
Start here

What developers
need to know about
observability
by Chris Engelbert
Instana Developer Advocate

2

Contents 01

Introduction

07

Simplify our lives

02

Observability
terminology

03

Distributed
tracing

04

High-performing
engineering

05

Observability-driven
development

06

To be or not
to be… open source

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 3

01
Introduction

As developers, we can remember the time
when Nagios was state-of-the-art technol-
ogy. Ever since, the term “monitoring” has
had some bad implications associated with
it. Looking at dashboards loaded with differ-
ent graphs and numbers didn’t help us solve
issues, and yet we were still asked to look at
them. Sure enough, those dashboards told
us that something was wrong, but our job
wasn’t running the system, was it? We ended
up having metrics fatigue after only a short
period of time.

Why didn’t Nagios work better for us de-
velopers? Apart from performance metrics
gathered directly from counters built into the
applications code flow, it was all just black
box monitoring, mostly consisting of pings to
hosts and connections to services—commonly
accompanied by some log regex parsing.

To make matters worse, in the old days of
service operations, the development and
operations worlds were strictly separated.
We had database administrators, keeping
everyone else miles away from running even
a select statement on their own.

The operations team—operating the sys-
tem in production, handling system failures
and relaying information about problems to
engineering—made a career out of keeping
developers away from production systems.
In the best case, they let only a very limited
number of developers access them.

Finally, there was the engineering depart-
ment. It was our job to build features, get
them “tested,” and that was it. The next time
we were involved was bug fixing. For us,
source code was an art in and of itself. Sure
enough, we kept any non-developer away
from our stuff, too.

Operating and monitoring the system simply
wasn’t part of our job. Except for one specific
part, adding monitoring bits and pieces into
our beautiful source code—something akin
to putting aluminum siding on the Sistine
Chapel. We hated it for all the valid reasons.
It spread like wildfire.

The responsibilities were split and, for a long
time, software engineers wrote code and went
home. Operations took over from there and
had to deal with anything that went wrong.

Times have changed, though. Today,systems
look different, deployments work differently
and the borders between teams are blurred,
if not completely removed. That said, as de-
velopers, we’re closer to operations than ever
and an indirect part of operating the systems.

With the complexity of modern systems run-
ning microservices, “meaningful monitoring”
becomes an important part of our lives. To
prevent the metric overload of the past, we
need to look into the benefits of observability.

This ebook is an examination of the new
world. We’ll leave all the bad feelings about
monitoring behind and take our first steps
into the world of observability and its
ever-growing importance for developers.

01 Introduction

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 4

02
Observability
terminology

First, let’s get the basics of observability ter-
minology out of the way. To dig deeper into
the world of observability, it’s important to
understand the differences between moni-
toring and observability along with how data
is represented to the user.

Monitoring
Traditionally, monitoring has focused on time
series metrics. The process was always the
same: collect a bunch of metrics, put those
metrics on charts on dashboards, figure out
which metrics to set alerts for, and choose
some thresholds for alerting. This approach,
while better than nothing, was far from ideal
because it resulted in either too many or
too few alerts, a false sense of security and
significant time spent in the problem trouble-
shooting process.

Even if we expand monitoring to include the
health and performance of services, tradi-
tional monitoring takes a symptom-based
alerting approach. The problems are the
symptoms it reacts to. If an external service
becomes unreachable, that’s a symptom.
Instead of responding to symptoms, there
should be a focus on collecting relevant data
that has context embedded throughout.

Observability
Even though observability is nothing new,
it’s the perfect complement to monitoring.
It may be seen as a superset.

The term observability implies that we ob-
serve something. The important part here is
to observe at a more granular level than mon-
itoring. While still including all the numbers
and graphs from monitoring, observability
adds the knowledge of what’s meaningful to
be monitored to all the different, previously
separate teams.

Nobody needs hundreds of graphs and
tables, especially if they never help solve
issues. On the other hand, it’s possible that
the necessary data required to help solve a
puzzling issue wasn’t even collected.

On top of that issue, observability adds
distributed tracing, basically a microservices
stack trace. We’ll discuss what that means.
And don’t forget: meaningful log analytics
reach far beyond the simple error search
based on regular expression (regex).

02 Terminology

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 5

The last two elements are designed to bring
monitoring from the inside of applications and
services. In contrast to plain monitoring, we
gather information directly from the inside of
the service and bring it together with every-
thing else we know about the system.

