
Deploying and Operating Production
Applications on Kubernetes in
Hybrid Cloud Environments

Kubernetes in
the Enterprise

Michael Elder, Jake Kitchener
& Dr. Brad Topol

Compliments of

Build

Smart

Kubernetes makes it easy to
bind your app to Watson, by relieving
the pain around security, scale, and
infrastructure management.

Get hands-on experience through
tutorials and courses.

ibm.biz/oreillykubernetes

http://www.ibm.ibiz/OReillyKubernetes

Michael Elder, Jake Kitchener,
and Dr. Brad Topol

Kubernetes in the
Enterprise

Deploying and Operating Production
Applications on Kubernetes in

Hybrid Cloud Environments

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04324-9

[LSI]

Kubernetes in the Enterprise
by Michael Elder, Jake Kitchener, and Dr. Brad Topol

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Nicole Tache and Michele
Cronin
Production Editor: Melanie Yarbrough
Copyeditor: Octal Publishing, LLC

Proofreader: Sonia Saruba
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2018: First Edition

Revision History for the First Edition
2018-09-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes in the
Enterprise, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com/safari

To Wendy, for your love and encouragement. You will forever be
“unforgettable in every way” to me. To Samantha, for your fearlessness
and curiosity about all things in life. To David, for your inspirational
smile and laughter. To my mother, Betty, for your amazing tenacity
through all of life’s challenges while remaining optimistic about the

future.

—Michael Elder

Great thanks go to my wife, Becky, for her love and support. To Oren
goes my gratitude for his laughter and caring spirit. Thank you to my
parents Nancy and Barry Kitchener: without their example I would

not have the tenacity to take on the trials of life.

—Jake Kitchener

I dedicate this book to my wife, Janet; my daughter, Morgan; my son,
Ryan; and my parents, Harold and Mady Topol. I could not have done

this without your love and support during this process.

—Brad Topol

Table of Contents

Foreword. ix

Preface. xi

1. An Introduction to Containers and Kubernetes. 1
The Rise of Containers 1
Kubernetes Arrives to Provide an Orchestration and

Management Infrastructure for Containers 4
The Cloud Native Computing Foundation Tips the Scale for

Kubernetes 6
CNCF Kubernetes Conformance Certification Keeps the

Focus on User Needs 7
Summary 8

2. Fundamental Kubernetes Topics. 9
Kubernetes Architecture 9
Let’s Run Kubernetes: Deployment Options 12
Kubernetes Core Concepts 14

3. Advanced Kubernetes Topics. 29
Kubernetes Service Object: Load Balancer Extraordinaire 29
DaemonSets 31
StatefulSets 33
Volumes and Persistent Volumes 36
ConfigMaps 40
Secrets 44
Image Registry 47

v

Helm 49
Next Steps 51

4. Introducing Our Production Application. 53
Our First Microservice 53
Namespaces 55
ServiceAccount 56
PodSecurityPolicy 57
Deploying a Containerized Db2 Database as a StatefulSet 57
Managing Our Portfolio Java-Based Microservice as a

Deployment 74
Deploying the trader Microservice Web Frontend 79
Deploying a Containerized MQ Series Manager as a

StatefulSet 81
Deploying Supporting Services for the portfolio

Microservice 82
Putting It All together: Accessing Our Fully Configured

Application 85
Summary 89

5. Continuous Delivery. 91
Image Build 92
Programmability of Kubernetes 94
General Flow of Changes 94

6. Enterprise Application Operations. 97
Log Collection and Analysis for Your Microservices 97
Health Management for Your Microservices 102
Summary 108

7. Cluster Operations and Hybrid Cloud. 109
Hybrid Cloud Overview 109
Access Control 110
Performance, Scheduling, and Autoscaling 116
Networking 123
Storage 131
Quotas 132
Audit and Compliance 135
Kubernetes Federation 136

vi | Table of Contents

8. Contributor Experience. 137
Kubernetes Website 137
The Cloud Native Computing Foundation Website 138
IBM Developer Website 139
Kubernetes Contributor Experience SIG 140
Kubernetes Documentation SIG 141
Kubernetes IBM Cloud SIG 142

9. The Future of Kubernetes. 143
Increased Migration of Legacy Enterprise Applications to

Cloud-Native Applications 143
Increased Adoption of Kubernetes for

High-Performance Computing 144
Kubernetes Will Become the de Facto Platform for Machine

Learning and Deep Learning Applications 145
Kubernetes Will Be the Platform for Multicloud 145
Conclusions 145

A. Configuring Kubernetes as Used in This Book. 147

B. Configuring Your Development Environment. 151

C. Configuring Docker to Push or Pull from an Insecure Registry. 153

D. Generating an API Key in Docker Cloud. 155

Table of Contents | vii

Foreword

Welcome to Kubernetes in the Enterprise.

Great technologies come in many guises. Some start small. They can
be created by just one person, quietly working alone to solve a spe‐
cific problem in a personal way. Ruby on Rails and Node.js are two
examples that exceeded their creator’s wildest dreams. Other tech‐
nologies make an immediate impact. The rarest of these win wide‐
spread support in just a few years—in a blink of an eye in our
industry. Kubernetes and containers are such a technology. They
represent a fundamental shift in the industry platform—as critical as
HTTP and Linux.

For the first time since the 1990s an entire industry, from vendors to
enterprises to individuals, is pushing one platform forward and we
don’t even know exactly what it means yet. The only thing we can
expect is to be surprised. New businesses, practices, and tools will
emerge—this is a wonderful time to build something new. Take your
pick—connected cars, digital homes, healthtech, farmtech, drones,
on-demand construction, blockchain—the list is long and growing.

People will use these technologies, and they will be built on the new
cloud native tools appearing around Kubernetes. Containers will
help you streamline your application footprint, transform it to cloud
readiness, and adopt new architectures like microservices. Practices
like GitOps will speed up your continuous delivery and observabil‐
ity.

This change is a tremendous opportunity for big businesses to tran‐
sition to new digital platforms and markets.

ix

Not for the first time, IBM is at the forefront of this change, in
projects such as Istio, etcd, Service Catalog, Cloud Foundry, and of
course, Kubernetes. I’ve personally worked with the authors to
spearhead adoption of Kubernetes and the Cloud Native Computing
Foundation that is its home. You are in the hands of experts here—a
team who have been leaders in the open source community as well
as put in the hard yards with real world deployments at scale.

In this book you will find that knowledge presented as a set of pat‐
terns and practices. Every business can apply these patterns to create
a production-grade cloud-native platform with Kubernetes at the
core. Reader, the applications are up to you—an exciting world is
just around the corner.

— Alexis Richardson
CEO, Weaveworks

TOC Chair, Cloud Native
Computing Foundation

x | Foreword

Preface

Kubernetes is a cloud infrastructure that provides for the deploy‐
ment and orchestration of containerized applications. The Kuber‐
netes project is supported by a very active open source community
that continues to experience explosive growth. With support from
all the major vendors and the myriad contributors of all sizes,
Kubernetes has established itself as the de facto standard for cloud-
native computing applications.

Although Kubernetes has the potential to dramatically improve the
creation and deployment of cloud-native applications in the enter‐
prise, getting started with it in enterprise environments can be diffi‐
cult. This book is targeted toward developers and operators who are
looking to use Kubernetes as their primary approach for creating,
managing, deploying, and operating their container-based cloud-
native computing applications.

The book is structured so that developers and operators who are
new to Kubernetes can use it to gain a solid understanding of
Kubernetes fundamental concepts. In addition, for experienced
practitioners who already have a significant understanding of
Kubernetes, this book provides several chapters focused on the cre‐
ation of enterprise-quality Kubernetes applications in private, pub‐
lic, and hybrid cloud environments. It also brings developers and
operators up to speed on key aspects of production-level cloud-
native enterprise applications such as continuous delivery, log col‐
lection and analysis, security, scheduling, autoscaling, networking,
storage, audit, and compliance. Additionally, this book provides an
overview of several helpful resources and approaches that enable
you to quickly become a contributor to Kubernetes.

xi

Chapter 1 provides an overview of both containers and Kubernetes.
It then discusses the Cloud Native Computing Foundation (CNCF)
and the ecosystem growth that has resulted from its open gover‐
nance model and conformance certification efforts. In Chapter 2, we
provide an overview of Kubernetes architecture, describe several
ways to run Kubernetes, and introduce many of its fundamental
constructs including Pods, ReplicaSets, and Deployments. Chapter 3
covers more advanced Kubernetes capabilities such as load balanc‐
ing, volume support, and configuration primitives such as Config‐
Maps and Secrets, StatefulSets, and DaemonSets. Chapter 4 provides
a description of our production application that serves as our enter‐
prise Kubernetes workload. In Chapter 5, we present an overview of
continuous delivery approaches that are popular for enterprise
applications. Chapter 6 focuses on the operation of enterprise appli‐
cations, examining issues such as log collection and analysis and
health management of your microservices. Chapter 7 provides in-
depth coverage of operating Kubernetes environments and
addresses topics such as access control, autoscaling, networking,
storage, and their implications on hybrid cloud environments. We
offer a discussion of the Kubernetes developer experience in Chap‐
ter 8. Finally, in Chapter 9, we conclude with a discussion of areas
for future growth in Kubernetes.

Acknowledgments
We would like to thank the entire Kubernetes community for its
passion, dedication, and tremendous commitment to the Kuber‐
netes project. Without the code developers, code reviewers, docu‐
mentation authors, and operators contributing to the project over
the years, Kubernetes would not have the rich feature set, strong
adoption, and large ecosystem it has today.

We would also like to thank our Kubernetes colleagues, Zach Cor‐
leissen, Steve Perry, Joe Heck, Andrew Chen, Jennifer Randeau, Wil‐
liam Dennis, Dan Kohn, Paris Pittman, Jorge Castro, Guang Ya Liu,
Sahdev Zala, Srinivas Brahmaroutu, Morgan Bauer, Doug Davis,
Michael Brown, Chris Luciano, Misty Linville, Zach Arnold, and
Jonathan Berkhahn for the wonderful collaboration over the years.

We also extend our thanks to John Alcorn and Ryan Claussen, the
original authors of the example Kubernetes application we use as an
exemplar in the book. Also, we would like to thank Irina Delidja‐
kova for her review and wisdom for all things Db2.

xii | Preface

A very special thanks to Angel Diaz, Todd Moore, Vince Brunssen,
Alex Tarpinian, Dave Lindquist, Willie Tejada, Bob Lord, Jake Mor‐
lock, Peter Wassel, Dan Berg, Jason McGee, Arvind Krishna, and
Steve Robinson for all of their support and encouragement during
this endeavor.

— Michael, Jake, and Brad

Preface | xiii

CHAPTER 1

An Introduction to Containers
and Kubernetes

In this first chapter, we begin with a historical background of the
origin of both containers and Kubernetes. We then describe the cre‐
ation of the Cloud Native Computing Foundation and the role it has
played in the explosive growth of Kubernetes and its ecosystem. We
conclude this chapter with an overview of Kubernetes Conformance
Certification initiatives, which are critical to ensuring Kubernetes
interoperability, supporting portable workloads, and maintaining a
cohesive open source ecosystem.

The Rise of Containers
In 2012, the foundation of most cloud environments was a virtuali‐
zation infrastructure that provided users with the ability to instanti‐
ate multiple virtual machines (VMs). The VMs could attach volume
storage and execute on cloud infrastructures that supported a vari‐
ety of network virtualization options. These types of cloud environ‐
ments could provision distributed applications such as web service
stacks much more quickly than was previously possible. Before the
availability of these types of cloud infrastructures, if an application
developer wanted to build a web application, they typically waited
weeks for the infrastructure team to install and configure web
servers and database and provide network routing between the new
machines. In contrast, these same application developers could uti‐

1

lize the new cloud environments to self-provision the same applica‐
tion infrastructure in less than a day. Life was good.

Although the new VM-based cloud environments were a huge step
in the right direction, they did have some notable inefficiencies. For
example, VMs could take a long time to start, and taking a snapshot
of the VM could take a significant amount of time as well. In addi‐
tion, each VM typically required a large number of resources, and
this limited the ability to fully exploit the utilization of the physical
servers hosting the VMs.

At Pycon in March of 2013, Solomon Hykes presented an approach
for deploying web applications to a cloud that did not rely on VMs.
Instead, Solomon demonstrated how Linux containers could be
used to create a self-contained unit of deployable software. This new
unit of deployable software was aptly named a container. Instead of
providing isolation at a VM level, isolation for the container unit of
software was provided at the process level. The process running in
the container was given its own isolated file system and was alloca‐
ted network connectivity. Solomon announced that the software
they created to run applications in containers was called Docker, and
would be made available as an open source project.

For many cloud application developers that were accustomed to
deploying VM-based applications, their initial experience with
Docker containers was mind-blowing. When using VMs, deploying
an application by instantiating a VM could easily take several
minutes. In contrast, deploying a Docker container image took just
a few seconds. This dramatic improvement in performance was
because instantiating a Docker image is more akin to starting a new
process on a Linux machine. This is a fairly lightweight operation,
especially when compared to instantiating a whole new VM.

Container images also showed superior performance when a cloud
application developer wanted to make changes to a VM image and
snapshot a new version. This operation was typically a very time-
consuming process because it required the entire VM disk file to be
written out. With Docker containers, a multilayered filesystem is
used instead. If changes are made in this situation, they are captured
as changes to the filesystem and represented by a new filesystem
layer. Because of this, a Docker container image could snapshot a
new version by writing out only the changes to the filesystem as a
new filesystem layer. In many cases, the amount of changes to the

2 | Chapter 1: An Introduction to Containers and Kubernetes

https://www.youtube.com/watch?v=wW9CAH9nSLs
https://www.youtube.com/watch?v=wW9CAH9nSLs

filesystem for a new container image are quite small and thus the
snapshot operation is extremely efficient. For many cloud applica‐
tion developers who started experimenting with containers, it
quickly became obvious that this new approach had tremendous
potential to improve the current state of the art for deploying appli‐
cations in clouds.

There was still one issue holding back the adoption of container
images: the perception that it was not possible to run enterprise
middleware as container images. Advanced prototyping initiatives
took place to investigate the difficulty of running these images. It
was proven quickly that developers could successfully run enterprise
middleware such as WebSphere Liberty, and Db2 Express as Docker
container images. Sometimes, a few changes were necessary or per‐
haps a Linux kernel upgrade was required, but in general the Docker
container image approach was proven to be suitable for running
enterprise middleware.

The container approach for deploying web applications experienced
significant growth in a short period, and it was soon supported on a
variety of cloud platforms. Here is a summary of the key advantages
of using the container-image approach over VM images for deploy‐
ing software to cloud-based environments:

Container image startup is much faster than VM image startup
Starting a container image is essentially the equivalent of start‐
ing a new process. In contrast, starting a VM image involves
first booting an operating system (OS) and related services and
is much more time consuming,

Capturing a new container image snapshot is much faster than a VM
snapshot operation

Containers utilize a layered filesystem and any changes to the
filesystem are written as a new layer. With container images,
capturing a new snapshot of the container image requires writ‐
ing out only the new updates to the filesystem that the process
running in the container has created. When performing a snap‐
shot of a VM image instance, the entire VM disk file must be
written out, and this is typically an extremely time-consuming
process.

Container images are much smaller than VM images
A typical container image is portrayed in megabytes, whereas a
VM image is most commonly portrayed in gigabytes.

The Rise of Containers | 3

https://www.docker.com/company
https://www.docker.com/company

1 Brendan Burns et al., “Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade”. ACM Queue 14 (2016): 70–93.

Build once, run anywhere
Docker enabled developers to build container images on their
laptops, test them, and then deploy to the cloud knowing that
not only the same code would be running in the cloud, but the
entire runtime would be a bit-for-bit copy. Oftentimes with vir‐
tualization and traditional Platform as a Service (PaaS), devel‐
opers test on one runtime configuration on their local system
but don’t have control over the cloud runtime. This leads to
reduced confidence and more test requirements.

Better resource utilization
Because container images are much smaller in size and are at
the process level, they take up fewer resources than a VM. As a
result, it is possible to put a larger number of containers on a
physical server than is possible when placing VMs on a physical
server.

In the next section, we provide a background on Kubernetes, which
is a platform for the management and orchestration of container
images.

Kubernetes Arrives to Provide an
Orchestration and Management
Infrastructure for Containers
As previously discussed, Docker was responsible for introducing
developers to the concept of container-based applications. Docker
provided very consumable tooling for container development and
storage of containers in registries. However, Docker was not the
only company with experience using container-based applications in
cloud environments.

For more than a decade, Google had embraced the use of Linux con‐
tainers as the foundation for applications deployed in its cloud.1

Google had extensive experience orchestrating and managing con‐
tainers at scale and had developed three generations of container
management systems: Borg, Omega, and Kubernetes. Kubernetes
was the latest generation of container management developed by

4 | Chapter 1: An Introduction to Containers and Kubernetes

http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S
https://kubernetes.io

2 Brendan Burns et al., “Borg, Omega, and Kubernetes: Lessons Learned from Three
Container-Management Systems over a Decade”. ACM Queue 14 (2016): 70–93.

Google. It was a redesign based upon lessons learned from Borg and
Omega, and was made available as an open source project. Kuber‐
netes delivered several key features that dramatically improved the
experience of developing and deploying a scalable container-based
cloud application:

Declarative deployment model
Most cloud infrastructures that existed before Kubernetes was
released provided a procedural approach based on a scripting
language such as Ansible, Chef, Puppet, and so on for automat‐
ing deployment activities. In contrast, Kubernetes used a declar‐
ative approach of describing what the desired state of the system
should be. Kubernetes infrastructure was then responsible for
starting new containers when necessary (e.g., when a container
failed) to achieve the desired declared state. The declarative
model was much clearer at communicating what deployment
actions were desired, and this approach was a huge step forward
compared to trying to read and interpret a script to determine
what the desired deployment state should be.

Built-in replica and autoscaling support
In some cloud infrastructures that existed before Kubernetes,
support for replicas of an application and providing autoscaling
capabilities were not part of the core infrastructure and, in some
cases, never successfully materialized. These capabilities were
provided as core features in Kubernetes, which dramatically
improved the robustness and consumability of its orchestration
capabilities.

Improved networking model
Kubernetes mapped a single IP address to a Pod, which is
Kubernetes’ smallest unit of container aggregation and manage‐
ment. This approach aligned the network identity with the
application identity and simplified running software on Kuber‐
netes.2

Kubernetes Arrives to Provide an Orchestration and Management Infrastructure for Containers
| 5

http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S

3 Vaughan-Nicholls, Steven J. (2015-07-21). “Cloud Native Computing Foundation seeks
to forge cloud and container unity”, ZDNet.

4 Check out the “Cloud Native Computing Foundation (“CNCF”) Charter” on the Cloud
Native Computing Foundation website.

5 See the list of members on the Cloud Native Computing Foundation website.

Built-in health-checking support
Kubernetes provided container health checking and monitoring
capabilities that reduced the complexity of identifying when
failures occur.

Even with all the innovative capabilities available in Kubernetes,
enterprise companies were still reticent to adopt a technology that is
an open source project supported by a single vendor, especially
when other alternatives for container orchestration such as Docker
Swarm were available. Enterprise companies would have been much
more willing to adopt Kubernetes if it were instead a multiple-
vendor and meritocracy-based open source project backed by a
solid governance policy and a level playing field for contributing. In
2015, the Cloud Native Computing Foundation was formed to
address these issues.

The Cloud Native Computing Foundation Tips
the Scale for Kubernetes
In 2015, the Linux Foundation initiated the creation of the Cloud
Native Computing Foundation (CNCF).3 The CNCF’s mission is to
create and drive the adoption of a new computing paradigm that is
optimized for modern distributed systems environments capable of
scaling to tens of thousands of self-healing multitenant nodes.4 In
support of this new foundation, Google donated Kubernetes to the
CNCF to serve as its seed technology. With Kubernetes serving as
the core of its ecosystem, the CNCF has grown to more than 250
member companies, including Google Cloud, IBM Cloud, Amazon
Web Services (AWS), Docker, Microsoft Azure, Red Hat, VMware,
Intel, Huawei, Cisco, Alibaba Cloud, and many more.5 In addition,
the CNCF ecosystem has grown to hosting 17 open source projects,
including Prometheus, Envoy, GRPC, and many others. Finally, the
CNCF also nurtures several early stage projects and has eight
projects accepted into its Sandbox program for emerging technolo‐
gies.

6 | Chapter 1: An Introduction to Containers and Kubernetes

https://zd.net/2NKTTl3
https://zd.net/2NKTTl3
https://www.cncf.io/about/charter/
https://www.cncf.io/about/members/

With the weight of the vendor-neutral CNCF foundation behind it,
Kubernetes has grown to have more than 2,300 contributors from a
wide range of industries. In addition to hosting several cloud-native
projects, the CNCF provides training, a Technical Oversight Board,
a Governing Board, a community infrastructure lab, and several cer‐
tification programs. In the next section, we describe CNCF’s highly
successful Kubernetes Conformance Certification, which is focused
on improving Kubernetes interoperability and workload portability.

CNCF Kubernetes Conformance Certification
Keeps the Focus on User Needs
A key selling point for any open source project is that different ven‐
dor distributions of the open source project are interoperable. Cus‐
tomers are very concerned about vendor lock-in: being able to easily
change the vendor that provides a customer their open source infra‐
structure is crucial. In the context of Kubernetes, it needs to be easy
for the customer to move its Kubernetes workloads from one ven‐
dor’s Kubernetes platform to a different vendor’s Kubernetes plat‐
form. In a similar fashion, a customer might have a workload that
normally runs on an on-premises Kubernetes private cloud, but
during holiday seasons, the workload might merit obtaining addi‐
tional resources on a public Kubernetes cloud as well. For all these
reasons, it is absolutely critical that Kubernetes platforms from dif‐
ferent vendors be interoperable and that workloads are easily
portable to different Kubernetes environments.

Fortunately, the CNCF identified this critical requirement early on
in the Kubernetes life cycle before any serious forks in the Kuber‐
netes distributions had occurred. The CNCF formed the Kubernetes
Conformance Certification Workgroup. The mission of the Con‐
formance Certification Workgroup is to provide a software con‐
formance program and test suite that any Kubernetes
implementation can use to demonstrate that it is conformant and
interoperable.

As of this writing, 60 vendor distributions had successfully passed
the Kubernetes Conformance Certification Tests. The Kubernetes
Conformance Workgroup continues to make outstanding progress,
focusing on topics such as increased conformance test coverage,
automated conformance reference test documentation generation,

CNCF Kubernetes Conformance Certification Keeps the Focus on User Needs | 7

https://www.cncf.io
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/
https://ibm.co/2DJ935M

and was even a major highlight of the KubeCon Austin 2017 Key‐
note presentation.

Summary
This chapter discussed a variety of factors that have contributed to
Kubernetes becoming the de facto standard for the orchestration
and management of cloud-native computing applications. Its declar‐
ative model, built-in support for autoscaling, improved networking
model, health-check support, and the backing of the CNCF have
resulted in a vibrant and growing ecosystem for Kubernetes with
adoption across cloud applications and high-performance comput‐
ing domains. In Chapter 2, we begin our deeper exploration into the
architecture and capabilities of Kubernetes.

8 | Chapter 1: An Introduction to Containers and Kubernetes

http://bit.ly/2OiMSXW
http://bit.ly/2OiMSXW

CHAPTER 2

Fundamental Kubernetes Topics

In this chapter, we provide an introduction to the basic foundations
of Kubernetes. We begin with an overview of the Kubernetes archi‐
tecture and its deployment models. Next, we describe a few options
for running Kubernetes and describe a variety of deployment envi‐
ronments. We then describe and provide examples of several funda‐
mental Kubernetes concepts including Pods, labels, annotations,
ReplicaSets, and Deployments.

Kubernetes Architecture
Kubernetes architecture at a high level is relatively straightforward.
It is composed of a master node and a set of worker nodes. The nodes
can be either physical servers or virtual machines (VMs). Users of
the Kubernetes environment interact with the master node using
either a command-line interface (kubectl), an application program‐
ming interface (API), or a graphical user interface (GUI). The mas‐
ter node is responsible for scheduling work across the worker nodes.
In Kubernetes, the unit of work that is scheduled is called a Pod, and
a Pod can hold one or more container. The primary components
that exist on the master node are the kube-apiserver, kube-scheduler,
etcd, and the kube-controller-manager:

kube-apiserver
The kube-apiserver makes available the Kubernetes API that is
used to operate the Kubernetes environment.

9

https://kubernetes.io/docs/concepts/overview/components/

kube-scheduler
The kube-scheduler component is responsible for selecting the
nodes on which Pods should be created.

kube-controller-manager
Kubernetes provides several high-level abstractions for support‐
ing replicas of Pods, managing nodes, and so on. Each of these
is implemented with a controller component, which we describe
later in this chapter. The kube-controller-manager is responsible
for managing and running controller components.

etcd
The etcd component is a distributed key–value store and is the
primary communication substrate used by master and worker
nodes. This component stores and replicates the critical infor‐
mation state of your Kubernetes environment. Kubernetes out‐
standing performance and scalability characteristics are
dependent on etcd being a highly efficient communication
mechanism.

The worker nodes are responsible for running the Pods that are
scheduled on them. The primary Kubernetes components that exist
on worker nodes are the kubelet, kube-proxy, and the container run‐
time:

kubelet
The kubelet is responsible for making sure that the containers
in each Pod are created and stay up and running. The kubelet
will restart containers upon recognizing that they have termi‐
nated unexpectedly.

kube-proxy
One of Kubernetes key strengths is the networking support it
provides for containers. The kube-proxy component provides
networking support in the form of connection forwarding, load
balancing, and the mapping of a single IP address to a Pod.

Container runtime
The container runtime component is responsible for actually
running the containers that exist in each Pod. Kubernetes sup‐
ports several container runtime environment options including
Docker, rkt, and containerd.

10 | Chapter 2: Fundamental Kubernetes Topics

http://bit.ly/2ObXoAn
http://bit.ly/2ObXoAn

Figure 2-1 shows a graphical representation of the Kubernetes archi‐
tecture encompassing a master node and two worker nodes.

Figure 2-1. Graphical representation of the Kubernetes architecture

As shown in Figure 2-1, users interact with the Kubernetes master
node using either a GUI or by command-line interface (kubectl
CLI). Both of these use the Kubernetes exposed API to interact with
the Kubernetes master node. The Kubernetes master node schedules
Pods to run on different worker nodes. Each Pod contains one or
more containers, and each Pod is assigned its own IP address. In
many real-world applications, Kubernetes deploys multiple replica
copies of the same Pod to improve scalability and ensure high avail‐
ability. Pods A1 and A2 are Pod replicas that differ only in the IP
address they are allocated. In a similar fashion Pods B1 and B2 are
also replica copies of the same Pod. The containers located in the
same Pod are permitted to communicate with one another using
standard interprocess communication (IPC) mechanisms.

Kubernetes Architecture | 11

In the next section, we expand our understanding of the Kubernetes
architecture by learning about several ways to run Kubernetes.

Let’s Run Kubernetes: Deployment Options
Kubernetes has a reached such an incredible level of popularity that
there are now numerous public cloud and on-premises cloud
Kubernetes deployments available. The list of deployment options is
too large to include here. In the following subsection, we summarize
a few Kubernetes options that are representative of the types of
deployments currently available. We will discuss the Katacoda
Kubernetes Playground, Minikube, IBM Cloud Private, and the IBM
Cloud Kubernetes Service.

