW SYSIN (STEM line. FINIS"
"FREE FI(OPTLOG)"
"ALLOC FI(OPTLOG) Sysout"
"FREE FI(SYSPRINT)"
"ALLOC FI(SYSPRINT) SYSouT"

"CALL "optimizer /* optimize with BOPTs provided in SYSIN %/
Say '============== Processing SYSIN statements =============='
Do 1 = 1 To line.O
Say line.i
End
Say !=================—=somo————sooo—o———ooooo—————o—————— e
End
msgstat = MSG("ON")
EXIT

Starting the optimizer from an assembler program

You can invoke ABO programmatically from within an HLASM program.

Before you start to optimize, complete these steps:

Chapter 5. Optimizing modules 37

1. Allocate all the needed data sets, either by using dynamic allocation within your assembler program or
specifying the DD cards in the job JCL used for your assembler program invocation. The following DD
names must be allocated: SYSPRINT, SYSBIN, SYSBOUT, SYSIN, OPTLOG, OPTERR, CEEDUMP.

2. Provide the ABO parameters within your SYSIN data set.

You can start ABO from within an assembler program by using the LINKX or ATTACHX macro because
those two are 64 bit mode compatible and ABO is running in AMODE 64.

The following is an example of the LINKX macro in list form:
symbol §LINKX3 EP=BOZOPT,AMODE640K=YES,PLIST8=YES,SF=L
The following is an example of the LINKX macro in execute form:

LINKX EP=BOZOPT, AMODE640K=YES, PARAM=(addr) ,PLIST8=YES, *
MF=(E,#fLINKX) ,SF=(E,#LINK2)

where # is used as a prefix symbol.
EP
Specifies the symbolic name of ABO.

PARAM
Specifies the address parameters list to be passed from the assembler program to ABO. In the
example, addr can be any value because it’s ignored by BOZOPT program which directly reads
parameters supplied in the SYSIN file.

PLIST8=YES
Defines the size of the parameter list entries for a parameter list to be built by LINKX based on the
PARAM keyword, as an 8-bytes-per-entry parameter list.

AMODE640OK=YES
Indicates that the system is to accept an attempt to link to an AMODE 64 target routine from an
AMODE 24 or AMODE 31 routine.

SF=L
Specifies the list form of the LINKX macro.

When ABO completes processing, it puts a return code in register 15.

Assembler program starting the optimizer

The following example shows the ABO invocation from an assembler program:

//JOBCARD JOB

//*

//ASMHCL PROC MAC='SYS1.MACLIB',MAC1='SYS1.MODGEN',6U=3390,

// MAC2="'SYS1.MACLIB'

A R e *kk
//* ASMHCL H-ASSEMBLER *kk
//* IBM-PROCEDURE: COMPILE + LINK Fokk

A R *x*
//ASM EXEC PGM=ASMA90, PARM=0BJECT,REGION=0M

//SYSLIB DD DSN=&MAC, DISP=SHR

// DD DSN=&MAC1,DISP=SHR

// DD DSN=&MAC2,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1, UNIT=&U, SPACE=(TRK, (60,45))
//SYSPRINT DD SYSOUT=+,DCB=BLKSIZE=1089

//SYSPUNCH DD DUMMY

//SYSLIN DD DSN=&&OBJSET, UNIT=&U, SPACE=(80, (2000,500)),

// DISP=(MOD, PASS)

//LKED EXEC PGM=HEWLH096,

// PARM="XREF, LET,LIST,AC=0,FILL=NONE",
// COND=(8,LT,ASM)

//SYSLIN DD DSN=&&0BJSET, DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSN=h1q.CALLABO.LOAD,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1, UNIT=(&U,SEP=(SYSLIN,SYSLMOD)),
SPACE=(1024, (50,20))

//SYSPRINT DD SYSOUT=x
PEND

38 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

*
EXE

ASM.SYSIN D

* o~~~

/
/
/

YREGS
CSECT
AMODE
RMODE
STM
USING
LR
LA
ST
ST
LR
LLGTR
addressability
BAL

CALLABO
CALLABO
CALLABO

LINKOPT

it

SAVE
FLINKX
FELINK2

DC
LINKX
LINKX
LTORG
END
//LKED.SYSIN D

PAGE CALLAB

NAME CALLAB
//

C ASMHCL
D

31

ANY
R14,R12,12(R13)
CALLABO,R12

R12,R15 LOAD BASE REGISTER

R9, SAVE POINT TO CURRENT SAVEAREA

R9,8(,R13) A(CURRENT_SA) IN OLD_SA

R13,4(,R9) A(OLD_SA) IN CURRENT_SA

R13,R9 R13=A(CURRENT_SAVEAREA)
__ *
R12,R12 allow 64-bit

R14, LINKOPT invoke BOZOPT
__ *
OH

R13,4(,R13)

R15,16(,R13)

R14,R12,12(R13)

R14

OH
R15,R15 nullify parm addr, BOZOPT ignores
R15,R15

EP=B0OZOPT, AMODE640K=YES, PARAM=((R15)) ,PLIST8=YES,
MF=(E,#LINKX) ,SF=(E,#LINK2)

OF

XL72'00"

EP=BOZOPT, AMODE640K=YES, PLIST8=YES, SF=L
EP=B0OZOPT, AMODE640K=YES, PLIST8=YES, SF=L

D *
0
0(R)

The following is a sample JCL to run the CALLABO program:

//0PT EXE
//STEPLIB DD
// DD
//0PTLOG DD
//OPTERR DD
//CEEDUMP DD
//SYSPRINT DD
//SYSBIN DD
//SYSBOUT DD
//SYSIN DD
supply ABO d

BOPT IN=DD:S

C PGM=CALLABO,REGION=0M
DSN=h1lgboz.SB0ZMOD1,DISP=SHR
DSN=h1q.CALLABO.LOAD,DISP=SHR
SYSOUT=*

SYSOUT=*

SYSOUT=*

SYSOUT=*
DSN=h1qg.IN.LOAD,DISP=SHR
DSN=h1q.OUT.LOAD, DISP=SHR

*

irectives down this line
YSBIN(x) OUT=DD:SYSBOUT

Chapter 5. Optimizing modules 39

40 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 6. Understanding output from the
optimization process

Log files

IBM Automatic Binary Optimizer for z/OS generates a log file that helps you identify and resolve
problems.

You can diagnose problems at optimize time by inspecting the log file that is generated unconditionally by
ABO into the OPTLOG DD (see Table 6 on page 15). The log file contains diagnostic information about
optimization and scanning.

To generate additional member-level log files, use the LOG option.

The log file for optimization

When optimization is performed on a module (SCAN=N optimizer option is in effect), the log file includes
the following information:

« File name information of the input module being processed

Names of the CSECTs being optimized

- File name information of the listing transform for each optimized CSECT
« File name information of the output optimized module

« Atime stamp for each line of the OPTLOG and a header for the date
 Other diagnostic information including error messages

Example 1:

The following log file shows COBOL CSECTs from members MEMA and MEMB of data set HLQ.IN1.LOAD
are being optimized. Module MEMA has two COBOL CSECTs named SUB1 and SUB2 that are optimized.
Module MEMB has one COBOL CSECT named PROGB that is optimized. Listing transforms are all placed in
the default SYSPRINT DD. Optimized modules are written to the HLQ.OUT1.LOAD data set.

5697-AB1 IBM Automatic Binary Optimizer for z/0S 1.3.0

======== Sept 24 2018 ========

10:53:16 Optimizer build level: txr_rl7_binopt_20180924_141188 (Sept 24 2017 14:05:42)
10:53:16 Processing HLQ.IN1.LOAD, member MEMA

10:53:16 Processing CSECT SUB1, in member MEMA

10:53:16 Optimizing CSECT SUB1 for zEC12

10:53:16 Succeeded in optimizing SUB1

10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Processing CSECT SUB2, in member MEMA

10:53:16 Optimizing CSECT SUB2 for zEC12

10:53:16 Succeeded in optimizing SUB2

10:53:16 Generating listing transform into DD:SYSPRINT

10:53:16 Finished processing, processed 2 of 2 CSECTs in member MEMA
10:53:16 Save HLQ.OUT1.LOAD (MEMA) succeeded

10:53:16 Processing HLQ.IN1.LOAD, member MEMB

10:53:16 Processing CSECT PROGB, in member MEMB

10:53:16 Optimizing CSECT PROGB for zEC12
10:53:16 Succeeded in optimizing PROGB
10:53:16 Generating listing transform into DD:SYSPRINT

10:53:16 Finished processing, processed 1 of 1 CSECTs in member MEMB
10:53:16 Save HLQ.OUT1.LOAD (MEMB) succeeded
10:53:16 Exiting with return code: 0O

© Copyright IBM Corp. 2015, 2019 41

Example 2:

The following log files show the output for the member-level log files produced by the same
HLQ.IN1.LOAD as the previous example with LOG=HLQ.LOG.OUT specified.

The contents of HLQ.LOG.OUT(MEMA):

5697-AB1 IBM Automatic Binary Optimizer for z/0S 1.3.0

======== Sept 24 2018 ========

10:53:16 Optimizer build level: tr_xr17_binopt_20180924_141188 (Sept 24 2018 14:05:42)
10:53:16 Processing HLQ.IN1.LOAD, member MEMA

10:53:16 Processing CSECT SUB1, in member MEMA

10:53:16 Optimizing CSECT SUB1 for zEC12

10:53:16 Succeeded in optimizing SUB1

10:53:16 Generating listing transform into DD:SYSPRINT
10:53:16 Processing CSECT SUB2, in member MEMA

10:53:16 Optimizing CSECT SUB2 for zEC12

10:53:16 Succeeded in optimizing SUB2

10:53:16 Generating listing transform into DD:SYSPRINT

10:53:16 Finished processing, processed 2 of 2 CSECTs in member MEMA
10:53:16 Save HLQ.OUT1.LOAD (MEMA) succeeded
10:53:16 Exiting with return code: 0

The contents of HLQ.LOG.OUT(MEMB):

5697-AB1 IBM Automatic Binary Optimizer for z/0S 1.3.0

======== Sept 24 2018 ========

10:53:16 Optimizer build level: tr_xr17_binopt_20180924_141188 (Sept 24 2018 14:05:42)
10:53:16 Processing HLQ.IN1.LOAD, member MEMB

10:53:16 Processing CSECT PROGB, in member MEMB

10:53:16 Optimizing CSECT PROGB for zEC12
10:53:16 Succeeded in optimizing PROGB
10:53:16 Generating listing transform into DD:SYSPRINT

10:53:16 Finished processing, processed 1 of 1 CSECTs in member MEMB
10:53:16 Save HLQ.OUT1.LOAD (MEMB) succeeded
10:53:16 Exiting with return code: 0O

The log file for scanning
When scanning is performed (SCAN=Y optimizer option is in effect), the log file shows:

« File name information of the input module being scanned
« Names of the CSECT of the module being scanned
« Other diagnostic messages

Example:

The following log file shows modules MEMA and MEMB of data set HLQ.MEM1.LOAD are being scanned.
Scanning output shows each of the CSECTs in the modules. The COBOL compiler version used for the
compilation and the "Signature information bytes" extracted from the CSECT are displayed for the COBOL
CSECTs SUB, SUB2 and PROGB. "Signature information bytes" are documented in the COBOL
Programming Guide and provide information about the compiled program.

5697-AB1 IBM Automatic Binary Optimizer for z/0S 1.3.0

=_======= Sep‘t 24 2018 =_=======
10:58:23 Optimizer build level: tr_rl7_binopt_20180924_141188 (Sept 24 2018 14:05:42)
10:58:23 Processing HLQ.IN1.LOAD, member MEMA
Language ID Records:
id 5688187 v21 mOO 2015281 resident EDCOEXTS
id 565557100 v42 mOO 2015281 resident SUB
Enterprise COBOL V4: start=0x10, length=4.19 (kBytes)
Signature information bytes:
a0487d4c 20000000 00880100 OOOCOOO40
08000000 OOLCEOO OOOO8O04 1400
id 565557100 v42 mOO 2015281 resident SUB2
Enterprise COBOL V4: start=0x10d8, length=4.20 (kBytes)
Signature information bytes:
a0487d4c 20000000 00880100 OOOCEOO40
08000000 OOCOOO OOOO8004 1400
id 569623400 vOl mO6 2013071 resident CEESGOO5

42 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

id 569623400 vO1 mO6 2013072 resident CEEBETBL
id 569623400 vO1 mO6 2013072 resident CEESTART
10:58:23 Processing HLQ.IN1.LOAD, member MEMB
Language ID Records:
id 5688187 v21 mOO 2015281 resident EDCOEXTS
id 565557100 v42 mOO 2015281 resident PROGB
Enterprise COBOL V4: start=0x10, length=8.19 (kBytes)
Signature information bytes:
a0487d4c 20000000 0O880100 OOEOOO40
08000000 OOLCOOO OOOOE8OO4 1400
id 569623400 vO1 mO6 2013072 resident CEESTART
10:58:23 Exiting with return code: O

Listing transform

The listing transform describes the changes made by the Automatic Binary Optimizer for z/OS to your
already compiled program module. It shows how the instructions in the input binary map to the optimized
instructions. A listing transform is produced for every CSECT that is optimized. The listing transform is
intended to complement the compiler listing generated when the input binary was originally compiled
from source. While the listing transform does not depend on the compiler listing, using the two together
will allow you to better understand how IBM Automatic Binary Optimizer for z/OS transformed your
binary.