Observability is designed with the knowledge
of known failure domains of our system, for
example, a service connecting to another
service via HTTP may fail to connect for vari-
ous reasons—that’s a known failure domain.
Failure domains may depend on the way
people think about the service or system as
a whole. For that reason, it’s important to
take different perspectives into account
when designing the failure domains and con-
text associated with it, for example, for easy
debugging, depending on the audience.

When looking at observability, we see three
pillars to bring insight and understanding into
our issue: health and performance metrics,
distributed traces and logs.

Enterprise observability
In the enterprise, observability must be highly
scalable to handle the complexities and
scalability of transient systems running short-
lived microservices or serverless applications.
Systems designed for enterprise observability
automatically keep up with the constantly
changing infrastructure or service landscape.
Part of this process is to discover new or shut-
down instances or services without manual
intervention. They normally provide wrapper
libraries for nonintrusive, minimal changes
to source code, sometimes even going as far
as fully automatic code instrumentation to
add measurements and health probes into an
already running application.

Code instrumentation provides a way to add
the necessary starting points and endpoints of
operations into the running code base with-
out manually adding these into the source
code. That said, developers are mostly freed
from the tedious job of adding monitoring and
tracing elements into their code base, leaving
more time to actually work on the business’s
use cases.

Furthermore, always-on but low-overhead
code profiling of development, staging and
production systems brings greater insight into
the performance of services under live condi-
tions—something developers were missing
for a long time. Systems always behaved dif-
ferently from our expectations in production
environments.

After collecting all that data though, it’s im-
portant to not just display it the old-fashioned
way with numbers, tables and diagrams. The
bigger picture is that the context of the data is
what’s important for solving problems, espe-
cially to developers.

To make the massive amounts of data use-
ful, enterprise observability solutions must
provide automatic correlation, which eases
understanding and creates actionable infor-
mation. They also often help with root cause
analysis by providing the necessary context
around the correlated events and information.

02 Terminology

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 6

03
Distributed
tracing

Distributed traces are to distributed systems
as stack traces are to applications and excep-
tions or panics. It’s a technique to capture and
time service handlers and internal calls while
a request makes its way through a systems
landscape to generate its response. For that
reason, it’s also sometimes referred to as dis-
tributed request tracing.

Distributed tracing helps developers analyze
request flows and pinpoint the root cause of
issues or performance bottlenecks.

Imagine a user calls a user service asking for
the user’s own account details. The service
itself calls a few services down the stack to
retrieve different kinds of information. Figure
1 shows the basic flow of the call. Although
information, such as who calls whom, is visi-
ble, important data such as timing information
is missing from the diagram.

This scenario shows where distributed tracing
comes into play. Figures 2 and 3 show the call
flow in two different ways, as a timing bar and
as a stack trace-like tree view.

Those two views deliver the necessary in-
formation for developers to find slow calls,
long-running operations, failing services and
where those failures happen.

03 Distributed tracing

Figure 3. Hierarchy diagram of the code flow

User service

User data service

External CRM service

User data database

Figure 2. The call flow as a timing and hierarchy diagram

User service

User data service

User data database

External CRM service

Figure 1. A request to a user service moving along the internal services

User service

Span

User data database

SpanSpan

User data service

External CRM service

Call Call

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 7

To represent that information, the trace
is broken down in elements, such as spans
and calls.

A span, sometimes called a timespan, rep-
resents the runtime of a single operation
inside the flow of the distributed trace. An
operation in this context is a code execution
with a start time and end time as well as pos-
sible parent and child spans.

Additionally, a span contains metadata to
provide context around the actual span itself.
To connect multiple spans, identifiers (span-
id and trace-id) are used to build the parent/
child hierarchies.

Communication between two spans is rep-
resented by calls. Calls contain information
about what type of connection was used,
header information and response data, such
as HTTP status codes if a call was erroneous.
Custom context information can be added, too.

The importance of observability
When working with distributed systems, chal-
lenges are vastly different from the monolithic
applications we built in the past. Though we
love to think of our world in simple terms, the
reality is very different—sometimes without us
knowing it.

Many different systems and services are running
independently and concurrently. The majority
of services still have one or more sub-calls to
other services or databases. An understanding
of the interplay between those services is one
of the most important elements to a developer
when trying to fix a bug or mitigate a perfor-
mance problem.