Katacoda Kubernetes Playground
The Katacoda Kubernetes Playground provides online access to a
two-node Kubernetes environment. The environment provides two
terminal windows that allow you to interact with this small Kuber‐
netes cluster. The cluster is available for only 10 minutes—then you
need to refresh the web page, and the entire environment disap‐
pears. The 10-minute playground session is long enough to try all of
the Kubernetes examples that are presented in the next section of
this chapter. Just remember that the environment lasts only 10
minutes, so avoid taking a long coffee break when using it.

Minikube
Minikube is a tool that enables you to run a single-node Kubernetes
cluster within a VM locally on your laptop. Minikube is well suited
for trying many of the basic Kubernetes examples that are presented
in the next section of this chapter, and you can also use it as a devel‐
opment environment. In addition, Minikube supports a variety of
VMs and container runtimes.

IBM Cloud Private
IBM Cloud Private is a Kubernetes-based private cloud platform for
running cloud-native or existing applications. IBM Cloud Private
provides an integrated environment that enables you to design,
develop, deploy, and manage on-premises containerized cloud
applications on your own infrastructure, either in a datacenter or on

12 | Chapter 2: Fundamental Kubernetes Topics

https://kubernetes.io/docs/setup/pick-right-solution/
https://www.katacoda.com/courses/kubernetes/playground
https://kubernetes.io/docs/setup/minikube/
https://www.ibm.com/cloud/private

public cloud infrastructure that you source from a cloud vendor.
IBM Cloud Private is a software form factor of Kubernetes that
focuses on keeping a pure open source distribution complemented
with the capabilities you would typically have to build around it,
including the operational logging, health metrics, audit practices,
identity and access management, management console, and ongoing
updates for each component. IBM Cloud Private also provides a rich
catalog of IBM and open source middleware to enable you to
quickly deploy complete stacks for data, caching, messaging, and
microservices development. The Community Edition is available at
no charge and quickly enables you to stand up an enterprise-ready
Kubernetes platform.

See Appendix A for instructions on configuring an IBM Cloud Pri‐
vate cluster.

IBM Cloud Kubernetes Service
The IBM Cloud Kubernetes Service is a managed Kubernetes offer‐
ing that delivers powerful tools, an intuitive user experience, and
built-in security for rapid delivery of container applications that you
can bind to cloud services related to IBM Watson, Internet of Things
(IoT), DevOps, and data analytics. The IBM Cloud Kubernetes Ser‐
vice provides intelligent scheduling, self-healing, horizontal scaling,
service discovery and load balancing, automated rollouts and roll‐
backs, and secret and configuration management. The Kubernetes
service also has advanced capabilities around simplified cluster
management, container security and isolation policies, the ability to
design your own cluster, and integrated operational tools for consis‐
tency in deployment.

See Appendix A for instructions on configuring an IBM Cloud
Kubernetes Service cluster.

Running the Samples Using kubectl
After covering some core concepts in Kubernetes, the next sections
provide several examples in the form of YAML files. For all of the
aforementioned environments, you can run the samples provided by
using the standard Kubernetes command-line tool known as kubectl.
They also describe how you can install kubectl. After you have your
Kubernetes environment up and running and kubectl installed, you
can run all of the following YAML file samples in the next sections

Let’s Run Kubernetes: Deployment Options | 13

https://github.com/IBM/deploy-ibm-cloud-private
https://www.ibm.com/cloud/container-service

1 Brendan Burns et al. (2016). “Borg, Omega, and Kubernetes: Lessons Learned from
Three Container-Management Systems over a Decade”. ACM Queue 14: 70–93.

by first saving the YAML to a file (e.g., kubesample1.yaml) and then
by running the following kubectl command:

$ kubectl apply -f kubesample1.yaml

The kubectl command provides a large number of options beyond
just creating an environment based on a YAML file.

Kubernetes Core Concepts
Kubernetes has several concepts that are specific to its model for the
orchestration and management of containers. These include Pods,
labels, annotations, ReplicaSets, and Deployments.

What’s a Pod?
Because Kubernetes provides support for the management and
orchestration of containers, you would assume that the smallest
deployable unit supported by Kubernetes would be a container.
However, the designers of Kubernetes learned from experience1 that
it was more optimal to have the smallest deployable unit be some‐
thing that could hold multiple containers. In Kubernetes, this small‐
est deployable unit is called a Pod. A Pod can hold one or more
application containers. The application containers that are in the
same Pod have the following benefits:

• They share an IP address and port space
• They share the same hostname
• They can communicate with each other using native interpro‐

cess communication (IPC)

In contrast, application containers that run in separate Pods are
guaranteed to have different IP addresses and have different host‐
names. Essentially, containers in different Pods should be viewed as
running on different servers even if they ended up on the same
node.

Kubernetes provides a robust list of features that make Pods easy to
use:

14 | Chapter 2: Fundamental Kubernetes Topics

http://bit.ly/2vIrL4S
http://bit.ly/2vIrL4S
https://kubernetes.io/docs/reference/kubectl/overview/

Easy-to-use Pod management API
Kubernetes provides the kubectl command-line interface, which
supports a variety of operations on Pods. The list of operations
includes the creating, viewing, deleting, updating, interacting,
and scaling of Pods.

File copy support
Kubernetes makes it very easy to copy files back and forth
between your local host machine and your Pods running in the
cluster.

Connectivity from your local machine to your Pod
In many cases, you will want to have network connectivity from
your local host machine to your Pods running in the cluster.
Kubernetes provides port forwarding whereby a network port
on your local host machine is connected via a secure tunnel to a
port of your Pod that is running in the cluster.

Volume storage support
Kubernetes Pods support the attachment of remote network
storage volumes to enable the containers in Pods to access per‐
sistent storage that remains long after the lifetime of the Pods
and the containers that initially utilized it.

Probe-based health-check support
Kubernetes provides health checks in the form of probes to
ensure the main processes of your containers are still running.
In addition, Kubernetes also provides liveness checks that
ensure the containers are actually functioning and capable of
doing real work. With this health check support, Kubernetes
can recognize when your containers have crashed or become
non-functional and restart them on your behalf.

How Do I Describe What’s in My Pod?
Pods and all other resources managed by Kubernetes are described
by using a YAML file. The following is a simple YAML file that
describes a rudimentary Pod resource:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:

Kubernetes Core Concepts | 15

 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

This YAML file contains the following fields and sections:

apiVersion

This field is used to declare which version of the Kubernetes
API schema is being used. Kubernetes continues to experience a
rapid growth in features and functionality. It manages the com‐
plexity that results from its growth in capabilities by supporting
multiple versions of its API. By setting the apiVersion field,
you can control the API version that your resource uses.

kind

You use the kind field to identify the type of resource the YAML
file is describing. In the preceding example, the YAML file
declares that it is describing a Pod object.

metadata

The metadata section contains information about the resource
that the YAML is defining. In the preceding example, the meta‐
data contains a name field that declares the name of this Pod.
The metadata section can contain other types of identifying
information such as labels and annotations. We describe these
in the next section.

spec

The spec section provides a specification for what is the desired
state for this resource. As shown in the example, the desired
state for this Pod is to have a container with a name of nginx
that is built from the Docker image that is identified as nginx:
1.7.9. The container shares the IP address of the Pod it is con‐
tained in and the containerPort field is used to allocate this
container a network port (in this case, 80) that it can use to send
and receive network traffic.

To run the previous example, save the file as pod.yaml. You can now
run it by doing the following:

$ kubectl apply -f pod.yaml

After running this command, you should see the following output:

pod "nginx" created

16 | Chapter 2: Fundamental Kubernetes Topics

To confirm that your Pod is actually running, use the kubectl get
pods command to verify:

$ kubectl get pods

After running this command, you should see output similar to the
following:

NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 21s

If you need to debug your running container, you can create an
interactive shell that runs within the container by using the follow‐
ing command:

$ kubectl exec -it nginx -- bash

This command instructs Kubernetes to run an interactive shell for
the container that runs in the Pod named nginx. Because this Pod
has only one container, Kubernetes knows which container you
want to connect to without you specifying the container name as
well. Typically, accessing the container interactively to modify it at
runtime is considered a bad practice. However, interactive shells can
be useful as you are learning or debugging applications before
deploying to production. After you run the preceding command,
you can interact with the container’s runtime environment, as
shown here:

root@nginx:/# ls
bin boot dev etc home lib lib64 media mnt opt proc
root run sbin
selinux srv sys tmp usr var
root@nginx:/# exit

If your Pod had multiple containers within it, you would need to
include the container name as well in your kubectl exec com‐
mand. To do this, you would use the -c option and include the con‐
tainer name in addition to the Pod name. Here is an example:

$ kubectl exec -it nginx -c nginx -- bash
root@nginx:/# exit
exit

To delete the Pod that you just created, run the following command:

$ kubectl delete pod nginx

You should see the following confirmation that the Pod has been
deleted:

Kubernetes Core Concepts | 17

pod "nginx" deleted

When using Kubernetes you can expect to have large numbers of
Pods running in a cluster. In the next section, we describe how labels
and annotations are used to help you keep track of and identify your
Pods.

Labels and Annotations
Kubernetes supports the ability to add key–value data pairs to its
Pods and also to the other Kubernetes resources such as ReplicaSets
and Deployments, which we describe later in this chapter. There are
two forms of these key–value pairs, labels and annotations. Labels
are added to Pods to give extra attribute fields that other resources
can then use to identify and select the desired Pods in which they
are interested. Annotations are used to add extra attribute informa‐
tion to Pods as well. However, unlike labels, annotations are not
used in query operations to identify Pods. Instead, annotations pro‐
vide extra information that can be helpful to users of the Pods or
automation tools. The following example takes the previous YAML
file describing your Pod and adds labels and annotations:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 app: webserver
 annotations:
 kubernetes.io/change-cause: "Update nginx to 1.7.9"
spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

In this example, we have added a label with app as the key and web
server as the value. Other Kubernetes constructs can then do
searches that match on this value to find this Pod. If there is a group
of Pods with this label, they can all be found. This simple and ele‐
gant approach of identifying Pods is used heavily by several higher-
level Kubernetes abstractions that are described later in this chapter.

Similarly, the previous example also demonstrates that we have
added an annotation. In this case, the annotation has kuber

18 | Chapter 2: Fundamental Kubernetes Topics

netes.io/change-cause as the key and Update nginx to 1.7.9 as
its value. The purpose of this annotation is to provide information
to users or tools; it is not meant to be used as a way to query and
identify desired Kubernetes resources.

In the next section, we introduce ReplicaSets, which is one of Kuber‐
netes higher-level abstractions that uses labels to identify a group of
Pods to manage.

ReplicaSets
Kubernetes provides a high-level abstraction called a ReplicaSet that
is used to manage a group of Pod replicas across a cluster. The key
advantage of a ReplicaSet is that you get to declare the number of
Pod replicas that you desire to run concurrently. Kubernetes will
monitor your Pods and will always strive to ensure that the number
of copies running is the number you selected. If some of your Pods
terminate unexpectedly, Kubernetes will instantiate new versions of
them to take their place. For cloud application operators accus‐
tomed to being contacted in the middle of the night to restart a
crashed application, having Kubernetes instead automatically handle
this situation on its own is a much better alternative.

To create a ReplicaSet, you provide a specification that is similar to
the Pod specification shown in “How Do I Describe What’s in My
Pod?” on page 15. The ReplicaSet adds new information to the spec‐
ification to declare the number of Pod replicas that should be run‐
ning and also provide matching information that identifies which
Pods the ReplicaSet is managing. Here is an example YAML specifi‐
cation for a ReplicaSet:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: nginx
 labels:
 app: webserver
 annotations:
 kubernetes.io/change-cause: "Update nginx to 1.7.9"
spec:
 replicas: 3
 selector:
 matchLabels:
 app: webserver
 template:
 metadata:

Kubernetes Core Concepts | 19

 labels:
 app: webserver
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

In this specification, the kind field is set to ReplicaSet, denoting
this specification is for a ReplicaSet resource. Similar to the previous
Pod example, the ReplicaSet YAML has a metadata section for name,
labels, and annotation fields. The real differences between Replica‐
Sets and Pods occurs in the spec section, which has a replicas field
that is used to denote the number of Pod replicas that should run
concurrently. In this example, we are declaring that Kubernetes
should strive to always have three copies of the replicated Pods run‐
ning. It is worth noting that if you change this value and use the
kubectl apply command to update the ReplicaSet specification,
Kubernetes will then either increase or decrease the number of Pods
to satisfy the new replicas value you requested.

The spec section has a selector field that is used to provide the
labels that this ReplicaSet will use to identify its Pod replicas. As
shown in this example, the selector for this ReplicaSet states this
ReplicaSet is managing Pod replicas that have a label with app as the
key and webserver as its associated value.

The template section is the next section of this specification. It pro‐
vides a template that describes what the Pod replicas that are man‐
aged by the ReplicaSet will look like. Note that the template section
must be able to describe everything that a standalone Pod YAML
could describe. Because of this, the template section itself contains a
metadata section and a spec section.

The metadata section, similar to previous examples, contains labels.
In the preceding example, the metadata section declares a label with
app as the key and webserver as its associated value. Not surpris‐
ingly, this is the exact label that the ReplicaSet selector field is
using to identify the Pod replicas it manages.

Additionally, the template section contains its own spec section.
This spec section describes the containers that comprise the Pod
replicas the ReplicaSet will manage, and in the example, you can see
that fields such as name, images, and ports that are found in Pod

20 | Chapter 2: Fundamental Kubernetes Topics

YAMLs are also repeated here. As result of this structure, ReplicaSet
can thus have multiple spec sections, and these sections are nested
inside one another which can look complex and intimidating. How‐
ever, after you understand that a ReplicaSet needs to specify not
only itself but also the Pod replicas it manages, the nested spec
structure is less bewildering.

To run the previous example, save the example as the file replica‐
set.yaml. You can now run the example by doing the following:

$ kubectl apply -f replicaset.yaml

After running this command, you should see the following output:

replicaset.apps "nginx" created

To confirm that your Pod replicas are actually running, use the
kubectl get pods command to verify:

$ kubectl get pods

After running this command, you should see output similar to the
following:

NAME READY STATUS RESTARTS AGE
nginx-fvtzq 1/1 Running 0 23s
nginx-jfxdn 1/1 Running 0 23s
nginx-v7kqq 1/1 Running 0 23s

To demonstrate the capabilities of the ReplicaSet, let’s purposely
delete one of its pods:

$ kubectl delete pod nginx-v7kqq
pod "nginx-v7kqq" deleted

If we run kubectl get pods quickly enough, we see that the pod we
deleted is being terminated. The ReplicaSet realizes that it lost one
of its Pods. Because its YAML specification declares that its desired
state is three Pod replicas, the ReplicaSet starts a new instance of the
nginx container. Here’s the output of this command:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-fvtzq 1/1 Running 0 1m
nginx-jfxdn 1/1 Running 0 1m
nginx-kfgxk 1/1 Running 0 5s
nginx-v7kqq 0/1 Terminating 0 1m

After a short amount of time, if you run kubectl get pods again,
you’ll notice just the two original Pod replicas and the newly created
substitute Pod replica are present:

Kubernetes Core Concepts | 21

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-fvtzq 1/1 Running 0 1m
nginx-jfxdn 1/1 Running 0 1m
nginx-kfgxk 1/1 Running 0 23s

To delete the ReplicaSet that you just created, run the following
command:

$ kubectl delete replicaset nginx

You should see the following confirmation that the ReplicaSet has
been deleted:

replicaset.extensions "nginx" deleted

Although ReplicaSets provide very powerful Pod replica capabilities,
they provide no support to help you manage the release of new ver‐
sions of your Pod ReplicaSets. ReplicaSets would be more powerful
if they supported the ability to roll out new versions of the Pod rep‐
licas and provide flexible control on how quickly the Pod replicas
were replaced with new versions. Fortunately, Kubernetes provides
another high-level abstraction, called Deployments, that provides
this type of functionality. The next section describes the capabilities
provided by Deployments.

Deployments
Deployments are a high-level Kubernetes abstraction that not only
allow you to control the number of Pod replicas that are instanti‐
ated, but also provide support for rolling out new versions of the
Pods. Deployments rely upon the previously described ReplicaSet
resource to manage Pod replicas and then add Pod version manage‐
ment support on top of this capability. Deployments also enable
newly rolled out versions of Pods to be rolled back to previous ver‐
sions if there is something wrong with the new version of the Pods.
Furthermore, Deployments support two options for upgrading
Pods, Recreate and RollingUpdate:

Recreate
The Recreate Pod upgrade option is very straightforward. In
this approach the Deployment resource modifies its associated
ReplicaSet to point to the new version of the Pod. It then pro‐
ceeds to terminate all of the Pods. The ReplicaSet then notices
that all of the Pods have been terminated and thus spawns new
Pods to ensure that the number of desired replicas are up and

22 | Chapter 2: Fundamental Kubernetes Topics

running. The Recreate approach will typically result in your Pod
application not being accessible for a period of time and thus it
is not recommended for applications that need to always be
available.

RollingUpdate
The Kubernetes Deployment resource also provides a Rollin‐
gUpdate option. With this option, your Pods are replaced with
the newer version incrementally over time. This approach
results in there being a mixture of both the old version of the
Pod and the new version of the Pod running simultaneously and
thus avoids having your Pod application unavailable during this
maintenance period.

The following is an example YAML specification for a Deployment
that uses the RollingUpdate option:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: webserver
 annotations:
 deployment.kubernetes.io/revision: "1"
spec:
 replicas: 3
 selector:
 matchLabels:
 app: webserver
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: webserver
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

This Deployment example encompasses many of the characteristics
that we have seen in ReplicaSets and Pods. In its metadata are labels

Kubernetes Core Concepts | 23

and annotations. For the Deployment, an annotation with deploy
ment.kubernetes.io/revision as the key and 1 as its value pro‐
vides information that this is the first revision of the contents in this
Deployment. Similar to ReplicaSets, the Deployment declares the
number of replicas it provides and uses a matchLabels field to
declare what labels it uses to identify the Pods it manages. Also simi‐
lar to ReplicaSets, the Deployment has both a spec section for the
Deployment and a nested spec section within a template that is
used to describes the containers that comprise the Pod replicas man‐
aged by this Deployment.

The fields that are new and specific to a Deployment resource are
the strategy field and its subfields of type and rollingUpdate.
The type field is used to declare the Deployment strategy being uti‐
lized; currently, you can set this to Recreate or RollingUpdate.

If you choose the RollingUpdate option, you need to set the sub‐
fields of maxSurge and maxUnavailable as well. You use the options
as follows:

maxSurge

The maxSurge RollingUpdate option enables extra resources to
be allocated during a rollout. You can set the value of this option
to a number or a percentage. As a simple example, assume a
Deployment is supporting three replicas and maxSurge is set to
2. In this scenario, there will be a total of five replicas available
during the RollingUpdate.

At the peak of the deployment, there will be three replicas with
the old version of the Pods running and two with the new ver‐
sion of the Pods running. At this point, one of the old version
Pod replicas will need to be terminated and another replica of
the new Pod version can then be created. At this point, there
would be a total of five replicas, three of which have the new
revision, and two have the old version of the Pods. Finally, hav‐
ing reached a point of having the correct number of Pod repli‐
cas available with the new version, the two Pods with the old
version can now be terminated.

maxUnavailable

You use this RollingUpdate option to declare the number of the
Deployment replica Pods that can be unavailable during the
update. You can set this to either a number or a percentage.

24 | Chapter 2: Fundamental Kubernetes Topics

The following YAML example shows a Deployment that has been
updated to initiate a rollout. Note that a new annotation label with a
key of kubernetes.op/change-cause has been added with a value
that denotes an update to the version of nginx running in the con‐
tainer has occurred. Also note that the name of the image used by
the container in the spec section has changed to nginx:1.13.10.
This declaration is what actually drives the Pod replicas managed by
the Deployment to now have a new version of the container images
when the upgrade occurs. Let’s take a look at the code:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: webserver
 annotations:
 kubernetes.io/change-cause: "Update nginx to 1.13.10"
spec:
 replicas: 3
 selector:
 matchLabels:
 app: webserver
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: webserver
 spec:
 containers:
 - name: nginx
 image: nginx:1.13.10
 ports:
 - containerPort: 80

To demonstrate the capabilities of Deployments, let’s run the two
previous examples. Save the first Deployment example as deploy‐
mentset.yaml and the second example as deploymentset2.yaml. You
can now run the first deployment example by doing the following:

$ kubectl apply -f deploymentset.yaml

After running this command, you should see the following output:

deployment.extensions "nginx" created

Kubernetes Core Concepts | 25

To confirm that your Pod replicas managed by the Deployment are
actually running, use the kubectl get pods command to verify, as
shown here:

$ kubectl get pods

After running this command, you should see output similar to the
following:

NAME READY STATUS RESTARTS AGE
nginx-7bbd56b666-5x7fl 0/1 ContainerCreating 0 10s
nginx-7bbd56b666-cm7fn 0/1 ContainerCreating 0 10s
nginx-7bbd56b666-ddtt7 0/1 ContainerCreating 0 10s

With Deployments, there is a new command called kubectl get
deployments that provides the status on the Deployments as they
update their images. You run this command as follows:

$ kubectl get deployments

After running this command, you should see output similar to the
following:

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 2m

Now to make things interesting, let’s update the image in the
Deployment by applying the second Deployment example that you
saved in deploymentset2.yaml. Note that you could have just updated
your original YAML that you saved in deploymentset.yaml instead of
using two separate files. Begin the update by doing the following:

$ kubectl apply -f deploymentset2.yaml

After running this command, you should see the following output:

deployment.extensions "nginx" configured

Now, when you rerun the kubectl get deployments command,
you see a much more interesting result:

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 4 2 2 4m

As shown in this output, the Deployment currently has four Pod
replicas running. Two of the Pod replicas are up to date, which
means they are now running the updated nginx image, two of the
Pod replicas are available, and currently there are four Pod replicas
in total. After some amount of time, when the rolling image update
is complete, we reach the desired state of having three updated Pod

26 | Chapter 2: Fundamental Kubernetes Topics

replicas available. You can confirm this by rerunning the kubectl
get deployments command and viewing that the output now
matches your desired state:

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 3 3 3 3 4m

To delete the Deployment that you just created, run the following
command:

$ kubectl delete deployment nginx

You should see the following confirmation that the Deployment has
been deleted:

deployment.extensions "nginx" deleted

Deployments also provide commands for pausing rollouts, resum‐
ing rollouts, and for rolling back the update of an image. The com‐
mands are quite helpful if you have some concerns about the new
image being rolled out that merits investigation, or if you determine
that the updated image being rolled out is problematic and needs to
be rolled back to a previous version.

For more information on how to use these deployment
capabilities, go to Kubernetes docs.

Although Deployments provide support for managing Pod replicas
and their versioning life cycle, they do not provide a load balancer
for distributing requests across the Pod replicas. In Chapter 3, we
introduce the Kubernetes Service Object, which provides this capa‐
bility and also discuss several other advanced Kubernetes topics.

Kubernetes Core Concepts | 27

http://bit.ly/2q7vR7Y

CHAPTER 3

Advanced Kubernetes Topics

In this chapter, we provide an overview of some of Kubernetes more
advanced topics. We begin with a description of Kubernetes’ Service
Object, which is its built-in facility for load balancing across Pod
replicas. Next, we describe a few specialized options for managing
Pod groups, including DaemonSets and StatefulSets. We then
describe and provide examples of several advanced Kubernetes con‐
cepts, including Volumes, PersistentVolumes, ConfigMaps, Secrets,
and image registry support. We conclude this chapter with a section
on Helm, Kubernetes’ package manager, which enables you to create
a package containing the multiple templates that make up your
application.

Kubernetes Service Object: Load Balancer
Extraordinaire
Kubernetes provides a Service Object as its mechanism for provid‐
ing load balancing across Pod replicas. Upon first inspection, having
this feature built in to Kubernetes might appear to be overkill
because there are lots of open source load balancers already avail‐
able. However, the high-level Pod replica management features
Kubernetes provides necessitates it providing a custom load bal‐
ancer for Pod replicas. As discussed in previous chapters, Kuber‐
netes provides several high-level abstractions that are capable of
starting new Pod replicas when needed. When this occurs, these Pod
replicas might end up moving to different servers. Most load balanc‐
ers that are available were not built to handle this high level of dyna‐

29

1 Kubernetes: Up and Running by Kelsey Hightower, Brendan Burns, and Joe Beda
(O’Reilly). Copyright 2017 Kelsey Hightower, Brendan Burns, and Joe Beda,
928-1-491-93567-5.

mism. Kubernetes thus provides a load balancer in the form of a
Service Object. The Service Object has the following critical features
that are tailored to supporting Pod replicas:1

Virtual IP allocation and load balancing support
When a Service Object is created for a group of Pod replicas, a
virtual IP address is created that is used to load balance across
all the Pod replicas. The virtual IP address, also referred to as a
cluster IP address, is a stable value and suitable for use by
Domain Name System (DNS) services.

Port mapping support
Service Objects support the ability to map from a port on the
cluster IP address to a port being used by Pod replicas. For
example, the Service Object might want to expose the Pod’s
application as running on port 80 even though the Pod replicas
are listening on a more generic port.

Built-in readiness-check support
Kubernetes Service Objects provide built-in readiness-check
support. With this capability, the load-balancing capabilities
provided by the Service Object are smart enough to avoid rout‐
ing requests to Pod replicas that are not ready to receive
requests.

Creating a Service Object for a Deployment of Pod replicas is very
straightforward. You can accomplish this by using the kubectl
expose command. Assuming that you have provisioned the nginx
Deployment example from Chapter 2, you can expose it as a service
by doing the following:

$ kubectl expose deployment nginx --port=80 --target-port=8000

In this example, the nginx Deployment has been exposed as a ser‐
vice. The service is running on port 80 and will forward to the Pod
replicas, which are listening on port 8000. To identify what the clus‐
ter IP address is for this newly exposed service, use the kubectl get
services command:

$ kubectl get services

30 | Chapter 3: Advanced Kubernetes Topics

In the next section, we describe another high-level construct pro‐
vided by Kubernetes, the DaemonSet, which handles the specialized
use case of having to run a single Pod replica on each Node in the
cluster.

DaemonSets
One common specialized use case when running Kubernetes appli‐
cations is the need to have a single Pod replica running on each
Node. The most common scenario for this is when a single monitor‐
ing or logging container application should be run on each Node.
Having two of these containers running on the same Node would be
redundant, and all Nodes need to have the monitoring/logging con‐
tainer running on it. For this use case, Kubernetes provides a Dae‐
monSet resource that ensures a single copy of the Pod replica will
run on each Node. The following example illustrates how to run a
single Pod replica on each Node using a DaemonSet:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: nginx
 labels:
 app: webserver
spec:
 selector:
 matchLabels:
 app: webserver
 template:
 metadata:
 labels:
 app: webserver
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

As shown in the example, a DaemonSet YAML looks very similar to
a ReplicaSet. It uses a selector to provide the labels this DaemonSet
will use to identify its Pod replicas. In the example, the selector for
this DaemonSet states that it is managing Pod replicas that have a
label with app as the key and webserver as its associated value. The
DaemonSet also has a template section and a nested spec section
that serve the same purpose as they do in ReplicaSets.

DaemonSets | 31

The notable differences of a DaemonSet from a ReplicaSet are also
illustrated in the previous example. The kind field is set to Daemon
Set, and there is no need to declare the number of replicas desired.
The number of replicas will always be set to be a value that matches
the placing of one Pod replica on each Node.

