
A guide to GATK4
best practice pipeline
performance and
optimization on the IBM
OpenPOWER system

Page 2

Summary
The evolutional next-generation sequencing (NGS) technology
prompts researchers and scientists to seek highly optimized
computing solutions to handle an immense volume of NGS
sequence data. These solutions include hardware and software
tools to analyze and manage data. GATK4 is an open source
toolkit frequently used by most genomic research and clinical
analyses. The high-performance data and analytics (HPDA)
solution, based on IBM® OpenPOWER and IBM Spectrum®
computing, dramatically accelerates the analysis workloads.
Our benchmark results of 50x the whole genome sequence
(WGS) germline pipeline show nearly a 10x speed up through
optimization and the analysis from sequence alignment to
variant filtering can be completed in nine hours on a 40-core
IBM POWER9 system.

Contents
2		 Introduction

4		 GATK4 best practice pipelines for the IBM
POWER9™ system

7		 GATK4 performance tuning and optimization on
the POWER9 system

9		 Running GATK4 on an IBM Cloud™ Private cluster

Figure 1: IBM high-performance data analytics solution architecture for healthcare and life sciences, GATK edition

Workload
management

Computing
nodes

Applications and
frameworks

Software-defined
infrastructure

Storage servers
and archive tape

Main
functionality

Job orchestration
IBM Spectrum LSF

Containerized computing environment
NVIDIA-Docker

Genomic Analysis
GATK, BioBuilds

IBM Cloud
Object Storage

Deep learning

Data portability

Enterprise data management
IBM Spectrum Scale: General Parallel File System (GPFS)

AC922 for HPC
CPU only nodes

AC922
+ GPUs nodes

End-to-end encryption Data management license Audit trace Spectrum Scale V5

IBM ESS
GL4S

IBM ESS
GL Model
Ex. GL4S

IBM ESS
GS Models
Ex. GS2S TS4500

Elastic Storage Server

Seamless hybrid cloud

IBM Spectrum Storage™

Hot Cold

or

OpenStack

Amazon Web
Services
(AWS) S3

IBM Spectrum
LSF

Introduction
Genome Analysis Toolkit (GATK),1 developed by Broad
Institute, is an open source genomics analysis package that
contains all variant tools for germline and cancer genomic
analysis. GATK4 best practice pipelines, published by Broad
Institute,2 are widely adopted by the genomics community.
The latest versions of GATK, GATK4, contains Spark and
traditional implementations, that is the Walker mode, which
improve runtime performance dramatically from previous
versions. Since the Spark tools are still in beta testing and
perform inconsistently, we mainly focus on the tuning and
optimization of GATK in the Walker mode. Without using any
tuning and optimization, most GATK4 tools execute with a
single thread. And it may take more than 85 hours to
complete a pipeline analysis from alignment to produce gene
variants calling for a 50x coverage WGS data set. See Figure
2. Fortunately, solutions can be created by splitting the
workload into sequence intervals for speeding up runtime
concurrently with GATK4 tools, as well as with alternative
multithreaded or specific IBM Power Systems tools.4, 5

The IBM HPDA solution architecture for healthcare and life
sciences is designed to provide solutions for genomics
analysis, which requires high-performance data manipulation
and high-throughput computing to handle data-centric
workloads. See Figure 1. The fundamental components of
HPDA include POWER9 processors, an OpenPOWER offering,
IBM Spectrum LSF for resource and workload management,
IBM Spectrum Scale and IBM Elastic Storage Server (ESS)
for data storage and management.

Page 3

The HPDA solution leverages the power of high-performance
computing and data storage for next-generation sequencing
data analysis by providing:

–– High performance and scalability: POWER9 systems built
for data-centric, memory intensive workloads, including a
state-of-the-art input/output (I/O) subsystem. The AC922
and LC922 models, running with the little endian Linux
operating system, can be configured with four simultaneous
multithreading (SMT)/core, graphics processing units (GPUs)
and IBM General Parallel File System (GPFS) to accelerate
and scale up application performance.

–– Interoperability and manageability: IBM Spectrum LSF, IBM
Spectrum Discovery and IBM Spectrum Scale help data
management, discovery, provenance and data sharing locally
or in cloud environments.