It’s also important to not have too many met-
rics charts on dashboards because we go back
to the state we were in years ago. What we are
looking for is relevant information that leads us
to the cause of a problem as quickly as possible.
We need the system to tell us what metrics are
important to the failure domain of each specific
service. Focusing our attention on only what
matters is important here.

And that focus makes sense because there’s
no guarantee that we’ll end up with a fail-
ure-free system—no matter how many metrics
we add. It’s more the other way around; failures
in our system can’t be avoided. I wrote about
this issue in a blog post titled Building Resilient
Applications—Embrace the Failure, which goes
into detail about that topic. The best we can do
is prepare for this case by understanding the
aforementioned failure domain.

03 Distributed tracing

https://www.instana.com/blog/build-for-resiliency-embrace-the-failure/
https://www.instana.com/blog/build-for-resiliency-embrace-the-failure/

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 8

In the end, the important element for us as
developers is to get back to our creativity
and motivation. We want to work on the
pieces that bring the company forward, our
business use cases. We don’t want to clutter
our source code with millions of metrics or
tracing points. And most important, we don’t
want the constant firefighting or bug fixing.

On the last point though, a clean, helpful
and insight-providing observability system
can help with all those tasks. By provid-
ing slim-wrapper libraries or, even better,
automatic instrumentation, we can keep our
source base clean, true to the business use
case. It also gives us a lot of time back—time
we needed to analyze complex issues in dis-
tributed systems, time we used to add met-
rics points, time we spent on understanding
interaction and communication between sys-
tems, and, last but not least, time we wasted
on finding bottlenecks. Today, a distributed
trace can help us understand shortcomings
and evolutions of the current system before
we hit bottlenecks or scalability issues.

03 Distributed tracing

Figure 4. Quick insight into the health of a service
with release markers. Source: Instana.

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 9

Time to resolution
When a deployment fails or our new
version behaves erratically, we have to be
fast. Either roll back to an older version or
analyze the issue, find a fix, implement it
and move on.

Sometimes, the issue is just a little over-
sight, locally reproducible and quickly
fixable. It becomes more complex, though,
when we can’t directly reproduce it locally.
In this case, observability tools can be of
great help. The reality is that there’s no way
to predict how complex the issues are that
will arise in our production environments.
Because of that lack of predictability, we
need to collect the required data from pro-
duction as it’s running.

By providing a simple way to look at the
request flow using the distributed trace, it’s
easy to quickly gather information about
where the request failed. We can also see
if the error bubbled up the stack or was
handled somewhere in between, and if a
user was impacted.

Distributed traces also provide information
about callers and callees along with their
respective headers and timing or retry
information.

This information helps as a quick first step
into the root cause analysis and to poten-
tially get colleagues of the responsible area
to help on the issue. All of it can be accom-
plished without randomly pointing fingers
but with conclusions based on data.

This top-down analysis approach isn’t just
much faster but also provides the chance
to quickly find the actual root cause of the
problem. We get an overview of all aspects
of the issue and identify those we need to in-
clude in the investigation based on the actual
upstream or downstream dependencies.

In short, when searching for the issue, ob-
servability delivers the insight we need to
act quickly and, in the best case, with mini-
mal dependency on other teams or external
partners such as hosting companies. The
latter can be especially slow to respond
when investigating a time-critical issue.

03 Distributed tracing

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 10

Deployment gone bad
Historically, as a developer, I could skip
this section. Deployments weren’t my
responsibility.

Today, though, developers write Dockerfile
configurations to build Docker images and
often also provide deployment configura-
tions in the form of Kubernetes (K8s) YAML
descriptors, describing the containers, ser-
vices and more—or at least parts of them—
for good reasons.

It’s not a sole DevOps responsibility to pro-
vide those descriptors, since a full deploy-
ment is most commonly a combination of
K8s deployment descriptors of engineering
and DevOps.

Anyway, our last deployment failed, and
there’s no obvious issue with the deployment
process itself, but the service dies right after
the deployment. Now it’s our time to shine.

The first step is to figure out. Was it really
us? Looking at a distributed trace can often
quickly answer that question. Is it our service
that results in an error, for example, HTTP
status 500, or is the problem coming from
further down the stack? Is the downstream
service dependency returning the failure?
Maybe we’re sending the wrong data. Again,
a quick look may answer that question, too.

Observability solutions provide the necessary
evidence, originally reported by the systems
and based on our failure domain analysis,
as precise and contextual observations.
Distributed traces are the prime witness
when searching for a way to quickly gain an
understanding of yet unknown situations.
Mean time to repair and mean time to restore
service are the key metrics here.