Customizing DaemonSets
In some situations, a DaemonSet is desired, but with the complicat‐
ing factor that we don’t want a Pod replica running on all the Nodes.
For this scenario, you can customize a DaemonSet to identify the
Nodes deserving of running the Pod replica by using a nodeSelec
tor construct. In this approach, a nodeSelector is used to define a
label that the DaemonSet will look for on all the Nodes in the clus‐
ter. The Nodes that have this label will be the ones that will have a
DaemonSet-managed Pod replica instantiated on them. As an illus‐
tration of this capability, we first label a Node (node1 in this exam‐
ple) on which we want to run the Pod replica by using the kubectl
label nodes command:

$ kubectl label nodes node1 needsdaemon=true

With the needsdaemon label added to the Node, you can modify and
customize this DaemonSet to include the appropriate label and node
Selector:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: nginx
 labels:
 app: webserver
spec:
 selector:
 matchLabels:
 app: webserver
 template:
 metadata:
 labels:
 app: webserver
 spec:
 nodeSelector:
 needsdaemon: "true"
 containers:
 - name: nginx
 image: nginx:1.7.9

32 | Chapter 3: Advanced Kubernetes Topics

2 Hightower, Kelsey, Brendan Burns, and Joe Beda. Kubernetes: Up and Running. Sebasto‐
pol: O’Reilly Media, 2017.

 ports:
 - containerPort: 80

As shown in this example, the nodeSelector contains the label
needsdaemon with a value of "true". The quotes added around the
true value are required to ensure that this value is interpreted as a
string and not a Boolean. With this value added to the DaemonSet
YAML, you have now customized it such that the container replicas
will run on only the properly labeled Nodes.

In the next section, we switch gears a little and focus on StatefulSets,
which is how Kubernetes provides support for the integration of
stateful services.

StatefulSets
Many of the high-level constructs Kubernetes provides, such as Rep‐
licaSets, provide support for managing a set of Pod replicas that are
identical and hence interchangeable. When integrating stateful,
replicated services into Kubernetes, such as persistent databases,
standard identical Pod replicas are not sufficient to meet the
requirements of this class of applications. Instead, these applications
need Pods that have a unique ID so that the correct storage volume
can always be reattached to the correct Pod. To support this class of
applications, Kubernetes provides the StatefulSet resource. Stateful‐
Sets have the following characteristics:2

Stable hostname with unique index
Each Pod associated with the StatefulSet is allocated a persistent
hostname with a unique, monotonically increasing index
appended to the hostname.

Orderly deployment of Pod replicas
Each Pod associated with the StatefulSet is created sequentially
in order from lowest index to highest index.

Orderly deletion of Pod replicas
Each Pod associated with the StatefulSet is deleted sequentially
in order from highest index to lowest index.

StatefulSets | 33

http://bit.ly/2xHJigo

Orderly deployment and scaling of Pod replicas
Each Pod associated with the StatefulSet is scaled sequentially in
order from lowest index to highest index, and before a scaling
operation can be applied to a Pod all its predecessors must be
running.

Orderly automated rolling upgrades of Pod replicas
Each Pod associated with the StatefulSet is updated by deleting
and recreating each Pod sequentially in order from highest
index to lowest index.

Headless service associated with the StatefulSet
A Service Object that has no cluster virtual IP address assigned
to it is associated with the StatefulSet to manage the DNS entries
for each Pod. This Service does not load balance across the Pods
in the StatefulSet, because each Pod is unique and client
requests need to be always directed to the same Pod.

The YAML descriptions for StatefulSets look very similar to those
used for ReplicaSets. The following is an example StatefulSet that
also includes a YAML description for its headless service:

apiVersion: v1
kind: Service
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
 labels:
 app: webserver
spec:
 serviceName: "nginx"
 replicas: 3
 selector:
 matchLabels:
 app: webserver

34 | Chapter 3: Advanced Kubernetes Topics

 template:
 metadata:
 labels:
 app: webserver
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

At the top of this example is the YAML specification for the headless
service:

• The kind field is set to Service, denoting that the top portion of
the specification is for a Service resource.

• Note that this service is declared to be headless by setting the
clusterIP field to None.

• In the next section of the specification, the StatefulSet is
defined. In this portion, the kind field is set to StatefulSet. It
is also worth noting is that StatefulSet must identify the Service
that manages it.

• You accomplish this by setting the serviceName field to the
name declared in the Service.

• In this example, the name of the Service is nginx, and that is the
value placed in the serviceName field.

The remaining portions of the StatefulSet are the same types of val‐
ues that are set in ReplicaSets. A key portion of the StatefulSet that is
not shown in the preceding example is the creation of persistent vol‐
ume storage for each Pod in the StatefulSet. Kubernetes provides a
volumeClaimTemplate to manage the mapping of a volume with
each Pod, and the volume is automatically mounted when the Pod is
rescheduled. More detail on Kubernetes volume support is provided
in “Volumes and Persistent Volumes” on page 36.

The preceding StatefulSet example uses the nginx web
server in an effort to keep the example simple to
understand. Typically, you would not use a StatefulSet
for a stateless application like nginx. Instead, you
would more commonly use StatefulSets for stateful
applications such as redis, etcd, and sql.

StatefulSets | 35

To run the previous example, save it in a file named statefulset.yaml.
You can now run the example by doing the following:

$ kubectl apply -f statefulset.yaml

To see the Pods that are created with the index added to the names,
run the following command:

$ kubectl get pods

You will then see output that looks like the following:

NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 16s
nginx-1 1/1 Running 0 3s
nginx-2 1/1 Running 0 2s

In the next section, we switch gears a little and focus on how Kuber‐
netes enables containers within a Pod to share filesystem directories
using the concept of Volumes.

Volumes and Persistent Volumes
Pods can have multiple containers that need to share filesystem
resources. Kubernetes supports the notion of Volumes as its mecha‐
nism for enabling containers in a Pod to support the sharing of a
directory in the filesystem. In general, there are two types of Vol‐
umes, basic and persistent:

Basic Volumes
Basic Volumes, which are typically referred to as just Volumes,
are pretty straightforward. They enable containers in the same
Pod to share a directory in the filesystem. The content that they
share is often stored on the filesystem of the Node that is host‐
ing the Pod. The file content stored in the Volume will survive a
container being destroyed and re-created, but as soon as the
Pod itself is destroyed the file content in the Volume is deleted
permanently.

Persistent Volumes
Kubernetes supports several types of PersistentVolumes. Persis‐
tentVolumes are able to save the shared file content such that it
can survive Pod restarts. A variety of PersistentVolume types
exist and they are usually implemented by using some underly‐
ing network-based storage mechanism such as NFS, FlexVo‐

36 | Chapter 3: Advanced Kubernetes Topics

http://bit.ly/2xRpKpj

lume, iSCSI, VsphereVolume, AzureFile, GCEPersistentDisk,
AWSElasticBlockStore, and several others.

The following YAML specification illustrates a simple Pod example
that mounts a basic volume for the containers in the Pod to share as
a common filesystem directory:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 volumes:
 - name: sharedspace
 hostPath:
 path: "/var/sharedPodDir"
 containers:
 - name: nginx
 image: nginx:1.7.9
 volumeMounts:
 - mountPath: "/containerMount"
 name: "sharedspace"
 ports:
 - containerPort: 80

As shown in this example, the Pod declares that a Volume is avail‐
able using the volumes field in the YAML. In this example, the vol‐
ume is named sharedspace. The name subfield of volumes is critical
because this name is used by the containers to declare that they want
to mount this Volume. This Volume example also declares a host
Path with a path value of /var/sharedPodDir. The hostPath
declares the path on the host Node that is the location of this shared
directory. With this specification, a directory called sharedPodDir
will be created in /var on the Node hosting the Pod.

The containers in this Pod that want to mount this Volume have an
easier declaration process. They add a volumeMounts field that con‐
tains a name and a mountPath as subfields. The name field must
match the name that was used when the Volume was declared in the
Pod’s volumes section. The mountPath declares the path in the con‐
tainer’s filesystem that will be the location of this shared directory
when accessed by the container application. It is worth noting that it
is perfectly acceptable for the container to have a different mount
Path than the hostPath. Furthermore, each container in the Pod can
have a different mountPath value to the same shared directory. In the

Volumes and Persistent Volumes | 37

next section, we provide an overview of PersistentVolumes, which
provide a more durable version of Volumes.

Persistent Volumes
Most Twelve-Factor Apps discourage the use of disk-based persis‐
tent storage because it’s difficult to maintain concurrency at scale
without specific guarantees for distributed read and write semantics.
Kubernetes extends beyond just 12-factor apps, as we have seen with
DaemonSets and StatefulSets, which do have a legitimate need for
persistent storage.

StatefulSets such as databases, caches, and database services, or Dae‐
monSets such as monitoring agents require their Pods to have access
to storage that is more permanent and survives across the lifetimes
of multiple Pods. For this purpose, Kubernetes provides Persistent‐
Volume storage support. There are many implementations of Persis‐
tentVolume support for Kubernetes, and they typically are built on
top of some form of remote network storage capability.

Support for PersistentVolumes in most Kubernetes clusters begins
with the cluster administrator creating PersistentVolumes and mak‐
ing these available in the cluster. The Pods in the cluster acquire
access to the PersistentVolume through a resource abstraction called
a PersistentVolumeClaim that is also represented as a YAML docu‐
ment:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my-pv-claim
 labels:
 app: nginx
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

In the preceding example, the PersistentVolumeClaim is a request
for five gigabytes of storage that can be attached as read/write by
only a single Node. When this request is created, Kubernetes takes
responsibility for mapping the request to an actual PersistentVo
lume that is available.

38 | Chapter 3: Advanced Kubernetes Topics

https://12factor.net/
http://bit.ly/2OTldtN

After this has been accomplished, a Pod can access the PersistentVo‐
lume storage through the PersistentVolumeClaim, as shown in the
following Pod example:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 volumes:
 - name: persistentsharedspace
 persistentVolumeClaim:
 claimName: my-pv-claim
 containers:
 - name: nginx
 image: nginx:1.7.9
 volumeMounts:
 - mountPath: "/containerMount"
 name: persistentsharedspace
 ports:
 - containerPort: 80

As this example shows, the volumes section of the YAML declares a
persistentVolumeClaim with a claimName of my-pv-claim. The
name used to reference this PersistentVolume in the Pod is persis
tentsharedspace. The containers in the Pod can now reference this
PersistentVolume using a volumeMounts section just like they did for
mounting basic volumes. This example also shows that the contain‐
ers add a volumeMounts field that contains a name and a mountPath
as subfields. The name field contains the value of persistentshared
space, which matches the name value provided in the name subfield
of the volumes section. As was the case when containers were
attaching basic volumes, the mountPath declares the path in the con‐
tainer’s filesystem that will be the location of this shared directory
when accessed by the container application.

Matching PersistentVolumeClaims (PVCs) with PersistentVo
lumes (PVs) can be a frustrating task sometimes. PVCs are matched
based on a number of factors, including:

Requested capacity
A PVC will match a PV only if the capacity requested in
spec.resources.requests.storage matches the capacity
declared in the PV.

Volumes and Persistent Volumes | 39

Storage class
A PVC will match a PV only if the StorageClass is consistent;
or, for the case in which a PVC has omitted the StorageClass, a
PV that matches all other attributes and uses the default Stora
geClass is available.

Labels
A PVC will match a PV only if the labels assigned to the PVC
align with the labels declared on the PV. Typically, labels reflect
the associations between microservices and PVCs/PVs (such as
app=portfolio).

Access mode
A PVC will match a PV only if the access mode (ReadWriteOnce
[RWO], ReadOnlyMany [ROX], or ReadWriteMany [RWX]) is con‐
sistent between the claim and the volume.

In the next section, we introduce the concept of ConfigMaps, which
is the Kubernetes mechanism for passing configuration information
into containers.

ConfigMaps
In many cases, there needs to be a way to pass configuration infor‐
mation into your container-based applications. Kubernetes provides
ConfigMaps as its mechanism to pass information into the contain‐
ers it manages. ConfigMaps store configuration information as key–
value pairs. The following is a sample ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
 name: custom-config
 namespace: default
data:
 customkey1: foo
 customkey2: bar

In this example, there are two new configuration keys: customkey1
and customkey2. These keys hold the values foo and bar, respec‐
tively. To add this ConfigMap to your Kubernertes environment,
save the example YAML as configmap.yaml and run the following
kubectl command:

$ kubectl create -f configmap.yaml

40 | Chapter 3: Advanced Kubernetes Topics

This snippet shows how you create a ConfigMap named custom-
config, and the source of the ConfigMap is the file configmap.yaml.
After the ConfigMap is created, there are two general ways for using
it. One is the creation of a file for each key–value, and the other is
setting environment variables.

ConfigMap Keys as Files
With the ConfigMap-keys-as-files approach, a file is created with the
name of the key as its filename, and that file will contain the value of
the key. You use volumeMounts to mount these files, and the Config‐
Map is accessed through a Volume. The following example illus‐
trates this ConfigMap approach:

apiVersion: v1
kind: Pod
metadata:
 name: configmapexample-volume
spec:
 containers:
 - name: configmapexample-volume
 image: busybox
 command: ["/bin/sh", "-c", "ls /etc/bt_config ; cat
/etc/bt_config/customkey1 ; echo"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/bt_config
 imagePullPolicy: IfNotPresent
 volumes:
 - name: config-volume
 configMap:
 name: custom-config

As shown here, a volume named config-volume is created by refer‐
encing a ConfigMap named custom-config. Note that this is the
name of the ConfigMap created at the beginning of this section. A
volumeMount is then used to mount the config-volume with a mount
Path of /etc/bt_config. With this mounting defined, the keys from
the ConfigMap are stored as files in /etc/bt_config. To demon‐
strate that the previous example does in fact create these files, a
command option has been added to the example that overrides the
default command provided by the container image. The new com‐
mand option prints the contents of the /etc/bt_config directory to
show the key files were indeed created. The command also prints
the contents of the /etc/bt_config/customkey1 file to prove that it
really contains the value foo.

ConfigMaps | 41

To run this example, save the file as configmapPod-volume.yaml.
Make sure that you have already created the ConfigMap from config‐
map.yaml as described at the beginning of this section. When you
complete these steps, you can now run the example by doing the fol‐
lowing:

$ kubectl apply -f configmapPod-volume.yaml

To view the output from the container, use the kubectl logs <pod
Name> command, as follows:

$ kubectl logs configmapexample-volume

You will then see the following output confirming that the keys were
created:

customkey1
customkey2
foo
$

To delete the Pod that you just created, run the following command:

$ kubectl delete pod configmapexample-volume

ConfigMap Keys as Environment Variables
Using the ConfigMap-keys-as-environment-variables approach, the
keys are stored as environment variables and their values are stored
as the value of the environment variable. An env section is added to
the container portion of the Pod YAML. The following example
illustrates the environment variable–based approach:

apiVersion: v1
kind: Pod
metadata:
 name: configmapexample
spec:
 containers:
 - name: configmapexample
 image: busybox
 command: ["/bin/sh", "-c", "echo customkey1: $(KEY1)
 customkey2: $(KEY2) "]
 env:
 - name: KEY1
 valueFrom:
 configMapKeyRef:
 name: custom-config
 key: customkey1
 - name: KEY2

42 | Chapter 3: Advanced Kubernetes Topics

 valueFrom:
 configMapKeyRef:
 name: custom-config
 key: customkey2

You can see that an env section has been added to the containers
section. The env section declares two keys: KEY1 and KEY2. Each of
these will be environment variables that are created. The KEY1 envi‐
ronment variable is assigned the value stored in customkey1 of the
custom-config ConfigMap using the valueFrom and configMap
KeyRef constructs. In a similar fashion, the KEY2 environment vari‐
able receives the value from customkey2 in the custom-config
ConfigMap. The environment variables KEY1 and KEY2 can be used
in the command that is run by the container image. To illustrate
this, the previous example prints the values for KEY1 and KEY2 when
the container runs the command line provided.

To run the example, save the file as configmapPod-env.yaml. Make
sure that you have already created the ConfigMap from config‐
map.yaml, as described at the beginning of this section. When
you’ve completed these steps, you can now run the example yourself
by doing the following:

$ kubectl apply -f configmapPod-env.yaml

To view the output from the container, use the kubectl logs <pod
Name> command, as follows:

$ kubectl logs configmapexample

You will then see the following output confirming that the keys were
created:

customkey1: foo customkey2: bar
$

To delete the Pod that you just created, run the following command:

$ kubectl delete pod configmapexample

As you have seen in this example, ConfigMaps are extremely valua‐
ble for injecting configuration information into containers. But what
if you need to inject some form of sensitive information into a con‐
tainer, such as a user ID and password? A ConfigMap would not be
appropriate for storing this type of information, because it needs to
remain hidden. For this type of data, Kubernetes provides a Secrets
object, which we look at in the next section.

ConfigMaps | 43

Secrets
Kubernetes provides the Secrets construct for dynamic injection of
sensitive information into containers. As a best practice, sensitive
information such as user identification, passwords, and security
tokens should not be bundled directly into container images,
because this provides a greater opportunity for this sensitive infor‐
mation to be compromised. Instead, you should dynamically inject
sensitive information into containers in a Pod by using the Secrets
construct.

The Secrets construct works in a fashion that is very analogous to
ConfigMaps. Similar to ConfigMaps, you first create a Secret. After
you’ve created the Secret, Pods provide mechanisms to inject the
sensitive information that is stored in the Secret into a running con‐
tainer process. As an example, let’s assume that you have a username
and password that is needed by your container, and that the user‐
name is admin and the password is letbradin. To create a Secret
representing this information, you store both pieces of information
as text files and run the kubectl create secret command, as fol‐
lows:

$ echo -n “admin” > username.txt
$ echo -n “letbradin” > password.txt
$ kubectl create secret generic webserver-credentials
--from-file=./username.txt --
from-file=./password.txt

After you’ve created the Secret, there are two general ways for using
it: creating a file for each key value, and setting environment vari‐
ables.

Secret Keys as Files
With the Secret-keys-as-files approach, a file is created with the
name of the key as its filename, and the file will contain the value of
the Secret represented by the key. You use volumeMounts to mount
these files, and the sensitive data contained in the Secret is accessed
through a Volume. The following example illustrates this Secret
approach:

apiVersion: v1
kind: Pod
metadata:
 name: secretexample-volume

44 | Chapter 3: Advanced Kubernetes Topics

spec:
 containers:
 - name: secretexample-volume
 image: busybox
 command: ["/bin/sh", "-c", "ls /etc/bt_config ; cat
/etc/bt_config/web_password ; echo"]
 volumeMounts:
 - name: secret-volume
 mountPath: /etc/bt_config
 imagePullPolicy: IfNotPresent
 volumes:
 - name: secret-volume
 secret:
 secretName: webserver-credentials
 items:
 - key: password.txt
 path: web_password
 - key: username.txt
 path: web_username

Here, a Volume named secret-volume is created by referencing a
Secret named webserver-credentials. Note that this is the name of
the Secret created at the beginning of this section. You then use a
volumeMount to mount the secret-volume with a mountPath

of /etc/bt_config. With this mounting defined, the keys from the
Secret are stored as files in /etc/bt_config. To demonstrate that the
preceding example does in fact create these files, a command option
has been added that overrides the default command provided by the
container image. The new command option prints the contents of
the /etc/bt_config directory to show that the key files were indeed
created. The command also prints the contents of the /etc/
bt_config/web_password file to prove that it really contains the
value letbradin.

To run this example, save the file as secretPod-volume.yaml. Make
sure that you have already created the webserver-credentials
Secret, as described at the beginning of this section. When you’ve
done these steps, you can run the example by doing the following:

$ kubectl apply -f secretPod-volume.yaml

To view the output from the container, use the kubectl logs <pod
Name> command, as follows:

$ kubectl logs secretexample-volume

You should then see the following output confirming that the keys
were created:

Secrets | 45

web_password
web_username
"letbradin"

To delete the Pod that you just created, run the following command:

$ kubectl delete pod secretexample-volume

Secret Keys as Environment Variables
With the Secret-keys-as-environment variables approach, the keys
are stored as environment variables, and the sensitive values they
represent are stored as the values of the environment variables. An
env section is added to the container portion of the Pod YAML. The
following example illustrates the environment variable–based
approach for accessing Secret data:

apiVersion: v1
kind: Pod
metadata:
 name: secretexample
spec:
 containers:
 - name: secretexample
 image: busybox
 command: ["/bin/sh", "-c", "echo user name: $(USER)
 password: $(PASS) "]
 env:
 - name: USER
 valueFrom:
 secretKeyRef:
 name: webserver-credentials
 key: username.txt
 - name: PASS
 valueFrom:
 secretKeyRef:
 name: webserver-credentials
 key: password.txt

Note that an env section has been added to the containers section.
The env section declares two keys: USER and PASS. Each of these will
be environment variables that are created. The USER environment
variable is assigned the value stored in username.txt of the
webserver-credentials Secret using the valueFrom and secret
KeyRef constructs. In a similar fashion, the PASS environment vari‐
able receives the value from password.txt in the webserver-
credentials Secret. As shown in the preceding example, you can
use the environment variables USER and PASS in the command that

46 | Chapter 3: Advanced Kubernetes Topics

is run by the container image. To illustrate this, the above example
prints the values for USER and PASS when the container runs the
command line provided in this example.

To run the example, save the file as secretPod-env.yaml. Make sure
that you have already created the webserver-credentials Secret, as
described at the beginning of this section. When you’ve completed
these steps, you can run the example by doing the following:

$ kubectl apply -f secretPod-env.yaml

To view the output from the container, use the kubectl logs <pod
Name> command, as follows:

$ kubectl logs secretexample

You should then see the following output confirming that the keys
were created:

user name: "admin" password: "letbradin"
$

To delete the Pod that you just created, run the following command:

$ kubectl delete pod secretexample

We Aren’t Done Yet: Securing Your Secrets!
Here’s a very critical safety tip that we must mention:
the default in Kubernetes is that secrets are encoded
but not encrypted. To truly secure your secrets, we
strongly recommend that you enable encryption of
your secrets. This topic is beyond the scope of this
book.

Image Registry
We’ve focused all of our attention thus far on the declarative resour‐
ces for Kubernetes—but where are containers in all of this?

You’ve already seen images referenced by the Pod:

...
 image: nginx:1.7.9
 ...

But what is this statement? Let’s break it down. Every image refer‐
ence follows the form repository:tag. Let’s take a look at each of
these:

Image Registry | 47

http://bit.ly/2ORsavt
http://bit.ly/2ORsavt

repository
The repository reflects the logical name of an image. Typical
examples include nginx, ubuntu, or alpine. These repositories
are shorthand for docker.io/nginx, docker.io/ubuntu, and
docker.io/ubuntu. The Docker runtime knows to request the
bytes for these layers from the Docker Registry. You can also
store images in your own registry.

tag
This is a label that denotes a particular version. Tags can follow
any pattern that works for your delivery process. We recom‐
mend adopting semver, Git commit hashes, or a combination of
the two. You will also find the convention to use latest to denote
the most recent version available.

An actual image layer can have multiple tags and can be even be ref‐
erenced by multiple repository:tag combinations at the same time.

As you create a Continuous Integration/Continuous Delivery
(CICD) pipeline, you will be building images for all of the changes
to your application source code. Each image then is tagged and
pushed into an image registry, which your Kubernetes cluster can
access. Some options for private image registries include the follow‐
ing:

JFrog Artifactory
Artifactory is an artifact management tool. Artifactory supports
repositories for things like Java libraries (*.jar, *.war, *.ear) or
node modules along with your container images. Artifactory
offers both an open source and commercial version. With it,
you can extend your usage from build artifacts to Docker
images. You can deploy Artifactory via Helm charts in your
Kubernetes cluster as well, such as into your own IBM Cloud
Private Kubernetes cluster.

IBM Cloud Container Registry
An IBM-managed private container registry.

IBM Cloud Private built-in cluster registry
A built-in container registry available by default in your on-
premises Kubernetes cluster and tied to the same Role-Based
Access Control (RBAC) used for Namespaces.

48 | Chapter 3: Advanced Kubernetes Topics

https://index.docker.io/v1/
https://semver.org
https://jfrog.com/artifactory/
https://www.ibm.com/cloud/container-registry
https://www.ibm.com/cloud/private

Docker Hub
Default source registry used by the Docker runtime if no
explicit registry host is provided.

For Kubernetes to access an image registry, you must create an
Image Pull Secret. Image Pull Secrets store the credentials to access a
particular image registry. A Pod might specify its Image Pull Secret
to enable the container runtime to pull the image to the host where
the Pod is running. Alternatively, you can store the Image Pull
Secret such that any Pod deployed within a given Namespace has
access to the same image registry. Chapter 4 presents an example of
this and also provides an overview of Namespaces and how to use
them.

Helm
We’ve talked about many kinds of Kubernetes resources that often
work in concert to deliver a complete application. When you want
to change values dynamically as part of a packaging or build step,
there is no built-in way to override parameter values on the com‐
mand line without editing the file. Helm is the Kubernetes package
manager that enables you to create a package containing multiple
templates for all of the resources that make up your application.
Common Kubernetes resources that you would expect to find
included in a Helm package are ConfigMaps, Deployments, Persis‐
tentVolumeClaims, Services, and many others.

A collection of templates is called a Helm chart. Helm provides its
own command-line interface (helm) to deploy a chart and provide
options for parameter values, either via command line or a single
file named values.yaml by convention.

IBM Cloud Private includes a rich catalog of Helm charts (see
Figure 3-1), which is available in the community edition, as well as
commercially supported versions.

Helm | 49

https://github.com/helm/helm
http://bit.ly/catalog-docs

Figure 3-1. IBM Cloud Private provides a rich catalog of content,
delivered as Helm charts. Users can consume community charts or add
their own.

For users of IBM Cloud Kubernetes Service, you will find Helm con‐
tent easily browsable via the Solutions > Helm section of the User
Interface, as depicted in Figure 3-2.

Figure 3-2. IBM Cloud Kubernetes Service exposes Helm charts in the
catalog as well as providing a consistent packaging and deployment
capability for private and public clusters.

You can also take advantage of a broad range of community changes
from KubeApps. Figure 3-3 shows a snapshot of the KubeApps cata‐
log.

50 | Chapter 3: Advanced Kubernetes Topics

http://bit.ly/2DBkEUg
http://bit.ly/2DBkEUg
http://bit.ly/2DBkEUg
https://hub.kubeapps.com/

Figure 3-3. The kubeapps.com catalog provides a community-driven
way to create and distribute Helm charts for any Kubernetes applica‐
tion.

Chapter 4 provides examples of Helm charts for supporting middle‐
ware. You can also create Helm charts for your own applications, but
that is beyond the scope of this book.

Next Steps
At this point we have covered a considerable amount of the key con‐
structs and high-level abstractions that Kubernetes provides. In
Chapter 4, we explore the creation of an enterprise-level production
application.

Next Steps | 51

http://kubeapps.com

CHAPTER 4

Introducing Our
Production Application

In this chapter, we provide several examples that walk you through
running an enterprise-quality application on Kubernetes. We begin
with a discussion about microservices in Kubernetes. We then intro‐
duce several important concepts, explaining each one as we go.

We invite you to prepare your own cluster to run these examples
yourself. We explain a few options for running your own Kubernetes
cluster and configuring your command-line interface (CLI) in
Appendix A.

Our First Microservice
Lao Tzu is credited with the saying, “A journey of a thousand miles
begins with one step.” So it is with microservices. Let’s dig in on our
first microservice by building an example end to end. We will then
expand to a complete application.

We recommend two foundational learning resources for building
great microservices: Twelve-Factor Apps, and Stability and Availa‐
bility Patterns described in the book Release It!.

Each factor in The Twelve-Factor manifesto isolates one aspect of
building scalable, manageable microservices. Characteristics such as
declarative format and separation of concerns are emphasized.