–– Usability and complexity avoidance: With IBM Cloud Private
and the IBM Spectrum Storage™ suite, it’s designed to provide
an easy-to-use orchestration environment and application
portability for various users.

–– Improved security and governance: IBM Power Systems and
IBM Spectrum Computing handle the complexities of data
security and policies.

This paper uses a best practice germline pipeline as a case
study to optimize the GATK4 workload on POWER9 processors.
The configurations of the POWER9 system are listed in Table 1.
The whole genome sequencing data set NA12878 with 50x
coverage was downloaded from the Illumina authorized
website.3-1, 3-2 The reference genome and known variant call
format (VCF) reference files are obtained from the Broad
Institute resource bundle.6

IBM POWER9 system configurations

Processor 3.6 GHz PowerNV 8335-GTC (P9 AC922)

Socket 2 sockets, 20 cores/socket, 4 SMTs/core

Memory 512 GB DDR4 (RDIMM DDR4 2666 MHz)

Storage GPFS (ESS GL4 with IBM Spectrum Scale 5.0.0.2)

Operating system RHEL 7.6 (4.14.0-115.6.1.el7a.ppc64le)

Compilers Advance toolchains 12.0 (GCC 8.2.1)

GATK version 4.1.0.0 built on POWER9 processors with Native PairHMM

BWA and
SAMtools

bwa- 0.7.17-r1188 and SAMtools-1.9 (htslib-1.9)
with JEMALLOC

Sam2bam[4] IBM Power Systems specific tool used for marking duplicates

Table 1: Benchmark system

GATK4 best practice pipelines for the
POWER9 system
The GATK4 best practice pipelines are widely used by many
research organizations and clinics for variant discovery in
normal and cancer genomes. They provide step-by-step
recommendations for performing variant discovery analysis
in high-throughput sequencing (HTS) data. Currently, there
are pipelines available for discoveries of germline or somatic
short variants, short variants in RNAseq data, as well as
identification of copy number variants (CNVs) in germline and
somatic samples. In the following case study, with optimized
GATK4 on POWER9 processors, the 50x coverage NA12878
whole WGS genome sequence data was benchmarked for
performance tuning and optimization practice. See the
installation guide in section C and Figure 2. The WGS was
downloaded from the EBI FTP server,3-1, 3-2 which contains
1,574,530,218 reads in paired-end with 101 bp in length per
read. The reference genome Grch38/Hg38, including 1,000
genomes’ known VCFs was downloaded from the Broad
Institute FTP server.6 The scripts used for step-by-step
processes are described here.

Figure 2: GATK4 germline best practice pipeline on the
POWER9 system. This figure is modified from the Broad
Institute blog. 2-1

Samples GATK analysis pipeline

Sequencing

BWA MEM
Mapping alignment
SAMtools
Sort SAM to BAM

SAMtools
Fixmate
Sort MarkDuplicates indexing

GATK
POWER9
best practice

Reads

GATK4
Variant recalibration
and filtering
SNPs and indels

Variants

Whole-genome
sequencing
(WGS)

GATK4
Base recalibration
Apply BQSR

GATK4
Variant
Calling
HaplotypeCaller
gVCFs/genotype VCFs

Page 4

Sequence alignment and mapping to reference the genome
The paired-end sequence NA12878 inputs, ~48-49 GB gzip
files, in FASTQ format are aligned or mapped to reference
genome with BWA MEM. A total of 160 threads are used on
the 40-core POWER9 system with 4 SMT threads per physical
cores. The BWA output is directly piped and sorted to the BAM
file with SAMtools.

BWA, SAMtools, GATK tools and the whole pipeline scripts are
available for installation through GitHub clone of https://
github.com/ruzhuchen/GATK4-Power.git. These
applications were optimized for POWER9 processors with
details in the next section.

for i in ${fastqFolder}/*_1.fastq.gz
do
 filename=$(basename $i _1.fastq.gz)
 mapFile=${workPath}/${filename}_bwa.bam
 mapped[${#mapped[*]}]=$mapFile
 bwa mem -t 160 -Ma \
 -R @RG\\tID:${filename}\\tSM:${filename}\\tPL:ILM\\
tLB:${filename} \
 $ref $i ${i%1.fastq.gz}2.fastq.gz \
 |samtools sort - -@ 40 -n -m 4G -T ${i%R1.fastq.gz} -o $mapFile
done