03 Distributed tracing

Remember the “Don’t deploy on Friday”
rule? Me too, and I bet everyone else does
as well. These days I’d claim—with good
observability and the chance to immediately
see small changes in behavior, latency or
error rate—we can and should actually de-
ploy on Fridays, although maybe early in the
morning. In this case, we have quite a few
hours left to get an issue fixed or to roll back
if something happens.

If we can’t fix an issue right away because
we went down the rabbit hole too far, our
only choice is to roll back to an older build.
With an automated deployment flow, this
process is easy enough. Kick off our continu-
ous integration and continuous delivery
(CI/CD) pipeline with a different tag or re-
lease version and off we go. We just bought
ourselves a lot of time to investigate deeper,
fix with more care and remove the additional
stress to be as fast as possible.

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 11

04
High-performing
engineering

After much talk about speeding up engineer-
ing and spending time where it provides the
most value, we need to talk about engineer-
ing itself and how it changes or has already
changed in the years prior.

Page 18 of the Accelerate State of DevOps
2019 report brought up 4 points necessary
for a high-performing engineering team in
the days to come. The bullets point to the
fact that engineering, operations and data-
base administrators aren’t in those wholly
separated spaces anymore.

But what does this statement really mean?
Are we going to be operations? Certainly not.
I’d never think of myself as an operations
person even though I’m doing quite a bit of
that work on a daily basis. The difference,
however, still exists. By no means am I an
expert in deployment engineering, although
others are. And that statement is true for
every other subject, even in engineering.
Not everyone is a performance engineer. It’s
still necessary to have those highly special-
ized people, but getting the big picture is
important for everyone—more important than
ever before.

04 Engineering

The 4 questions we want to answer are:
 – What’s our deployment frequency?
 – What’s our lead time for changes?
 – What’s our time to restore service?
 – What’s our change failure rate?

The answers to these questions tell us how
fast we can iterate. Our answers provide a
good guideline, but be honest. The same
goes for our code base; we can only optimize
if we understand the problem.

How often do we deploy?
Do we deploy once a year, once a month,
once a day or multiple times a day? Deploying
more often means we need to have better,
faster insight into how new versions behave.

How long does it take for code to go live?
How much time do we actually need for a
deployment? Is it a major operation, possibly
a release train between all teams? Maybe we
can deploy independently. Or can we deploy
automatically after all tests are green.

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 12

How quickly can we recover
from an outage?
If something goes wrong, who can analyze
the issue? My favorite question is, “Who can
solve the issue on my service if I’m on va-
cation, without a phone or internet connec-
tion, and how long will it take the person to
understand the problem in the first place?”
How many deployments fail?

Last but not least, the most common
question, the one most people can proba-
bly answer without too much thinking: are
deployments failing and, if yes, how many
and why?

This list is an excellent starting point for
finding and understanding the speed of
iterations in our company, team, and service
or application.

I’d go one step further, though, and say
one major question is missing—a question
about the differences between releases.
It’s great to have a low number of failing

deployments, and we may already deploy
multiple times a day. However, there’s still
one unasked question: What’s the difference
in errors and performance between releases?

The best deployments and fastest iteration
aren’t worth a single thought if every release
performs worse than the one before or
increases the error rate. In the end, we don’t
want to go back to firefighting, do we?

Development is changing
The way we develop applications is obvi-
ously changing. The last few years have
brought about the necessity to scale out
systems greater than ever before. Setting
aside Internet of Things (IoT) solutions,
the number of users, customers or people
we want to see happily engaging with what
we’ve built is ever increasing.

Many companies are still in the adoption
phase, but it’s almost certain that new
systems are not built in the monolithic way
anymore. Scalability has become too im-
portant, and scaling vertically is too expen-
sive and, in some cases, unachievable.

Microservices, while not the silver bullet
many people proclaim, are definitely here
to stay. Slicing larger chunks of work into
bite-size pieces and deploying them in-
dependently sounds great and is amazing
for scalability. The feeling of being able to
scale parts of the system independently
according to needs is incredible. But on the
downside, this scalability comes at a cost
by adding lots of network operations in
between services. Operations can time out,
fail or return garbage. We’re fighting a whole
new kind of enemy.

Furthermore, I remember the time when
data was stored in relational databases. No
questions asked; there were no alternatives.
Although relational databases are here
to stay, we have many different systems
to choose from these days, from simple
key-value or document stores over graph or
time-series databases all the way to column
stores for extremely fast aggregations.