53

https://12factor.net/
https://pragprog.com/book/mnee2/release-it-second-edition
https://12factor.net

One of the Twelve Factors that enables scalable web services is the
externalization of configuration via the process environment. Many
aspects of Kubernetes can be directly mapped back to Twelve-Factor
principles. For example, as you’ve already seen in Chapter 3, Kuber‐
netes defines ConfigMaps and Secrets to provide configuration to
your app. Configuration data can take the form of process environ‐
ment variables, configuration files, or even Transport Layer Security
(TLS) certificates and keys.

A microservice is only as good as its dependencies; or, more pre‐
cisely, as good as how it anticipates and responds to failures within its
dependencies. If you are new to building microservices, we strongly
recommend reading Release It!, which introduces design patterns
such as Circuit Breaker, Bulkhead, Fail Fast, and Timeouts. Each of
these patterns focuses on addressing distributed systems behaviors
like chain reactions, cascading failures, and Service-Level Agree‐
ment (SLA) inversion. Each of these failure patterns is the result of
nested dependencies of microservices upon microservices upon
other microservices. The corresponding availability and stability
patterns (Circuit Breaker, Bulkhead, Fail Fast, etc.) are pragmatic,
language-agnostic approaches to responding gracefully with service
degradation rather than complete system outage.

We will now use an application built to demonstrate many aspects of
containerized applications, known as StockTrader. You can browse
the source code for this application at this book’s GitHub page.

Our portfolio application connects to several other services, includ‐
ing a database, messaging service, and other microservices. We take
advantage of various resources from Kubernetes to implement this
application. We’ve already talked about the declarative model of
Kubernetes. Let’s talk through the moving parts and then dig into
the details of how we apply a declarative model for our Stock Trader
application.

We are going to build our portfolio end to end, starting with ready-
to-go source code, building an image, and deploying the container
with Kubernetes. We’ll configure its dependencies and reuse images
for its dependent services which are already published and available
on DockerHub.

All of our containers are deployed as Pods. How these Pods are
managed by Kubernetes will be determined by their orchestration
controller. For instance, a Deployment creates a ReplicaSet, which

54 | Chapter 4: Introducing Our Production Application

https://martinfowler.com/bliki/CircuitBreaker.html
http://bit.ly/2zz7bbm
https://github.com/kubernetes-in-the-enterprise

expects stateless Pods; any failed Pod will be immediately resched‐
uled until the desired number of replicas are observed as Ready by
Kubernetes. A StatefulSet creates Pods in an orderly fashion. Each
Pod is expected to hold a partial or complete replica of data; so new
Pods are scheduled only as existing Pods become Ready. Deploy‐
ments are used for any Twelve-Factor microservice. As you’ve
guessed, StatefulSets are used for data, messaging, and caching serv‐
ices. Of course, our StatefulSet Pods will also mount storage via Per‐
sistentVolumes.

Microservices consume dependencies in Kubernetes via Services,
which offer a Domain Name System (DNS)-resolvable name that
will be serviced by one or more Endpoints. Alternative service regis‐
tration and discovery frameworks such as Netflix OSS Eureka or
Consul can be used as well, but let’s focus on what comes out of the
box.

Namespaces
A Namespace in Kubernetes allows you to define isolation for
microservices. You can create a Namespace through YAML or the
command line. The following is a simple YAML file that describes
the stock-trader Namespace resource used by our Stock Trader
application:

apiVersion: v1
kind: Namespace
metadata:
 name: stock-trader

To create the stock-trader Namespace, save the preceding example
as namespace.yaml and then apply the document using kubectl
apply:

$ kubectl apply -f namespace.yaml

Alternatively, you can use kubectl create to create the Namespace
and thus skip the use of the YAML declaration:

$ kubectl create namespace stock-trader

You can always select the namespace when running commands
using the flag --namespace=[ns] or -n=[ns]. Alternatively, you
can update the default namespace used for all commands by updat‐
ing your context:

Namespaces | 55

http://bit.ly/15Co2I7
https://www.consul.io

$ kubectl config set-context $(kubectl config current-context) \
 --namespace=stock-trader

Kubernetes groups many of the concepts discussed earlier into
Namespaces. Namespaces allow you to isolate applications on your
cluster. With this isolation, you can control the following:

Role-Based Access Control (RBAC)
Defines what users can view, create, update, or delete within the
Namespace. We get into more details about how RBAC works in
Kubernetes in just a bit.

Network policies
Defines isolation to tightly manage incoming network traffic
(network ingress) and outgoing network traffic (network
egress) communication between Pods.

Quota management
Controls the resources allowed to be consumed by Pods within
the Namespace. Controlling quota allows you to ensure that
some teams do not overwhelm the capacity available within the
cluster.

Workload isolation by node
Namespaces can work with Admission Controllers to limit Pods
to running on specific nodes in your cluster.

Workload readiness or provenance
Namespaces can work with Admission Controllers to allow only
certain images (by whitelisting, image signatures, etc.) from
running in the context of the Namespace.

ServiceAccount
When you interact with your cluster, you often represent yourself as
a user identity. In the world of Kubernetes, you build intelligence
into the system to help it interact with its world. Many times, Pods
might use the Kubernetes API to interact with other parts of the sys‐
tem or to spawn work like Jobs. When we deploy a Pod, it might
interact with PersistentVolumes, the host filesystem, the host net‐
working, or be sensitive to what operating system (OS) user it is
given access to use for filesystem access. In most cases, you want to
restrict the default permissions for a given Pod from doing anything
more than the absolute basics. Basically, the less surface area that a

56 | Chapter 4: Introducing Our Production Application

http://bit.ly/2ztKrJM

1 “Configuring pod security policies”, IBM Cloud documentation.

Pod is given access to in the cluster, the host OS, the networking
layer, and your storage layer, the fewer attack vectors there will be
that can be exploited.

For a Pod to interact with the system, it is assigned a ServiceAc‐
count. Think of this like a functional identity. ServiceAccounts are
subjects that can authenticate with the system via tokens and that
are authorized for certain behaviors.

We introduce this topic now because we create a ServiceAccount
shortly as part of our Namespace.

PodSecurityPolicy
When Pods are deployed into a Namespace, the ServiceAccount
affords them various privileges. A PodSecurityPolicy controls what
privileges are allowed. We will demonstrate how a PodSecurityPolicy
grants a container special OS permissions, including restricting spe‐
cific Linux kernel capabilities with the potential for very fine-
grained controls based on your organization’s security standards.

As we deploy our database, we will create a PodSecurityPolicy to be
used by a particular ServiceAccount to ensure that our database has
the required permissions to run in a container.

For users of IBM Cloud Kubernetes Service, you will find that Pod‐
SecurityPolicy is enabled by default. There are privileged-psp-
user and restricted-psp-user PodSecurityPolicy options, as well
as corresponding RBAC included in all clusters.1

Deploying a Containerized Db2 Database as a
StatefulSet
To save our portfolio data, let’s deploy a database. IBM Db2 is a
battle-tested, scalable, multiplatform database designed for mission-
critical workloads. We will deploy Db2 as a container. Our Db2 ser‐
vice will run as a StatefulSet, with a mounted PersistentVolume to
store its data. Any time the Pod or worker node fails, the Kubernetes
scheduler will automatically reschedule the Pod onto another

PodSecurityPolicy | 57

http://bit.ly/2zB1olN

healthy node. To ensure that our underlying storage is also highly
available, we use a distributed file system called GlusterFS.

For more information about GlusterFS and persistence
for containers, see Chapter 7.

In this section, we demonstrate how to isolate the Db2 database con‐
tainer from other containers in its own Namespace. We discuss
alternative deployment paths for Db2 on Kubernetes in a devWorks
recipe. We then define the permissions that are granted when it
runs. Next, we define a Service to make the database available to
Pods in our application Namespace.

The examples referenced in this section are available on GitHub.
You can clone these examples locally using the following command:

$ git clone https://github.com/kubernetes-in-the-enterprise/
portfolio-database.git

Db2 is packaged as a Helm chart. Think of a Helm chart as a fast
way to create several parts of a Kubernetes application in one fell
swoop (for more information on Helm charts, see Chapter 3). Here’s
what we are about to do:

1. Create a Namespace to protect our database containers.
2. Configure a Secret to store credentials to access a remote image

registry (Docker Store) to pull the free Db2 image into our clus‐
ter.

3. Configure the PodSecurityPolicy for our Namespace to allow
certain permissions for our database container.

4. Configure the ServiceAccount for the Namespace to include the
image pull Secret and use the PodSecurityPolicy.

5. Configure the Helm Repository for our client to deploy the
chart into our cluster.

Creating the Namespace for the database
Creating a Namespace allows us to specify custom security policies
for your database. We may also choose to later restrict the incoming
or outgoing network communication for Pods deployed in the
Namespace. Furthermore, we might want to define a quota for the

58 | Chapter 4: Introducing Our Production Application

https://ibm.co/2QbQfNK
https://ibm.co/2QbQfNK

Namespace to ensure that our database is given preferential treat‐
ment by the cluster for available capacity. Let’s look at the code to do
this:

$ kubectl create namespace stock-trader-data
$ kubectl config set-context $(kubectl config current-context)\
 --namespace=stock-trader-data

Creating a Custom PodSecurityPolicy for the Database
ServiceAccount
Our Db2 container requires a few additional capabilities that are
typically restricted by default. Let’s now create a PodSecurityPolicy
that we will make available to the ServiceAccount in our stock-
trader-data Namespace.

You can think of a PodSecurityPolicy as the “house rules” for a con‐
tainer. When the Pod is launched, it is matched to a PodSecurityPo‐
licy, which governs all containers that are a part of the Pod. As
shown in the code example that follows, we create the following pol‐
icy that prevents privileged execution but allows privileged escala‐
tion, allows access to various kinds of Volumes, and applies
restrictions to what users and groups may be used as the identity for
our container. These rules help reduce the surface area for attacks
that could be used by a malicious container to gain access to the
host.

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: db2-privileges
spec:
 privileged: false
 allowPrivilegeEscalation: true
 allowedCapabilities:
 - 'SYS_RESOURCE'
 - 'IPC_OWNER'
 - 'SYS_NICE'
 hostIPC: true
 hostNetwork: false
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 - 'persistentVolumeClaim'

Deploying a Containerized Db2 Database as a StatefulSet | 59

 runAsUser:
 rule: 'RunAsAny'
 seLinux:
 rule: 'RunAsAny'
 seLinux:
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 fsGroup:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535

In this policy, we also grant specific capabilities that we will allow
specifically for Db2. If we allowed the container to run as privileged,
it would have access to all capabilities offered by the Linux kernel.
Here, we reduce the list to only that which is required.

To understand all of the available capabilities to the Linux kernel,
consult the manual page for capabilities on your own OS or at the
Linux man page.

We apply the security policy with our favorite command, kubectl
apply. Unlike most of the resources we’ve discussed so far, the Pod‐
SecurityPolicy is cluster scoped. As a result, there is no need to spec‐
ify a Namespace in the document or the command:

$ kubectl apply -f db2-pod-security-policy.yaml
podsecuritypolicy.policy "db2-privileges" created

$ kubectl get psp
NAME DATA CAPS \
SELINUX RUNASUSER
FSGROUP SUPGROUP READONLYROOTFS VOLUMES
db2-privileges false SYS_RESOURCE,IPC_OWNER,SYS_NICE \
RunAsAny RunAsAny
MustRunAs MustRunAs false
configMap,emptyDir,projected,secret,downwardAPI,\
persistentVolumeClaim
default false \
RunAsAny
MustRunAsNonRoot MustRunAs MustRunAs false
configMap,emptyDir,projected,secret,downwardAPI,\
persistentVolumeClaim
privileged true * \

60 | Chapter 4: Introducing Our Production Application

http://man7.org/linux/man-pages/man7/capabilities.7.html

RunAsAny RunAsAny
RunAsAny RunAsAny false *

Creating an Image Pull Secret to Access the Db2
Container Image
In most environments, you will use a private image registry, which
makes all of your images available. To enable Kubernetes to pull
your images, you create a special kind of Secret known as an Image
Pull Secret. These types of Secrets follow a particular structure and
define your credentials to access your image registry. When the Pod
is launched on a host, the Image Pull Secret provides the container
runtime with the necessary access to pull the image from the regis‐
try before the container is started.

Db2 is made available to developers via the Docker Store. You can
visit the Docker Cloud to subscribe to Db2 (at no charge).

After you’ve subscribed to this free image, you can create the neces‐
sary Image Pull Secret to enable your cluster to access the image.
You can either use your password or generate an API key.

For instructions on how to create an API key, see
Appendix D.

$ kubectl create secret docker-registry dockerhub \
 --docker-username=<userid> \
 --docker-password=<API key or user password> \
 --docker-email=<email> \
 --namespace=stock-trader-data

Creating the Namespace also creates the ServiceAccount. We now
associate the Image Pull Secret with the ServiceAccount using the
patch command on kubectl. The patch command accepts a snip‐
pet of JSON and applies it to the target object.

The following command updates the default ServiceAccount in
our stock-trader-data Namespace to use Image Pull Secret docker
hub:

$ kubectl patch --namespace=stock-trader-data serviceaccount \
default -p '{ "imagePullSecrets": [{"name": "dockerhub"}]}'

$ kubectl describe serviceaccount default
Name: default
Namespace: stock-trader-data

Deploying a Containerized Db2 Database as a StatefulSet | 61

https://dockr.ly/2Qfdsi9

Labels: <none>
Annotations: <none>
Image pull secrets: dockerhub
Mountable secrets: default-token-7qvqq
Tokens: default-token-7qvqq
Events: <none>

Configuring the ServiceAccount to use the
PodSecurityPolicy and the Image Pull Secret
Be sure that you are still using the stock-trader-data Namespace:

$ kubectl config set-context $(kubectl config current-context) \
 --namespace=stock-trader-data

All Namespaces come with a default ServiceAccount. Recall that a
ServiceAccount provides a functional identity that is used by Pods to
interact with the rest of the cluster. Just like a user, ServiceAccounts
are assigned to roles that allow them to interact with the Kubernetes
API.

Let’s create a ClusterRole that allows access to our PodSecurityPo‐
licy. The ClusterRole is part of Kubernetes RBAC. In general, roles
define a set of verbs, resources types, and resources. When a user
identity or ServiceAccount is assigned to a role, it will be able to exe‐
cute the verbs (API invocations) against the resource types or spe‐
cific resources. ClusterRoles are described in more detail in
Chapter 7.

We also create the ClusterRoleBinding, which associates the Clus
terRole with our specific ServiceAccount in the stock-trader-
data Namespace. Notice that we have used the “---” separator at
the top of the file and between them to denote multiple objects in a
single file:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: db2-privileges-cluster-role
rules:
- apiGroups: ['policy']
 resources: ['podsecuritypolicies']
 verbs: ['use']
 resourceNames: ['db2-privileges']

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1

62 | Chapter 4: Introducing Our Production Application

metadata:
 name: db2-privileges-cluster-role-binding
roleRef:
 kind: ClusterRole
 name: db2-privileges-cluster-role
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: default
 namespace: stock-trader-data

We can apply both objects in a single command:

$ kubectl apply -f db2-pod-security-policy-cluster-role.yaml

clusterrole.rbac.authorization.k8s.io "db2-privileges-cluster\
-role" configured
clusterrolebinding.rbac.authorization.k8s.io "db2-privileges-\
cluster-role-binding"
created

The default ServiceAccount in the stock-trader-data Namespace
is now authorized to use the PodSecurityPolicy db2-privileges cre‐
ated in the preceding example.

Deploying Our Database
A Helm Repository collects a set of charts to be available for deploy‐
ment. For this example, we are using the public IBM Helm Reposi‐
tory for charts. When you configure Helm, you need to add the
definition of this repository, as shown here:

$ export HELM_HOME=~/.helm
$ helm repo add ibm-charts \
 https://raw.githubusercontent.com/IBM/charts/master/repo/
 stable/
$ helm repo update

Each Helm chart exposes a set of parameters. For Db2, we just need
to provide the expected size of our persistent store, the name of our
storage class, and options for the Db2 instance and database names.

Most of these values will be the same for any Kubernetes cluster that
you use. However, the value for the storageClassName will vary
based on your environment. Here, we are using an IBM Cloud Pri‐
vate cluster with GlusterFS deployed, with a storage class named
glusterfs. On IBM Cloud Kubernetes Service, consider using the
ibmc-block-gold StorageClass.

Deploying a Containerized Db2 Database as a StatefulSet | 63

With the Db2 Helm chart, you can choose to configure the database
in one of two modes:

• StatefulSet with a single Pod, with mounted persistent storage.
Under this configuration, if the Pod becomes unhealthy or the
node fails, a new Pod will be scheduled onto a healthy node, and
the original PersistentVolume will be remounted into the con‐
tainer. No data should be lost that was already committed to
disk.

• StatefulSet with two Pods, configured for High Availability/
Disaster Recovery (HADR), with mounted persistent storage.
Under this configuration, both Pods maintain an active replica
of the database. Placement rules will ensure that the Pods are
scheduled and deployed on separate hosts. To support the elec‐
tion of a primary database replica, a second StatefulSet is auto‐
matically configured for etcd, a distributed key–value store. If
either Pod experiences a failure, the remaining Pod will detect
that the primary replica has become unhealthy and use the
warm backup of the database to provide continuity of service
for incoming requests.

Let’s begin with the single-Pod StatefulSet. Here, we configure the
Helm chart with the database instance name, password, and create a
default database named STRADER:

$ kubectl config set-context $(kubectl config current-context) \
 --namespace=stock-trader-data>

$ export HELM_HOME=~/.helm>

Optionally, fetch the chart prior to installing it
$ helm fetch ibm-charts/ibm-db2oltp-dev

$ helm install --name stocktrader-db2 ibm-charts/ibm-db2oltp-dev \
 --tls \
 --set db2inst.instname=db2inst1 \
 --set db2inst.password=ThisIsMyPassword \
 --set options.databaseName=STRADER \
 --set peristence.useDynamicProvisioning=true \
 --set dataVolume.size=20Gi \
 --set dataVolume.storageClassName=glusterfs

64 | Chapter 4: Introducing Our Production Application

https://coreos.com/etcd/docs/latest/

2 IBM Db2 11.1 Kernel Parameter Minimums for Interprocess Communication.

To run Db2 in the HADR configuration, you might
need to make additional updates to your worker nodes.
As a highly optimized database, special considerations
to the Linux kernel parameters are made for best per‐
formance. You might need to validate or update these
settings according to the documentation.2

We can configure the database with HADR support by setting the
flag hadr.enabled=true. Setting this flag causes the Helm chart to
configure additional resources including a StatefulSet for etcd (a dis‐
tributed key–value store) and run additional configuration as the
container starts up:

$ kubectl config set-context $(kubectl config current-context) \
 --namespace=stock-trader-data

$ export HELM_HOME=~/.helm

Optionally, fetch the chart prior to installing it
$ helm fetch ibm-charts/ibm-db2oltp-dev

$ helm install --name stocktrader-db2 ibm-charts/ibm-db2oltp\
-dev
 --tls \
 --set db2inst.instname=db2inst1 \
 --set db2inst.password=ThisIsMyPassword \
 --set options.databaseName=STRADER \
 --set peristence.useDynamicProvisioning=true \
 --set dataVolume.size=2Gi \
 --set hadr.enabled=true \
 --set hadr.useDynamicProvisioning=true \
 --set dataVolume.storageClassName=glusterfs \
 --set hadrVolume.storageClassName=glusterfs \
 --set etcdVolume.storageClassName=glusterfs

NAME: stocktrader-db2
LAST DEPLOYED: [...]
NAMESPACE: stock-trader-data
STATUS: DEPLOYED

RESOURCES:
==> v1/Service
NAME TYPE CLUSTER-IP \
EXTERNAL-IP PORT(S)
AGE

Deploying a Containerized Db2 Database as a StatefulSet | 65

https://ibm.co/2MczMex

stocktrade-ibm-db2oltp-dev-db2 NodePort 10.0.0.95 <none>
50000:31187/TCP,55000:31392/TCP 2s
stocktrade-ibm-db2oltp-dev ClusterIP None <none>
50000/TCP,55000/TCP,60006/TCP,60007/TCP 2s
stocktrade-ibm-db2oltp-dev-etcd ClusterIP None <none>
2380/TCP,2379/TCP 2s

==> v1beta2/StatefulSet
NAME DESIRED CURRENT AGE
stocktrade-ibm-db2oltp-dev 2 2 2s
stocktrade-ibm-db2oltp-dev-etcd 3 3 2s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
stocktrade-ibm-db2oltp-dev-0 0/1 Pending 0 1s
stocktrade-ibm-db2oltp-dev-1 0/1 Pending 0 1s
stocktrade-ibm-db2oltp-dev-etcd-0 0/1 Pending 0 1s
stocktrade-ibm-db2oltp-dev-etcd-1 0/1 Pending 0 1s
stocktrade-ibm-db2oltp-dev-etcd-2 0/1 Pending 0 1s

==> v1/Secret
NAME TYPE DATA AGE
stocktrade-ibm-db2oltp-dev Opaque 1 2s

==> v1/PersistentVolumeClaim
NAME STATUS VOLUME CAPACITY ACCESS \
MODES STORAGECLASS AGE
stocktrade-hadr-stor Pending glusterfs 2s

NOTES:
1. Get the database URL by running these commands:
 export NODE_PORT=$(kubectl get --namespace stock-trader- \
 data -o jsonpath="{.spec.ports[0].nodePort}" \
services stocktrade-ibm-db2oltp-dev)

 export NODE_IP=$(kubectl get nodes --namespace \
 stock-trader-data -o \
 jsonpath="{.items[0].status.addresses[0].address}")

 echo jdbc:db2://$NODE_IP:$NODE_PORT/sample

Regardless of which configuration you choose, you should find mes‐
sages in the logs of the container indicating that our database,
STRADER, was created:

...
(*) User chose to create STRADER database
(*) Creating database STRADER ...
DB20000I The CREATE DATABASE command completed successfully.
DB20000I The ACTIVATE DATABASE command completed successfully.

66 | Chapter 4: Introducing Our Production Application

08/14/2018 01:54:14 0 0 SQL1026N The database manager \
is already active.
SQL1026N The database manager is already active.
Enabling LOGARCHMETH1

 Database Connection Information

 Database server = DB2/LINUXX8664 11.1.3.3
 SQL authorization ID = DB2INST1
 Local database alias = STRADER

DB20000I The UPDATE DATABASE CONFIGURATION command completed \
successfully.
...

We have now deployed our database container. In the next section,
we describe how to enable applications running in other Namespa‐
ces to discover and connect to our database service.

Connecting to Our Database from Other Namespaces
For our portfolio microservice to connect to the database, we are
relying on Kubernetes’ built-in service registration and discovery
based on DNS. Our Db2 Helm chart created a Kubernetes Service
resource. All Kubernetes Services can be resolved via DNS by the
name of the Service.

In this example, we named our Db2 Helm Release stocktrader-
db2. Our Service name in the stock-trader-data Namespace is
stocktrade-ibm-db2oltp-dev. Our portfolio microservice will be
deployed in the stock-trader Namespace, so we will also define a
second Service in the stock-trader Namespace that references the
Service in the stock-trader-data Namespace. Figure 4-1 illustrates
these Services and their respective Namespaces.

Deploying a Containerized Db2 Database as a StatefulSet | 67

Figure 4-1. The database from stock-trader-data is exposed within
stock-trader-data but aliased from stock-trader with an Exter‐
nalName Service.

In essence, we are creating an alias near our application (in the
stock-trader Namespace) which we redirect to the Db2 Service in
its own Namespace (stock-trader-data). As shown in Figure 4-1,
the original Service created by the deployment of the Db2 Helm
chart was created within the Namespace. Let’s now create a second
Service, within the application’s Namespace, which acts as an alias to
reference the original. This useful technique lets you isolate micro‐
services or collections of microservices in their Namespace but still
allow access from consumers in other Namespaces. Interestingly,
this approach still keeps all network access to these backend micro‐
services isolated from external access.

kind: Service
apiVersion: v1
metadata:
 name: stocktrade-ibm-db2oltp-dev
 namespace: stock-trader
 labels:
 app: stocktrade-ibm-db2oltp-dev
spec:
 type: ExternalName
 externalName: stocktrade-ibm-db2oltp-dev.stock-trader-data \

68 | Chapter 4: Introducing Our Production Application

 .svc.cluster.local
 ports:
 - port: 50000

Create the Service in the stock-trader Namespace:

$ kubectl --namespace=stock-trader apply -f db2-service.yaml

You can now view both services by filtering by the label
app=stocktrade-ibm-db2oltp-dev:

$ kubectl get svc -l app=stocktrade-ibm-db2oltp-dev \
--all-namespaces
NAMESPACE NAME TYPE \
CLUSTER-IP
EXTERNAL-IP \
PORT(S)
AGE
stock-trader-data stocktrade-ibm-db2oltp-dev \
ClusterIP None
<none>
50000/TCP,55000/TCP,60006/TCP,60007/TCP 1h

stock-trader-data stocktrade-ibm-db2oltp-dev-db2 NodePort \
10.0.0.208 <none>
50000:30567/TCP,55000:30057/TCP 1h

stock-trader stocktrade-ibm-db2oltp-dev ExternalName \
<none> stocktrade-ibm-db2oltp-dev.stock-
trader-data.svc.cluster.local 50000/TCP 6s

Populating Our Database with Application Schema
Now that our database is running, let’s populate it with some appli‐
cation tables.

We will use a Kubernetes Job to configure the database. You can use
Kubernetes Jobs for batch processing for all kinds of compute work‐
loads, and they also serve as a useful tool for maintenance activities
within a cluster. We use a Job, instead of kubectl exec, to run com‐
mands because it allows us to save our changes as source code and
track updates along with the rest of the application.

Our Job resource reuses the same image as the actual database con‐
tainer. A ConfigMap is attached to a Volume to mount several
scripts into the Job for execution. When the Job starts, the com‐
mand executes these scripts and updates the database.

You can browse this file in the GitHub repository for this book.