Sequence-marking duplicates
There are three ways for marking duplicates in reads after
mapping and sorting the sequences. The use of the gatk
(picard) MarkDuplicates tool is time-consuming where
only a single thread is initiated. The latest SAMtools and the
specific IBM Power Systems sam2bam tool use multithreads
for marking duplicates in reads and significantly accelerate
the runtime processes by more than 5 times without the loss
of accuracy.

a) Use the gatk MarkDuplicates tool

for mapFile in ${mapped[*]}
do
gatk --java-options “-Xmx20G -XX:+UseParallelGC \
 -XX:ParallelGCThreads=4” MarkDuplicates \
 -I ${mapFile} -O ${mapFile%.bam}_dedup.bam \
 -M ${mapFile%_bwa.bam}.duplicate_metrics \
 --MAX_RECORDS_IN_RAM 5000000 -MAX_SEQS 5000000 \
 --OPTICAL_DUPLICATE_PIXEL_DISTANCE 2500 \
 --VALIDATION_STRINGENCY SILENT \
 -MAX_FILE_HANDLES 1000
done

b) Use SAMtools

for mapFile in ${mapped[*]}
do
 samtools fixmate -m -@ 40 ${mapFile} fixmate.bam
 samtools sort -@ 40 -m 6G -o sorted.bam fixmate.bam
 samtools markdup -s -@ 40 sorted.bam ${mapFile%.bam}_dedup.bam
 samtools index -@ 40 ${mapFile%.bam}_dedup.bam
done

c) Use sam2bam

for mapFile in ${mapped[*]}
do
 export use_storage_mode=yes
 export BAM_PAGEFILE=$workPath/pf
 sam2bam sam2bam -d -p -Fibm_markdup:r \
 -o${mapFile%.bam}_dedup.bam ${mapFile%bam}sam
done

Base quality score recalibration (BQSR) and Apply BQSR
To be able to run BQSR or Apply BQSR concurrently, either
splitting sequence intervals or the spark mode is available to
use with these tools. The sequence intervals are obtained by
running gatk ScatterIntervalsByNs with reference
genome, and the intervals list is divided by number of cores
available on the system using gatk SplitIntervals tool
to create scattered intervals lists.

a) Use split-sequence intervals

for mapFile in ${mapped[*]}
do
 for i in `seq -f ‘%04g’ 0 39`
 do
 outfile=${mapFile%.bam}_dedup_recal_data_$i.table
 gatk --java-options “-Xmx4G -XX:+UseParallelGC \
 -XX:ParallelGCThreads=4” BaseRecalibrator \
 -L $i-scattered.interval_list -R $ref \
 -I ${mapFile%.bam}_dedup.bam $knownSiteArg -O $outfile &
 done
 wait
 for i in `seq -f ‘%04g’ 0 39`
 do
 bqfile=${mapFile%.bam}_dedup_recal_data_$i.table
 output=${mapFile%.bam}_dedup_recal_$i.bam
 gatk --java-options “-Xmx4G -Xmx4G -XX:+UseParallelGC \
 -XX:ParallelGCThreads=4” ApplyBQSR -R $ref \
 -I ${mapFile%.bam}_dedup.bam \
 -L $i-scattered.interval_list -bqsr $bqfile \
 --static-quantized-quals 10 --static-quantized-quals 20 \
 --static-quantized-quals 30 -O $output &
 done
 wait
done

b) Use the Spark mode

for mapFile in ${mapped[*]}
do
 gatk --java-options “-Xmx8G -XX:+UseParallelGC \
 -XX:ParallelGCThreads=4” BaseRecalibratorSpark \
-R $ref -I ${mapFile%.bam}_dedup.bam $knownSiteArg \
-O ${mapFile%.bam}_dedup_recal_data.table \
-- --spark-runner LOCAL --spark-master local[40] \
--conf spark.local.dir=$workPath
 gatk --java-options “-Xmx8G -XX:+UseParallelGC \
-XX:ParallelGCThreads=4” ApplyBQSRSpark -R $ref \
-I ${mapFile%.bam}_dedup.bam -bqsr $bqfile \
--static-quantized-quals 10 --static-quantized-quals 20 \
--static-quantized-quals 30 -O $output \
-- --spark-runner LOCAL --spark-master local[40] \
--conf spark.local.dir=$workPath
done