04 Engineering

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 13

All those systems are different, and all behave
differently. Nobody can be an expert in all of
them. However, the beauty as a developer is
that we have the chance to choose the best
tool for the job while learning new things.

Last but not least, we deploy systems and
services differently today than a few years
ago. Deploying to dedicated systems has be-
come the minority of new installations. Almost
everybody deploys into virtual machines now.
Many already deploy in the cloud or self-host-
ed environments with Kubernetes or Cloud
Foundry. Docker and other container runtimes
such as CRI-O are a common sight on devel-
oper machines.

All those technologies are beautiful, bringing
development on my machine closer to the
environment they’ll eventually run in. I always
disliked the sentence “It works on my ma-
chine,” even though it was true. The reason
I disliked it is simple. It meant something was
going on—something I couldn’t immediately
understand or explain.

Development pipelines
If we want to iterate faster, we need to have
good support in place. Although unit tests are
hopefully nothing new and basic integration
tests are commonly employed, everything
after them is often still disregarded as
either too complex, too expensive or not
“developer-y” enough.

However, with short iteration cycles and
distributed systems, integration tests have
become more important than ever. Continuous
integration on a system closer to staging and
production is a must-have for fast feedback
cycles during development. They’re also a
good stage to gather first performance and
error rate information. Finding potential issues
early in the development of a feature can pre-
vent long rebuilding cycles and bring fast vali-
dation of expectations—or prove them wrong.

Another piece to the puzzle is that regular
load tests are best automated whenever
possible. The reasons are the same as before:
short feedback loops and early validation of
models, expectations and performance-relat-
ed questions.

The last step in optimizing the high-perform-
ing engineering team is continuous delivery,
which requires all the previously mentioned
elements in place. It also requires the cour-
age to fail. With the knowledge that failure
understanding, quick root cause analysis and
bug fix deployment aren’t only possible but
are supported by all team members and tools
throughout the production process, courage
is much higher, automatically. We feel much
safer going forward.

That said, failure situations must be recog-
nized quickly. Context-enriched observability
tools have to support the problem analysis
process and help find the root cause in the
shortest time possible. Also, all services
should be as resilient to failing dependencies
as possible.

After the fix is produced and committed, the
pipeline kicks off and builds, tests and de-
ploys the new version in production. Small,
independent services are easier to handle
with such a process than large monoliths.

Finally, just to stress it again, all the steps
should be fully automated to minimize the im-
pact of a failed deployment or a broken version.

04 Engineering

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 14

And we’re live
Right after a deployment went live, the most
important question beyond “Is it working?”
was “How does it perform?”

As mentioned before, a fast turnaround cycle
is only meaningful when new releases aren’t
generally worse in performance than old
versions. Exceptions to this rule exist, but it
should only be an upfront known and expect-
ed performance hit, something already calcu-
lated into possible infrastructure scaling.

Important key metrics to keep an eye on
immediately following deployment are any
kind of unexpected changes in average
latency, error rate or downstream calls, for
example, the number of database calls or
similar. Great observability tools offer direct
comparisons of before and after the deploy-
ment for easy accessibility.

Anyway, our deployment went well, imme-
diate numbers look good, and the system
behaves in the expected ranges. Is this the
end of the story? Does our deployment live
happily ever after?

04 Engineering

Figure 5. Release markers in the services dash-
board for immediate insight after and between
release, source: Instana

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 15

Unfortunately, we know this outcome is
rarely the case for production environments.
Something is about to happen all the time.
Be prepared. Even though the times of fire-
fighting have been shrunk by order of magni-
tude, they’ll never really be gone altogether.
Remember, building an unfailing system is
simply impossible.

It is true that at this stage of the process,
there’s less direct involvement of engineering
when something goes wrong. To just stress it
again, however, when we’re on call and being
asked to chime in, an intelligent overview of
all involved components, networks, machines,
applications and their interconnection helps
us dig in quickly. It’s a task that only becomes
more complicated with every bit of abstraction,
or architectural complexity, we add to the sys-
tem. What simplifies and eases our lives during
development, increases complexity when
partly analyzing unknown systems.

There’s only one metric upon which we should
judge ourselves, especially for on-call situa-
tions: the MTTGBTB—Mean Time to Get Back
to Bed. Thanks to Karthik Kumar for this very
important metric.