A listing transform is generated unconditionally for every optimized CSECT; no special options or flags
need to be specified. By default, listing transforms are generated into the SYSPRINT DD.

The listing transform is also used by “Application Delivery Foundation for z Systems ” on page 58.

Listing transform contents

The listing transform is provided to help in diagnosing problems encountered during the execution of the
optimized program. The listing transform is primarily intended for use by debugging tools such as IBM
Debug for z Systems.

A listing transform contains the following information:

« A summary of the optimization options
- The optimized instructions interspersed with the input instructions

A literal pool containing any new literals created by ABO
« A PPA4 section containing information about the optimized CSECT

« An automatic map, also known as a dynamic storage area (DSA) map, of any new stack symbols that
were created by ABO

< Aninput instructions section containing the complete list of instructions and compiler options for the
CSECT being optimized

Summary of optimization parameters

This section contains the name of the architecture level for which the program is optimized, and the date
and time stamp of both the input binary, along with the compiler used to produce it. The date and time
stamp of the output binary is also shown.

Example:

Invocation Parameters:
Architecture Level: zEC12

Input IDRL Record: 565557100 v42 mOO 2013122
Name: Enterprise COBOL V4
Version: 42
Mod Level: 00

Chapter 6. Understanding output from the optimization process 43

Compiled Date (YYYYDDD): 2013122

Output IDRL Record: 5697-AB1 v13 m@O 2017213
Name: IBM Automatic Binary Optimizer for z/0S
Version: 13
Mod Level: 00
Optimized Date (YYYYDDD): 2017213

Optimized instructions

This section makes up the majority of the data in the listings transform. It is similar to the object code
section of the listings generated by various IBM COBOL compilers, such as IBM Enterprise COBOL V5 and
V6. Each CSECT that was optimized begins with the PROC psuedo opcode and the name of the CSECT as

its operand.
Example:
(1) (2) (3) (4) (5)

000258 000000 PROC PROGA
000258 183F 000000 LR R3,R15
00025A 5800 3008 000000 L RO, 8(,R3)
00025E 1E01 000000 ALR RO, R1
000260 5500 COOC 000000 cL RO, 12(,R12)
000264 ODFO 000000 BASR R15, RO
000266 A47DO FOOC 000000 BC R13, 12(,R15)
00026A 58F0O C300 000000 L R15, 768(,R12)
O0026E ODEF 000000 BASR R14,R15
000270 181F 000000 LR R1,R15
000272 50D0 1604 000000 ST R13, 4(,R1)
000276 5000 104C 000000 ST RO, 76(,R1)
00027A D203 1000 3058 000000 MVC 0(4,R1), 88(R3)
000280 D703 1084 1084 000000 XC 132(4,R1), 132(R1)
000286 5090 105C 000000 ST R9, 92(,R1)
00028A 18D1 000000 LR R13,R1
00028C 41A0 D120 000000 LA R10, 288(,R13)

The preceding example shows the optimized instructions produced for a CSECT named PROGA. The five
sections of an optimized instruction are described as follows:

1. The hexadecimal offset in the CSECT of the optimized instruction
2. The hexadecimal representation of the instruction bytes

3. The hexadecimal CSECT offset of the "source" instructions for which these optimized instructions
were generated

4. Instruction opcode
5. Instruction operands

Interspersed with the optimized instructions are the "source" instructions for which the optimized
instructions are generated. Lines that begin in column 5 are the optimized instructions, and the lines that
begin in column 1 are the "source" instructions. In the following example, the first two lines, starting at
column 1, are the PACK and OI source instructions at hex offsets 00042C and 000432 respectively. The
third line, starting in column 5, is the ABO generated instruction 'CDZT'. Notice that the "source" hex
offset of the CDZT is 00042c, which shows that it was generated for the PACK instruction in the input

module.
Example:
00042C PACK 272(4,13),0(7,8)
000432 OI 276(13),15
0004C4 EDO7 4000 OOAA 00042C cDZT FPO,_WSA[Ox12c] ©(8,R4),0x0
000436 PACK 280(4,13),8(7,8)
00043C OI 284(13),15
0004CA EDO7 4008 10AA 000436 cDZT FP1,_WSA[Ox12c] 8(8,R4),0x0
000440 AP 272(4,13),280(4,13)
000446 UNPK 16(7,8),272(4,13)
0004DO B3D2 1000 000440 ADTR FPO,FPO,FP1
00044C OI 23(8),240

44 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

000450 L 2,248(0,,13)
0004D4 EDO7 4010 OOA8 00044C CZDT FPO, 16(8,R4),0x0

The literal pool

ABO places any new literals it creates at the end of the code section. These sections are named Constant
Data Snippets in the listing transform. There may be zero or more Constant Data Snippets in the listing
and their contents are very similar to the literal pool that is created by the original compiler. The original
literal pool remains intact and continues to be used, just as in the input binary.

Example:
(1) (2) (3) (4)
LOO32: # Constant Data Snippet

000550 4040 4040 4040 4040 DC X'4040404040404040"
000558 4040 4040 4040 4040 DC X'4040404040404040"
000560 4040 4040 4040 4040 DC X'4040404040404040'
000568 4040 4040 4040 0000 DC X'4040404040400000'
000570 8000 0000 0OEO OO DC X'8000000000000000 "
000578 0000 0000 00O OO0 DC X'0000000000000000 "
000580 00O 0001 OOOEO OOOO DC X'0000000100000000 "
000588 C9C7 E9E2 D9E3 C3C4 DC X'C9C7E9E2D9E3C3C4 "
000590 E2E8 E2D6 E4E3 4040 DC X'E2E8E2D6E4E34040'
000598 OEOO 0000 00O OO DC X'OEO0000000000000 "

A description of the four sections of data is as follows:

1. The hexadecimal offset from the start of the CSECT to these bytes in the literal pool
2. The hexadecimal representation of the bytes in the literal pool

3. The label denoting the start of the literal pool

4. Assembler syntax of these bytes

Additional DSA and TGT Bytes Allocated section

This section displays in hexadecimal number of bytes any additional DSA or TGT bytes allocated by the
optimizer

Example:

DSA WILL BE ALLOCATED FOR AN ADDITIONAL OOOO01A8 BYTES
TGT WILL BE ALLOCATED FOR AN ADDITIONAL 00000000 BYTES

The PPA4 section

The PPA4 section contains information about the optimization of the program module. For example, it
contains the time and date of optimization, the length of the code section and other information.

Example:
(1) (2) (3) (4)
PPA4: Entry Point Constants
046668 00000000 =X'00000000' Flags 1
04666C 00000300 =X'00000300"' Flags 2
046670 F2FOF1F6 =C'2016' Compiled Year
046674 FOF8F2F1 =C'0821' Compiled Date MMDD
046678 F1F2F3FOF2F3 =C'123023" Compiled Time HHMMSS
04667E FOF1FOF2FOFO =C'010200"' Compiler Version
046684 0004706A =F'290922' Code Length
046688 0B0O20000 =X'0B020000"' Options
04668C 00000028 =X'00000028"' A(PPA4-ListName)

PPA4 End

A description of the four sections of PPA4 follows:

Chapter 6. Understanding output from the optimization process 45

1. The offset in hexadecimal in the CSECT of PPA4 section entry

2. The hexadecimal representation of the bytes in the PPA4 section
3. Assembler syntax of the bytes in the PPA4

4. Description of the data in the PPA4

The automatic map

The automatic map contains the offsets and sizes (in hexadecimal) of symbols that are created by ABO.
These offsets are relative to a base established at the end of the original DSA. The automatic map does
not show automatics in the original program or temporaries created by the original compiler. ABO will
establish a general purpose register (GPR) to contain the start offset of the "new" DSA. All newly created
automatics will be referenced with this new register as the base.

Example:
(1) (2) (3)
* * x Kk * AUTOMATTIC M AP * * k k%

OFFSET (HEX) LENGTH (HEX) NAME

0 4 _GPRO
4 4 “GPR1
8 4 “GPR2
C 4 “GPR3
10 4 “GPR4
14 4 “GPR5
18 4 “GPR6
1C 4 “GPR7
20 4 “GPRS
24 4 “GPR9
28 4 “GPR10
2C 4 “GPR11
30 4 “GPR12
34 4 “GPR13

A description of the three sections of the automatic map follows:

1. Hexadecimal offset of the stack symbol, relative to the start of the new stack
2. Hexadecimal length of the symbol in bytes
3. Name of the symbol

Input instructions

This section contains the complete list of instructions from the input module. There is one section for

each CSECT that was optimized. These input instructions are the same as those already shown in the

Optimized instructions section. In that section, the input instructions are shown interspersed with the
corresponding optimized instructions, and as such are not a complete and ordered list.

The input instructions section begins with the COBOL compiler version used for the compilation and the
"Signature information bytes" extracted from the CSECT. "Signature information bytes" are documented
in the COBOL Programming Guide and provide information about the compiled program. These
information bytes are decoded and the corresponding compiler options that were in effect are printed.
Note that the decoded compiler options may not exactly match in content and formatting those displayed
in the original compiler listing. This is because ABO decodes the options only according to the signature
information bytes present in the input CSECT instead of the full original source and options specified
during the original compilation process.

In the following example, the COBOL CSECT named PROGB was optimized.

(D (2) (3)
* ok ok ok ok INPUT INSTRUCTIONS * % x % %
id 565557100 v42 mOO 2018005 resident PROGB

Enterprise COBOL V4: start=0x10, length=9.15 (kBytes)
Signature information bytes:

46 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

0002BA
0002BC
0002C0O
0002C4
0002C6
0002CA
0002CE
0002D0
0002D2
0002D6
0002DA
0002EO
0002E6
0002EA
0002EC
0002F0
0002F2
0002F6
0002FA
O002FE
000302
000308
00030C
000310
000314
000318
00031C
000320
000324
000328

a0487dcc
08000000
Compiler O
ADV
ARITH(
NOAWO
NOBLOCKO
Compil
NOCICS
NOCURREN

20000000 00880108 0OOOOO40
00000008 00f00114 00
ptions in effect:

COMPAT)

ation unit is a program.

CcY

Default DDNAME for OUTDD will be used

DATA(3
NODATEPR
DBCS

NODECK
NODLL
NODUMP
NODYNAM

1)
oc

NOEXPORTALL
NOFASTSRT

INTDAT
NOLIB
LIST
NOMAP
NOMDECK
NONAME
NONUM
NUMCLS
NUMPRO
0BJ
NOOFFSET
NOOPTIMI
QUOTE
RENT
RMODE (
SEQUEN
SIZE(M
SOURCE
NOSQL
sQLCCS
NOSSRANG
TERM
TEST (H
NOTHREAD
TRUNC (
NOVBREF
NOWORD
XMLPAR
XREF
YEARWI
ZWB

LR
LA
CL
BASR
BC

L
BASR
LR
ST
ST
MvC
XC
ST
LR

L

LR
ST

L

L
STM
MvC
LA
ST
ICM
L

BC

L

L

LA
BASR

E (ANSI)

(PRIM)
C (NOPFD)

ZE

ANY)
CE
AX)

ID
E

00K, NOSEPARATE, EJPD)
STD)

SE (XMLSS)
NDOW (1900)

3,15
0,440(0,,1)
0,12(0,,12)
15,0
13,12(0,15)
15,768(0,,12)
14,15

1,15

1314(01 11)
0,76(0,,1)
0(4,1),88(3)
132(4,1),132(1)
9,92(0,,1)
13,4
12,232(0,,9)
1,2
13,88(0,,13)
10,36(0,,12)
8,300(0,,9)
14,12,12(13)
136(4,13),16(10)
2,280(0,,13)
2,140(0,,13)
2,15,364(9)
11,40(0,,12)
8,214(0,11)
3,92(0,,9)
15,244(0,,3)
1,271(0,,10)
14,15

Chapter 6. Understanding output from the optimization process 47

00032A A 2,0(0,,12)

00032E ST 2,364(0,,9)
000332 MvC 256(4,13),252(13)
000338 LA 2,240(0,,11)
00033C ST 2,252(0,,13)
000340 BC 15,84(0,11)
000344 mMvC 252(4,13),256(13)
00034A MvC 260(4,13),248(13)
000350 L 11,40(0,,12)
000354 LA 2,268(0,,11)
000358 ST 2,248(0,,13)
00035C BC 15,0(0,11)
000360 MvC 248(4,13),260(13)
000366 ™ 87(9),64
00036A L 11,40(0,,12)
00036E BC 1,306(0,11)
000372 ™ 84(9),32
000376 BC 14,298(0,11)
00037A 0I 132(13),32
00037E 0I 87(9),64
000382 BC 15,306(0,11)
000386 0I 348(9) ,64
00038A 0I 132(13),1
O0038E BAS 14,316(0,,9)
000392 BAS 14,318(0,,9)
000396 AP 0(8,8),16(8,8)
00039C ZAP 0(8,8),0(8,8)
0003A2 BAS 14,318(0,,9)
0003A6 ZAP 16(8,8),0(8,8)
0003AC BAS 14,318(0,,9)
0003B0O P 0(8,8),114(2,10)
0003B6 L 11,40(0,,12)
O003BA BC 7,392(0,11)
OO03BE BAS 14,316(0,,9)
0003C2 BAS 14,318(0,,9)
0003C6 L 2,92(0,,9)
0003CA L 15,44(0,,2)
0003CE LA 1,259(0,,10)
0003D2 BASR 14,15