Deploying a Containerized Db2 Database as a StatefulSet | 69

http://bit.ly/2Oieah7

apiVersion: batch/v1
kind: Job
metadata:
 name: create-database-schema
spec:
 template:
 spec:
 containers:
 - name: create-database-schema
 image: store/ibmcorp/db2_developer_c:11.1.3.3a-x86_64
 command: ["/bin/sh","-c","/scripts/db2-setup.sh"]
 volumeMounts:
 - name: db2-createschema
 mountPath: /scripts
 securityContext:
 capabilities:
 add: ["SYS_RESOURCE", "IPC_OWNER", "SYS_NICE"]
 env:
 - name: LICENSE
 value: "accept"
 - name: DB2INSTANCE
 value: db2inst1
 - name: DB2INST1_PASSWORD
 valueFrom:
 secretKeyRef:
 name: stocktrade-ibm-db2oltp-dev
 key: password
 - name: DB2_SERVICE_NAME
 value: stocktrade-ibm-db2oltp-dev
 - name: DBNAME
 value: strader
 restartPolicy: Never
 volumes:
 - name: db2-createschema
 configMap:
 name: db2-createschema
 defaultMode: 0744
 backoffLimit: 1

apiVersion: v1
data:
 db2-setup.sh: |
 #!/bin/sh
 export SETUPDIR=/var/db2_setup
 source ${SETUPDIR?}/include/db2_constants
 source ${SETUPDIR?}/include/db2_common_functions

 if ! getent passwd ${DB2INSTANCE?} > /dev/null 2>&1; then
 echo "(*) Previous setup has not been detected. \
 Creating the users... "
 create_users

70 | Chapter 4: Introducing Our Production Application

 fi
 if ! create_instance; then
 exit 1
 fi
 start_db2
 cp /scripts/db2-createschema.sh /database/db2- \
 createschema.sh
 chmod +x /database/db2-createschema.sh
 su - $DB2INSTANCE-c "/database/db2-createschema.sh \"$DB2_
 SERVICE_NAME\"
\"$DB2INSTANCE\" \"$DB2INST1_PASSWORD\" \"$DBNAME\""
 db2-createschema.sh: |
 #!/bin/sh
 DB2_SERVICE_NAME=$1
 DB2INSTANCE=$2
 DB2INST1_PASSWORD=$3
 DBNAME=$4
 echo "Configure schema for database \"$DBNAME\" on host
 \"$DB2_SERVICE_NAME\"."
 db2 "catalog tcpip node TRADERDB remote $DB2_SERVICE_NAME
 server 50000"
 db2 "catalog db $DBNAME as $DBNAME at node TRADERDB"
 db2 terminate
 db2 "activate database $DBNAME"
 db2 "connect to $DBNAME user $DB2INSTANCE using $DB2INST1_
 PASSWORD"
 sleep 2
 db2 -tvmf /scripts/stock-trader.sql
 echo "Database $DBNAME has been configured."
 stock-trader.sql: |
 CREATE TABLE Portfolio(owner VARCHAR(32) NOT NULL, total
 DOUBLE, loyalty
VARCHAR(8), balance DOUBLE, commissions DOUBLE, free INTEGER,
sentiment
VARCHAR(16), PRIMARY KEY(owner));
 CREATE TABLE Stock(owner VARCHAR(32) NOT NULL, symbol
 VARCHAR(8) NOT NULL,
shares INTEGER, price DOUBLE, total DOUBLE, dateQuoted DATE,
commission DOUBLE,
FOREIGN KEY (owner) REFERENCES Portfolio(owner) ON DELETE
CASCADE, PRIMARY
KEY(owner, symbol));
kind: ConfigMap
metadata:
 name: db2-createschema

In the Job resource, we have declared several important elements:

image

We use the same image running the StatefulSet in the role of a
client instead of a server. The Job is assumed to run in the same

Deploying a Containerized Db2 Database as a StatefulSet | 71

Namespace as the database and therefore must have access to
the same dockerhub Image Pull Secret that we created earlier.

command

We want to override the default entry point of the image.
Instead of creating a new database server, we want to use the
same binaries and connect to our database running as a State‐
fulSet. The command references files from a volumeMount.

volumeMount

We load the scripts into the container filesystem by way of a vol
umeMount, which references a ConfigMap.

env

Our logic reuses some information where it can, such as the
password. Additional parameter values must match your envi‐
ronment, including the instance name and database name.

volumes

We reference a ConfigMap as a Volume in this example. All keys
which are known to the ConfigMap will appear as files to the
container, using the name of the key to define the name of the
file. We also set the defaultMode, to ensure that our initial script
will be executable.

configMap

The configMap defines our various files to be used in the initial‐
ization. If you are creating a ConfigMap from a file, you can
simplify the operation by way of the kubectl create command:
kubectl create configmap db2-createschema --from-file

db2-createschema.sh.

db2-setup.sh

The initial entry script which performs some initial configura‐
tion of the container and prepares the next script to run as the
db2inst1 user.

db2-createschema.sh

This connects to the remote database, catalogs it for remote
connections, and triggers the execution of SQL against the data‐
base.

72 | Chapter 4: Introducing Our Production Application

stock-trader.sql

The SQL commands that define the tables used by our portfolio
microservice

Like all resources, you can run this Job by using the kubectl apply
command:

$ kubectl apply -f stock-trader-job.yaml

Alternatively, you could have enhanced our portfolio service to be
smart enough to detect when its intended schema doesn’t exist and
create it automatically.

Our database service is now ready to serve requests from the portfo‐
lio microservice. To summarize our progress so far, we’ve focused on
several important concepts in this workflow.

• We created a Namespace to isolate our database containers from
the rest of the cluster.

• We created a specialized PodSecurityPolicy to allow our data‐
base to take advantage of a small set of Linux kernel capabilities.

• We created a ServiceAccount to represent the identity of Pods
deployed in this Namespace. Because we have only a single
ServiceAccount (default) in the Namespace (stock-trader-
data), all Pods will be assigned to the same ServiceAccount.

• We used ClusterRole and ClusterRoleBindings to ensure that
the ServiceAccount was allowed to use our PodSecurityPolicy.

• We created an Image Pull Secret and associated it with the Serv‐
iceAccount to use for any Pods which were deployed in the
Namespace and assigned to the ServiceAccount.

After preparing the Namespace and supporting security objects, we
deployed our Db2 database container from a Helm chart. The Helm
chart provided a collection of resources needed to run the container,
along with parameterized options that allowed us to customize the
settings from the command line.

Finally, we injected the application schema into the database using a
Job and supporting ConfigMaps to make it ready for our portfolio
microservice.

Next, we deploy our portfolio microservice, which uses the database
that we just deployed.

Deploying a Containerized Db2 Database as a StatefulSet | 73

Managing Our Portfolio Java-Based
Microservice as a Deployment
To deploy the portfolio microservice, we begin by cloning the portfo‐
lio app from GitHub:

$ git clone https://github.com/kubernetes-in-the-enterprise/
portfolio.git

Let’s take a look at our Deployment manifest. As described earlier, a
Deployment captures our application and its configuration into one
neat package.

The Deployment references our image, the configuration parame‐
ters needed by the image to run correctly, and the ports that are
exposed. Unlike Db2, there are no mounted volumes for this Pod,
because it is completely stateless:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: portfolio
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: portfolio
 solution: stock-trader
 spec:
 containers:
 - name: portfolio
 image: mycluster.icp:8500/stock-trader/portfolio:latest
 env:
 - name: JDBC_HOST
 valueFrom:
 secretKeyRef:
 name: db2
 key: host
 - name: JDBC_PORT
 valueFrom:
 secretKeyRef:
 name: db2
 key: port
 - name: JDBC_DB
 valueFrom:
 secretKeyRef:
 name: db2
 key: db

74 | Chapter 4: Introducing Our Production Application

 - name: JDBC_ID
 valueFrom:
 secretKeyRef:
 name: db2
 key: id
 - name: JDBC_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db2
 key: pwd
... a whole bunch of other parameters
 - name: JWT_AUDIENCE
 valueFrom:
 secretKeyRef:
 name: jwt
 key: audience
 - name: JWT_ISSUER
 valueFrom:
 secretKeyRef:
 name: jwt
 key: issuer
 ports:
 - containerPort: 9080
 - containerPort: 9443
 imagePullPolicy: Always

To successfully deploy the portfolio microservice, we need to accom‐
plish the following steps:

1. Create the required Secrets. Many Secrets that are used (MQ,
ODM, Watson) are optional, which means the container can
start without them.

2. Build the image and push it to an image registry and create the
Image Pull Secret, if necessary, to deploy the portfolio microser‐
vice into the cluster.

3. Create the Deployment via kubectl.

Creating the Required Secrets
Most of our parameters are conveyed by Secrets, which provide
information about dependencies. The last options, JWT_AUDIENCE
and JWT_ISSUER, provide agreed-upon Secrets between the portfolio
and stock-quote microservices. Let’s go ahead and create the jwt
Secret and then move on to the others:

Managing Our Portfolio Java-Based Microservice as a Deployment | 75

$ kubectl create secret generic jwt -n stock-trader \
 --from-literal=audience=stock-trader \
 --from-literal=issuer=http://stock-trader.ibm.com
secret "jwt" created

Next, we create the Secret for the database. Here, we use values that
we used originally to create our Helm release for Db2. If you used
different values, update the following command to meet your selec‐
tions:

$ kubectl create secret generic db2 \
 --namespace=stock-trader \
 --from-literal=id=db2inst1 \
 --from-literal=pwd=ThisIsMyPassword \
 --from-literal=host=stocktrade-ibm-db2oltp-dev \
 --from-literal=port=50000 \
 --from-literal=db=STRADER
secret "db2" created

Build the Image and Push to an Image Registry
With the Secrets created, we are now ready to build the Java web
application and the Docker image:

cd portfolio
mvn package
docker build -t portfolio:latest .

To build the package, there are three prerequisites:
Java, Maven, and Docker. To read about how to config‐
ure your development environment, see Appendix B.

Now that we’ve built the image, we need to publish it to a location
where the cluster can access it. Just as Db2 is made available as an
image in a registry, we’re going to do the same for our portfolio
microservice.

Docker image tags are named references. We can create multiple
names for an image. The image name can also refer to a registry by
including the hostname for the registry in the name.

For the sake of example, we tag and push the image into an IBM
Cloud Container Registry and also into our own local cluster regis‐
try. Both of these steps are described in the following sections.

76 | Chapter 4: Introducing Our Production Application

http://stock-trader.ibm.com

Pushing to a Built-In IBM Cloud Private Cluster Image
Registry
To push the image to a built-in IBM Cloud Private cluster registry,
perform the following:

$ docker login mycluster.icp:8500
Username (admin):
Password:
Login Succeeded

$ docker tag portfolio:latest \
 mycluster.icp:8500/stock-trader/portfolio:latest
$ docker push mycluster.icp:8500/stock-trader/portfolio:latest

When working with any remote registry that is outside of the clus‐
ter, be sure to create the appropriate Image Pull Secret. Within IBM
Cloud Private, Namespaces automatically have access to images
pushed into the image repository for that Namespace (e.g., images
in the mycluster.icp:8500/stock-trader repository will automat‐
ically be available to be pulled by Pods in the stock-trader Name‐
space).

Pushing to an IBM Cloud Container Registry
For an IBM Cloud Container Registry, it’s the same process but with
a different name:

$ ibmcloud cr login

Logging in to 'registry.ng.bluemix.net'...
Logged in to 'registry.ng.bluemix.net'.

OK

$ docker tag portfolio:latest \
 registry.ng.bluemix.net/mdelder/portfolio:latest

$ docker push registry.ng.bluemix.net/mdelder/portfolio:latest

If you are using a local Kubernetes cluster with a remote IBM Cloud
Container Registry, you can create a token to manage your images.
Using a token helps avoid the need to store your own credentials as
a Secret. In addition, using a token has the benefit of creating read-
only tokens, which, if ever compromised, will not permit anyone to
tamper with images in your registry:

Managing Our Portfolio Java-Based Microservice as a Deployment | 77

$ ibmcloud cr token-add --description \
"Image Pull Token for local Kubernetes cluster"

Requesting a registry token...
Token identifier 3619bb24-9a5d-5976-
9cb8-2e9ca6d700bf
Token [OBSCURED]
OK

$ kubectl create secret docker-registry ibm-cloud-registry \
 --docker-username=token \
 --docker-password=$(ibmcloud cr token-get -q 3619bb24-9a5d-\
 5976-9cb8-2e9ca6d700bf) \
 --docker-email=youremail@mailserver.com \
 --namespace=stock-trader
secret "ibm-cloud-registry"created

Deploying the Manifest for the portfolio Microservice
Now that the image is available to cluster, let’s create our Deploy‐
ment:

$ cd portfolio/manifests
$ kubectl apply --namespace=stock-trader -f deploy.yaml
deployment.extensions "portfolio" created
service "portfolio-service" created
ingress.extensions "portfolio-ingress" created

You can validate that the Deployment came online correctly by
reviewing the logs (you can identify the Pod, which will have a ran‐
dom identifier as a suffix, directly by its labels):

$ kubectl logs --namespace=stock-trader \
 --selector="app=portfolio,solution=stock-trader"

…
 [INFO] SRVE0169I: Loading Web Module: Portfolio.
 [INFO] SRVE0250I: Web Module Portfolio has been bound to
 default_host.
 [INFO] SESN0172I: The session manager is using the Java
 default SecureRandom
 implementation for session ID generation.
 [INFO] SESN0176I: A new session context will be created
 for application key
 default_host/portfolio
 [AUDIT] CWWKT0016I: Web application available
 (default_host): http://portfolio-
 6b98585ff6-cx8sn:9080/portfolio/
 …

78 | Chapter 4: Introducing Our Production Application

Or you can simply just check the status of the Deployment by using
the kubectl get deployments command:

$ kubectl get deployments \
 --namespace=stock-trader \
 --selector="app=portfolio,solution=stock-trader" \
 -o wide

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
CONTAINERS
IMAGES SELECTOR
portfolio 1 1 1 1 6h
portfolio
mycluster.icp:8500/stock-trader/portfolio:latest \
app=portfolio,
solution=stock-trader

Deploying the trader Microservice Web
Frontend
Let’s now deploy a web frontend for our portfolio microservice that
will allow us to validate the basic behavior.

For this example, we will not build the image; instead, we simply
apply a Deployment manifest that references an image that has been
prebuilt on DockerHub.

The deploy.yaml file for trader includes resources for Deployment,
Ingress, and Service. We have already discussed Deployments, but
let’s take a closer look at Ingress and Service:

$ git clone \
https://github.com/kubernetes-in-the-enterprise/trader.git
$ kubectl apply --namespace=stock-trader \
-f trader/manifests/deploy.yaml

Now we can visit the web frontend using two entry points:

Ingress rule
A web context root configured on the cluster, backed by a Ser‐
vice. Kubernetes is doing a lot of heavy lifting for us to enable
this flow. An Ingress rule can specify annotations to help you
configure TLS certificates or customize behaviors like session
affinity. Behind the scenes, a Kubernetes Service provides an in-
cluster load balancer in front of the Pods that expose services on
networking ports. The result is a powerful abstraction that is
easy to describe in YAML:

Deploying the trader Microservice Web Frontend | 79

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: trader-ingress
 annotations:
 kubernetes.io/ingress.class: "nginx"
 ingress.kubernetes.io/affinity: "cookie"
 ingress.kubernetes.io/session-cookie-name: "route"
 ingress.kubernetes.io/session-cookie-hash: "sha1"
 ingress.kubernetes.io/secure-backends: "true"
 ingress.kubernetes.io/app-root: "/trader"
spec:
 rules:
 - http:
 paths:
 - path: /trader
 backend:
 serviceName: trader-service
 servicePort: 9443

Your ingress route will be available at https://[master-ip]/trader on
IBM Cloud Private.

Here’s what’s happening in this code:

annotations

These are specific behaviors that the Ingress Controller uses
when defining the various configurations in NGINX for this
specific web context (“/trader”). Many annotations are available
on GitHub.

rules

The rules define a set of routes, the appropriate protocol
(HTTP/HTTPS), and the Service name that satisfies the incom‐
ing request.

serviceName

The name of a Service available within the Namespace which
will react when incoming requests are received.

Service
Recall that Services were discussed earlier and that clusters sup‐
port different kinds of Services. The trader Service is exposed
as a NodePort, meaning that it can be accessed from outside the
cluster. This is shown in the following YAML specification:

apiVersion: v1
kind: Service

80 | Chapter 4: Introducing Our Production Application

http://bit.ly/2Og8CDT

metadata:
 name: trader-service
 labels:
 app: trader
spec:
 type: NodePort
 ports:
 - name: http
 protocol: TCP
 port: 9080
 targetPort: 9080
 nodePort: 32388
 - name: https
 protocol: TCP
 port: 9443
 targetPort: 9443
 nodePort: 32389
 selector:
 app: trader

Your NodePort Service will be available at https://[master-ip]:
32389/trader.

type

There are various kinds of Services, including ClusterIP (all
traffic exposed only within the cluster), NodePort (an external
port is assigned to the Pod enabling incoming requests), and
LoadBalancer (an external load balancer is updated with the rel‐
evant configuration to access the Pod).

ports

The ports specify a mapping between the port used by consum‐
ers (targetPort) and the port exposed within the container
(port). The nodePort is a requested port to be enabled on the
Host for external requests.

Deploying a Containerized MQ Series Manager
as a StatefulSet
MQ Series handles distributed messaging at scale for many enterpri‐
ses. Here, we’ll stand up MQ as a Kubernetes StatefulSet. Just like
Db2, a PersistentVolume will store information for MQ topics and
queues, ensuring that if a failure occurs, our messaging service will
recover. We use Helm to install MQ Series by performing the follow‐
ing:

Deploying a Containerized MQ Series Manager as a StatefulSet | 81

$ helm install --name appmsg ibm-charts/ibm-mqadvanced-server\
-dev --tls
 --set license=accept \
 --set persistence.enabled=true \
 --set persistence.useDynamicProvisioning=true \
 --set dataPVC.storageClassName=glusterfs \
 --set queueManager.name=STQMGR \
 --set queueManager.dev.adminPassword=ThisIsMyPassword \
 --set queueManager.dev.appPassword=ThisIsMyPassword \
 --set nameOverride=stmq

Consider using ibmc-block-gold storage class if
deploying on IBM Cloud Kubernetes Service

Next, we define our initial messaging queue, which serves messages
about changes in a user’s loyalty program status:

$ kubectl exec -it appmsg-stmq-0 /bin/bash
$ runmqsc
DEFINE QLOCAL (NotificationQ)
SET AUTHREC PROFILE('NotificationQ') OBJTYPE(QUEUE) PRINCIPAL\
('app')
AUTHADD(PUT,GET,INQ,BROWSE)
end

After we have customized our messaging service, we create a Secret
for our microservices to configure connections. Notice the refer‐
ences for password (pwd) and queue-manager (STQMGR) that must
match the values specified in the preceding example during the
installation of the Helm chart:

$ kubectl create secret generic mq \
 --from-literal=id=app \
 --from-literal=pwd=ThisIsMyPassword \
 --from-literal=host=appmsg-stmq \
 --from-literal=port=1414 \
 --from-literal=channel=DEV.APP.SVRCONN \
 --from-literal=queue-manager=STQMGR \
 --from-literal=queue=NotificationQ

Deploying Supporting Services for the
portfolio Microservice
Our portfolio microservice depends on two backend services:

82 | Chapter 4: Introducing Our Production Application

stock-quote
Returns the current value in US dollars (USD) of a stock sym‐
bol.

loyalty
Returns the level of loyalty program status achieved by the user
based on their total portfolio value under management.

For each of these services, we are going to deploy them using the
publicly available image on DockerHub.

Deploying the stock-quote Microservice
Begin by cloning the stock-quote Git repository. We will bypass the
build and push of the Docker image and instead deploy an image
from the public DockerHub registry. Of course, you can always
build the image locally and push it to your own private registry with
the same outcome. We clone stock-quote by using the following Git
clone command:

$ git clone \
https://github.com/kubernetes-in-the-enterprise/stock-quote.git

The manifests/deploy.yaml resource describes the Kubernetes
Deployment for stock-quote:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: stock-quote
namespace: stock-trader
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: stock-quote
 solution: stock-trader
 spec:
 containers:
 - name: stock-quote
 image: ibmstocktrader/stock-quote:latest # DockerHub
 env:
 - name: REDIS_URL
 valueFrom:
 secretKeyRef:
 name: redis
 key: url
 optional: true

Deploying Supporting Services for the portfolio Microservice | 83

 - name: JWT_AUDIENCE
 valueFrom:
 secretKeyRef:
 name: jwt
 key: audience
 - name: JWT_ISSUER
 valueFrom:
 secretKeyRef:
 name: jwt
 key: issuer
 ports:
 - containerPort: 9080
 - containerPort: 9443
 imagePullPolicy: Always

Like portfolio, the stock-quote Service also exposes two options for
incoming network traffic. The Service exposes traffic for internal
and external consumers, as shown here:

apiVersion: v1
kind: Service
metadata:
 name: stock-quote-service
namespace: stock-trader
 labels:
 app: stock-quote
spec:
 type: NodePort
 ports:
 - name: http
 protocol: TCP
 port: 9080
 targetPort: 9080
 - name: https
 protocol: TCP
 port: 9443
 targetPort: 9443
 selector:
 app: stock-quote

The Ingress provides a route on the cluster ingress management
controller. The following is the YAML specification for the Ingress:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: stock-quote-ingress
spec:
 rules:
 - http:
 paths:

84 | Chapter 4: Introducing Our Production Application

 - path: /stock-quote/.*
 backend:
 serviceName: stock-quote-service
 servicePort: 9080

We deploy stock-quote as we did with portfolio, using the following
kubectl command:

$ cd stock-quote/manifests
$ kubectl apply -f deploy.yaml --namespace=stock-trader
deployment.extensions "stock-quote" created
service "stock-quote-service" created
ingress.extensions "stock-quote-ingress" created

As we see from the command output, we have created several
Kubernetes resources from a single file. Be sure to deploy the stock-
quote microservice in the stock-trader Namespace, or else portfolio
would be unable to find it by the name stock-quote-service.

Deploying the loyalty Microservice
Deploying the loyalty microservice follows the same architectural
patterns and commands that we used for stock-quote:

$ git clone https://github.com/kubernetes-in-the-enterprise/
loyalty-level.git
$ cd loyalty-level/manifests
$ kubectl apply -f deploy.yaml --namespace=stock-trader
deployment.extensions "loyalty-level" created
service "loyalty-level-service" created
ingress.extensions "loyalty-level-ingress" created

Just as before, we have created several Kubernetes resources, includ‐
ing a Deployment that manages the Pods, and two options for
incoming network traffic.

Putting It All together: Accessing Our Fully
Configured Application
We have now deployed all of our components for the application,
which you can see listed in Table 4-1.

Putting It All together: Accessing Our Fully Configured Application | 85

Table 4-1. Microservices and supporting middleware for the Portfolio
application

Name Namespace Kubernetes
resources

Description

portfolio stock-

trader
1. Deployment

2. Service

3. Ingress Rule

A Java-based microservice that provides the
heart of our business logic for creating,
updating, and removing stock portfolios

db2 stock-

trader

Secret Provides credentials for access to the Db2
database

mq stock-

trader

Secret Provides credentials for our microservices to
send and receive messages via our IBM MQ
container

jwt stock-

trader

Secret Provides credentials which are shared
amongst our Java microservices for
generating and sharing JSON Web Token
(JWT) authorization tokens

dockerhub stock-

trader-

data

Secret (Image Pull
Secret)

An Image Pull Secret that allows our cluster
to access images on DockerHub for which
we have valid subscriptions

stocktrade-
ibm-
db2oltp-dev

stock-

trader-

data

1. StatefulSet

2. Service

3. Secret

A Helm chart–based deployment of our
enterprise database

stocktrade-
ibm-
db2oltp-dev

stock-

trader

Service An ExternalName Service that enables our
portfolio microservice in the stock-
trader Namespace to find our Db2
database in the stock-quote-data
Namespace.

trader stock-

trader
1. Deployment

2. Service

3. Ingress rule

A Java-based microservice that provides the
web frontend for users to access our
application.

appmsg-
stmq

stock-

trader
1. StatefulSet

2. Service

3. Secret

A Helm chart–based deployment of IBM MQ
that is used by our microservices for
message-driven API and notifications

86 | Chapter 4: Introducing Our Production Application

https://en.wikipedia.org/wiki/JSON_Web_Token
https://en.wikipedia.org/wiki/JSON_Web_Token

Name Namespace Kubernetes
resources

Description

stock-quote stock-

trader
1. Deployment

2. Service

3. Ingress rule

A Java-based microservice that provides a
stock symbol lookup service

loyalty-level stock-

trader
1. Deployment

2. Service

3. Ingress rule

A Java-based microservice that provides the
loyalty program level for a given user based
on the total value of the user’s portfolio

When we deployed the trader microservice, we exposed an Ingress
and a Service of type NodePort. Let’s open the web UI from one of
these endpoints. For convenience, here are the endpoints that are
exposed by default:

• Your ingress route will be available at https://[master-ip]/trader
on IBM Cloud Private. If you defined a custom domain, you can
use the domain name instead of the IP. The default hostname
will be mycluster.icp.

• Your NodePort Service will be available at https://[master-ip]:
32388/trader.

Figure 4-2 depicts the user login page for the IBM Stock Trader
application. The default username and password are as follows:

• Username: stock
• Password: trader

Putting It All together: Accessing Our Fully Configured Application | 87

Figure 4-2. The IBM Stock Trader application login page.

With your new app, you can create, update, and delete portfolios. As
you interact with the trader web frontend, API calls are made to
portfolio, which, in turn, interacts with its Db2 database StatefulSet,
MQ messaging StatefulSet, and the loyalty and stock-quote microser‐
vices. Three example portfolios have been created in Figure 4-3. As
each of these portfolios is created, API calls are made from trader to
portfolio. In turn, portfolio updates the database to save the updates.
The total value of each portfolio is calculated based on results from
the stock-quote service via API calls as well.

88 | Chapter 4: Introducing Our Production Application

Figure 4-3. The IBM Stock Trader application portfolio summary page.

Summary
In this chapter, we deployed a production-quality enterprise Kuber‐
netes application called IBM Stock Trader that is a composition of

Summary | 89

several microservices and uses numerous key Kubernetes resources
such as Deployments, StatefulSets, Services, and Secrets. In Chap‐
ter 5, we explore how to take advantage of Continuous Delivery
approaches for your Kubernetes applications.

90 | Chapter 4: Introducing Our Production Application

CHAPTER 5

Continuous Delivery

Entire books have been written about Continuous Delivery and
DevOps in general. We are not going to repeat why Continuous
Delivery is important. With that limited scope in mind, let’s review
how container images and Kubernetes support the following
DevOps principles:

Small batch changes
All changes should be incremental and finite. When failures
occur, small batch changes are typically easier to recover than
large disruptive changes.

Source control all the things
A history of all changes is helpful to understand what changes
have been made and to identify the cause of regressions in the
code base or configuration.

Production-like environments
Developers should have access to environments and tools that
are representative of production. Production environments typ‐
ically operate at larger scales than development or quality assur‐
ance (QA) and with more complex configuration. The variance
can mean that features that work fine in early stages do not
work correctly in production—which is the only place it mat‐
ters.

91

Shift-left of operational practices
We should expose behaviors for health management, log collec‐
tion, change management, and so on earlier in the development
process.

Continuous integration of changes
All changes should be built and deployed together on an ongo‐
ing basis to identify when the intermingling of various changes
leads to an unforeseen issue or application programming inter‐
face (API) incompatibility.

Highly automated testing with continuous feedback
To manage velocity, you need to automate your testing and vali‐
dation work so that you can always be testing (ABT).

Image Build
Containers are the ideal unit of delivery because they encapsulate all
aspects of your application, middleware, and operating system (OS)
packages into a single package. You can create container images in
several ways, and the most popular means of creating an image is by
a Dockerfile. The Dockerfile describes all of the relevant details nec‐
essary to package the image. These instructions are just plain text
until converted by the image build, and you should always manage
these and other declarative resources we have learned about in
Kubernetes in a source control repository such as Git.

In Chapter 4, we built a container image. The act of building used
our Dockerfile as a set of instructions to construct the image. Let’s
take a closer look inside the Dockerfile:

FROM openliberty/open-liberty:microProfile1

RUN groupadd -g 999 adminusr && \
 useradd -r -u 999 -g adminusr adminusr
RUN chown adminusr:adminusr -R /opt/ol /logs /config
USER 999

COPY --chown=adminusr db2jcc4.jar /config/db2jcc4.jar
ADD --chown=adminusr \
 http://repo1.maven.org/maven2/com/ibm/mq/wmq.jmsra/9.1.0.0/wmq.
 jmsra-9.1.0.0.rar /config/wmq.jmsra.rar
COPY --chown=adminusr key.jks /config/resources/security/key.jks
COPY --chown=adminusr keystore.xml /config/configDropins/
defaults/keystore.xml
COPY --chown=adminusr server.xml /config/server.xml

92 | Chapter 5: Continuous Delivery

COPY --chown=adminusr target/portfolio-1.0-SNAPSHOT.war /config/
apps/Portfolio.war

FROM statements
They declare the foundation for your container. Generally, base
images are application runtimes (e.g., openliberty/open-
liberty:microProfile1 or node:latest) or operating systems (e.g.,
ubuntu:16.04, rhel:7, or alpine:latest).