Page 5

Variant calling using GATK HaplotypeCaller (HC)
The recalibrated BAM file from the previous step is used to
perform variant calling per sample with the gatk
HaplotypeCaller tool. The output is in GVCF mode, which can
be used for joint genotyping with multiple samples. This step runs
40 processes concurrently with each process having 8 OpenMP
threads. Native PairHMM library implemented with SIMD exten-
sion VSX is enabled with option “-pairHMM
VSX_LOGLESS_CACHING”.

Used Onle native pairhmm
for i in `seq -f ‘%04g’ 0 39`
 do
 infile=${mapFile%.bam}_dedup_recal_$i.bam
 outfile=${mapFile%.bam}_dedup_recal_$i.g.vcf
 gatk --java-options “-Xmx4G -Djava.library.path=$GATK_HOME/libs \
 -XX:+UseParallelGC -XX:ParallelGCThreads=1” HaplotypeCaller \
 -R ${ref} -I $infile -pairHMM VSX_LOGLESS_CACHING \
 -L $REF_HOME/intervals/40c/$i-scattered.interval_list \
 --native-pair-hmm-threads 8 \
 -O $outfile -ERC GVCF -stand-call-conf 10 &
done
wait

Consolidate and genotype genomic variant call formats (GVCFs)
Individual GVCF files are either consolidated into one GVCF file
with gatk CombineGVCFs (or gatk GatherVcfs) or directly
used for genotyping with gatk GenotypeGVCFs and then
gathered into one genotype VCF file with gatk GatherVcfs.

Combinge gvcf files (optional)
gatk --java-options “-Xmx4G” GatherVcfs -R $ref $gvcfFilesArg \
 -O ${vcfFile%vcf}g.vcf
genotype gvcf files
for i in `seq -f ‘%04g’ 0 39`
do
 gatk --java-options “-Xmx4G -XX:+UseParallelGC
-XX:ParallelGCThreads=4” \
 GenotypeGVCFs -R $ref -V ${mapFile%.bam}_dedup_recal_$i.g.vcf \
 -L $REF_HOME/intervals/40c/$i-scattered.interval_list \
 -O ${vcfFile%.vcf}_$i.vcf &
done
wait
merge scattered phenotype vcf files
gatk --java-options “-Xmx4G” GatherVcfs -R $ref $vcfFilesArg -O
$vcfFile

Variant-quality score recalibration (VQSR) and filtering
The raw VCFs from previous step are filtered to achieve a high
degree of sensitivity and reduce false positives. This process can
be achieved by using variant quality score recalibration tools
gatk VariantRecalibrator and gatk ApplyVQSR with
single nucleotide polymorphisms (SNPs) and indel modes. This
process is the last step of the pipeline and the final VCF file can
be used for other genomic analyses.

VARIANT QUALITY SCORE RECALIBRATION - SNPs
gatk --java-options “-Xmx4G -XX:+UseParallelGC
-XX:ParallelGCThreads=40” \
 VariantRecalibrator -V $vcfFile -O recalibrate_SNP.recal \
 -mode SNP --tranches-file recalibrate_SNP.tranches \
 -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 -an
QD -an FS \
 -an MQRankSum -an ReadPosRankSum -an SOR -an MQ --max-
gaussians 6 \

-resource:hapmap,known=false,training=true,truth=true,prior=15.0
$vcfHapmap \
 -resource:omni,known=false,training=true,truth=true,prior=12.0
$vcfOmni \