0003D4 L 11,40(0,,12)
0003D8 BC 15,414(0,11)
0003DC BAS 14,316(0,,9)
OOO3EO BAS 14,318(0,,9)
0003E4 L 2,92(0,,9)
OOO3E8 L 15,44(0,,2)
OO03EC LA 1,247(0,,10)
0003F0 BASR 14,15

0003F2 BAS 14,316(0,,9)
0003F6 BAS 14,318(0,,9)
0003FA CP 16(8,8),114(2,10)
000400 L 11,40(0,,12)
000404 BC 7,466(0,11)
000408 BAS 14,316(0,,9)
00040C BAS 14,318(0,,9)
000410 L 2,92(0,,9)
000414 L 15,44(0,,2)
000418 LA 1,235(0,,10)
00041C BASR 14,15

00041E L 11,40(0,,12)
000422 BC 15,488(0,11)
000426 BAS 14,316(0,,9)
00042A BAS 14,318(0,,9)
00042E L 2,92(0,,9)
000432 L 15,44(0,,2)
000436 LA 1,223(0,,10)
00043A BASR 14,15

00043C BAS 14,316(0,,9)
000440 BAS 14,318(0,,9)
000444 BAS 14,316(0,,9)
000448 L 11,40(0,,12)
00044C BC 15,534(0,11)
000450 BAS 14,316(0,,9)
000454 ™ 132(13),32
000458 BC 14,534(0,11)
00045C L 2,92(0,,9)
000460 L 15,244(0,,2)
000464 LA 1,205(0,,10)
000468 BASR 14,15

00046A L 2,364(0,,9)
00046E S 2,0(0,,12)
000472 ST 2,364(0,,9)
000476 NI 348(9),191

48 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

00047A ™ 85(9),64

00047E BC 14,572(0,11)
000482 LA 1,8(0,,0)

000486 L 2,92(0,,9)

00048A L 15,32(0,,2)

00048E BASR 14,15

000490 ™ 84(9),40

000494 BC 7,602(0,11)

000498 L 2,296(0,,9)

00049C LH 15,8(0,,2)

0004A0 L 13,4(0,,13)

0004A4 L 14,12(0,,13)
0004A8 LM 0,12,20(13)

0004AC BCR -1,14

OO04AE MvC 264(12,13),177(10)
0004B4 L 3,296(0,,9)

0004B8 LH 2,8(0,,3)

0004BC ST 2,276(0,,13)
0004C0o LA 1,264(0,,13)
0004C4 L 2,92(0,,9)

** x*%** END OF INPUT INSTRUCTIONS * x % % %

A description of the three sections of the input instructions section follows:
1. The hexadecimal offset in the input CSECT of the original instruction

2. Instruction mnemonic

3. Instruction operands

SYSPRINT DD and LIST option

Use the SYSPRINT DD or LIST options to specify the locations of the generated listing transforms.
The target of SYSPRINT or LIST can be one of the following items:

« A sequential data set or member of a PDSE (not PDS). The output of multiple CSECT optimizations are
added to this sequential data set in optimization order.

« A PDS or PDSE. When a CSECT is optimized, the listing transform particular to that CSECT is placed in a
member of the PDS or PDSE where the member name is based on the CSECT name (upper cased and
truncated to 8 characters). The contents of the member, if any, are overwritten even if the former
contents are produced by ABO in previous invocations.

« An HFS path. The output of multiple CSECT optimizations are added to this HFS file.

The LIST option takes precedence over the SYSPRINT DD. If you specify the LIST option, it will override
the SYSPRINT DD. When the LIST option is specified, you can omit the SYSPRINT DDname.

Example

The following JCL example uses a PDSE in the SYSPRINT DD so that listing transforms are written to the
members of the PDSE.

//SYSIN DD *
BOPT IN=HLQ.IN.LOAD(MOD*) OUT=HLQ.OUT.LOAD

//gYSPRINT DD DSN=HLQ.LIST.PDSE,DISP=SHR

In this example, the input program modules are specified as HLQ.IN.LOAD(MOD*), which means, optimize
all eligible members in HLQ.IN.LOAD with names beginning with "MOD".

There are two members in the input data set, MOD1 and MOD2. Within these two program modules, are
various CSECTs:

Chapter 6. Understanding output from the optimization process 49

Table 8. Input modules and their containing CSECTs
HLQ.IN.LOAD CSECTs
MOD1 PROG1A
PROG1B
PROG1C
MOD2 PROG2A
PROG2B

ABO will optimize each of these CSECTs, one at a time, and produce two outputs for each CSECT:
1. The optimized CSECT
2. The listing transform for the CSECT

The optimized CSECT has the same name as the input CSECT, and the optimized CSECT will be placed in a
program module that has the same member name as the input program module. However, the new
program modules will be placed into a new PDSE called 'HLQ.OUT.LOAD'

Table 9. Output 1: Optimized modules and their CSECTs
HLQ.OUT.LOAD CSECTs
MOD1 PROG1A
PROG1B
PROG1C
MOD2 PROG2A
PROG2B

The listings, generated for each of the optimized CSECT, are placed into the PDSE 'HLQ.LIST.PDSE', as
separate members. Each such PDSE member will have the same name as the input CSECT name. The
results is that HLQ.LIST.PDSE will have 5 members, PROG1A, PROG1B, PROG1C, PROG2A and PROG2B.

Table 10. Output 2: Listing transforms
HLQ.LIST.PDSE

PROG1A

PROG1B

PROG1C

PROG2A

PROG2B

50 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 7. Managing optimization and optimized
module deployment process

Taking an iterative and staged approach when using ABO

An iterative and staged approach to using ABO is a recommended approach to balance the cost of the
optimization process to the benefits from running the optimized programs generated by ABO.

For example, first optimize the modules containing the top x% contributors to CPU time. Measure the
impact (for example, the reduction in CPU time) using these ABO generated modules, and then repeat for
the next top x% CPU contributors until your performance goals are met.

A performance measurement and reporting tool, such as IBM Application Performance Analyzer (APA) for
z/0S, can help determine the top CPU contributors. If performance measurements tools are not available
then the RTI Profiler that comes with ABO can be used to help determine which COBOL modules are
executed most when the application is running.

Characteristics of programs that benefit most from ABO

Some compiled programs will benefit more from ABO than others. Knowing some key characteristics of
these programs can also help in staging use of ABO on your compiled COBOL programs.

ABO can only improve performance of the original compiler generated code and some select Language
Environment (LE) routines, but ABO does not have the means to improve performance when time is spent
in other subsystems such as CICS, Db2, and IMS.

Key characteristics of programs that might benefit more from optimization with ABO are:

« Asignificant portion of the application’s execution time is spent in the COBOL code instead of in other
subsystems such as CICS, Db2, and IMS.

« The COBOL code is performing a significant amount of computations. For example, a program where the
COBOL code itself is doing the actual, real work, and is not simply acting as a "driver" program for other
programs or subsystems.

— At the source level, some statements most likely to benefit include, but are not limited to: COMPUTE,
IF, MOVE, ADD, SUBTRACT, MULTIPLY, DIVIDE, and REMAINDER.

— In addition, some select Language Environment (LE) routines can also be optimized by ABO. These
routines perform a variety of conversion, move, and arithmetic operations and include IGZCSH2,
IGZCFPC, IGZCONV, IGZCVMO, IGZCXPR, IGZCXMU, and IGZCXDI. ABO optimizes these routines by
more efficiently performing the work of these routines directly in the optimized code or by calling a
more efficient LE routine.

Note: Looking at the COBOL source alone does not take into account where the time in the
application is actually spent, so this should be done in combination with a performance report from
an analysis tool such as APA.

« Most COBOL modules within the application are eligible for optimization by ABO. This means that the
modules were complied with an eligible COBOL compiler and contain language features that are
supported by ABO.

Optimization and deployment usage scenarios

This section contains three typical usage scenarios for IBM Automatic Binary Optimizer for z/OS. These
scenarios describe possible approaches to using the IBM Automatic Binary Optimizer for z/OS to improve

© Copyright IBM Corp. 2015, 2019 51

the performance of already compiled IBM COBOL programs. Each scenario provides step-by-step
instructions to enable you to optimize your compiled IBM COBOL programs.

Scenario 1: Optimization process with static deployment

In this usage scenario, specify input modules to the optimizer in your JCL using BOPT directives, and for
deployment, update all existing JCL that identifies data sets containing the original modules.

Procedure

To perform the optimization with static deployment, complete the following steps:

1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is
the high-level qualifier that you define.

e HLQ.OUT.LOAD.ZEC12. This data set will be populated with optimized binaries targeting the zEC12
machine.

« HLQ.OUT.LOAD.Z13. This data set will be populated with optimized binaries targeting the z13
machine.

e HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

2. Run ABO to populate the new data sets. To run the optimizer, create new JCL. In the in-stream line
that starts with SYSIN, use the BOPT optimizer directive. Select your compiled COBOL programs to
optimize with the IN option. For example, the following JCL instructs the optimizer to optimize all the
members with names beginning with M from HLQ.IN.LOAD. The optimized binaries targeting zEC12,
Z13 and z14 are placed in HLQ.OUT.LOAD.ZEC12, HLQ.OUT.LOAD.Z13, and HLQ.OUT.LOAD.Z14
respectively.

//SYSIN DD *
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.ZEC12 LIST=HLQ.OUT.LIST.ZEC12 ARCH=10
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.Z13 LIST=HLQ.OUT.LIST.Z13 ARCH=11
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.Z14 LIST=HLQ.OUT.LIST.Z14 ARCH=12

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 63. For more sample JCL that you can use in
the static deployment scenario, see “Specifying optimization with BOPT” on page 28.

3. To run the optimized programs, modify the JCL that is used to run the original programs. That JCL
identifies data sets that contain the original modules. In the STEPLIB setting, you must place the data
sets of the optimized modules ahead of the data sets of the original modules for each targeted
architecture. The following snippets show the modified parts in JCL that points to the optimized and
original program binaries.

Here's the modified part in the JCL that is used to run the original program on zEC12:

//STEPLIB DD DSN=HLQ.OUT.LOAD.ZEC12,DISP=SHR
// DD DSN=HLQ.IN.LOAD,DISP=SHR

Here's the modified part in the JCL that is used to run the original program on z13:

))STEPLIB DD DSN=HLQ.OUT.LOAD.Z13,DISP=SHR
// DD DSN=HLQ.IN.LOAD,DISP=SHR

Here's the modified part in the JCL that is used to run the original program on z14:

//STEPLIB DD DSN=HLQ.OUT.LOAD.Z14,DISP=SHR
// DD DSN=HLQ.IN.LOAD,DISP=SHR

52 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Scenario 2: Optimization process with dynamic deployment

| In this usage scenario, map input to output modules in IEFOPZxx SYS1.PARMLIB's members and then use
the IEFOPZ optimizer directive to specify optimization of input to output modules. After the binary
optimization completes, run the optimized programs with no changes to the existing JCL that was used to
run the original programs.

About this task

IEFOPZxx contains statements that define the data set optimization configuration which provide a list of
pairings of an old COBOL library and the intended new libraries (one for each desired architecture level)
and specifies which members are to be processed (optimized). For more information, see z/0S MVS
Initialization and Tuning Reference.

Procedure

To perform the binary optimization with dynamic deployment, complete the following steps:

1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is
the high-level qualifier that you define.

« HLQ.OUT.LOAD.ZEC12. This data set will be populated with optimized binaries targeting the zEC12
machine.

« HLQ.OUT.LOAD.Z13. This data set will be populated with optimized binaries targeting the z13
machine.

e HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

2. Define the IEFOPZ configuration.
a. Create an IEFOPZxx member.

b. For each old data set that contains the compiled module that you want to optimize, define an
OLD/NEW pair in the IEFOPZxx member. Mark the OLD/NEW pair as INACTIVE so that the system
does not do any OLDNEW processing unexpectedly. See the following example:

MAXARCH (12)

CHECKALL

OWNER(IBM) MINARCH(10)

OLDNEW (
OWNER (IBM)
OLD (DSN(HLQ.IN.LOAD))
NEW (DSN(HLQ.OUT.LOAD.ZEC12) ARCH(10))
NEW (DSN(HLQ.OUT.LOAD.Z13) ARCH(11))
NEW (DSN(HLQ.OUT.LOAD.Z14) ARCH(12))
INCLUDEMEMBERS (M%) //Identifies to process all members beginning with M
INACTIVE

)

Note: The OLD/NEW pairs can be defined in one or multiple IEFOPZxx members.
| 3. To activate the IEFOPZ configuration, use the following z/OS MVS System command:

SET IEFOPZ=(xq,...,%,)

where xq,..., X, are the suffixes xx for the IEFOPZxx members. If in the previous step, you only create
one member, the command is as follows:

SET IEFOPZ=x;

Note: The SET command modification stays through the current IPL session only. Therefore, it is
usually used for the new configuration quick test, or to override some permanent definitions during the
current IPL session. For permanent configuration definitions, see step 5.

4. Run IBM Automatic Binary Optimizer for z/OS to populate the new data sets.

To run the optimizer, write JCL as follows. In the in-stream data that starts with SYSIN, use the
IEFOPZ directive.