04 Engineering

Figure 6. Architectural complexity
sometimes prevents quick reasoning

https://thenewstack.io/why-observability-is-crucial-for-developers/
https://thenewstack.io/why-observability-is-crucial-for-developers/

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 16

05
Observability-
driven
development

05 Development

Now that we understand the importance of
observability, let’s look at the value of observ-
ability-driven development (ODD). Let’s quickly
summarize the most important elements that
are described as ODD.

ODD is a direct extension of behavior-driven
development. It extends testing to include the
behavior of a component with expectations
around performance and health. Tests should
be implemented early and run throughout the
development cycle. These tests provide insight
into performance before, during and after the
feature development. They help compare early
expectations with reality and provide informa-
tion if the production system requires scaling
before the final feature deployment.

Build the development cycle around the idea
of short feedback loops. The real key is to
make observability a central part of the devel-
opment process. Make it a proactive thought
and work in conjunction with the other teams.
Don’t build silos.

During those interactions, come up with
health metrics and start to implement them
early in the feature’s implementation process.

Remember to keep the number of metrics in
mind. The optimal selection includes 3–5, at
maximum 10 metrics.

If the observability solution requires manual
integration using wrappers, add them right
from the start, too. If we can have our service
instrumented automatically, even better. Our
code—our “art”—stays intact.

For optimizations, don’t guess. To select
optimization points, take into account all data
provided by the observability solution, metrics,
distributed traces and infrastructure informa-
tion. Find the biggest contributors to latency
and error rates and fix those first. Low-hanging
fruit gives quick wins and motivation.

Also, take a look into code profiling data.
An always-on production-grade profiler will
increase our understanding to a level that
was almost impossible to gather beforehand.
Until recently, I never had the chance to get
a profile on my computer that was anywhere
close to what it looked like in production. But
please remember, don’t just use any profiler.
Production-ready profilers are tailor-made
for their respective use case, with extremely
low overhead.

The last tip will probably hurt just reading it.
Test… wait for it… in production. Yes, you read
that right. Test in production, but with fea-
ture flags. Enable the new behavior, the new
feature, based on a set of user IDs, special
parameters given—and be creative.

The reasoning behind that step—and the total
turn away from the old rule of never testing
in production—is the uniqueness of every
single environment. The infrastructure state,
dependencies, date and time, deployment,
environment in itself, and the moon phase…
everything may affect our code.

After all the development discussion and why
observability makes the developer’s life easier,
how can we apply it? First steps first, ask the
DevOps team if they already have a solution
that’s used by another team.

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 17

As with almost everything, the open-source
community did a great job supplying the
world with various options. Options are good,
aren’t they?

Yes and no. One major hurdle with most solu-
tions is that they either do metric monitoring
or distributed tracing, but not both. The basic
problem is that we lose the correlation be-
tween the information. Open-source software
(OSS) tools have independent dashboards,
independent data silos and, most commonly,
don’t have a way to jump between metrics,
traces and infrastructure for a single request.

Creating observability manually
To create observability, it’s common to use
two separate tools—as mentioned, one
for the metrics and monitoring part, often
Prometheus, and one for distributed tracing,
often Jaeger or Zipkin.

These open-source solutions are available
“for free”—I’ll explain the reason for the
quotes—and can be integrated with an

application service. Integration in this case
means that we need to add the tracer and met-
rics collector to our source code. Wrappers for
the most common libraries in many program-
ming languages are available and can be
used directly.

A simple example for a Prometheus metric,
measuring the number of requests per second,
would look similar to the following snippet,
using a counter instance to count the number
of requests. See Figure 7.

Not too bad for direct usage. Thankfully,
many frameworks provide those kinds of
metrics using Prometheus out of the box.

The other part is to use Prometheus to
measure usage of resources such as data-
base connections or query runtimes. Here,
we have plenty of integrations from the
Prometheus community. In the Java world,
the famous Hibernate object-relational map-
ping (ORM) solution can be used with just a
bit of code. See Figure 8.

The Prometheus integration will handle all
the dirty details of the implementation for us.

06 Open source

06
To be or not
to be… open
source

Figure 7. Example for a
Prometheus metric

Figure 8. Example of Hibernate
with Prometheus

public class FooHandler {
 Counter counter = Counter
 .build()
 .namespace(“my-app”)
 .name(“foo-handler”)
 .help(“number of requests”)
 .register();
public ResponseEntity handler(Request
request) {
 counter.inc(1);
 // do some business thing here
 }
}

new HibernateStatisticsCollector()
 .add(sessionFactory, “my-app”)
 .register();

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 18

On the distributed tracing side, we have
Zipkin or Jaeger. With both solutions, we can
add distributed tracing to our application
and, again, the integration isn’t too compli-
cated, as shown by the following snippet,
based on our existing FooHandler.
See Figure 9.