-resource:1000G,known=false,training=true,truth=false,prior=10.0
$vcfGlk \
 -resource:dbsnp,known=true,training=false,truth=false,prior=7.0
$vcfDbsnp
Apply recalibration to SNPs
gatk --java-options “-Xmx4G -XX:+UseParallelGC \
 -XX:ParallelGCThreads=20” ApplyVQSR -V $vcfFile \
 -O recalibrated_snps_raw_indels.vcf --recal-file recalibrate_
SNP.recal \
 --tranches-file recalibrate_SNP.tranches \
 -truth-sensitivity-filter-level 99.5 --create-output-variant-
index true \
 -mode SNP
Run Variant Recalibrator – Indels
gatk --java-options “-Xmx4G -XX:+UseParallelGC
-XX:ParallelGCThreads=40” \
 VariantRecalibrator -V recalibrated_snps_raw_indels.vcf \
 -O $recalibrate_INDEL.recal \
 -mode INDEL --tranches-file recalibrate_INDEL.tranches \
 -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 -an
QD \
 -an FS -an MQRankSum -an ReadPosRankSum -an SOR --max-
gaussians 4 \
 -resource:mills,known=false,training=true,truth=true,prior=12.0
$vcfMills \
 -resource:dbsnp,known=true,training=false,truth=false,prior=2.0
$vcfDbsnp
Apply recalibration to Indels
gatk --java-options “-Xmx4G -XX:+UseParallelGC
-XX:ParallelGCThreads=20” \
 ApplyVQSR -V recalibrated_snps_raw_indels.vcf \
 -O ${vcfFile%.vcf}.recal.vcf --recal-file recalibrate_INDEL.
recal \
 --tranches-file recalibrate_INDEL.tranches \
 -truth-sensitivity-filter-level 99.0 \
 --create-output-variant-index true -mode INDEL

Page 6

GATK4 performance tuning and optimization
on the POWER9 system
As previously described, GATK4 performs poorly without
necessary tuning and optimization. Improving the GATK best
practice pipeline performance can be achieved by source code
optimization, runtime optimization with multithreads or splitting
inputs, as well as using alternative tools in the pipeline without
losing accuracy.

Installation of GATK4 on Power Systems tools and
pipeline scripts
The optimized BWA and SAMtools, sam2bam and installation
scripts are cloned from GitHub using git clone https://
github.com/ruzhuchen/GATK4-Power.git. Then, run
“install_gatk4-power9.x” inside the $GATK_HOME direc-
tory to complete the GATK4 installation. These tools are built
with the latest compilers with optimization options, mapping
Intel SSE to IBM Vector Scalar Extensions (VSXs) and using the
memory caching library. To install sam2bam separately, down-
load the build script “build.sh” using “wget https://raw.
githubusercontent.com/OpenPOWER-HCLS/sam-to-bam/
master/build.sh” and then run the script. The “samtools”
binary is generated and manually coped and renamed as
“sam2bam” to $GATK_HOME/bin. Please note that IBM advance
toolchain compilers (V9.0 and V10.0) are required for compiling
the code. Additionally, the whole GATK V4.1.0.0 for the IBM
Power Systems package is available for download from the link
specified in GitHub.7 Please contact the author at ruzhuchen@
us.ibm.com for credential use.

Approaches to accelerate GATK4 pipeline on the
POWER9 system
Several approaches have been used to improve GATK4 perfor-
mance on the POWER9 system. These approaches include
splitting sequence intervals, source code modifications, the use
of samtools or sam2bam for marking duplicates in reads, native
PairHMM library, runtime optimization through process binding
and JVM options.9 See Table 2.

Tools Baseline Source code Runtime Specific to IBM
Power Systems

BWA + SAMtools POWER9
system build
using GCC
8.2.1

Mapped SSE
to VSX, latest
htslib 1.9,
Jemalloc

Using SMT4,
processor
affinity

Using SMT4,
processor
affinity

MarkDuplicates GATK4
default

SAMtools
markup

SAMtools
markup

sam2bam

BQSR/Apply
BQSR

GATK4 Spark
local or split
intervals

Split
intervals

Split
intervals,
JVM options

Split intervals,
JVM options

Variant calling GATK4 split
intervals

Native
PairHMM,
split
intervals,
OpenMP

Native
PairHMM,
dynamic split
intervals,
OpenMP

Native
PairHMM,
dynamic split
intervals,
OpenMP

Table 2: Germline pipeline tuning and optimization on the
POWER9 system

Performance results and discussion
The GATK4 best practice pipeline begins with paired-end
WGS alignment with BWA MEM to variant-quality recalibra-
tion and filtering. The BWA and SAMtools are multithreaded
tools where numbers of 160 and 40 threads are used,
respectively, for sequence alignment and sorting. The GATK4
tools are run with splitting data by number of cores on the
system and processing each interval concurrently, in which
the “--intervals or -L” option is available. The bench-
mark results shown in Table 3 summarize the runtime
performance with each optimization approach.