Chapter 7. Managing optimization and optimized module deployment process 53

//SYSIN DD *
IEFOPZ SEL_ARCH=10 LIST=HLQ.BOZOPT.ARCH10.LIST
IEFOPZ SEL_ARCH=11 LIST=HLQ.BOZOPT.ARCH11.LIST
IEFOPZ SEL_ARCH=12 LIST=HLQ.BOZOPT.ARCH12.LIST

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 63. For more sample JCL that you can use in
the dynamic deployment scenario, see “Specifying optimization with IEFOPZ” on page 31.

5. Update your IEASYSxx SYS1.PARMLIB member with the IEFOPZ system parameter so that
subsequent IPLs will properly activate the desired IEFOPZ configuration. For example, to have the
IEFOPZ configuration specified in member IEFOPZ99 automatically activated with each subsequent
IPL, put the IEFOPZ=99 statement into your IEASYSxx member. However, the SET command
described in step 3, if issued for example as follows: SET IEFOPZ=99, will activate the desired
IEFOPZ99 member for the current IPL session only.

6. Redefine the OLD/NEW pairs as ACTIVE. If you want OLD/NEW processing to be done for any
DDNAMEs other than JOBLIB and STEPLIB, define those within an IEFOPZxx parmlib member using
the DDNAME statement. Then activate that updated IEFOPZ configuration.

7. Run the optimized programs by using the existing JCL that was used to run the original programs.

Related reference
“Related publications” on page 85

Scenario 3: Optimization process using a hybrid approach

In the hybrid approach, specify the input binaries to optimize explicitly in your JCL as what you do in
Scenario 1, but combine with dynamic deployment demonstrated in Scenario 2. With dynamic
deployment, run the optimized modules without changing the existing JCL.

Procedure

To perform the binary optimization using a hybrid approach, complete the following steps:

1. Create new data sets. For example, the following data sets are created for this scenario where HLQ is
the high-level qualifier that you define.

« HLQ.OUT.LOAD.ZEC12. This data set will be populated with optimized binaries targeting the zEC12
machine.

« HLQ.OUT.LOAD.Z13. This data set will be populated with optimized binaries targeting the z13
machine.

e HLQ.OUT.LOAD.Z14. This data set will be populated with optimized binaries targeting the z14
machine.

2. Run IBM Automatic Binary Optimizer for z/OS to populate the new data sets.

To run the optimizer, create new JCL. In the in-stream data that starts with SYSIN, use the BOPT
optimizer directive to select compiled COBOL modules to optimize. For example, the following JCL
instructs the optimizer to optimize all the members that begin with the letter M from HLQ.IN.LOAD.
The optimized binaries targeting zEC12, 213, and z14 are placed in HLQ.OUT.LOAD.ZEC12,
HLQ.OUT.LOAD.Z13, and HLQ.OUT.LOAD.Z14 respectively.

//SYSIN DD *
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.ZEC12 ARCH=10
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.Z13 ARCH=11
BOPT IN=HLQ.IN.LOAD(Mx) OUT=HLQ.OUT.LOAD.Z14 ARCH=12

The example is intended to reflect what the user should specify in the SYSIN file. For basic JCL
configuration, see Appendix A, “JCL sample,” on page 63. For more sample JCL that you can use in
the hybrid scenario, see “Specifying optimization with BOPT” on page 28.

3. Define the IEFOPZ configuration.

a. Create an IEFOPZxx member.

54 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

b. For each old data set that contains the compiled module that you want to optimize, define an
OLD/NEW pair in the IEFOPZxx member. Mark the OLD/NEW pair as ACTIVE. See the following
example.

OLDNEW (
OLD(DSNAME (HLQ.IN.LOAD))
NEW(DSNAME (HLQ.OUT.LOAD.ZEC12) ARCH(10))
NEW(DSNAME (HLQ.OUT.LOAD.Z13) ARCH(11))
NEW(DSNAME (HLQ.OUT.LOAD.Z14) ARCH(12))
INCLUDEMEMBERS (Mx) //Identifies to process all members beginning with M
ACTIVE)

Note: The OLD/NEW pairs can be defined in one or multiple IEFOPZxx members.

c. If you want OLDNEW processing to be done for any DDNAMEs other than JOBLIB and STEPLIB,
define those within an IEFOPZxx parmlib member using the DDNAME statement. Then activate that
updated IEFOPZ configuration by using the following command:

SET IEFOPZ=(xy,...,&,)

where x1,..., X, are the suffixes xx for the IEFOPZxx members. If in the preceding step, you create
only a single member, the command is as follows:

SET IEFOPZ=x;

4. Run the optimized programs by using the existing JCL that was used to run the original programs.

Related reference
“Related publications” on page 85

Testing information

The optimized modules that ABO produces will run faster but will have the same behavior, except from
some isolated error message and abend code differences, as the original COBOL modules. ABO is able do
this because it processes the binary code within the COBOL module so it is able to ensure the low level
logic of the program remains the same. This means that users of ABO do not have to perform full
functional verification testing of the ABO optimized modules. Some limited testing is recommended to
ensure basic functioning of the applications using the ABO optimized modules prior to deploying ABO
optimized modules into a production environment.

Performance testing is best done in a controlled environment with the same input data used with the
original application and with the application containing ABO optimized modules. Using a machine or LPAR
that has as few as possible other applications running for performance testing will allow for stable and
reproducible performance results. Comparing the CPU time between the original application and
optimized application is the best way to see performance gains.

Chapter 7. Managing optimization and optimized module deployment process 55

56 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Chapter 8. Resolving problems with optimization and
optimized module deployment

Resolving problems that occur during optimization time

The return code that ABO passes to z/OS is an indicator of whether a problem was encountered during
optimization. A return code value of zero means that optimization was successful and no problems were
encountered. A return code value other than zero, indicates something unexpected occurred or a problem
was encountered. For more information on return codes, see Appendix B, “Return codes,” on page 65.

ABO produces output files that can be used to diagnose problems.

The following files can be helpful in diagnosing problems encountered during the optimization of COBOL
programs:

« The log file gives a summary of what has been optimized or scanned, and error messages if applicable.
See Messages for more information. The log file is the first place you should examine if problems are
detected during the optimization process.

 The file specified by the OPTERR DD are written to in exceptional circumstances. If the OPTERR DD is
not specified, those messages are written to the JOBLOG.

« The file specified by the CEEDUMP DD are written to in circumstances such as a program exception
when running ABO. The CEEDUMP file is produced by Language Environment (LE) and includes
information such as a traceback of procedures that were executing at the time of the abend.

« The JOBLOG includes additional diagnostic messages that complement error messages that were
written elsewhere or the JOBLOG can be a default location for errors encountered in exceptional
circumstances.

Resolving problems encountered during execution

The problem determination tools provided by IBM in the Application Delivery Foundation for z Systems
can be used to determine the source of execution time problems in applications that contain ABO
optimized modules. If problem determination tools are not available the listing transform produced by
ABO can be helpful in diagnosing execution time problems.

If diagnoses determines that an ABO optimized module that is causing the execution time problem then
revert back to the original COBOL module and contact IBM service to report the problem.

Changes in COBOL module size after optimization

The size of an optimized module is typically larger than the original module due to the types of
optimizations ABO does to improve performance.

Here are some common reasons for the module size increase:

 Use of higher ARCH instructions that are usually 6 bytes versus 4 or 2 bytes in length for many lower
ARCH instructions. For example:

— Using Decimal Floating Point (DFP) for packed/zoned decimal arithmetic to improve performance

— Replacing "base locator" pointers in the original module with more efficient but larger long
displacement instructions

© Copyright IBM Corp. 2015, 2019 57

— Using more than one move immediate instruction instead of one in memory move

« A number of optimizations in ABO generate more code but shorter path length and better performance.
For example:

— More efficient handling of numeric edited variables
— Unrolling long move and compare operations instead of using shorter but much slower instructions
— Conditionally correcting decimal precision for binary data

« The inlining of the behavior of various runtime library routines results in more code in the optimized
module but much faster performance in many cases.

So for these and similar reasons the optimized modules produced by ABO are often larger than the
original modules and require more on disk storage. However, the amount of memory used by the
optimized program itself when running is the same as that used by the original module. A slightly higher
EXCP count will sometimes be observed when running the optimized program but this is only due to the
few extra I/O operations required to load the larger module.

Note that an optimized module will keep its size unchanged if the optimized code happens to be smaller
than the original code.

Error message and abend code differences

The optimized modules generated by ABO are in almost every case functionally equivalent to the
corresponding original modules. However, in some rare cases an ABO generated module will produce
different Language Environment (LE) runtime messages or different CICS abend codes than the original
module.

This can happen when division on large data items and other complex operations are inlined or optimized
in the generated code by ABO for more efficient processing, instead of being handled by an LE library
routine or inefficient machine instructions.

In a non-CICS application, an ABO generated module:

« may produce a fixed-point divide exception (CEE3209S) message in places where the original module
produced a decimal-divide exception (CEE3211S) or IGZ0061S message.

« may produce a decimal-divide exception (CEE3211S) in places where the original module produced a
IGZ0061S message

For reference the full LE runtime message text for these differing exceptions is given below.

CEE3211S The system detected a decimal-divide exception (System Completion Code=0CB).
IGZ0OO61S Division by zero occurred in program 'program-name' at displacement 'displacement'.
CEE3209S The system detected a fixed-point divide exception (System Completion Code=0C9).

For a CICS application the abend code returned by "CICS ASSIGN ABCODE" can change from '1061' from
the original module to 'ASRA' from the ABO generated module.

Application Delivery Foundation for z Systems

You can use Application Delivery Foundation for z Systems (ADFz) on ABO generated modules.

Find out more about Application Delivery Foundation for z Systems at https://www.ibm.com/ca-en/
marketplace/app-delivery-foundation-on-zsystems.

The following Application Delivery Foundation for z Systems family of problem determination tools can be
used on ABO generated COBOL modules:

« Developer for z Systems Enterprise Edition, which includes the IBM Debug for z Systems (previously
known as IBM Debug Tool (DT) for z/OS)

58 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www.ibm.com/ca-en/marketplace/app-delivery-foundation-on-zsystems
https://www.ibm.com/ca-en/marketplace/app-delivery-foundation-on-zsystems

« Fault Analyzer for z/OS (FA)
« Application Performance Analyzer for z/OS (APA)

In order to use these tools more effectively, you need to produce a LANGX side file for each optimized
program. DT, FA, and APA exploit the side file to provide a better tool experience. For example, source-
level debugging is provided with Debug for z Systems when a LANGX side file is provided. Without the side
file, source-level debugging is not possible.

Creating a LANGX side file

IPVLANGO is a new tool provided with IBM Problem Determination Tools Common Component for z/OS
V1.7, which is shared by the Application Delivery Foundation for z/OS tools. IPVLANGO combines the
SYSDEBUG data set or compiler listing or the LANGX side file of the original compiled program along with
the ABO listing transform to produce a new LANGX side file appropriate for the ABO generated module.
Use the new LANGX file when you use DT, FA, or APA on the ABO generated module.

Run Time Instrumentation Profiler

The IBM Run Time Instrumentation (RTI) Profiler is a performance analysis tool to collect and report on
the execution time CPU performance characteristics of your batch z/OS applications.

Introduction

The RTI Profiler uses the Runtime Instrumentation Facility added in zEC12 to collect high fidelity
information about a batch program's CPU performance characteristics at a low overhead.

The supported z/0S versions for using the RTI Profiler are:

« z/OS Version 2.3
« z/OS Version 2.2
« z/OS Version 2.1

All the Language Environment (LE) CSECTs in your application are profiled in order to get a complete
picture of overall CPU performance. This includes programs compiled by the IBM COBOL, C/C++ and PL/I
compilers as well as COBOL programs optimized by ABO. The time spent in any LE library routines is also
collected and reported.

The output of the RTI Profiler is a text file containing details per compiled or optimized CSECT and offsets
within this CSECT of where the program is spending its time while running.

In conjunction with the corresponding listing files for the programs being profiled, the RTI Profiler output
can help determine specific parts of your program, down to the machine instruction, where there may be
opportunities for improving application CPU performance.

Due to the detailed level of information produced, the primary intended use case for the RTI Profiler is to
provide IBM support and development with data to aid in performance investigations. In this scenario, an
IBM support or development representative requests the RTI Profiler be used, and its output sent to IBM
along with other artifacts (e.g. listing files) from the original compilation or optimization of your programs.

If you require more complete and full featured application profiling then we recommend using a profiling
tool such as Application Performance Analyzer for z/OS in ADFz.

System requirements and restrictions

The RTI Profiler can only be used on zEC12/zBC12, z13/z13s, and z14 systems. This restriction is
because the RTI Profiler uses the Runtime Instrumentation Facility that was only added starting with
ZEC12 systems.

The RTI Profiler will not work if your z/OS operating system is running on z/VM. If run on z/VM guest then
the message RISTART: AUTH REQUEST FAILED is output to the job log.

Chapter 8. Resolving problems with optimization and optimized module deployment 59

The RTI Profiler can be used on all batch applications including IMS batch and batch programs that
interact with Db2.

The RTI Profiler does not work for CICS applications and is not supported for any application that is part
of a non-batch IMS environment.

Usage instructions

The RTI Profiler consists of the two members BOZBXITA and BOZRIDT included in the same dataset
where ABO was installed.