We see that it’s still not really complicated,
but it somehow feels like we’re at the level
of “back in the old days.” The worst thing
is that we cluttered our code with probably
more ceremony for monitoring and tracing
than actual business logic.

Making sense of the data
Together with log data stored in something
like Logstash or Splunk, there’s now a lot of
data to dig through when a problem happens.
There is, however, yet another issue—the
observability stack itself.

With 3 independent systems that don’t share
any data or data correlations, making sense
of the different data sources is complicated
and time-consuming. Matching timestamps,
finding correlations, making the connection
and eventually building the context to solve
the riddle in question are all up to the user.

06 Open source

public class FooHandler {
 Counter counter = Counter
 .build()
 .namespace(“my-app”)
 .name(“foo-handler”)
 .help(“number of requests”)
 .register();
private JaegerTracer tracer;

public FooHandler() {
 Configuration.SamplerConfiguration samplerConfig =
 Configuration.SamplerConfiguration
 .fromEnv()
 .withType(“const”)
 .withParam(1);
 Configuration.ReporterConfiguration reporterConfig =
 Configuration.ReporterConfiguration
 .fromEnv()
 .withLogSpans(true);
 Configuration config = new Configuration()
 .withSampler(samplerConfig)
 .withReporter(reporterConfig);
 this.tracer = config.getTracer();
 }
public ResponseEntity handler(Request request) {
 Span span = tracer.buildSpan(“foo handler”).start()
 try {
 counter.inc(1);
 // do some business thing here
 } catch (Exception e) {
 span.setTag(“http.status_code”, 500);
 } finally {
 span.finish();
 }
 }
}

Figure 9. Snippet of Java tracing with Jaeger

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 19

Keep in mind that making sense of it all is the
biggest issue with open-source observability
tools. We now have more individual systems
and more data without the necessary aggre-
gated context itself.

The actual cost of open source
Remember when I mentioned “for free”
earlier that we’d talk about it in a bit?
Now’s the time.

Contrary to common belief, open source isn’t
free. True, there’s no license cost for actu-
ally being able to use it. The major cost of
OSS observability is measured in time—time
where companies pay for people to under-
stand how to operate the observability stack,
how to use it and how to make sense of the
data. This time, often the thing we have the
least of is taken away from delivering busi-
ness functionality.

It may be necessary to pay additional engi-
neers to adjust OSS observability solutions,
too. Let’s also not forget the time required to
integrate monitoring and distributed tracing.

These tasks are all additional costs on top of
the time it takes to implement OSS observ-
ability into the source base.

Keeping those integrations in line with our
previously set goals can easily add up to
5%–10% of the development time—time we
actually tried to avoid when we left the era of
Zabbix and Nagios.

When looking at the DevOps and operations
teams, this number just increases because
now we’re operating multiple systems, which
is yet another story. We’re only looking at our
development story.

Last but not least, there’s also a cost for the
operation of the stack, storage space neces-
sary to keep all the data, and the computa-
tion time of trying to reimplement even the
very basic automatic correlations.

Suddenly, this “free” open-source tooling just
became very expensive and still comes with
gaps in observability and context.

The vendor solution
Commercial solutions, on the other hand,
provide many, if not all, the above features
in a single solution. If certain parts aren’t
directly provided, they integrate external
services to an extent that feels like it’s inter-
nally stored. Data correlation of internal and
external systems is included.

Data correlation between all parts of our
systems is the most important element,
though. Infrastructure, applications, services,
network, logging… all data is preprocessed in
a way that the necessary information is easy
to gather and make sense of.

Some vendors go one step further and cor-
relate issues found in different parts of the
system to create more actionable and target-
ed alerts. Correlating all issues or events
that belong together provides even faster
insight into the extent and cause of an
incident, the related services and if there’s
impact to the user.

Furthermore, some vendors provide imme-
diate insight into changes before and after
releases, as seen in Figure 5. To achieve
that insight, integration with common CI/CD
pipelines, DevOps services and development
tools is required.