RUN statements
They execute commands and save the resulting changes to the
filesystem as a distinct layer in the container image. To optimize
build time, move commands that need to adjust the container
image more frequently (e.g., adding application binaries)
toward the end of the file.

USER statements
They allow you to specify under what identity on the OS the
container should be launched. Building your container to run as
nonroot is considered best practice. Whenever specifying a user
for Kubernetes, we recommend that you use the UID (numeri‐
cal user ID from the OS) and create an alias via groupadd/user‐
add commands or equivalents for your OS.

COPY and ADD statements
They move files from your local workspace into the container
file system. COPY should always be your default; ADD is useful
when pulling directly from URLs, which is not supported by the
COPY directive.

Each line in the Dockerfile creates a unique layer that is reused for
subsequent builds where no changes have occurred. Reusing layers
creates a very efficient process that you can use for continuous inte‐
gration builds.

As you saw in Chapter 4, you build container images as follows:

$ docker build -t repository:tag .

The last period is significant because it denotes the current direc‐
tory. All files in the directory are shipped off to the Docker runtime
to build the image layers. You can limit files from being delivered by
adding a .dockerignore file. The .dockerignore file specifies
files by name pattern to either be excluded (the default) or included
(by beginning the line with an exclamation mark [!”]).

Image Build | 93

Programmability of Kubernetes
The declarative model of Kubernetes objects makes them ideal for
source control, meaning that you have a record (throughout the his‐
tory of your source control system) of all changes that were made
and by whom.

Using the command kubectl apply, you can push updates easily
into your cluster. Some resource types do not easily support rolling
or uninterrupted updates (like DaemonSets), but a majority do. You
don’t need to stop at just one object, though; you can apply entire
directories:

$ kubectl apply -Rf manifests/

In this snippet, we use the -R option, which indicates to recursively
process all files in the manifests/ directory.

Kubernetes makes it easy to create consistent clusters in develop‐
ment, QA, and production. Consistency means that developers and
testers can develop and test against production-like environments in
earlier stages. In addition, Helm charts make it possible to also
deploy supporting Services like databases, messaging, and caching
much easier and more accessible to developers and testers.

General Flow of Changes
The only constant is change. Many tools exist to help you on your
Continuous Delivery journey. The general flow for all of these will
be as follows:

1. Register a Git post-commit hook to trigger a build for all com‐
mits delivered into the source control repository.

2. The build will prepare the container image associated with the
Git repository and publish it to an image repository.

3. The build service will create a Kubernetes cluster, create a
Kubernetes Namespace within a cluster, or reuse an existing
cluster or Namespace based on convention to deploy the Kuber‐
netes objects described in the manifest.

4. Optionally, the build can package a Helm chart and push it into
a Helm repository and deploy it from there, with references to
the images published earlier.

94 | Chapter 5: Continuous Delivery

https://ibm.co/2N3R49v

5. Run automated tests against the deployed system to verify the
changes have not created any regressions in the source code or
supporting configuration files.

6. Optionally, drive an automated rolling continuous update to the
next stage in the pipeline to validate the change for release to
production.

For more detailed instruction on using automation tools to facilitate
Continuous Delivery, the IBM Garage Method website includes
courses such as “Use Jenkins in a Kubernetes cluster to continuously
integrate and deliver on IBM Cloud Private” that walk you through
the aforementioned steps by providing an easy-to-follow tutorial.
After you become comfortable with Continuous Delivery, the next
step is to focus on operating your enterprise application. In Chap‐
ter 6, we provide an overview of several tools that reduce the com‐
plexity of operating enterprise applications in a Kubernetes cluster.

General Flow of Changes | 95

https://www.ibm.com/cloud/garage/
https://ibm.co/2R46BZS
https://ibm.co/2R46BZS

CHAPTER 6

Enterprise Application Operations

In this chapter, we provide an overview of several key tools that are
critical to operating your enterprise application. We begin with a
discussion of Logstash and Fluentd, which are two popular
enterprise-quality tools for performing a centralized log collection
for your microservices running distributed across a cluster. We then
describe Elasticsearch, which is a log storage repository with
advanced knowledge discovery and analysis features. Then, we
introduce Kibana, which is a dashboard-based log visualization tool.
We complete our discussion of log collection tools with an overview
of the log collection support provided by both the IBM Cloud
Kubernetes Service and IBM Cloud Private. In the second half of
this chapter, we describe the health-management facilities for moni‐
toring enterprise applications. We conclude this chapter with a
description of monitoring capabilities provided by both IBM Cloud
Kubernetes Service and IBM Cloud Private.

Log Collection and Analysis for Your
Microservices
Logs are the universal debugger. When all else fails, check the logs
and hope the developer was paying attention to the serviceability of
their code.

In all seriousness, logging is a critical component for the operation
and service of any Kubernetes-based application. Unlike traditional
monolithic applications, developers and operators desire a central‐

97

ized logging solution that will aggregate logs from their distributed
applications to prevent the need to chase down dozens or hundreds
of Pods using kubectl logs -f --tail=1000 mypodname.

With microservices, you break down your core functions into
smaller building blocks, which means that your logged information
is going to be more decentralized. There are several common pat‐
terns for collecting logs from containerized platforms.

First, you need a way to collect log information from your contain‐
ers. Let’s take a look at a couple of tools that can help you with this:

Logstash
Logstash is a very well-established log aggregator with the capa‐
bilities to collect logs, parse, and then transform them to meet
your standards.

Fluentd
Fluentd is an open source data collector that provides an inde‐
pendent and unifying layer between different types of log inputs
and outputs. Fluentd was recently contributed to the Cloud
Native Computing Foundation (CNCF). Although Fluentd is
younger than Logstash, its alignment with the CNCF has driven
its increasing popularity.

Both of these options provide a robust way to collect logs from mul‐
tiple sources—from containers to nodes—and then ship them into a
searchable datastore.

After your logs are aggregated, you need a place to store them for
discovery and analysis. Elasticsearch is the de facto standard for col‐
lecting, indexing, and providing an ongoing store for plain-text or
JSON log output. Elasticsearch provides several key features that
make it a great option for your log data:

JSON-based query language, accessible via REST API
You can consume information from Elasticsearch easily for dis‐
covery and analysis. Often, Elasticsearch ends up being part of
machine learning applications because of its simple but power‐
ful model of querying and updates.

Log retention policy control
You might need to keep only a week of logs for postmortems
when bad things happen. In other cases, compliance or audit
requirements might require you to keep logs for months or

98 | Chapter 6: Enterprise Application Operations

years. Elasticsearch will automatically age out data that is no
longer relevant for your needs.

Move logs to long-term storage
With Elasticsearch, you can keep a portion of log data where it’s
easily accessible and searchable, but then move older logs into a
longer-term store.

Finally, now that you have collected the logs and stored them, it’s
time to visualize them. Kibana provides a flexible way to visualize
your logs with a variety of widgets from tables to graphs. Kibana
connects to Elasticsearch and creates Indexer patterns that provide
access to data efficiently. With the Kibana dashboard, you can do the
following:

Discover the data available in the system
From the Discover view in the Kibana dashboard, you have
access to all of the information in the system for which you have
authorization to view. You can define table views for log infor‐
mation and filter based on any log attributes. For example, you
might create a filter for kubernetes.namespace: “stock-trader” to
see all of the log output for all Pods in the stock-trader Name‐
space.

Create reusable widgets to visualize specific aspects
Perhaps you always want to view a table with specific log
attributes or you want a line graph of how many logs contain
the word “error” in the stock-trader Namespace. Each visuali‐
zation is a reusable widget that you can use across one or more
dashboards.

Create dashboards
Dashboards allow you to collect visualizations into a single view.

Create timeline analysis
You can also use Kibana to do time–series analysis from multi‐
ple data sources.

IBM Cloud Kubernetes Service Log Analysis Support
IBM Cloud Kubernetes Service uses Fluentd and IBM Cloud Log
Analysis service for collecting and analyzing logs. On this platform,
there are many logging configuration options outlined in the docu‐
mentation. Here, you will find a variety of command-line options

Log Collection and Analysis for Your Microservices | 99

https://www.elastic.co/guide/en/kibana/
http://bit.ly/2N3R75b
http://bit.ly/2N3R75b

that you can use to configure very detailed filtering mechanisms.
Common options available include filtering to display only error
logs and sending logs from different Kubernetes Namespaces to dif‐
ferent logging tenants. The simplest process for getting started is
through the IBM Cloud Kubernetes Service user interface. Simply
choose “enable logging” from the cluster overview page and then
select the log sources and destination to get started with a basic log‐
ging configuration, as depicted in Figure 6-1.

Figure 6-1. Configuring IBM Cloud Kubernetes Service logging.

In addition to container, ingress, worker node, and Kubernetes
infrastructure logs, there are other options for logging Kubernetes
events via an event-exporter, IBM Cloud Kubernetes Service Activity
Tracker events, and Kubernetes audit logs. Figure 6-2 provides an
example of IBM Cloud Kubernetes service log data for audit logs.

100 | Chapter 6: Enterprise Application Operations

http://bit.ly/2N4seWR
http://bit.ly/2N4seWR
http://bit.ly/2Oear4m

Figure 6-2. Viewing IBM Cloud Log Analysis data for Kubernetes
audit log.

IBM Cloud Private Log Analysis Support
IBM Cloud Private uses Elasticsearch-Logstash-Kibana (ELK) to
collect log information. You can customize whether these compo‐
nents are installed in the config.yaml file for the installer or add
them post-installation from the Catalog.

If you configure these components during installation or update the
cluster using the installer’s addon action, you will see references for
the Kibana dashboard exposed in the navigation bar on the left, as
illustrated in Figure 6-3.

Figure 6-3. Configuring logging in IBM Cloud Private.

Log Collection and Analysis for Your Microservices | 101

A deep dive of the full capabilities of Kibana is beyond the scope of
this book, but to get started, try using the Discover view to filter logs
by Kubernetes Namespaces. Figure 6-4 illustrates this view filtering
option.

Figure 6-4. Sample display in Kibana of logs filtered by Namespace.

Health Management for Your Microservices
After you’ve deployed your microservice, Kubernetes takes over
much of the basic mechanics of application reliability—but you’re
not completely off the hook. Managing your application still
involves managing its health, investigating issues that arise during
an event, performing postmortem analysis, or fulfilling audit com‐
pliance.

Fortunately, there are options on how to monitor the health, define
alerts, and view an integrated dashboard of logs across all microser‐
vices. We will now look at how to consume these management serv‐
ices in one of two modes: deployed on your own cluster or
consumed as part of a Software as a Service (SaaS) offering in a pub‐
lic cloud.

Metrics help you to understand the current state of your application.
There are many kinds of metrics that provide your application a way
to inform observers about its health. You then can use metrics to
drive alerts or simply visualize trends on a dashboard.

Prometheus is an open source monitoring and alerting tool. It was
contributed to the CNCF in May 2016. Prometheus is one of the

102 | Chapter 6: Enterprise Application Operations

CNCF’s more mature projects and was promoted to the status level
of “graduated” in August 2018. It is the de facto standard for moni‐
toring when working with Kubernetes. Prometheus makes it easy
for any web-based app to expose an additional endpoint, which
returns metrics for the application using a simple text-based format.

Prometheus will then scrape the endpoints to collect these metrics
and store them. For non-REST-centric workloads (e.g., a database or
messaging app), Prometheus supports exporters, which collect
information and make it available in the correct format.

Metrics can be kept in memory for a given window of time or saved
to long-term storage. You should consider whether long-term trend‐
ing information is useful for your needs. In many cases, a window of
only several hours is kept around in memory.

There are several kinds of metrics supported by Prometheus:

Counter
A counter is an increasing value that allows you to track the
total number of times something has happened. Examples
might include the number of requests for your application serv‐
ices, or the total number of widgets that your application pro‐
gramming interface (API) has created.

Gauge
A gauge provides an arbitrary reading that can go up or down.
Think of a gauge as like a thermometer. The temperature read‐
ing can go up or down, and prior readings do not have a direct
impact on current readings. You might use gauges to track the
number of active transactions the system is processing or the
total number of active user sessions engaged with your applica‐
tion.

Histogram
A histogram allows you to capture information that is time–ser‐
ies related. A histogram might declare multiple buckets for
grouping observed data. Examples might include the duration
of a transaction like a stock trade. Histograms help perform
some fundamental heavy lifting for you like calculating the sum
of observed values or counting the total number of data points
in a given bucket.

Health Management for Your Microservices | 103

http://bit.ly/2OU6miM
http://bit.ly/2OU6miM
https://prometheus.io/docs/concepts/metric_types/

1 Ranjit Mavinkurve, Justin Becker, and Ben Christensen, “Improving Netflix’s Opera‐
tional Visibility with Real-Time Insight Tools”, Medium.com.

Summary
A summary is similar in behavior to a histogram but automati‐
cally calculates quantiles over a sliding time window. Measuring
the quantiles can be useful to group metrics like response times
(how many responses completed in less than 200 ms? 50%? 95%?).

Kubernetes enables a rich set of metrics out of the box:

Node Exporter
Captures information about the nodes in your cluster. Metrics
such as CPU utilization, disk I/O, network behavior, and filesys‐
tem information (nfs, xfs, etc.) are automatically exported.

cAdvisor
Captures information about containers running on the node.
Metrics such as container CPU utilization, filesystem I/O, net‐
work behavior, and start time are exported.

Heapster
Captures specific metrics about Pods and other Kubernetes
resources.

Your microservices can also emit Prometheus metrics to provide
application-specific details. For instance, our portfolio microservice
might emit metrics on the number of trades requested and comple‐
ted. We can often understand whether the total system is healthy by
observing the trends in higher-level metrics such as portfolio trades.
Netflix has talked about its use of the stream-starts-per-second (SPS)
metric to understand whether the end-to-end system is functioning
normally; the rate of video streams started is well understood by the
team, and variations from the norm tend to indicate that a problem
exists, even if the origin of the problem is not with the service itself.1

Although it’s beyond the scope of this book, enabling metrics for
your specific application in Kubernetes is a very straightforward task
that we strongly recommend.

IBM Cloud Kubernetes Service Monitoring Capabilities
Monitoring capabilities in IBM Cloud Kubernetes Service are han‐
dled via IBM Cloud Monitoring. You will find a link to the monitor‐

104 | Chapter 6: Enterprise Application Operations

http://bit.ly/2QbZKfL
http://bit.ly/2QbZKfL
https://github.com/prometheus/node_exporter
https://github.com/google/cadvisor
https://github.com/kubernetes/heapster

ing dashboard for IBM Cloud Kubernetes Service from your cluster
overview page. This brings you to a Grafana dashboard with basic
cluster monitoring information, as demonstrated in Figure 6-5.

Figure 6-5. Data for IBM Cloud Monitoring is collected via a custom
Fluentd plug-in (cAdvisor). No additional configuration or agent is
required.

IBM Cloud Private Monitoring Capabilities
IBM Cloud Private includes a built-in Prometheus to collect metrics
from the platform and workloads, and a built-in Grafana to visualize
those metrics in easy-to-use dashboards.

From the web console, you can launch the Grafana to view, add, or
modify dashboards to meet your needs. As shown in Figure 6-6,
simply select the Monitoring option from the Platform menu to
launch the monitoring dashboards.

Health Management for Your Microservices | 105

Figure 6-6. Clicking the Monitoring option opens the monitoring dash‐
boards.

Several dashboards are available out of the box. You can always
browse community dashboards available for Prometheus and add
your own. Figure 6-7 demonstrates available dashboards in IBM
Cloud Private out of the box. You can create additional dashboards
to fit your needs or import them from the community website and
customize them as you need.

Figure 6-7. Available dashboards out of the box in IBM Cloud Private
2.1.0.3.

Let’s highlight two of these dashboards:

Kubernetes cluster monitoring (via Prometheus)
Provides an overview of the entire cluster. As Figure 6-8 Illus‐
trates, you can see gauges for cluster memory, CPU, and filesys‐

106 | Chapter 6: Enterprise Application Operations

https://grafana.com/dashboards?dataSource=prometheus

tem usage, followed by information about the containers
running across the cluster.

Figure 6-8. Kubernetes cluster monitoring dashboard.

ICP 2.1 Namespaces Performance IBM Provided 2.5
This dashboard, shown in Figure 6-9, provides information for
a specific Namespace. It displays information on container CPU,
memory, readiness status, and other details. At the top of the
dashboard, you can adjust the selected Namespace to view
details about another Namespace.

Figure 6-9. Namespace performance dashboard provided by IBM
Cloud Private.

Health Management for Your Microservices | 107

Summary
In this chapter, we presented several key tools that are critical to
operating your enterprise application. We began with a discussion of
popular tool options for the centralized log collection, analysis, and
visualization of the data generated by your microservices running
across a cluster. We also provided an overview of Prometheus,
which is the de facto standard tool for performing monitoring and
providing alert information for Kubernetes applications. Also
included in this chapter was a discussion of how to utilize these
operations-based tools from both IBM Cloud Kubernetes Service
and IBM Cloud Private. In Chapter 7, we look at cluster operations
issues and key considerations that need to be addressed when run‐
ning in hybrid cloud environments.

108 | Chapter 6: Enterprise Application Operations

CHAPTER 7

Cluster Operations and
Hybrid Cloud

There are several key considerations that cloud operators must
examine when administering Kubernetes clusters. In addition, cloud
operators encounter even more complexity when they begin to sup‐
port hybrid cloud environments. In this chapter, we begin with a
brief description of hybrid cloud and the common motivations for
adopting a Kubernetes-based hybrid cloud environment. We then
take a more in-depth look at several key operational aspects of
Kubernetes clusters, including access control, performance consid‐
erations, networking, storage, logging, and metrics integration. For
each of these operational topics, we include a discussion of the
issues that you must address when moving to hybrid cloud environ‐
ments.

Hybrid Cloud Overview
What is hybrid cloud? Typically, hybrid cloud refers to any organiza‐
tion that is using a combined cloud platform that spans on-premises
datacenters as well as a public cloud. In this book, we have been
looking at a combination of IBM Cloud Kubernetes Service (a public
cloud Kubernetes as a Service offering) and IBM Cloud Private (a
software solution that can be deployed into on-premises datacen‐
ters).

As enterprises make the transition from on-premises datacenters to
public cloud, there are many challenges that development and oper‐

109

ations teams will encounter. Although Kubernetes on its own is
capable of helping to simplify many of the concerns these teams
might have, there are still some significant complexities that are
unique to hybrid cloud environments.

A hybrid cloud environment is ideal for companies that are making
the transition from on-premises to a public cloud. Many organiza‐
tions initially begin by using public cloud environments for their
development needs, and in this domain compliance and data resi‐
dency issues are not a factor. Over time, most teams become accus‐
tomed to the simplified operations and reduced cost of the public
cloud and they begin the journey of migrating other components,
such as their stateless applications and auxiliary services, as well. In
this chapter, we provide an overview of a variety of cluster opera‐
tions and hybrid cloud–related issues that are typically encountered
in enterprise environments.

Access Control
Access control consists of concepts and features relating to how you
authenticate and authorize users for Kubernetes. There are any
number of operational and hybrid considerations to account for.
The following sections describe operational and hybrid considera‐
tions for both authentication and authorization.

Authentication
Users and operators will encounter a wide variety of authentication
solutions for Kubernetes. There could be multiple authentication
methods in use simultaneously in different portions of a hybrid
cloud environment:

Client certificates
X.509 client certificates are Secure Sockets Layer (SSL) certifi‐
cates. The common name of the certificate is used to identify
the user. The organization of the certificate is used to identify
group membership. Often, this is used as the “superuser”
authentication method.

Static tokens
These are statically defined bearer tokens that are passed in dur‐
ing apiserver startup. In general, they are not commonly used.

110 | Chapter 7: Cluster Operations and Hybrid Cloud

Bootstrap tokens
These are dynamically generated bearer tokens that are created
by the apiserver via an API. Typically, these are used for boot‐
strapping clusters, especially joining worker nodes to the clus‐
ter.

Static password file
Just what you think. This is a file passed to the apiserver on
startup that defines a static list of users, passwords, and groups.
We do not recommend this approach.

Service account tokens
These are tokens that are generated automatically by the api‐
server for all service accounts that are created. The functionality
is built in to the Kubernetes ServiceAccount architecture. Pods
running in cluster use this approach to authenticate with the
apiserver.

OpenID Connect Tokens (OIDC)
OIDC is a variant of OAuth2 that uses a standalone authentica‐
tion provider to authenticate users and generate JWT tokens for
presentation to Kubernetes for authentication. OIDC is a very
frequently encountered solution. It is often used to integrate
with external identity providers. It is supported by Microsoft
Azure Active Directory, Google, IBMid, CoreOS dex (LDAP,
GitHub, SAML, etc.), and several others.

All of these authentication solutions provide user and group infor‐
mation (identity). This is critical to the Kubernetes authorization
model. Upon authentication, authorization is handled by Kuber‐
netes Role-Based Access Control (RBAC) support.

Authorization and RBAC
Authorization in Kubernetes is integrated into the platform as of
Kubernetes v1.7. Kubernetes authorization uses an RBAC model and
provides a fully featured authorization platform that allows opera‐
tors to define various roles via Kubernetes objects, ClusterRole, and
Role, and bind them to users and groups using ClusterRoleBinding
and RoleBinding. It’s worth deeper discussion of when to use each of
these objects because there is often confusion regarding what is the
best practice.

Access Control | 111

In this section, we look at a common use case: the need to provide
TravisCI access to our cluster for provisioning new versions of our
application.

ClusterRoles consist of a list of objects and verbs to determine the
scope of the role. No objects are off limits for ClusterRoles, and they
can include traditional objects like Pods, ReplicaSets, DaemonSets,
Deployments, and so on. What makes a ClusterRole unique is that it
can also refer to cluster objects such as Namespaces, Nodes, Cluster‐
RoleBindings, and so forth. Note that a ClusterRole is never scoped
to a Namespace.

In the following example, we have created a ClusterRole that will
allow access to Deployments and ReplicaSets, which allows our
TravisCI server to push new applications versions:

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
 name: cicd-apps
rules:
- apiGroups:
 - apps
 - extensions
resources:
 - deployments
 - replicasets
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch
 - update
 - watch

Roles are similar to ClusterRoles but are limited to the Namespace
scoped objects such as Pod, ReplicaSet, Deployment, and RoleBind‐
ing. Also note that when a Role is created it must be created in a spe‐
cific namespace. Here, we look at a Role equivalent to our previous
example. The interesting thing to note here is that this Role could be
created and managed by one of our DevOps engineers who might
not have the ability to manage ClusterRoles. We have found that
ClusterRole is more convenient because you can reuse it across
Namespaces or apply it cluster wide. However, access to Role man‐
agement, scoped to a single Namespace, can be common in a Kuber‐

112 | Chapter 7: Cluster Operations and Hybrid Cloud

netes environment that is shared and administered by a number of
teams where providing users with cluster-wide privileges is insecure.
Note that the only difference is the kind (Role) and the inclusion of
a Namespace in the metadata. Creation of this object only requires
access to create Role objects in the team-a Namespace that is refer‐
enced in the following example. The preceding ClusterRole requires
create access at the cluster level, and this level of access might be
available to only a far more privileged user.

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: Role
metadata:
 name: teama-cicd-apps
 namespace: team-a
rules:
- apiGroups:
 - apps
 - extensions
 resources:
 - deployments
 - replicasets
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch
 - update
 - watch

ClusterRoleBinding allows binding a ClusterRole to a user, group, or
ServiceAccount at a cluster-wide scope. In this next example, we use
our ClusterRole to provide access to all Namespaces in our cluster:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: travis-cluster-apps
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cicd-apps
subjects:
- kind: User
 name: travis
 apiGroup: rbac.authorization.k8s.io

RoleBinding allows binding a Role or ClusterRole to a user, group,
or ServiceAccount at a Namespace scope. This allows an admin to

Access Control | 113

create ClusterRoles to define access such as admin, developer, audi‐
tor, and so on. In the following example, we use our teama-cicd-
apps Role to allow the travis user access to only the team-a
Namespace:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: travis-apps
 namespace: team-a
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: teama-cicd-apps
subjects:
- kind: User
 name: travis
 apiGroup: rbac.authorization.k8s.io

Roles and RoleBindings are interesting in that they can be managed
by users who have admin rights to only those objects within a given
Namespace. Modification of ClusterRole and ClusterRoleBinding
requires the user to have cluster-wide access to the objects. This
might be applicable for a squad that has its own Namespace and
would like to set up ServiceAccounts and Roles for its Continuous
Integration/Continuous Delivery (CICD) tools (Chapter 5) or other
use cases.

Hybrid
The key challenge that you must address is how to provide access
control in a hybrid environment. There are several different feasible
approaches that are possible in hybrid environments; two key
approaches that we describe here are federated identity and imperso‐
nation.

Federated identity
Using a federated-identity provider might be the most straightfor‐
ward solution for centralized identity management. This approach
permits the centralized management of users and identity. Many
enterprise customers already have experience with identity federa‐
tion for other services.

114 | Chapter 7: Cluster Operations and Hybrid Cloud

When using the federated-identity approach, it is the responsibility
of the operations team to determine a reasonable method for unify‐
ing authorization across different Kubernetes clusters.

It’s easy to settle on a unified set of Roles and ClusterRoles across
clusters because RBAC is common everywhere. Typically, the strug‐
gle is mapping users and groups to the bindings in a unified way. An
on-premises cluster might authenticate using OIDC or similar
backed by Lightweight Directory Access Protocol (LDAP), in which
a public cloud cluster might use a cloud-provided OIDC mechanism
backed by its own Identity Access Management (IAM) mechanism.
Impersonation is a strategy that you can use to overcome these
inconsistencies.

Impersonation
You might want to consider an option that uses identity impersona‐
tion. This concept has an operator build a proxy that does authenti‐
cation against an existing identity provider. The proxy then uses a
cluster-admin identity native to the target Kubernetes cluster and
passes impersonation headers on each request. Here’s an example:

1. Bob uses kubectl to make a request against the proxy for clus‐
ter A.

2. The proxy authenticates Bob using an identity provider. Bob is
identified as bob and belongs to groups teama and teamb.

3. The proxy authenticates with cluster A using X.509 certificates
or other method and passes impersonation headers:

Impersonate-User: jane.doe@example.com
Impersonate-Group: developers
Impersonate-Group: admins

4. Cluster A authorizes the request based on the impersonate user
and groups.

5. The same flow can be used against cluster B.

We do not provide an implementation of the impersonation proxy
here, because it is beyond the scope of this book. Currently, there is
not a solution provided as part of the Kubernetes open source. The
advantage of this solution for hybrid clouds is that you end up with
a normalized solution for user and group management, regardless of
the native authentication method of all clusters involved. This allows

Access Control | 115

http://bit.ly/2xECZdF
http://bit.ly/2xECZdF
mailto:jane.doe@example.com

for creation of a single set of RBAC objects that can be utilized uni‐
formly across all clusters.

Although impersonation does require additional development and
tooling for support, it results in a strategy that makes it easier to
have uniform authentication and authorization across heterogenous
Kubernetes clusters.

Performance, Scheduling, and Autoscaling
For this discussion, it is important to group performance and sched‐
uling into a single topic. The key to dealing with performance differ‐
ences between various Kubernetes environments that make up a
hybrid cloud is to ensure that scheduling is performed properly. The
Kubernetes scheduler is completely reliant on proper resource
request definitions to accurately schedule and utilize resources.