« BOZBXITA: links CEEBXITA and the related profiling routines to the main program of the application.
This step enables the starting and stopping of the profiling as well as the monitoring and managing of
the buffers for the RTI Profiler during the program execution.

- BOZRIDT: processes the RTI Profiler buffer data and generates the text file report.

Before using the RTI Profiler, you must allocate a PDS or PDSE dataset in order to hold the profiling
results. The RTI Profiler generated report is stored into a member of this dataset. In the following JCL
examples, this dataset is named hlq.SYSPROFD.

The following table shows the recommended allocation parameters for hlg.SYSPROFD.

Table 11. Recommended allocation parameters

Data sets Recommended allocation parameters

hlq.SYSPROFD (as a PDS) Space units : CYLINDER

Primary quantity : 10
Secondary quantity : 10
Directory blocks : 10
Record format : FB
Record length : 80
Block size : 27920

Data set name type PDS

hlq.SYSPROFD (as a PDSE) Space units : CYLINDER

Primary quantity: 10
Secondary quantity : 10
Directory blocks : 10
Record format : FB

Record length : 80

Block size : 27920

Data set name type LIBRARY

To use the RTI Profiler, follow these steps:

1. In the link-edit step, rebind your existing program to include BOZBXITA
2. In the execution step, specify the location of the dataset that will hold the profiling results

In the steps and JCL examples below hlgboz.BOZ130.SBOZMOD1 is the installation location chosen for
ABO.

Step 1. Rebind your existing program to include BOZBXITA

The first step is to rebind your existing program to include BOZBXITA so the RTI Profiler is enabled when
running your program.

To perform this rebind, modify the link-edit step of the program containing the main entry point to your
application:

« Add hlghboz.B0OZ130.SBOZMOD1 to the link-edit step as SYSLIB
« Include BOZBXITA as additional input to link-edit step

Below is a JCL example for this step:

60 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

/LKED EXEC PGM=IEWL,PARM='options'

/SYSLIB DD DISP=SHR,DSN=hlgboz.B0Z130.SB0ZMOD1 <-- add hlgboz.B0Z130.SB0ZMOD1 as SYSLIB
/ DD DSN=hlqcee.SCEELKED,DISP=SHR

/ DD DSN=hlqcee.SCEELKEX,DISP=SHR

/LOAD DD DISP=SHR,DSN=&LOAD

//SYSLMOD DD DISP=SHR,DSN=&SYSLMOD (pgmname)

//SYSPRINT DD SYSOUT=x

//SYSLIN DD *

INCLUDE LOAD(pgmname)

INCLUDE SYSLIB(BOZBXITA) <-- add INCLUDE for BOZBXITA
NAME pgmname (R)

/
/
/
/

Step 2. Specify the location of the dataset that will hold the profiling results

The second step is to specify the location of the dataset that will hold the profiling results generated by
the RTI Profiler.

In your existing JCL for executing your program:

« Add hlgboz.BOZ130.SBOZMOD1 to the existing STEPLIB
- Add the DDNAME SYSPROFD to receive the profiling results

Below is JCL example for this step:

//GO EXEC PGM=pgmname, REGION=0M

//STEPLIB DD DSN=&SYSLMOD,DISP=SHR <-- &SYSLMOD is the output dataset from the rebind in step 1
/ DD DSN=hlgboz.B0Z130.SB0ZMOD1,DISP=SHR <-- add hlgboz.B0Z130.SB0ZMOD1 to STEPLIB
//SYSPROFD DD DSN=hlq.SYSPROFD(pgmname),DISP=SHR <-- add SYSPROFD DD

When program execution completes, the profiling results are contained in hlq.SYSPROFD(pgmname).

If SYSPROFD is not added in the execution step then the message RIDATA: OPENING SYSPROFD
FAILED is generated to the job log. Also, the abend code ABEND=S000 U1130 REASON=00000000 is
produced.

Notes:

1. For step 1, the same set of the link options as the original module must be used when rebinding for
RTI Profiler usage. To verify the same set of the link options were used, you can use AMBLIST on the
original and rebound modules. The most likely mismatch for COBOL programs is inadvertently
changing AMODE from 24 to 31 when rebinding. Below is a JCL example that shows how to set the link
options for AMODE=24.

//LKED EXEC PGM=IEWL,PARM='LIST,MAP,AMODE=24"

2. If the program to be profiled was compiled using VS COBOL II or an ABO optimized VS COBOL II
compiled program, an extra step might be needed to rebind the module to replace the bootstrap
routine IGZEBST with the current version from LE. If you do not see any profiling output at the
SYSPROFD location after step 1 and you attempt to profile VS COBOL II or an ABO optimized VS
COBOL II compiled program, follow the steps below to replace the IGZEBST routine and enable the
module for RTI profiling.

//LKED EXEC PGM=IEWL,PARM='options’ <- original link options
//SYSLIB DD DSN=hlqcee.SCEELKED,DISP=SHR
// DD DSN=hlqcee.SCEELKEX,DISP=SHR
//LOAD DD DISP=SHR,DSN=&LOAD <- original module that will be linked with new IGZEBST
//SYSLMOD DD DISP=SHR,DSN=&SYSLMOD(pgmname) <- output module location
//SYSPRINT DD SYSOUT=x
//SYSLIN DD =
INCLUDE SYSLIB(IGZEBST) <- new bootstrap to include from CEE
INCLUDE LOAD(pgmname) <- original member from LOAD to link new parts into
REPLACE -IMMED,IGZEBST <- bootstrap member to replace
ENTRY pgmname
NAME pgmname (R)
//*

Chapter 8. Resolving problems with optimization and optimized module deployment 61

62 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix A. JCL sample

The following JCL sample is included in the IBM Automatic Binary Optimizer for z/OS installation package.

//B0OZJCLE JOB <job parameters>
//***

//* Job Name: BOZJCLE *
//* *
//* Licensed Materials - Property of IBM *
//* 5697-AB1 *
//* Copyright IBM Corp. 2017 *
//* *
//* US government users restricted rights *
//* use, duplication or disclosure restricted *
//* by GSA ADP schedule contract with IBM Cozxp. *
//* *
//***
//OPT EXEC PGM=BOZOPT,REGION=0M

//STEPLIB DD DSN=hlgboz.B0Z130.SB0ZMOD1,DISP=SHR
//OPTLOG DD DSN=hlqg.B0OZOUT.OPTLOG (&B0ZJOBID) ,DISP=SHR
//OPTERR DD DSN=hlq.BOZOUT.OPTERR(&B0ZJOBID) ,DISP=SHR
//CEEDUMP DD DSN=hlq.BOZOUT.CEEDUMP (&B0ZJOBID) ,DISP=SHR
//SYSPRINT DD DSN=hlq.BOZOUT.LISTING,DISP=SHR
//SYSBIN DD DSN=input-load-library,DISP=SHR
//SYSBOUT DD DSN=output-load-library,DISP=SHR
//SYSIN DD *

ARCH=arch-number

BOPT IN=DD:SYSBIN(member-name) OUT=DD:SYSBOUT (member-name)

In the JCL example, hlghoz.BOZ130.SBOZMOD1 is the installation location chosen for the optimizer.
This example requires the following data sets to be allocated beforehand:

« hlg.BOZOUT.OPTLOG

« hlg.BOZOUT.OPTERR

« hlg.BOZOUT.LISTING

« hlq.BOZOUT.CEEDUMP

You can allocate these data sets with the recommended parameters in the following table:

Table 12. Recommended allocation parameters

Data sets Recommended allocation parameters
hlg.BOZOUT.OPTLOG Space units: CYLS
hlg.BOZOUT.OPTERR grimagy qua"tim 0%

econdary quantity:
hlq.BOZOUT.LISTING Directory blocks: 10

Record format: VB
Record length: 512
Block size: 27998
Data set name type: Library

hlg.BOZOUT.CEEDUMP Space units: CYLS

Primary quantity: 10
Secondary quantity: 10
Directory blocks: 10

Record format: FB

Record length: 133

Block size: 27930

Data set name type: Library

© Copyright IBM Corp. 2015, 2019

63

Table 12. Recommended allocation parameters (continued)

Data sets Recommended allocation parameters

Notes:

1. hlg.BOZOUT.OPTLOG and hlq.BOZOUT.OPTERR must have a record format of VB to be opened
successfully. For hlq.BOZOUT.LISTING a record format of FB is also allowed, though information will
be truncated from the listing if the record length is too short. A record length of at least 133 is
recommended to ensure no truncation occurs.

&BO0OZJOBID is a unique identifier for this job chosen by the user. It is used as the member name in each
of the hlq.BOZOUT.OPTLOG, hlg.BOZOUT.OPTERR, and hlq.BOZOUT.CEEDUMP data sets. &BOZJOBID
must be a valid member name.

This JCL sample shows a definition of the SYSIN DD for optimizing a single module. For more examples,
see “JCL examples” on page 28 and “Optimization and deployment usage scenarios ” on page 51. For
descriptions of the ddnames used in the example, see “Required DD statements” on page 15.

64 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix B. Return codes

IBM Automatic Binary Optimizer for z/OS emits messages to provide information, provide possible
warnings, or to report errors. Each message has a "Message return code" that is documented in Appendix
C, “Messages,” on page 67. On termination, ABO passes a return code value to z/OS that is the

maximum of the "Message return code" values of all the messages that were emitted. If no messages
were emitted, then a return code of 0 is returned to z/OS.

Table 13. IBM Automatic Binary Optimizer for z/OS return codes

Return code
(decimal)

Description

0

Successful completion of all processing. One or more informational messages may
have been emitted.

Successful completion but an unusual condition was detected. One or more warning
messages have been emitted.

12

An error was detected during the processing of a BOPT or IEFOPZ directive or global
option. One or more messages have been emitted.

« If the error occurs during syntax processing of a line of input, the rest of the line is
rejected and ABO proceeds to process the next line of input.

« If the error occurs while processing a BOPT or IEFOPZ directive, ABO proceeds to
process the next applicable module of the BOPT or IEFOPZ directive. If there are no
further input modules to process for the BOPT or IEFOPZ directive, processing of the
directive is terminated and ABO proceeds to the next line of input to process the
next directive or terminates if there are no more lines of input.

16

An unrecoverable error was detected. One or more messages are emitted and ABO
immediately terminates processing.

© Copyright IBM Corp. 2015, 2019 65

66 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Appendix C. Messages

The messages described in this section are written to the OPTLOG DD. In some exceptional cases, it may
not be possible to write to the OPTLOG DD in which case the message is written to write to the OPTERR
DD otherwise to the JOBLOG. Each message, listed below, has a "Message return code" that is used to
determine the return code returned to z/OS as described in Appendix B, “Return codes,” on page 65.

Each ABO message in this section has the form BOZnnnnX where BOZ indicates that the message is an
ABO message, nnnn is the message number, X is the severity indicator.

Severity indicators can be any of the following: I, W, E, S, or U.

I
Informational message (RC=0)

w
Warning message (RC=4)

E

Error message (RC=8)
S

Severe error message (RC=12)
V)

Unrecoverable error message (RC=16)

BOZ1003U Program caught signal &1, exiting

with return code 16.

Explanation:

The optimizer was unable to continue because an
unexpected condition was encountered during
processing.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Unexpected problems could happen due to an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code
16

B0Z1031S An error occurred while

attempting to open "&1".

Explanation:
The optimizer was unable to open the file specified by
&1.

System action:

If the open failure was associated with one of the
required optimizer DDs, such as the SYSIN DD, the
optimizer immediately terminates with a return code
of 16. Otherwise, if the file is specified on a line in the
SYSIN input file (in a global option or BOPT or IEFOPZ

© Copyright IBM Corp. 2015, 2019

directive), processing of the line is terminated and the
optimizer proceeds to process the next line of the
SYSIN input file.

User response:

Ensure that the file name is correct, and that the file
has been allocated and with an appropriate record
format and with an appropriate record length.

Message return code

16 when attempting to open a mandatory DD,
otherwise 12.

B0Z1145U

Insufficient memory in the
compiler to continue compilation.

Explanation

The optimizer was unable to continue due to memory
being low.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used by the
optimizer. For more information, see the z/OS MVS
Initialization and Tuning Reference and the z/OS MVS
Initialization and Tuning Guide.

Message return code
16

67

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

B0Z1400S Directive is missing "&1" specifier.

Explanation

The optimizer encountered a BOPT or IEFOPZ directive
that requires an &1 specifier, but the specifier was
missing.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN input file.

User response:
Correct the directive by adding an appropriate &1
specifier.

Message return code
12

B0zZ1401S "&1" directive must be specified

at start of line.

Explanation

An option preceded the &1 directive on a line of the
SYSIN input file, or the line is missing the &1 directive.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN input file.

User response:
Fix the line by specifying &1 directive at the start of
the line.

Message return code
12

B0Z1402S Invalid specifier in "&1".

Explanation

The &1 option of BOPT or IEFOPZ directive contained
an invalid specifier. For example, "H" is an invalid
specifier in the option: "SCAN=H".

System action:

The optimizer discards the directive with the invalid
specifier and proceeds to process the next line in the
SYSIN input file.

User response:
Change the specifier in the option to one that is valid.

Message return code
12

B0Z1403S Invalid option "&1".

Explanation

While processing the SYSIN input file, &1 was
encountered such that &1 is not an optimizer directive
and &1 is not a valid option.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Correct the line of SYSIN by using a properly spelled
directive or option.