Workload
pipeline

Baseline
+ split
intervals

+ Source
code
optimization

+ Runtime
optimization

+ P9-specific
optimization

BWA + sort 4.66 4.72 4.69 3.59

MarkDuplicates 8.68 1.97 1.62 1.05

BQSR 0.72 0.55 0.64 0.33

Apply BQSR 0.43 0.43 0.42 0.41

HaplotypeCaller 4.42 4.45 2.53 2.50

CombineGVCFs 0.80 0.76 0.14 0.14

GenotypeVCFs 0.05 0.05 0.05 0.05

VQSR-SNPs 0.45 0.5 0.42 0.53

ApplyVQSR-SNPs 0.03 0.03 0.03 0.03

VQSR - Indels 0.15 0.16 0.15 0.16

ApplyVQSR-Indels 0.02 0.03 0.02 0.03

Total time (Hrs.) 20.41 13.65 10.71 8.82

Table 3: GATK4 benchmark of 50x WGS NA12878 germline
pipeline on the POWER9 system

mailto:ruzhuchen%40us.ibm.com?subject=
mailto:ruzhuchen%40us.ibm.com?subject=

Page 7

When running with splitting data input as sequence intervals,
the pipeline runs 4.2x faster than the baseline. With applying
source code changes and replacing gatk MarkDuplicates
with SAMtools, a 50 percent performance improvement was
observed. By tuning and optimizing the runtime, further
performance improvement is achieved by 30 percent. The
optimal performance, where sam2bam is used for duplicate
marking, is 9.7x faster than baseline and finishes the whole
pipeline workload in 8.8 hours, where more than 85 hours
are required for single threaded process. See Figure 3.

In summary, with a 40-core OpenPOWER AC922 system, the
optimal best practice pipeline is to use optimized IBM Power
Systems with BWA, SAMtools, sam2bam, native PairHMM lib
and GATK scripts specified in section B to fully use the system
resources. Further optimization of the GATK4 pipeline can be
achieved by better load balancing of the genomic data.

Running GATK4 on an IBM Cloud
Private cluster
Description of IBM Cloud Private
IBM Cloud Private,8 powered by Kubernetes, Docker and
Cloud Foundry, is an application platform for developing and
managing on-premises, containerized applications. It’s an
integrated environment for managing containers that includes
a private image repository, a management console and
monitoring frameworks. GATK4 on IBM Cloud Private is
designed to be an easy-to-use environment to run a genomic
pipeline without the need to set up a runtime environment.

GATK4 container for IBM Power Systems
The Dockerfile for the GATK4 Power Systems container is
available for download from GitHub.7 The docker image is built
and uploaded to the IBM Cloud Private cluster with the
following command:

GATK 4 container
% docker login mycluster.icp:8500
% docker build -t gatk:4.1.0.0 .
% docker tag gatk:4.1.0.0 mycluster.icp:8500/admin/gatk:4.1.0.0
% docker push mycluster.icp:8500/admin/gatk:4.1.0.0

After loading the GATK4 container to the IBM Cloud Private
cluster, use kubectl to deploy the GATK Pod with GPFS as
persistence storage. The document to create a GPFS
persistence volume and claim is described in the IBM Cloud
Private manual.

Deploy GATK4 Pod
configuration file gatk4.yaml
kind: Pod
apiVersion: v1
metadata:
 annotations: kubernetes.io/psp: ibm-privileged-psp
 name: gatk4-power
 namespace: kube-system
spec:
 volumes:
 - name: gpfs-storage
 persistentVolumeClaim:
 claimName: gpfs2mb_pvc
 containers:
 - name: gatk4-power
 image: mycluster.icp:8500/admin/gatk:4.1.0.0
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - mountPath: /var/run/secrets/kubernetes.io/
serviceaccount”
 name: gpfs-storage
deployment
% kubectl apply -f gatk4.yaml

Figure 3: Performance comparison of Power9 tuning
and optimization

Baseline Split
intervals

P9
specific opt.

Split +
code opt.

Split +
runtime opt.

85.44

 B
en

ch
m

ar
k

w
al

lti
m

e
(H

rs
.)

20.41
13.65 10.7 8.82

Running GATK4 on the IBM Cloud Private cluster
There are two ways to run GATK4 on the IBM Cloud
Private cluster.

1) Use kubectl interactively
% kubectl exec -it gatk4-power – bash

2) Use docker
% Docker run –rm –it -v `pwd`/input:/work/
input -v `pwd`:/work \ mycluster.icp:8500/
admin/gatk:4.1.0.0 bash

Acknowledgements
Special thanks to Veera (Chandana) Solasa and Michael K.
Meyers in IBM Poughkeepsie Client Center for providing
system support and troubleshooting. I would also like to thank
my colleagues Farid Parpia, Michael Ackaway, Frank Lee and
Joanna Wong for their helpful technical assistance, solutions
discussion and project management, and to Hal Porter for his
management support.

© Copyright IBM Corporation 2019

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
July 2019

IBM, the IBM logo, ibm.com, IBM Cloud, IBM Spectrum, IBM Spectrum Storage,
POWER9, and Redbooks are trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of IBM trademarks
is available on the web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

This document is current as of the initial date of publication and may be changed
by IBM at any time. Not all offerings are available in every country in which
IBM operates.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary. THE INFORMATION IN THIS
DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the terms and
conditions of the agreements under which they are provided.

Statement of Good Security Practices: IT system security involves protecting
systems and information through prevention, detection and response to improper
access from within and outside your enterprise. Improper access can result in
information being altered, destroyed, misappropriated or misused or can result in
damage to or misuse of your systems, including for use in attacks on others. No IT
system or product should be considered completely secure and no single product,
service or security measure can be completely effective in preventing improper
use or access. IBM systems, products and services are designed to be part of a
lawful, comprehensive security approach, which will necessarily involve additional
operational procedures, and may require other systems, products or services to
be most effective. IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS
OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE
FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

1	 “Genome Analysis Toolkit.” Broad Institute, 2019.
https://software.broadinstitute.org/gatk

2	 “Introduction to the GATK Best Practices.” Broad Institute, January 9, 2018.
https://software.broadinstitute.org/gatk/best-practices

3	 “Platinum Genomes project.” Illumina.
https://www.illumina.com/platinumgenomes.html

4	 Takeshi Ogasawara, Yinhe Cheng and Tzy-Hwa Kathy Tzeng. “Sam2bam: High-
Performance Framework for NGS Data Preprocessing Tools.” PLOS|ONE, November 18,
2016. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167100

5	 SAMtools. http://samtools.sourceforge.net
6	 “Resource Bundle: Reference materials for human analysis.” Broad Institute, 2019.

https://software.broadinstitute.org/gatk/download/bundle
7	 “GATK4-Power.” GitHub, 2019. https://github.com/ruzhuchen/GATK4-Power
8	 IBM Cloud Private overview. ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0.2/

getting_started/introduction.html
9	 Jacob R. Heldenbrand, Saurabh Baheti, Matthew A. Bockol et al. “Performance

benchmarking of GATK3.8 and GATK4.” Mayo Clinic and Illinois Strategic Alliance for
Technology-Based Healthcare, June 2018.
https://www.biorxiv.org/content/biorxiv/early/2018/06/18/348565.full.pdf

10	 Dino Quintero, Luis Bolinches, Marcelo Correia Lima, Katarzyna Pasierb and William
dos Santos. “IBM Reference Architecture for Genomics, Power Systems Edition.” IBM
Redbooks®, April 2016. http://www.redbooks.ibm.com/redbooks/pdfs/sg248279.pdf

56026356USEN-01

https://software.broadinstitute.org/gatk
https://software.broadinstitute.org/gatk/best-practices
https://www.illumina.com/platinumgenomes.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167100
http://samtools.sourceforge.net
https://software.broadinstitute.org/gatk/download/bundle
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0.2/getting_started/introduction.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0.2/getting_started/introduction.html
https://www.biorxiv.org/content/biorxiv/early/2018/06/18/348565.full.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248279.pdf