Scheduling
Understanding how the Kubernetes scheduler makes scheduling
decisions is critical in order to ensure consistent performance and
optimal resource utilization. All scheduling in Kubernetes is done
based upon a few key pieces of information. First, it is using the
information about the worker Node to decide what the total capacity
of the Node is. Using kubectl describe node <node> will give you
all the information you need to understand regarding how the
scheduler sees the world, as is demonstrated here:

Capacity:
 cpu: 4
 ephemeral-storage: 103079200Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 16427940Ki
 pods: 110
Allocatable:
 cpu: 3600m
 ephemeral-storage: 98127962034
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 14932524020
 pods: 110

In this example, we see what the scheduler sees as being the total
capacity of the worker Node, as well as the allocatable capacity. The
allocatable numbers factor in kubelet settings for Kubernetes and

116 | Chapter 7: Cluster Operations and Hybrid Cloud

system reserved space. Allocatable represents the total space the
scheduler has to work with for a given node.

Next, we need to look at how we instruct the scheduler about our
workload. It is important to note that Kubernetes does not consider
actual CPU and memory utilization of a workload. It acts on only
the resource descriptions provided by the developer or operator.
Here is an example:

 resources:
 limits:
 cpu: 100m
 memory: 170Mi
 requests:
 cpu: 100m
 memory: 170Mi

These are the specifications provided at the container level. The
developer must provide these specifications on a per-container
basis, not per Pod. What do these specifications mean? The limits
are considered only by the kubelet and are not a factor during
scheduling. This indicates that the cgroup of this container will be
set to limit CPU utilization to 10% of a single CPU core, and if
memory utilization exceeds 170 MB, the process will be killed and
restarted; there is no “soft” memory limit in Kubernetes use of
cgroups. The requests are used by the scheduler to determine the
best worker on which to place this workload. Note that the schedule
is adding the resource requests of all containers in the Pod to deter‐
mine where to place it. The kubelet is enforcing limits on a per-
container basis.

We now have enough information to understand the basic resource-
based scheduling logic that Kubernetes uses. When a new pod is cre‐
ated, the scheduler looks at the total resource requests of the Pod
and then attempts to find the worker Node that has the most avail‐
able resources. This is tracked by the scheduler for each Node, as
seen in kubectl describe node:

Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 CPU Requests CPU Limits Memory Requests Memory Limits
 ------------ ---------- --------------- -------------
 1333m (37%) 2138m (59%) 1033593344 (6%) 1514539264 (10%)

You can investigate the exact details of the Kubernetes scheduler via
the source code. There are two key concepts in scheduling. On the

Performance, Scheduling, and Autoscaling | 117

http://bit.ly/2zAtldo
http://bit.ly/2zAtldo

first pass, the scheduler attempts to filter the Nodes that are capable
of running a given Pod based on resource requests and other sched‐
uling requirements. On the second pass, the scheduler weighs the
eligible nodes based on absolute and relative resource utilization of
the nodes and other factors. The highest weighted eligible Node is
selected for scheduling of the Pod.

In this chapter thus far, we have not factored in the wide variety of
other scheduling hints that are available in Kubernetes to filter
Nodes such as Node/Pod affinity/anti-affinity. These tools are used
to adjust the pool of Nodes from which the resource-based schedu‐
ler will pull. You can learn more about this in the Kubernetes docu‐
mentation.

Hybrid considerations for scheduling
When managing workloads across a heterogeneous set of worker
Nodes and clusters, the most important thing to take away is that
not all CPU cores are created equal. One CPU core cannot always
do the same amount of work as a different one. This can be caused
by variations in clock speed and CPU process generation. Kuber‐
netes does not have any way to see or manage these performance
variations, so you need to consider a few things. Here are some
options:

• Create resource requests and limits based on the lowest com‐
mon denominator. Find the least performant target Kubernetes
cluster, and create resource requests and limits based on these
workers. The good news is that all memory is created equal for
capacity, so this should translate one-to-one between clusters.
CPU is variable depending on the physical chips underlying the
worker. Therefore, you can end up underutilizing the more per‐
formant workers.

• Create custom CPU requests/limits per cluster/worker.
• Use autoscaling. We discuss several approaches for performing

autoscaling in the next section.

Autoscaling
There are four common forms of autoscaling in use today, falling
into two categories: monitoring-based autoscalers (Horizontal Pod
Autoscalers and Vertical Pod Autoscalers), and cluster scale–based

118 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2ImIIc2
http://bit.ly/2ImIIc2

autoscalers (cluster proportional autoscalers and addon-resizer
autoscalers).

All four forms attempt to use various inputs to dynamically deter‐
mine the proper replica count or resource requests. We cover each
of these in more detail in the next sections.

Horizontal Pod Autoscaler
The most common form of autoscaling used is Horizontal Pod
Autoscaling (HPA). Autoscaling factors in the actual CPU utiliza‐
tion of a Pod based upon metrics provided via the metrics API met‐
rics.k8s.io (or directly from heapster pre-Kubernetes 1.11 only).
With this approach, the resource requests and limits just need to be
reasonable for the given workload, and the autoscaler will look at
real-world CPU utilization to determine when to scale. Let’s look at
an example via our application:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: hello
 name: hello
spec:
 selector:
 matchLabels:
 run: hello
 template:
 metadata:
 labels:
 run: hello
 spec:
 containers:
 - image: kitch/hello-app:1.0
 name: hello
 resources:
 requests:
 cpu: 20m
 memory: 50Mi

apiVersion: v1
kind: Service
metadata:
 labels:
 run: hello
 name: hello
spec:
 ports:

Performance, Scheduling, and Autoscaling | 119

 - port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 run: hello

We now have a simple web app to begin exploring autoscaling. Let’s
see what we can do from a scaling perspective. Step one—create an
autoscaling policy for this deployment:

$ kubectl autoscale deploy hello --min=1--max=5--cpu-percent=80
deployment.apps "hello" autoscaled
$ kubectl get hpa hello
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
hello Deployment/hello 0%/80% 1 5 1

Excellent! We are ready to scale! Let’s throw some load at our fancy
new web application and see what happens next. Now when we
check to see the CPU utilization of our Pod, we can see it is using
43m cores:

$ kubectl top pods -l run=hello
NAME CPU(cores) MEMORY(bytes)
hello-7b68c766c6-mgtdk 43m 6Mi

This is more than double the resource request we specified:

$ kubectl get hpa hello
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
hello Deployment/hello 215%/80% 1 5 1

Note that the HPA has increased the number of replicas:

$ kubectl get hpa hello
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
hello Deployment/hello 86%/80% 1 5 3

Utilization is still above our policy limit, and thus in time the HPA
will continue to scale up once more and reduce the load below the
threshold of the policy:

$ kubectl get hpa hello
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
hello Deployment/hello 62%/80% 1 5 4

It’s important to note that the metrics collection and HPA are not
real-time systems. The Kubernetes documentation speaks in a bit
more detail about the controller-manager settings and other intrica‐
cies of the HPA.

Finally, we reduce the load on the deployment, and it is automati‐
cally scaled down again:

120 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2r08Row
http://bit.ly/2r08Row

$ kubectl get hpa hello
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
hello Deployment/hello 0%/80% 1 5 1

How does this help us in hybrid scenarios? It ensures that regardless
of the inherent performance of any one cluster or worker Node, the
autoscaler will ensure that we have the appropriate resources alloca‐
ted to support our workload.

Vertical Pod Autoscaler
The Vertical Pod Autoscaler (VPA) is an excellent solution for situa‐
tions in which you have a Deployment that needs to scale up rather
than out. Whereas the HPA adds more replicas as memory and CPU
utilization increase, the VPA increases the memory and CPU
requests of your deployment. For this example, let’s reuse our hello
example again. We begin by installing the VPA according to the
steps provided. If you recall, we started with requests of 20 milli‐
cores. First, let’s apply our VPA:

apiVersion: poc.autoscaling.k8s.io/v1alpha1
kind: VerticalPodAutoscaler
metadata:
 name: hello-vpa
spec:
 selector:
 matchLabels:
 run: hello
 updatePolicy:
 updateMode: Auto

Now, let’s apply load to the application and observe the appropriate
response:

$ kubectl top pods -l run=hello
NAME CPU(cores) MEMORY(bytes)
hello-7b68c766c6-mgtdk 74m 6Mi

We can then view the resource requests for our hello Deployment
and see that they have been automatically adjusted to match real-
world utilization of our application:

 resources:
 requests:
 cpu: 80m
 memory: 50Mi

Performance, Scheduling, and Autoscaling | 121

http://bit.ly/2xP9iH5
http://bit.ly/2xP9iH5

Cluster Proportional Autoscaler
There are a couple of other common autoscaler implementations
that are used in addition to the HPA. The first of these is the Cluster
Proportional Autoscaler, which looks at the size of the cluster in
terms of workers and resource capacity to decide how many replicas
of a given service are needed. Famously, this is used by KubeDNS;
for example:

spec:
 containers:
 - command:
 - /cluster-proportional-autoscaler
 - --namespace=kube-system
 - --configmap=kube-dns-autoscaler
 - --target=Deployment/kube-dns-amd64
 - --default-
params={"linear":{"coresPerReplica":256,"nodesPerReplica":16,
"preventSinglePointFailure":true}}
 - --logtostderr=true
 - --v=2

The number of cores and nodes are used to determine how many
replicas of KubeDNS are needed.

addon-resizer
Another great example is the addon-resizer (aka pod_nanny), which
performs vertical scaling of resource requests based upon cluster
size. It scales the resource’s requests of a singleton based on the
number of workers in the cluster. This autoscaler has been used by
heapster:

 - command:
 - /pod_nanny
 - --config-dir=/etc/config
 - --cpu=80m
 - --extra-cpu=0.5m
 - --memory=140Mi
 - --extra-memory=4Mi
 - --threshold=5
 - --deployment=heapster
 - --container=heapster
 - --poll-period=300000
 - --estimator=exponential

122 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2zA98Ve
http://bit.ly/2zA98Ve
http://bit.ly/2QZ7O4K
http://bit.ly/2R1BIW1

Performance
How does all of this autoscaling help you? The key here is that these
autoscaling options allow you to tie real-world resource utilization
data back to the scale of your application. Because of this, even if the
resource requests that you used to schedule a given Pod might not
be 100% accurate to what the real-world utilization is, the autoscaler
will adjust the total requested/utilized resources of the application.
The end result of this interaction between autoscaler and scheduler
will be that regardless of the performance and utilization of any
individual Pod or worker Node, the system of all Pods for a given
application will be balanced properly to meet your performance
requirements.

Networking
Kubernetes networking is both simple and complex. Simplicity
comes from the concept that Kubernetes itself is doing very little
networking magic. The complexity comes from the various net‐
working plug points and concepts that are a part of Kubernetes.
Here are the core Kubernetes networking concepts:

• Cluster (aka Pod) networking
• Services/kube-proxy/load balancers
• Ingress
• Network/security policy

In addition to the aforementioned core networking concepts, hybrid
cloud environments must also integrate some form of support for
Virtual Private Networks (VPNs). We discuss all of these topics in
the sections that follow.

Pod Networking
The most central networking component of Kubernetes is the Pod
networking. This is what makes each Pod (and the containers within
it) network addressable. Kubernetes itself implements only the most
basic networking for Pods. This is the Pod network Namespace,
which is shared by all containers of the Pod. The Pod network
Namespace allows all the containers of the Pod to communicate
with one another as if they were both running in their own dedica‐

Networking | 123

ted host. Container A is able to communicate with Container B via
localhost. All containers within the Pod share a single port space,
just as two processes on one compute host must contend for avail‐
able ports. The Pod network Namespace is provided by the Kuber‐
netes pause container, which does nothing other than create and
own the network Namespace.

Next up is the Container Network Interface (CNI) plug-in that con‐
nects the Pod network Namespace to the rest of the Pods in the
Kubernetes cluster. There are a huge number of different CNI plug-
ins available for various network implementations. See the official
documents for more on CNI plug-ins. The most important thing to
know is that the cluster networking is what provides Pod-to-Pod
communication within the cluster and IP address management.

Services/kube-proxy/Load Balancers
Kubernetes leans heavily upon the concept of microservices; the
idea being that there are many services within the cluster that pro‐
vide functional units and are accessed from within the cluster or
from outside the cluster as Services. Much has been written on the
topic, and the Kubernetes documentation details Services. The most
common use case for Services is to create a Kubernetes Deployment
or ReplicaSet and expose that group of Pods as a single, scalable,
highly available Service.

The kube-proxy component is what makes all of this possible. We
won’t go into the details of the kube-proxy mechanics here, but,
essentially, it provides very efficient and highly available load bal‐
ancing of Kubernetes Services within the cluster.

Finally, we have load balancers, which are a concept within Kuber‐
netes that allow access to a Kubernetes Service from outside the
cluster. When creating a service of type=LoadBalancer, you are
indicating that the service should be externally available. Your
Kubernetes Service provider or bare-metal solution will determine
exactly the implementation details of the load balancer. In all cases,
you end up with an external IP address, which can be used to access
the Service. You can find more details in the Kubernetes documenta‐
tion.

Of Services, kube-proxy, and load balancers, hybrid considerations
typically arise only for load balancers. This is because in many cases

124 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2OeaDk6
http://bit.ly/2OeaDk6
http://bit.ly/2q7AbUD
http://bit.ly/2Gs05Wh
http://bit.ly/2Gs05Wh

Load Balancers are cloud-provider specific and can have unique
annotations and behaviors. You should investigate these to ensure
that consistent behavior, security, and performance occurs across
platforms.

Ingress
Ingress provides a Kubernetes object model to make Services avail‐
able outside the Kubernetes cluster via a Layer 7 application load
balancer. An example would be providing public internet access to a
web service or web page. Your Ingress controller of choice will
determine the exact implementation. You need only create an
Ingress object to indicate the desire to expose a Kubernetes Service
externally via an application load balancer. Here’s an example object:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: hello-ingress
spec:
 rules:
 - host: kitch.us-east.containers.appdomain.cloud
 http:
 paths:
 - path: /
 backend:
 serviceName: hello
 servicePort: 80

This indicates to the Ingress controller that the hello Service should
be exposed on the kitch.us-east.containers.appdomain.cloud
hostname. It is then up to the Ingress controller to realize this
desired state.

Hybrid strategies are heavily affected by Ingress because the
Ingress controller of each provider supports a wide variety of anno‐
tations that are associated with each implementation. Because of this
variability between providers, the Ingress objects are often man‐
aged by the operations team rather than the development team. In
this scenario, the developers might request to have a specific Service
exposed via a specific Ingress; the operators can then create the
Ingress object, and the development team is free to make changes
and update the backend service implementation at any time. One
option to provide consistency between Kubernetes clusters is to use
a community Ingress controller with a Kubernetes Load Balancer

Networking | 125

Service. To do this, you would deploy an Ingress controller such as
the Kubernetes ingress-nginx with multiple replicas and then
expose it by using a Service such as:

$ kubectl expose deploy ingress-nginx --port 443 --type
LoadBalancer

When this is complete, the Ingress controller can be used as nor‐
mal. This provides a uniform ingress experience across heterogene‐
ous clusters. Note that if you go this route, you will either need to
disable other Ingress controllers or use an annotation in your
Ingress objects to specify which controller should handle the
object. You can specify the Kubernetes ingress-nginx controller
using the following:

 annotations:
 kubernetes.io/ingress.class: "nginx"

There is additional documentation available for introducing multi‐
ple instances of the same type of controller.

Network Security/Policy
There are two levels of network security that we need to discuss as it
relates to Kubernetes: securing the worker Nodes and securing the
Pods. Securing Pods in Kubernetes is the domain of Kubernetes Net‐
workPolicy, which, when used with a CNI plug-in that supports pol‐
icy, allows users and operators to control network access controls at
the Pod level. It’s also possible to use Istio for Pod network policy,
which we discuss in “Istio” on page 129. Network Security of the
worker Nodes is not the domain of Kubernetes. You must secure the
Nodes with external tools such as a Virtual Private Cloud (VPC),
network Access Control List (ACL), or security groups from your
cloud provider, iptables, or a cloud security solution such as Project
Calico.

NetworkPolicy

NetworkPolicy objects are used to control networking traffic enter‐
ing and leaving Kubernetes Pods. Entering network traffic is com‐
monly referred to as ingress traffic, and networking traffic leaving
the Pod is commonly referred to as egress traffic. The NetworkPo
licy object is quite flexible and its capabilities have grown consider‐
ably over time. We won’t go into the details of how to construct

126 | Chapter 7: Cluster Operations and Hybrid Cloud

https://github.com/kubernetes/ingress-nginx
http://bit.ly/2OnMmrX
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://en.wikipedia.org/wiki/Virtual_private_cloud
https://www.projectcalico.org/
https://www.projectcalico.org/

NetworkPolicy or the underlying implementation, the official
Kubernetes documentation does an excellent job of this.

Let’s look at a few examples that operators are likely to encounter.
One topic that is not discussed extensively in the Kubernetes docu‐
mentation is using NetworkPolicy to provide access control into the
cluster or out of the cluster. It’s not uncommon to start with a deny-
all policy for a Namespace, such as demonstrated here:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny
 namespace: teama
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

In many cases, there might be a desire to allow egress to an external
web service. In this case, you can use an ipBlock to allow egress for
a service. In this example, we have purchased a public cloud–based
Redis service. Our team is going to deploy Pods that need to access
this service. By default, this traffic would be blocked. This policy will
allow the in-cluster Pods to access the internet Redis service. Sup‐
pose that the Redis service that we are trying to access is available at
10.10.126.48/28 on port 6379. A simple policy will allow this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-redis
 namespace: teama
spec:
 podSelector: {}
 policyTypes:
 - Egress
egress:
 - to:
 - ipBlock:
 cidr: 10.10.126.48/28
 ports:
 - protocol: TCP
 port: 6379

If you use a LoadBalancer or Ingress solution that is capable of
supporting source IP preservation, you can also use NetworkPolicy
to restrict the addresses that can access Pods. This is a commonly

Networking | 127

http://bit.ly/2NKYnYP
http://bit.ly/2NKYnYP

desired solution for hybrid scenarios because some services might
be hosted publicly, but operators might desire to allow only on-
premises users to access the service. We can use our default-deny
policy to get started. Now we want to allow our corporate network
(159.27.17.32/17) to access our HR application:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-corporate-to-hr-frontend
 namespace: teama
spec:
 podSelector: {}
 policyTypes:
 - Ingress
ingress:
 - from:
 - ipBlock:
 cidr: 159.27.17.32/17
 - podSelector:
 matchLabels:
 app: hr-frontend
 ports:
 - protocol: HTTP
 port: 8080

This is just one example of the power of NetworkPolicy. Here, we
looked at ingress/egress via ipBlock. Many times, NetworkPolicy is
used to secure and isolate between Kubernetes Pods as well. In these
cases, we are able to use the podSelector option rather than
ipBlock to create a simple policy to secure our Pods from one
another.

Worker Node network security
As mentioned in this chapter, there are any number of possible solu‐
tions available to secure the network of your worker Nodes. We
won’t go into the details of the cloud provider solutions here, given
that they are unique to each provider. That said, in hybrid you often
have your own “bare-metal” clusters in which you want to secure
your worker Nodes. A solution like Project Calico is great in these
environments. Calico has its own native GlobalNetworkPolicy
object. You might even find it desirable to use in cloud provider
environments to have a consistent method for managing worker
security in hybrid scenarios.

128 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2xHLGnm

Let’s look at a very brief example that might be used to allow access
to a nodeport range on the workers of ports 30000 through 32767.
We’ll also allow all egress and use Kubernetes Network policy to
control egress:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
 name: allow-nodeports
spec:
 selector: role == 'all'
 types:
 - Ingress
 - Egress
 ingress:
 - action: Allow
 protocol: TCP
 destination:
 ports:
 - 30000:32767
 egress:
 - action: Allow

Calico implements these network policies using iptables rules. The
core advantage of using Calico GlobaNetworkPolicy is that it allows
the admin to programmatically control access across an entire range
of nodes using the selectors.

Istio
We talk only briefly about Istio here, given that we could write an
entire book on this topic alone. In this section, we do provide a
short overview of the features of Istio so that you can make your
own decision as to whether it is worth exploring this framework in
greater depth.

At its heart, Istio is a service mesh framework that provides some of
the same microservices features that you will find in Kubernetes
itself, such as service discovery and load balancing. In addition, Istio
brings with it traffic management, service identity and security, pol‐
icy enforcement, and telemetry. Two Istio concepts that operators
might find particularly appealing are mutual TLS, to secure Pod-to-
Pod traffic using centrally managed certificates, and egress policy.
Egress policy in Istio is especially appealing because it removes the
need to create policy based on external service Classless Inter-
Domain Routing (CIDR) blocks and allows policy definitions based

Networking | 129

https://istio.io
http://bit.ly/2Ojqo9c
https://istio.io/docs/concepts/security/mutual-tls/
https://istio.io/docs/tasks/traffic-management/egress/

on URL. Allowing access to an external Compose MongoDB service
is as simple as doing the following:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: compose-mongodb
spec:
 hosts:
 - sl-us-south-1-portal.27.dblayer.com
 - sl-us-south-1-portal.28.dblayer.com
 ports:
 - number: 47400
 name: mongodb
 protocol: TCP

This policy allows all of our Pods and Services running in the
Kubernetes cluster to have egress access to our publicly hosted mon
godb Service. This allows you to access this Service regardless of
whether it might be hosted behind a Content Delivery Network
(CDN) or other proxy-based solution. No more chasing IPs.

There is a large array of operational and architectural problems that
are neatly solved by Istio. We strongly recommend that you investi‐
gate it as your use of Kubernetes grows and becomes more
advanced.

Virtual Private Networks
In hybrid cloud environments, one of the most important challenges
to overcome is network connectivity. You can have Kubernetes clus‐
ters running in a variety of networking environments with
extremely limited network connectivity. Virtual Private Networks
(VPNs) are a common solution to solve these challenges. A VPN
can create connectivity solutions between firewalled networking
environments. Let’s take a look at an example in which we have a
publicly hosted Kubernetes cluster, and one in our on-premises
datacenter. In this scenario, we want to keep all services and access
to the cluster as near to fully private as possible. VPN to the rescue!

You’ll find many different VPN solutions for Kubernetes out there.
We’re a bit partial to IBM Cloud solutions, and it just so happens
there is a fantastic StrongSwan-based IPsec VPN solution to allow
connecting IBM Cloud Kubernetes Service clusters to IBM Cloud
Private. You can find stunningly detailed documentation on deploy‐
ing this VPN solution. Regardless of what solution you go with for

130 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2xSNJnV
http://bit.ly/2xSNJnV

VPN, you might consider using a single solution across all your
clusters.

Storage
Earlier, we spoke about some of the storage concepts in Kubernetes,
including Volumes, PersistentVolumes (PVs), and PersistentVolu‐
meClaims (PVCs). From an operations standpoint, there are not too
many issues that need to be addressed. One consideration is how the
storage is managed. In some shops, there might be a storage admin
who has the proper RBAC to create PVs and PVCs. The developer
only has access to refer to the PVCs. Of course, a trusting admin
might provide RBAC for developers to create their own PVCs
directly, especially in environments that support dynamic storage
provisioning because it dramatically simplifies the ability to rapidly
deploy and scale applications that are dependent on storage.

One area where storage knowledge is critical is when dealing with
StorageClasses. StorageClasses are used to specify the perfor‐
mance and other characteristics of the backing physical storage. In
hybrid environments, you are certain to see variability in Storage
Classes, and here is where a knowledgeable storage admin and per‐
formance engineer can help to find and create comparable classes
for use across hybrid clusters. This allows the developer to get con‐
sistent performance characteristics.

Kubernetes Volume Plug-ins
Key to storage support in Kubernetes are volume plug-ins. Kuber‐
netes supports two types of out-of-tree volume plug-ins: CSI and
FlexVolume. Both of these options provide ways to extend Kuber‐
netes to support various backing storage solutions for PVs. Here, we
review a few of the volume plug-ins that you will encounter with
IBM Cloud.

IBM Cloud Kubernetes Service
IBM Cloud provides two FlexVolume plug-ins for use with IBM
Cloud Kubernetes Service: IBM File Storage for IBM Cloud and
IBM Block Storage for IBM Cloud. These drivers allow users to
easily access IBM Cloud–managed storage options for persistence.
In addition, these plug-ins provide a variety of StorageClasses sup‐
porting a wide range of capacity and performance needs. More

Storage | 131

https://kubernetes.io/docs/concepts/storage/storage-classes/

details are available in the IBM Cloud Kubernetes Service documen‐
tation.

GlusterFS
GlusterFS is a distributed filesystem that can be exposed to Kuber‐
netes. GlusterFS is an example of software-defined storage, in which
arbitrary block storage devices (called bricks) have a replicated file‐
system managed across them. The advantage of course is that if
Nodes that are hosting a portion or replica of the filesystem fail,
other Nodes will still be able to access the data from surviving repli‐
cas. There are a few abstraction layers to be aware of, so let’s go
through them.

• On each worker Node, a filesystem client allows the worker to
mount a replica from GlusterFS for local availability.

• A Kubernetes plug-in makes these filesystems available to be
mounted into containers.

• Heketi, an API abstraction layer, allows the dynamic provision‐
ing of distributed volumes in GlusterFS. Heketi interacts with
Kubernetes as a dynamic storage provisioner. A Storage Class is
registered which provides a dynamic endpoint, which is serv‐
iced by the Heketi API.

• Each PVC declares its expected Storage Class as well, along with
attributes like the required size of the volume, the required
shared read/write characteristics, and the expected recycle
behavior.

When Kubernetes detects a new PVC with our GlusterFS Storage
Class, an API request is made to Heketi to create a matching PV.
Finally, the PV is mounted into the container and the local container
process is able to read and write data to it. Because we’ve chosen
GlusterFS as our filesystem, each write is replicated across a number
of storage locations, which is controlled by a setting in the Storage
Class.

Quotas
Resource quotas are a critical aspect whenever managing shared
resources. Kubernetes allows you to control resource allocations at
many levels, including fine-grained controls per Pod such as

132 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2N8XJPP
http://bit.ly/2N8XJPP
https://docs.gluster.org/en/latest/

restricting CPU and memory assigned to containers (see “Perfor‐
mance, Scheduling, and Autoscaling” on page 116) or per Name‐
space.

Let’s take a look at an example quota declaration for our stock-
trader Namespace:

kind: ResourceQuota
apiVersion: v1
metadata:
 name: stock-trader-quota
 namespace: stock-trader
spec:
 hard:
 limits.cpu: '8'
 limits.memory: 8Gi
 requests.cpu: '4'
 requests.memory: 4Gi
 services: '25'
 persistentvolumeclaims: '25'

In this example, we set the bounds for requests (how much to
reserve) and limits (how much to allow). Expressing the lower
bound is helpful to ensure that your Kubernetes cluster will have
sufficient capacity for all intended workloads.

limits.cpu

The sum of all CPU shares used by Pods in the Namespace may
not exceed this value. You may express fractional values in the
range of 0 to 1 (e.g., 0.5 is one-half of a CPU), or use the suffix
“m” to denote millishares (e.g., 800m is equivalent to 0.8 or 8/10
of a CPU).

limits.memory

The sum of all memory shares used by Pods in the Namespace
may not exceed this value. The unit expressed is typically in gig‐
abytes (“Gi”). You may also specify alternative units including E,
P, T, G, M, or K for expressing the number of bytes in powers of
10, or Ei, Pi, Ti, Gi, Mi, or Ki for expressing the number of bytes
in powers of 2.

requests.cpu

The amount of CPU capacity to reserve on the cluster. You may
express units as you do with limit.cpu.