Message return code
12
B0Z1404S

"&1" can only be specified on "&2"
directive.

Explanation

The &1 option was specified on a directive but it was
not the &2 directive. For example, SEL_ARCH cannot
be specified on the BOPT directive as SEL_ARCH is
only applicable to the IEFOPZ directive.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Fix the line with &1, by specifying a proper option or
proper directive.

Message return code
12
B0Z1405S

"&1" not allowed on "&2"
directive.

Explanation

The &2 directive contained an option, &1, that is not
applicable to the &2 directive. For example, the "IN"
option is not applicable and cannot be specified on the
IEFOPZ directive.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Fix the line by specifying a proper option that applies
to the &2 directive.

Message return code
12

BOZ1406S

Wildcards not supported in
member specifier of "&1".

68 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Explanation

A line of SYSIN was encountered with an "IN" option
with a member specifier (&1) that included wildcards,
and an "OUT" option that included a dataset member
specifier. When wildcards are used in an "IN" option,
the "OUT" option must not include a member specifier.

System action:
The optimizer discards the line with the invalid option
and proceeds to process the next line in the SYSIN file.

User response:
Change the "IN" option to not specify wildcards or
remove the member specifier from the "OUT" option.

Message return code
12

B0Z1407S Output specifier "&1" invalid when

using wildcards on input.

Explanation

The optimizer detected a BOPT directive with a
wildcard specifier on the "IN" option and the "OUT"
option specified a USS path of &1. When member
wildcards are used on the "IN" option, the "OUT"
option must specify a dataset and not a USS path.

System action:

The optimizer discards the BOPT option with the
invalid "OUT" option and proceeds to process the next
line in the SYSIN file.

User response:
Change the "IN" option to not specify wildcards or
change the "OUT" option to specify a dataset.

Message return code
12

B0Z1408S Module specifier "&1" is an

existing directory.

Explanation

The optimizer detected an HFS directory, &1, specified
as the module location on the "IN" or "OUT" option of
the BOPT directive. In HFS, a module is an ordinary file
and not a directory.

System action:
The optimizer discards the directive and proceeds to
process the next line in the SYSIN file.

User response:
Change the path specifier on the "IN" or "OUT" option
to be an ordinary file and not a directory.

Message return code
12

B0Z1409S Output specifier "&1" is not an

existing PDS(E).

Explanation
The optimizer encountered either:

« &1 as a NEW dataset from an IEFOPZ configuration
« &1 as a DD name or dataset name on a file specifier

in the SYSIN file where the file specifier included a
member name

« &1 as a dataset specifier for the LOG option

but, the dataset associated with &1 did not exist or the
dataset was a sequential dataset and not a PDS(E).

System action:

In the IEFOPZ case, the optimizer ignores the NEW
dataset and continues on processing the IEFOPZ
configuration. Otherwise, the optimizer discards the
directive and proceeds to process the next line in the
SYSIN file.

User response:
Change the dataset location to an existing PDS(E) or
allocate the PDS(E) prior to running the optimizer.

Message return code
12
B0Z14101

Output module "&1" cannot be
replaced as REPLACE=N s in
effect.

Explanation

When the REPLACE=Y option is specified, the
optimizer issues this informational message when it
detects that the output module (&1) of the same name
already exists.

System action:

The optimizer bypasses optimizing the input module
and proceeds to process the next module or next
directive.

User response:
No action is required by the user.

Message return code
0
B0Z1411S

Error getting member list from
dataset specifier "&1".

Explanation
The optimizer was processing either:

- a BOPT directive where a PDS(E) (&1) was specified
on the "IN" option (that included member wildcards)
and the PDS(E) had no members

Appendix C. Messages 69

« a IEFOPZ directive, and an OLD dataset (&1) in the
IEFOPZ configuration was found to have no
members

System action:

In the case of a BOPT directive, the optimizer discards
the directive and proceeds to process the next line of
the SYSIN file. In the case of the IEFOPZ directive, the
optimizer ignores the OLD dataset and proceeds to
process the rest of the IEFOPZ configuration.

User response:

Check that the proper dataset was specified on the
BOPT directive or that the proper dataset was
specified in the IEFOPZ configuration.

Message return code
12

B0Z1412S IEFOPZ is not available on this

system.

Explanation

The optimizer was processing an IEFOPZ directive on a
z/0S system that did not have the IEFOPZ feature

System action:
The optimizer discards the IEFOPOZ directive and
proceeds to process the next line in the SYSIN file.

User response:

The IEFOPZ facility is only available on z/OS V2R2 and
above. If the optimizer is run on a z/OS system prior to
V2R2, change SYSIN to not specify the IEFOPZ
directive. If the optimizer is run on z/OS V2R2 or
higher, have your system programmer install the
appropriate PTFs required for the IEFOPZ feature.

Message return code
12

B0Z1413S Problem with IEFOPZQ system
service (return code="&1", reason

code="&2"): &3.

Explanation

The optimizer encountered a problem reading an
IEFOPZ configuration while processing an IEFOPZ
directive. &1 specifies the error return code and &2
specifies the error reason code of the IEFOPZQ system
service that is used to read the configuration. &3 gives
a short description of the reason code.

System action:
The optimizer discards the IEFOPZ directive and
proceeds to process the next line in the SYSIN file.

User response:
Provide this error message to your system
programmer to see if the error is valid If there are no

issues with IEFOPZ usage, consult IBM service
providing this optimizer message and any other
IEFOPZ configuration information.

Message return code
12

B0Z1414S Input specifier "&1" is not an

existing PDS(E).

Explanation
The optimizer encountered either:

« &1 as an OLD dataset from an IEFOPZ configuration

« &1 as a DD name or dataset name on a file specifier
in the SYSIN file where the file specifier included a
member name

but, the dataset associated with &1 did not exist or the
dataset was a sequential dataset and not a PDS(E).

System action:

In the IEFOPZ case, the optimizer ignores the OLD
dataset and continues on processing the IEFOPZ
configuration. Otherwise, the optimizer discards the
directive and proceeds to process the next line in the
SYSIN file.

User response:
Change the dataset name to an existing PDS(E) or
allocate the PDS(E).

Message return code
12

B0Z1415S No DD definition is supplied for

ll&lll.

Explanation

The optimizer could not find a DD definition for a
mandatory optimizer DD (&1), or no DD definition was
specified for a DD (&1) used in the SYSIN file.

System action:

If the DD is for a mandatory DD of the optimizer, the
optimizer immediately terminates with a return code
of 16. Otherwise, the optimizer discards the line of the
SYSIN file that included the DD definition and
processes the next line of SYSIN.

User response:
Provide a DD definition for the DD in error.

Message return code
16, if &1 is a mandatory DD, otherwise 12

B0Z1416S A member name is not specified

for PDS(E) specifier "&1".

70 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Explanation

The optimizer encountered an "IN" or "OUT" option
that specified a PDS(E) (&1) and requires a member
name, but no member was included on the option.

System action:

The optimizer discards the directive with the invalid
"IN" or "OUT" option and proceeds to process the next
line in the SYSIN file.

User response:
Change the "IN" or "OUT" option to include a dataset
member.

Message return code
12

B0Z1417S File "&1" does not exist.

Explanation

Input file &1 could not be located. Two common
reasons this can happen are:

1. A member of an existing input module PDS(E) does
not exist

2. Aninvalid HFS path was specified

System action:

The optimizer ignores processing the directive (or
input module) that used the invalid file specification
and proceeds to process the next input module or next
directive

User response:

Correct the problem by specifying an existing dataset
member or correct the path specification to point to an
existing HFS file.

Message return code
12

B0Z1418S Invalid file specification "&1".

Explanation

The specification of the file &1 is incorrect. Examples
of incorrect specifications include:

1. Amember name is specified twice:

« once, in the definition of a DD

 second, in an optimizer option or directive that
included the DD definition

2. A HFS path is specified, but a directory in the path
is non-existent or the path is not accessible.

3. The length of a DD name or dataset name is too
long.

System action:

The optimizer ignores processing the directive (or
input module) that used the invalid file specification
and proceeds to process the next input module or next
directive

User response:
Specify a proper format for the file specification (&1).

Message return code
12
B0Z1419S

Output of load module(s) to "&1"
is not supported when input has
program object format.

Explanation

An input module has a newer program object format
but the optimized module (&1) is targeted to the older
load module format. This happens when the input
module is a member of a PDSE or a file in a HFS path,
but the optimized module is targeted to a member of a
PDS or is targeted to a sequential dataset.

System action:

The optimizer terminates processing the input module
and proceeds to process the next input module or next
directive.

User response:
Correct the output location (&1) of the optimized
module to be a member of a PDSE or to a HFS path.

Message return code
12
B0Z1420S

Path "&1" must be absolute and
begin witha"/".

Explanation

The specification (&1) of an input or output file is to an
HFS file, but a full path specification is not provided for
&1. A full or absolute file specification must begin with
a"/" character. This error can happen, for example,
when the optimizer processes an HFS specification of
an a input module, output module or listing transform.

System action:

The optimizer bypasses optimizing a module when an
invalid path is specified and proceeds to process the
next input module or next directive.

User response:
Correct the specification of the path (&1) to be
absolute.

Message return code
12
B0Z1421S

Binder API "&1" failed: return
code=&2 reason code=&3.

Appendix C. Messages 71

Explanation

While processing a module using a binder API (&1),
the binder API returned with an unexpected return
code (&2) and reason code (&3).

System action:

In most cases, the optimizer discontinues processing
the input module and proceeds to process the next
input module or next directive. In some cases (for
example, return code=4, reason code = 0x83000526),
the binder is able to recover from the problem (in this
case unexpected input) and the optimization of the
input module proceeds.

User response

Examine binder documentation for information on the
reason code. The reason code information can help
determine the cause of the problem. For example, the
reason code may indicate that the input file for
optimization is not a proper load module or program
object file. In this case, correct the JCL or SYSIN file to
specify a proper input module. For information about
binder API return codes and reason codes, see z/0OS
MVS Program Management: Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code

12 when the optimizer discontinues processing,
otherwise 4.

B0zZ1422S Module cannot be processed as it

is not marked executable.

Explanation

The optimizer encountered an input module that was
not marked executable. The optimizer requires the
module to be marked executable in order for the
optimization process to succeed.

System action:

The optimizer discontinues processing the input
module and proceeds to process the next input
module or next directive.

User response:

If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, correct the bind steps that produced the
input module so that the module resulting from the
bind is marked executable.

Message return code
12

B0Z1423S Module cannot be processed as it
was linked EDIT=NO or otherwise

cannot be reprocessed.

Explanation

The optimizer encountered an input module that
cannot be edited. The most common case where this
can happen is when the bind step used to produce the
module included the EDIT=NO binder option. Modules
that cannot be edited are missing important
information required by the optimizer.

System action:

The optimizer discontinues processing the input
module and proceeds to process the next input
module or next directive.

User response:

If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, remove the EDIT=NO option from the
bind steps that produced the input module.

Message return code
12

B0zZ1424S Module cannot be appropriately

processed as program is SIGNed.

Explanation

The optimizer encountered an input module that is
marked SIGNed.

System action:

The optimizer does not supported SIGNed modules
and discontinues processing the input module and
proceeds to process the next input module or next
directive.

User response:

If this problem is expected for the module, then either
ignore the message or change the optimizer directives
to exclude the module. Otherwise, if the problem is
unexpected, correct the bind steps used to produce
the module so that the module is not marked SIGNed.

Message return code
12

B0Z1428U Insufficient memory encountered
during binder API "&1": return
code=&2 reason code=&3.

Terminating optimizer.

Explanation

While processing a module using a binder API (&1),
the binder was unable to proceed due to memory

72 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

being low. The binder produces the return code (&2)
and reason code (&3) indicating the memory problem.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response

Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used during the
optimization process. For more information, see the
z/0S MVS Initialization and Tuning Reference and the
z/OS MVS Initialization and Tuning Guide.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code
16

B0Z1429U "&1" I/0 error encountered during
binder API "&2": return code=&3
reason code=&4. Terminating

optimizer.

Explanation

While processing a module using a binder API (&2),

the binder detected an I/O error of type &1. The binder

API provided the return code (&3) and reason code
(&4).

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response

The type (&1) of I/O problem and the reason code (&4)
can help direct the steps of how to diagnose and fix
the problem. See binder documentation for an
explanation of the reason code. Now, an example is a
"WRITE" (&1) error of the optimized module because
the output PDS(E) or file system is full. The binder API
information (&2) or reason code (&4) can help confirm,
or lead to, the cause of the "WRITE" problem. Note
that increasing the size of the PDS(E) (or file system)
could fix the "WRITE" problem. For information about
binder API return codes and reason codes, see z/0S
MVS Program Management: Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code
16

B0Z1430U Unrecoverable "&1" error
encountered during binder API
"&2": return code=&3 reason

code=&4. Terminating optimizer.

Explanation

While processing a module using a binder API (&2),
the binder detected an error of type &1. The binder
API provided the return code (&3) and reason code
(&4).

System action:
The binder immediately terminates with a return code
of 16.

User response

The type (&1) of problem and the reason code (&4)
can help direct the steps of how to diagnose and fix
the problem. If you are unable to diagnose the
problem, consult IBM service for assistance. For
information about binder API return codes and reason
codes, see z/OS MVS Program Management: Advanced

Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code
16

B0Z1431S Input module with unsupported
feature (&1) encountered during
binder API "&2": return code=&3
reason code=&4. Module

bypassed.

Explanation

While processing a module using a binder API (&2),
the binder detected that the module cannot be
optimized due to the module contained a feature &1
that is not supported. The binder API provided the
return code (&3) and reason code (&4).

One example of an unsupported feature is when the
input is an object module (as opposed to the input
being a load module or program object). Another
example of this problem, is when the input module is
not fully bound and contains "UNRESOLVED"
references.

System action:

User response
Since the input module cannot be supported, the
choices are:

- ignore the message

Appendix C. Messages 73

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

« change optimizer input to avoid optimizing the
module

- fix the problem. For example, in the case of a module
with "UNRESOLVED" references, change the build
steps used to produce the module so that the
modaule is fully bound

For information about binder API return codes and
reason codes, see z/OS MVS Program Management:
Advanced Facilities.

This message is normally proceeded by a BOZ4116
binder message that might provide additional
information that helps in your response.

Message return code
12

B0zZ1432S Output module size exceeded
module format limitations and

cannot be saved.

Explanation

The optimizer attempted to write the optimized
module but ran into output format restrictions. A load
module, saved into a PDS member (or sequential
dataset), has the most restrictive format. Far less
common is encountering a format limitation with a
program objects (written to PDSE or HFS path).

System action:

The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:

If the output module is to be saved into a PDS member
or sequential dataset, consider changing the output
location to be a member of a PDSE. Otherwise,
consider splitting the program into multiple modules.

Message return code
12

B0Z1436S Invalid ARCH specification : &1

Explanation

An invalid or unsupported architecture specification
(&1) was detected in one of the following cases:

1. In an ARCH option or SEL_ARCH option when
processing the SYSIN file

2. When processing a NEW dataset in an IEFOPZ
configuration

System action:

If the invalid specification was detected on a line of
the SYSIN file, the optimizer discards the line with the
invalid option and proceeds to process the next line in

the SYSIN file. If the invalid specification was detected
processing a NEW dataset of an IEFOPZ configuration,
the optimizer ignores the NEW dataset and proceeds
to process the remainder of the IEFOPZ configuration

User response:
Correct the SYSIN file or IEFOPZ configuration by
specifying an ARCH level supported by the optimizer.

Message return code
12

BOZ1437S No BOPT or IEFOPZ directive

found

Explanation

The optimizer can neither find a BOPT nor an IEFOPZ
directive.

System action:
The optimizer terminates execution and returns to the
operating system with a return code of 12.

User response:
Check that your JCL includes at least one BOPT or
IEFOPZ directive.

Message return code
12

B0zZ1438U dynfree dyn failed: rc=&1 for DD

&2

Explanation

The optimizer detected an error attempting to free an
internal input DD name (&2) that the optimizer was
using as part of the optimization process.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

This problem could have been caused by an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code
16
B0Z1439U

dynfree saveDyn failed: rc=&1 for
DD &2

Explanation

The optimizer detected an error (the dynfree service
returned &1) attempting to free an internal output DD

74 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

name (&2) that the optimizer was using as part of the
optimization process.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

This problem could have been caused by an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code
16

B0OZ1446U An I/0 error occurred while

writing &1

Explanation

The optimizer detected an I/O error when writing to
&1, where &1 could be either 'the Listing transform' or
'the Log file'.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Check whether the PDS(E) or file systems is full and
allocate a larger file for the PDS(E) or increase the size
of the file system. Also check whether the dataset was
allocated with a proper record format and record
length.

Message return code
16

B0Z1447U An Unexpected I/0 error occurred

Explanation
The optimizer detected an I/O error during execution.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Check the definitions of the output files (you should be
able to exclude the output modules) to ensure a
proper record length and record format is used and
check whether the files are full.

Message return code
16

B0Z1449U Unhandled out of memory

exception

Explanation

The optimizer was unable to continue due to memory
being low.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Consider using the JCL MEMLIMIT or JCL REGION
parameters to increase the memory used by the
optimizer. For more information, see thez/0OS MVS
Initialization and Tuning Reference and the z/OS MVS
Initialization and Tuning Guide.

Message return code
16
B0Z1450U

Assertion failure, check logs for
traceback

Explanation

The optimizer was unable to continue as an
unexpected condition was encountered during
processing.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Unexpected problems could happen due to an earlier
problem. Correct any problems reported in the log file
and retry the optimization process. If the problem
persists, consult IBM service for assistance.

Message return code
16
B0Z1451S

dynalloc(): failed for DSN &1 with
DD &2, errcode &3, info code &4

Explanation

The optimizer encountered an error allocating an
internal DD (&2) for dataset (&1). &3 is the error code
returned by the MVS dynamic allocation functions. &4
is the information code returned by the MVS dynamic
allocation functions.

System action:

The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

Appendix C. Messages 75

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae200/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieae100/toc.htm?lang=en

User response:

Check that the dataset (&2) exists and is accessible
and check that your JCL does NOT include a definition
for the same DD (&2). Also, unexpected problems
could happen due to an earlier problem. Correct any
problems reported in the log file and retry the
optimization process. If the problem persists, consult
IBM service for assistance.

Message return code
12

B0Z1452S dynalloc(): failed for path &1 with

DD &2, errcode &3, info code &4

Explanation

&3 is the error code returned by the MVS dynamic
allocation functions. &4 is the information code
returned by the MVS dynamic allocation functions.

System action:

The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:

Check that the path is accessible and can be written to
and check that your JCL does NOT include a definition
for the same DD (&2). Also, unexpected problems
could happen due to an earlier problem. Correct any
problems reported in the log file and retry the
optimization process. If the problem persists, consult
IBM service for assistance.

Message return code
12

B0Z1453U dynalloc(): failed for DUMMY DD

&1 errcode &2, info code &3

Explanation

The optimizer encountered an error allocating a
mandatory DUMMY DD (&1) that is required for the
optimization process. &2 is the error code returned by
the MVS dynamic allocation functions. &3 is the
information code returned by the MVS dynamic
allocation functions.

System action:

The optimizer immediately terminates execution and
returns to the operating system with a return code of
16.

User response:

Check that your JCL does NOT include a definition for
the same DD (&1). Also, unexpected problems could
happen due to an earlier problem. Correct any
problems reported in the log file and retry the

optimization process. If the problem persists, consult
IBM service for assistance.

Message return code
16
B0OZ1455W

Unsupported feature "&1" found

Explanation

This message is issued in one of the following
situations:

1. When ABO encounters a COBOL CSECT (i.e.
compiled COBOL program) built by a compiler not
eligible for use with ABO or the CSECT contains a
COBOL language feature not supported by ABO.

2. When ABO encounters a CSECT that is too complex
to safely optimize.

In the first situation, ABO detected a feature "&1" that
it does not support in the CSECT being processed. See
COBOL module requirements for the compilers eligible
for use with ABO and the COBOL language features not
supported by ABO.

In the second situation, ABO has determined that the
CSECT is too complex to be safely optimized so it has
been skipped. ABO will only optimize a CSECT if it can
ensure the optimized program will execute with the
same logic as the original compiled program. In cases
where the CSECT is so complex that ABO cannot
guarantee this, ABO stops the optimization process
and skips this CSECT. Any other eligible CSECTs in the
module will still be processed.

Note that this message is issued for informational
purposes only and does not indicate a functional issue
with ABO.

System action:
ABO bypasses optimization of the CSECT and
proceeds to process the next CSECT.

User response:

If you see message BOZ1455 issued for a particular
unsupported feature while optimizing a large number
of your modules, you may open an RFE to indicate that
the lack of this feature is inhibiting your ability to use
ABO effectively.

Message return code
4

B0Z1456S

"&1" cannot be both optimizer
input and optimizer output.

Explanation

The optimizer does not allow a dataset or file to be
used as input to the optimizer as well as output from
the optimizer. For example, an optimized module

76 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

https://www.ibm.com/developerworks/rfe/execute?use_case=changeRequestLanding

cannot be written to a PDS(E) if that PDS(E) is also a
source of input modules. This message is emitted
when &1 is used as both a location of input to the
optimizer and a location of output from the optimizer.

System action:
The optimizer terminates optimizing the input module
and proceeds to process the next module.

User response:
Correct your JCL or SYSIN file such that the output
datasets are separate from input datasets.

Message return code
12

B0Z1457S Invalid filter expression "&1".

Explanation

The optimizer cannot process the mem_expr
parameter of BOPT optimizer directive or the expr
parameter of the CSECT optimizer option. The
expression contains invalid syntax or wildcards and
cannot be processed as written.

System action:
The optimizer terminates optimizing the current
directive and proceeds to process the next directive.

User response:

Correct the expression. See the description of the
mem_expr parameter of “BOPT” on page 16 and the
expr parameter of the CSECT optimizer option.

Message return code
12

B0OZ1490W Warning: AMODE/RMODE conflicts
encountered during binder API
"&1": return code=&2 reason
code=&3. Operation performed

and processing continues.

Explanation

During the optimization process, the binder detected a
conflict with the AMODE and RMODE settings. This
problem was detected by the binder API (&1) for
which the binder issued a return code (&2) and reason
code (&3). You can use binder reason code
documentation along with the reason code (&3) to
determine the precise nature of the conflict. Normally,
the conflict is already present in the input module and
not introduced by the optimization process.

System action:
The binder issues this BOZ1490 warning message and
continues with the optimization of the input module.

User response:

The warning message may be an indicator of a
problem with the input module being optimized. Fixing
the problem may require fixing the build steps used to
produce the input module. For information about
binder API return codes and reason codes, see z/0S
MVS Program Management: Advanced Facilities.

Message return code
4
B0Z1491W

Warning: problems encountered
adding aliases to directory during
binder API "&1": return code=&2
reason code=&3. Module saved
and processing continues.

Explanation

During the optimization process, the binder detected
an issue adding aliases to a directory. This problem
was detected by the binder API (&1) for which the
binder issued a return code (&2) and reason code (&3).
An alias cannot be added to a PDS(E) directory when
the binder finds that there is a member of the PDS(E)
directory with the same name as the name of the alias.

System action:
The binder issues this BOZ1491 warning message and
continues with the optimization of the input module.

User response

To resolve this problem, it is important to understand
why there is an existing member in the output PDS(E)
with the same name as the name of the alias. For
example:

« Do not specify an alias name on the member
specifier of IN option of a BOPT directive. If an alias
name was specified, delete this BOPT directive and
delete the member from the target dataset.

« Anincorrect member specifier on the OUT option of
a BOPT directive could cause a conflict with the
name of an alias. Ensure that the OUT option of a
BOPT directive has the same member specifier as
the member specifier supplied of the IN option.

- Merging aliases from more than one input datasets
could cause conflicts with aliases and member
names of the two datasets. It is recommended that a
different output dataset be used for each input
dataset. For information about binder API return
codes and reason codes, see z/0OS MVS Program
Management: Advanced Facilities.

Message return code
4
B0Z1492W

Warning: input module "&1" with
exported symbols is saved to
different named module "&2".

Appendix C. Messages 77

https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm
https://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab200/apirsn.htm

Explanation

The optimizer detected an input module (&1) in a
PDS(E) that included exported symbols and the
optimized module was being written to a differently
named member (&2) in an output PDS(E).

System action:
The binder issues this BOZ1492 warning message and
continues with the optimization of the input module.

User response:

To fix the problem, change your JCL or SYSIN file such
that the member name of the optimized module is the
same as the member name of the input module.
Failing to do so could result in runtime problems with
locating the optimized module because of the change
in the member name.

Message return code
4

B0Z1493S Concatenated DD "&1"
encountered and not is allowed for

ll&zll-

Explanation

The optimizer detected an input or output DD
definition (&1) that was the concatenation of two or
more datasets. &2 provides the context in which the
DDs were used. For example, &2 may indicate that the
DD was used as an input module location, or as an
output module location, or as an output listing
transform location.

System action:

The optimizer bypasses directives that include
concatenated DD definitions and the optimizer
proceeds to process the next directive.

User response:

Fix your JCL to not include a concatenated DD
definition for input modules, output modules and for
listing transforms.

Message return code
12

B0Z1494S Module not processed as it is not

fully bound.

Explanation

During the optimization process, a module was
encountered in input that is not fully bound and the
ALLOW=NOUNRESEXE option was specified. The
optimizer will not process the module that is not fully
bound unless the ALLOW=UNRESEXE option is
specified.

System action:

The optimizer terminates optimizing the input module
and proceeds to process the next module or next
directive.

User response:

If the intent is to optimize partially bound modules,
remove the ALLOW=NOUNRESEXE option. If the intent
is to only optimize fully bound modules, ignore the
error, or correct your JCL or SYSIN file to only process
fully bound modules.

Message return code
12

B0Z40891 IEFOPZ: did not get ARCH=&1
match for dataset: '&2' which has

ARCH=&3.

Explanation

While processing an IEFOPZ optimizer directive, the
optimizer emits this informational message whenever
a NEW dataset (&2) is found in an IEFOPZ
configuration that has an ARCH specification (&3) that
does not match the SEL_ARCH selector (&1) that was
specified on the IEFOPZ optimizer directive.

System action:
The optimizer bypasses the NEW dataset and
processes the next NEW dataset in the configuration.

User response:
No action is required by the user.

Message return code
0

B0Z40911 IEFOPZ: did not get STATE=&1
match for dataset: '&2' which has

STATE=&3.

Explanation

While processing an IEFOPZ optimizer directive, the
optimizer emits this informational message whenever
a NEW dataset (&2) is found in an IEFOPZ
configuration that has a STATE specification (&3) that
does not match the SEL_STATE selector (&1) that was
specified on the IEFOPZ optimizer directive.

System action:
The optimizer bypasses the NEW dataset and
processes the next NEW dataset in the configuration.

User response:
No action is required by the user.

Message return code
0

B0Z40921 IEFOPZ: did not get DSN="&1'

match for dataset '&2'.

78 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Explanation

While processing an IEFOPZ optimizer directive, the |
optimizer emits this informational message whenever
an OLD dataset (&2) is found in an IEFOPZ

configuration that does not match the SEL_OLD

selector value (&1) that was specified on the IEFOPZ
optimizer directive.

System action:
The optimizer bypasses the OLD dataset and
processes the next OLD dataset in the configuration.

User response:
No action is required by the user.

Message return code
0
B0Z40971

No members in dataset '&1' to
process

Explanation

This message is emitted when there are no members
in the dataset to process.

System action:
The optimizer continues processing the next dataset.

User response:
No action is required by the user.

Message return code
0
B0Z4101W

No applicable COBOL code section
found, return code 4

Explanation
This message is emitted in the following cases:

1. When the optimizer encounters a load module but
does not optimize any CSECTs within the load
module (note: the message is not printed if the
REPLACE=Y option is specified and an optimized
module already exists)

2. After a BOPT directive that has member wildcards
in the "IN" option, but no modules in the "IN"
dataset were optimized

3. After an OLD dataset is processed and no modules
in an OLD dataset were optimized

4. After an IEFOPZ directive is processed but no
modules were optimized

System action:
The optimizer continues processing the next module of
input.

User response:
No action is required by the user.

Message return code
4
B0Z41071

INFO: IDRL record not added to
CSECT &1 as load module format
does not support three IDRLs.
Processing continues.

Explanation

The optimizer issues this informational message when
an IDRL record (for the binary optimizer itself) could
not be added to an optimized CSECT in a load module
because that CSECT already has 2 IDRL records. Note:
a maximum of 2 IDRLs per CSECT is a restriction of
load modules in PDS (but is not a restriction for
program objects in PDSE).

System action:
The optimizer continues its processing of the output
load module.

User response:
No action is required by the user.

Message return code
0
B0Z41091

INFO: Adding a third IDRL to load
module CSECT "&1".

Explanation

While processing a CSECT (&1) in a load module, the
optimizer emits this informational message when the
optimizer adds its language record as the third IDRL of
the CSECT (&1). Note that an update to the binder is
required so that the binder can properly add a third
IDRL to a CSECT. If the binder update is not installed
on your system, the optimizer will emit a subsequent
warning message when attempting to save the
optimized load module.

System action:

If the optimizer emits a warning message when saving
the module, the language record may not have been
added to the CSECT and the optimizer continues
processing of the CSECT. Otherwise, processing of the
CSECT was successfully performed.

User response:

If the optimizer emits a warning message when saving
the module, you should contact your system
programmer to install the binder update and perform
the optimization process again. Otherwise, no action is
required by the user. The required binder update for
this message is under APAR OA50460. See
“Supported operating systems” on page 3 for more
information.

Message return code

Appendix C. Messages 79

0

B0Z41101 INFO: performing a second bind to
handle private section "&1" in
class "&2" referring to ENTRY

"&3" at offset &4.

Explanation

The optimizer emits this message when processing a
CSECT that had a COBOL ENTRY statement (&3) and
there was a reference to the ENTRY (&3) from a
private section (&1) from within a class (&2, which is
normally C_WSA) at an offset (&4). Note that an
update to the binder is required so that the second
bind works successfully. Without the binder update,
the optimized program could experience problems.

System action:

If the binder update is available, processing completes
successfully. But, if the binder update is not available,

the second bind may appear to complete successfully,
but, runtime errors may happen.

User response:

If the binder update is installed on your system, no
action is required. Otherwise, have your system
programmer install the binder update and perform the
optimization process again. The required binder
update for this message is under APAR OA50460. See
“Supported operating systems” on page 3 for more
information.

Message return code
0

B0zZ41111 INFO: performing update to
private section "&1" in class "&2"
referring to ENTRY "&3" at offset

&4.

Explanation

The optimizer emits this message when processing a
CSECT that had a COBOL ENTRY statement (&3) and
there was a reference to the ENTRY (&3) from a
private section (&1) from within a class (&2) at an
offset (&4). Note that an update to the binder is
required so that the second bind works successfully.
Without the binder update, the optmized program will
emit an error message when processing the reference.

System action:

If the binder update is not available, the optimizer
emits an error processing the reference. Otherwise,
the binder processes the reference successfully.

User response:

If the optimizer emitted an error processing the
reference, have your system programmer install the
binder update and perform the optimization process

again. Otherwise, no action is required. The required
binder update for this message is under APAR
0A50460. See “Supported operating systems” on
page 3 for more information.

Message return code
0
B0Z41131

CSECT &1 was excluded by filter -
skip
Explanation

This message is emitted when a CSECT is excluded by
the optimizer due to the expression in the CSECT
optimizer option.

System action:
The optimizer continues processing the next CSECT.

User response:
No action is required by the user.

Message return code

0

B0z41141 INFO: processing module that is
not fully bound with
ALLOW=UNRESEXE option in
effect.

Explanation

When the ALLOW=UNRESEXE option is specified, the
optimizer issues this informational message when it
encounters a module in input that is not fully bound.

This message is not issued if the module is fully
bound.

This message can be used to determine which partially
bound modules were processed by the optimizer.

System action:

If the binder update is not available, the optimizer
emits an error processing the reference. Otherwise,
the binder processes the reference successfully.

User response:
The optimizer processes the partially bound module
and outputs an optimized partially bound module.

Message return code
0
B0zZ41161

Binder message "&1"

Explanation

The optimizer uses binder services and a service might
fail which prevents a module from being optimized. In

response to a binder service that fails, ABO produces a
message such as BOZ1429 and terminates processing

80 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

in some manner. The BOZ1429 message might lack
detailed information as to why the binder service
failed. For example, the BOZ1429 message indicates
that the binder found some problem with the input
module but BOZ1429 does not include the precise
input problem that the binder found. To provide more
information about binder services that fail, the
optimizer captures severe binder messages and
includes the text of a binder message within &1 of the
BOz4116 informational message. This means that,
when a binder service fails, ABO normally emits two
messages:

1. The BOZ4116 message with &1 holding the text of
a severe binder message. The BOZ4116 message is
followed by

2. A summary message such as BOZ1429, indicating
the general nature of binder failure.

System action:
See the "System action" section of the summary
message to determine the actions of the optimizer.

User response:

See the "User response" section of the summary
message to determine what to do. The BOZ4116
message might provide information that helps guide
your response.

Message return code
0

B0z41171 Member "&1" was excluded by

filter - skip
Explanation

This message is emitted when a module is excluded by
the optimizer due to the expression in the IN option of
the BOPT directive.

System action:
The optimizer continues processing the next module.

User response:
No action is required by the user.

Message return code
0

B0Z4119S Continuation indicated on SYSIN
line &1. Unable to read SYSIN line

&2.

Explanation

Continuation was indicated on line &1 of SYSIN with
the last non-blank character of line &1 being a
continuation char (either '+' or '-'). While reading
SYSIN, the optimizer was unable to read line &2.

System action:
The optimizer discards the line.

User response:

Either remove the continuation character at the end of
line &1 of SYSIN, or add a new line &2 to the SYSIN
that will continue line &1.

Message return code
12
B0zZ4120S

Cannot have more than one IN= or
OUT= specifier.

Explanation

This message is emitted when more than one IN or
OUT specifier is detected in a BOPT directive.

System action:
The optimizer continues processing the next BOPT
directive.

User response:
Remove IN or OUT specifiers from the BOPT directive
until there is no more than one of each per directive.

Message return code
12
B0zZ4121S

Invalid log specification. '&1' is
not a directory.
Explanation

Only directories are valid specifiers for the LOG option.
&1 is not a directory.

System action:
The LOG option is ignored.

User response:
Correct the LOG specification to a supported format,
see the LOG option for supported specifications.

Message return code
12

Appendix C. Messages 81

82 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Corporation

J74/G4

555 Bailey Avenue

San Jose, CA 95141-1099
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information”.

© Copyright IBM Corp. 2015, 2019 83

http://www.ibm.com/legal/copytrade.shtml

84 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

List of resources

IBM Automatic Binary Optimizer for z/OS publications

You can find the latest and most complete information about the IBM Automatic Optimizer for z/OS
APARs and PTFs on the fix list page.

You can find the following publications in the IBM Automatic Binary Optimizer for z/OS library:

« User's Guide, SC27-8545-04
e Program Directory, GI113-4513-03

Related publications

z/0S publications

You can find the following publications in the z/OS Internet Library.

« Initialization and Tuning Reference, SA23-1380, contains information about the parmlib member
IEFOPZxx.

« Program Management: Advanced Facilities, SA23-1392, contains information on binder API return
codes and reason codes.

« System Management Facilities (SMF), SA38-0667, contains information about the SMF record 90
subtype 38, which captures the IEFOPZ configuration.

- System Messages, Volume 8, SA38-0675, contains information about the messages.

Enterprise COBOL for z/0S publications
You can find the following publications in the Enterprise COBOL for z/OS library.

 Customization Guide, SC27-8712, contains information that helps you plan for and customize
Enterprise COBOL under z/0S.

- Language Reference, SC27-8713, contains information about COBOL language and references needed
to write a program for an IBM COBOL compiler.

» Programming Guide, SC27-8714, contains information and examples that help you write, compile, and
debug programs and classes.

 Migration Guide, GC27-8715, contains information that helps you move to the latest version of IBM
Enterprise COBOL.

« Performance Tuning Guide, SC27-9202, identifies key performance benefits and tuning considerations
when using IBM Enterprise COBOL for z/OS.

« Messages and Codes, SC27-4648, helps you understand compiler and preprocessor messages.

Application Delivery Foundation for z Systems publications

You can find the following publication in the IBM Knowledge Center.

« IBM Application Performance Analyzer for z/OS User's Guide, SC27-8403, contains information that
helps identify system constraints and improve application performance.

« IBM Developer for z Systems documentation (online version only), contains information about the
Integrated Development Environment (IDE), designed to increase developer productivity.

 IBM Fault Analyzer for z/OS User's Guide and Reference, SC19-4116, contains information about
analyzing and fixing application and system failures.

© Copyright IBM Corp. 2015, 2019 85

http://www-01.ibm.com/support/docview.wss?uid=swg27047229
http://www-01.ibm.com/support/docview.wss?uid=swg27046990
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www-01.ibm.com/support/docview.wss?uid=swg27036733
https://www.ibm.com/support/knowledgecenter/SS7EY3

86 Automatic Binary Optimizer for z/OS : IBM Automatic Binary Optimizer for z/OS User's Guide

Product Number: 5697-AB1

SC27-8545-04

	Contents
	Tables
	Preface
	About this book
	Abbreviated terms
	How to read syntax diagrams

	Summary of changes
	How to send your comments
	Accessibility features for Automatic Binary Optimizer for z/OS

	Chapter 1. Overview
	Benefits
	Choosing between using the Enterprise COBOL compiler and using Automatic Binary Optimizer

	Chapter 2. System requirements
	Supported operating systems
	Target hardware levels

	Chapter 3. COBOL module requirements
	Eligible compilers
	COBOL language feature and compiler option support
	Handling ineligible CSECTs

	Chapter 4. Installing and verifying installation
	Installing IBM Automatic Binary Optimizer for z/OS
	Verifying installation using the Installation Verification Program (IVP)

	Chapter 5. Optimizing modules
	Required DD statements
	Optimizer directives
	BOPT
	IEFOPZ

	Optimizer options
	ALLOW
	ARCH
	CSECT
	LIST
	LOG
	REPLACE
	SCAN

	Comments
	Line continuation
	JCL examples
	Specifying optimization with BOPT
	Specifying optimization with IEFOPZ

	Recommended settings for the z/OS JCL REGION and JCL MEMLIMIT parameters
	Specifying the language to be used for ABO messages
	Invoking ABO from TSO, REXX and assembler code
	Optimizing under TSO
	Starting the optimizer from an assembler program

	Chapter 6. Understanding output from the optimization process
	Log files
	Listing transform
	Listing transform contents
	SYSPRINT DD and LIST option

	Chapter 7. Managing optimization and optimized module deployment process
	Optimization and deployment usage scenarios
	Scenario 1: Optimization process with static deployment
	Scenario 2: Optimization process with dynamic deployment
	Scenario 3: Optimization process using a hybrid approach

	Testing information

	Chapter 8. Resolving problems with optimization and optimized module deployment
	Resolving problems that occur during optimization time
	Resolving problems encountered during execution
	Changes in COBOL module size after optimization
	Error message and abend code differences
	Application Delivery Foundation for z Systems
	Run Time Instrumentation Profiler

	Appendix A. JCL sample
	Appendix B. Return codes
	Appendix C. Messages
	Notices
	Trademarks

	List of resources
	IBM Automatic Binary Optimizer for z/OS publications
	Related publications