06 Open source

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 20

Beyond open source
As a developer, we’re looking for the develop-
ment work, though. Instead of setting up ev-
erything manually, some commercial solutions
provide fully automatic code instrumentation.

Remember our code example from earlier, and
wonder what it would look like when using
fully automated code instrumentation?

That’s right, no code changes are needed to
add monitoring, distributed tracing or perfor-
mance gathering. Automation picks up the
services, no matter if they started directly, in
a Docker container or inside Kubernetes, the
Red Hat® OpenShift® Platform or similar envi-
ronments. After automatically discovering it,
the service is instrumented on the fly, dash-
boards are generated based on known best
practices for the given service or framework,
and we’re ready to go. No manual intervention
is necessary. What more can we ask for?

The automatic correlation benefit
As mentioned before, the major benefit of an
enterprise observability solution is the ability
to correlate machine, infrastructure, and
application and services metrics and traces.
Distributed traces deliver the understanding
of the request’s flow, while metrics provide
the necessary performance points.

Correlating manually, however, is quite
cumbersome. The main reason people dislike
having multiple dashboards for different ser-
vices is that it’s almost impossible to match
any timespans and gather the overall context
of the issue.

The biggest benefit of automatic correlation,
as described before, is the immediate insight.
When looking at an issue or incident, the
vendor solution already did all the detective
work to provide the important pieces of in-
formation as contextual evidence and lead us
right to the interesting spot.

06 Open source

public class FooHandler {
 public ResponseEntity handler(Request
request) {
 // do some business thing here
 }
}

Figure 10. Code using fully automated
instrumentation with Instana AutoTrace

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 21

The cost of vendor solutions
As opposed to open-source tools, vendor
solutions don’t claim to be free.

With open source, we have to operate the
system and pay for data storage and compu-
tation power. Conversely, vendor solutions
offer all the necessary tools to provide full
enterprise observability as a hosted soft-
ware-as-a-service (SaaS) environment or on
premises in cases where it’s a requirement.

With the removed cost of integration of
monitoring and tracing into services and
infrastructure, vendor solutions, in the end,
are often more cost-effective, with fewer
operational and development costs. And
let’s not forget the storage cost necessary
to store all the information and data.

Making an educated decision
Making a choice between open source or
a commercial solution is a question of how
much time we want to put into development
of nonbusiness-related functionality, not a
matter of cost, as neither solution is free.

So far, we’ve been focusing on developers
who dislike adding monitoring and tracing
into their code, and certainly, that’s the
biggest group. There are, however, develop-
ers who love to tinker. I, for one, consider
myself somebody with the tinkering gene.
Still, I prefer to play with new technologies,
not some performance metric.

Apart from that, my experience tells me that
we forget the most important data collec-
tions when doing them manually, and not just
once. Or we fall back into the old habit of just
adding everything possible instead of focus-
ing on our previously defined failure domains.

Vendor solutions provide an ever-grow-
ing set of best practices for automatically
collected metrics and understand program-
ming languages, frameworks and service
integrations. These best practices remove
the majority of work when defining the pos-
sible failure domains for new or unknown
systems. With vendor solutions, it’s rare that
we’ll ever find ourselves missing important
information again.

07 Simplify our lives

07
Simplify
our lives

01 Introduction 02 Terminology 04 Engineering 05 Development 06 Open source 07 Simplify our lives03 Distributed tracing 22

Building software today greatly differs from
the traditional methods we’ve used for the
previous decades. Applications are being
broken down into small microservices, while
deployments are built on top of Docker,
Kubernetes and automatic CI/CD pipelines.

Keeping up with all those changes during op-
erations and analyzing issues increasingly be-
comes more complicated. New ways to gather
insight into what’s happening is important,
especially when on call and trying to under-
stand a problem in an unknown component.

Enterprise observability is the key.
Choose the right fight; don’t fight your
observability solution.

07 Simplify our lives

© Copyright 2021 Instana, an IBM Company

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
April 2021

IBM and the IBM logo are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current
list of IBM trademarks is available on ibm.com/trademark.

Instana is a trademark or registered trademark of Instana, Inc.,
an IBM company.

Red Hat and OpenShift are trademarks or registered trademarks of Red Hat,
Inc. or its subsidiaries in the United States and other countries.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.
IBM products are warranted according to the terms and conditions of the
agreements under which they are provided.

http://ibm.com/trademark

	v:
	Button 2:
	Page 2:

	Button 1:
	Page 2:

	Button 3:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

	Button 4:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:

