Speech recognition, also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text, is a capability that enables a program to process human speech into a written format.
While speech recognition is commonly confused with voice recognition, speech recognition focuses on the translation of speech from a verbal format to a text one whereas voice recognition just seeks to identify an individual user’s voice.
IBM has had a prominent role within speech recognition since its inception, releasing of “Shoebox” in 1962. This machine had the ability to recognize 16 different words, advancing the initial work from Bell Labs from the 1950s. However, IBM didn’t stop there, but continued to innovate over the years, launching VoiceType Simply Speaking application in 1996. This speech recognition software had a 42,000-word vocabulary, supported English and Spanish, and included a spelling dictionary of 100,000 words.
While speech technology had a limited vocabulary in the early days, it is utilized in a wide number of industries today, such as automotive, technology, and healthcare. Its adoption has only continued to accelerate in recent years due to advancements in deep learning and big data. Research shows that this market is expected to be worth USD 24.9 billion by 2025.
Many speech recognition applications and devices are available, but the more advanced solutions use AI and machine learning. They integrate grammar, syntax, structure, and composition of audio and voice signals to understand and process human speech. Ideally, they learn as they go — evolving responses with each interaction.
The best kind of systems also allow organizations to customize and adapt the technology to their specific requirements — everything from language and nuances of speech to brand recognition. For example:
Meanwhile, speech recognition continues to advance. Companies, like IBM, are making inroads in several areas, the better to improve human and machine interaction.
The vagaries of human speech have made development challenging. It’s considered to be one of the most complex areas of computer science – involving linguistics, mathematics and statistics. Speech recognizers are made up of a few components, such as the speech input, feature extraction, feature vectors, a decoder, and a word output. The decoder leverages acoustic models, a pronunciation dictionary, and language models to determine the appropriate output.
Speech recognition technology is evaluated on its accuracy rate, i.e. word error rate (WER), and speed. A number of factors can impact word error rate, such as pronunciation, accent, pitch, volume, and background noise. Reaching human parity – meaning an error rate on par with that of two humans speaking – has long been the goal of speech recognition systems. Research from Lippmann estimates the word error rate to be around 4 percent, but it’s been difficult to replicate the results from this paper.
Various algorithms and computation techniques are used to recognize speech into text and improve the accuracy of transcription. Below are brief explanations of some of the most commonly used methods:
A wide number of industries are utilizing different applications of speech technology today, helping businesses and consumers save time and even lives. Some examples include:
Automotive: Speech recognizers improves driver safety by enabling voice-activated navigation systems and search capabilities in car radios.
Technology: Virtual agents are increasingly becoming integrated within our daily lives, particularly on our mobile devices. We use voice commands to access them through our smartphones, such as through Google Assistant or Apple’s Siri, for tasks, such as voice search, or through our speakers, via Amazon’s Alexa or Microsoft’s Cortana, to play music. They’ll only continue to integrate into the everyday products that we use, fueling the “Internet of Things” movement.
Healthcare: Doctors and nurses leverage dictation applications to capture and log patient diagnoses and treatment notes.
Sales: Speech recognition technology has a couple of applications in sales. It can help a call center transcribe thousands of phone calls between customers and agents to identify common call patterns and issues. AI chatbots can also talk to people via a webpage, answering common queries and solving basic requests without needing to wait for a contact center agent to be available. It both instances speech recognition systems help reduce time to resolution for consumer issues.
Security: As technology integrates into our daily lives, security protocols are an increasing priority. Voice-based authentication adds a viable level of security.
Easily design scalable AI assistants and agents, automate repetitive tasks and simplify complex processes with IBM® watsonx™ Orchestrate®.
Accelerate the business value of artificial intelligence with a powerful and flexible portfolio of libraries, services and applications.
Reinvent critical workflows and operations by adding AI to maximize experiences, real-time decision-making and business value.
IBM® Granite™ is our family of open, performant and trusted AI models, tailored for business and optimized to scale your AI applications. Explore language, code, time series and guardrail options.
Discover how natural language processing can help you to converse more naturally with computers.
We surveyed 2,000 organizations about their AI initiatives to discover what's working, what's not and how you can get ahead.
Explore IBM Developer's website to access blogs, articles, newsletters and learn more about IBM embeddable AI.
Learn fundamental concepts and build your skills with hands-on labs, courses, guided projects, trials and more.