Quotas | 133

requests.memory

The amount of memory to reserve on the cluster. You may
express units as you do with limit.memory.

services

A count of the total Services allowed in the Namespace.

persistentvolumeclaims

A count of the total PVCs allowed in the Namespace.

The most important thing to remember is to set requests for quotas
and Pods. Requests ensure that sufficient capacity is reserved and is
critical for effective, balanced scheduling of Pods across the nodes in
your cluster. More details on requests are provided in “Perfor‐
mance, Scheduling, and Autoscaling” on page 116.

The previous example shows services and persistentvolume
claims, but most Kubernetes resources can be expressed to provide
an absolute limit on the number of these kinds of resources allowed
in the Namespace. We express these two because we find they are
the most important to limit.

Note that resourcequota is its own kind and it is Namespace
scoped. Hence, the quota that governs a Namespace is defined
within the Namespace. When you define Kubernetes Roles and Role
Bindings, be sure to limit the ability to create and modify resource
quota objects to only the administrators or operators who govern
control of the cluster. Otherwise, you might expose yourself to an
enterprising developer who wants more capacity than intended.

You apply quotas like all other resources in Kubernetes:

$ kubectl apply -f resource-quota.yaml
resourcequota "stock-trader-quota" created

If you are using IBM Cloud Private, you can also use the web con‐
sole to make it easier to create resource quotas, under Manage >
Quotas. Figure 7-1 demonstrates the creation of a resource quota for
the stock-trader Namespace using the tools provided by IBM
Cloud Private.

134 | Chapter 7: Cluster Operations and Hybrid Cloud

Figure 7-1. Using IBM Cloud Private to create resource quotas.

Audit and Compliance
There are two keys areas for which audit should be considered for
Kubernetes, the kube-apiserver and the worker Nodes. For the api‐
server, there are two factors to consider. First is the Audit Policy,
which determines which requests will be audited and how much
data for the request will be audited. A careful balance is needed to
maintain performance while still meeting any compliance needs.
Your cloud provider might include settings for the apiserver audit
logging. The second consideration for the kube-apiserver auditing is
where those audit events are stored. You can choose either a local
log file or a webhook-based backend. Typically, your cloud provider
can provide some integrated capabilities. IBM Cloud Kubernetes
Service allows the operator to send logs either to IBM Log Analysis
or use the webhook for delivering the audit to a third-party.

In addition to the kube-apiserver, we recommend that you also col‐
lect audit information from all worker Nodes. The standard for
audit log collection on Linux is auditd. You can find any number of
tutorials on configuring and auditing or system monitoring with
auditd. The key with Kubernetes is to configure auditd on all worker
Nodes and use Fluentd for collection of that auditd data. Cloud pro‐
viders might cover worker audit as part of their service.

Audit and Compliance | 135

http://bit.ly/2IlXyjd
http://bit.ly/2Oear4m
http://bit.ly/2zzJxvo
http://bit.ly/2zzDGGx

Kubernetes Federation
Kubernetes Federation is a must to cover for operations whenever
you are covering hybrid scenarios. Federation allows you to manage
resources of two or more Kubernetes clusters via a single API end‐
point.

There are quite a few caveats to consider in a federated configura‐
tion. One issue is how authentication and authorization are per‐
formed in federation, given that it’s difficult to manage their
hierarchy across clusters.

Federation works by replicating or distributing objects across the
clusters included in the federation. Thus, if a ConfigMap is created,
it is replicated across all clusters in the federation. If a ReplicaSet is
created, it is replicated across all clusters in the federation with an
equal number of Pods in each cluster.

In addition, federation is responsible for configuring DNS servers in
each cluster to enable cross-cluster service discovery. Depending on
the network configuration of clusters in the federation, this might or
might not enable some level of cross-cluster communication. Users
will also see varying levels of cross-cluster load balancer and ingress
configurations.

“Maturity: The federation project is relatively new and
is not very mature. Not all resources are available and
many are still alpha. There are issues that enumerate
known issues with the system that the team is busy
solving.”

It is also worth noting that as of this publication, the Kubernetes sig-
federation is working on a v2 proposal. This work hopes to address
scheduling, management, and authentication/authorization strug‐
gles from the original federation work.

136 | Chapter 7: Cluster Operations and Hybrid Cloud

http://bit.ly/2xGa0Gw
http://bit.ly/2xDQ4E0
https://github.com/kubernetes/federation/issues/88
https://github.com/kubernetes-sigs/federation-v2

CHAPTER 8

Contributor Experience

By this point in the book, hopefully we have convinced you that
Kubernetes is a popular and exciting technology that will bring sub‐
stantial value to your enterprise. But, if you really want excitement,
we highly recommend that you become a contributor to the Kuber‐
netes community. The Kubernetes contributor community is an
amazing group of very friendly people with a tremendous amount
of collective knowledge about cloud computing and container tech‐
nologies. By becoming a contributor, you will have the opportunity
to expand your skills and strengthen your professional network.
Contributing to Kubernetes can take several forms, including con‐
tributing to source code, opening bug reports, and contributing to
documentation.

Learning how to contribute to an open source project like Kuber‐
netes can be quite intimidating if you have never contributed to an
open source project in the past. Fortunately, there are several resour‐
ces available to help accelerate your journey to being a contributor
to the Kubernetes community. In this chapter, we highlight several
of these excellent online resources.

Kubernetes Website
The primary Kubernetes website is an excellent place to begin look‐
ing for information on Kubernetes. As shown in Figure 8-1, the
home page for Kubernetes provides links for more information on
topics such as documentation, community, blogs, and case studies.
In the community section of the Kubernetes website, you will find

137

https://kubernetes.io

more information on how to join the large number of Kubernetes
Special Interests Groups (SIGs). Each SIG focuses on a specific
aspect of Kubernetes, and hopefully you can find a group that
excites you and matches your interests.

Figure 8-1. Kubernetes website home page.

The Cloud Native Computing Foundation
Website
Figure 8-2 shows the Cloud Native Computing Foundation (CNCF)
website. It provides a large amount of information on a variety of
cloud-native computing projects that are hosted by the CNCF. The
projects under the umbrella of the CNCF include Kubernetes,
Prometheus, Envoy, Containerd, Fluentd, Helm, and several others.
In addition, the CNCF provides several Kubernetes educational
training modules and also has a Certified Kubernetes Application
Developer (CKAD) Program.

138 | Chapter 8: Contributor Experience

https://kubernetes.io
https://www.cncf.io

Figure 8-2. Cloud Native Computing Foundation website home page.

IBM Developer Website
The IBM Developer Website provides a large number of
Kubernetes-based code patterns. This website semantically links
code, content, and community to empower developers and provide
them with support as they learn new open source technologies. At
IBM Developer, developers can take guided learning paths through
a variety of open source topics and solutions to progress their tech‐
nical depth and expand their personal eminence in open source. A
large portion of the IBM Developer Website is focused on Kuber‐
netes code samples and tutorials, as well as its use by adjacent tech‐
nologies. Figure 8-3 depicts the Kubernetes portion of the IBM
Developer Website.

IBM Developer Website | 139

https://www.cncf.io/
https://developer.ibm.com

Figure 8-3. IBM Developer Website Kubernetes code patterns page.

Kubernetes Contributor Experience SIG
The Kubernetes community takes the happiness of its contributors
very seriously. In fact, they have an entire SIG, the Contributor Expe‐
rience SIG, dedicated to improving the contributor experience. The
Contributor Experience SIG is an amazing group of folks who want
to know more about you and understand the issues you might be
encountering as you become a Kubernetes contributor. The Con‐
tributor Experience SIG website, shown in Figure 8-4, is located on
Kubernetes community GitHub. Take some time to visit this website
for more information on how to contact the Contributor Experience
SIG and learn more about the contributor topics it focuses on.

140 | Chapter 8: Contributor Experience

https://developer.ibm.com/technologies/container-orchestration/
http://bit.ly/2DJacKC

Figure 8-4. Kubernetes Contributor Experience SIG website home
page.

Kubernetes Documentation SIG
If you don’t feel comfortable contributing to Kubernetes source code
but still have a strong desire to participate in the Kubernetes com‐
munity as a contributor, the Kubernetes Documentation SIG may be
the perfect fit for you. The Kubernetes Documentation SIG main‐
tains the Kubernetes documentation repository. Figure 8-5 presents
a snapshot of the home page for this SIG. The GitHub pull request
process this team utilizes to accept contributions is essentially the
same process used by Kubernetes code repositories. Because of this,
the skills you acquire learning how to be a documentation contribu‐
tor will also help you even if your long-term goal is to be a Kuber‐
netes code contributor. In addition, the Kubernetes Documentation
SIG will typically run Documentation Sprints at all the KubeCon/
CloudNativeCon conferences. At these sprints, you get hands-on
training from Kubernetes Documentation Maintainers on how to
become a Kubernetes documentation contributor in a small team

Kubernetes Documentation SIG | 141

http://bit.ly/2DJacKC
http://bit.ly/2DJacKC
http://bit.ly/2OSwg6l

setting. This environment is perfect for new potential contributors
who need a little extra help getting started or feel more comfortable
learning in smaller groups.

Figure 8-5. Kubernetes Documentation SIG website home page.

Kubernetes IBM Cloud SIG
If you are interested in following the evolution of the IBM Cloud
Kubernetes Service and IBM Cloud Private platforms, this is the
group for you. Many developers and leaders from IBM Cloud work
openly in this group to determine the future of IBM contributions
and involvement in the Kubernetes community. You can also inter‐
act directly with the team that builds and operates IBM Cloud. You
can find more information on the group and its meetings at its Git‐
Hub page.

142 | Chapter 8: Contributor Experience

http://bit.ly/2OSwg6l
http://bit.ly/2xXy7Qm
http://bit.ly/2xXy7Qm

CHAPTER 9

The Future of Kubernetes

Spend some time at a KubeCon/CloudNativeCon conference these
days, and you will quickly come to the conclusion that Kubernetes’
future is very bright. Attendance at KubeCon/CloudNativeCon con‐
ferences continues to experience an explosive level of growth. In
addition, the Kubernetes open source community of contributors
continues to expand and strengthen. The number of industries that
are adopting Kubernetes is just astounding. In this chapter, we make
some predictions on what the future holds for Kubernetes. Specifi‐
cally, we expect to see Kubernetes growth to occur in the areas of
legacy application migration to cloud-native applications, high-
performance computing, machine learning and deep learning appli‐
cations, and hybrid cloud environments.

Increased Migration of Legacy Enterprise
Applications to Cloud-Native Applications
As enterprise success stories with Kubernetes continue to be publi‐
cized and highlighted at KubeCon/CloudNativeCon conferences, we
anticipate that more and more enterprise legacy applications will be
moved to run as cloud-native computing applications. Accelerating
this transformation will be tooling and containerized enterprise
middleware tailored toward simplifying the process of moving
enterprise applications to Kubernetes-based cloud-native environ‐
ments. More and more enterprise customers will experience the
benefits of improved application quality, reduced defects, reduced
deployment times, and improved automation and DevOps that

143

https://www.cncf.io

1 Schmidt BK, Sunderam VS., (1994). “Empirical Analysis of Overheads in Cluster Envi‐
ronments,” Concurrency Practice & Experience, 6: 1–32.

become possible when embracing a Kubernetes container-based
development methodology.

Increased Adoption of Kubernetes for
High-Performance Computing
Kubernetes and its container-based approach provides several bene‐
fits that make the environment well suited for high-performance
computing applications. Because Kubernetes is container based, the
platform experiences less overhead to start up new tasks, and the
tasks can be a finer-grained operation than those supported by vir‐
tual machine (VM)-based cloud computing environments. The
reduction of latency associated with the creation and destruction of
computational tasks that occurs when using containers instead of
VMs improves the scalability of a high-performance computing
environment. Furthermore, the increased efficiency that is possible
by packing a larger number of containers onto a physical server in
contrast to the limited number of VMs that can be placed on a phys‐
ical server is another critical advantage for high-performance appli‐
cations.

In addition to reduced latency, Kubernetes environments also sup‐
port a parallel work queue model. You can find an excellent over‐
view of the Kubernetes work queue model in Kubernetes Up and
Running, by Kelsey Hightower, Brendan Burns, and Joe Beda
(O’Reilly). The work queue model described in this book is essen‐
tially the “bag of tasks” parallel computing model. Research has
shown that this parallel computing model is a superior approach for
the execution of high-performance parallel applications in a cluster
environment.1 Because of all these factors, and also the large number
of cloud computing environments that offer Kubernetes-based envi‐
ronments, we expect a huge growth in adoption of Kubernetes by
the high-performance computing community.

144 | Chapter 9: The Future of Kubernetes

https://ibm.co/2OjOzo3
https://ibm.co/2OjOzo3

Kubernetes Will Become the de Facto
Platform for Machine Learning and Deep
Learning Applications
Machine learning and deep learning applications typically require
highly scalable environments, and data scientists with expertise in
these domains might have limited expertise running in production
at scale. Similar to our justification provided in the previous section
for adoption of Kubernetes for high-performance computing, we
anticipate machine learning and deep learning environments to
greatly benefit from adopting Kubernetes-based environments as
their primary platform. In fact, initiatives such as Kubeflow, which
are focused on providing an open source Kubernetes-based platform
for machine learning applications, are already attracting a signifi‐
cant number of contributors to their open source project.

Kubernetes Will Be the Platform for
Multicloud
If you have taken the time to read this book, this last prediction
should not be a surprise. With Kubernetes experiencing huge
growth and being made available in numerous public cloud and pri‐
vate cloud offerings, and with its focus on interoperability and the
ease of container-based workload migration, Kubernetes is well
positioned to be the ideal platform for multicloud environments.
Kubernetes future looks very bright, and exciting times are ahead!

Conclusions
In this book, we have covered a broad number of Kubernetes topics.
We provided a historical overview of the rise of both containers and
Kubernetes and the positive impact of the Cloud Native Computing
Foundation. We described the architecture of Kubernetes, its core
concepts, and its more advanced capabilities. We then walked
through an enterprise-level production application and discussed
approaches for continuous delivery. We then explored operating
applications in enterprise environments with a focus on log collec‐
tion and analysis, and health management. We also looked at Kuber‐
netes cluster operations and hybrid cloud–specific considerations
and issues. Finally, we presented several resources that are available

Kubernetes Will Become the de Facto Platform for Machine Learning and Deep Learning
Applications | 145

https://github.com/kubeflow/kubeflow

to help you become a contributor to the Kubernetes community,
and we ended with a short discussion on what the future holds for
Kubernetes. We hope that you have found this book helpful as you
begin your journey of deploying enterprise quality Kubernetes
applications into production environments, and hope it accelerates
your ability to fully exploit Kubernetes-based hybrid cloud environ‐
ments.

146 | Chapter 9: The Future of Kubernetes

APPENDIX A

Configuring Kubernetes as
Used in This Book

Throughout this book, we use two Kubernetes providers: one to
demonstrate Kubernetes as a managed service, which you can run in
IBM’s worldwide datacenters; and the second to demonstrate Kuber‐
netes as a software package that you can install on your infrastruc‐
ture of choice.

Configuring IBM Cloud Private in Your
Datacenter
The following section describes how to configure IBM Cloud Pri‐
vate and the supporting command-line interface to use when run‐
ning the examples discussed in this book.

Configuring an IBM Cloud Private Kubernetes Cluster
There are a number of ways to get started with your own enterprise-
grade Kubernetes cluster on your own infrastructure.

First, as a software distribution of Kubernetes, you can deploy IBM
Cloud Private on your own infrastructure (VMware, bare metal,
OpenStack) or various public cloud providers. Visit the GitHub
repository for ready-to-go automation.

For local experiments, you can simulate a multiworker cluster on
your own laptop via the following code:

147

http://bit.ly/2NL6btp
http://bit.ly/2NL6btp

git clone https://github.com/IBM/deploy-ibm-cloud-private.git
cd deploy-ibm-cloud-private

Open the Vagrantfile and customize it for your machine’s capacity:

Vagrantfile
...
most laptops have at least 8 cores nowadays (adjust based
on your laptop hardware)
cpus = '2'

this will cause memory swapping in the VM
performance is decent with SSD drives but may not be with
spinning disks
#memory = '4096'

use this setting for better performance if you have the ram
available on your laptop
uncomment the below line and comment out the above line
"#memory = '4096'"
memory = '10240'
…

Now, just bring up the Vagrant VirtualBox machine. As it comes up,
IBM Cloud Private will be configured using the Community Edition
available on DockerHub:

vagrant up

Configuring the IBM Cloud Private Kubernetes
Command-Line Interface
The kubectl command-line interface, which assists with authoriza‐
tion and other product-specific tasks, is available for download from
the web console:

sudo curl -ko /usr/local/bin/bx-pr https://mycluster.icp:8443/
api/cli/icp-linux-amd64
sudo chmod u+x /usr/local/bin/bx-pr

To ensure that you have a compatible version of kubectl and Helm,
you can also copy each binary out of the IBM Cloud Private incep‐
tion container used to configure the cluster:

sudo docker cp $(docker ps -qa --latest --filter \
"label=org.label-schema.name=icp
 inception-amd64"):/usr/local/bin/kubectl \
 /usr/local/bin/kubectl

sudo docker cp $(docker ps -qa --latest --filter \
"label=org.label-schema.name=icp-inception-amd64"):\

148 | Appendix A: Configuring Kubernetes as Used in This Book

/usr/local/bin/helm
/usr/local/bin/helm

To authorize your command-line environment to work with Kuber‐
netes, use bx-pr to login and then configure kubectl and Helm:

bx-pr login -a https://mycluster.icp:8443/ \
-u admin --skip-ssl-validation
API endpoint: https://mycluster.icp:8443/

Password>
Authenticating...
OK

Select an account:
1. mycluster Account (id-mycluster-account)
Enter a number> 1
Targeted account mycluster Account (id-mycluster-account)

Configuring helm and kubectl...
Configuring kubectl: /Users/mdelder/.bluemix/plugins/icp\
/clusters
/mycluster/kube-config
Property "clusters.mycluster" unset.
Property "users.mycluster-user" unset.
Property "contexts.mycluster-context" unset.
Cluster "mycluster" set.
User "mycluster-user" set.
Context "mycluster-context" created.
Switched to context "mycluster-context".

Cluster mycluster configured successfully.

Configuring helm: /Users/mdelder/.helm
Helm configured successfully

OK

Follow the prompts to enter your password and select your cluster.
Confirm that you now have access by running a command with
kubectl, such as the following:

kubectl get pods

IBM Cloud Kubernetes Service
We recommend referencing the IBM Cloud Kubernetes Service doc‐
umentation for information on how to get the CLI installed and
running quickly. You can find supporting documents at http://
ibm.biz/iks-cli. After you’ve completed the configuration, you can

Configuring Kubernetes as Used in This Book | 149

http://ibm.biz/iks-cli
http://ibm.biz/iks-cli

quickly and easily get a Kubernetes configuration file using ibm
cloud ks cluster-config <myclustername>.

150 | Appendix A: Configuring Kubernetes as Used in This Book

APPENDIX B

Configuring Your
Development Environment

Configuring Java
Java provides a robust, enterprise-grade language for the develop‐
ment of all kinds of applications. To build Java applications from
source, you need a Java Software Development Kit (Java SDK). To
run Java applications, which are compiled into Java Archives (*.jar,
*.war, *.ear), you need a Java Runtime Environment (JRE).

There are many options for Java. We recommend IBM’s Java SDK.

Configuring Maven
Apache Maven is a build tool that is very popular for Java applica‐
tions. You can download and configure Maven from Apache’s web‐
site.

Configuring Docker
The examples in this book use Docker to create Open Container Ini‐
tiative (OCI)-compatible images. Docker runs OCI-compliant
images and provides an easy-to-use API and tools for working with
these images. You can configure Docker for your platform from
Docker’s website.

151

https://developer.ibm.com/javasdk/downloads/
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://www.docker.com/get-docker
https://www.docker.com/get-docker

APPENDIX C

Configuring Docker to Push or Pull
from an Insecure Registry

The Docker runtime establishes trust of a remote image registry
based on the validity of its Transport Layer Security (TLS) certifi‐
cate. If your cluster uses a self-signed certificate, Docker will con‐
sider it “insecure” by default.

You can confirm the allowed insecure registries for your Docker
runtime by using the docker info command, as demonstrated here:

docker info| grep -A 20 "Insecure Registries"
Insecure Registries:
 mycluster.icp:8500
 127.0.0.0/8
Live Restore Enabled: false

Configuring the insecure registries for your platform may vary a bit,
but the basic flow is to extend the DOCKER_OPTS to explicitly list
each insecure registry that the Docker runtime is allowed to interact
with.

Edit the Docker daemon configuration to add the alias for your IBM
Cloud Private cluster, which will be mycluster.icp:8500, by
default. Depending on your installation and platform, your configu‐
ration file might be at /etc/docker/daemon.json, ~/.docker/
daemon.json, or C:\ProgramData\docker\config\daemon.json.

cat ~/.docker/daemon.json
{
 "debug" : true,

153

 "insecure-registries" : [
 "mycluster.icp:8500"
],
 "experimental" : true
 }

Then, update your /etc/hosts configuration to alias this hostname
(provided by the certificate when Docker connects to the endpoint)
to the specific public IP of your cluster:

cat /etc/hosts | grep mycluster.icp
1.1.1.1mycluster.icp

Restart your Docker runtime to make this change effective.

To find more details for your platform, refer to the Docker docs.

154 | Appendix C: Configuring Docker to Push or Pull from an Insecure Registry

https://docs.docker.com/registry/insecure/

APPENDIX D

Generating an API Key
in Docker Cloud

Images that are managed by the Docker Store require authorization
to access. You will need an account to deploy some of the examples
used in this book. As of this writing, Docker Cloud has been depre‐
cated, but no equivalent capability to create an API Key exists. So, in
the meantime, here is how to create an API key:

1. After subscribing to your image from the Docker store, navigate
to the Swarm website.

2. In the upper-right corner, click your account drop-down, and
then select Account Settings.

3. Scroll down to the API Keys section, and then click Add API
key.

4. Enter the API key, and then click OK. The API key is displayed.
5. Store your API key in a secure location for reference; it is dis‐

played only once.

155

https://store.docker.com
https://cloud.docker.com/swarm

About the Authors
Michael Elder is an IBM Distinguished Engineer. He provides tech‐
nical leadership and oversight of IBM Private Cloud Platform with a
strong focus on Kubernetes and enterprise requirements.

Jake Kitchener is an IBM Senior Technical Staff Member (STSM)
and provides technical leadership for the IBM Cloud Kubernetes
Service. His focus is on user experience, scalability, availability, and
system architecture.

Dr. Brad Topol is an IBM Distinguished Engineer leading efforts
focused on open technologies and developer advocacy. Brad is a
Kubernetes contributor, serves as a member of the Kubernetes Con‐
formance Workgroup, and is a Kubernetes documentation main‐
tainer. He received a PhD in Computer Science from the Georgia
Institute of Technology in 1998.

	Kubernetes
	Copyright
	Table of Contents
	Foreword
	Preface
	Chapter 1. An Introduction to Containers and Kubernetes
	The Rise of Containers
	Kubernetes Arrives to Provide an Orchestration and Management Infrastructure for Containers
	The Cloud Native Computing
Foundation Tips the Scale for Kubernetes
	CNCF Kubernetes Conformance Certification Keeps the Focus on User Needs
	Summary

	Chapter 2. Fundamental Kubernetes Topics
	Kubernetes Architecture
	Let’s Run Kubernetes: Deployment Options
	Katacoda Kubernetes Playground
	Minikube
	IBM Cloud Private
	IBM Cloud Kubernetes Service
	Running the Samples Using kubectl

	Kubernetes Core Concepts
	What’s a Pod?
	How Do I Describe What’s in My Pod?
	Labels and Annotations
	ReplicaSets
	Deployments

	Chapter 3. Advanced Kubernetes Topics
	Kubernetes Service Object: Load Balancer Extraordinaire
	DaemonSets
	Customizing DaemonSets

	StatefulSets
	Volumes and Persistent Volumes
	Persistent Volumes

	ConfigMaps
	ConfigMap Keys as Files
	ConfigMap Keys as Environment Variables

	Secrets
	Secret Keys as Files
	Secret Keys as Environment Variables

	Image Registry
	Helm
	Next Steps

	Chapter 4. Introducing Our Production Application
	Our First Microservice
	Namespaces
	ServiceAccount
	PodSecurityPolicy
	Deploying a Containerized Db2 Database as a StatefulSet
	Creating the Namespace for the database
	Creating a Custom PodSecurityPolicy for the Database ServiceAccount
	Creating an Image Pull Secret to Access the Db2 Container Image
	Configuring the ServiceAccount to use the PodSecurityPolicy and the Image Pull Secret
	Deploying Our Database
	Connecting to Our Database from Other Namespaces
	Populating Our Database with Application Schema

	Managing Our Portfolio Java-Based Microservice as a Deployment
	Creating the Required Secrets
	Build the Image and Push to an Image Registry
	Pushing to a Built-In IBM Cloud Private Cluster Image Registry
	Pushing to an IBM Cloud Container Registry
	Deploying the Manifest for the portfolio Microservice

	Deploying the trader Microservice Web Frontend
	Deploying a Containerized MQ Series Manager as a StatefulSet
	Deploying Supporting Services for the portfolio Microservice
	Deploying the stock-quote Microservice
	Deploying the loyalty Microservice

	Putting It All together: Accessing Our Fully Configured Application
	Summary

	Chapter 5. Continuous Delivery
	Image Build
	Programmability of Kubernetes
	General Flow of Changes

	Chapter 6. Enterprise Application Operations
	Log Collection and Analysis for Your Microservices
	IBM Cloud Kubernetes Service Log Analysis Support
	IBM Cloud Private Log Analysis Support

	Health Management for Your Microservices
	IBM Cloud Kubernetes Service Monitoring Capabilities
	IBM Cloud Private Monitoring Capabilities

	Summary

	Chapter 7. Cluster Operations and Hybrid Cloud
	Hybrid Cloud Overview
	Access Control
	Authentication
	Authorization and RBAC
	Hybrid

	Performance, Scheduling, and Autoscaling
	Scheduling
	Autoscaling
	Performance

	Networking
	Pod Networking
	Services/kube-proxy/Load Balancers
	Ingress
	Network Security/Policy
	Istio
	Virtual Private Networks

	Storage
	Kubernetes Volume Plug-ins

	Quotas
	Audit and Compliance
	Kubernetes Federation

	Chapter 8. Contributor Experience
	Kubernetes Website
	The Cloud Native Computing Foundation Website
	IBM Developer Website
	Kubernetes Contributor Experience SIG
	Kubernetes Documentation SIG
	Kubernetes IBM Cloud SIG

	Chapter 9. The Future of Kubernetes
	Increased Migration of Legacy Enterprise Applications to Cloud-Native Applications
	Increased Adoption of Kubernetes for High-Performance Computing
	Kubernetes Will Become the de Facto Platform for Machine Learning and Deep Learning Applications
	Kubernetes Will Be the Platform for Multicloud
	Conclusions

	Appendix A. Configuring Kubernetes as Used in This Book
	Configuring IBM Cloud Private in Your Datacenter
	Configuring an IBM Cloud Private Kubernetes Cluster
	Configuring the IBM Cloud Private Kubernetes Command-Line Interface
	IBM Cloud Kubernetes Service

	Appendix B. Configuring Your Development Environment
	Configuring Java
	Configuring Maven
	Configuring Docker

	Appendix C. Configuring Docker to Push or Pull from an Insecure Registry
	Appendix D. Generating an API Key in Docker Cloud
	About the Authors

